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Abstract

Large language models (LLMs) demonstrate
remarkable linguistic capabilities but lack ex-
plicit syntactic knowledge grounded in formal
grammatical theory. This paper introduces a
syntax-guided parameter-efficient fine-tuning
approach! that integrates formal syntactic con-
straints into transformer-based models using
Low-Rank Adaptation (LoRA). We develop a
hybrid training objective incorporating viola-
tions of syntactic well-formedness derived from
dependency parsing and context-free grammar
constraints. Our method is evaluated on estab-
lished English syntactic benchmarks including
BLiMP, CoLA, and SyntaxGym targeting spe-
cific grammatical phenomena. Results show
modest but consistent improvements in syntac-
tic competence: 1.6 percentage point average
improvement on BLiMP overall, with gains of
1.7 percentage points on agreement phenomena
and 1.6 percentage points on filler-gap depen-
dencies, alongside 0.006 improvement in CoLA
MCC scores, while maintaining stable perfor-
mance on general natural language processing
(NLP) tasks. The parameter-efficient approach
reduces training time by 76% compared to full
fine-tuning while achieving these incremental
syntactic gains. This work demonstrates a prac-
tical pathway for incorporating linguistic theory
into modern natural language processing (NLP)
systems, though the improvements suggest that
explicit syntactic supervision provides limited
additional benefits over implicit learning from
large-scale text.

1 Introduction

The extraordinary success of large language models
(LLMs) in natural language processing has largely
been achieved through statistical learning from
massive text corpora, with minimal explicit incor-
poration of linguistic theory (Brown et al., 2020;

1https ://github.com/TransformerTitan/
SyntaxGuidedPEFT
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Touvron et al., 2023). While these models demon-
strate impressive fluency and performance across
diverse tasks, their syntactic knowledge remains
implicit and often unreliable for systematic gram-
matical phenomena (Linzen et al., 2016; Goldberg,
2019).

Formal grammatical frameworks, developed
through decades of linguistic research, provide ex-
plicit representations of syntactic structures and
constraints that govern natural language. However,
the integration of these theoretical insights into
modern neural architectures has been limited, cre-
ating a disconnect between computational practice
and linguistic theory (Manning et al., 2020).

This paper addresses this gap by proposing a
syntax-guided parameter-efficient fine-tuning ap-
proach that incorporates formal syntactic con-
straints into transformer-based language mod-
els. Our method leverages Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to efficiently integrate
syntactic supervision while preserving the general
capabilities of pre-trained models.

This work presents four principal contributions
to the field of syntax-guided neural language model-
ing. First, we introduce a novel training framework
that systematically incorporates formal syntactic
constraints through the design of auxiliary loss
functions, which are derived from dependency pars-
ing structures and context-free grammar violation
detection. Second, we demonstrate the integration
of low-rank adaptation (LoRA) based parameter-
efficient fine-tuning techniques, enabling scalable
syntax-guided training methodologies for large-
scale language models without prohibitive com-
putational overhead. Third, we provide a com-
prehensive empirical evaluation that establishes
significant improvements on established syntac-
tic benchmarks while crucially maintaining com-
petitive performance across general natural lan-
guage processing tasks, thereby addressing con-
cerns about specialization at the expense of general
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capability. Finally, we present a thorough anal-
ysis of both the interpretability benefits afforded
by our syntax-guided approach and the associated
computational trade-offs inherent in incorporating
explicit syntactic supervision during the fine-tuning
process.

2 Related Work

2.1 Syntactic Evaluation of Language Models

Recent work has extensively studied the syntactic
capabilities of neural language models. Linzen et al.
(2016) introduced targeted evaluation of subject-
verb agreement, revealing systematic failures in
recurrent neural networks. Warstadt et al. (2020)
developed the BLiIMP benchmark for comprehen-
sive syntactic evaluation, showing that while trans-
formers perform better than RNNs, significant gaps
remain in syntactic competence.

Structural probing studies (Hewitt and Manning,
2019; Tenney et al., 2019) have shown that trans-
former representations implicitly encode syntac-
tic information, but this knowledge is not always
accessible or reliable for systematic grammatical
phenomena (Rogers et al., 2020).

2.2 Neural-Symbolic Integration

Several approaches have attempted to integrate
symbolic knowledge into neural language models.
Kuncoro et al. (2018) incorporated syntactic ob-
jectives through multi-task learning with RNNMs.
Strubell et al. (2018) used syntactic attention in
transformers, showing modest improvements on
downstream tasks.

More recent work has explored auxiliary losses
based on parsing objectives (Liu et al., 2019)
and syntax-aware pre-training (Wang et al., 2019).
However, these approaches typically use simplified
syntactic representations rather than comprehen-
sive grammatical constraints.

2.3 Parameter-Efficient Fine-Tuning

Low-Rank Adaptation (LoRA) (Hu et al., 2022) has
emerged as a highly effective parameter-efficient
fine-tuning method, enabling adaptation of large
models with minimal computational overhead.
Dettmers et al. (2023) extended this approach to
extremely large models, while Zhang et al. (2023)
proposed adaptive rank allocation for improved ef-
ficiency.

Our work is the first to systematically combine
LoRA with formal syntactic constraints, demon-
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strating that parameter-efficient methods can effec-
tively incorporate linguistic knowledge.

3 Methodology

3.1 Formal Syntactic Constraints

We define formal syntactic constraints based on
two primary sources of grammatical violations.
First, to detect ill-formed dependency structures,
we employ spaCy’s dependency parser utilizing
the en_core_web_sm model trained on OntoNotes
5.0 and Common Crawl (Honnibal and Montani,
2017), which enables identification of incomplete
dependency trees with disconnected components,
violations of projectivity constraints, and inconsis-
tent head-dependent relations. Second, we con-
struct a probabilistic context-free grammar (PCFG)
derived from Penn Treebank productions (Mar-
cus et al., 1993), facilitating detection of phrase-
structure errors including unbalanced constituents,
invalid phrase boundaries, and subcategorization
violations. For each training sentence, we compute
violation scores vgep(s) and vege(s) that quantify
the severity of dependency-based and CFG-based
violations, respectively.

3.2 Syntax-Guided Loss Function

To incorporate syntactic supervision into training,
we extend the standard language modeling objec-
tive with penalties derived from the above con-
straints. The total loss is given by

ey

where L1y is the conventional cross-entropy loss
and a modulates the influence of syntactic penal-
ties. The syntax-aware component is decomposed
as

Liotal = LM + aﬁsyntax;

Esyntax = Edep + chga

»Cdep = Esop [Udep(s) -log P(S)]7

['cfg =E;wp [Ucfg(s) ’ lOgP(S)] .
where D denotes the training distribution and
Udep(S), Vcfg(s) are violation functions that quan-
tify dependency and context-free grammar viola-
tions, respectively. This formulation penalizes high
probability assignments to syntactically malformed
sentences, encouraging grammatically well-formed
structures.

2

3.3 LoRA Integration

To achieve parameter-efficient fine-tuning, we inte-
grate low-rank adaptation (LoRA) into the syntax-
guided training framework. For each weight matrix



Wy € R in the transformer, LoRA introduces
a low-rank decomposition with trainable matrices
A € R and B € R™*, where r < min(d, k).
The adapted weight matrix is expressed as

W =Wy + AW = Wy + BA. 3)

During fine-tuning, only the LoRA parameters
{A, B} are updated, while the original pre-trained
weights W remain frozen, significantly reducing
the number of trainable parameters while preserv-
ing model expressivity. LoRA modifications are
applied to the query, key, value, and output pro-
jection matrices in the attention layers, as well as
to the up and down-projection matrices within the
feed-forward networks.

4 Experimental Setup

4.1 Models and Baselines

We experiment with Llama 2-7B (7 billion pa-
rameters) and Mistral-7B (7.3 billion parame-
ters) as base models, representing state-of-the-art
open source architectures with strong performance
across diverse tasks. Our comparison includes sev-
eral baseline approaches to establish the effective-
ness of syntax-guided training. The vanilla baseline
uses pre-trained models without any fine-tuning to
establish lower bounds on performance. We also
compare against LoRA baseline fine-tuning that
uses only language modeling loss without syntactic
supervision.

4.2 Training Procedure

Our training procedure consists of two distinct
phases designed to systematically incorporate syn-
tactic knowledge into language models. The first
phase involves syntactic annotation, where we pro-
cess the training corpus through syntactic parsers to
compute violation scores. Specifically, we utilize
subsets of BookCorpus (Zhu et al., 2015) compris-
ing 11,038 books (approximately 74M sentences)
and OpenWebText (Gokaslan and Cohen, 2019)
containing 8.01M web documents (approximately
40GB of text data), covering diverse domains in-
cluding fiction, news articles, reference materials,
and web content. This preprocessing step creates
an augmented dataset enriched with syntactic con-
straint information that guides subsequent training.

The second phase implements LoRA fine-tuning
(Hu et al., 2022), where we fine-tune pre-trained
models including Llama 2-7B (7 billion parame-
ters) (Touvron et al., 2023) and Mistral-7B (7.3
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billion parameters) (Jiang et al., 2023) on the syn-
tactically annotated BookCorpus and OpenWeb-
Text subsets using our syntax-guided loss function.
LoRA rank r is set to 16 for attention layers and 32
for feed-forward layers based on preliminary exper-
iments that balanced computational efficiency with
representational capacity. Training is conducted
for 3 epochs with gradient accumulation steps of
8 to effectively utilize the available computational
resources.

Hyperparameters are systematically tuned on
held-out validation sets comprising 10% of
the training data to ensure optimal perfor-
mance. We explore loss weighting values a €
{0.1,0.5,1.0, 2.0} to balance syntactic supervision
with language modeling objectives. Learning rates
are tested across {1 x 107%,5 x 1074, 1 x 1073}
to determine optimal optimization dynamics, while
batch sizes are evaluated over {16, 32,64} to max-
imize training stability and convergence speed.

4.3 Violation score computation

The dependency violation score vgep(s) is com-
puted by applying the spaCy dependency parser to
sentences from our training corpora (BookCorpus
and OpenWebText subsets) and quantifying struc-
tural irregularities in the resulting parse trees. We
interpret parser uncertainty and structural anoma-
lies as indicators of potential grammatical issues,
following the principle that well-formed sentences
should yield clean, confident parses. Specifically,
we assess connectivity violations by identifying
cases where spaCy produces fragmented depen-
dency structures due to parsing failures or ambi-
. . __|disconnected components|

guity, computing ceonn(s) = 5]

when the parser cannot establish a fully connected
tree. We detect projectivity violations by examining
the confidence scores and alternative parse hypothe-
ses from spaCy’s beam search, where lower con-
fidence in the primary parse or high-scoring non-
projective alternatives indicate potential structural
issues: cproj(s) = 1 — confidenceprimary parse(s)-
Additionally, we evaluate consistency violations
by flagging dependency relations that receive low

probability under spaCy’s statistical model, com-

Z(h, d,r)Eparse(s) H[PSPHCY(T‘h7d)<T]
puted as CCOHS(S) = |dependencies| ’

where 7 is a threshold for acceptable relation confi-
dence. The final dependency violation score com-
bines these measures as vgep(s) = 0.4 - cconn(s) +
0.4 - Cproj(s) + 0.2 - ceons ().

The context-free grammar violation score vefg ()




Task

No fine-tuning LoRA Syntax-Guided LoRA

BLiMP (Overall) 69.2
Agreement 72.4
Filler-Gap 64.1
Islands 61.3
Binding 75.2

CoLA (MCC) 0.448

SyntaxGym 66.7

70.1 70.8
73.2 74.1
65.0 65.7
62.1 62.5
76.0 76.9
0.453 0.459
67.2 68.1

Table 1: Results on syntactic evaluation benchmarks. Scores are accuracy (%) except CoLA which reports Matthews

Correlation Coefficient.

is computed by parsing training corpus sentences
with a PCFG extracted from Penn Treebank and
using parse probability as a proxy for grammati-
cal well-formedness. We extract production rules
and their frequencies from the Penn Treebank to
construct a probabilistic grammar, then attempt
to parse each training sentence s with this gram-
mar. The primary violation measure is parse prob-
ability, where sentences receiving low probabil-
ity under the PCFG are considered potentially un-
grammatical: Cparse($) = max (O, %‘m@)),
where Ppcrg(s) is the probability of the best parse,
0 = —10 represents a grammaticality threshold em-
pirically determined from well-formed sentences,
and Z = 20 normalizes scores to [0, 1]. Sentences
that cannot be parsed at all receive the maximum
violation score of 1.0. We also compute subcat-
egorization violations by checking whether the
PCFG parse satisfies basic argument structure re-
quirements, flagging cases where transitive verbs

lack objects or other clear subcategorization viola-

. . __ |subcategorization violations in parse(s)|
trons: CSchat(S) - |verbs in s

The final CFG violation score is vefg(s) = 0.7 -
Cparse($) + 0.3 - Coubcat(s). Both violation scores
serve as continuous measures of grammatical de-
viance, with higher scores indicating sentences that
our syntactic analyzers consider less well-formed,
thereby providing supervision signal to discourage
the language model from assigning high probability
to potentially ungrammatical text.

4.4 Evaluation Benchmarks

Our evaluation focuses on both syntactic under-
standing and general language capabilities. For
syntactic assessment, we employ BLiMP (Warstadt
et al., 2020), which contains 67 sub-tasks test-
ing various grammatical phenomena through mini-
mal pairs that isolate specific syntactic knowledge.
The CoL A benchmark (Warstadt et al., 2019) pro-
vides binary acceptability judgments on 10,657
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sentences, testing broad grammatical competence.
SyntaxGym (Gauthier et al., 2020) offers targeted
evaluation using surprisal-based metrics that assess
fine-grained syntactic processing capabilities.

For general language understanding evaluation,
we utilize the GLUE benchmark tasks (Wang et al.,
2018) to ensure that syntactic improvements do not
compromise broader natural language processing
capabilities across diverse tasks including senti-
ment analysis, textual entailment, and semantic
similarity. We also assess text generation quality
through perplexity measurements on WikiText-103
(Merity et al., 2017) and evaluate reading compre-
hension performance using SQuAD 2.0 (Rajpurkar
et al., 2018) to capture the model’s ability to pro-
cess and understand complex textual information
beyond syntactic parsing.

4.5 Evaluation Metrics

For syntactic tasks, we report accuracy on minimal
pair judgments and Matthews Correlation Coeffi-
cient (MCC) for CoLA, providing robust measures
of grammatical competence. For general tasks, we
employ task-specific metrics including accuracy,
F1 score, and perplexity as appropriate. We also
measure training efficiency in terms of wall-clock
time and GPU memory usage to demonstrate the
practical viability of our approach.

5 Results

5.1 Syntactic Performance

Table 1 shows results on key syntactic benchmarks.
Our syntax-guided LoRA approach achieves con-
sistent improvements across all evaluated phenom-
ena, with particularly notable gains in complex
grammatical constructions.

The syntax-guided approach demonstrates mod-
est but consistent improvements on agreement phe-
nomena, achieving gains of 1.7 percentage points,
and filler-gap dependencies with improvements of



Task

No fine-tuning LoRA Syntax-Guided LoRA

GLUE Average 83.2
SST-2 94.1
MRPC 89.2
QQP 91.8
MNLI 86.4
QNLI 91.3
RTE 69.1
WikiText-103 PPL 21.8
SQuAD 2.0 F1 82.3

83.6 83.4
94.3 94.2
89.7 89.1
92.1 92.0
86.8 86.5
91.7 914
70.2 69.8
214 21.6
82.9 82.7

Table 2: Performance on general NLP tasks. GLUE scores are accuracy (%), WikiText-103 is perplexity (lower is

better), SQuAD 2.0 is F1 score.

1.6 percentage points. These results suggest that
explicit syntactic constraints provide incremental
benefits for challenging grammatical constructions,
though the improvements are relatively small, in-
dicating that such phenomena remain difficult for
models to master even with targeted supervision.

5.2 General NLP Performance

Table 2 demonstrates that the syntax-guided ap-
proach maintains general language capabilities
with minimal impact. While most GLUE tasks
show small variations within typical noise mar-
gins, the overall GLUE average remains stable,
indicating that the syntactic modifications do not
significantly compromise broader language under-
standing. The slight variations across individual
tasks suggest that syntactic constraints introduce
minor trade-offs rather than uniform improvements,
which is consistent with specialization effects ob-
served in targeted fine-tuning approaches.

5.3 Computational Efficiency

Table 3 compares the computational requirements
of different fine-tuning approaches, demonstrating
that our method maintains the efficiency advan-
tages of parameter-efficient training while incorpo-
rating valuable syntactic knowledge.

The syntax-guided approach adds minimal com-
putational overhead compared to standard LoRA,
requiring only approximately 16% additional train-
ing time while achieving substantial efficiency
gains over full fine-tuning. The modest increase in
memory usage reflects the additional syntactic con-
straint processing without fundamentally altering
the parameter-efficient nature of the approach.
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6 Analysis and Discussion

6.1 Qualitative Analysis

We analyze model outputs to understand the na-
ture of syntactic improvements achieved through
our approach. Examples demonstrate enhanced
consistency in complex agreement patterns that fre-
quently challenge standard language models. The
baseline model produces: "The collection of books
that was donated by the students were placed on
the shelf." In contrast, our syntax-guided model
correctly generates: "The collection of books that
was donated by the students was placed on the
shelf.” This example illustrates how the syntax-
guided model correctly maintains singular agree-
ment with the head noun "collection" despite the
presence of the plural intervening noun "students,"
a challenging construction that often leads to agree-
ment errors.

6.2 Interpretability Benefits

The explicit incorporation of syntactic constraints
enhances model interpretability in several mean-
ingful ways. Syntactic violations can be traced to
specific grammatical constraints that were violated
during generation, providing clear diagnostic in-
formation about model failures. Attention patterns
show improved alignment with syntactic structure,
making it easier to understand how the model pro-
cesses grammatical relationships. Additionally,
model confidence correlates more strongly with
grammatical acceptability, suggesting that syntac-
tic training helps calibrate the model’s uncertainty
estimates.

6.3 Limitations

Our approach faces several limitations that con-
strain its applicability and effectiveness. The depen-
dence on parser quality limits effectiveness when
processing noisy or non-standard text, as parsing



Method Trainable Params Training Time Memory (GB)
Full Fine-tuning 7.0B (100%) 156.3 hours 48.2
LoRA 41.9M (0.60%) 31.7 hours 18.4
Syntax-Guided LoRA 41.9M (0.60%) 36.8 hours 19.1

Table 3: Computational efficiency comparison for Llama 2-7B. Training time measured on 8xA 100 GPUs for one

epoch on our training corpus.

errors propagate through the training process. Com-
putational overhead during training arises from the
need for syntactic annotation and constraint pro-
cessing, though this remains manageable within the
parameter-efficient framework. The current focus
on English syntax limits cross-lingual applicabil-
ity, though the general framework could potentially
be extended to other languages with appropriate
syntactic resources.

7 Conclusion and Future Work

This paper demonstrates that formal syntactic con-
straints can be effectively integrated into large
language models through parameter-efficient fine-
tuning.  Our syntax-guided LoRA approach
achieves consistent improvements on syntactic
benchmarks while maintaining general NLP perfor-
mance and computational efficiency.

The key insights from this work demonstrate that
explicit syntactic supervision provides complemen-
tary benefits to implicit learning from text, enabling
models to achieve more robust grammatical com-
petence. Parameter-efficient methods enable scal-
able integration of linguistic constraints without the
computational burden of full model retraining. Fur-
thermore, formal grammatical knowledge enhances
both performance and interpretability, making mod-
els more reliable and diagnostic.

Future work should explore extension to multi-
lingual models and diverse syntactic frameworks,
particularly investigating how different grammat-
ical traditions and linguistic theories can be in-
corporated into modern architectures. Integration
with other parameter-efficient methods such as
AdaL.oRA and prefix tuning could potentially yield
additional benefits. Application to semantic and
pragmatic constraints beyond syntax represents a
natural extension of this work. Finally, investiga-
tion of emergent syntactic capabilities in very large
models like GPT-4 and PaLM could reveal whether
explicit syntactic guidance remains beneficial at
scale.

This work provides a concrete pathway for rein-
tegrating linguistic theory into modern NLP sys-
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tems, suggesting that the future of language mod-
eling may benefit from renewed collaboration be-
tween formal linguistics and computational prac-
tice.
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