
LocAgent: Graph-Guided LLM Agents for Code Localization

Zhaoling Chen♠*, Xiangru Tang♠∗¨, Gangda Deng♦∗, Fang Wu♣, Jialong Wu♠, Zhiwei Jiang,
Viktor Prasanna♦, Arman Cohan♠, Xingyao Wang♥

♠Yale University ♦University of Southern California ♣Stanford University ♥All Hands AI
xiangru.tang@yale.edu, gangdade@usc.edu, xingyao@all-hands.dev

Abstract

Code localization–identifying precisely where
in a codebase changes need to be made–is
a fundamental yet challenging task in soft-
ware maintenance. Existing approaches strug-
gle to efficiently navigate complex codebases
when identifying relevant code snippets. The
challenge lies in bridging natural language
problem descriptions with the target code el-
ements, often requiring reasoning across hier-
archical structures and multiple dependencies.
We introduce LOCAGENT, a framework that
addresses code localization through a graph-
guided agent. By parsing codebases into di-
rected heterogeneous graphs, LOCAGENT cre-
ates a lightweight representation that captures
code structures and their dependencies, en-
abling LLM agents to effectively search and
locate relevant entities through powerful multi-
hop reasoning. Experimental results on real-
world benchmarks demonstrate that our ap-
proach significantly enhances accuracy in code
localization. Notably, our method with the
fine-tuned Qwen-2.5-Coder-Instruct-32B
model achieves comparable results to SOTA
proprietary models at greatly reduced cost (ap-
proximately 86% reduction), reaching up to
92.7% accuracy on file-level localization while
improving downstream GitHub issue resolu-
tion success rates by 12% for multiple attempts
(Pass@10). Our code is available at https:
//github.com/gersteinlab/LocAgent.

1 Introduction

Code localization can be viewed as an information
retrieval (IR) task that aims to identify relevant
code snippets given natural language descriptions
(Suresh et al., 2024). Accurate code localization is
crucial for software maintenance and evolution, as
it identifies the precise locations for code modifi-
cations such as bug fixes, refactoring, and feature

*Co-first authors (equal contribution). This work was done
during Zhaoling’s time at Yale. ¨Corresponding author.

Issue
Merging 3 or more media
objects can throw unnecessary
MediaOrderConflictWarnings.
...

django

6f046d7

File:
/forms/widgets.py
class: Media
function: Media._css

file: ./forms/widgets.py
class: Media
function: merge

… …

Localized Code

Issue
Prevent repetitive output to
counter BREACH-type attacks.
...

Issue
Add 307 and 308 redirect
response codes to
django.shortcuts.redirect.
...

Issue
Optimize post-migrate
permission creation.
...

file:
django/shortcuts.py
function: redirect

file: ./http/response.py
class: HttpResponseRedi-
rectBase

Bug report

Feature Request

Security

Performance

Issue Description

Codebase

file:django/middleware/c
srf.py
Class:CsrfViewMiddleware

file:./middleware/csrf.py
Class: CsrfViewMiddleware
function:
process_response

file: django/contrib/
auth/management/__init__.
py
function:create_permissio
ns

file: ./contrib/auth/man
agement/__init__.py
function:
create_permissions

c
f

c

c
f

f

Figure 1: Code localization across four common pro-
gramming scenarios. Given a codebase and an issue
description, the goal of code localization is to identify
the relevant code snippets that require modification to
resolve the issue.

additions (Figure 1), thus streamlining the devel-
opment workflow (Wang et al., 2024b). This ca-
pability has become fundamental for powerful AI
assistants (OpenAI, 2023; Anthropic, 2023), code-
aware search engines (PerplexityAI, 2023), and au-
tomated programming agents (Cognition.ai, 2024;
Wang et al., 2025). However, understanding code
for localization consumes up to 66% of developers’
debugging time (Böhme et al., 2017), and remains
difficult for automated tools (Kang et al., 2024; Qin
et al., 2024). Unlike traditional retrieval tasks that
primarily focus on lexical or semantic matching
between queries and documents (Guo et al., 2016,
2020), code localization presents unique challenges.
Specifically, it requires bridging the gap between
natural language and programming languages, un-
derstanding structural and semantic properties of
the codebase, and performing multi-step reasoning
to analyze the issue (Xia et al., 2024; Zhang et al.,
2024b).

Existing approaches to code localization face sig-
nificant limitations. Dense retrieval methods (Wang
et al., 2023b; Günther et al., 2023) require main-
taining and continuously updating vector represen-

8697

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8697–8727
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/gersteinlab/LocAgent
https://github.com/gersteinlab/LocAgent

Method Relation Types Node Types Search/Traversal Strategy
Contain Import Inherit Invoke Directory File Class Function

CodexGraph(Liu et al., 2024) ✔✗ ✗ ✔ ✔ ✗ ✗ ✔ ✔ Cypher queries
RepoUnderstander(Ma et al., 2024) ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ MCTS
RepoGraph(Ouyang et al., 2025) ✔✗ ✗ ✔ ✔ ✗ ✗ ✔ ✔ Ego-graph retrieval
OrcaLoca(Yu et al., 2025) ✔ ✗ ✗ ✔✗ ✔ ✔ ✔ ✔ Simple search tools

LOCAGENT(Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Unified retrieval tools

Table 1: Comparison of Graph-Based Code Representation Methods.

tations of the entire codebase, creating engineering
challenges for large and fast-evolving repositories.
While LLMs demonstrate strong code understand-
ing abilities (Kang et al., 2023; Wu et al., 2023),
models with large context windows still cannot pro-
cess entire codebases at once, necessitating strate-
gic navigation. Moreover, issue descriptions of-
ten mention only symptoms rather than underlying
causes. For instance, a report of ‘XSS vulnera-
bility in user profile’ might require changes to a
shared validation utility in the codebase, which do
not explicitly mentioned in the issue. This discon-
nect between issue descriptions and affected code
blocks presents a substantial challenge for tradi-
tional retrieval approaches, which struggle to trace
implicit dependencies across the codebase. Recent
agent-based methods attempt to address these lim-
itations through iterative exploration (Yang et al.,
2024; Wang et al., 2025). However, they still strug-
gle to efficiently navigate and comprehend com-
plex code structures and dependencies, particularly
when multi-hop reasoning is required to trace from
issue descriptions to affected code regions.

This raises a key question: How can we design
efficient, structure-aware indexing as intermedi-
ate representations that are both easy and perfor-
mant for LLM agents to consume? It is intuitive
to design an agentic retrieval system that carefully
combines traditional IR methods and LLM agent’s
reasoning ability to achieve accurate, efficient and
cost-effective code localization in codebases.

To address this challenge, we propose LOCA-
GENT, a framework that builds directed het-
erogeneous graph indexing to unify code struc-
tures, dependencies, and contents. The index-
ing process typically takes only a few seconds
per codebase, making it highly practical for real-
time use. Our lightweight graph representa-
tion, coupled with sparse indexing techniques,
enables efficient entity search while maintain-
ing rich structural information. Moreover, the
framework integrates a set of unified tools that
empower the agent with efficient exploration ca-
pabilities and autonomous navigation based on

contextual needs. Furthermore, by fine-tuning
Qwen-2.5-Coder- Instruct (Hui et al., 2024)
7B and 32B models (abbreviated as Qwen-2.5-7B
and Qwen-2.5-32B respectively), our framework
achieves performance comparable to state-of-the-
art models like Claude-3-5-sonnet-20241022
(Claude-3.5) (Anthropic, 2023) while signifi-
cantly reducing API costs by over 80% (from $0.66
to $0.09 per example), making it practical for real-
world deployment.

Additionally, to facilitate a comprehensive eval-
uation of code localization methods, we intro-
duce LOC-BENCH, a new benchmark specifi-
cally designed for this task. Existing benchmarks
like SWE-Bench(Jimenez et al., 2023) present
significant limitations: (1) they risk contamina-
tion through data overlap with LLM training sets
(Mündler et al., 2024), and (2) they primarily fo-
cus on bug fixing, lacking diversity in maintenance
scenarios such as feature requests, performance
optimizations, and security fixes. In contrast, LOC-
BENCH covers diverse scenarios and mitigates po-
tential contamination concerns by incorporating
more examples from popular Python repositories
collected after known LLMs’ training cutoff dates.

2 Related Work

2.1 Traditional Retrieval-based Methods

Traditional IR methods rely on lexical or semantic
matching to return ranked lists of code snippets.
Sparse retrievers, such as BM25 (Robertson et al.,
1994), have demonstrated robustness to domain
adaptation. Dense retrievers utilize embeddings
for improved semantic searching, including models
with open checkpoints such as general text embed-
ding models E5-base-v2 (Wang et al., 2022) and
proprietary APIs (VoyageAI, 2024). Code embed-
ding models such as Jina-Code-v2 (Günther et al.,
2023), Codesage-large-v2 (Zhang et al., 2024a),
and CodeRankEmbed (Suresh et al., 2024), trained
specifically for code related tasks, showing signif-
icant performance in Code2Code and NL2Code
semantic search tasks.

8698

f Function

c Class

File

Directory

Codebase Indexing

Codebase

f

inherit

c
c

f …f
c …

f

f

import

c
c

f …f
c …

f

f

invoke

c
c

f …f
c …

f

f

contain

c
c

f …f
c …

f

Code Graph Indexing1

Entity ID Index

Entity Name Index

BM25 Index on Entity IDs

BM25 Index on Entity Contents

More Accurate

Entity Indexing2

Result(1)
file: path1/a.py
line: 10
class: Clazz1
function: func1

LLM Agent

Issue
Autoreloader with StatReloader
doesn't track changes in manage.py.
…

Task Description:
Please localize related modules…

Agent
Runtime

SearchEntity

TraverseGraph

RetrieveEntity

Tools
Event Log

Localized Code Sections
Result(2)
file: path2/b.py
line: 30
function: func2

. . .

Action

Observation

Figure 2: Overview of LOCAGENT framework. LOCAGENT first parses the given codebase to build a graph-based
code representation with various entity and relation types. It then constructs sparse indexes for structure exploration
and content search. Using these indexes, it performs agent-guided searches that combine the graph and tools.

2.2 LLM-based Generative Retrieval

Recently, LLMs with advanced code reasoning ca-
pabilities have demonstrated superior performance
by directly processing queries and raw code for
code localization (Kang et al., 2023; Wu et al.,
2023; Xia et al., 2024). For example, Agent-
less (Xia et al., 2024), initially designed for au-
tomated program repair, uses a simplistic hierar-
chical localization process powered by LLM. It
employs a straightforward three-phase approach
that localizes relevant code sections before attempt-
ing to fix the given issues. Expanding on these
techniques, agent-based methods utilize multi-step
reasoning to enable automated codebase traversal.
Specifically, OpenHands (Wang et al., 2025) imple-
ments a generalist coding agent that supports bash
commands like grep and tools for viewing files.
SWE-Agent (Yang et al., 2024) integrates a cus-
tom Agent-Computer Interface to support agents
to navigate entire repositories. MoatlessTools (Ör-
wall, 2024) combines an agentic searching loop
and semantic search to obtain code locations.

2.3 Graph-based Code Representation

Due to the inherent structure of code, several works
have employed graph-based representations to im-
prove code understanding by capturing key rela-
tionships between components. Aider (2023) con-
structs a RepoMap and uses a graph ranking algo-
rithm to identify the most significant contextual ele-
ments. Similarly, as a plugin, RepoGraph (Ouyang
et al., 2025) performs subgraph retrieval–extracting
ego-graphs with the search term in the centric–to

provide structured context. CodexGraph (Liu et al.,
2024) indexes the repository into a Neo4j graph
database, where LLM agents query the database
precisely using Cypher. These methods focus pri-
marily on providing relevant context. In addition,
RepoUnderstander (Ma et al., 2024) builds hierar-
chical and function-call graphs, using Monte Carlo
Tree Search (MCTS) based repository exploration
strategy to empower agents the ability of collecting
repository-level knowledge. OrcaLoca (Yu et al.,
2025) uses a simplified graph enhanced by priority
scheduling and context pruning, which maintains
efficient search. These methods build and utilize
the code graph in various ways (Table 1).

3 The LOCAGENT Framework

We introduce LOCAGENT, a graph-guided LLM
agent framework for code localization. Figure 2 il-
lustrates the overall framework. Given a codebase,
LOCAGENT can locate all the relevant code snip-
pets at various granularities (file, class, function,
or line level) for different types of GitHub issues
through autonomous exploration and analysis.

3.1 Graph-based Code Representation

Codebases contain rich structural information, both
explicit and implicit, that is essential for agent rea-
soning. Building on this insight, we develop a
graph-based indexing that comprehensively cap-
tures codebase relationships while maintaining a
granularity suitable for the agent to retrieve.
Code Graph Construction. We construct a het-
erogeneous directed graph G(V, E ,A,R) to index

8699

the codebase, where V = {vi}ni=1 is the node set
and E ⊆ V × V is the edge set. Each node v ∈ V
and each edge e ∈ E has an associated type map-
ping function. For nodes, τ(v) ∶ V → A maps to
types A = {directory, file, class, function}.
For edges, ϕ(e) ∶ E → R maps to relationships
R = {contain, import, invoke, inherit}. In
this paper, we focus our study on Python repos-
itories and leave codebases with other program-
ming languages as future work. First, we include
all directories and Python files as nodes. Then, we
parse each Python file using the abstract syntax tree
(AST) to identify inner functions and classes recur-
sively as nodes. We define the function level as
the finest node granularity and treat each function’s
code content as the document for agent retrieval.

As shown in Figure 2, all nodes with different
types can be connected as a single tree using the
contain relationship. This structure supports stan-
dard codebase-navigation operations. Our code
graph further incorporates more advanced code in-
teractions as edges: (1) the invoke relationship
from function/class to function/class, where an in-
voke to a class represents class instantiation; (2)
the import relationship from file to function/class;
and (3) the inherit relationship between classes.
Sparse Hierarchical Entity Indexing. We treat
nodes in our code graph as entities and build
hierarchical indexing based on their contents.
For each keyword, we lookup the indexes from
top to bottom: (1) We build an entity ID in-
dex as a unique identifier for each node using
its fully qualified name. For example, a func-
tion calculate_sum in the MathUtils class lo-
cated in src/utils.py would be represented as:
src/utils.py:MathUtils.calculate_sum. (2)
We construct a global dictionary to map the entity
name (e.g., calculate_sum) to all nodes that share
the same name. (3) We index entity IDs through
an inverted index (i.e., BM25) to handle keyword
searches that do not exactly match the IDs or names
of entities. (4) For cases where input keywords are
not part of the entities’ IDs (e.g., when a keyword
refers to a global variable), we build an inverted
index that maps code chunk(s) to each entity to
cover all possible matches.

Remark. Rather than relying solely on directory
structures or hierarchical module indexing, our
approach captures module dependencies that tran-
scend directory boundaries. Two modules in distant
directories (A and B) may appear unrelated in tra-

Tool Name Input Params Output

SearchEntity Keywords
Related Entities
with Code Snippets

TraverseGraph

Start Entity IDs
Traversed Subgraph,
including Entites
and Relations

Direction
Traverse Hops
Entity Types
Relation Types

RetrieveEntity Entity IDs
Complete Code
of Specified Entities

Table 2: List of unified APIs provided by LOCAGENT
for code search and exploration.

ditional navigation, but if they invoke each other
or share inheritance, they’re syntactically close in
our graph representation. This syntactic proximity
is essential for code localization because issues
typically manifest through call relationships rather
than directory structure.

3.2 Agent-guided Code Search
During runtime, LOCAGENT takes issue de-
scriptions as input and launches agents that au-
tonomously use predefined tools based on graph
indexing to localize target code. While the agent
may iteratively invoke multiple tools internally to
explore the codebase, LOCAGENT offers a simpli-
fied interface to users, requiring only a single-turn
interaction—users submit an issue statement and
receive localization results without additional input.
This autonomous, self-contained workflow makes
LOCAGENT easy to deploy and highly practical
for real-world use—with no frequent and computa-
tionally intensive code embedding generalization
required beforehand.
Tool Design for Codebase Exploration. Recent
works (Xie et al., 2024; Wu et al., 2024), inspired
by GUI-based IDEs, have developed numerous spe-
cialized tools for agents to explore codebases. How-
ever, since these tools are primarily designed for
human readability, they sacrifice the compactness
and efficiency preferred by LLM agents. Building
upon our graph-based code representation, we can
develop tools that support efficient higher-order
codebase exploration to address these challenges.
We unify all codebase navigation, search, and view
operations into three tools (Table 2), introduced as
follows.
SearchEntity: This tool searches codebases us-

ing keywords to locate relevant entities through our
hierarchical entity index. When an exact match is
not found in the upper index, the system performs
a further search using the lower index. For each en-

8700

tity found, we return its code snippet in three detail
levels: fold, preview, and full code (Figure 6).
This effectively prevents lengthy code context and
reduces noise fed into agents.
TraverseGraph: This tool performs a type-

aware breadth-first search (BFS) on the code graph,
starting from input entities and allowing control
over both traversal direction and number of hops.
This supports agents to perform arbitrary multi-
hop codebase navigation through only one action,
significantly improving the efficiency compared
with existing agent systems. Note that by allowing
agents to select entity types and relation types for
each traversal, this tool effectively leverages the
LLM agents’ coding expertise to generate proper
meta paths—a crucial element for heterogeneous
graph analysis (Lv et al., 2021). For example, by
specifying entity types to {class, function} and
relation types to {contain, inherit}, this tool
returns the UML diagram. Additionally, we de-
sign an expanded tree-based format for the output
subgraph that encodes both relation types and di-
rections (Figure 7). For detailed comparisons with
alternative graph formats, please see §A.1.2.
RetreiveEntity: This tool retrieves complete

entity attributes for each input entity ID, including
essential information such as file path, line number,
and code content.
Chain-of-Thought Agent Planning. We use
chain-of-thought (CoT) prompting (shown in §A.3)
to guide the agent in solving code localization prob-
lems step by step. The agent systematically follows
these steps: (1) Keyword extraction. The agent be-
gins by breaking down the issue statement into
different categories and then extracts relevant key-
words that are closely related to the problem. (2)
Linking keywords to code entities. The agent in-
vokes SearchEntity to clarify each extracted key-
word. (3) Generate the logical flow from fault to
failure. The agent first identifies the entry points
that trigger the problem. Then, it iteratively tra-
verse the codebase with TraverseGraph, retrieves
code contents with RetrieveEntity, and searches
new keywords with SearchEntity. Finally, it gen-
erates the logic flow based on the issue and addi-
tional context. (4) Locate the target entities. The
agent pinpoints all suspicious code entities that
need modification based on the logic flow. Then, it
ranks these entities based on their relevance.
Confidence Estimation Based on Consistency.
After generating a complete ranked list of candidate
entities, to obtain a more consistent ranking, we

measure the consistency (Wang et al., 2023a) of
the LLM’s predictions across multiple iterations.
Specifically, we use the Reciprocal Rank as the
initial confidence score for each predicted location.
We then aggregate the scores for each entity across
iterations to compute its final confidence score. The
intuition behind this approach is that if the LLM
consistently ranks a location higher in multiple
iterations, it is more likely to be relevant.

3.3 Open-source Model Fine-tuning

Given the high costs of proprietary LLM APIs and
data security concerns, we fine-tune open-source
models to improve their code localization capabil-
ities and enable local deployment. We first col-
lecte 433 successful trajectories from Claude-3.5,
then fine-tuned Qwen2.5-32B using this data. Due
to budget constraints, an additional 335 success-
ful trajectories are sampled from the fine-tuned
Qwen2.5-32B, which is used to further refine the
32B model for self-improvement. The entire
dataset, combining both successful Claude-3.5
and Qwen2.5-32B trajectories, are then used to
train a smaller 7B model.

Both models are fine-tuned via Supervised Fine-
Tuning (SFT) with LoRA (Hu et al., 2021), using a
standard next-token cross-entropy loss. See §C.3
for more training details.

4 LOC-BENCH: A New Benchmark for
Code Localization

4.1 Revisiting Existing Benchmark

SWE-Bench (Jimenez et al., 2023) is a widely used
benchmark that collects GitHub issues and corre-
sponding code patches that resolve them. Xia et al.
(2024) and Suresh et al. (2024) adapt its subset,
SWE-bench Lite, for code localization, treating the
patched files and functions as targets. However, ex-
isting datasets (Tomassi et al., 2019; Jimenez et al.,
2023) present challenges for effectively evaluating
code localization methods. First, they are at risk
of contamination, as they may include data over-
lapping with repositories or issues used by mod-
ern models during pre-training. Second, existing
datasets are not specifically designed for code lo-
calization. SWE-Bench, for instance, was created
primarily to evaluate end-to-end bug-fixing capa-
bilities, with localization being only an implicit
intermediate step. This focus results in datasets
dominated by bug reports (85% of SWE-Bench
Lite examples) while severely under-representing

8701

Dataset Category #Sample

SWE-Bench Lite

Bug Report 254

Feature Request 43

(Total = 300) Security Issue 3

Performance Issue 0

Loc-Bench

Bug Report 242

Feature Request 150

(Totoal = 560) Security Issue 29

Performance Issue 139

Table 3: Distribution of samples across different cate-
gories in the SWE-Bench Lite and Loc-Bench datasets.

other common software maintenance tasks such as
security and performance issues. This imbalance
fails to capture the diverse localization challenges
faced in real-world software development.

4.2 Dataset Construction

To address the limitations of existing benchmarks,
we introduce LOC-BENCH, a new dataset specif-
ically designed for code localization. We col-
lects up-to-date issues from Python repositories
to mitigate potential contamination concerns in the
latest LLMs. Additionally, LOC-BENCH covers
wider categories, including bug reports, feature re-
quests, security, and performance issues, enabling
a more comprehensive evaluation of code localiza-
tion methods. The statistics of LOC-BENCH are
shown in Table 3.

For the Bug Report category, we collect GitHub
issues created after October 2024, which is later
than the release dates of most modern LLMs. To en-
rich the dataset with more instances of security and
performance issues, we use the GitHub Search API
to search for relevant keywords, such as "latency
improvement" for performance-related issues. We
exclude instances modifying more than five Python
files or more than ten functions in the correspond-
ing patch. For further details, see §B.

5 Experiments
Our experiments evaluate four key aspects of
LOCAGENT: (1) the effectiveness of our graph-
guided agent for code localization compared to ex-
isting methods, (2) the performance of fine-tuned
open source models as cost-effective alternatives
to proprietary LLMs, (3) a detailed analysis of our
framework’s and models’ robustness and general-
ization, and (4) the contribution of each component

in our framework through ablation studies. We also
examine the impact of improved localization on
downstream software maintenance tasks.

5.1 Experimental Settings

Datasets. We conduct experiments on both SWE-
Bench Lite and our introduced LOC-BENCH. For
SWE-Bench Lite, following Suresh et al. (2024),
we treat the patched files and functions as localiza-
tion targets and exclude examples where no exist-
ing functions were modified, ultimately retaining
274 out of the original 300 examples.
Metrics. To assess performance, we adopt a strict
top-k accuracy metric inspired by R-Precision in
information retrieval. For each example, we con-
sider a localization successful only if all relevant
locations are correctly identified within the top-k
predictions. This evaluation measures the ability
to identify all code sections that require modifi-
cation. We report results across multiple k val-
ues: file-level localization using Acc@1, Acc@3,
and Acc@5, and function-level localization using
Acc@5 and Acc@10. To offer a more relaxed eval-
uation, we also assess module-level localization,
which considers the prediction correct if any func-
tion within the patched class is identified.

5.2 Baselines

We evaluate LOCAGENT against three categories
of competitive baselines: (a) Retrieval-based meth-
ods: including the sparse retriever BM25 (Robert-
son et al., 1994), the general-purpose embedding
model E5-base-v2 (Wang et al., 2022), and several
code-specific models such as Jina-Code-v2 (Gün-
ther et al., 2023), Codesage-large-v2 (Zhang et al.,
2024a), and the current SOTA CodeRankEm-
bed (Suresh et al., 2024). Proprietary embeddings
are excluded due to API cost. (b) Procedure-based
methods: Agentless (Xia et al., 2024), which local-
izes code via a hierarchical procedure. (c) Agent-
based methods: advanced agent frameworks for
code exploration and modification, including Open-
Hands (Wang et al., 2025), SWE-Agent (Yang et al.,
2024), and MoatlessTools (Örwall, 2024). For im-
plementation details, see §C.1.

5.3 Evaluation Results on SWE-Bench Lite

As shown in Table 4, agent-based methods con-
sistently outperform other approaches, and our
method shows competitive performance by achiev-
ing best results across all levels of code localization.
Unlike traditional retrieval-based methods, Agent-

8702

Type Method Loc-Model File (%) Module (%) Function (%)

Acc@1 Acc@3 Acc@5 Acc@5 Acc@10 Acc@5 Acc@10

Embedding-Based

BM25 (Robertson et al., 1994) 38.69 51.82 61.68 45.26 52.92 31.75 36.86
E5-base-v2 (Wang et al., 2022) 49.64 74.45 80.29 67.88 72.26 39.42 51.09
Jina-Code-v2 (Günther et al., 2023) 43.43 71.17 80.29 63.50 72.63 42.34 52.19
Codesage-large-v2 (Zhang et al., 2024a) 47.81 69.34 78.10 60.58 69.71 33.94 44.53
CodeRankEmbed (Suresh et al., 2024) 52.55 77.74 84.67 71.90 78.83 51.82 58.76

Procedure-Based Agentless
(Xia et al., 2024)

GPT-4o 67.15 74.45 74.45 67.15 67.15 55.47 55.47
Claude-3.5 72.63 79.20 79.56 68.98 68.98 58.76 58.76

Agent-Based

MoatlessTools
(Örwall, 2024)

GPT-4o 73.36 84.31 85.04 74.82 76.28 57.30 59.49
Claude-3.5 72.63 85.77 86.13 76.28 76.28 64.60 64.96

SWE-agent
(Yang et al., 2024)

GPT-4o 57.30 64.96 68.98 58.03 58.03 45.99 46.35
Claude-3.5 77.37 87.23 90.15 77.74 78.10 64.23 64.60

Openhands
(Wang et al., 2025)

GPT-4o 60.95 71.90 73.72 62.41 63.87 49.64 50.36
Claude-3.5 76.28 89.78 90.15 83.21 83.58 68.25 70.07

LOCAGENT (Ours)
Qwen2.5-7B(ft) 70.80 84.67 88.32 81.02 82.85 64.23 71.53
Qwen2.5-32B(ft) 75.91 90.51 92.70 85.77 87.23 71.90 77.01
Claude-3.5 77.74 91.97 94.16 86.50 87.59 73.36 77.37

Table 4: Performance comparison with baselines on code localization on SWE-bench lite. Results show accuracy at
file, module, and function levels. For agent-based methods, we use GPT-4o (GPT-4o-2024-0513) and Claude-3.5
as the localization model; performance of our fine-tuned open-source models is included for comparison.

Hop 0 Hop 1 Hop 2 Hop 3+
0

20

40

60

80

Sa
m

pl
e

Co
un

t

Hop 0 Hop 1 Hop 2 Hop 3+
0

20

40

60

80

Sa
m

pl
e

Co
un

t

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

File level - Acc@5

Methods
E5-Base-v2
CodeRankEmbed
Agentless
SWE-agent

Openhands
MoatlessTools
Ours

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Function level - Acc@10

Figure 3: Performance analysis at different difficulty
levels for file- and function-level localization. All agent-
based methods and Agentless use Claude-3.5 as the
localization model. Hop N refers to the distances be-
tween functions mentioned in the issue description and
the ground truth patch on our code graph.

less identifies only limited locations due to its nar-
row repository scope, which hinders performance
gains when considering a broader set of candidates.
The NDCG results are presented in Table 11 in the
appendix.

To further analyze the results, we examine per-
formance across different task difficulty levels. We
measure the task difficulty by calculating the short-
est hops between the functions mentioned in the
issue descriptions and the patched functions on
our code graph (See §C.2 for more details). As

shown in Figure 3, performance decreases for all
methods as the task becomes more challenging.
However, agent-based methods demonstrate better
robustness as difficulty increases, with our method
maintaining competitive performance across dif-
ficulty levels. Retrieval-based methods, such as
E5-Base-v2 and CodeRankEmbed, perform poorly
at the function level, even when the patched func-
tions are explicitly mentioned in the query. This
is because they treat the query as a whole, failing
to capture fine-grained details. Agentless performs
even worse than retrieval-based methods when ex-
ploration beyond the query is needed (hop ≥ 1) due
to its simplistic localization process and limited
view focused only on the repository structure.

5.4 Fine-tuned Open-source Models

Figure 4 shows that after fine-tuning, both the 7B
and 32B models show significant improvements
in this task. LOCAGENT with Qwen-2.5-32B(ft)
achieves performance comparable to Claude-3.5,
and LOCAGENT with Qwen2.5-7B(ft) also de-
livers results on par with that obtained using
GPT-4o. As shown in Table 4, our method with
Qwen2.5-32B(ft) outperforms nearly all base-
lines, including those that use larger and more
powerful LLMs. The original 7B model performs
poorly due to its limited tool-use capability (Chen
et al., 2024). These results validate the feasibility
of deploying our fine-tuned open-source models as
promising alternatives to proprietary APIs, espe-
cially in resource-constrained scenarios.

8703

Qwen2.5-Coder-7B Qwen2.5-Coder-32B
0

20

40

60

80

Ac
c

(%
)

94.2
87.6

77.4

Fine-tune Qwen 2.5

file-level
module-level
func-level
Original
FT Improv
Claude-3.5

Figure 4: Performance comparison of original and fine-
tuned Qwen models. Metrics include file-level Acc@5
and module/function-level Acc@10. Dashed lines indi-
cate the performance of Claude-3.5 for reference.

Method LM #Round Cost($)
Acc@10

Cost

MoatlessTools GPT-4o 5 0.46 1.3
Claude-3.5 5 0.46 1.4

SWE-agent GPT-4o 8 0.56 0.8
Claude-3.5 9 0.67 1.0

Openhands GPT-4o 15 0.83 0.6
Claude-3.5 13 0.79 0.9

Ours
Claude-3.5 7 0.66 1.2
Qwen2.5-7B(ft) 6 0.05 13.2
Qwen2.5-32B(ft) 9 0.09 8.6

Table 5: Efficiency analysis of average cost and agent
interaction rounds across methods. Cost-efficiency is
measured by the ratio of function-level Acc@10 to av-
erage cost.

5.5 Efficiency Analysis

Table 5 presents an efficiency analysis comparing
agent-based methods in terms of cost and the num-
ber of agent interactions required. MoatlessTools
demonstrates good cost-efficiency and requires rel-
atively fewer rounds of interaction. However, the
dense embeddings it uses make it difficult and
slow to adapt to fast-evolving codebases. SWE-
agent and Openhands also show moderate costs but
still do not match the efficiency of LOCAGENT.
For LOCAGENT with Claude-3.5, although more
rounds of interaction are required, the cost remains
lower than that of Openhands, illustrating the to-
ken efficiency of our tools’ outputs. LOCAGENT

with fine-tuned Qwen models stands out for its su-
perior efficiency1. Qwen2.5-7B(ft) is the most
cost-efficient option, requiring only $0.05 per ex-
ample, while Qwen2.5-32B(ft) offers a more cost-
effective alternative to Claude-3.5. These results
highlight the potential of fine-tuned open-source

1We calculate the cost based on the prices from AI infer-
ence providers (Hyperbolic, 2025; artificialanalysis.ai, 2025).
Specifically, for the Qwen2.5-32B(ft) model, the cost we
use is $0.20/1M tokens for both input and output. For the
Qwen2.5-7B(ft) model, the cost we use is $0.14/1M tokens
for input and $0.28/1M tokens for output.

Model Setting File
Acc@5

Module
Acc@10

Function
Acc@10

Ours 88.32 82.85 71.53

w/o TraverseGraph 86.13 78.47 66.06
Relation Types: contain 86.50 79.56 66.42
Traverse Hops: 1 86.86 80.29 66.79

w/o RetrieveEntity 87.59 81.39 69.34

w/o SearchEntity 68.98 61.31 53.28
w/o BM25 index 75.18 68.98 60.22

Table 6: Ablation study of our framework. Metrics are
file-level Acc@5, module/function-level Acc@10.

models as efficient alternatives, providing an opti-
mal balance of cost and performance.

5.6 Ablation Study

We conduct an ablation study to evaluate the effec-
tiveness of each component of our toolsets. Due
to budget constraints, we use Qwen-2.5-7B(ft) as
the localization model for these experiments.

(1) Each tool plays a critical role. As
shown in Table 6, removing any tool, especially
SearchEntity, leads to varying degrees of accu-
racy degradation, particularly in module and func-
tion level localization.

(2) Graph structure provides essential informa-
tion for localization. Removing TraverseGraph
tool decreases module- and function-level perfor-
mance since the agent lacks structure informa-
tion and must infer relationships through reason-
ing. Adding only the contain relationship yields
marginal improvements, emphasizing the impor-
tance of the other three types of relationship and
explaining why our method surpasses baselines re-
lying only on the repository structure.

(3) Multi-hop exploration is crucial for deep
code understanding. Compared to the full setting,
fixing Hops=1 leads to a more significant decrease
in function-level accuracy, underscoring the im-
portance of multi-hop exploration for identifying
relevant entities.

(4) Sparse indexing is essential for performance.
Removing SearchEntity tool, or even partial re-
moval of its index, causes a substantial drop in per-
formance across all metrics. This demonstrates the
effectiveness of building a sparse index on our code
graph for improving localization performance.

5.7 Evaluation Results on LOC-BENCH

To evaluate robustness and generalization of our
methods and fine-tuned models, we test on our
new dataset. Since LOC-BENCH includes exam-

8704

Method Loc-Model File (%) Module (%) Function (%)

Acc@5 Acc@10 Acc@10 Acc@15 Acc@10 Acc@15

IR-Based CodeRankEmbed 74.29 80.89 63.21 67.50 43.39 46.61
Agentless Claude-3.5 67.50 67.50 53.39 53.39 42.68 42.68
OpenHands Claude-3.5 79.82 80.00 68.93 69.11 59.11 59.29
SWE-agent Claude-3.5 77.68 77.68 63.57 63.75 51.96 51.96

LocAgent (Ours)
Qwen2.5-7B(ft) 78.57 79.64 63.04 63.04 51.43 51.79
Claude-3.5 83.39 86.07 70.89 71.07 59.29 60.71

Table 7: Performance evaluation on the real-world LocBench dataset.

Bug Report Feature Request Performance Security
0.4

0.6

0.8

1.0

Ac
cu

ra
cy

File level - Acc@5

Bug Report Feature Request Performance Security

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Function level - Acc@15
Methods

CodeRankEmbed
Agentless
SWE-agent

Openhands
Ours(Qwen-7B)
Ours(Claude-3.5)

Figure 5: Performance analysis across different cat-
egories for file- and function-level localization. All
agent-based baselines and Agentless use Claude-3.5
as the localization model.

Method Localization LM Acc@5 Pass@1 Pass@10

Agentless Claude-3.5 58.39 26.31 33.58

Ours
Qwen2.5-32B(ft) 69.34 26.79 36.13
Claude-3.5 73.36 27.92 37.59

Table 8: Impact of localization accuracy on downstream
bug repair tasks.

ples editing 1 to 5 files, we assess file localization
at top-5 and top-10 ranks, and function/module
localization at top-10 and top-15 ranks.

Table 7 shows that Qwen2.5-7B(ft) exhibits
strong generalization capabilities, maintaining
competitive performance compared to SWE-agent
using more expensive and strong model. These re-
sults highlight the practicality of Qwen2.5-7B(ft)
model for real-world applications. Despite being an
open-source alternative, it achieves a performance
comparable to Claude-3.5. We also evaluate per-
formance across four categories. Figure 5 clearly
shows that our method outperforms others in al-
most all categories of code localization. However,

it also highlights a noticeable decrease in perfor-
mance across the other three categories compared
to the Bug Report category. This performance gap
likely stems from the distribution of our training
data, which contained more bug report examples,
potentially leading to scaffolds better optimized
for bug localization tasks. This trend suggests that,
while our method is highly effective for bug report
localization, there is still room for improvement
in handling the other categories through category-
specific optimization strategies and more balanced
training data.

5.8 Application: Better Localization Leads to
More Solved GitHub Issues

To assess the impact of localization methods on
downstream tasks, we evaluated their effectiveness
in solving GitHub issues. We choose Agentless
as the baseline, ranking among the top-performing
open-source submissions on SWE-Bench Lite. For
consistency, we utilized Claude-3.5 as the editing
model in conjunction with the Agentless editing
method. Table 8 shows that the success rate for
solving GitHub issues improves significantly with
better code localization accuracy.

6 Conclusion

In conclusion, LOCAGENT enhances code localiza-
tion by parsing codebases as graphs, enabling effi-
cient repository-level exploration for LLM agents.
With fine-tuned open-source models, our method
achieves high localization accuracy while greatly
reducing costs compared to larger proprietary mod-
els. Experimental results demonstrate the effective-
ness of LOCAGENT in identifying relevant code
blocks and supporting downstream tasks.

Limitations

First, our study primarily focused on fine-tuning
Qwen-2.5-Coder models. Exploring a broader

8705

range of base models, including other open-source
LLMs like CodeLlama, Mistral, or Yi, could pro-
vide valuable insights into model selection trade-
offs. Additionally, investigating different fine-
tuning approaches beyond LoRA, such as full fine-
tuning or other parameter-efficient methods, could
potentially yield better performance.

Moreover, though we demonstrated improved
bug repair performance with better localization,
we only scratched the surface of potential down-
stream applications. Future work should evaluate
LocAgent’s impact on other software engineering
tasks like refactoring, feature addition, security vul-
nerability patching, and performance optimization.
This would provide a more comprehensive under-
standing of the practical utility of the framework.

Finally, the current evaluation focuses primar-
ily on Python codebases. Extending LOCAGENT

to support other programming languages and eval-
uating its performance across different language
paradigms would better demonstrate its generaliz-
ability.

References
Aider. 2023. Building a better repository map with tree

sitter. Accessed: April 15, 2025.

Anthropic. 2023. Claude: Conversational ai by an-
thropic. Accessed: January 21, 2025.

artificialanalysis.ai. 2025. Artificial analysis. https:
//artificialanalysis.ai/models/. Accessed:
2025-04-28.

Marcel Böhme, Ezekiel O Soremekun, Sudipta Chat-
topadhyay, Emamurho Ugherughe, and Andreas
Zeller. 2017. Where is the bug and how is it fixed? an
experiment with practitioners. In Proceedings of the
2017 11th joint meeting on foundations of software
engineering, pages 117–128.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2024.
T-eval: Evaluating the tool utilization capability of
large language models step by step. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9510–9529.

Cognition.ai. 2024. Introducing devin, the first ai soft-
ware engineer.

Gangda Deng, Ömer Faruk Akgül, Hongkuan Zhou,
Hanqing Zeng, Yinglong Xia, Jianbo Li, and Viktor
Prasanna. 2023. An efficient distributed graph engine
for deep learning on graphs. In Proceedings of the
SC ’23 Workshops of the International Conference

on High Performance Computing, Network, Storage,
and Analysis, SC-W ’23, page 922–931, New York,
NY, USA. Association for Computing Machinery.

John Ellson, Emden Gansner, Lefteris Koutsofios,
Stephen C North, and Gordon Woodhull. 2002.
Graphviz—open source graph drawing tools. In
Graph Drawing: 9th International Symposium, GD
2001 Vienna, Austria, September 23–26, 2001 Re-
vised Papers 9, pages 483–484. Springer.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2023. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In Proceedings of the 25th ACM in-
ternational on conference on information and knowl-
edge management, pages 55–64.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang,
Qingyao Ai, Hamed Zamani, Chen Wu, W Bruce
Croft, and Xueqi Cheng. 2020. A deep look into
neural ranking models for information retrieval. In-
formation Processing & Management, 57(6):102067.

Michael Günther, Louis Milliken, Jonathan Geuter,
Georgios Mastrapas, Bo Wang, and Han Xiao.
2023. Jina embeddings: A novel set of high-
performance sentence embedding models. Preprint,
arXiv:2307.11224.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report. Preprint, arXiv:2409.12186.

Hyperbolic. 2025. Hyperbolic website. https://
hyperbolic.xyz/. Accessed: 2025-04-15.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Sungmin Kang, Gabin An, and Shin Yoo. 2023. A
preliminary evaluation of llm-based fault localization.
arXiv preprint arXiv:2308.05487.

Sungmin Kang, Gabin An, and Shin Yoo. 2024. A
quantitative and qualitative evaluation of llm-based
explainable fault localization. Proceedings of the
ACM on Software Engineering, 1(FSE):1424–1446.

8706

https://aider.chat/2023/10/22/repomap.html
https://aider.chat/2023/10/22/repomap.html
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://artificialanalysis.ai/models/
https://artificialanalysis.ai/models/
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://doi.org/10.1145/3624062.3624169
https://doi.org/10.1145/3624062.3624169
https://arxiv.org/abs/2307.11224
https://arxiv.org/abs/2307.11224
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://hyperbolic.xyz/
https://hyperbolic.xyz/

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu,
Zhicheng Zhang, Fei Wang, Michael Shieh, and Wen-
meng Zhou. 2024. Codexgraph: Bridging large lan-
guage models and code repositories via code graph
databases. Preprint, arXiv:2408.03910.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen,
Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we
really making much progress? revisiting, bench-
marking and refining heterogeneous graph neural
networks. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining,
pages 1150–1160.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li,
Fei Huang, and Yongbin Li. 2024. How to under-
stand whole software repository? arXiv e-prints,
pages arXiv–2406.

Niels Mündler, Mark Müller, Jingxuan He, and Martin
Vechev. 2024. Swt-bench: Testing and validating
real-world bug-fixes with code agents. Advances in
Neural Information Processing Systems, 37:81857–
81887.

OpenAI. 2023. Chatgpt: Language model by openai.
Accessed: January 21, 2025.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhi-
han Zhang, Mengzhao Jia, Jiawei Han, Hongming
Zhang, and Dong Yu. 2025. Repograph: Enhancing
AI software engineering with repository-level code
graph. In The Thirteenth International Conference
on Learning Representations.

PerplexityAI. 2023. Perplexity ai: An ai-powered
search engine. Accessed: January 21, 2025.

Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao
Dong, Kaixin Wang, Xiaoling Li, and Xiaoguang
Mao. 2024. Agentfl: Scaling llm-based fault lo-
calization to project-level context. arXiv preprint
arXiv:2403.16362.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at trec-3. In Text Retrieval Conference.

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach
Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. 2024. Cornstack: High-quality con-
trastive data for better code ranking. arXiv preprint
arXiv:2412.01007.

David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara
Bhowmick, Yen-Chuan Liu, Premkumar Devanbu,
Bogdan Vasilescu, and Cindy Rubio-González. 2019.
Bugswarm: Mining and continuously growing a
dataset of reproducible failures and fixes. Preprint,
arXiv:1903.06725.

VoyageAI. 2024. Voyage-code-2: Elevate your code
retrieval. Accessed: 2024-02-02.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better llm agents. In Forty-
first International Conference on Machine Learning.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran,
Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang,
Binyuan Hui, Junyang Lin, Robert Brennan, Hao
Peng, Heng Ji, and Graham Neubig. 2025. Open-
hands: An open platform for AI software developers
as generalist agents. In The Thirteenth International
Conference on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2023a. Self-consistency im-
proves chain of thought reasoning in language mod-
els. Preprint, arXiv:2203.11171.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. Preprint,
arXiv:2305.07922.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2024b. Coderag-bench: Can retrieval augment
code generation? Preprint, arXiv:2406.14497.

Yonghao Wu, Zheng Li, Jie M Zhang, Mike Papadakis,
Mark Harman, and Yong Liu. 2023. Large lan-
guage models in fault localisation. arXiv preprint
arXiv:2308.15276.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. Ad-
vances in Neural Information Processing Systems,
37:52040–52094.

8707

https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.03910
https://chat.openai.com/
https://openreview.net/forum?id=dw9VUsSHGB
https://openreview.net/forum?id=dw9VUsSHGB
https://openreview.net/forum?id=dw9VUsSHGB
https://www.perplexity.ai/
https://www.perplexity.ai/
https://api.semanticscholar.org/CorpusID:41563977
https://arxiv.org/abs/1903.06725
https://arxiv.org/abs/1903.06725
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2406.14497
https://arxiv.org/abs/2406.14497

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian
Huang, Matrix Yao, Ke Ding, and Jishen Zhao. 2025.
Orcaloca: An llm agent framework for software issue
localization. arXiv preprint arXiv:2502.00350.

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian
Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, and
Bing Xiang. 2024a. CODE REPRESENTATION
LEARNING AT SCALE. In The Twelfth Interna-
tional Conference on Learning Representations.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik
Roychoudhury. 2024b. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 1592–1604.

Albert Örwall. 2024. Moatless tools.

8708

https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX
https://github.com/aorwall/moatless-tools

A LOCAGENT Design Details

A.1 Tool Output Design

A.1.1 Three-level format for SearchEntity
output

Once invoked by the LLM agent, the retrieval APIs
search for files, classes, methods, and code snippets
in the codebase, and return the results back to the
agent. To avoid forming a very lengthy code con-
text that may contain noisy information to LLM, we
return only necessary information as API outputs.
To achieve this, we designed four granular standard
output formats (Figure 6): fold, preview, full
code. Specifically, the API adapts its output based
on the number and size of retrieved entities: when
the number of matched entities is small (≤ 3), it
returns their full code; for large files, it provides
a preview, summarizing the module structure (e.g.,
class/method signatures); and when the number of
matches exceeds 3, it outputs a compact fold for-
mat that only lists entity identifiers. This design
ensures that the agent receives sufficient context
without overwhelming its input window.

A.1.2 Tree-based Subgraph Formatting for
TraverseGraph Output

The TraverseGraph tool performs breadth-first
traversal over the code graph, returning a local
subgraph for each input entity. These subgraphs
help the agent reason about complex dependen-
cies surrounding the entity. However, reasoning
over graphs remains a challenge for LLMs. Prior
work (Fatemi et al., 2023) shows that LLM per-
formance can vary significantly depending on how
graphs are encoded into text, making the design
of the subgraph output format a critical factor. We
leave the exploration of applying more advanced
and efficient graph traversal strategies (Deng et al.,
2023) for LLM Agents as future work.

We have developed a new tree-based format,
shown in Figure 7, with several features that en-
hance LLM reasoning: (1) We represent subgraphs
as trees, allowing LLMs to use indentation to
determine a node’s distance from the root, (2) We
display complete entity IDs for each node (e.g.,
django/core/validators.py:RegexValidator)
to help LLMs locate nodes easily, and (3) We
explicitly specify relation types for each edge,
including reversed relations

To evaluate how different graph formats impact
code localization performance, we conducted an ex-
periment using 37 challenging samples from SWE-

Bench-Lite. These samples were considered "chal-
lenging" because they could not be solved by any
baseline agent methods. Using Claude-3.5 as the
Localization Model across all settings, we com-
pared various output formats. Table 9 presents our
findings. The baseline output formats we tested are
described below:

• row: For each line, list one row of the adja-
cency matrix. For example,

function "fileA.py:funcA" invokes function
"fileA.py:funcB", "fileA.py:funcC"

• row (w/ entity attributes): Additionally in-
clude entity attributes (e.g., code content) for
format row.

• incident: The incident format mentioned
in (Fatemi et al., 2023). An integer instead of
entity ID is used to represent each node. For
example,

Map function "fileA.py:funcA" to index 0. Map
function "fileA.py:funcB" to index 1. Map
function "fileA.py:funcC" to index 2.

function 0 invokes function 1,2.

• Graphviz DOT: Represent graph in Graphviz
DOT language (Ellson et al., 2002).

• JSON: Expand the subgraph as a tree, and
convert it to JSON format.

As shown in Table 9, expanding subgraphs as
trees (i.e., JSON, tree-based) can significantly im-
prove the performance. Our tree-based format
achieves the best overall performance across dif-
ferent levels of localization tasks. We also test re-
turning entity attributes along with subgraphs. We
notice that row (w/ entity attributes) consistently
underperforms row, indicating the attributes for all
the nodes may be very noisy. Besides, although us-
ing incident format can simplify the output and
show improvements in file-level localization, it
degradation the module- and file-level localization.

A.2 Implementation

To enable the LLM agent to invoke the Code Local-
ization APIs, we handle the interaction differently
based on the LLM’s capabilities. For LLMs that
support tool-calling features, we define the tools
as a list of JSON objects, which are then used as
parameters for the API calls. For LLMs that do

8709

OBSERVATION:
##Searching for term "ResolverMatch"...
Search Result:
Found class
`django/urls/resolvers.py:ResolverMatch`.
Source: Match found for entity name
`ResolverMatch`.

32 | class ResolverMatch:
33 | def __init__(self, func, args,
kwargs, url_name=None, app_names=None,
namespaces=None, route=None, tried=None):
34 | self.func = func
35 | self.args = args
36 | self.kwargs = kwargs
37 | self.url_name = url_name
38 | self.route = route
39 | self.tried = tried
...

search_code_snippets(
search_terms=["ResolverMatch"]

)

Tool Call

Show Full Code Content if the size of
matched entities not exceed 3.

Full Code Output format

OBSERVATION:
##Searching for term "__repr__"...
Search Result:
Found function
`django/urls/resolvers.py:ResolverMatch.__
repr__`.
Found function
`django/urls/resolvers.py:URLPattern.__rep
r__`.
Found function
`django/urls/resolvers.py:URLResolver.__re
pr__`.
Found function
`django/db/models/expressions.py:F.__repr_
_`.
Source: Match found for entity name
`__repr__`.
...
Hint: Use more detailed query to get the
full content of some if needed.

search_code_snippets(
search_terms=["__repr__"]

)

Tool Call

Show only node ids if the size of matched
entities exceed 3.

Fold Output format

OBSERVATION:
##Searching for term "Piecewise"...
Search Result:
Found class
`sympy/functions/elementary/piecewise.py:
Piecewise`.
Source: Match found for entity name
`Piecewise`.
Just show the structure of this class due
to response length limitations:

class Piecewise(Function):
nargs = None
is_Piecewise = True
def __new__(cls, *args, **options):

...
@classmethod
def eval(cls, *_args):

...
def _eval_simplify(self, **kwargs):
...

search_code_snippets(
search_terms=[" Piecewise"]

)

Tool Call

Show the skeleton of modules if the content
is too long (exceed 300 lines)

Preview Output format

Figure 6: Different output formats designed for efficient agent-code interaction. Left: Full code output when
matched entities ≤ 3. Middle: Preview output showing module skeleton for large files. Right: Fold output showing
only entity IDs when matches > 3.

OBSERVATION:
django/contrib/auth/validators.py
├── contains ── django/contrib/auth/validators.py:ASCIIUsernameValidator
│ └── inherits ── django/core/validators.py:RegexValidator
├── imports ── django/core/validators.py
│ ├── contains ── django/core/validators.py:_lazy_re_compile
│ ├── contains ── django/core/validators.py:RegexValidator
│ ├── imports ── django/core/exceptions.py:ValidationError
│ └── imports ── django/utils/deconstruct.py:deconstructible
├── imports ── django/utils/deconstruct.py:deconstructible
│ ├── contains ── django/utils/deconstruct.py:deconstructible.decorator
│ └── invokes ── django/utils/deconstruct.py:deconstructible.decorator
├── contains-by ── django/contrib/auth
│ └── contains-by ── django/contrib
└──imports-by ── django/contrib/auth/migrations/0008_alter_user_username_max_length.py

└── contains-by ── django/contrib/auth/migrations

traverse_graph(
start_entities=[“django/contrib/auth/validators.py”],
direction=“both”,
traverse_hops=2,

)

Tool Call

Expanded Tree-Based Format

 Relations

 Reversed Relations

Figure 7: A truncated example of the expanded tree-based format for the output subgraph of tool TraverseGraph.

not support tool-calling (such as Qwen), we pro-
vide the description of the API and the expected
output as part of the LLM’s prompt. When the
agent decides to invoke a set of retrieval APIs, it
responds with a list of API call names and their
corresponding arguments. These retrieval API re-
quests are processed locally by searching over the
built code graph. The results from executing these
APIs locally are returned to the agent.

By default, we query the LLM with a tempera-
ture setting of 1.0. We conduct two interactions,
after which we rerank the results based on mean
reciprocal rank (MRR) scores. We also leverage
multiprocess execution to speed up the process.

Since all of our tools are read-only, LOCAGENT

does not require a specialized Docker environment
to operate.

A.3 Prompt

The prompt for LOCAGENT is shown in Figure 8.

A.4 Supported Programming Languages

While our current implementation focuses on
Python codebases, our method is not inherently
tied to Python. LocAgent constructs a lightweight
graph representation of the codebase, which is built
from abstract syntax trees (ASTs) generated from
the source code. Specifically, we employ tree-sitter

8710

Output Format File(%) Module(%) Function(%)

Acc@1 Acc@3 Acc@5 Acc@5 Acc@10 Acc@5 Acc@10

row 41.18 67.65 70.59 61.76 61.76 35.29 38.24
row (w/ entity attributes) 41.18 64.71 64.71 50.00 50.00 32.35 32.35
incident 41.18 70.59 73.53 55.88 55.88 29.41 32.35
Graphviz DOT 41.18 73.53 82.35 64.71 64.71 35.29 35.29
JSON 41.18 67.65 76.47 67.65 70.59 38.24 41.18
tree-based (Ours) 47.06 79.41 79.41 64.71 64.71 38.24 41.18

Table 9: Localization performance under different TraverseGraph output formats.

library to generate ASTs, and tree-sitter supports
a wide range of programming languages beyond
Python, including C, C++, Java, Go, and many oth-
ers. Thus, extending our approach to other object-
oriented or procedural languages would be rela-
tively straightforward.

B Dataset construction details

We provide a more thorough clarification of the
dataset construction process below:
Issue Sourcing. For the Bug Report and Feature
Request categories, we select open-source Python
repositories on GitHub with over 5,000 stars to en-
sure code quality and project reliability. We then
collect associated pull requests (PRs), each associ-
ated with a codebase specified by its base commit
following (Jimenez et al., 2023). To gather security
and performance issues, we use the GitHub Search
API with targeted keywords (listed in Table 10) to
identify relevant PRs.
Issue Filtering. We filter out PRs that do not ex-
plicitly resolve any linked GitHub issue. In ad-
dition, we exclude large-scope changes involving
more than 5 Python files or more than 10 functions,
as such large-scale changes are often too broad
and may not represent a single, isolated bug fix or
improvement. PRs that do not involve any function-
level edits are also discarded to ensure meaningful
localization targets.
Category Labeling. we use GPT-4o-2024-0513
to classify each issue based on its description. To
ensure reliability, we sample the result three times
for each issue and apply manual review in cases
where the outputs are inconsistent, reducing poten-
tial noise and labeling errors.
Ground Truth Locations. The affected files or
functions in the original codebase, as identified in
the patches, are considered the target locations for
the given issue. While it is possible to fix a bug
in a location different from the ground truth, the

extracted ground-truth locations still serve as ap-
proximate targets for localization. Additionally,
edited code such as documents, import statements,
and comments are excluded from the localization
target. These elements are not considered relevant
for code localization, as they do not directly im-
pact the functionality of the code or its execution.
By filtering out these elements, the focus is main-
tained on the core code changes that are relevant
for localization.

C Implementation Details

C.1 Baselines Implementation

Regarding the embedding-based methods in our
evaluation, while these approaches could theoreti-
cally index nodes at different levels (file, module,
or function) to compute corresponding metrics, the
standard implementations we evaluated operate at
the function level, embedding each function as a
single unit, following (Suresh et al., 2024).

We use OpenHands with its default generalist
agent CodeActAgent (Wang et al., 2024a) from
its agenthub. We use Openhands version 0.12.0
released on October 31, 2024. We employ Open-
Hands’s remote runtime feature to parallelize eval-
uation on OpenHands (with CodeActAgent) and
SWE-agent.

C.2 Quantifying Task Difficulty Based on
Code Graph Distance

We measure task difficulty by computing the av-
erage shortest hop distance between the functions
mentioned in the issue descriptions and the patched
functions within our code graph. Specifically, we
first extract potential function names from each
issue description using GPT-4o-2024-0513, and
identify their corresponding nodes in the code
graph using the global dictionary. These identified
nodes form the set of predicted nodes, denoted as C.

8711

Category Keywords

Performance bottleneck, performance improvement, memory usage optimization, time com-
plexity reduction, latency improvement, scalability improvement, CPU usage
reduction, caching improvement, concurrency optimization

Security Out-of-bounds Write, Out-of-bounds Read, NULL Pointer Dereference, Miss-
ing Authorization, memory leak fix, security vulnerability, security issue, au-
thentication bypass, authentication issue, better maintained, buffer overflow,
denial of service, security hardening, security patch, unsafe deserialization, Use
After Free, Integer Overflow or Wraparound, Uncontrolled Resource Consump-
tion, Missing Authentication for Critical Function

Table 10: We use these Keywords to search for Performance and Security related issues with Github Search APIs.

Type Method Loc-Model File (%) Module (%) Function (%)

NDCG@1 NDCG@3 NDCG@5 NDCG@5 NDCG@10 NDCG@5 NDCG@10

Embedding-Based

BM25 (Robertson et al., 2009) 38.69 46.5 50.61 37.31 39.86 26.15 27.92
E5-base-v2 (Wang et al., 2022) 49.64 64.19 66.6 53.15 54.45 31.39 35.3
Jina-Code-v2 (Günther et al., 2023) 43.43 59.93 63.7 51.02 54.13 33.28 36.44
Codesage-large-v2 (Zhang et al., 2024a) 47.81 60.82 64.39 49.38 52.22 27.03 30.74
CodeRankEmbed (Suresh et al., 2024) 52.55 67.54 70.39 57.51 59.76 40.28 42.55

Procedure-Based Agentless
(Xia et al., 2024)

GPT-4o 67.15 71.76 71.76 64.31 64.31 53.81 53.81
Claude-3.5 72.63 76.72 76.87 67.36 67.36 57.55 57.55

Agent-Based

MoatlessTools
(Örwall, 2024)

GPT-4o 73.36 80.03 80.33 68.57 69.09 49.77 50.62
Claude-3.5 72.63 80.73 80.88 69.11 69.11 53.03 53.16

SWE-agent
(Yang et al., 2024)

GPT-4o 57.3 63.96 64.12 53.95 53.95 42.32 42.44
Claude-3.5 77.37 84.32 84.93 72.77 72.9 59.67 59.79

Openhands
(Wang et al., 2025)

GPT-4o 60.95 67.62 68.39 58.18 58.6 44.34 44.66
Claude-3.5 76.28 84.27 84.43 75.79 75.92 63.13 63.8

LocAgent (Ours)
Qwen2.5-7B(ft) 70.80 79.36 80.9 70.99 71.68 55.62 58.09
Qwen2.5-32B(ft) 75.91 84.74 85.64 76.28 76.77 64.27 65.93
Claude-3.5 77.74 86.19 87.14 77.73 78.1 64.34 65.57

Table 11: NDCG scores comparison showing ranking quality of different methods.

Similarly, we link the ground truth functions from
the patch to their corresponding nodes in the code
graph, forming the set of target nodes, denoted as
T . To quantify the difficulty δ, we calculate the av-
erage shortest hop distance between the predicted
nodes C and the target nodes T , defined as:

δ =
1

∣T ∣ ∑
t∈T

minc∈Cd(c, t)

where d(c, t) represents the shortest hop distance
between nodes c and t in the graph. For perfor-
mance analysis stratified by difficulty, we round δ
down to ⌊δ⌋ to group samples by difficulty levels,
and we exclude samples where the LLM fails to
extract any valid function names.

C.3 Fine-tuning details
We do not use explicit teacher-student distillation
techniques (e.g., loss alignment or intermediate rep-
resentation matching); instead, our data-centric dis-
tillation strategy effectively transfers task-specific
reasoning abilities to the smaller model. We use
Qwen-2.5-Coder-Instruct (Hui et al., 2024) 7B

and 32B variants as our base models. We fine-tuned
Qwen-2.5-Coder-Instruct 7B and 32B models
on 768 training samples from the SWE-Bench train-
ing dataset, leveraging LoRA for efficient adapta-
tion. The training set included 447 samples gen-
erated by Claude-3.5, while the remaining sam-
ples were iteratively generated using the fine-tuned
Qwen2.5-32B model. The fine-tuning process was
conducted over 5 epochs with max_token set to
128k and a learning rate of 2 × 10

−4.

8712

Given the following GitHub problem description, your objective is to localize the specific files, classes or functions, and lines
of code that need modification or contain key information to resolve the issue.

Follow these steps to localize the issue:
Step 1: Categorize and Extract Key Problem Information
- Classify the problem statement into the following categories:
Problem description, error trace, code to reproduce the bug, and additional context.

- Identify modules in the '{{package_name}}' package mentioned in each category.
- Use extracted keywords and line numbers to search for relevant code references for additional context.

Step 2: Locate Referenced Modules
- Accurately determine specific modules
- Explore the repo to familiarize yourself with its structure.
- Analyze the described execution flow to identify specific modules or components being referenced.

- Pay special attention to distinguishing between modules with similar names using context and described execution flow.
- Output Format for collected relevant modules:
- Use the format: 'file_path:QualifiedName’
- E.g., for a function `calculate_sum` in the `MathUtils` class located in `src/helpers/math_helpers.py`, represent it as:
'src/helpers/math_helpers.py:MathUtils.calculate_sum'.

Step 3: Analyze and Reproducing the Problem
- Clarify the Purpose of the Issue
- If expanding capabilities: Identify where and how to incorporate new behavior, fields, or modules.
- If addressing unexpected behavior: Focus on localizing modules containing potential bugs.

- Reconstruct the execution flow
- Identify main entry points triggering the issue.
- Trace function calls, class interactions, and sequences of events.
- Identify potential breakpoints causing the issue.
Important: Keep the reconstructed flow focused on the problem, avoiding irrelevant details.

Step 4: Locate Areas for Modification
- Locate specific files, functions, or lines of code requiring changes or containing critical information for resolving the issue.
- Consider upstream and downstream dependencies that may affect or be affected by the issue.
- If applicable, identify where to introduce new fields, functions, or variables.
- Think Thoroughly: List multiple potential solutions and consider edge cases that could impact the resolution.

Output Format for Final Results:
Your final output should list the locations requiring modification, wrapped with triple backticks ```
Each location should include the file path, class name (if applicable), function name, or line numbers, ordered by importance.
Your answer would better include about 5 files.

Examples:
```
full_path1/file1.py
line: 10
class: MyClass1
function: my_function1

full_path2/file2.py
line: 76
function: MyClass2.my_function2

full_path3/file3.py
line: 24
line: 156
function: my_function3
```

Return just the location(s)
Note: Your thinking should be thorough and so it's fine if it's very long.

Prompt

Figure 8: The task instruction prompt for LOCAGENT.

8713

