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Preface by the Conference Organizers

We are excited to welcome you to *SEM 2024, the 13th Joint Conference on Lexical and Computational
Semantics! We are pleased to present this volume containing the accepted long and short papers. *SEM
2024 is being held from June 20 to 21, 2024, in Mexico City, Mexico, co-located with NAACL 2024.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, theoretical semantics, mul-
tilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.

*SEM 2024 accepted both papers submitted directly to *SEM and those already reviewed through ARR
(ACL Rolling Review). We received submissions in 11 areas:

* Lexical Semantics

* Semantic Composition and Sentence-level Semantics

* Discourse, Dialogue and Generation

* Commonsense Reasoning and NLU

* Resources and Evaluation

* Theoretical and Formal Semantics

* Multilinguality

» Semantics in NLP Applications

* Psycholinguistics, Cognitive Linguistics, and Semantic Processing
* Social Biases and Ethics

* Interpretability and Explainability

We had 65 submissions this year combining both direct submissions and ARR commits. We compiled an
exciting and wide-ranging program, accepting a total of 35 papers (27 long papers and 8 short papers).
The submitted papers were carefully evaluated by a program committee led by 14 area chairs, who
coordinated a large team of reviewers. The reviews were almost all of very high-quality, and for that we
are extremely grateful! Area chairs then added meta-reviews to explain their accept/reject decisions. The
final selection was made by the program co-chairs after a careful check of the reviews, meta-reviews,
and discussions with the area chairs. We are also very excited to have two excellent keynote speakers:
Greg Durrett from the University of Texas at Austin and Heng Ji from the University of Illinois Urbana-
Champaign.

We are honored to serve as the organizing committee for *SEM 2024, and we absolutely could not have
made this happen without a huge amount of help. First, tremendous thanks to all area chairs and reviewers
for their invaluable help in selecting the program, for their engagement in thoughtful discussions, and
for providing valuable feedback to authors. Second, thanks to our Publicity Chair Yi Zhou (Cardiff
University) for taking care of the website and social media updates. Next, thanks to our Publication Chair
Tom McCoy (Yale University) for putting together the proceedings, and to the NAACL 2024 workshop
organizers for help and support with all organizational aspects of the conference. Finally, thank you to
the authors and presenters for making *SEM 2024 such an engaging and exciting event! We hope that
you will find the content of these proceedings as engaging as we do, and we hope to see you at future
iterations of *SEM!

Danushka Bollegala and Vered Shwartz, co-Program Chairs
Jose Camacho-Collados, General Chair
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MASSIVE Multilingual Abstract Meaning Representation:
A Dataset and Baselines for Hallucination Detection

Michael ReganT, Shira Weini, George Baker®, Emilio Monti"
"Paul G. Allen School of Computer Science & Engineering
iGeorgetown University
"University of Colorado Boulder
*Amazon, Cambridge, UK
mregan@cs.washington.edu,monti@amazon.co.uk

Abstract

Abstract Meaning Representation (AMR) is
a semantic formalism that captures the core
meaning of an utterance. There has been
substantial work developing AMR corpora in
English and more recently across languages,
though the limited size of existing datasets and
the cost of collecting more annotations are pro-
hibitive. With both engineering and scientific
questions in mind, we introduce MASSIVE-
AMR, a dataset with more than 84,000 text-to-
graph annotations, currently the largest and
most diverse of its kind: AMR graphs for
1,685 information-seeking utterances mapped
to 50+ typologically diverse languages. We de-
scribe how we built our resource and its unique
features before reporting on experiments us-
ing large language models for multilingual
AMR and SPARQL parsing as well as applying
AMRs for hallucination detection in the context
of knowledge base question answering, with re-
sults shedding light on persistent issues using
LLMs for structured parsing.

1 Introduction

Knowledge base question answering (KBQA) has
a long history in natural language processing, with
the task of retrieving an answer from a knowledge
base such as Wikidata or DBPedia (Lehmann et al.,
2015) integral to many large-scale question answer-
ing systems (Kapanipathi et al., 2021). In KBQA,
a question is converted into a structured query lan-
guage such as SPARQL, an executable semantic
parse. However, data to train models is expen-
sive, few multilingual resources are available, and
performance is limited for long-tail queries, a prob-
lem compounded by arbitrary variability in form-
meaning mappings across languages (Croft, 2002).

Most notably, research in multilingual KBQA
is hindered by lack of data (Usbeck et al., 2018;
Cui et al., 2022; Perevalov et al., 2022). Following
work using meaning representations for this prob-
lem, we create a dataset 20 times larger and with

1

| AMR3.0 | QALD9-AMR | OURS
# of languages 1 9+ 52
domain various | QA QA
# utterances 59K 508 1685
# utts-to-graphs | 59K 5K 84K
mean tokens/utt | 15.9 EN:7.5 EN: 8.2
entities - not local local
gold SPARQL No Yes No

Table 1: Other AMR treebanks and ours, MASSIVE-
AMR. Compared with QALD9-AMR (Lee et al., 2022),
MASSIVE-AMR covers more languages, has more ut-
terances, and has localized or translated entities for each
language (see exs. Table 2).

5-6 times more languages than existing resources
(Lee et al., 2022) (Table 1). For MASSIVE-AMR,
we select 1685 QA utterances with manual trans-
lations from MASSIVE (FitzGerald et al., 2023)
and manually compose Abstract Meaning Repre-
sentation (AMR) graphs (Banarescu et al., 2013),
amounting to 84,000 text-to-graph annotations, a
significant boon to AMR and KBQA research.

Graphs with localized, language-specific entities
(Table 2) and the long-tail utterances in MASSIVE-
AMR (Appendix A.2) increase the challenge of our
multilingual dataset (§3). To explore the resource’s
utility, we design and carry out experimentation
leveraging AMRs to gauge a model’s confidence
in SPARQL query production (§4), reporting on
multilingual structured parsing and SPARQL rela-
tion hallucination detection using large language
models (LLMs) (8§5).

Our research contributions thus include: (1) cre-
ation of the largest-scale multilingual AMR ques-
tion corpus to date; (2) evaluation of LLMs on
parsing of SPARQL and AMRs structures across
languages; and (3) design, development, and eval-
uation of generative models leveraging AMRs for
SPARQL relation hallucination detection.'

'We release the MASSIVE-AMR training and val-
idation data at https://github.com/amazon-science/
MASSIVE-AMR.

Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), pages 1 - 17
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Utterance | AMR
when was obama born (b / bear-02
& :ARG1 (o / “obama")
?ﬂ :time (u / unknown))
E quand est né sarkozy (b / bear-02
@ :ARGI (s / “sarkozy")
%t :time (u / unknown))
+50 langs. +50 AMRSs, local entities
& Who developed Skype? | (d/develop-02
E Qui a développé Skype? :ARGO (u / unknown)
S :ARG1 (s / “Skype"))
)
é 9+ langs. Same AMR, all langs.

Table 2: MASSIVE-AMR (top) has localized entities
(English-US ‘obama’, French-FR ‘sarkozy’) and covers
>5x more languages compared to QALD9-AMR (bot-
tom). AMRs simplified to fit table.

2 Related Work

We present related work in QA, Knowledge base
question answering (KBQA), the AMR formalism,
AMRs for KBQA, and hallucination detection.

2.1 Question Answering

Question answering (QA) is the task of retrieving
or predicting an answer to a natural language query
given document(s), a list of answers, knowledge
triples, or with a generative model. QA encom-
passes research in Information Retrieval (Lewis
et al., 2020), Machine Reading Comprehension
(MRC) (Das et al., 2018), and Open-Domain Ques-
tion Answering (Lewis et al., 2021; Zhang et al.,
2023). Research targeting model confidence for
calibration of QA systems (Jiang et al., 2021; Ka-
davath et al., 2022) has aims similar to our own.

For research in multilingual dialogue systems,
MASSIVE (FitzGerald et al., 2023) is a collection
of 20K utterances with manual translations into 50+
typologically diverse languages (with 52 languages
in v1.1). For our dataset, we select all QA utter-
ances from MASSIVE and add AMR annotations
(see Section 3).

2.2 Knowledge Base Question Answering

Knowledge base question answering (KBQA) is
the task of retrieving answers from a knowledge
base given a question. The challenges in retriev-
ing textual information are fundamentally different
from the primary challenge of KBQA: producing
semantically accurate knowledge base queries.

Various approaches to KBQA have been pro-
posed over the decades, including converting
queries to logical forms, semantic parses, and de-
composing complex questions (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Talmor and
Berant, 2018). Scalable KBQA systems utilize
structured representations (SPARQL) to query a
knowledge base (e.g., DBPediaz), a collection of
triples of form <subject, rel;, object> with rel; a se-
mantic relation from ontology R (of various sizes,
e.g., RDBPedial > 2500). Baselines for SPARQL
parsing are available (Banerjee et al., 2022), with
a central challenge being how to identify parsed
queries not covered by a given R, cases where
models tend to hallucinate relations.

In the age of large language models, querying
manually-curated knowledge bases provides nu-
merous advantages such as: (1) factuality guaran-
tees, (2) the ability to update information in real
time, and (3) risk mitigation for users, reducing ex-
posure to sensitive or toxic content. With these mo-
tivations in mind, we turn our attention to AMRs.

2.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a linguistic formalism that
represents utterance meaning as directed, mostly
acyclic graphs. Graph nodes denote key concepts
associated with the meaning of the utterance, tar-
geting events and event participants. Nodes in turn
are connected by labeled edges for event-event,
event-entity, entity-entity, and other relations.

Early AMR research focused on text-to-AMR
parsing, with the JAMR parser (Flanigan et al.,
2014) paving the way for state-of-the-art models
based on transitions (Drozdov et al., 2022), seq2seq
approaches (Bevilacqua et al., 2021), and ensemble
distillation (Lee et al., 2022). In lieu of such heav-
ily engineered approaches, we target generative
models with in-context learning and fine-tuning
following recent work (Ettinger et al., 2023).

The original AMR reference-based metric is
Smatch (Cai and Knight, 2013), a measure of
overlapping triples, which has led to the newly
optimized Smatch++ (Opitz, 2023) and S2match
(Opitz et al., 2020) which uses embeddings to
match concepts within triples. Wein and Schneider
(2022) released multilingual AMR metrics such as
XS2match using LaBSE embeddings (Feng et al.,
2022) for cross-lingual AMR evaluation.

2https: //www.dbpedia.org/
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AMRs were not designed to function across lan-
guages (Banarescu et al., 2013), and while lan-
guage has a measurable effect on AMR structure
(Wein et al., 2022), efforts have been made to ef-
fectively represent the meaning of non-English sen-
tences in AMRs (Xue et al., 2014; Haji¢ et al., 2014;
Wein and Schneider, 2024). In typology, a Uniform
Meaning Representation (Van Gysel et al., 2021)
helps account for formal and semantic differences
across languages more consistently than AMR, and
work tying multilingual resources to a common
formalism is ongoing (Navigli et al., 2022).

24 AMR for KBQA

Using symbolic representations for QA is well stud-
ied in NLP (Niu et al., 2023; Wang et al., 2023). A
mapping of AMR nodes to SPARQL concepts and
variables is shown to improve KBQA systems (Ka-
panipathi et al., 2021), and sequence-to-sequence
models learn to apply these rules selectively for
improved generalization (Bornea et al., 2022).

The multilingual QA resource most similar to
ours is QALD9-AMR (Lee et al., 2022), which
maps utterances from 9+ languages to the same
English-only AMR and gold SPARQL queries (Us-
beck et al.,, 2018). In comparison, graphs in
MASSIVE-AMR consist of multilingual entities
(Table 2) either translated or localized (e.g., a re-
gional entity for where the language is spoken) for
each of 50+ languages (Tables 2 and 3).

2.5 Hallucination detection

Hallucinations, the inclusion of flawed or incon-
gruous assertions in synthetic text, represent a per-
sistent problem with LLMs (Ji et al., 2023). Much
research in hallucination detection targets the text-
to-text paradigm, for example checking factuality
or faithfulness of summarized texts (Gabriel et al.,
2021; Qiu et al., 2023) or proposing mitigation
strategies to make synthetic text attributable (Aksi-
tov et al., 2023; Rashkin et al., 2023). In contrast,
we examine text-to-graph systems that produce exe-
cutable semantic parses, experimenting with AMRs
to detect easy and hard cases of semantic relation
hallucination, ranking parses of dual representation
types in a joint space, as we will detail in Section 4.

3 Data: Corpus Creation

To create a corpus of multilingual AMR graphs,
we started with an existing dataset of QA utter-
ances, tailored AMR 3.0 guidelines to our use case,

trained a team of professional annotators to cre-
ate AMRs for English utterances, and then made
automatic mappings to multilingual utterances us-
ing existing entity mention spans, a process which
from start to finish took three months. In this sec-
tion, we report details about the data we started
with, guidelines, and annotation agreement scores.

Acquiring scaleable multilingual data. We
wanted a resource targeting a wide distribution of
QA utterances and thus selected 1685 English ex-
amples from MASSIVE (FitzGerald et al., 2023)
including entity annotations like in the multilingual
examples in Table 3.

Lang. | Example utterance

en-US | what is the population of [place: new york]
sI-SL | koliko prebivalcev ima [place: ljubljana]
it-IT | qual ¢ la popolazione di [place: roma]
sq-AL | cila ésht& popullésia e [place: tiranés]
cy-GB | beth yw poblogaeth [place: efrog newydd]
af-ZA | wat is die bevolking van [place: kaapstad]
is-IS | hver er ibuafjoldi [place: reykjavikur]
az-AZ | [place: sumqayitin] ohalisi negadordir

Table 3: Example multilingual questions from MAS-
SIVE (FitzGerald et al., 2023) about the populations
of regional cities, with annotations for entity spans and
types given.

Long-tail QA. Many utterances in MASSIVE
are described as long-tail, that is, associated with
low user feedback in interactions with a digital as-
sistant. In some cases, it is clear what increases
friction (an incomplete utterance, or a speech-to-
text error). Examining translations of English utter-
ances provides insight (Appendix A.2).

Localized entities. In comparable datasets (Cui
et al., 2022; Perevalov et al., 2022), entities are
shared across languages (e.g., English Where did
Abraham Lincoln die? corresponds to German Wo
starb Abraham Lincoln?). To address challenges
of large-scale QA, MASSIVE entities are mostly
language-specific, e.g. German questions target
German entities (wo starb otto von bismarck3).

AMR datasets differ in composition. AMR
3.0 (Banarescu et al., 2013) is based on news and
other written discourse and consists of relatively
few factoid or information-seeking questions (less
than 10%). In contrast, MASSIVE-AMR includes
requests about currency conversions, quantities,
comparative and superlatives, and simple arith-
metic. For more details about how the corpora
compare, see Appendix A and Table 11.

*MASSIVE utterances are uncased with no punctuation.



Anneotation principles: Canonical forms. In
keeping with original AMR guidelines, an AMR
captures meaning, not form (Banarescu et al.,
2019). We hence prefer canonical forms for ut-
terances like currency conversion and arithmetic:
e.g., ‘how much is the euro versus the dollar’ and
‘what is the euro worth compared to the dollar’ map
to similar graphs. Likewise, arithmetic questions
are associated with top node ‘equal-01’ even with-
out token ‘equal’ present (‘how much is two plus
two’ and ‘sum of two and two’ treated like ‘what
does two and two equal’).

Question-imperative continuum. It proved dif-
ficult to reach agreement for annotations of ques-
tion versus imperative forms. In English, ‘could
you tell me the price of google’, ‘what is the price
of google’, and ‘tell me the price of google’ share
the same meaning. However, treating the impera-
tive (e.g., an embedded question ‘tell me what the
price is’) as a question is out-of-line with AMR 3.0.
The guideline we adopt is to preserve imperative
form and treat polite questions (e.g., English ‘could
you tell me the price’) the same as base question
forms (e.g., ‘what is the price’).

Annotation agreement scores. 4-5 trained an-
notators created AMRs for 1685 utterances, exam-
ining differences in batches of 200 weekly, with
inter-annotator agreement ranging from 78-82%
Smatch, comparable to reported agreement for
AMR experts (Banarescu et al., 2013). We note that
MASSIVE-AMR consists of many similar ques-
tions and simple utterances, with on average 50%
fewer tokens compared to AMR 3.0 (Table 1). We
select the single best AMR in candidate sets and
manually retrofit to increase consistency.

For non-English entities, we replace AMR
node labels using MASSIVE annotations. We note
that not all utterances have annotations, and that
a lack of entity alignments adds noise since often
word order matters (e.g., currency conversion). To
improve data quality, we manually curate valida-
tion and test sets (25% of total).

4 SPARQL Hallucination Detection

Our original motivation for creating a multilin-
gual AMR dataset (§3) was to help improve large-
scale QA systems. Scaleable QA systems often
utilize structured representations (e.g., SPARQL)
for knowledge base retrieval, pairing a natural lan-
guage utterance with an executable semantic query.
The SPARQL in the Wikidata or DBPedia case is

straightforward: we get a question in, the system
produces an answer out. However, in practice we
simply need a system capable of judging if a given
answer is correct, which using generative methods
we study as hallucination detection.

Hallucinations. A problem in open-domain
question-answering regards hallucinations, cases
when effectively the target Ontology (in our case,
DBPedia) does not have valid symbols for a given
input question (see Figure 1). For example, if the
relation ‘crimeRate’ does not exist, a SPARQL
generation model may stumble on a question like
‘What is the crime rate in LA?” by parsing a query
with a non-existing relation, which we can verify
with a set membership check. A harder case to
detect is when the model predicts a relation for
an utterance that is ambiguous, e.g., “Who created
Iron Man’ may refer to its fictional (Tony Stark) or
non-fictional (Stan Lee) creator. We would like to
design and test methods for the detection of such
cases using LLMs.

An advantage of AMR is that its ontology is
open: i.e. if a given concept is missing, we can
practically lemmatize the English. Or more of-
ten, AMR tends to be more granular, and more
complex meanings (that in an Ontology might be
collapsed into a single symbol) are split into sev-
eral constituents (i.e. ‘crimeRate’ might be a single
symbol in an Ontology, but it is instead split into
constituents by AMR). Hence, hallucinations are
much less of a problem in AMR.

We hypothesize that if we train a single semantic
parser to parse both SPARQL and AMRs, simply
mixing the training data (i.e. for multi-task learn-
ing), and produce multiple parse candidates in a
target N-best, the inclusion of AMRs will allow
us to detect SPARQL hallucinations. That is to
say, a high confidence AMR and lower confidence
SPARQL serve as a signal that a given utterance
is not covered by an ontology or is in some way
ambiguous, as in the examples in Figure 1.

We examine dual subtasks of SPARQL halluci-
nation detection: (1) How accurate are models at
the easy task of checking set membership, in our
case, verifying produced relations are in a given
relation set:

?
T'pred € Rgiven

and, (2) How good are models at flagging ambigu-
ous queries (e.g., “‘Who created Iron Man?’), the
task of hard hallucination detection, detailed more
in the next section.



AMR-SPARQL

"Who created Iron Man?"
Model

#1 SPARQL

#2 AMR

Explanation

SELECT DISTINCT ?uri
WHERE {
res:Iron_man dbo:creator ?uri

(c/ create-01
:ARGO (u / unknown)
:ARG1 (i/Iron_Man)

SPARQL ranks higher:
Query likely OK

#1 AMR #2 SPARQL Explanation
"Who created Iron Man?" »| AMR-SPARQL (c/ create-01 SELECT DISTINCT ?uri Utterance likely ambiguous
Model :ARGO (u / unknown) IELERIE . - creator vs. author

:ARG1 (i/Iron_Man) res:Iron_man dbo:author ?uri ‘Hard' to detect

#1 AMR #2 SPARQL Explanation

TR q . AMR-SPARQL (c/ crime-02 SELECT ?rate : P—

Crime rate in NYC? i Model location (n / NYC) WHERE { ialllulcilrl'lationl}crilxtl\eRate
frequency (r / rate-entity-91 | res:NYC dbo:crimeRate ?rate "Easy' to detec.t
:ARG1 (u / unknown))) } Y

Figure 1: As a proxy for QA correctness, we test a joint AMR-SPARQL model, controlling for semantic relations
(in bold). Given an utterance like Who created Iron Man?, a model outputs a N-best list of candidates of mixed
representation types. When the relation creator is allowed (top), we expect the model to rank SPARQL higher than
AMR. If the we change the ontology, the AMR may rank higher (middle), suggesting an ambiguity exists (creator
~ author). Models also produce non-existent relations (bottom), detected via ranking or a look-up operation.

5 Experiments

To gain insight into our hypothesis that AMRs can
help detect SPARQL relation hallucinations (§4),
we first report on experiments in semantic repre-
sentation parsing, a first-of-its-kind in a diverse
multilingual setting. Next, we experimentally con-
firm models do indeed hallucinate relations, before
moving on to our target task of hallucination de-
tection. We compare in-context learning and fine-
tuned LLMs, training and evaluating on an existing
corpus of questions with gold AMRs and SPARQL
and sampled MASSIVE-AMR. We are guided by
the following research questions:

1. How effective are LLMs at parsing AMRs
and SPARQL queries across languages?

2. How prevalent are SPARQL relation halluci-
nations with generative models?

3. How accurate are models at detecting hallu-
cinated SPARQL relations?

4. Can we use a joint AMR-SPARQL model to
do better relation hallucination detection?

The standard approach to study the coverage of
a set of relations is use all the data associated with
a relation set R to train semantic parser S P ; we
then remove all examples that contain relation 7;
and train SP{R_TJ.}, measuring how well the model
does for queries likely to require 7;.

An advantage of training a joint AMR-SPARQL
model from scratch is having complete control over
the input relations; a disadvantage is that, in the
case we use a LLM, we have no knowledge about
what relations the model may have seen in pre-
training. For our early experiments, we use LLMs
trained on 1000s of examples without hard con-
straints on allowed relations”.

We define hallucination detection as the ability
of an LLM to verify produced relations are mem-
bers of a predefined set. We consider cases of hard
hallucination detection, when a model produces a
relation that may be imprecise, a case which occurs
when the needed relation for a query is not cov-
ered by a given R. For experiments, we compare
in-context learning with fine-tuned LLMs.

5.1 In-context Learning

For in-context learning, we use GPT models (Ope-
nAl, 2023) (GPT-3.5/GPT-4-0613) with prompts of
length <2400 tokens (see Appendix C) composed
employing strategies we describe in this section.
Strategy #1: Constrain and verify relations.
Prompts include a list of allowed SPARQL rela-
tions with which we instruct the model to verify
predicted relations. For in-context learning, we

4Ideally, this could be done at decoding time, setting logits
of all non-relation tokens to -inf after a colon, an unambigu-
ous signal of a SPARQL relation.



Relations | Subset descriptions

All observed Robs

In-context Recontext € Robs A

Subsets similar | {R7™,..., R}™} Ri™ C Rops
Controlled Tentl € Ry & Reontext

Ground truth {Pis s Tently s Tn} C Robs

Table 4: Different subsets of relations, R, for exper-
imentation. To test if a generation model adheres to
instructions for allowed relations, we disallow one re-
lation from a subset of similar relations as a control
(4th row). We observe model performance for questions
with ground truth relations we control (last row).

include eight examples of joint AMR-SPARQL
predictions, with example hallucinations.

Strategy #2: Simulate missing relations. To
control for relations (Table 4), we count DBPedia
relations in QALD9-AMR training data, select the
140 more frequent relations, and set aside 1+ re-
lations for utterances in prompt where the model
should prefer AMR over SPARQL, ensuring exam-
ples abide by constraints. We define the more fre-
quent relations as being observed >1 times, which
is the case for about 50% of the data.

To test our hard hallucination detection hypoth-
esis, we determine DBPedia relations to control
for by manually grouping similar relations (e.g.,
‘creator,” ‘writer,” and ‘developer’ are similar; Ta-
ble 4, row 3) and select questions associated with
any of these relations. We compare predictions al-
lowing all relations versus the allowed list less the
controlled relation (Table 4, row 4).

Strategy #3: Simulate ranking. We would like
the model to rank without access to ground truth
confidence scores, so we assign random confidence
scores to in-context examples using a Dirichlet dis-
tribution (K=3), dropping the minimum value.”
However, at decoding we consider only relative
ranking, leaving a rigorous examination of confi-
dence scores for future work.

Strategy #4: In-context examples of halluci-
nation detection. Prompts (Appendix C) include
cases of easy and hard hallucination detection, and
we direct the model to specific cases where AMRs
should rank higher.6

>The minimum value represents the probability density of
bottom predictions in latent N-best ranking.

%The prompt reads: “Rank AMRs higher when predicted
SPARQL is likely wrong, like in examples 5 and 8.”

5.2 Additional Controls

We include results with an oracle, in which we
direct the model’s attention to the disallowed re-
lation, providing an upper bound on achievable
performance and giving insight into analysis. For
consistency across datasets, we normalize all utter-
ances (lower case, no punctuation).

5.3 Data: Language Subsets for Parsing

For experiments in AMR and SPARQL parsing,
we identify a subset of languages: for comparison
with QALD9, we select Indo-European languages
from MASSIVE-AMR, the subset we refer to as
MASSIVE-, and a more diverse sample with dif-
ferent scripts and less representation in Wikipedia,
referred to as MASSIVE+ (Table 5).

For structured parsing experiments using in-
context learning, we sample about 100 utterances
each from QALD9, MASSIVE-, and MASSIVE+
(e.g., the same 16 questions in 6 different lan-
guages), reporting average results across languages
in each subset.

5.4 Fine-tuning

We fine-tune joint AMR-SPARQL models using
publicly available LLMs: GPT-2-XLy s, @ 1.5B
parameter variant distilled on graph-structured
knowledge (West et al., 2022) and LLaMA-13B
(Touvron et al., 2023); for model fine-tuning de-
tails, consult Appendix B. For a challenging test
set, we select same-sized samples from QALD9
and MASSIVE-AMR (900 each) of the same Indo-
European languages (namely: English, Spanish,
German, French, and Russian).

5.5 Evaluation Guidelines

For AMR parsing, we report Smatch (Cai and
Knight, 2013), while for SPARQL we check
(1) query executability (using the Python SPAR-
QLWrapper) and (2) whether the query returns
an answer from DBPedia. We do not check an-
swer factuality, as our objective is to measure
model confidence in semantic parse correctness,
not the model’s knowledge of the contents of a
given knowledge base (given that knowledge bases
change over time and many local entities do not
have a DBPedia entry, for example).

For hallucination detection experiments using
in-context learning, we employ quantitative and
qualitative means of analysis. For perturbed ex-
amples (i.e., parse a query for a question likely to



| Language | #speakers | # Wiki pgs

@ | English 1.5b 58.7m
2. | French 320m 12.6m
£ | Russian 258m 7.7m
< | German 76.5m 7.8m
§ Italian 66m 7. 7Tm
5| Lithuanian 2.8m 0.5m
S
Vietnamese 85.2m 19.4m
+ | Japanese 125m 4.0m
E Korean 81.7m 3.1m
7 | Hungarian 8.2m 1.5m
% Urdu 91.5m 1.0m
S | Ambharic 31m 15k
Azeri 24m 195k
Finnish 5.1m 1.4m

Table 5: For AMR and SPARQL parsing, we assemble
test sets selecting utterances from two subsets of lan-
guages: (1) The presumably easier subset MASSIVE-
(top) covering the same Indo-European languages as
QALD?9, and (2) the more diverse MASSIVE+ (bot-
tom), e.g., targeting different writing systems. Statistics
are estimates, based on https://meta.wikimedia.org/
wiki/List_of_Wikipedias and Google search results.

require a known disallowed relation), a predicted
ranking is good if the model: (1) ranks the AMR
higher, (2) ranks the SPARQL higher yet verifies
the relation is not allowed, or (3) produces a valid
alternative SPARQL. We stratify results by dataset,
check executability and whether the query returns
an existing record, and also evaluate manually.

For fine-tuned joint AMR-SPARQL, we use a
diverse beam search (n=5) and different methods
to determine relative ranking: (1) check the top-
ranked produced sequence, (2) count the major-
ity structure in the N-best ranking, and (3) com-
pare transition scores for the first token produced.7
Our hypothesis is models will prefer SPARQL over
AMR for QALD?9 and vice versa for MASSIVE-
AMR. This is a reasonable hypothesis, as all
QALD?9 is known to be matched with ground
truth SPARQL, while fewer queries in MASSIVE-
AMR are likely convertible into an executable
query, an assumption we assess qualitatively (Ap-
pendix A.2).

For evaluation, models output a queryable object
(JSON) with three key-value pairs: parsed query,
list of relations in query, and list of relation veri-
fications (boolean values) (see Appendix C), with
very few structural errors observed (<1% in our
studies).

"Either ‘AMR’ or ‘SPARQL,’ or the first sub-token therein.

Model Data | Smatch 1
z GPT-3.5 MASSIVE-EN | 043, 5
3 QALDY-EN 0.5710.17
7 GPT-4  MASSIVE-EN | 05395,
& QALDY-EN 0.7040.16
. GPT-3.5 MASSIVE+ 0.3340.22
2 MASSIVE- 0.429.20
g QALD9 0.44 4 20
2 GPT4  MASSIVE+ 046, 2
: MASSIVE- 0.4940 20
= QALD9 0.58.0.92
£ MBSE  QALDY9-EN 0.90
2 AMR 3.0 0.84

Table 6: AMR parsing results by model, dataset, and
language subset, comparing in-context learning (top
and middle) with SOTA (Lee et al., 2022) (bottom).
Overall, in-context learning is less effective than more
engineered approaches.

5.6 Results

We present results on in-context learning for AMR
parsing (Table 6) and SPARQL queries (Table 7)
across languages, report on SPARQL hallucina-
tions (Table 8), followed by results in hallucination
detection using in-context joint models (Table 9),
as well as fine-tuned joint models (Table 10).

5.7 Analysis and Discussion

For AMR parsing (Research question 1), re-
sults (Table 6, examples and error analysis in Ap-
pendix D) show that state-of-the-art AMR systems
still outperform in-context learning with margins
between 10-20%, a display of the strengths of en-
gineered modular systems, data augmentation, and
AMR post-processing. Comparing few-shot mod-
els, GPT-4 outperforms GPT-3.5 by a margin of
10-13% F1, with performance on QALDY 14-17%
F1 higher than MASSIVE-AMR, evidence of the
challenge of the latter. Models perform 5-12% F1
higher for MASSIVE- compared to more diverse
MASSIVE+ (see Section 5.3), the first reported
AMR results we are aware of for many of these
languages.

SPARQL parsing. Results of SPARQL query
parsing with in-context learning (Table 7, exam-
ples in Appendix E) provide evidence that LLMs
perform well in a few-shot setting, exceeding 90%
F1 in executability across datasets and languages.
However, as LLLMs are not trained on up-to-date
data, no more than 52% of queries for QALD9 and
32% of MASSIVE-AMR return existing DBPedia
records. Additionally, models display good perfor-


https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias

Data | Exec. T Returns 1
‘> MASSIVE+ | 0.93 0.32
£ MASSIVE- | 094 041
& QALD9 0.97 0.53
< MASSIVE+ | 094 034
£ MASSIVE- | 099  0.50
O QALDY .00 052

Table 7: Few-shot SPARQL parsing results across
datasets and models. We report executability and how
many return existing records. Overall, models produce
structurally viable SPARQL across languages.

Data Perturb #Utts \ Halluc. | Detects T
MASSIVE+ No 38 0.21 0.0
- Yes 62 0.71 0.04
o MASSIVE- No 38 0.16 0.0
£ Yes 62 0.59 0.0
O QALDY No 110 | 0.22 0.09
Yes 110 | 0.84 0.0
MASSIVE+ No 34 0.06 0.50
Yes 66 0.48 0.09
&, MASSIVE-  No 36100 n/a
& Yes 64 0.54 0.14
QALD9 No 50 0.04 0.0
Yes 50 0.46 0.08

Table 8: Rates of SPARQL hallucination and hallucina-
tion detection with a SPARQL-only model. When we
perturb a relation, hallucination is high, that is, models
produce top-ranked queries with disallowed relations; in
all settings, detection rates (gray) are consistently poor,
that is models fail to verify relations are allowed or not.

mance for MASSIVE+, where AMR performance
was observed to decrease, evidence that LLMs have
more knowledge of SPARQL than AMR structures.

SPARQL relation hallucination rates (Re-
search question 2). In Table 8, we examine if:
(1) models hallucinate SPARQL relations when we
remove some relations from an allowed list, and
(2) models also can detect cases of generated rela-
tions not being allowed (i.e. hallucinations). In a
nutshell, results confirm all models often halluci-
nate relations and yet fail at detection consistently.

Specifically, we find that under normal, non-
perturbed conditions across languages (odd rows
of Table 8), GPT-3.5 exhibits hallucination rates
between 16-22%, which GPT-4 reduces to 0-6%.
When we disallow a relation likely to be needed
in the query (rows where Perturb=Yes), hallucina-
tion rates increase considerably: for GPT-3.5 to
between 40-60%, and for GPT-4 between 42-54%.

Hallucination detection, non-joint model.
With 2-shot SPARQL query parsing, models show

Model  Oracle #Perturb | Halluc. | |Detects 1
GPT-3.5 no 60/120 0.58 0.07
GPT-4 no 60/120 0.39 0.17
GPT-4 yes 150/240 | 0.31 0.76

Table 9: Results of joint AMR-SPARQL detection
with in-context learning (8-shot, GPTs), targeting 140
SPARQL relations and 8 languages. Hallucination oc-
curs in at least 1 in 3 cases, and hallucination detection
is not effective, except with an oracle (last row).

poor rates of hallucination detection (Table 8), with
GPT-4 detecting no more than 14% of all halluci-
nations. In a vast majority of cases (86-100%, gray
column), models are deceptive, incorrectly report-
ing that disallowed relations are allowed (Ex. 2
in Appendix E), providing us with justification to
test if we can do better with a joint AMR-SPARQL
model.

Hallucination detection, in-context joint
model (Research question 3). Overall, in-context
learning for hallucination detection is quite chal-
lenging. With oracle knowledge of which relation
has been disallowed (Table 9), GPT-4 still misre-
ports 24% of cases.

Nevertheless, we find evidence that GPT-4 with
an oracle employs dual hallucination detection
strategies in some cases: for 1 in 5 hallucinations,
the model ranks AMRs higher, and, for 3 of 5, it
parses queries with disallowed relations which it
accurately verifies as non-existent.

Without an oracle, the rate of deception (i.e. not
detecting a hallucinated relation) exceeds 80% in
both cases tested, which proved challenging to over-
come despite multiple prompt variations, including
promised rewards for sticking to allowed relations,
veiled (and unveiled) threats, repeated warnings,
and legalese which bound the model to abide by
restrictions, tactics the models consistently disre-
garded, suggesting space for future research into
LLM confidence measures for QA as well as struc-
tural integrity metrics for a semantic critic.

Considering cases of ambiguous utterances
(hard hallucination detection), GPT-4 mostly fol-
lows the rules (e.g., perhaps parsing ‘creator’ when
disallowed for ‘who created iron man’ but verify-
ing correctly the relation is fallacious). However, it
is difficult in many cases to qualitatively determine
query plausibility for various other relations parsed,
as the correctness of any of a large range of queries
that models actually produce depends on the target
knowledge base, left implicit in our experiments.



Langs. Data | Topl  Top5  Tokenl
= EN QALD9 0.50x 0.68 v 0.83V
% MASSIVE-AMR | 0.58 0.62 0.80
& Non-EN  QALD9 0.53x  055x 074V
% MASSIVE-AMR | 0.54 0.54 0.70
o EN QALD9 0.82v 095x 0.90 ~
2 MASSIVE-AMR | 0.76 095  0.88
§ Non-EN QALD9 0.78x 095x 0.82x
= MASSIVE-AMR | 0.88 0.98 0.95
Table 10: The proportion of cases models pre-

fer SPARQL over AMR structures for QALD9 and
MASSIVE-AMR, comparing fine-tuned GPT2-x1p 7y,
(top) and Llama-13B (bottom) with English (EN) and
non-English data. The hypothesis in each case is that
models will prefer SPARQL for QALD9, with a (v') in-
dicating evidence in support. Results from preliminary
studies are overall inconclusive.

Hallucination detection, fine-tuned joint mod-
els (Research question 4). Results of fine-tuned
models are inconclusive (Table 10). With GPT-2-
XLgistin» preference between SPARQL vs AMR is
mostly 50-50, with variation only observed with
first token transition scores. LLaMa, in contrast,
shows bias towards SPARQL under every condi-
tion (between 75-95%), and only in one setting
(top-1) favoring SPARQL consistently for QALD9.
Qualitative analysis shows LLaMa prefers AMR
for incomplete utterances such as ‘describe’ and
‘calculate this’, yet it often misclassifies currency
conversion utterances as having valid SPARQL.8

With our fine-tuned models, we examined an
N-best space from multiple perspectives (top-1 pre-
diction, majority, transition scores). We speculate
that the proportion of AMRs versus SPARQL in
fine-tuning likely has an effect: in our experiments,
we include more AMRs than SPARQL (Appendix
B), suggesting a study with varied proportions of
training data is warranted as well as training with
more data (we used <6k examples in fine-tuning).

6 Conclusion

We present MASSIVE-AMR, the largest and most
diverse dataset of multilingual questions paired
with Abstract Meaning Representation (AMR)
graphs, which we publicly release for research pur-
poses. We discuss the origins of the data, and de-
tail the processes of dataset creation, curation, and
quality control.

*In principle, currency conversion values could be stored
in a knowledge base, but in practice knowledge bases are not
updated in real-time.

To examine the utility of our dataset in controlled
experimentation using large language models, we
first consider the task of structure parsing, show-
ing results for both AMR graph and SPARQL query
parsing across languages. Overall, performance
for AMR parsing with in-context learning is less
effective compared with reported state-of-the-art
using fine-tuning; still, qualitative assessment of
produced structures reveals many coherent, correct
graphs despite low similarity with a ground truth.
In comparison, SPARQL parsing performance is
high across languages, at least in small studies us-
ing the QALD9-AMR dataset.

One motivating factor behind the creation of
MASSIVE-AMR was to be able to test the utility
of AMRs for knowledge base question answering
(KBQA), specifically ascertaining whether AMRs
can help detect incongruous SPARQL queries,
essentially serving as a proxy confidence measure
for the correctness of an answer suggested by a
QA system. In these experiments, we first con-
firm that the GPT models do indeed hallucinate
semantic relations, and then discover that ‘easy’
hallucination detection—asking a model to verify
relations are allowed—is actually quite challeng-
ing, even for GPT-4. Further, ‘hard’ hallucination
detection—the identification of utterances that are
likely ambiguous—is also challenging, with a joint
AMR-SPARQL model only detecting 1 in 5 cases.

Beyond the AMR-for-KBQA investigations we
performed in this work, we hope that the release of
MASSIVE-AMR will support additional research
into using structured meaning representations for
multilingual QA and model interpretability.
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8 Ethical Considerations

Informed Consent: We ensured that all individuals
providing annotations were fully informed about
the purpose of the annotation task, how their data
will be used, and what rights they have in relation
to their data.

Fair Compensation: We ensured that individ-
uals providing annotations were fairly compen-
sated for their time and effort. For this project,
professional annotators were compensated at least
$30/hour, working between 20-80 hours each for
the duration of data collection.

Transparency: We were transparent about the
purpose and scope of the annotation task, as well
as the potential benefits of the project, helping to
build trust with individuals providing annotations
and ensuring that they understood the significance
of their contributions. We intend that through these
practices data annotation efforts are overall more
effective, resulting in a higher quality resource.

Environmental impact: We considered the en-
vironmental impact of the research, including the
energy consumption of computing resources used.
With GPT-4 inference, we limited input to 100s of
examples to reduce costs. In-house fine-tuning was
done using parameter efficient fine-tuning meth-
ods, allowing each experiment to be done on 1-2
NVIDIA Quadro RTX 8000 GPUs in <24 hours.

9 Limitations

1. Our work involved research into multilin-
gual SPARQL and AMR parsing; though our
dataset includes 52 languages, we report re-
sults on no more than 10-12 of these. Many of
the languages we included are Indo-European,
with only a few exceptions (Korean, Japanese,
Ambharic, Vietnamese).

No experiments in joint AMR-SPARQL pars-
ing involved hypotheses about performance
across languages, though some evidence of
performance shifts has been observed.

Fine-tuning models was done with less than
6k AMRs and 3-4k SPARQL training exam-
ples. Test data was limited to 100s examples
per language in order to allow for multiple it-
erations and explore hyperparameter settings.
Increasing the sizes of training and test sets is
left for future work.

10

4. Testing was limited to four large language
models in this work (GPT—Z-XLdiSﬁH, GPT-
3.5, GPT-4, LLaMa). LLaMa does include
multilingual data in training (Touvron et al.,
2023), particularly languages using Latin and
Cyrillic scripts. We did not test models explic-
itly trained for multilingual purposes and for
other scripts, leaving such work for the future.

5. The MASSIVE-AMR dataset matches mul-

tilingual utterances to unique AMR graphs,
making it the largest such dataset to date.
However, unlike QALD9-AMR (Lee et al.,
2022), MASSIVE-AMR does not include
gold SPARQL queries. We emphasize that the
use case we explore in this paper is only one
of many possible, and we hope future research
explores beyond this single application.
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11 Appendices

A Characterizing Massive-AMR

A.1 AMR Top Nodes Across Datasets

AMR3.0 # ‘QALD9-AMR # ‘MASSIVE-AMR #

and 7k give-01 76 rate-01 105
say-01 3k have-03 50 define-01 103
contrast-01 3k have-degree 27 tell-01 94
multi-sentence 1.7k have-org-role 21 have-quant 87
possible-01 1.7k be-located-at 15 equal-01 86
cause-01 1.6k die-01 14 price-01 70
state-01 1.5k write-01 14 describe-01 66
have-concession 944 bear-02 13 be-located-at 64
think-01 901 marry-01 13 person 58
person 705 show-01 12 mean-01 50
have-03 618 locate-01 10 have-degree 50
have-condition 605 have-rel-role 10 bear-02 46
date-entity 538 person 9 have-org-role 32
know-01 451 name-01 9 show-01 21
have-degree 440 list-01 8 find-01 21

Table 11: 15 most frequent top AMR nodes in AMR
3.0, QALD9-AMR and MASSIVE-AMR, with counts
for a single language (English).

A.2 Describing the MASSIVE Long Tail
We note long-tail characteristics of utterances in
MASSIVE (FitzGerald et al., 2023).

* Outliers in terms of utterance length: some

1-2 tokens, others quite long (40+ tokens)

* Ambiguous referents (‘chase’ in ‘is chase do-
ing good’ could be a bank, person, or activity)

* Incomplete arithmetic (‘tell me what equals
two three’)

* Less frequent expressions (‘who is the better
half of obama’)

* Incomplete questions (‘synonym for word’,
‘is equal to’, ‘research someone’)

14

B Model Details

For experiments in joint AMR-SPARQL halluci-
nation and hallucination detection, we tested both
fine-tuned models (Table 12) and in-context learn-

ing (Table 13).

Element | Detail
Train set (QALD9/MASSIVE-AMR) | 6000/2000
Train set (SPARQL/AMR) 3000/5000
20 Train set (langs) 1300 each, 6 1gs
g Test set (QALD9/MASSIVE-AMR) | 700/500
3 Test set (langs) 200 each, 6 1gs
S Block size (GPT-2/L1aMa) 512/2048
& Number epochs 8-16
Learning rate 3¢’
Optimizer AdamW
Number beams 20
§ Beam size 5
® Number beam groups 10
“E Diversity penalty 1.0
= Minimum length 8
Maximum length 256

Table 12: Details about training and test splits (top),
with model parameters for fine-tuning GPT-2-XL g;sin1
and LlaMa using Hugging Face transformers and PEFT.

Element | Detail
Number in-context exs. 8-12
Number tokens in prompt 2400

In-context langs.

Test set (QALD9/MASSIVE-AMR)
Test set (langs)

Temperature

English, Spanish
150/150

20-40 each, 10 1gs
1.0

Table 13: Details about in-context learning (GPT-3.5

and GPT-4-0613).



C Example prompts

C.1 SPARQL Parsing (Research question 1b)

{["messages": [
{
"role": "system",
"content": "You are SPARQL-Predictor -GPT, a language model that predicts
one SPARQL query for a given question."

}.
{
"role": "system",
"content": "This is important! All relations in the predicted SPARQL query must be in
the allowed_relation_list: ['abbreviation', 'accessioneudate ', ... 'leadername ']."
}.
{
"role": "system",
"content": "Make a list of all the relations in the predicted SPARQL query.
Verify that all relations are in allowed_relation_list ,
reporting True or False for each relation."
}.
{
"role": "system",
"content": "Return the prediction in JSON form:
{'sparql_query ': str, 'relations ': list(), 'verification ': list()}"
}.
{
"role": "user",
"content": "where did abraham lincoln die"
}.
{
"role": "assistant",
"content": "{'sparql_query ': 'PREFIX dbo: <http ://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE
{ res:Abraham_Lincoln dbo:deathPlace ?uri. }',
'relations ': ['deathplace '],
'verification ': [True] }"
}.
{
"role": "user",
"content": "give me all cosmonauts."
}

1,
"gold_sparql": "SELECT DISTINCT ?uri WHERE
{ ?2uri a <http://dbpedia.org/ontology/Astronaut>
{ ?uri <http ://dbpedia.org/ontology/nationality > <http ://dbpedia.org/resource/Russia> }
UNION
{ ?uri <http://dbpedia.org/ontology/nationality >
<http ://dbpedia.org/resource/Soviet_Union> } }",
"perturbed": 1,

"rel_excluded": "nationality ",
"question": "give me all cosmonauts.",
"completion": "{'sparql_query ': 'PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http ://www.w3.0rg/1999/02/22 —rdf —syntax —ns#>
SELECT DISTINCT ?cosmonaut WHERE
{ ?cosmonaut rdf:type dbo:Astronaut. }',
'relations ': ['type'],
'verification ': [True] }",
"label": "qald9",
"hallucination": 0,
"hallucination —detection": 0,
"sparql_executable": 1,

"sparql_result": 1, "sparql_malformed": 0}

Figure 2: Example prompt for SPARQL parsing with generation completion and associated features. Our controlled
setting for hallucination detection is then reduced to verifying all relations in a parsed query are in the given list,
verification the model outputs along with the parsed SPARQL_QUERY. For considerations of space, we show only 3
(of 140) relations, the ALLOWED_RELATION_LIST (second system message in prompt).
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D Parsed AMR Examples (GPT-4, 8-shot learning) with Error Analysis

Ex. 1 (QALD9Y, Spanish): cudnto pesa el satélite mds ligero de jupiter (English: ‘how much does jupiter’s
lightest moon weigh’)

Reference Generated
(h2 / heavy
:quant (a / amr-unknown)
:domain (m / moon
:ARG1-of (h / have-degree-91
:ARG2 (1 / light-06
:ARG1 m)
:ARG3 (m2 / most)
:ARG5 (m3 / moon
:poss (p / planet
:name (n / name
:opl "Jupiter”))))))

Ex. 2 (QALDY, French): combien de théories albert einstein a-t-il produit (English: ‘how many theories
did albert einstein come up with’)

(p / pesar-01
:ARG1 (s / satellite
:degree (m / more
:quant (1 / light))
:location-of (j / planet
:name (n / name
:op1 "Japiter”))))

F1: 0.3
Error: missing amr-unknown; non-English frame

Reference Generated
(p / produce-01
:ARGO (p2 / person
:name (n / name
:op1 "Albert”
:op2 "Einstein"))
:ARGT (t / theory
:quant (c / count-01
:op1 (a / amr-unknown))))

(c / come-up-11
:ARGO (p / person
:name (n / name
:op1 "Albert”
:op2 "Einstein”))
:ARG1 (t / theory
:quant (a / amr-unknown)))

F1: 0.77
Diff: English come-up-11 vs French produce-01
Note: Better semantic similarity metric needed

Ex. 3 (Massive, English): what is the worlds record for the longest head of hair

Generated
Reference
(r / record-01
(h / have-degree-91 :mod (w / world)
:ARG1 (h2 / hair :topic (1 / long-@2
:part-of (h3 / head) :degree (m / most)
:mod (a / amr-unknown)) :ARGT (h / hair-01
:ARG2 (1 / long-03 :part-of (p / person))
:ARG1 h2) :duration (a / amr-unknown)))
:ARG3 (m / most)
:ARG5 (w2 / world) F1: .38
:ARG1-of (r / record-01)) Error: invents hair-o1
Semantics of amr-unknown as 'duration'’
Good: 'longest head of hair' = 'longest hair'

Errors in AMR parsing include:
* Lack of AMR token for questions ‘amr-unknown’ (33/100 examples, see Ex. 1); We note 6 of 8
examples in the prompt model this (2 of 8 are imperatives);
* 3/100 parses filtered by Smatch (missing parenthesis or nodes with duplicate variable name);
* Frequent errors with AMR -91 frames (Exs. 1 & 3), e.g., rate-entity-91, have-degree-91;
e 21 of 100 examples have F1<0.5 (Ex. 3); of these, 5 are QALD9 and 16 are MASSIVE-AMR

* Arithmetic problems are correct but do not follow canonical form, though we note there are
no math examples in prompts; this suggests more than one reference graph would be helpful for
evaluation.
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E Results of SPARQL Parsing

Example 1: Massive— (Italian), Perturbed=False,
Question: quanti anni ha giorgia (English: “how
Completion: {'generated_sparql_query ':

'PREFIX dbo: <http ://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
SELECT (YEAR(NOW()) - YEAR(?birthDate)) AS

{ res:Giorgia dbo:birthdate ?birthDate.
'relations ': ['birthdate '],
'verification ': [True]}
Example 2: Massive+ (Hungarian), Perturbed=True,

Relation excluded: ['birthdate ']

Question: milyen idos toth vera (English:
Completion: {'generated_sparql_query ':
'PREFIX dbo: <http ://dbpedia.org/ontology/>
PREFIX res: <http ://dbpedia.org/resource/>
SELECT (YEAR(NOW())
{ res:Toth_Vera dbo:birthDate ?birthdate
'relations ' ['birthDate '],
'verification ': [True]}

Example 3: Massive+ (Japanese), Perturbed=True,

Relation excluded: ['birthdate ']

Question: JEMEMDOHEH WD (English: “how old

Completion: {'generated_sparql_query ':
'PREFIX dbo: <http ://dbpedia.org/ontology/>
PREFIX res: <http ://dbpedia.org/resource/>
SELECT DISTINCT ?date WHERE
{ res:Atsuro_Watabe dbo:birthDate ?date.
'relations ': ['birthDate '],
'verification ': [False]}

Example 4: Massive— (English), Perturbed=True,

Relation excluded: ['creator ']

Question: who created

the comic captain america?
{'generated_sparql_query ':
'"PREFIX dbo: <http ://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE
{ res:Captain_America dbo:foundedby
'relations ': ['foundedby '],
"verification ': [True]}

“how old

Hallucination=??,

2uri .

Hallucination=False , Detection=False, Difficult=False

old is giorgia

)

?age WHERE
[

Hallucination=True, Detection=False, Difficult=False

is toth vera')

— YEAR(?birthdate )) WHERE

D

Hallucination=True, Detection=True, Difficult=False

is atsuro watabe ')

Detection=False , Difficult=True

|

Figure 3: Examples of SPARQL parsing using GPT-3.5 showing hallucinations and hallucination detection.
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Abstract

For decades, psychologists have been study-
ing stereotypes using specially-designed rat-
ing scales to capture people’s beliefs and opin-
ions about different social groups. Now, using
NLP tools on extensive collections of text, we
have the opportunity to study stereotypes “in
the wild” and on a large scale. However, are
we truly capturing the same information? In
this paper we compare measurements along six
psychologically-motivated, stereotype-relevant
dimensions (Sociability, Morality, Ability, As-
sertiveness, Beliefs, and Status) for 10 groups,
defined by occupation. We compute these mea-
surements on stereotypical English sentences
written by crowd-workers, stereotypical sen-
tences generated by ChatGPT, and more gen-
eral data collected from social media, and con-
trast the findings with traditional, survey-based
results, as well as a spontaneous word-list gen-
eration task. We find that while the correlation
with the traditional scales varies across dimen-
sions, the free-text data can be used to specify
the particular traits associated with each group,
and provide context for numerical survey data.

1 Introduction

There is growing interest in the possibility of using
NLP and large corpora to augment, complement,
or even replace traditional psychological surveys to
collect social sciences data (Goldstone and Lupyan,
2016; Argyle et al., 2022; Jackson et al., 2022;
Dillion et al., 2023). One area where NLP research
has started to contribute is in the study and analysis
of stereotypes.

Stereotypes are “a set of cognitive generaliza-
tions (e.g., beliefs, expectations) about the qualities
and characteristics of the members of a group or
social category” (VandenBos, 2007). There are a
number of properties of stereotypes that motivate
the use of NLP tools to better study and under-
stand them. First, stereotypes are often commu-
nicated and perpetuated through natural language
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(Beukeboom and Burgers, 2019). Second, they
are by definition widely-held and pervasive, and
so should be detectable in large samples of data
(Garg et al., 2018). Third, they can lead to far-
reaching negative consequences, and so there is
practical interest in understanding how stereotypes
are expressed “in the wild” in order to develop
effective counter-strategies (Fraser et al., 2021).
NLP researchers have begun to study methods of
uncovering stereotype information in Twitter data
(Marzouki et al., 2020; Fokkens et al., 2018), news
texts and books (Garg et al., 2018), spoken con-
versations (Charlesworth et al., 2021), and large
language models (Cao et al., 2022).

However, the question remains whether the in-
formation we can extract from these natural lan-
guage datasets can actually replicate the informa-
tion obtained from more traditional methods in so-
cial psychology; namely, rating scales. A common
paradigm in stereotype research involves choos-
ing a set of attributes, or dimensions, of interest,
and then asking human participants (often college
undergraduates) to rate social groups along those
dimensions. The dimensions of interest vary ac-
cording to different theoretical models, but can
include, for example, warmth and competence in
the Stereotype Content Model (Fiske et al., 2007),
or agency, beliefs, and communion in the ABC
Model (Koch et al., 2016). The social groups may
be categorized based on gender, race, age, or any
other social variable relevant to the research. As a
result, for each social group, the researchers obtain
annotations along each dimension.

In this work, we investigate the possibility of
reproducing the results of such a scale-based study,
using low-dimensional vector representations of
natural language data to estimate the dimensions
of interest. We consider six psychologically-
motivated dimensions — Sociability, Morality, Abil-

ity, Assertiveness, Status, and Beliefs' — and a set

'See Appendix A for detailed definitions of each dimen-
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of ten groups defined by occupation. We conduct
a detailed comparison of the kind of stereotype
data we obtained through (1) direct stereotype elic-
itation from crowd-workers, (2) direct stereotype
elicitation from a generative large language model,
and (3) targeted data collection from Twitter (now
known as ‘X’). We compare these sources of infor-
mation to two paradigms in the psychology liter-
ature: the traditional method using rating scales,
as mentioned above, and a newer method involv-
ing spontaneous word list elicitation. We consider
three research questions in the current study:

1. Can we reproduce the numerical, scale-based

results from the social psychology literature
through analysis of natural language? We
explore this question using three different
sources of text: crowd-workers, social media,
and ChatGPT, and by transforming the data to
a 6-dimensional representation such that each
dimension corresponds to a scale measure.
Are all of the six aforementioned dimensions
spontaneously mentioned in the free text, or
are certain dimensions more frequently dis-
cussed than others?
Are there certain types of information which
are available only from the ratings scales, or
only in the natural language data? Or can we
treat them equivalently?

Our findings suggest that particular dimensions
can be estimated more reliably than others, with
Morality and Status measurements being highly
correlated with the traditional scales on all of the
text datasets. The dimensions of Assertiveness and
Beliefs were less accurately estimated; statements
relevant to these dimensions were also less frequent
in the data. However, the natural language texts
were found to contain additional types of informa-
tion not available in the scale-based dataset, adding
detail and specificity to the stereotype descriptions.

2 Background

2.1 Psychological Models of Stereotypes

Stereotyping is an extensive area of research in
social psychology. Numerous models have been
developed to explain the underlying dimensions
of social cognition, including stereotyping (Fiske
etal.,2007; Koch et al., 2016; Abele and Wojciszke,
2007). Regardless of the specific dimensions in
question, the measurements have almost always

sion.
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been collected using scales or checklists (i.e., a
forced-choice paradigm).

One recent study has questioned whether the ex-
clusive use of forced-choice methods has limited,
or even biased, the resulting information about how
different social groups are viewed. Nicolas et al.
(2022) propose a Spontaneous Stereotype Content
Model, arguing that “free-response, open-ended
stereotypes of social groups may best systemati-
cally reveal the complex contents that are spon-
taneously available to perceivers upon encounter-
ing a target.” For a given dimension, the authors
distinguish between direction (e.g., is the group
perceived as friendly or unfriendly), which is mea-
sured directly by the scales and can be inferred
from the open-ended responses, and representa-
tiveness, which measures how strongly a given di-
mension is associated with a group (regardless of
polarity). In an example from Nicolas et al. (2022),
doctors and nurses are both rated as being highly
Warm and Competent on rating scales. However,
when people spontaneously think about doctors
and nurses, they think more about nurses’ Warmth
traits, and more about doctors’ Competence traits.
Such differences cannot be observed using the tra-
ditional, scale-based methods.

Nicolas et al. compare traditional, scaled-based
methods against open-ended responses in the form
of single words, and sets of words. We use their
data as a baseline, and build on this basic premise
by extending the types of open-ended responses to
include full sentence stereotypes (generated either
by humans or ChatGPT), and then further extend-
ing the analysis to the case of Twitter data (which
is not specifically stereotypical in nature, but repre-
sents a large sample of public opinions on various
topics).

2.2 NLP Methods for Analyzing Stereotypes

Numerous NLP methods have been used to extract,
discover, and track stereotype content in naturally-
occurring texts (Marzouki et al., 2020; Fokkens
et al., 2018; Garg et al., 2018; Charlesworth et al.,
2021; Fast et al., 2016). In some cases, stereo-
typing has been labelled as a subcategory of hate
speech or offensive language, including gender
stereotypes (Chiril et al., 2021; Parikh et al., 2019;
Fersini et al., 2018) and stereotypes about immi-
grants (Sanguinetti et al., 2018; Sdnchez-Junquera
et al., 2021). For example, the EVALITA 2020
Hate Speech Detection Task involved a subtask
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Table 1: Summary of some relevant differences between
the various data sources under consideration.

on detecting stereotypes targeting Muslims, Roma,
and immigrants (Sanguinetti et al., 2020). Other
closely-related work has compared stereotypical
biases in large language models with human survey
data (Cao et al., 2022). Our work is most similar
to that of Fraser et al. (2022), which presents a
computational model of Fiske et al.’s Stereotype
Content Model (SCM), using the POLAR frame-
work introduced by Mathew et al. (2020). We make
use of a similar method to define an interpretable,
psychologically-motivated, low-dimensional em-
bedding space.

Other relevant NLP work has examined the verbs
and adjectives which are mostly highly associated
with certain social groups. Dong et al. (2019) col-
lected words describing various social ‘roles’ from
crowd-workers from different cultures, and also
used NLP methods to predict the most likely so-
cial role, given a descriptor. Choenni et al. (2021)
probed the stereotypes present in pretrained lan-
guage models with prompts such as “Why are
[TARGET GROUP] so [MASK]?” and observed
the output attributes.

While similar in spirit to some of these earlier
works, our work differs critically in our goal of
trying to map natural language sentences down
to six numerical dimensions, for direct compar-
ison against the social psychology rating scales.
Furthermore, we compare and contrast these dif-
ferent ways of collecting stereotypical beliefs to
explore the types of information available from
each source.

3 Methods

In the following section, we describe several dif-
ferent sources of survey and natural language data
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in English, namely: psychological rating scales
(Sec 3.1) as well as lists of spontaneously-produced
adjectives, crowd-sourced stereotypes from the
Stereoset dataset (Nadeem et al., 2020), stereotypes
prompted from ChatGPT, and tweets from Twitter
(Sec 3.2). These data sources differ in many rele-
vant aspects, summarized in Table 1. For example,
were the writers of the text asked specifically to
come up with stereotypes, or are they writing on
a more general topic, that may or may not convey
implicit stereotypes? Were the annotators required
to make a judgement on every dimension, or did
they comment only on the dimensions that most
easily came to mind? Was the text generated by
humans or by a language model? And does the
format of the text provide context for the attributes
being assigned, or must they be interpreted in iso-
lation? We will discuss these aspects in relation to
each dataset in the following.

To make a direct comparison across all the
data sources, we first identify the subset of social
groups for which data is available in all the existing
datasets. The majority of this subset consists of
different occupations: Politicians, Teachers, CEOs,
Scientists, Bankers, Accountants, Engineers, Farm-
ers, Lawyers, and Nurses. Thus we consider only
these 10 target groups in the analysis.

Following our discussion of the datasets, in Sec-
tion 3.3 we present the dimensionality-reduction
method we use to reduce the free-text sentences in
the four natural language datasets down to six di-
mensions, so that they can be compared directly to
the 6-dimensional gold standard rating scale data.

3.1 Gold Standard Rating Scales

The gold-standard rating scale values are obtained
from the supplemental materials for Experiment 1
in Nicolas et al. (2022). In that experiment, 400
Amazon Turk workers provided annotations for 43
social groups. Each annotator saw a random sam-
ple of six groups, and for each group provided six
open-ended, free text responses describing “char-
acteristics, traits, or descriptions of the group.” An-
notators were additionally informed that it was not
necessary that they personally believe these charac-
teristics to be true, in order to reduce social desir-
ability bias. Most responses are single adjectives.
After annotators provided their free text re-
sponses, they were asked to provide a rating from
1 through 5 for “how society views the targets”
along various dimensions: Sociability (measured



by two subscales, friendly and sociable), Morality
(trustworthy and honest), Ability (competent and
skilled), Assertiveness (confident and assertive),
Beliefs (traditional and conservative), and Status
(wealthy and high-status).

In our analysis, we combine the two subscales
for each dimension, and normalize the values to lie
between -1 and +1, for better comparison with our
computational models. We average the annotations
for each group over all annotators (on average, 57

per group).

3.2 Alternative Data Sources

Spontaneous Adjectives As the first alternative
data source, we consider the adjectives from Ex-
periment 1, described above (Nicolas et al., 2022).
The sets of adjectives represent an intermediate step
between the rating scales and the spontaneously-
produced sentences in the rest of the data sources.
Additionally, the adjectives were provided by pre-
cisely the same annotators as the scale-based rat-
ings. Thus, the information conveyed by the adjec-
tives likely represents an upper bound for how well
we can reproduce the scale ratings via language.
Since our NLP analysis (described in Section 3.3)
operates on the sentence level, we embed each ad-
jective into a sentence template of the form: These
people are always ADJ.

StereoSet We also consider data from the Stere-
oSet dataset (Nadeem et al., 2020). This dataset
was crowd-sourced on Mechanical Turk. > An-
notators were asked to generate sentences about a
particular group which were (1) stereotypical, (2)
anti-stereotypical, and (3) neutral. In this work, we
use the stereotypical sentences. There are approxi-
mately 55 sentences per target group. These data
differ from the adjective sets in that they consist
of complete sentences, of varying length and com-
plexity. However, they were still generated in an
artificial scenario, with the goal of communicating
stereotype information.

ChatGPT As an additional source of data, we
generate novel sentences using ChatGTP.?> Unlike
the other data sources, this text does not originate
from human authors. However, other researchers
have begun exploring the possibility of using large

The annotators were all located in the USA, and the stereo-
types were validated by an independent set of annotators to
ensure that they represented commonly-held views.

3https ://chat.openai.com/chat, GPT-3.5, September
25 2023 version
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language models as potential sources of informa-
tion for studying bias and stereotypes (Cao et al.,
2022), or even as replacements for human partici-
pants in psychological studies (Argyle et al., 2022;
Dillion et al., 2023).

We consider three prompts to ChatGPT: (1)
What are some adjectives people in North
America use to describe GROUP? This prompt
attempts to directly replicate the open-response por-
tion of Experiment 1 from Nicolas et al. (2) In
North America, what are some commonly
held stereotypes about GROUP? This prompt
attempts to directly elicit stereotypes about vari-
ous groups. (3) What are some beliefs that
many North Americans hold about GROUP? Af-
ter observing that many of the generations for the
previous prompt focused on negative beliefs about
groups, we added this prompt to elicit more neu-
tral/positive characteristics. We re-run each prompt
three times for each group, with the default temper-
ature. Each response from ChatGPT contains a list
of characteristics, each taken as a separate obser-
vation, resulting in an average of 81 sentences for
each group.

Twitter Finally, we consider Twitter as a poten-
tial source of data about social groups. One signifi-
cant difference between this dataset and the others
is that the writers of the texts were not instructed
to generate stereotypes, but rather had other com-
municative goals in mind. Another factor that may
affect the Twitter data is social desirability bias.
While someone might hold a belief privately, and
even report it on an anonymous survey, it doesn’t
necessarily mean they will state that belief openly
on a public forum. However, our hypothesis is that
if we have a large data sample, the most common
beliefs about different groups should emerge.

We used the Research API* to collect data con-
taining the substring ‘GROUP are’ for the target
groups of interest, from 1 January 2022, to 7 Octo-
ber 2022. We ignored re-tweets, duplicates, tweets
with more than five hashtags, tweets with URLs,
and tweets written by bots (user name or descrip-
tion contains ‘bot’) and other prolific users. This
resulted in a large number of tweets, on average
118,768 per group.

To increase the likelihood of capturing relevant
tweets, we then performed the following filtering
steps: (1) filter by the user ‘location’ field to in-
clude only those tweets from the US and Canada;

*Prior to the introduction of the data paywall.
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(2) parse the sentence and include only those sen-
tences where the target group is not modified by a
quantifier or adjective (Some lawyers are ..., Re-
publican politicians are ...), (3) using the sen-
tence parse, include only those sentences where
are is followed by an adjective (e.g., keep Nurses
are angry, but discard Nurses are going to go on
strike). This last filtering step is based on research
that stereotype-consistent information tends to be
communicated with abstract terms, like adjectives,
while concrete terms like action verbs describe a
particular, contextual behaviour that is not necessar-
ily an essential trait that is present across situations
(Beukeboom and Burgers, 2019). These filtering
steps drastically reduce the amount of data avail-
able (to an average of 2,830 tweets per group), but
with the goal of increasing the relevance.

3.3 POLAR Model

Here, we describe our methodology for embedding
the text sentences into the six-dimensional social
space. For each sentence, we begin by masking the
target group name with the generic phrase these
people. This is to avoid any bias in the sentence
embeddings related to the group name (e.g., we
want Scientists are smart and Nurses are smart to
map to the same point, regardless of any intrin-
sic bias in the embedding model related to scien-
tists and nurses). We represent each input sentence
as a 1024-dimensional RoBERTa sentence embed-
ding, and then reduce the embedding space to the
six dimensions of interest using a variation on the
method described by Fraser et al. (2022). The math-
ematical details are given in Appendix B, but essen-
tially the method is as follows: For each dimension,
collect a set of examples to define each pole of the
axis. Here, since we want to reproduce the scale
ratings of Nicolas et al. (2022), we use the same
adjectives that were presented to the participants
during data collection (e.g., for the dimension So-
ciability, they were shown friendly and sociable, for
Morality they were shown trustworthy and honest,
and so on). To define the negative pole, we used the
direct antonym according to our own judgement
(e.g., unfriendly, unsociable, untrustworthy, and
dishonest). We then inserted those adjectives into
the sentence template These people are always
ADJ, to generate representative stereotypical sen-
tences for the two poles of each dimension.

The positive examples are then averaged to de-
fine the positive direction, and the negative exam-
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ples are averaged to define the negative direction.
The difference between the positive and negative
vectors, for each dimension, is then used to define
a transformation matrix such that sentence embed-
dings in the high-dimensional embedding space
can then be projected onto the interpretable, six-
dimensional space. The dimension score for each
sentence is simply the scalar projection of the sen-
tence onto that dimension, ranging from -1 to 1. For
each group, we then obtain the average dimension
ratings over all sentences in the dataset.

The POLAR model has a small number of pa-
rameters that should be optimized for best perfor-
mance. We validate the model on a hand-crafted
lexicon of adjectives for each dimension (Nicolas
et al., 2021). Our optimized model uses RoBERTa-
NLI embeddings’, Partial Least Squares (Rosipal
and Kriamer, 2005) to initially reduce the embed-
ding dimensionality from 1024 to 30, and achieves
an average accuracy of 95% at correctly predict-
ing whether each word is positively or negatively
associated with the relevant dimension. Further in-
formation about the validation process is available
in Appendix C.

3.4 Word-Counting Baseline

We also consider a word-counting baseline. Al-
though word-counting tends to be less effective in
assessing sentence-level meaning due to negation,
sarcasm, etc. (Fraser et al., 2022), we can use this
as a baseline method in the case of the adjective
lists. Nicolas et al. (2021) provides a set of lexicons
for various psychologically-motivated dimensions,
including the six dimensions studied here. Words
in each lexicon are assigned either a positive (+1)
or negative (-1) value according to their direction.
Thus, the estimated score for each group on a given
dimension is simply the average of all the lexicon
values for the words associated with each group
(ignoring words that are not in the lexicon for that
dimension).

4 Results

4.1 Correlation with Rating Scales

To compare the scores from the text data sources
with the gold-standard scale ratings, we measure
correlation. Because the most important informa-
tion is the relative differences between the groups,

Shttps://huggingface.co/sentence-transformers/
nli-roberta-large
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Figure 1: Spearman rank correlation with the scale-
based measurement, for each dimension and dataset.

rather than absolute values, we compute Spear-
man’s rank correlation. Correlation values for each
dimension and each data source are shown in Fig-
ure 1 (full correlation matrices in Appendix D).
We begin by observing that the adjectives,
elicited at the same time as the scales, are gen-
erally good (though not perfect) at approximating
the scale values, and that our POLAR model is, in
most cases, more effective than the word-counting
approach at associating the adjectives with the scale
values (first and second rows of Figure 1). One ex-
ception to both of these observations occurs in the
case of Assertiveness, where our model achieves a
correlation of only 0.53 with the scale values. As
an example, we examine the data for farmers, the
group ranked lowest on Assertiveness in the scale
data, but second-highest in the adjectives data. The
main underlying cause of the divergence seems
to be that annotators interpreted the “Assertive’
trait rather narrowly, as being pushy or demand-
ing. However, when we look at the adjectives,
many people mentioned words like hard-working
or strong, which are also associated with Assertive-
ness in our model. As a result, farmers are rated
higher than most other groups on this dimension.

’

Moving on to the free-text data sources, we ob-
serve that some dimensions are estimated more
consistently across data sources. Morality in par-
ticular shows very high correlation across all data
sources. Whether someone is judged as friend or
foe, good or bad, has evolutionary significance and
forms the basis of many of our social interactions
(Fiske et al., 2007). Therefore it is not surprising
that many of the data sources mention morality-
related traits (more on this in Sec 4.2) and tend to
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agree on the direction and relative magnitude of
those traits for different groups.

The estimates for Sociability show a somewhat
different pattern, with the ChatGPT achieving a
moderate correlation of 0.56, and Stereoset some-
what lower at 0.43. In the case of the Twitter data
however, the correlation with the scales is actually
negative. There are many possible explanations for
this, stemming from the heterogeneity and diver-
sity of topics in the Twitter dataset. For example,
the scales rate nurses as high-Sociability and ac-
countants as low-Sociability. Many of the tweets
expressing low-Sociability traits in nurses are writ-
ten in the context of the COVID-19 pandemic, such
as Nurses are frustrated and tired or Nurses are
not ok!. Conversely, some of the tweets expressing
high Sociability for other groups are likely sarcas-
tic, e.g. Accountants are super fun haha. In Sec 4.3,
we perform topic modelling to disaggregate the dif-
ferent topics so they can be examined separately.

Considering now Assertiveness and Ability,
sometimes considered two facets of a single dimen-
sion “Competence,” we again observe a divergence
in the results, with Ability estimates being more
highly correlated with the scale ratings for all data
sources except Stereoset. This may be an artifact of
our particular dataset, as the Ability dimension is
particularly relevant in the context of occupations.
We also observe that in the Twitter data, groups
with high Assertiveness on the traditional scales
are often criticized as being ineffectual, e.g. All
politicians are spineless.

For Beliefs, all data sources have only moderate
correlation with the scales. In fact, Nicolas et al.
(2022) found that very few of the spontaneously
produced adjectives (around 5%) carried informa-
tion about the Beliefs dimension. The data gen-
erated by ChatGPT has the best correlation score
of the free-test data sources, specifically labelling
accountants, bankers, and farmers as conservative.

Finally, the Status dimension shows reasonably
high correlation between the scales and the text
data. Again, this may be related to the fact that all
of our target groups are based on occupation: in all
data sources, we observe statements about CEOs
and lawyers being rich, and teachers and nurses
being underpaid.

4.2 Prevalence of Each Dimension

We now analyze how many of the texts in each
dataset are directly relevant to each dimension. Un-
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Figure 2: The proportion of text instances assigned an
absolute value greater than 0.5. for each dimension.

like in the scale-based paradigm, there may be
certain dimensions that simply are not mentioned,
leading to difficulties in generating an accurate es-
timation. This is related to Nicolas et al.’s concept
of representativeness (Section 2), except that we
calculate it over all groups (for the results separated
by group, see Appendix E).

Figure 2 shows the proportion of texts in each
dataset that are assigned an absolute value greater
than (or equal to) 0.5 on each dimension.® As hy-
pothesized in the previous section, many of the
sentences express Ability judgments, as expected
when discussing groups based on occupation. The
Morality dimension is mentioned quite often, con-
sistent with the findings of Nicolas et al. (2022). A
very small proportion of texts are relevant to the
dimension of Beliefs, in all datasets.

However, we note that the trends do look dif-
ferent when considered on a group-by-group basis
(Fig D.1). For example, Morality is mentioned
in a much higher proportion of texts about politi-
cians. Similarly, the Status dimension is described
more frequently in texts about CEOs, bankers, and
lawyers. The Ability dimension is the most preva-
lent dimension when discussing scientists, engi-
neers, and accountants, while for teachers we ob-

The threshold of 0.5 was chosen based on the validation
set data, where it was observed that a score of 0.5 roughly
differentiated the words associated with each dimension from
words associated with other dimensions.
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Group Mor. Soc. Abil. Ass. Bel. Stat.
Politicians  -0.60 0.17 -0.11 0.50 0.08 0.43
Teachers 0.56 0.53 0.46 0.30 0.26 -0.30
CEOs -0.14 0.13 0.50 0.64 0.23 0.73
Scientists 0.48 0.04 0.81 049 -0.19 0.21
Bankers -0.20 0.10 0.40 043 0.39 0.59
Accountants 0.29 0.02 0.59 0.32 0.43 0.22
Engineers 048 0.15 0.86 0.44 0.19 0.49
Farmers 0.60 0.36 0.46 0.23 0.63 -0.43
Lawyers -0.47 -0.09 0.50 0.60 0.20 0.64
Nurses 0.56 0.57 0.69 040 0.23 -0.16

Table 2: Dimension estimates for each group, from the
scale data, with most salient dimensions in boldface.

serve that Ability and Sociability traits are men-
tioned equally often. The Belief dimension is
brought up slightly more in texts about farmers
(often described as being conservative).

4.3 Topic Modeling

As we have seen in Section 4.1, our estimates of
relevant psychological dimensions from text do not
perfectly reproduce those obtained through tradi-
tional survey-based methods. However, the survey-
based methods also have limited interpretability.
For example, Nicolas et al. (2022) found in their
original study that the limited set of dimensions
did not always align well with people’s perceptions
of groups. When annotators were asked, “Which
of the following characteristics fits best what you
meant by [response]?” and given a choice of di-
mensions (Assertive, Friendly, etc.), “No Match”
was actually the most common response. So when
forced to make a choice, the annotators might rate
politicians as being Sociable (because they are
charismatic), but it doesn’t really mean the same
thing as rating nurses as highly Sociable (because
they care deeply about other people). Therefore,
in this section, we propose to use natural language
resources as complementary data to explain and
differentiate between the ratings obtained on the
six-dimensional scales.

Our procedure is as follows: for each group, we
defined the most ‘salient’ dimensions of the group
stereotype as those dimensions with an average
absolute scale-based estimate of 0.5 or greater (cor-
responding to an average response on the original
survey of less than 2/5, or greater than 4/5). These
dimensions are indicated with boldface in Table 2.
We then seek to provide evidence, or further elu-
cidation, of those dimensions by examining the
topics arising in the free-text data sources.

For the topic modelling, we employ BERTopic



(Grootendorst, 2022), which uses the HDBSCAN
clustering algorithm to remove outliers and concen-
trate on the most densely populated areas of the em-
bedding space. This aligns with our understanding
of stereotypes as being widely-held beliefs, rather
than idiosyncratic opinions about a group.

Here, we want to find those topics that help ex-
plain the rating scales. Therefore, we then compute
the centroid of each topic in the sentence embed-
ding space, and then project the centroid down to
the six-dimensional space using the same POLAR
model. This allows us to compare the topics along
the same dimensions as the rating scales.

We do not expect any single topic to be relevant
to all six dimensions simultaneously; rather, we
examine one dimension at a time, focusing on the
most salient dimensions for each group (as defined
above). For a given dimension, we first select all
topics where the centroid projection has the same
sign as the scale-based score. If there are multiple
topics, we rank them according to their centroid
projection along that dimension and keep the top
three topics (i.e., three most positive or most nega-
tive) to analyze. These topics should be the most
relevant to understanding why the group would be
rated as they were along that dimension. Extended
results are given in Appendix F, but we consider
several illustrative cases in Table 3:

Differentiating similar groups One way that the
text data can be useful is to provide information
that differentiates groups that are similarly ranked
along a given dimension. For example, scientists,
CEOs, and nurses all have high Ability as a salient
dimension. However, by examining the text data,
we observe qualitative differences in what aspects
of Ability stereotypically apply to each group (Ta-
ble 3, Examples 1-3).

Increasing specificity of a stereotype In other
cases, even within a particular group, looking at the
text data gives a much more specific interpretation
of the stereotype. In Example 4 in Table 3, we
see that the stereotype of politicians as being low-
Morality has a more precise interpretation: i.e.,
politicians are specifically seen as corrupt.

Different responses to stereotypes In other
cases, even when there is agreement on the rel-
evance of a dimension in the scale-based data, the
text data can reveal different interpretations of that
value. In Example 5 (Table 3), we see that teachers
are rated as high-Morality. The related topic in the
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StereoSet data portrays this as kindness, while the
high-morality topic in the ChatGPT data describes
teachers as strict and concerned with discipline.

Finally, we briefly consider the set of topics not
included in the above analysis; that is, those topics
which are not strongly associated with one of the
salient dimensions. As Nicolas et al. (2022) argue,
not all of our social judgements are captured by the
dimensions typically studied in social psychology.
Aspects of social judgement not directly captured
in the six dimensions used here include appearance,
gender, and ethnicity, among others.

Table 4 shows examples of some common stereo-
types which appear in the text data and are surfaced
by the topic modelling, but are not identified with
a salient dimension in Table 2. In Example 1 we
see the stereotype that nurses are always women,
as well as the associated stereotype of the “sexy
nurse.” In Example 2, in contrast, we see that
scientists are stereotyped as being male. In that
example, as well as in Example 3, we also see the
stereotype that scientists and engineers are “nerdy.”
Nicolas et al. (2022) identified Appearance as one
factor orthogonal to the original scales, and we find
some evidence for a stereotype of bankers as be-
ing sharply dressed (Ex 4). More concerning, the
Stereoset and Twitter data also reveal the offensive
stereotype that all bankers are Jewish (Ex 5).

While we have presented only a handful of ex-
amples, many of the stereotypes in Table 4, which
are not visible in the scale-based data, are arguably
more harmful than those summarized in Table 3.
Thus the information available in the free text re-
sponses provides a valuable and complementary
perspective on how certain groups are stereotyped.

5 Conclusion

We conducted a comparison of stereotypes of 10 oc-
cupational groups across traditional survey-based
data and various text sources. The answers to
our research questions are summarized as follows:
(1) While our computational analysis of the text
data does not perfectly replicate the scale data, cer-
tain dimensions (e.g., Morality and Status) could
be consistently estimated, with correlation values
greater than 0.5 across all text sources. (2) This
finding may be partially attributed to the fact that
not all dimensions are mentioned spontaneously
in the data sources we considered: in particular,
adjectives and statements relating to the Beliefs
dimension were infrequent. (3) Following from



Group Dim. Scales Adjectives

StereoSet

ChatGPT

Twitter

1 Scientists Ability 0.81 thoughtful,

the scientist who devel-

scientists are intelligent
and analytical

CEOs are strategic and
decisive

nurses understand the
physical and emotional

scientists are usually in-
herently sane and intel-
ligent

CEOs are important to a
business

nurses are essential to
effective health care

observant, oped this formula must
careful have been smart

2 CEOs Ability 0.50 savvy, cun- he was ruthless and cun-
ning ning

3 Nurses  Ability 0.69 hard- a nurse has to be sup-
working, portive to do their job
tending, well
caring

4 Politicians Morality -0.60 sneaky, sly, known for being corrupt
lying

5 Teachers Morality 0.56 loyal, pa- she was kind and main-

tient, strict

tained order in class

needs of patients

politicians are corrupt
and dishonest

strict  disciplinarians
who enforced rules

all politicians are cor-
rupt at some level

these people are never
inappropriate, abusive
or violent

Table 3: Example stereotype words and sentences extracted using the topic modelling approach, associated with

highly-salient dimensions in the scale-based data.

Group Adjectives StereoSet ChatGPT Twitter
1 Nurses  female, she had a very short skirt nurses are primarily fe- nurses are the sexiest women alive
women, while changing the iv male
girls

2 Scientists male he was middle aged man and

was socially awkward

3 Engineers awkward, geeks who are not good at

historically, there have
been stereotypes associ-

cause scientists are all male and
lonely

ated with gender

engineers are “nerds” or

engineers are so weird

nerdy, shy social interaction “geeks”
4 Bankers shoes, he wears a crisp suit and bankers are always (none)
suits, well- makes a lot of money wearing suits
dressed
5 Bankers (none) the person was a Jewishman  (none) the left always assumes bankers are

exclusively Jewish

Table 4: Example stereotype words and sentences extracted using the topic modelling approach, which are associated
with traits not easily mapped to the six dimensions previously considered.

this, the scale data do contain important informa-
tion not available in the text data, as participants
are required to make a judgement for each dimen-
sion. However, the natural language data sources
also contain useful information not available in
the scale-based data, distinguishing between differ-
ent groups that were rated similarly along a given
dimension, and increasing the specificity of the
stereotypes. In particular, topic modelling revealed
specific beliefs about groups that were not captured
by the abstract, high-level, numerical responses.
Free text responses were able to distinguish be-
tween different groups that were rated similarly
along a given dimension, and increase the speci-
ficity of the stereotypes.

Deepening our understanding of stereotypes
can help in the development of effective counter-
strategies. The work presented in this paper can
support these goals in a number of ways. For ex-
ample, if we consider the ratings of scientists and
engineers on the scale-based data, it is not entirely
clear what an appropriate counter-example should
be (a scientist with low morality and low ability?).
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However, the natural language data helps surface
the more specifically harmful stereotype that scien-
tists are all male and anti-social. Challenging that
aspect of the stereotype is more likely to be effec-
tive at increasing women’s participation in science.
At the same time, the scale-based data may provide
information that is “hidden” in the social media
data, such as the stereotypical idea that most farm-
ers are religious and politically right-wing. This
type of information, although essential in gaining
a broader understanding of stereotypes, does not
tend to be explicitly stated on social media. We
also observed that the scale-based data, as well as
the ChatGPT data, do not clearly communicate ex-
tremely negative or offensive stereotypes — even
though these should be the highest priority for miti-
gation. Therefore, understanding the strengths and
weaknesses of the information available in differ-
ent datasets can have important real-world impli-
cations. Furthermore, future work could examine
how the data from unconventional sources, such as
social media or ChatGPT, may be used to augment
more traditional sources, such as lexicons.



Limitations

In this study, we focused on English-language re-
sources only. Further, the collected stereotypes
in these resources (survey-based rating scales and
word lists, StereoSet) may only be common in the
North-American culture. Twitter has a biased de-
mographic representation of users, with most users
residing in the U.S. For a fair comparison, we also
constrained the ChatGPT responses to the North-
American context. Future studies should expand
the language and cultural range of stereotype in-
formation, although data unavailability may pose a
significant barrier.

We examined ten social groups based on occu-
pation since they were common in all the consid-
ered data sources. However, stereotypes targeting
groups based on other characteristics, such as gen-
der, ethnicity, or socio-economic status, are also
prevalent in online and offline communications and
may result in severe consequences for the groups
and the society at large. Future work should include
a wide variety of social groups to investigate how
well the results can generalize across the groups.

While social media presents a valuable data
source for studying people’s opinions and track-
ing common beliefs, the sheer volume of these
data requires computational tools to process the
data efficiently. In this study, we applied unsu-
pervised topic modeling, but other unsupervised,
semi-supervised, and supervised techniques should
be explored and evaluated in this context and may
result in different findings. Also, topic modeling
and clustering methods tend to be sensitive to pa-
rameter settings, and re-running the analysis with
different parameters may lead to different results.

Finally, the stereotype information in the dif-
ferent data sources was obtained from different
population samples, each of which introducing its
own sampling bias. Since for most data sources the
information was collected as stereotypical beliefs
common in the society (as opposed to individuals’
beliefs), we expect the effects of sample bias to
be small. Still, this may have contributed to the
observed differences in findings. Complementary
use of several data sources may provide a fuller and
less biased view.

Ethics Statement

While collecting stereotype data is a necessary step
in studying stereotyping, such resources could inad-
vertently propagate harmful beliefs or be misused
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by adversaries to target vulnerable populations. An-
other open issue is how to counter stereotypical
beliefs and mitigate their negative effects. There
is a tension between the right to free speech and
respect for equality and dignity. Rigid prohibitive
mechanisms (e.g., banning any stereotype informa-
tion from public view) would likely be ineffective.
Counter-strategies should work towards weakening
stereotypical associations and emphasize the fact
that individuals do not neatly fit in boxes prescribed
by their demographic characteristics.
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A Stereotype Dimensions

We consider the same 6 psychological dimensions
of stereotyping as Nicolas et al. (2022), to enable
comparison against the ratings of the annotators
in that study. These dimensions are: Sociability,
Morality, Ability, Assertiveness, Status, and Beliefs.
The dimensions are based on previous theories in
the social psychology literature. Fiske et al. (2007)
present the Stereotype Content Model (“SCM”),
which posits that the two primary dimensions of
stereotype content are Warmth and Competence.
Sociability and Morality are two facets of Warmth,
and Ability and Assertiveness are two facets of
Competence. Koch et al. (2016) present a differ-
ent, three-dimensional theory of stereotype content
known as the “ABC Model,” where A = Agency,
B = Beliefs, and C = Communion. While Com-
munion is similar to the concept of Warmth, the
other two dimensions diverge from the SCM, with
Agency being related to socioeconomic Status, and
Beliefs capturing progressive versus conservative
values. To compare the SCM and ABC models,
Nicolas et al. (2022) included all 6 distinct dimen-
sions, as did we in the current work.

In the instructions to annotators, Nicolas et al.
(2022) define the dimensions with adjectives, as
shown in Table A.1. Additional information for
each dimension is as follows:

* Sociability: friendliness, likability; “pertains
to cooperation and to forming connections
with others” (Brambilla et al., 2011)
Morality: fairness, honesty, trustworthiness;
“ being benevolent to people in ways that fa-
cilitate correct and principled relations with
them by the adherence to ethics and important
social values” (Abele et al., 2016)

Ability: capability, intelligence, competence;
relating to the capability to achieve goals (sep-
arately from the motivation to actively pursue
those goals) (Abele et al., 2016)
Assertiveness: ambition, confidence, active-
ness; related to the motivation to achieve goals
(separately from the ability to do so) (Abele
etal., 2016)

Beliefs: measured across a continuum
from progressive/liberal/modern to conser-
vative/traditional; can encompass political
as well as religious beliefs; “conservative-
progressive beliefs are informative of main-
stream society’s views about a group’s inten-
tion to preserve versus change the status quo”
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(Koch et al., 2016)
* Status: related to power, wealth, dominance,
and social standing (Koch et al., 2016)

To give a few examples, society might stereo-
type a CEO as being intelligent (high-Ability),
competitive (high-Assertiveness), right-wing (high-
Beliefs), wealthy (high-Status) while at the same
time uncaring (low-Sociability) and willing to cheat
to get ahead (low-Morality). In contrast, an Asian
high-schooler might be stereotyped as very smart
(high-Ability) and honest (high-Morality), but pas-
sive (low-Assertiveness) and shy (low-Sociability).
Some dimensions are more salient for certain social
groups, as described in Appendix E below.

B POLAR Model

The following method is adapted from the POLAR
framework introduced by Mathew et al. (2020).

Suppose we want to transform from the orig-
inal sentence embedding space E, |E| = D, to
the reduced embedding space E', |E'| = D', with
D' < D.

In general, for each dimension d €
{1,2,..., D'}, we define the set of Ny, sentences
associated with the positive pole of that dimension
as Py = {ph . p3,, ...,p?j*}, and a set of Ny_
sentences associated with the negative pole of
that dimension as P;— = {p} ,p?_, ...,pﬁl\ff‘}.
We obtain the POLAR directional vector for that
dimension as follows:

. | Nar | N
dirg = —— Vi —— V. i @)

where V; represents the vector representation of
the sentence s in the embedding space E.

The set of POLAR direction vectors are then
stacked to form dir € RP*P which represents
the change of basis matrix for the new reduced-
dimensional embedding subspace E’. In the new
subspace, a sentence s is represented by V', which
is calculated using the following linear transforma-
tion:

vV, = (dir?) 71V, (2)

Each dimension in ' can now be interpreted in

. -

terms of the polar opposites used to define diry,
- -
dirg, ... dirpr.

Here, we transform from a high-dimensional

RoBERTa sentence embedding space (D = 1024),



Dimension Positive

Negative

Sociability friendly, sociable
Morality trustworthy, honest
Ability competent, skilled
Assertiveness confident, assertive
Beliefs conservative, traditional
Status high-status, wealthy

unfriendly, antisocial
untrustworthy, dishonest
incompetent, unskilled
meek, submissive
liberal, modern
low-status, poor

Table A.1: Adjectives used to define the poles of each dimension. Each adjective was embedded in the sentence

template These people are always <ADJ>.

to a six-dimensional space, interpretable in terms of
six psychologically-defined dimensions (D' = 6).

To define our six-dimensional model, we use 12
sets of seed words, each set containing two adjec-
tives (Ng+ Ny_ = 2ford = 1,2,3,4,5,6).
The adjectives representing the positive poles of
each dimension are taken from Nicolas et al. (2022).
They are the same adjectives that the annotators
saw when filling out the rating scales. For the set
of adjectives defining the negative poles, we use
the direct antonyms of the positive adjectives. See
Table A.1 for the full set of adjectives used. Since
we want a model that operates on the sentence
level, each adjective is inserted in the sentence tem-
plate These people are always <ADJ>. The
sentences are then represented as sentence vectors
using the 1024-dimensional RoOBERTa embedding
model, and the change of basis matrix is calculated
according to the above.

C Validation Experiments

As a preliminary step to confirm that the POLAR
model is capturing the expected information and to
select the best parameters, we run a series of small
experiments. Briefly, we use lexicons available
from Nicolas et al. (2021) to create a validation set
of words that should be associated with each dimen-
sion. These lexicons were created by hand, based
on the existing literature in social psychology.

We then experiment with various parameters re-
lating to the dimensionality reduction. Following
Fraser et al. (2022), we consider the options:

* No dimensionality reduction

* Principal Components Analysis (Gewers et al.,
2021), optimizing the number of dimensions
between 10-100

* Partial Least Squares (Rosipal and Kriamer,
2005), optimizing the number of dimensions
between 10-100

We considered two evaluation criteria: (1) High
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accuracy (percentage of times a word was correctly
associated with either the positive or negative di-
rection of the salient dimension), (2) Low correla-
tion between dimensions (while we expect some
correlation between the dimensions, the POLAR
model should represent them as separate, distinct
concepts). Fortunately, the setting with the highest
accuracy also resulted in the lowest correlation, and
so in what follows we use the model with Partial
Least Squares applied to reduce the embedding size
to 30. This led to an average accuracy of 95% on
the validation set, and a mean absolute correlation
between the dimensions of 0.13.

We did not optimize the choice of word embed-
dings, as extensive exploration was previously doc-
umented by Fraser et al. (2022), and we use the
RoBERTa-NLI embeddings’ that they found to be
optimal across multiple functional test cases.

D Correlations between Datasets

Figure C.1 shows the full correlation matrices for
each dimension. In general, no unexpected patterns
emerge. The two methods of processing the adjec-
tives (our computational method and simple word-
counting) tend to be correlated with each other, and
the filtered and unfiltered Twitter datasets tend to
be correlated with each other. Stereoset and Chat-
GPT (i.e., human and machine-generated stereo-
type sentences) are highly correlated (p > 0.5)
for all dimensions except for Ability. The correla-
tions between different datasets are almost always
positive, with the notable exception of Sociability
estimates based on Twitter, as discussed in the main
text.

E Representativeness

In contrast to scale-based measures collected us-
ing a forced-choice methodology, when people are

"https://huggingface.co/sentence-transformers/
nli-roberta-large
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Figure C.1: Spearman rank correlations between estimates from each of the data sources, for each dimension.
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generating spontaneous, free-text responses, they
can choose which dimension(s) to focus on for any
given group. This choice provides additional in-
formation about what stereotype dimensions are
seen as being most relevant to each group. Nico-
las et al. (2022) defined this as representativeness:
“the prevalence of a stereotype dimension in per-
ceivers’ spontaneous beliefs about a social group.”
Here, we operationalize this as the proportion of
text samples that are assigned an absolute value
greater than 0.5 along a given dimension.® In the
main text, we computed this proportion over all
groups, and called it prevalence, with the goal of
understanding more generally how many text sam-
ples make strong statements about the different
dimensions. Here, we calculate the proportion per
group, and thus call it representativeness, as it now
captures the information about how representative,
or important, any given dimension is perceived as
being when describing each target group.

The values are shown in Figure D.1. Briefly, we
observe that over 50% of the data in the adjectives
dataset, Stereoset, and ChatGPT make statements
about politicians’ morality. This suggests that when
people think about stereotypes of politicians, one of
the first things they think about is their (im)morality.
From a computational perspective, it also means
our estimates of that dimension are based on a
much larger dataset than our estimates for the other
dimensions.

In contrast, for teachers, we see a more even
distribution across the different dimensions. Still,
dimensions like Assertiveness and Beliefs are more
sparsely represented. CEOs have Morality and
Ability as the most representative dimensions, with
Status also mentioned 10-20% of the time. Scien-
tists, accountants, engineers, farmers, and nurses
all have Ability as the most representative dimen-
sion. For nurses, Sociability traits are also men-
tioned more often than for other groups.

Figure D.1 also shows that some data sources are
more extreme in their representativeness values. In
particular, the adjectives, Stereoset, and ChatGPT
(all of which were collected by explicitly asking for
stereotype information) have more extreme values,
while the Twitter data is more uniformly distributed
across dimensions. This reflects the more general
nature of the Twitter data.

8The threshold of 0.5 was chosen based on the validation
set data, where it was observed that a score of 0.5 roughly
differentiated the words associated with each dimension from
words associated with other dimensions.
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F Topic-Modelling Results

BERTopic is available to install at https://
maartengr.github.io/BERTopic/index.html.
We used v0.13.0. For simplicity, we used the
default parameters as much as possible.

We use the RoBERTa-NLI pre-trained embed-
ding model, as mentioned in Appendix C. For
the vectorizer model, we used the scikit-learn
CountVectorizer method, removing English stop-
words and ignoring terms that appear in less than
1% of the sentences (min_df = ©.01). To ensure
reproducibility, we set random_state = 42 in the
UMAP model. For the HDBSCAN clustering al-
gorithm, we specified the min_samples 1, to
promote less-conservative clustering.’ Since we
don’t know a priori how many topics to expect
for each group, we set nr_topics = ‘auto’. For
all the other parameters, the default settings of the
BERTopic package were used.

G Data Licensing for Existing Datasets

The data associated with Nicolas et al. (2022) is
freely available on the Open Science Framework:
https://osf.io/74rax/. The OSF Terms of Use
permit public data to be used for a wide range of
non-commercial and commercial uses.

The StereoSet data is available here: https://
huggingface.co/datasets/stereoset with Li-
cense CC-BY-SA 4.0.

The Nicolas et al. data was collected with the
intention of studying stereotypes. The StereoSet
dataset was collected for the purpose of measur-
ing stereotypical biases in language models. We
believe our present research is in line with these

purposes.
H ChatGPT Dataset

The CSV file containing the pre-processed text is
available by contacting the authors.

I Twitter Dataset

The Twitter data was collected in November 2022,
under an approved Academic Project on the Twitter
developer portal. This was prior to the removal of
the Research API and the introduction of a pay-
wall in April 2023. Unfortunately, due to Twitter
Terms of Service, we cannot redistribute the Twitter
dataset.

*https://hdbscan.readthedocs.io/en/latest/
parameter_selection.html
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Figure D.1: The proportion of text instances assigned a value greater than 0.5, for each group, dimension, and data
source.
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Abstract

Polysemes are words that can have different
senses depending on the context of utterance:
for instance, ‘newspaper’ can refer to an organi-
zation (as in ‘manage the newspaper’) or to an
object (as in ‘open the newspaper’). Contrary
to a large body of evidence coming from psy-
cholinguistics, polysemy has been traditionally
modelled in NLP by assuming that each sense
should be given a separate representation in a
lexicon (e.g. WordNet). This led to the current
situation, where datasets used to evaluate the
ability of computational models of semantics
miss crucial details about the representation
of polysemes, thus limiting the amount of evi-
dence that can be gained from their use.

In this paper we propose a framework to ap-
proach polysemy as a continuous variation in
psycholinguistic properties of a word in con-
text. This approach accommodates different
sense interpretations, without postulating clear-
cut jumps between senses. First we describe a
publicly available English dataset that we col-
lected, where polysemes in context (verb-noun
phrases) are annotated for their concreteness
and body sensory strength. Then, we evaluate
static and contextualized language models in
their ability to predict the ratings of each pol-
yseme in context, as well as in their ability to
capture the distinction among senses, revealing
and characterizing in an interpretable way the
models’ flaws.

1 Introduction

The meaning of individual words taken in isolation
can look unambiguous. Take for instance the word
book. If encountered on its own, it evokes the im-
age of an object made of sheets of paper bound
together. However, when put in context, such as in
the phrase ‘explain the book’, it clearly does not re-
fer to that same concrete object - rather, it denotes
its immaterial, abstract content. A word like book
is called a polyseme (Falkum and Benito, 2015; Vi-
cente and Falkum, 2017; Haber and Poesio, 2023).
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Polysemes are easily understood when contrasted
with monosemes (words with only one possible
interpretation, like leaf) and homonyms (words
that can that can take two completely unrelated
interpretations, like bat): polysemes can take dif-
ferent interpretations - also called senses - which
are related among them and that follow patterns
that also apply to other words (so-called regular
polysemy; Apresjan, 1974). In the case of book,
for instance, the pattern is an alternation between
a concrete object and an abstract meaning, which
also characterizes other words like newspaper or
painting.

In computational linguistics and Natural Lan-
guage Processing (NLP), a large body of work has
looked at polysemy. Mainly, the aim is that of
finding out to what extent the distinctions between
different senses can be captured by current mod-
els - either with a theoretical focus (Erk and Pado,
2010; Boleda et al., 2012; Del Tredici and Bel,
2015; Lopukhina and Lopukhin, 2016; Gari Soler
and Apidianaki, 2021; Haber and Poesio, 2021; Li
and Armstrong, 2023) or in applied tasks (word
sense disambiguation Navigli, 2009; Bevilacqua
et al., 2021; Loureiro et al., 2021 and induction
Agirre and Soroa, 2007; Manandhar et al., 2010;
Lau et al,, 2012; Eyal et al., 2022). However, as
pointed out in McCarthy et al. (2016); Haber and
Poesio (2023), a fundamental conceptual limitation
has characterized approaches to polysemy in NLP
so far. Namely, they have (almost) exclusively as-
sumed a traditional view of polysemy, the so-called
sense enumeration view (Katz and Fodor, 1963),
which has been shown to afford only limited ex-
planatory power. According to this theory, each
sense of a polysemous word like book should be
given a separate, dedicated representation — like the
meanings of distinct words like leaf and curtain.
This is the way in which knowledge graphs like
WordNet (Miller, 1995) or BabelNet (Navigli and
Ponzetto, 2012), the resources that are most typ-
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ically used as the golden standard for polysemy
in NLP, are structured: for book, we find mul-
tiple entries - e.g. <moun.communication> and
<noun.artifact>. However, this view is challenged
from a large body of work in cognitive psychology
and psycholinguistics. Experimental approaches
have rather proposed the so-called one represen-
tation view of polysemous nouns: different senses
are not assumed not to be represented differently,
but just to be different aspects or facets of the same
semantic representation (among others, Klepous-
niotou, 2002; Rodd et al., 2004; Schumacher, 2013;
see Falkum and Benito, 2015; Haber and Poesio,
2023 for comprehensive reviews).

As a reflection of this theoretical gap, the
datasets typically used for the evaluation of com-
putational models of language at capturing poly-
semy are built according the sense enumeration
view. Lack of diverse evaluation approaches not
only leaves a large amount of potential evidence
untapped, but also obscures important insights that
could emerge by taking a different perspective.

We concur with McCarthy et al. (2016); Haber
and Poesio (2023) that, to investigate in depth the
ability of current computational models of semantic
to capture polysemy, it is necessary to go beyond
the sense enumeration view. To this aim, we pro-
pose to take a hybrid approach. We break down reg-
ularized patterns of polysemy — from the sense enu-
meration view — in terms of psycholinguistic vari-
ables like concreteness — inspired by the one rep-
resentation view. In this framework, the variation
happening when varying the interpretation of book
from <noun.artifact> to <noun.communication>
can be captured by observing that the second is
interpreted as a less concrete entity — which can
be further characterized as a reduction in manip-
ulability (touch) and readability (sight), possibly
accompanied by an increase in its audibility (hear-
ing). We build on previous work showing how hard
distinctions between senses emerge from (and are
contained by) complex representations of words
(Pustejovsky, 1991; Cruse, 1995; Ortega-Andrés
and Vicente, 2019). What we add is an explicit
specification (i.e. in terms of psycholinguistic vari-
ables) of how sense alternations in polysemy take
place. From previous approaches in NLP that rely
on similarities in latent vector spaces (Boleda et al.,
2012; McCarthy et al., 2016; Haber and Poesio,
2021), we retain the notion of using continuous
measures of similarity/distance — i.e. a ‘soft’ ap-
proach to senses: however, while dimensions of
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language are not interpretable from a cognitive
point of view, ours are. Importantly, this frame-
work has been previously successfully applied to
model how the brain processes fine-grained lexical
meaning variations (Bruera et al., 2023). Since our
framework revolves around cognitively motivated
semantic features, it aims at fostering research con-
necting computational and cognitive models of lan-
guage — with the broader goal of allowing to gain
insights on how similar the two are, which is a
fundamental open question in the field (Antonello
and Huth, 2023; Beinborn and Hollenstein, 2023;
Golan et al., 2023; Kanwisher et al., 2023).

Starting from this theoretical approach, in the
current work we present two main contributions.
First, we describe how we created an original
dataset of examples of lexical polysemy. For each
polyseme, the dataset provides ratings provided by
human subjects in terms of concreteness and of
sensory strength (with separate ratings for sight,
hearing, touch, smell, taste) for phrases where the
different senses are evoked. Our dataset is care-
fully crafted by controlling for psycholinguistic
variables, with the aim of allowing its use both for
in silico and cognitive experiments.

Secondly, we evaluate static and contextualized
language models on their ability to predict the rat-
ings provided by humans and to distinguish among
different senses of polysemous words. We hypoth-
esized that contextualized language models would
consistently outperform static language models.
Our results confirm our prediction, but they also
show that there is large room for improvement in
overall accuracy for contextualized language mod-
els too - indicating that polysemy is still a challeng-
ing semantic phenomenon for language models to
capture.

We publish the dataset together with the code'.

2 Data

2.1 Overview of the dataset

We select a set of 25 polysemic nouns admitting
both an abstract and a concrete interpretation. Then,
for each noun we select two verbs that, when com-
bined with the noun in a verb-noun phrase, give rise
to an abstract (e.g. ‘explain the book’, ‘describe
the picture’, ‘know the medicine’) interpretation
and two that evoke a concrete (e.g. ‘open the book’,
‘carry the picture’, ‘swallow the medicine’) read-

1they can be found at this link: https://osf.io/nfcuq/
?view_only=9c7137bc88d543dbaaal7225cbfdef34
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concrete
abstract

"’ concreteness hearing sight smell taste touch

Figure 1: Distribution of concreteness and sensory
strength ratings for the 100 verb-noun polysemic
phrases. Ratings (y axis) are normalized in the range O-
1. As shown by the averages (horizontal coloured lines),
concrete phrases show higher concreteness and stronger
involvement of all types of sensory information.

ing of the noun. This is the process of so-called
‘sense coercion’ (Pustejovsky, 1991; Lauwers and
Willems, 2011) or ‘sense selection’, where verbs
make the interpretation of the noun go towards one
sense or the other (Klepousniotou, 2002). In this
way, phrases are equally divided into two mirrored
sets of abstract and concrete senses.

Finally, we collect a set of psycholinguistic rat-
ings for all of the nouns within each phrase. We
collect ratings for concreteness — the most relevant
cognitive dimension —and for the five body senses,
since sensory strength can better characterize vari-
ation in meaning than simple concreteness (Lynott
et al., 2020).

The main aim of this dataset is to fill a gap in
existing resources that can be used to evaluate NLP
models with respect to polysemy. Our hope is also
to foster further research along these lines, with
a strong focus on cognitive evaluation of compu-
tational models of semantics (Beinborn and Hol-
lenstein, 2023). Therefore, we wanted our stimuli
selection to be valid for further testing involving the
collection of behavioural and brain data. In such
studies, it is fundamental to control for experimen-
tal confounds which are not relevant for NLP mod-
els, but play an important role in human cognition.
Such confounds can be related to non-semantic,
low-level sensory properties of the stimuli (Hauk
and Pulvermiiller, 2004; Laszlo and Federmeier,
2014; Dufau et al., 2015) or, within semantics, to
emotional processing (Kuperman et al., 2014; Hi-
nojosa et al., 2020).

In the following we will describe the stimuli
selection procedure in detail. A visualization of
the distributions of the ratings, directly comparing
abstract and concrete senses, is displayed in Figure
1.
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2.2 Stimuli selection
2.2.1 Nouns

We selected the set of 25 polysemous nouns to be
used among the polysemes annotated in CoreLex
(Buitelaar, 1998). CoreLex is an annotation made
on top of WordNet (Miller, 1995) specifically cre-
ated for polysemy. In CorelLex, a number of pol-
ysemous nouns from WordNet are annotated ac-
cording to their polysemy pattern - e.g. annotating
with the same label all words that behave similarly
to ‘book’. For our purpose, the advantage of the
annotation provided by CoreLex is that it allows to
automatically isolate cases of polysemy where an
alternation of a concrete and an abstract sense is
present (cf. Boleda et al., 2012).

To extract the nouns, we therefore first looked
at the types of nouns present in CorelLex (e.g.
‘art’=‘artifact’ or ‘com’=‘informational content’;
so-called ‘Corelex basic types’). We anno-
tated them according to whether they referred
to ‘concrete’, ‘abstract’ or ‘other’ entities (where
‘art’=‘concrete’, ‘com’=‘abstract’). From this list,
we moved to the list of the polysemy classes
(‘CoreLex classes’), retaining only the classes
where an alternation of an abstract and a concrete
sense was present (e.g. a CoreLex class like ‘cae’,
where both a ‘art’ and a ‘com’ sense are found).
Finally, we chose our candidate nouns by taking
the nouns which were annotated in CoreLex as in-
stances of the selected polysemous classes - like
‘book’, which is a case of the CoreLex class ‘cae’.

In parallel, we computed word (lemma) fre-
quencies for the selected polysemous nouns from
UKWaC (Baroni et al., 2009), a corpus reflecting
general internet language use which has been val-
idated as a corpus for psycholinguistic studies in
previous work (Mandera et al., 2017). Since most
words occurred with very low frequencies in the
corpus, we selected as our candidate polysemes
only the top 10% most frequent nouns . Among
those, we tried to minimize variance in word length,
so as to minimize this possible confounding fac-
tor which has a strong impact on cognitive pro-
cessing (Hauk and Pulvermiiller, 2004) . Given
that word concreteness correlates negatively with
word length (Reilly et al., 2017), we had to strike
a balance, avoiding short (whose majority would
be concrete) and long (overwhelmingly abstract)
words. Therefore, we chose as a criterion to con-
sider nouns between six and nine letters in length.
This left us with 571 candidate polysemous nouns.



2.2.2 Verbs

Having thus reduced the set of polysemous nouns,
we moved on to select the verbs to be used to create
the phrases. We applied a procedure inspired by
recent work on predicting concreteness from distri-
butional semantics models (Bhaskar et al., 2017).
First, we took the 40000 concreteness ratings for
English words from (Brysbaert et al., 2014). Then,
we filtered this list, considering only words whose
most common POS was that of verb. To do so we
used a corpus-based measure of POS prevalence
provided by the same authors (Brysbaert et al.,
2012). Then, to find verbs eliciting the concrete
senses of the polysemes, we took the 1000 most
concrete verbs; for the abstract senses, we took
the 1000 least concrete verbs. We decided, here
again, to reduce the variance in word length for the
verbs. However, we kept a wider variance range
(4-8 letters, extremes included), considering that
we could balance length when choosing the final
phrases. After this selection step, the number of
concrete verbs was 811, and of abstract verbs 571
(incidentally, the same number of nouns retained
from CoreLex).

2.2.3 Verb-noun phrases

Then we looked for the selected verbs’ frequen-
cies of co-occurrence with the polysemous nouns
within the UKWaC corpus. The aim was that of
obtaining a measure of the frequency of occurrence
of each of the potential verb-noun phrases, so as
to balance them for frequency across abstract and
concrete senses. To do so, we exploited the POS
annotation provided by UKWaC. We adapted the
procedure already validated by Bruera et al. (2023)
to extract verb-noun phrase mentions from corpora
to be used with language models. We thus con-
sidered as relevant verb-noun co-occurrences (i.e.
mentions of phrases) only cases where the (lem-
matized) verb preceded the (lemmatized) polyse-
mous noun, within a window of three words to the
right (to be able to consider cases such as “open
an old book”, where the linear distance in words
between the verb and the noun is three). Then, for
each polyseme, we retained the 100 abstract and
100 concrete verbs that co-occurred the most with
it. Finally, we proceeded to manually select the
twenty-five nouns for which we could find clear
cases of sense selection for two verbs and two
nouns, thus obtaining the final set of 100 stimuli.
We adjusted iteratively our choices so the resulting
phrases did not differ statistically across abstract
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and concrete senses along relevant psycholinguis-
tic variables. As statistical tests we used t-tests;
reported p-values are not corrected for multiple
comparisons - corrected p-values would be even
more conservative. All differences among concrete
and abstract phrases are not statistically significant.
Since the nouns were the same in both conditions
(abstract and concrete), for most variables it was
enough to look at the verbs - the main exceptions
being phrase frequency (p = 0.952) and phrase
length (p = 0.79). Regarding verbs, we checked
that no difference in valence (p = 0.298), arousal
(p = 0.103), dominance (p = 0.769) was statis-
tically significant, using the norms provided by
(Warriner et al., 2013). Additionally, difference in
frequency for concrete and abstract verbs is also not
significant (p = 0.0687). By contrast, statistically
significant differences between verbs emerge, as
required by design, in concreteness (p < 0.0001).

2.3 Concreteness and sensory strength ratings

Given the 100 phrases selected following the pro-
cedure reported above, we then collected from 25
human volunteers ratings for concreteness and sen-
sory strength in all of the five body senses. Sen-
sory strength norms capture more precisely what
drives the sense alternation in terms of semantic
variables (e.g. the case of book can be explained in
terms of variation in sight and touch, but no taste
is involved). Participants were recruited among
the communities of the authors’ university depart-
ments, which are located in the same anglophone
country. We did not require participants to be na-
tive speakers of English. Twenty-five (25) subjects,
between 18 and 40 years of age, took part as volun-
teers to the rating experiment after giving their writ-
ten consent. In the rating experiment, subjects were
presented one by one with all of the 100 phrases,
and asked to rate on a Likert scale from 1 to 5 how
concrete the polysemous noun in that context was,
as well as its so called sensory strength (Lynott
et al., 2020). Before starting the experiment, partic-
ipants were provided with an explanation for each
variable, taken from previous rating experiments
(Scott et al., 2019; Lynott et al., 2020) and with an
example.

The distributions of the resulting ratings are re-
ported in Figure 1. As it can be seen, the largest dif-
ference between distributions for concrete/abstract
senses is found for concreteness, sight and touch
(in all cases p < 0.0001), followed by hearing
(p = 0.0163). The difference is also statistically



significant for smell (p = 0.00012) and close to
significance for taste (p = 0.083), however the rat-
ings for the nouns are in both cases always low
(averages after normalization: abstractsmen =
0.12, concretegmen 0.198, abstractyqste
0.088, concreteiqste = 0.128).

We further compute the reliability of the scores
provided by the raters. As a measure of inter-
rater reliability we use the mean intra-class cor-
relation (ICC, Shrout and Fleiss, 1979), which
can take a value between O (random agreement)
and 1 (perfect agreement). This is the recom-
mended choice for cases like ours where multi-
ple raters provide a single non-nominal score for
the same set of items (Hallgren, 2012). We treat
subjects as random effects, thus we report what
is referred to as type 2 ICC, with 25 subjects —
in the terminology of Shrout and Fleiss (1979),
ICC(2,k = 25). When aggregating all types
of scores together (i.e. concreteness and all sen-
sory modalities), /CC' = 0.945, indicating ex-
cellent agreement (the lower threshold for excel-
lence, according to the guidelines of Cicchetti,
1994; Hallgren, 2012, is ICC > 0.75). This
confirms that the measurements contained in our
dataset are reliable. To understand whether reli-
ability is affected by each of the sensory modali-
ties, we further compute the corresponding sepa-
rate ICC scores. We find that reliability is highest
for concreteness (1 C'Cleoneretencss = 0.924), touch
(ICCtouch = 0.913) and sight (I1CCy;gpt = 0.895.
ICCs are slightly lower, but still indicate excel-
lent agreement, for taste /C'Ciqste = 0.87, hear-
ing ({CClearing = 0.82) and smell (/CCypey =
0.789).

3 Models

A fine-grained semantic phenomenon like poly-
semy has proven particularly challenging to capture
for language models. Older approaches (so-called
static language models; Bommasani et al., 2020),
were particularly unsuited to face its subtleties
(Camacho-Collados and Pilehvar, 2018). Static
language models learn fixed semantic representa-
tions for words, abstracted from specific contexts
of usage. This made it hard to successfully model
meaning of words in context - and consequently
context-dependent phenomena such as polysemy
(Schiitze, 1998; Yaghoobzadeh and Schiitze, 2016).
The more recent language models, called contextu-
alized language models (Rogers et al., 2021; Min
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et al., 2023)), should be in principle better equipped
to face the challenge of polysemy. They are trained
to create semantic representations of words which
are context-specific. When focusing broadly on
NLP tasks requiring to consider contextual seman-
tic knowledge (e.g. natural language generation,
inference, relation classification), contexualized
models are clearly able to reach impressive perfor-
mance, outperforming static models (Lenci et al.,
2022). However, when zooming in through the lens
of extremely specific semantic knowledge such as
polysemy, synonymy, hypernymy and categoriza-
tion, the picture changes: contextualized models
appear to capture such phenomena only to a mod-
est extent, leaving much room for improvement
(Ravichander et al., 2020; Haber and Poesio, 2021;
Lenci et al., 2022; Haber and Poesio, 2023).

To provide a better picture with regards to this,
we use four models, including both static and con-
textualized language models (Lenci et al., 2022). In
the following we will briefly describe each model,
and how the vectors for the polysemous nouns in
context were extracted from each one of them. In
Appendix A we report an analysis measuring how
similar the representations are across the models:
the phrases that compose our dataset make notable
differences emerge across different types of models,
converging with our prediction and sense discrimi-
nation results (see Sections 5.1, 3, 4).

3.1 Baseline: count-based model

As a baseline model, we use a so-called count
model, following previous work on using distri-
butional models predicting concreteness ratings
(Bhaskar et al., 2017). We used the same window
size used for fasttext (Bojanowski et al., 2017) -
therefore we counted word co-occurrences within
a sliding window of ten words (five on the left
and five on the right of the target word). As train-
ing corpus we used UKWaC. To reduce computa-
tional effort, we tried to keep vector dimensionality
low by reducing the vocabulary size as done in
Bhaskar et al. (2017); Charbonnier and Wartena
(2019). Therefore, we reduced the vocabulary to
the top 20% most frequent words that appeared in
the concreteness norms of (Brysbaert et al., 2014),
which makes vectors have 5220 dimensions. As
is commonplace in the literature, we transform the
raw co-occurrence counts using Pointwise-Mutual
Information - therefore the model will be referred
to as count-pmi (Levy et al., 2015).

We modelled the meaning of the polysemous



noun in the phrase by following the procedure vali-
dated in Bruera et al. (2023). It consists of adapting
the noun’s representation to the context by averag-
ing it with the representation for the verb. Averag-
ing was chosen because, despite its simplicity, it
has been shown to be a strong baseline to compose
the meaning of words both in NLP and in cognitive
neuroscience (Dinu et al., 2013; Wu et al., 2022).
We first extracted the pre-trained vector representa-
tions for each verb and noun present in the set of
stimuli. Then, each phrase’s vector representation
was obtained by averaging the vectors for the verb
and the noun.

3.2 fasttext

As a static model, we chose fasttext, using the
pre-trained version for English, which is publicly
available (Bojanowski et al., 2017; Grave et al.,
2018). This version was trained on a combination
of Common Crawl and Wikipedia and has 300-
dimensional vectors. We extract word vectors for
all nouns and verbs and create a phrase-specific
representation for each noun as described for count-
pmi.

3.3 ConceptNet Numberbatch

As discussed above, senses for polysemous are
annotated explicitly in graph-based resources like
WordNet. In recent years, ways to integrate graph-
and vector- based approaches to semantic repre-
sentation have been devised. To evaluate how the
explicit knowledge about senses encoded in graph-
based models can help language models, we used
ConceptNet Numberbatch (in the following, num-
berbatch; Speer et al., 2017). Numberbatch is
a widely used model that combines distributional
and graph-based information: it brings together se-
mantic knowledge from ConceptNet, a graph-based
resource that includes WordNet annotations, and
two word embeddings models (word2vec (Mikolov
et al., 2013) and Glove (Pennington et al., 2014))
using the retrofitting procedure (Faruqui and Dyer,
2015). Recently, its performance has been shown
to be superior to distributional-only models in mod-
elling cognitive data (Turton et al., 2020; Alacam
et al., 2022; Yang et al., 2024). We compose word
vectors for the phrase using the same methodol-
ogy as count-pmi and fasttext; the resulting phrase
vectors have 300 dimensions.
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34 XGLM

As a contextualized language model, we used
XGLM, a recently proposed multilingual model
(Lin et al., 2021). Since contextualized models are
specialized for representation of language in con-
text, and given previous results (Haber and Poesio,
2021; Bruera et al., 2023), we expect that XGLM
should in principle provide the best performance at
capturing polysemy. XGLM can beat a similarly-
sized GPT-3, a monolingual model, at a number of
NLP tasks — arguably thanks to the cross-linguistic
transfer of semantic information (Lin et al., 2021).
Also, it is publicly available and it has been al-
ready used in previous experiments with cognitive
datasets (De Varda and Marelli, 2023). We ex-
periment with different model sizes (as reported
in the Section 5.3) and for the main comparisons
we report results using the best layer (7) for the
best-performing model, XGLM-1.7B.

To extract vectors for the phrases, we use Hug-
gingFace’s Transformers library (Wolf et al., 2020).
We employed ‘representation pooling’, a method-
ology for creating ‘static’ representations in con-
textualized language models that was validated in
(Bommasani et al., 2020; Vuli¢ et al., 2020; Apid-
ianaki, 2022) for NLP tasks and in (Bruera and
Poesio, 2022, 2023; Bruera et al., 2023) for brain
data. In our implementation, first we collected
from UKWaC all the sentences containing each
one of the selected phrases. To do so, we used
the procedure described above for counting the
frequencies of verb-noun co-occurrences during
stimuli selection. Then, we used XGLM to encode
all the sentences separately. Having done so, we
extracted the hidden layers of the deep neural net-
work, considering the tokens corresponding to the
words contained in the phrase. We followed Bruera
et al. (2023), where authors found that the best re-
sults with a causal language model like XGLM are
obtained when considering all of the phrase tokens
+ 1, thus capturing both the meaning of the verb
and the noun. In Section 5.3 we report results us-
ing different sizes of XGLM and all the layers. For
the analyses reported in Sections 5.1 and 5.2 we
use the layer and the model with the best perfor-
mances (XGLM 1.7B, layer 7). For each mention
of the phrase, we averaged vectors across layers
and tokens. In this way, we could obtain a single
contextualized vector for each phrase mention. Fi-
nally, we averaged, for each phrase, ten randomly
sampled mention vectors, following (Vuli¢ et al.,



2020). This allowed us to obtain one single vec-
tor capturing reliably the information encoded in
XGLM for each phrase.

4 Evaluation

Having obtained the vectors for each verb-noun
phrase, we measure to what extent it is pos-
sible to learn to predict the ratings obtained
from human subjects. We use a cross-validated
procedure, with a Ridge regression model («
is cross-validated within the train set among
0.01,0.1,1,10,100,1000). We employ a linear
model, an efficient choice given the low number
of data points (100; Lin et al., 2023). For cross-
validation, we use Monte Carlo Cross-Validation
(Kim, 2009) - which entails randomly sampling
train and test sets many times (in our case, 20), in
order to obtain a reliable average statistics. For the
evaluation, we use two measures, explained below.

Correlation The first one simply measures the
average Pearson correlation between predicted and
real values, averaged across all 20 randomized
train-test splits (proportion: 80% train - 20% test).
This is the metric typically used in similar studies
using language models to predict psycholinguistic
variables (Bhaskar et al., 2017; Charbonnier and
Wartena, 2019; Chersoni et al., 2020).

Sense discrimination The second measure, by
contrast, is directly aimed at testing the ability of
each language model to distinguish among differ-
ent senses. It was originally introduced in cogni-
tive neuroscience, to quantify how well a model
could distinguish between two brain images refer-
ring to two different concepts (Mitchell et al., 2008;
Pereira et al., 2018).

It works in the following way. First, as in
Bruera et al. (2023), we consider each word
and its two senses as a separate test set — con-
sisting of two phrases for each sense. Sup-
pose they are named a phrlsenset, b
phr2senselvp = phrlsense2,q = phr2sensea. At
test time, the desired semantic variable for the
four test items is predicted (e.g. for concreteness
Gcones Deones Peones Geone)- The predicted ratings are
then used to quantify, with a binary accuracy metric,
how well the model can distinguish between differ-
ent senses. All possible pairs of phrases belonging
to two different senses are taken (i.e. {a, p}, {b, p},
{a, q},{b, ¢}). Intuitively, given a pair (e.g. {a, p})
we measure if the prediction G oy is closer to the
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Figure 2: Pearson correlation between predicted and
true variables for each model. We plot each cross-
validation split as a separate scatter point. XGLM con-
sistently provides the best correlation scores across all
variables.

real value for its corresponding sense aone than it
is to the other sense p.onc; and vice versa. If this
is the case, then accuracy = 1 because the dis-
tinction between the two senses has been correctly
captured; else, accuracy = 0.

More formally, accuracy = 1 if abs(acone —
ac;nc) +abs (pconc _pc:mc) < abs(aconc _pc:mc> +
abs(Peone — Geone); else accuracy = 0. This eval-
uation is repeated for all combinations of phrases
for the two senses of each word, then averaged;
the final evaluation is the average of the scores for
all the test sets. This procedure is repeated for all
the semantic variables; overall results refer to their
average. Since it is a binary accuracy measure,
chance performance is at 0.5.

5 Results and discussion

5.1 Correlation analysis

In Figure 2 we report the average Pearson
correlation between predicted and real ratings.
XGLM (best performing layer and version: layer
7 of XGLM-1.7B; see Section 5.3) provides
the best performance in all variables except
taste (XGLMggns = 0.839, XGLM;oyer, =
0.774, XGLMpearing = 0.837, XGLMgpney =
0.672; best performance in taste by Conceptnet
Numberbatch numberbatchiqgsie = 0.725). Over-
all low performance in taste and smell can be ex-
plained by the fact that, as shown in Figure 1, these
two sensory variables had the smallest variance
overall, and tended to cluster around low values —
thus making it difficult to differentiate among val-
ues for different phrases.

Despite the superiority of XGLM, however,
differences between different models are surpris-
ingly small (XGLM,yerqn = 0.771, count —
pmioverall 0727 faSttextoverall



0.743, numberbatchyerall 0.749).  This
suggests that simpler, more efficient approaches
can capture information about polysemy. Impor-
tantly, this concurs with the results of Lenci et al.
(2022) in showing that even count-based models
often can outperform much more complex ones at
fine-grained semantic tasks.

The performance of our models are largely com-
parable to those obtained when predicting single-
word semantic variables. For concreteness, Char-
bonnier and Wartena (2019) report scores for fast-
text oscillating among 0.85 and 0.9, depending on
the dataset; here fasttext is at 0.804 (the best perfor-
mance is afforded by XGLM at 0.838). For sensory
strength, Chersoni et al. (2020) report overall lower
Spearman correlation for fasttext (average across
body senses: 0.596) than us (body sensory average
for fasttext: 0.731; top performance by XGLM at
0.758). We assume that such differences are due
to the fact that our dataset is much smaller than
those used for single-words evaluations, that range
in the tens of thousands of words, and possibly to
the different correlation metrics used (Spearman vs
Pearson correlation).

Turning our approach on its head, our results
show that it is possible to automatically obtain reli-
able concreteness and sensory ratings for phrases
(an approach that has been recently advocated es-
pecially for low resource languages; Turton et al.,
2020; Grand et al., 2022; Wang et al., 2023), and
use those to induce word senses. In other words,
our methodology can be used to automatically find
in corpora contexts of use where the same polyse-
mous word is used in different senses. This would
also allow for an automated large scale expansion
of the current dataset .

5.2 Sense discrimination analysis

While correlation scores provide a general
evaluation of prediction performance, we sep-
arately assess the ability of the four models
at discriminating among different senses of
polysemous words using the dedicated pairwise
evaluation (see above). We also run statistical
significance t-tests against the chance base-
line of 0.5. Results are reported in Figure 3.
XGLM performs better overall (X GLM ,yerani =
0.672,p = 0.0001; XGLM_ oncreteness
0.88,p < 0.0001; XGLMpeqring
0.62,p 0.093; XGLMgmen 0.61,p
0.156; XGLM;qste 0.35,p 0.99),
as hypothesized. ConceptNet Number-
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Figure 3: Sense discrimination scores for each model,
using all semantic variables. Error bars indicate the
standard error of the mean across test splits. Overall
indicate that the sense discrimination task is challenging
for all models.

batch affords the best results only for
sight (numberbatchg;gns = 0.81,p =
0.0002; XGLMggny = 0.8,p = 0.0004.

The performance of the contextualized model is
always better at capturing polysemy than both
purely distributional models (count-pmi and
fasttext), confirming previous reports (Haber
and Poesio, 2021; Bruera et al., 2023). XGLM
can also (in most cases) outperform ConceptNet
Numberbatch, which incorporates hand-coded
information about senses. This suggests that
such fine-grained semantic knowledge can be
alternatively captured by looking at linguistic
contexts — i.e. at language in use. However, the
fact that all models perform significantly above
chance for the same variables, the small magnitude
of the differences among models, and the rather
low average performance taken together suggest
that polysemy is still hard to capture.

5.3 In-depth evaluation of XGLM on sense
discrimination

In Figure 4 we report the layer-by-layer results for
the XGLM family of models (1.7B, 4.5B, 7.5B pa-
rameters). We plot overall performance —i.e. the
average across all variables. In accordance with
previous results on lexical information encoded in
contextualized models, performance is better in ear-
lier layers (Bommasani et al., 2020). A relatively
small model (1.7B) can provide the best results
overall, outperforming both static and larger-sized
variants in almost all layers. This converges with
previous results casting doubts over the need of
ever-larger language models when it comes to mod-
elling human cognition (Oh and Schuler (2023) for
reading times, De Varda and Marelli (2023) for eye-
tracking, Bruera et al. (2023) for fMRI; cf. Rogers
et al., 2021).
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Figure 4: Overall sense discrimination scores for a
number of contextualized models, across all layers.
Overall, all versions of XGLM perform better in the first
half of the layers. We indicate with a circle the layer
used for the analyses reported above.

6 Limitations and future directions

The main limitation of our study is the size of the
dataset, and the fact that we focus on only one case
of regular polysemy. Future work could expand
this dataset by considering more, and more specific
types of polysemy that can be modelled within a
similar framework — cases like chicken where an-
other variable, taste, can explain sense alternations
(animal vs taste; Boleda et al., 2012).

Another interesting direction could be investi-
gating to what extent language models and human
cognition align while processing these polysemes
(e.g. using brain data; cf. Bruera et al., 2023).
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Figure 5: Pairwise similarities as measured by Repre-
sentational Similarity Analysis among models. The
scores reported in white are Pearson correlation scores,
indicating a clear distinction between static and contex-
tualized models.

A Appendix A: Representational
Similarity Analysis of the models’
representations

In order to gain some insights into how the models
used in our work relate to each other, in Figure
5 we report a visualization of the similarity of
the semantic representations across all pairs of
models. We carry out the comparisons using
the Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008) framework. RSA
measures how similar two quantitative ways of
representing the same stimuli are by looking at
the similarity between the vectors of all pairwise
similarities between individual representations
in the space. We follow the traditional im-
plementation and we measure similarity with
Pearson correlation. As we can see, as it can be
expected, static models are rather similar among

each other (corrcount—pmi, fasttezt = 0.59,
COT'T count—pmi, numberbatch = 0.62,
COT'T fasttext, numberbatch ~ — 0.88), while the

contextualized model has a different way of repre-
senting the phrases (corrx LM —7.5B, count—pmi =
0.22, corrxarLmM—7.5B, fasttext = 0.35,
COTTXGLM~7.5B, numberbatch = 0.34).
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Abstract

Attributing answer text to its source document
for information-seeking questions is crucial
for building trustworthy, reliable, and account-
able systems. We formulate a new task of
post-hoc answer attribution for long document
comprehension (LDC). Owing to the lack of
long-form abstractive and information-seeking
LDC datasets, we refactor existing datasets to
assess the strengths and weaknesses of exist-
ing retrieval-based and proposed answer de-
composition and textual entailment-based opti-
mal selection attribution systems for this task.
We throw light on the limitations of existing
datasets and the need for datasets to assess the
actual performance of systems on this task.

1 Introduction

Users now benefit from the help of automatic
question-answering (QA) systems on a day-to-day
basis when faced with an information need. Such
systems are integrated into search engines (e.g.,
BingAI') and digital assistants (e.g., ChatGPT).
However, such systems are prone to generating an-
swers lacking sufficient grounding to knowledge
sources (Dziri et al., 2022; Ji et al., 2023), lead-
ing to the risks of misinformation and hallucina-
tion (Metzler et al., 2021; Shah and Bender, 2022;
Huo et al., 2023). Therefore, attributing the gen-
erated answers to the respective sources is crucial
for building trustworthy, reliable, verifiable, and
accountable systems (Bohnet et al., 2022; Huang
and Chang, 2023; Rashkin et al., 2023; Yue et al.,
2023); by allowing users to verify outputs.
Existing works mainly consider generating at-
tributed text in open-ended settings. These attribu-
tions are generated along with the answers either
one per answer paragraph (Bohnet et al., 2022; Hu

This work was done when the author was at Adobe.
'https://www.microsoft.com/en-gb/bing?
form=MWOOX7
2A subset of sentences is shown due to space constraints.
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Input
Question: When does the next assasins creed come out?
Document: [1] Ubisoft has announced that its next Assassin’s Creed game
will be revealed in September 2022.
[2] Ubisoft shared the first trailer for the game on Saturday.
[3] Assassin’s Creed Mirage, the next entry in Ubisoft’s long-running
action-adventure series, will arrive in 2023.
[4] The publisher announced the release date today during its Ubisoft
Forward event. ...
Answer: The next Assassin’s Creed game, Assassin’s Creed Mirage, will
arrive in 2023 according to Ubisoft’s announcement during its Ubisoft
Forward event. It will be released for Xbox ... The game will be revealed
in September 2022.

Output
Attributed answer: The next Assassin’s Creed game, Assassin’s Creed
Mirage, ... Ubisoft’s announcement during its Ubisoft Forward event [3,4]
... The game will be revealed in September 2022 [1].

Table 1: An example taken from reformulated verifiabil-
ity dataset (Liu et al., 2023) that includes a question, a
document,? and an answer as inputs, and the document-
grounded attributions for each sentence (some may not
have any attribution) in the answer as output.

et al., 2024) or per answer sentence (Gao et al.,
2023a,b; Malaviya et al., 2023). Evidence retrieval
is used to select an answer in reading comprehen-
sion setting (Wang et al., 2019; Yadav et al., 2020;
Cui et al., 2022) for short and extractive answers.
Attribution becomes challenging when answers are
abstractive such that each sentence could be com-
posed of multiple sentences in the source docu-
ment, requiring more sophisticated approaches. To
address this gap, we aim to identify fine-grained
attributions (i.e., sentences grounded in a provided
long document) for each sentence (unlike para-
graph or article) of a long-form abstractive answer
to an information-seeking question asked over a
user-provided document (closed-domain). Such
fine-grained attributions can lead to more trustwor-
thy, reliable, and accountable systems. Specifi-
cally, we propose a new task (Table 1) of post-hoc
answer attribution for long document compre-
hension wherein the input to a system is a (ques-
tion, answer, document) triplet, and output is an
attributed answer consisting of pointers to sen-
tences in the document that provide supporting evi-
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dence for each sentence in the answer.

Building systems for this task is challenging
due to the unavailability of appropriate datasets
as answers in existing information-seeking read-
ing comprehension datasets (e.g., Dasigi et al.,
2021) are short and extractive. Moreover, obtain-
ing attribution annotations is cognitively demand-
ing, labor-intensive, and expensive as it requires
expertise (Kamalloo et al., 2023). Thus, we (a) pro-
pose to reformulate existing datasets curated for
evaluating citation verifiability in generative search
engines (Liu et al., 2023), and generating attributed
explanations in generative information-seeking sys-
tems (Kamalloo et al., 2023), and (b) assess the fea-
sibility of using existing textual entailment models
by proposing ADi0OSAA— consisting of an answer
decomposer and a textual entailment-based attrib-
utor that uses an optimal selection strategy to find
attributions for each sentence of an answer.

This work contributes the following: (1) intro-
duces the task of post-hoc answer attribution for
LDC for building trustworthy, verifiable, reliable,
and accountable QA systems (§2); (2) reformu-
lates existing datasets for this task, owing to the
lack of availability of long-form abstractive read-
ing comprehension datasets (§2), and (3) assesses
the strengths and weaknesses of existing retrieval-
based systems, and proposed answer decomposi-
tion and textual entailment-based optimal selection
system, AD10OSAA (§3), by adopting information
retrieval measures (§4).

2 Adapting existing datasets for our task

Task Definition We formalize the task of post-
hoc answer attribution for long document com-
prehension as: given a query (), a set of sen-
tences S = s1, ..., S, from document D (namely,
source sentences), and an answer (either generated
from a system or ground-truth) to query (), the
goal is to identify supporting sentences (namely,
attributions) s; € S for each answer sentence
a; € A =ay,...,a, (may be attributed to mul-
tiple source sentences or none). Since there are
no datasets that match the needs of our task, we
propose to reformulate the Citation Verifiability
dataset (Liu et al., 2023) and Hagrid dataset (Ka-
malloo et al., 2023) for the proposed task.

Reformulation Citation Verifiability Dataset
Citation verifiability dataset (Liu et al., 2023)
consists of questions from NaturalQues-
tions (Kwiatkowski et al., 2019) and ELI5 (Fan
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Split Size Avg. No. Avg. No. Avg. No. Avg. No.
of source of attribu-  of sen- of  an-
sentences tions per  tences per  swers per

sentence answer question
Verifiability/Hagrid

Train | 1138/1922  128.58/2.82 1.45/1.26  2.11/1.63  2.63/1.67

Dev 146/716 141.68/2.83 1.49/1.40 2.18/1.71 2.56/1.84

Test 136/— 130.03/— 1.60/— 2.13/— 2.75/—

Table 2: Dataset statistics. No test set in Hagrid.

et al., 2019) and answers are generated from
different generative search engines; Bing Chat,
NeevaAl, perplexity.ai, and YouChat. These
answers are embedded with inline -citations
pointing to the web pages. Human annotators
were shown a question and a verification-worthy
sentence from the generated answer with its
corresponding generated citations and were asked
to judge if the citations fully, partially, or do not
support the sentence. For sentences that are fully
supported, annotators also provide sentences on
the webpage that support the answer sentence.
In this open-domian setup, the citations in an
answer may belong to multiple web pages. To
obtain a pseudo document for a question, we focus
on questions anchored to a given document by
combining fully supported web page contents
cited for sentences. Hence, we have a corpus with
questions, answers, a document to which questions
are grounded, and ground truth attributions for
sentences in an answer.

Reformulating Hagrid Dataset Kamalloo et al.
(2023) introduced Hagrid which is constructed
based on human and LLM collaboration by first
automatically collecting attributed answers (for
information-seeking questions in MIRACL (Zhang
et al., 2022) dataset) that follow an inline citation
style using GPT-3.5. Then, asking human annota-
tors to evaluate the LLM answers based on infor-
mativeness and attributability. We establish bench-
marks for this dataset by considering the LLM-
generated answers to be the gold-answers required
as input (as opposed to the task formulation of
Hagrid, wherein output is an attributed answer),
attributability annotations as attributions for sen-
tences in an answer, and labeled relevant passages
as the document. We provide dataset statistics in
Table 2.

3 Answer Decomposition and Optimal
Selection for Answer Attribution

We propose an Answer Decomposition and
Optimal Selection Answer Attribution system for



MAUS grew 19% Y/Y.
MAU totaled 422 million.
MAUS totaled 419 million
excluding a one-time benefit
The one-time benefit was 3
million MAUS.

Decomposed
answer

\ Document
MAUS grew 19% Y/Y to 422
Answer

Supporting
Attributor | ———/ sentences [RIS
) Decomposer e

Figure 1: Overview of proposed answer attribution sys-
tem, ADiOSAA. The answer decomposer breaks the
given answer into information units, and the attributor
finds the supporting sentences as attributions for each
information unit in the answer.

Answer

the introduced task. ADiOSAA consists of two
components (Figure 1): (1) An answer decom-
poser to break each sentence of an answer into
one or more information units (Nenkova and Pas-
sonneau, 2004; Stanovsky et al., 2018; Ernst et al.,
2021) as we believe that an answer sentence is
composed of information from multiple sentences
in the input document. (2) An attributor to find
supporting sentences in the document for a given
information unit in the answer sentence.

Answer Decomposer We prompt (“Please break-
down the following sentence into independent facts:
..") ChatGPT (OpenAl, 2023) to decompose the
given answer into its information units, following
Min et al. (2023) who found such decompositions
to be effective and close to human. This decomposi-
tion resembles past frameworks derived from Ope-
nlE (Stanovsky et al., 2018; Ernst et al., 2021) or
Pyramid (Nenkova and Passonneau, 2004; Shapira
et al., 2019), but avoids relying on annotated data
and achieves greater flexibility by using ChatGPT.
Such decomposition to information units has been
successfully used for claim-verification (Kamoi
et al., 2023) and propositional semantic representa-
tions (Chen et al., 2023).

Attributor Once the answer is decomposed into
its information units, each unit needs to be mapped
to sentences in the input document to provide the
desired attributions. We pose this task of find-
ing supporting sentences in the document for a
given information unit as a textual entailment task.
Textual entailment is the task of identifying if a
given premise (P) entails or does not entail the
given hypothesis (). For our purpose, we con-
sider sentence(s) in the document as the premise
and an information unit as the hypothesis. We use
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Algorithm 1 Optimal Selection Algorithm
di,da...dn,

1: Inputs: Information unit (iu), D
Attr(P,H), 6
2: Outputs: L = A list of supporting sentences in D which
together attribute iu
: L <+ [],RS « D, prev_score < —1
RS: remaining sentences; Initialization

|95}

1

4: while RS is not empty do

5: curr_score <— maxg,crs Attr(L + d;, iu)
6: dmax < arg maxq, crs Attr(L + d, iu)
7: if curr_score > prev_score + § then

8: L += dmaz

9: RS —= dimaa
10: prev_score = curr_score

11: else
12: break

13: end if

14: end while

RoBERTa-L (Liu et al., 2019) pretrained3 on Doc-
NLI (Yin et al., 2021) dataset (contains paragraph-
level (premise, hypothesis) pairs, see §B for more
details) as the entailment model (attributor) to pre-
dict if the given information unit can be inferred
from the given sentence(s) from the document.

Optimal Selection An answer sentence could be
attributed to multiple sentences in the provided doc-
ument when: (a) the same information is available
in the document at multiple places, and (b) pieces
of information in the answer sentence is available
in different parts of the document. (a) can be solved
by considering the top k (premise hypothesis) pairs
where the premise is the sentence from the docu-
ment and the hypothesis is the sentence or informa-
tion unit of the answer. To solve (b), it is required to
check if a sentence or information unit of an answer
can be entailed from a combination of sentences in
the document as a premise. However, this becomes
computationally expensive; for a document consist-
ing of N sentences, there will be 2/ combinations.
To address this issue, we propose an optimal selec-
tion approach that greedily selects sentences from
the document that has the maximum probability of
entailment as described in Algorithm 1. Attr(P,H)
refers to DocNLI-based attributor which takes sen-
tences from the input document and the informa-
tion unit (or sentence in an answer) and outputs the
probability of entailment of ‘H from P. For each
information unit in a sentence, Algorithm 1 itera-
tively selects a sentence from the set of remaining
source sentences that maximizes the probability of
entailment until the entailment score keeps increas-

3We use the official code and trained model available at
https://github.com/salesforce/DocNLI.
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Model

Verifiability

Hagrid

(P/R/F1)@1

(P/R/F1)@2

(P/R/F1)@4

(P/RF1)@1

(P/R/F1)@2

(P/R/F1)@4

BM25
GTR
MonoT5
ADiOSAA

ADiOSAA -

ADiOSAA
ADiOSAA

D
-0s
-D-0S

0.669/0.529/0.567
0.656/0.511/0.550
0.698/0.552/0.593
0.545/0.428/0.459
0.473/0.388/0.412
0.375/0.295/0.317
0.269/0.234/0.243

0.443/0.648/0.499
0.432/0.623/0.483
0.466/0.675/0.522
0.484/0.546/0.487
0.445/0.418/0.412
0.280/0.333/0.284
0.269/0.234/0.243

0.270/0.722/0.369
0.270/0.723/0.371
0.284/0.757/0.389
0.476/0.604/0.499
0.442/0.418/0.411
0.256/0.360/0.276
0.269/0.234/0.243

0.815/0.686,0.722
0.899/0.768/0.804
0.962/0.827/0.864
0.856/0.734/0.768
0.869/0.749/0.782
0.793/0.679/0.710
0.567,/0.466/0.494

0.740/0.919/0.788
0.744/0.918/0.790
0.763/0.946,/0.811
0.848/0.810/0.799
0.861/0.758/0.783
0.745/0.783/0.736
0.567/0.466,/0.494

0.678,/0.990/0.760
0.677/0.987/0.759
0.680/0.993/0.762
0.848/0.817/0.801
0.861/0.758/0.783
0.743/0.830/0.752
0.567,/0.466/0.494

Table 3: Evaluation results: ADiOSAA systems use top 150 source sentences (see Table 6 in Appendix for results
with GTR, MonoTS5, and all the source sentences) retrieved using BM25 for the Verifiability dataset. D denotes
Answer Decomposer, and OS refers to Optimal Selection.

ing above a threshold § as compared to that in the
previous iteration.

We reorder the attributions for each information
unit based on their score and deduplicate (as dif-
ferent information units may be attributed to the
same source sentence) them to obtain the predicted
attributions for each sentence of an answer.

4 Evaluation

As answer sentence attribution to sentences in the
source document could also be considered as an
information retrieval task, we benchmark the per-
formance of a range of retrieval-based systems:
(1) BM25 (sparse), (2) GTR (dense), and (3)
MonoTS5, considering an answer sentence as the
query, and the sentences/passages from the input
document as the document (refer to §A). Because
our task assumes the answer as an input, inline
attribution-based systems like vanilla LLM prompt-
ing (Tay et al., 2022; Weller et al., 2023) and
retrieve-and-read-based systems (Guu et al., 2020;
Borgeaud et al., 2022; [zacard et al., 2022) do not fit
here. For the Verifiability dataset, ADiOSAA sys-
tem and its variants use top 150 retrieved sentences
as the source sentences. As Hagrid has only 2.83
passages per question in total, we consider all the
passages as the source sentences. Additionally, we
perform ablation experiments to demonstrate the
importance of decomposition and optimal selection
in ADiOSAA in the following ways.

ADiOSAA - D considers an answer sentence as
the information unit instead of decomposing it.
This system establishes the importance of the an-
swer decomposer in AD1OSAA.

ADiOSAA - OS decomposes each answer sen-
tence into its information units, and then ranks
source sentences based on their entailment prob-
abilities from the Attr(P,H) for each information
unit. To obtain attributions for each sentence of the
answer, it deduplicates and reorders the attributions
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for all the information units of the sentence based
on the entailment probabilities.

ADiOSAA - D - OS neither uses the answer de-
composer or the optimal selection algorithm rather
for each sentence in the answer, it ranks source
sentences based on their entailment probabilities
from the Attr(P,H). This system demonstrates the
effectiveness of both the components in AD1OSSA.

Evaluation Measures We report precision (P),
recall (R), and F1@k € {1,2,4} predicted attri-
butions per sentence of an answer” for the test set
of Verifiability dataset and development set of the
Hagrid dataset (as no test set is available). We tune
the threshold for attributor’s entailment probability
(=0.5) and 9 (=0.3) in Algorithm 1 based on the
Verifiability development set.

5 Results and Discussion

While MonoT5-based retrieval system outperforms
(Table 3) others for the top-1 prediction, ADi OSAA
variants attain the highest precision when top 2 or
4 predictions are considered. Having a high pre-
cision for top 2 or 4 predictions is important as
the mean number of attributions per sentence > 1
(see Table 2) and with the increase in the number
of predictions, recall may increase or remain the
same however, precision may increase, decrease,
or stay the same. ADiOSAA variants retain higher
precision (as compared to retrieval-based systems)
even with the increase in the number of predictions,
indicating that retrieval-based systems are good at
retrieving one attribution correctly but fail for the
second (or more) one compared to our systems.
This shows that our systems capture abstractive
and compositional attributions more correctly. Op-
timal selection results in a significant improvement.
Higher gains due to optimal selection under no
decomposition (difference between ADi0OSAA-D

“We filter out the instances where answer sentences were
extracted directly from the documents.



and AD10SAA-D-OS) than under decomposition
(difference between ADiOSAA and AD10SAA-OS)
shows that the answer sentence is composed of mul-
tiple document sentences which are better captured
with optimal selection. However, under decompo-
sition, it is more likely that now the decomposed
units could be attributed to a single sentence in the
document. Decomposition also helps in better pre-
dictions (compare ADiO0SAA-OS with AD10OSAA-
D-0OS) showing that compositional answers have
multiple attributions to different sentences in the
input document. Further, due to a small number of
source sentences (avg. 2.83) in Hagrid, the preci-
sion and recall values are higher as compared to
that in the Verifiability dataset.

Good performance of retrieval-based systems in-
dicate that the existing datasets are less abstractive
for long-form comprehension, suggesting the need
for research in creating more challenging datasets
to foster the development of trustworthy, reliable,
and accountable systems that can be used in real-
world information-seeking scenarios.

Quality of Decompositions Prior works have
used ChatGPT for decomposing facts (Min et al.,
2023) or claims (Kamoi et al., 2023) and have
shown it to perform reasonably well. We manually
examine a subset of decompositions and find that
the decomposer might sometimes over-decompose
a simple sentence, or generate hallucinated infor-
mation units (see Table 4 in the appendix for ex-
amples). We leave a careful analysis of error cat-
egories, and ways to mitigate hallucinations and
over-decompositions for future work.

6 Conclusion

We introduce a task of post-hoc answer attribu-
tion for long document comprehension, reformu-
late existing datasets, and asses the feasibility of
existing textual entailment and retrieval-based sys-
tems in performing this task. Evaluation shows that
retrieval-based systems are good at top one predic-
tion however, our proposed answer decomposition
and textual entailment-based optimal selection sys-
tem, AD10OSAA, performs better when more than
one predictions are considered. This further in-
dicates the need for highly abstractive long-form
reading comprehension datasets that can foster the
development and evaluation of more sophisticated
attribution systems.
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7 Limitations

We note the following limitations of our work.
(1) The decompositions are obtained without tak-
ing into consideration the source document which
might result in unnecessary answer decompositions.
This issue can be resolved if the information units
are explicitly constrained in the input document,
and (2) AD1OSAA is a post-hoc inference time at-
tribution system which uses off-the-shelf trained
model, DocNLI. However, future work may con-
sider developing supervised systems for perform-
ing the task on the verifiability dataset, and building
end-to-end systems where decomposition and opti-
mal selection may happen in an interactive manner.
(3) We acknowledge the performance dependence
of AD10OSARA on the Attributor. Further investiga-
tion into the impact of NLI model’s performance
on the final results is an avenue for future work.
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Appendix
A Baseline Models

* BM25 (sparse) is a classical bag-of-words
based sparse retrieval method that relies on
lexical overlap, term frequency heuristics,
inverse document frequency and document
length for retrieval relevant passages given a

query.

GTR (dense) is a dense retrieval method
that embeds both documents and queries into
low-dimensional representations using T5-
based (Raffel et al., 2020) dual encoders, with
one of the encoders tailored to the queries and
the other to the documents.

MonoTS5 is a T5-based model that takes a
query and a document, and outputs the proba-
bility of relevance of document with respect
to the query. The documents are ranked based
on this probability.

B Entailment model DocNLI

We have used RoBERTa-L. model trained on Doc-
NLI dataset as our go-to entailment model. Doc-
NLI contains an array of reformulated versions
of existing datasets (adversarial NLI (ANLI) (Nie
et al., 2019), the question answering benchmark
SQuAD (Rajpurkar et al., 2016) and three sum-
marization benchmarks (CNN/DailyMail (Nalla-
pati et al., 2016), DUC2001°, and Curation (Cu-
ration, 2020))) by transforming various summa-
rization and question answering datasets into nat-
ural language inference form to ensure that the
premise and hypothesis are paragraph-level long
and that the dataset does not contain any artifacts
such as hypothesis length bias, direct overlap be-
tween premise and hypothesis. Table 5 reports
the accuracy results of DocNLI on various NLI
datasets.

C Additional Results

We present results on verifiability dataset when top
150 sentences retrieved using GTR and MonoT5
are used by AD1OSAA and when all the sentences
in a document are used in Table 6. In all the cases,
ADiOSAA outperforms all the ablations - remov-
ing decompose, optimal selection or both. This

‘https://www-nlpir.nist.gov/projects/
duc/guidelines/2001.html
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shows that each of the components of the proposed
approach is important for the attribution task.

C.1 Implementation Details

The RoBERTa-L. model contains 355 million pa-
rameters. We use off-the-shelf model so no train-
ing is required. We only perform inference on one
NVIDIA T4 16GB GPU machine. All the reported
scores are from one run of the model inference. Hy-
perparameter tuning is done for § and entailment
probability threshold using the development set of
Verifiability dataset.
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S.No.

Input

\ Output Decompositions

Correct Decomp

ositions

Based on the given contexts, the University Library of the Library of
Congress in Washington D.C. is the biggest library in the world, with more
than 167 million items including books, printed materials, recordings,
photographs, maps, sheet music, and manuscripts.

The University Library of the Library of Congress is in Washington D.C.
The University Library of the Library of Congress is the biggest library in
the world. The University Library of the Library of Congress has more than
167 million items. The items include books, printed materials, recordings,
photographs, maps, sheet music, and manuscripts.

2. The Islamic Golden Age is traditionally dated from the 8th century to the The Islamic Golden Age is traditionally dated. The Islamic Golden Age
14th century. is traditionally dated from the 8th century. The Islamic Golden Age is
traditionally dated to the 14th century.
Erroneous Decompositions
1. Ronnie Van Zant was born in Jacksonville, Florida. Ronnie Van Zant was born. Ronnie Van Zant was born in Jacksonville,
Florida
2. The Beer Store, also known as Brewers Retail Inc, was founded in 1927. The Beer Store is also known as Brewers Retail Inc. The Beer Store was

founded in 1927. The Beer Store was founded in Ontario, Canada

Table 4: Sample outputs from the Answer Decomposer. 1. shows over-decomposition, and 2. shows hallucination
error under Erroneous Decompositions.

FEVER MCTest (v160) MCTest

(v500) SciTail MNLI

88.84 90.00

85.83

78.17 91.13

Table 5: Accuracy of DocNLI (used as the Attributor in our work) model on various NLI datasets. We report the
numbers as-is from Yin et al. (2021).

Model Top 1 ‘ Top 2 ‘ Top 4
P R F1 | P R F1 | P R F1

All + ADIOSAA 0.537 0.422 0.452 | 0.479 0.540 0.482 | 0.471 0.598 0.494
All + ADIOSAA - Decomposer 0.462 0.381 0.404 | 0.435 0.408 0.402 | 0.433 0.408 0.401
All + ADIOSARA - Optimal Selection 0.368 0.289 0.311 | 0.272 0.327 0.279 | 0.250 0.353  0.270
All + ADIOSAA - Decomposer - Optimal Selection 0.262 0.226 0.236 | 0.262 0.226 0.236 | 0.262 0.226 0.236
GTR + ADIOSAA 0.538 0.423 0.453 | 0.479 0.541 0.483 | 0.471 0.598 0.494
GTR + ADIOSAA - Decomposer 0.463 0.382 0.405 | 0.435 0.409 0.403 | 0.433 0.409 0.402
GTR + ADIOSAA - Optimal Selection 0.372 0294 0.315 | 0.275 0.332 0.282 | 0.252 0.358 0.273
GTR + ADIOSAA - Decomposer - Optimal Selection 0.265 0.229 0.238 | 0.265 0.229 0.238 | 0.265 0.229 0.238
MonoT5 + ADIOSAA 0.537 0.422 0.452 | 0.479 0.540 0.482 | 0.471 0.598 0.494
MonoTS5 + ADIOSAA - Decomposer 0.467 0.385 0.408 | 0.439 0.412 0.407 | 0.437 0.413 0.406
MonoT5 + ADIOSAA - Optimal Selection 0.371 0.292 0.314 | 0.274 0.330 0.281 | 0.251 0.356 0.272
MonoT5 + ADIOSAA - Decomposer - Optimal Selection | 0.265 0.229 0.238 | 0.265 0.229 0.238 | 0.265 0.229 0.238

Table 6: Evaluation results with GTR, MonoT5 and all sentences for Verifiability dataset.
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Abstract

To develop high-performance and robust natu-
ral language processing (NLP) models, it is
important to have various question answer-
ing (QA) datasets to train, evaluate, and an-
alyze them. Although there are various QA
datasets available in English, there are only a
few QA datasets in other languages. We focus
on Japanese, a language with only a few ba-
sic QA datasets, and aim to build a Japanese
version of Natural Questions (NQ) consisting
of questions that naturally arise from human
information needs. We collect natural ques-
tions from query logs of a Japanese search en-
gine and build the dataset using crowdsourcing.
We also re-define the dataset specification of
the original NQ to construct Japanese Natural
Questions (JNQ). Furthermore, we construct a
Japanese version of BoolQ (JBoolQ), which is
derived from NQ and consists of yes/no ques-
tions. JNQ consists of 16,871 questions, and
JBoolQ consists of 6,467 questions. We also de-
fine two tasks from JNQ and one from JBoolQ
and establish baselines using competitive meth-
ods drawn from related literature. We hope that
these datasets will facilitate research on QA
and NLP models in Japanese. We will make
JNQ and JBoolQ publicly available.

1 Introduction

To develop high-performance and robust natural
language processing (NLP) models, it is important
to have various question answering (QA) datasets
to train, evaluate, and analyze them. There are di-
verse extractive and generative QA datasets that
require many techniques and knowledge to solve,
such as multi-hop inference (Yang et al., 2018) and
real-world knowledge (Dua et al., 2019). There
have been some studies to solve many QA tasks
in an integrated manner, rather than solving them
individually, such as Unified QA (Khashabi et al.,
2020) and FLAN (Wei et al., 2022). However,
such an integrated analysis is possible only in En-
glish but not in other languages because of the lack
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of QA datasets. This study focuses on Japanese,
which has only a few basic QA datasets, such as
JSQuAD (Kurihara et al., 2022), JaQuAD (So et al.,
2022), and JAQKET (Suzuki et al., 2020).

In this paper, we focus on Natural Questions
(NQ) (Kwiatkowski et al., 2019), which consist of
questions that arise naturally from human informa-
tion needs, as a critical QA dataset that does not
exist in Japanese. QA datasets such as SQuAD (Ra-
jpurkar et al., 2016) have the problem of annotation
artifacts (Gururangan et al., 2018) because the ques-
tions are manually created by annotators, which are
not natural. In contrast, NQ uses queries entered by
users in a search engine, which are considered nat-
ural questions. One possible approach to creating a
Japanese version of NQ is translating the original
NQ dataset into Japanese. However, we do not use
translation due to concerns about the unnaturalness
of translated sentences, which can result from dif-
ferences in grammar and other linguistic factors,
as well as potential cultural differences between
Japan and other countries. Instead, we build and
publish Japanese Natural Questions (JNQ) using
query logs from a Japanese search engine. We also
re-define the dataset specification of the original
NQ to obtain a better NQ dataset. Kwiatkowski
et al. (2019) have hired trained annotators to build
the NQ dataset, but for INQ, we use crowdsourcing
to reduce costs. This method can be applied to any
language in which search engine query logs are
available.

In addition to JNQ, we build JBoolQ, a Japanese
version of BoolQ (Clark et al., 2019). BoolQ is
derived from NQ and consists of yes/no questions.
JBoolQ questions and yes/no answers are collected
in the same way as JNQ. In the original BoolQ,
there are only two options: “yes” or “no”. However,
to make the setting more realistic, we add an option
of “unable to answer” to JBoolQ, represented as
“NONE”. This makes our dataset more challenging
than the original BoolQ.

Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), pages 58 - 68
June 20-21, 2024 ©2024 Association for Computational Linguistics



INQ
Q: REMAHHHLEFEITEZTL L S?
(Which prefecture is Nagaoka City located in?)
Document Title: £ (Nagaoka City)

JBoolQ
Q:ELLoYREBIIRMEIEINHND?
(Are taxes imposed on lottery winnings?)
Document Title: £< LU (lottery)

K™ (A L) &, FREDFEE
() (CMIBES 21, BRTIINEHICRVTE 21
DOANOZFL, FEMATIIRADAOZET %, .
(Nagaoka City is a city located in the central-southern
part of Niigata Prefecture (Chuetsu region). It has the
second largest population in the prefecture after Niigata
City, and the largest population in the Chuetsu region. ..)

Short Answer: #1358 (Niigata Prefecture)

RETOFRRBPIZERINNCL VRSN HETFEFICGLE
L. IFERICIIREZFEOH TR & L TRR 7,

(The central part of Nagaoka City is located on an
alluvial plain formed by the Shinano River, and prospered
as a castle town of the Nagaoka clan during the Edo
period.)

FEL Lz n D)iE. BRICBWTHBASMIEEEIC
HEOZRITINZIELLTH D,

(A lottery ticket (takara-kuji) is a lottery ticket issued in
Japan under the Lottery Prize Certificate Law.)

LHABMTIHEEE I3FORTEICLY.
FLLOHEBARICOVWTEHIERMERESINTLS, L
T > THBRIERINT, BERSLTE,

(According to Article 13 of the Winning Money Securities
Act, lottery winnings are exempt from tax. Therefore, no
income tax is levied, and no final tax return is required.)

Short Answer: NO

Figure 1: Examples of JNQ and JBoolQ.

In consequence, JNQ contains 16,871 queries
and 80,288 paragraphs. JBoolQ, combined with the
JNQ yes/no questions, contains 6,467 queries and
31,677 paragraphs. Examples of JNQ and JBoolQ
are shown in Figure 1.

Furthermore, we define three tasks using the
two datasets as a new QA benchmark in Japanese:
long answer extraction, short answer extraction,
and yes/no answer identification (BoolQ). We also
evaluate these tasks with their respective baselines.
JNQ and JBoolQ will be available online.

2 Related Work

Existing QA datasets can be broadly categorized
into those where the questions are natural and those
where they are not.

QA datasets where the questions are not natural
mainly include SQuAD (Rajpurkar et al., 2016) and
SQuAD 2.0 (Rajpurkar et al., 2018). The questions
in these datasets are not natural because annotators
create them after reading a paragraph. Therefore,
annotation artifacts in the created questions and
lexical overlap between questions and paragraphs
are problematic when using these datasets.

Natural Questions (Kwiatkowski et al., 2019)
and BoolQ (Clark et al., 2019) are QA datasets that
contain natural questions. To build these datasets,
search engine query logs are used to collect natural
questions arising from human information needs.
The documents are Wikipedia articles, and the an-
swers consist of long answers (e.g., paragraphs
or tables) and short answers (spans or Yes/No).
Other datasets that collect questions from query
logs include WikiQA (Yang et al., 2015) and MS
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MARCO (Bajaj et al., 2018). In these datasets, the
answer format differs from NQ and BoolQ, with a
single sentence in the document or a hand-crafted
summary.

QA datasets whose questions are not derived
from query logs but are claimed to be natural
include TyDi QA (Clark et al., 2020), Icelandic
NQ (Snabjarnarson and Einarsson, 2022), and Rus-
sian BoolQ (Glushkova et al., 2021). In these
datasets, annotators are given a prompt consisting
of a part or summary of a document and asked to
think of a question that cannot be answered by read-
ing only the prompt. These questions are claimed
to be “natural” because they are derived from what
humans wanted to know about the prompt. How-
ever, they are not naturally occurring questions
because the authors ask them to think of a question.
Thus, we consider that they are not truly natural
questions.

For non-English QA datasets, there are several
multilingual QA datasets, such as TyDi QA (Clark
et al., 2020), MLQA (Lewis et al., 2020), XOR
QA (Asai et al., 2021), and XQuAD (Artetxe
et al., 2020). However, only approximately half
of them include Japanese. Due to the lack of di-
verse datasets in Japanese, we construct Japanese
Natural Questions from scratch.

3 Japanese Natural Questions

Natural Questions (NQ) (Kwiatkowski et al., 2019)
is a dataset that focuses on the ability to answer
natural questions by reading documents. Each in-
stance consists of a quadruple of a question, a doc-
ument, a long answer, and a short answer. The
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Figure 2: Construction flow of Japanese Natural Questions.

questions are collected from search engine query
logs. The documents are Wikipedia articles, with
one document provided for each question. The
long answer is a paragraph or table in a document
containing enough information to infer the answer.
The short answer is the shortest possible answer to
the question and is a span in the document.

Japanese Natural Questions (JNQ), like NQ, con-
sists of quadruples of a question, a document, long
answer(s), and short answer(s). The questions are
extracted from search engine query logs, and the
documents are Japanese Wikipedia articles. The
long answers and short answers are obtained us-
ing crowdsourcing. By using crowdsourcing, it is
possible to construct a dataset at a low cost and
with some quality level without expert annotators.
We limit the long answers only to paragraphs to
simplify the task, considering that dataset construc-
tion is conducted using crowdsourcing. Although
NQ has a strict restriction that there is at most one
long answer in a document, there are often multiple
paragraphs containing answers. Therefore, JNQ al-
lows for scenarios with multiple long answers to a
single question.

We describe each stage of building JNQ below.
In crowdsourcing, 10 crowdworkers are assigned
to deal with a task to build a high-quality bench-
mark. In cases where ambiguity is detected due to
diverging opinions among crowdworkers at each
stage, such instances are not incorporated into JNQ.
We illustrate the construction flow in Figure 2.
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3.1 Question and Document Collection

Question candidates of JNQ are taken from the
search query logs accumulated by a company'.
When people search, they sometimes use word se-
quences instead of full sentences. Such queries are
specific to search engines and may include non-
questions. Therefore, queries with spaces are ex-
cluded from the pool of question candidates”. Fur-
thermore, short queries are often not in the form
of questions; therefore, only queries composed of
eight or more words are extracted’. Subsequently,
we prepare the following question patterns and ex-
tract queries that match any of them.

1. Contains “IX” (Japanese topic marker) + an
interrogative word

2. The final character is “?”

Contains the specific word such as “Z& £
(meaning), “ /575" (method), and “PEEH” (rea-
son).

We perform a Google search with the question can-
didates obtained above. If there is a Wikipedia
article within the top five search results, we select
the top-ranked article as the document. Question
candidates for which there are no Wikipedia arti-
cles within the top five search results are excluded.

'The name of the company will remain anonymous until
the paper is accepted.

%Japanese is a language that does not use spaces between
words, and Japanese sentences usually do not contain spaces.

SWord segmentation is performed using the morpho-
logical analyzer Juman++: https://github.com/ku-nlp/
jumanpp.


https://github.com/ku-nlp/jumanpp
https://github.com/ku-nlp/jumanpp

3.2 Good Question Identification

The extracted question candidates contain non-
questions and inappropriate questions. Therefore,
we use crowdsourcing to obtain good questions.
A good question is one that inquires about facts,
methods, causes, or reasons. A bad question is am-
biguous, based on incorrect assumptions, soliciting
opinions, asking about the title of a work, or posing
questions with answers that vary depending on the
timing. 10 crowdworkers judge whether the given
question is good or bad. Among the 10 crowdwork-
ers, question candidates that are judged as good
questions by six or more workers are adopted as
questions for JNQ. Examples of good questions
are provided in Appendix A. Examples judged as
bad questions are “5 HIX & ZIZ/TZ 5077
(Where shall we go today?) and “AmazonsZ A\
TIEWNAGE S W E A7 (The Amazon payment

method is not approved).

3.3 Long Answer Identification

Through crowdsourcing, we extract paragraphs
from the document that contain sufficient infor-
mation to answer a question and designate them
as long answers. We provide crowdworkers with
a maximum of five paragraphs to reduce annota-
tion costs. These five paragraphs consist of the
document’s first paragraph and four paragraphs (ex-
cluding the first one) that have high relevance to the
snippet obtained from the Google search conducted
in Section 3.1. This is because the first paragraph,
which usually provides an overview, and the para-
graphs with high relevance to the snippet are likely
to contain the answer. The paragraphs that are not
included in these five paragraphs are identified as
not containing the long answer and are accordingly
labeled as “NONE”. The relevance is calculated
by the cosine similarity between the snippet and a
paragraph, with both represented as bag-of-words
vectors. We illustrate the paragraph selection pro-
cess in Figure 3.

We provide a question and each paragraph to 10
crowdworkers, prompting them to make a binary
choice on whether the paragraph contains “suffi-
cient information to infer an answer to the question”
or not. We classify the paragraphs into three groups
based on the votes of the 10 workers. If seven or
more “Yes” votes are collected, we categorize the
paragraph as a long answer and assign it the label
“EXIST”. If four to six “Yes” votes are collected,
we categorize the paragraph as ambiguous in terms
of being a long answer and label it as “AMBIGU-
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Document (Wikipedia) The first paragraph is

............. always chosen
Paragraph 1
Paragraph 2 ON
PRSI

1
Similarity between a snippet
and each paragraph

Figure 3: An illustration for choosing paragraphs from
documents to ask crowdworkers whether they qualify
as long answers.

OUS”. Excluding this paragraph during the training
process can help reduce noise. If three or fewer
votes are collected, we categorize the paragraph
as lacking a long answer and label it as “NONE”.
Since the judgment is done on a per-paragraph ba-
sis, multiple paragraphs may be classified as long
answers for a single question, or there may be no
long answer at all. If none of the paragraphs within
these five paragraphs qualifies as the long answer,
we infer that the document does not contain a long
answer to the question.

3.4 Yes/No Question Identification

In the following step, detailed in Section 3.5, we
extract short answers from paragraphs designated
as long answers. The task of short answer extrac-
tion varies depending on whether the question is a
yes/no question. Therefore, we first crowdsource
the judgment of whether the question is a yes/no
question. If seven or more crowdworkers judge
the question to be a yes/no question, the question
is considered as a yes/no question. If a question
receives between four and six votes, we remove it
from the dataset due to its ambiguity.

3.5 Short Answer Identification

We categorize the cases based on whether the ques-
tion is a yes/no question. For each category, we
obtain a short answer, i.e., a yes/no answer or a
span answer, using the following procedure.

Yes/No Answer Identification If the question is
a yes/no question, crowdworkers judge whether the
answer is “YES” or “NO” based on the paragraph
of a long answer. If more than seven crowdworkers
judge the answer as either “YES” or “NO”, the



Number  Length (# of chars)
Mean Max Min
Question 16,871 17.7 50 8
Paragraph 192,514 159.0 999 10
Span answer 5,463 9.6 180 1

Table 1: Numbers and lengths of questions and para-
graphs, and short answers in JNQ. The paragraphs in
this table refer to all paragraphs, including unannotated
paragraphs (i.e., considered as no long answer).

Long — EXIST AMBIGUOUS NONE
Short — | Span Yes/No NONE
5,463 143 2,280 10,866 61,536

Table 2: Statistics of paragraphs in JINQ. The total num-
ber of paragraphs is 80,288.

answer is considered as a short answer. Paragraphs
with seven or fewer “YES” or “NO” votes are con-
sidered ambiguous paragraphs, and a “NONE” la-
bel is assigned to the short answer. In other words,
this paragraph is judged to have only a long answer.

Span Answer Identification If the question is
not a yes/no question, we ask 10 crowdworkers to
extract a span answer from the paragraph. If there
is no span answer in the paragraph, crowdworkers
judge it as “NONE”. We aggregate the 10 answers
by majority voting. As a pre-process, if one an-
swer is subsumed by another, the votes are added
to the shorter one. If there is a tie with multiple
short answers receiving the most votes, the shortest
one is chosen. Furthermore, answers that receive
only one vote are considered unreliable and are not
adopted.

4 Japanese BoolQ

BoolQ (Clark et al., 2019) is a QA dataset focus-
ing on natural yes/no questions. It contains many
non-factoid questions that require a wide range of
inferential abilities to answer. Each instance con-
sists of a question, a paragraph (equivalent to a
long answer in NQ), and an answer (yes/no). The
questions and paragraphs are extracted from search
engine query logs and Wikipedia articles, like NQ.
BoolQ adopts only the questions with either yes or
no answers and pairs them with not a whole docu-
ment but a paragraph to simplify the specification.

Japanese BoolQ (JBoolQ) consists of a question,
a document, a long answer, and a yes/no answer,
like yes/no questions in JNQ. Unlike BoolQ, each
question may have multiple long answers, and the
answers can include “NONE”, which means unan-
swerable, in addition to yes/no. Therefore, it is
more challenging than BoolQ, and a deeper under-
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1 #of Number Ratio
ong answers

0 11,126  65.9%

1 4,117 24.4%

2 1,203 7.1%

3 344 2.0%

4 74 0.4%

5 7  0.04%

Total 16,871 100%

Table 3: Distribution of the number of long answers per
question in JNQ.

standing of the documents is required to answer the
questions.

We construct JBoolQ using basically the same
procedure as JNQ. Since the ratio of yes/no ques-
tions in JNQ is only around 1%, for JBoolQ, we
collect questions from a larger query log pool than
JNQ. The construction procedure is as follows. The
details of each step are described in Section 3.

1. Question and document collection*

2. Good question identification

3. Yes/No question identification

4. Long answer identification

5. Yes/No answer identification

Compared to JNQ, the order of yes/no question
identification and long answer identification is re-
versed to narrow down the candidates to the target
yes/no questions at an early stage and reduce the
annotation cost later. Finally, we merge the yes/no
questions in JNQ into JBoolQ.

5 Analysis

In this section, we analyze JNQ and JBoolQ.

51 JNQ

Statistics JNQ contains 16,871 questions. Ta-
ble 1 shows the average, maximum, and minimum
numbers of characters in the questions, paragraphs,
and short answers. Statistics on the paragraphs are
shown in Table 2. In JNQ, multiple paragraphs can
be a long answer to a single question. The distri-
bution of the number of long answers per question
is shown in Table 3. Questions with multiple long
answers account for approximately 10% of all ques-
tions and 28% of the questions with long answers.

*We change the conditions of JNQ to extract yes/no ques-
tions as follows: more than six words and ending with "?" or
“%*” (Japanese interrogative particle).



Type

Example

What T TRJUKE ] 2197842 v b U7z
(39%) What was the song that the singer Eikichi Yazawa had a hit with in 1978?
Where  MAA D] THSNBAAERH2DIEE T2
(12%) Where is Hakata Island, known for “Hakata Salt”?
When  NAR— MIERHiLANZDIZWD
(4%) When was the chrysanthemum depicted on passports?
Why HARIZIZ 2 ETUZEDRH 5 D
(4%) Why does Japan have four seasons?
Who HORR] Lotz 20MHAL 2 RERT HERFFHTL & 52
(B3%) Who is the iconic painter of the 20th century known for the *Blue Period’?
How AR =N T+ Tqra— R2FHANDS HIE
(31%) How to read qr code with smartphone
Yes/No  JFURBUDEIETHEITH 5 X %7
(3%) Can I obtain a withholding slip at the city hall?
Other ZIZH R TER SNSRI TH
(4%) How long can eggs be eaten raw in winter?
Table 4: Question types of INQ.
Number  Length (# of chars # of .
Mear% (Max Mi)n long answers Number — Ratio
Question 6,467 114 48 6 0 4,649 T71.9%
Paragraph 27,954 171.7 988 21 1 1,252 19.4%
2 414 64%
Table 5: Numbers and lengths of questions and para- 3 117 1.8%
graphs in JBoolQ. 4 31 05%
5 4 0.06%
Long — EXIST AMBIGUOUS NONE Total 0,467  100%
Short = Y?,/;jg Noé\;]; 3793 25370 Table 7: Distribution of the number of long answers per

Table 6: Statistics of paragraphs in JBoolQ. The total
number of paragraphs is 31,677.

Question Type We sampled 100 questions from
JNQ and classified them according to which wh-
word they begin with when translated into English.
The results are shown in Table 4. The most com-
mon question type is “What”, accounting for 39%.
The next most common question is “How”, ac-
counting for 31%. Of the questions asking “How”,
84% of the questions are about “How to”. In NQ,
questions starting with “How to” account for less
than 1% of the total, and thus there are more "How
to” questions in JNQ, which can be considered
more difficult to answer than fact-seeking ones.

Lexical Overlap We investigated lexical overlap.
Lexical overlap refers to the ratio of overlapping
words between a paragraph and a question. It is
reported that when this ratio is high, the model can
easily provide answers (Clark et al., 2020). Each
question and paragraph pair of JNQ was segmented
at the word level’, and lexical overlap was calcu-
lated. Lexical overlap of JNQ is 59.4%, which
is much lower than 79.5% observed in Japanese
SQuAD (JSQuAD). This result indicates that we

SWe used MeCab + IPAdic (https://taku910.github.
io/mecab/) for word segmentation.
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question in JBoolQ.

address, to some extent, the issue of annotation
artifacts, which are common in datasets such as
SQuAD, where an annotator is asked to create a
question after reading a paragraph.

5.2 JBoolQ

Statistics JBoolQ contains 6,467 questions. Ta-
ble 5 shows the average, maximum, and minimum
numbers of characters in the questions and para-
graphs. The average length of the questions is
shorter than JNQ. This is because when extracting
candidate questions from query logs, JNQ extracted
queries with eight or more words, while JBoolQ
extracted queries with six or more words to obtain
more yes/no questions. Statistics on the paragraphs
are shown in Table 6. The distribution of the num-
ber of long answers, shown in Table 7, is similar to
INQ.

Question Type We sampled 100 questions from
JBoolQ and classified them according to their ques-
tion types. We basically adopted the classifica-
tion method used in BoolQ but added two cate-
gories: “Possibility” and “Necessity”. The results
are shown in Table 8. Questions asking facts about
a specific entity occupy 31%, which is the most


https://taku910.github.io/mecab/
https://taku910.github.io/mecab/

Type Example
Possibility IR TR RETE 5
(23%) Can I charge my cell phone on the Shinkansen?
Necessity JE PR T T | s B
(11%) Do I need a seal on my resume?
Definitional FraFnenNFV =y ZIERL?
(7%) Are "National" and "Panasonic" the same?
Existence E2BFEOFIRERED S
(4%) Is there a daycare center in the Capitol?

Other General Fact JE 1V CTEULH 52

(24%) Does fatigue cause fever?

Other Entity Fact A REILBE & (3 el

(31%) Kunouzan Toshogu is a shrine?

Table 8: Question types of JBoolQ.
Task Train  Dev  Test

Long Answer Extraction 13,496 1,687 1,688
Short Answer Extraction 6,158 789 761
Yes/No Answer Identification [22,357 2,791 2,806

Table 9: Statistics of the three tasks. The number of
long answer extraction refers to the number of questions,
and the numbers of the other tasks refer to the number
of instances.

common. Questions asking about “Possibility”” and
“Necessity”, newly added categories in JBoolQ, ac-
count for 23% and 11%, respectively, correspond-
ing to a total of 1/3 of the whole dataset.

6 Experiments

6.1 Experimental Setup

We define three tasks to use JNQ and JBoolQ as
a benchmark for evaluating QA systems. From
JNQ, we introduce the following two tasks: long
answer extraction, short answer extraction. From
JBoolQ, we introduce the task of yes/no answer
identification. We also establish baselines using
competitive methods drawn from related literature.
We implement hyperparameter searches and report
the best scores. We list the statistics of the tasks in
Table 9.

Long Answer Extraction Unlike NQ, in our
dataset, there can be multiple long answers or no
long answer in a document. Thus, we consider
long answer extraction as a paragraph-based multi-
label classification task. Given a question and a
document, a system tries to select all paragraphs
with long answers. We use precision, recall, and
F1 scores for evaluation metrics.

We introduce a baseline that considers the task a
binary classification problem. For each paragraph
in the document, we input the question-paragraph
pair into the model and binarily decide whether
the paragraph is a long answer. We use Japanese
BERT (Devlin et al., 2019) and RoBERTa (Liu

64

et al., 2019) as base models®. We use two kinds of
training sets in our experiments: (1) the paragraphs
collected in Section 3.3, which contain positive
examples and hard negative examples (challenge
candidates, which have high relevance to the snip-
pet but are considered as no long answer), and (2)
all paragraphs in the documents. The ambiguous
paragraphs are excluded from both. For testing, we
use all paragraphs in the documents, aiming to be
close to real extraction scenarios.

We also evaluate human performance using
crowdsourcing in the same way as the dataset con-
struction process. We asked 10 annotators to an-
swer. If seven or more annotators agree, it is consid-
ered that the paragraph is a long answer; otherwise,
it is not. Due to cost reasons, we sampled 100
questions for human evaluation instead of using the
whole test set.

Short Answer Extraction For short answer ex-
traction, we target question-paragraph pairs labeled
as being present for long answers. Following NQ,
we exclude yes/no questions. In practice, we treat
this task as a SQuAD 2.0 (Rajpurkar et al., 2018)
like task. Given a question-paragraph pair, a sys-
tem tries to extract a span as the short answer from
the paragraph. If the paragraph has no short an-
swer, we regard this question as unanswerable and
make the target span an empty string. We use ex-
act match (EM) and character-based F1 scores for
evaluation metrics.

We treat short answer extraction as a classifi-
cation problem of whether each token in a para-
graph is an answer span’s start/end position. We
use BERT and RoBERTa as base models.

We also evaluate human performance using
crowdsourcing on the whole test set. We asked
three annotators to answer and average their scores.

Yes/No Answer Identification As described in
Section 4, unlike BoolQ, our JBoolQ dataset con-
tains three kinds of labels: “YES”, “NO”, and
“NONE”. This makes our task a multiclass clas-
sification problem. Given a question-paragraph
pair, a system tries to answer Yes/No/None. We
use precision, recall, and F1 scores on labels “YES”
and “NO” for evaluation metrics.

We use BERT and RoBERTa as base models.
Since the instances with yes/no answers are scarce,
we oversample these instances five times.

®We use the transformers library provided by Hugging
Face. https://github.com/huggingface/transformers
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Trained on Only Hard Negatives Trained on All Data
Dev Test Dev Test
Model P R F1 P R Fl1 P R F1 P R Fl1

Tohoku-BERT-base! 36.6 746 49.1 35.0 72.3 472|531 674 594 512 683 585
Tohoku-BERT-large? 39.6 709 50.8 42.1 72.1 532|539 675 599 568 662 612
Waseda-RoBERTa-base? | 42.5 738 539 44.6 74.8 5591637 73.0 68.0 642 734 685
Waseda-RoBERTa-large* | 47.1 762 582 48.6 80.9 60.7 | 579 514 545 579 483 527
Human - - - - - - - - - 463 758 575

Table 10: Performance on long answer extraction. We list precision (P), recall (R), and F1 of baselines and human
annotators. Human evaluation was conducted by sampling 100 questions from the test set.

Dev Test
Model EM FlI EM Fl
Tohoku-BERT-base 233 334 23.1 31.3
Tohoku-BERT-large 23.1 329 233 31.0
Waseda-RoBERTa-base | 41.1 499 41.7 50.1
Waseda-RoBERTa-large | 45.5 53.4 45.7 539
Human - - 51.1 625

Table 11: Performance on short answer extraction.

Dev Test
Model P R F1 P R F1
Tohoku-BERT-base 634 59.6 614 625 525 570
Tohoku-BERT-large 66.0 54.1 59.5 651 506 569
Waseda-RoBERTa-base | 58.1 56.8 57.5 59.5 562 57.8
Waseda-RoBERTa-large | 68.4 57.9 62.7 65.5 574 61.2
Human - - - 758 73.0 744

Table 12: Performance on yes/no answer identification.

We also evaluate human performance by ask-
ing 10 crowdworkers to conduct the following two
tasks. First, they check if a paragraph is a long
answer in a similar way to long answer extrac-
tion. Second, the workers judge “YES”, “NO”,
or “NONE” for a paragraph that is judged to be a
long answer. The answer with the most votes is
adopted, and if the number of the most votes is the
same, “NONE” is adopted.

6.2 Results

Long Answer Extraction We show the results
of long answer extraction in Table 10. The models
show high recall but low precision when trained
on only hard negative examples. The models’ pre-
cision becomes much higher when trained on all
data, indicating unlabeled negative examples are
also helpful to training.

Human annotators performed poorly in precision
for this task. This also indicates the possibility of
there being a few paragraphs with a long answer
within the unlabeled paragraphs (except five para-
graphs given to the crowdworkers). To tackle this
problem, a possible way is to provide the crowd-
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workers with paragraphs except for the five para-
graphs judged as “long answers” by the models
and ask them to determine whether they are long
answers. We leave this exploration for future work.

Short Answer Extraction We show the results
of short answer extraction in Table 11. Waseda-
RoBERTa-base and Waseda-RoBERTa-large per-
form well, but the scores are very inferior to
the human performance. Tohoku-BERT-base and
Tohoku-BERT-large perform poorly. When exam-
ining the outputs, we found that Tohoku-BERT's
sometimes extract the entire paragraph as predic-
tions, which leads to underperformance. Since
the paragraph is a long answer, extracting the en-
tire paragraph could also be considered correct,
but it is wrong according to our task definition.
We speculate that insufficient data caused this phe-
nomenon, considering our data is only one-tenth of
JSQuAD (Kurihara et al., 2022).

Yes/No Answer Identification We show the re-
sults of yes/no answer identification in Table 12.
The models show high precision and relatively
low recall scores, indicating that they predict a
large proportion of yes/no instances as “NONE”.
“NONE” instances make our task more challenging
than the original BoolQ, which makes our bench-
mark more valuable since advanced training tech-
niques are needed to overcome the unbalanced data
distribution and improve model performance.

Human annotators could recognize more yes/no
answers correctly than the models. This leads to a
higher recall.

7 Conclusion

We constructed two QA datasets: Japanese Natural
Questions (JNQ) and Japanese BoolQ (JBoolQ).
The questions in these datasets are collected from
query logs from a Japanese search engine and are
natural, derived from human information needs.



The annotation process was conducted through
crowdsourcing. We also defined a total of three
tasks, including long answer extraction, short an-
swer extraction, and yes/no answer identification.
We evaluated the performance of the baseline mod-
els. The constructed datasets can be used for train-
ing, evaluating, and analyzing QA and NLP mod-
els and are expected to facilitate these studies in
Japanese.
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A Examples of Good Questions

Examples of good questions obtained in Section 3.2 are shown in Table 13.

Type Example
Fact FAAOMERDHBTIEE Z?
Where are the Nazca Lines?
Reason ¥ — LD AKX AR DIZRETL & 5?
Why are beer bottles brown?
How to A i1 & b E Wik
How to keep eggplant from absorbing oil?

Table 13: Examples of good questions.

B Open-Domain NQ

From JNQ, we additionally define the task of open-domain NQ tasks and establish baselines. We show
the statistics of the task in Table 14.

Experimental Setup Following the EfficientQA competition (Min et al., 2021), which uses the NQ
dataset for open-domain question answering, we use JNQ to conduct the same task. Given a question, a
system tries to output a short answer without reference. We target questions labeled as being present for
short answers and remove questions whose answers have more than three words because we considered
these questions to be difficult to answer precisely. We use exact match (EM) for an evaluation metric.

We use retriever-reader models as baselines. We use TF-IDF and a DPR retriever (Karpukhin et al.,
2020) for the retriever and a DPR reader for the reader. We first use the retriever to retrieve 100 relevant
paragraphs to the question from a database of Wikipedia and then employ the reader to find the answer
from the retrieved paragraphs. We use DPR checkpoints from the second AIO competition’.

Results We show the results of open-domain NQ in Table 15. The TF-IDF retriever performs slightly
better than DPR on the test set. We speculate that because the average length of the questions is relatively
short, salient phrases and rare entities in the questions make DPR difficult to retrieve accurately (Chen
et al., 2022). Additionally, we found that some questions are unsuitable for open-domain QA. For instance,
there is no standard answer to questions such as “Z2 & U W EE72 < 72 5 22\ D 5> (Why don’t poor
countries disappear?) and “55 D1 DZDEDY] Y /57 (How to cut a boy’s hair?). We plan to exclude
these questions in future work.

Task Train Dev  Test
Open-Domain NQ| 2,317 298 284

Table 14: Statistics of the task of open-domain NQ. The number refers to the number of instances.

Dev  Test

EM
TF-IDF + DPR reader | 30.2 30.3
DPR 31.2 299

Table 15: Performance on open-domain NQ.

7https ://sites.google.com/view/project-aio/competition2
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Abstract

Keywords, that is, content-relevant words in
summaries play an important role in efficient
information conveyance, making it critical
to assess if system-generated summaries con-
tain such informative words during evalua-
tion. However, existing evaluation metrics
for extreme summarization models do not pay
explicit attention to keywords in summaries,
leaving developers ignorant of their presence.
To address this issue, we present a keyword-
oriented evaluation metric, dubbed ROUGE-K,
which provides a quantitative answer to the
question of — How well do summaries include
keywords? Through the lens of this keyword-
aware metric, we surprisingly find that a current
strong baseline model often misses essential in-
formation in their summaries. Our analysis
reveals that human annotators indeed find the
summaries with more keywords to be more
relevant to the source documents. This is an
important yet previously overlooked aspect in
evaluating summarization systems. Finally, to
enhance keyword inclusion, we propose four
approaches for incorporating word importance
into a transformer-based model and experimen-
tally show that it enables guiding models to
include more keywords while keeping the over-
all quality.'

1 Introduction

Summarization systems compress long documents
into shorter ones to convey important informa-
tion more effectively to readers (Rush et al., 2015;
Chopra et al., 2016). To convey all essential in-
formation correctly, it is crucial for summariza-
tion systems to include important, i.e., summary-
relevant keywords. In our analysis, human anno-
tators find that summaries with more keywords,
words that are relevant for the summary (see Sec-
tion 3), capture important information better than
the ones with fewer keywords. However, existing

'Our code: https://github.com/sobamchan/rougek.

69

Reference

A novel, hybrid deep learning approach provides the best
solution to a limited-data problem (which is important to
the conservation of the Hawaiian language)

R-1
27.45

BS
0.8718

Hypothesis 1:

We propose two methods to solve
the transliteration problem automatically,
given that there were not enough data to
train an end-to-end deep learning model.

Hypothesis 2:

We propose two methods to solve
the Hawaiian orthography transliteration
problem automatically using finite state
transducers and a hybrid neural network.

26.09 | 0.8692

Table 1: An example where ROUGE and BERTScore
(BS) can lead to misinterpretations. Although the in-
correct generation (not including the word “Hawaiian’)
in the first hypothesis is more critical than the one in
the second summary (“neural network” instead of “deep
learning”) to convey correct information, both metrics
assign a higher score to the former summary.

evaluation metrics do not explicitly take such word
importance into account. Table 1 shows an exam-
ple. Two commonly used metrics, namely ROUGE
(Lin, 2004) and BERTScore (Zhang et al., 2020),
assign lower scores to the second hypothesis even
though it contains an essential word that another
summary misses. This discrepancy, namely that
ROUGE assigns a lower score to a summary that
contains more keywords and annotators find rele-
vant, happens in 16.7% of the cases in our analysis.

In this paper, to shed light on this problem,
we propose ROUGE-K, an extension of ROUGE
which considers only those n-grams in the sum-
maries that match a set of pre-defined keywords.
We propose a simple heuristic that exploits the
common structure of summarization datasets to
extract keywords automatically, making it possible
for our metric to scale in size and domain without
additional annotation effort. Correlation analysis
reveals that there is only a weak strength of depen-
dence between our new metric and existing ones
as well as summary lengths, thus demonstrating
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that our approach can complement, rather than re-
place, previous metrics. Through a manual evalua-
tion, we find that human annotators show substan-
tially higher agreement with ROUGE-K than with
ROUGE and BERTScore on relevance, in other
words, how well summaries include important in-
formation, which is one of four commonly assessed
aspects in manual evaluations of summaries (Fab-
bri et al., 2021). This shows that while one still
would use traditional ROUGE to assess the over-
all qualities, our metric can provide a better in-
dex for evaluating the relevance of summaries. As
a showcase of this new metric, we evaluate both
extractive (Liu and Lapata, 2019) and abstractive
(Lewis et al., 2020; Dou et al., 2021; Saito et al.,
2020) state-of-the-art models on two extreme sum-
marization datasets from different domains, namely
XSum (Narayan et al., 2018) and SciTLDR (Ca-
chola et al., 2020), as well as a more traditional,
non-extreme dataset, ScisummNet (Yasunaga et al.,
2019). Besides news text (XSum), we choose sum-
marization of scientific publications (ScisummNet
and SciTLDR), since this is a domain where key-
word inclusion within summaries plays a crucial
role. Surprisingly, the results reveal that these
strong baseline models often fail to include essen-
tial words in their summaries, and that ROUGE-
K enables us to better distinguish systems’ per-
formance than alternative metrics. We also apply
our ROUGE-K to the evaluations of recent large
language models (LLMs) and show how our met-
ric better accounts for the powerful capabilities of
LLM-based summarizers when compared to tradi-
tional ROUGE metrics. Finally, As a first attempt
to address the limitations on summary keyword
inclusion, we introduce four ways to incorporate
a lightweight word importance feature into exist-
ing transformer-based models. Experiments show
that our methods can guide models to include more
keywords without any additional annotations and
negative effects on overall summarization quality.
Our contributions are the following ones:

* We introduce a new keyword-oriented evalua-
tion metric, dubbed ROUGE-K, which comple-
ments existing metrics by focusing on keywords.

We validate our metric: a) against human judg-
ments of summary relevance, b) by quantifying
its correlation to existing metrics and summary
lengths, and c) its ability to distinguish perfor-
mance among different systems.

* Our experiments on three different datasets for
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summarization of scientific and news articles re-
veal that current state-of-the-art models often
fail to include important words in summaries.

* We present experiments with four approaches
to incorporate word-importance scores into
BART and show that it can help to improve key-
word inclusion without hurting the overall sum-
marization qualities.

2 The need for another kind of ROUGE

ROUGE (Lin, 2004) is a long-running de facto
standard evaluation metric for summarization sys-
tems. It is very popular due to its high correlation
with human evaluation while keeping its simplic-
ity and interpretability. However, several works
report on its limitations (Akter et al., 2022; Fabbri
et al., 2021), one of which is that it only takes the
word surface into account and disregards semantics
(Ng and Abrecht, 2015). Because it considers all
n-gram matches to be equally important, ROUGE
fails to detect salient words that underpin a sum-
mary’s quality.

As an example, Table 1 shows two generated
summaries of the same article from the SciTLDR
dataset (Cachola et al., 2020) as well as their scores
computed by ROUGE and BERTScore (Zhang
et al., 2020), a pre-training language model based
metric. Both metrics assign a higher score to the
first summary even though it misses an important
keyword that the second summary contains. In
the case of ROUGE, this is because it favors the
longer but nonessential n-gram overlaps in the first
summary. This limitation of evaluation metrics
can mislead the development of summarization sys-
tems towards including more of longer but less
important words in summaries than truly essential
keywords. When multiple reference summaries
are available, ROUGE can assign higher scores to
words potentially more important than others by
counting n-grams that appear several times across
references, which indirectly considers word impor-
tance. However, most commonly used datasets con-
tain only one reference summary (Hermann et al.,
2015; Narayan et al., 2018). In addition, because
of its implicit nature, when a generated summary
has a different textual style (even if the semantics
of the summary did not change) from its reference
summary, the ROUGE score can easily deflate.



SciTLDR (Cachola et al., 2020)
We show that autoregressive models can generate high
fidelity images.
We introduce a new inductive bias that integrates tree
structures in recurrent neural networks.

XSum (Narayan et al., 2018)
Opec, the oil producers’ group is back in the driving seat.
Lenovo and Acer have both unveiled smartphones with
much larger than normal batteries.

Table 2: Sample reference summaries with highlights
on keywords extracted by our heuristic.

3 ROUGE-K

We present ROUGE-K, an extension of ROUGE
that exclusively focuses on essential words in sum-
maries. Its core idea is simple: ROUGE-K assesses
the proportion of keywords from the reference sum-
mary that are included in the candidate summary.
We compute ROUGE-K as:

RK — Count(kws N n-grams)
Count(kws)

where kws is a set of pre-defined keywords and
n-grams is a target hypothesis. This provides a di-
rect understanding of how well system summaries
contain essential pieces of information. ROUGE-K
is essentially a recall-oriented metric since it com-
putes coverage of keywords. While it is possible
to complement this formula with another one to
compute precision, this would give the proportion
of keywords in the candidate summary. However,
this metric would indicate how good the system is
at extracting keywords, not its summarization capa-
bilities, i.e., one could have a summary consisting
only of keywords but only marginally overlapping
with the reference summary.

Keyword extraction. An essential prerequisite
of ROUGE-K is the availability of keywords. Ide-
ally, we would like these keywords to be available
for any summarization corpus to enable the wide
applicability of our metric. A solution is thus to
extract keywords from reference summaries heuris-
tically. Nan et al. (2021), for instance, use words de-
tected by a named entity recognition (NER) model
to evaluate entity-level factual consistency in sum-
maries. However, (1) not all keywords are named
entities, (2) NER models accurate enough to be
used for evaluation are not available for all do-
mains (e.g., scholarly documents), (3) the accuracy
of NER models for documents in summarization
datasets is unknown.
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R-1 R-2 R-L BS R-K
SciTLDR  61.11 58.89 60.00 57.78 72.22
XSum 63.73 59.80 56.86 62.75 70.59

Table 3: Agreement ratios (%) of each metric and hu-
man annotator on summary relevance, computed as the
proportion of documents for which a given metric gives
the highest score to the summary judged as most rele-
vant from humans.

In this paper, we present a simple and inter-
pretable way to extract keywords. We define key-
words as the n-grams used in multiple reference
summaries, assuming that words used in multiple
human-written summaries for the same document
repeatedly should be included in system summaries
as well. First, we tokenize and lowercase the refer-
ence summaries, extract n-grams, and then remove
stopwords from the extracted n-grams. Next, we
compare n-grams from multiple references and ex-
tract those that appear in multiple references. To
capture multi-word keywords, the extraction pro-
cess starts from 10-grams to unigrams. When there
is only one reference summary available, the corre-
sponding title is used as a proxy reference which
is known to contain key information (Koto et al.,
2022; Cachola et al., 2020). Table 2 shows exam-
ples of keywords extracted by our heuristic. We
benchmark our heuristic against TF-IDF (Salton
and Buckley, 1988) and TextRank (Mihalcea and
Tarau, 2004). To this end, we take the first 100
samples of the SciTLDR development data and for
each summary, we extract the same amount of key-
words as the one from our method (i.e., we keep
the recall level fixed). We then quantify for each
method a) the average number of wrong keywords
per summary and b) the overall false discovery rate
FDR (for both, lower is better) — our hunch is that
for humans, it is easier to judge whether something
is not a keyword (i.e., a word is unquestionably
not being essential to convey the information), as
opposed to being one. In both cases, our heuristic
achieves the best performance: 0.64 vs. 0.85 and
0.94 on average wrong extractions per summary
and 0.13 vs. 0.16 and 0.21 FDR when compared
against TF-IDF and TextRank, respectively.

Agreement with human judgments. We now
perform a manual evaluation to test how well
ROUGE-K aligns with human judgements on rat-
ing the relevance of summaries (we follow Fabbri
et al. (2021) and define ‘relevance’ as the selection



of important content from the source. We focus
for manual evaluation on relevance only (as op-
posed to, e.g., Fabbri et al. (2021) considering three
other aspects) because the purpose of ROUGE-K is
to quantify how well summaries include essential
words, and thus preserve important, i.e., relevant
content, as opposed to, e.g., ROUGE taking into
account style aspects.

Our dataset consists of pairs of summaries gen-
erated using different instances of the same model
(BART), trained on each of SciTLDR and XSum
with different random seeds. To avoid ties, we
select a sample of 92 and 100, respectively from
SciTLDR and XSum, summary pairs where the
two models assign a different ROUGE-K score to
each summary. We then ask four annotators from
our CS graduate course to compare the summaries
and rank them (i.e., label the best one among the
two). We finally compute how often each evalua-
tion metric assigns higher scores to the summaries
preferred by the annotators. Results are shown
in Table 3. In line with Fabbri et al. (2021), R-1
shows higher agreement than R-2 and R-L, and
BERTScore marks a marginally lower score than
ROUGE-1. Finally, ROUGE-K shows much higher
agreement, indicating its strong ability to detect
human-preferable summarization models.

Benchmarking BART with ROUGE-K. Asa
showcase of ROUGE-K, we evaluate BART (Lewis
et al., 2020), a strong transformer-based genera-
tive language model on three different datasets:
SciTLDR (Cachola et al., 2020), XSum (Narayan
et al., 2018) and ScisummNet (Yasunaga et al.,
2019). These cover different summarization tasks
—1i.e., extreme (SciTLDR, XSum) vs. non-extreme
(ScisummNet) — as well as different domains —i.e.,
scholarly documents (SciTLDR, ScisummNet) vs.
news (XSum). Datasets details are shown in Table
4. BART models are fine-tuned on the training set
and early stopping is performed using validation
data, and finally evaluated on the test split using
the traditional ROUGE metrics and our ROUGE-
K. Table 5 shows the results. Each score is an
average of ten and three different random seeds,
respectively, for SCiTLDR and XSum/ScisummNet
(a larger number of seeds is used for SciTLDR
to obtain stable scores on its relatively small test
dataset). Although one would consider the scores
achieved by BART on ROUGE-1/-2/-L to be high,
it only reaches 41.36% and 56.14% on ROUGE-K.
In other words, a strong baseline model fails to in-
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clude half of the essential n-grams in its summaries,
unveiling a critical limitation previously missed by
standard metrics.

Correlation with summary lengths. Since
ROUGE-K is recall-oriented, it can potentially fa-
vor longer summaries, i.e., as suggested by the
overall absolute scores obtained by BART in Table
5 on non-extreme summarization with Scisumm-
Net data. To quantify this, we compute Pearson
correlations between the number of words in sum-
maries generated by BART and different evalua-
tion scores. As Table 6 shows, ROUGE-K scores
have marginally higher correlations with summary
lengths than other ROUGE (F1) metrics, although
they all are relatively weak, ranging from -0.07 to
0.17 on SciTLDR and even lower for XSum. These
results are different from those from Sun et al.
(2019), arguably because SciTLDR and XSum are
extreme summarization datasets. On non-extreme
summarization (ScisummNet), the results align in-
stead with previous findings. However, we ob-
serve the same level of moderate correlation with
the summary length between vanilla ROUGE and
ROUGE-K.

Correlation with existing metrics. To better un-
derstand the relationship between ROUGE-K and
other existing metrics, we perform an additional
correlation analysis (Table 7). R-1 (avg) computes
a R-1 for each reference given a sample and takes
the average while R-1 (max) takes only the largest
score. R-1 (avg) and R-1 (max) are the same for
XSum and ScisummNet because there is only one
reference summary in this dataset. The results in-
dicate only a moderate strength of association be-
tween ROUGE-K and existing metrics, thus pro-
viding evidence that our metric can partially com-
plement other metrics.

4 Importance-guided summarization

We next propose four ways to incorporate a soft
guiding signal into BART to enforce the inclusion
of keywords into the generated summaries.

Re-weighted encoding (RwEnc). The first ap-
proach is to modify the representations within the
model with TF-IDF scores. Concretely, we com-
pute the attention matrix in transformer layers as:

T

Vi

attention matrix = softmax ( +T)V



Documents Summaries Extracted keywords
# words # words # references # keywords average
# documents compress.
Dataset (train/val/test) per doc | per summary ratio on avg. on avg. lengths
on avg. on avg. (train/val/test) | (train/val/test) | (train/val/test)
SciTLDR 1,992/619/618 | 5,000 21.00 238.10 20/33/42 | 19/42/52 | 1.7/15/15
XSum 204K /11K /11K 431 23.26 18.53 20/20/20 | 29/29/29 | 1.5/15/15
ScisummNet 750/92/91 4,700 167.49 28.06 20/2.0/2.0 | 2.8/3.0/26 | 1.7/1.6/1.6
Table 4: Statistic of datasets and extracted keywords.
R-1 R-2 R-L R-K R-1 (avg) R-1 (max) BS
SciTLDR 43.93 22.31 36.58 41.36 SciTLDR 0.510 0.434 0.383
XSum 44.43 21.00 35.94 56.14 XSum 0.318 0.318 0.237
ScisummNet 50.75 47.30 49.73 68.95 ScisummNet 0.288 0.288 0.413

Table 5: BART performance evaluated by ROUGE-1/-
2/-L and our ROUGE-K.

R-1 R-2 R-L R-K
SciTLDR -0.102 -0.070 -0.154 0.167
XSum -0.003 -0.037 -0.075 0.057
ScisummNet 0.356 0.435 0.392 0.402

Table 6: Pearson Correlation between the number of
words in summaries and evaluation metrics.

The first term within the softmax function is from
the original transformer (Vaswani et al., 2017)
where Q and K are query and key matrices respec-
tively, and we introduce the second term 7" which is
a matrix of TF-IDF scores over the input text. This
enhances the model to propagate higher values for
the important words to the upper layers. We apply
this modification to the 0-, 4-, 8-th encoder layers,
empirically selected on the dev data.

Re-weighted generation (RwGen). The second
solution operates in the token selection phase. At
each generation step, BART computes a probabilis-
tic distribution over its vocabulary for the next to-
ken to produce. We modify this distribution by
summing TF-IDF scores so that the words with
higher scores are more likely to be selected:

score(Yu, |w<t, X, T) =
(1 —X) xscore(yy, |[wer, X) + AT

where score is a fine-tuned BART that takes previ-
ously generated words (w<;) and the source doc-
ument (X), and predicts scores which are further
transformed to the probability for the next token
at the time step ¢ by a softmax function. We intro-
duce the second term (7") which is a vector filled
with TF-IDF values for the source document. A is a

Table 7: Pearson Correlation between ROUGE-K and
ROUGE-1 average, ROUGE-1 max and BERTScore.
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Figure 1: Overview of our TDSum model.

hyperparameter with which we control how much
we shift the distribution from vanilla BART.

Multi-Task Learning with TF-IDF (TDMTL).
Another solution is to modify the objective func-
tion to ask the model to predict TF-IDF scores in
parallel with generating summaries. For this, we
compute the mean squared error as loss for TF-IDF
score prediction L;f;qr and the standard cross en-
tropy loss for summarization Lg,,,. The final loss
we minimize is the linear interpolation of the two
task-specific losses: (1 — A) Lgum + ALt figr-

Injecting TF-IDF into the decoder (TDSum).
Our last approach is inspired by Dou et al. (2021).
Since their approach requires an explicit guidance
signal (e.g., keywords), it uses additional models
for keyword extraction leading to a drastic increase
in computational costs. Instead, we propose to
use light-weight TF-IDF scores as shown in Fig-
ure 1. TDSum equips two linear layers to process
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TF-IDF scores for words in input documents and
uses resulting word importance features in newly
introduced cross-attention layers in each decoder
layer to guide the model towards keyword-oriented
summary generation. We train this model with the
aforementioned TDMTL loss.

5 Experiments and results

5.1 Experimental setup

Datasets. We experiment on different domains
and summarization tasks using SciTLDR (Cachola
et al., 2020), XSum (Narayan et al., 2018) and
ScisummNet (Yasunaga et al., 2019)

Baselines. We compare our models with three
abstractive and one extractive summarizer:

¢ BART (Lewis et al., 2020) is a transformer-based
generative language model, pre-trained with de-
noising objective function.

GSum (Dou et al., 2021) is an extension of BART
with additional parameters for processing textual
guidance signals. Here, we input overlapping
keywords, extracted as explained in Section 3.

MTL (Saito et al., 2020) performs multitask train-
ing to predict keywords in source documents in
addition to the summarization objective (we use
our extracted keywords from Section 3).

PreSumm (Liu and Lapata, 2019) is an extractive
summarization model based on BERT (Devlin
etal., 2019).

Hyperparameter tuning. We perform a grid
search for each dataset and model using the de-
velopment data and ROUGE-1 as a reference. We
test for learning rate € {1e — 05, 2e — 05, 3e — 05},
gradient accumulation € {4, 8}, number of beam
search € {2,3} and repetition penalty rate €
{0.8,1.0}. We also explore A € {0.1,0.2,0.3}
for MTL and TDMTL and A € {30,50} for Rw-
Gen. During hyperparameter search, we use one
random seed. The final reported results on the test
data are the averaged performance over models
fine-tuned with different random seeds. We use ten
seeds for SciTLDR and ScisummNet and three for
XSum. Our experiments are performed on RTX
A6000 and utilize the implementation by Deutsch
and Roth (2020) to compute ROUGE-1/2/L.

5.2 Results and discussion

We organize the discussion of our results around
the following research questions:
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* RQ1: Can models that incorporate TF-IDF
scores increase the number of keywords in the
summaries without degrading ROUGE scores?

* RQ2: Which kinds of keywords do models find
hard to include in summaries?

RQ1: TF-IDF as guidance. We present our
main results in Table 8. On the SciTLDR dataset,
BART marginally outperforms two other baseline
models on ROUGE-1/2/L.. However, MTL per-
forms the best on the ROUGE-K metric, thus show-
ing its effectiveness of explicit training guidance.
As reported by previous works (Cachola et al.,
2020; Narayan et al., 2018), an extractive model
considerably underperforms abstractive models on
all the metrics in extreme summarization since it
suffers from merging information across multiple
input sentences into its outputs. Because keywords
are also scattered over multiple sentences, it fails
to include most keywords. Three out of four of our
newly introduced TF-IDF-equipped models out-
perform vanilla BART on keyword inclusion, and
TDSum significantly outperforms all the baselines
on ROUGE-K while keeping its ROUGE scores on
par with BART. TDMTL follows the same training
procedure as MTL and learns to predict TF-IDF in-
stead of keywords. While results still improve over
BART, our results show that using hard signals
(i.e., keywords) is preferable. RwGen is simple
and fast to train, yet it includes more keywords
than BART. On XSum, BART outperforms other
baseline models on ROUGE-K. However, the MTL
model exceeds other traditional ROUGE metrics
showing that our metric can shed light on an aspect
that other metrics cannot capture. Among our pro-
posed methods, TDMTL performs well akin to the
results on SciTLDR, outperforming BART on tradi-
tional ROUGE metrics, although the BART model
still outperforms models with TF-IDF extensions
on ROUGE-K.

We see similar trends for non-extreme sum-
marization on ScisummNet, where our proposed
models are on par (sometimes outperform) with
baseline models on ROUGE metrics. All pro-
posed methods outperform all baseline models on
ROUGE-K, indicating that, even for longer sum-
maries, TF-IDF can enhance keyword inclusion.
One significant difference is that the extractive
model (PreSumm) performs better than abstractive
models on ROUGE-1/2. We speculate this is due
to much longer output summaries (181.88 words
on average for PreSumm vs. 48.01 for BART).



Model SciTLDR XSum ScisummNet

R-1 R-2 R-L R-K R-1 R-2 R-L R-K R-1 R-2 R-L R-K
BART 4393 2231 36.58 41.36 4443 21.00 3594 56.14 50.75 47.80 49.73 68.95
GSum 43.65 22.09 3650 41.00 43.86 2047 3560 52.85 2437 21.11 23.35 43.36
MTL 43.82 2224 3629 42.83 4450 21.05 36.10 56.06 50.75 47.81 49.73 68.81
PreSumm 3043 11.36 24.08 25.06 22.16 413 1591 24.67 60.58 49.15 4622 68.85
Std (1-4) 5.79 4.70 5.36 7.25 9.57 7.24 8.65 13.12 1345 11.77 11.01 11.05
RwEnc 4398 2239 36.68 41.03 4442 2093 36.07 55.58 50.75 47.92 49.89 69.40
RwGen 4396 2235 36.59 41.60 44.57 21.04 36.09 56.03 50.38 47.78 49.54 69.19
TDMTL 44.08 2248 36.75 41.85 4450 21.05 36.10 56.06 50.64 47.75 49.67 69.56
TDSum 4355 21.74 35.82 43.04 4413 2095 3557 55.39 50.50 47.63 49.55 69.43
Std (all) 4.44 3.60 4.10 5.59 7.34 5.56 6.62 10.23 9.72 8.90 8.62 8.54

Table 8: Results on SciTLDR, XSum, and ScisummNet. Best results per metric are bolded. Scores with underline
indicate that they significantly outperform all baseline models. We test for statistical significance using the Wilcoxon

signed-rank test with o = 0.05 (Dror et al., 2018).

Model Dataset IN-SRC OUT-SRC
SciTLDR 54.53 0.92
BART XSum 73.78 30.34
ScisummNet 75.21 8.17
SciTLDR 56.75 1.37
TDSum XSum 66.61 26.66
ScisummNet 75.04 14.41

Table 9: ROUGE-K scores on keywords seen (IN-SRC)
vs. unseen (OUT-SRC) in source documents.

RQ2: In search of missing keywords. We next
focus on studying the relationship between a few
specific characteristics of keywords and ROUGE-K
scores. First, we look at whether models can better
include keywords if they appear in source docu-
ments. We do this by splitting a list of pre-defined
keywords into two lists, (1) an IN-SRC keyword
list where all the keywords appear in the source
documents, (2) an OUT-SRC keyword list where
keywords cannot be found in the source documents,
and then evaluate a model with ROUGE-K using
each list. As Table 9 shows, on both datasets and
models, ROUGE-K with OUT-SRC keywords is no-
tably lower than IN-SRC ROUGE-K showing that
when keywords are not in the source texts it is chal-
lenging for models to include them in summaries.
We next investigate whether there is a correla-
tion between ROUGE-K and keyword length, that
is, whether longer keywords are more difficult to
include. Figure 2 shows that although there is one
exceptional case (N = 7), ROUGE-K scores con-
sistently decrease as keywords become longer, indi-
cating the difficulty of including longer keywords
in summaries. Another finding in this analysis is
that while BART outperforms TDSum on XSum
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Figure 2: ROUGE-K and keyword length.

when keywords with all lengths are used when the
n-grams are longer (N >= 5), TDSum starts to
surpass BART on ROUGE-K.

LLMs on ROUGE-K To shed light on the sum-
marization behaviour of recent large language mod-
els (LLMs), we evaluate an open-source model,
namely instruction fine-tuned Llama 2 (Touvron
et al., 2023) in two different sizes. The prompt used
in our experiments is “Generate a summary of the
following document in one sentence”. Due to our
limited computational resources, we cut off inputs
and outputs at 512 and 128 tokens, respectively,
and also truncate all the sentences after the first one
in the generated summary, if longer. Results are
shown in Table 10. While they perform remarkably
well on both ROUGE and our ROUGE-K given
that inferences are performed in zero-shot manner,
we observe that more than half of the keywords
are missing, calling for better prompting strategies.
On traditional ROUGE scores, which consider the



Llama2 7B
R-1 R-2 R-L R-K

SciTLDR 359 139 26.7 44.1
XSum 21.8 5.6 155 34.7
SciNet ~ 46.1 24.1 325 64.6

Llama2 13B
R-1 R-2 R-L R-K

36.3 14.6 27.8 44.4
220 5.6 159 359
46.7 25.3 33.0 69.5

Dataset

Table 10: Results with Llama2 7B and 13B.

Generated summary (a)
Input: Deep convolutional neural networks (CNNs) are
known to be robust against label noise on extensive
datasets. However, at the same time, CNNs are [...]
(https://openreview.net/forum?id=H1xmqiAqFm)
TLDR: The authors challenge the CNNs robustness to
label noise using ImageNet 1k tree of WordNet.
BART: We investigate the behavior of CNNs under class-
dependently simulated label noise, which is generated
based on the conceptual distance between classes of a
large dataset.
TDSum: We show that CNNs are more robust to class-
dependent label noise than class-independent label noise,
which is generated based on the conceptual distance be-
tween classes of a large dataset.

Generated summary (b)
Input: We explore ways of incorporating bilingual dictio-
naries to enable semi-supervised neural machine [...]
(https://arxiv.org/abs/2004.02071)
TLDR: We use bilingual dictionaries for data augmen-
tation for neural machine translation.
BART: We propose a simple data augmentation technique
to address both this shortcoming.
TDSum: We propose a simple data augmentation tech-
nique to enable semi-supervised neural machine transla-
tion.

Table 11: Summaries generated by our models.

words related to writing style, Llama performs no-
ticeably worse than fine-tuned models because fine-
tuning can help models learn reference styles from
the dataset. However, results are comparable on
ROUGE-K. This indicates that ROUGE-K can bet-
ter account for the high quality of LLMs, despite
different styles between generated and reference
summaries, which has been noticed when evaluat-
ing zero-shot models (Goyal et al., 2022).

Model distinguishability. Most if not all recent
summarization papers perform evaluations using
multiple ROUGE metrics, yet the gap between sys-
tems is very small, making it hard to distinguish
models’ performance. Inspired by work from Xiao
et al. (2022) on characterizing the distinguishability
of datasets, we compute the standard deviation of
scores from our models (cf. Section 5.1) for each
metric, to see the distinguishability of ROUGE vari-
ants (larger deviation means higher distinguishabil-
ity). As shown in Table 8, ROUGE-K achieves the

76

highest standard deviation among other ROUGE
metrics for two extreme summarization datasets,
i.e., it differentiates models better when summaries
are required to be very short. We highlight this
by means of the sample output shown in Table 11.
In (a), BART fails to include one of the keywords
‘robust’ which is necessary to convey the purpose
of the paper. In (b), the summary by BART does
not mention the task the paper worked on (in this
case, neural machine translation) while TDSum
successfully includes it.

6 Related work

In the context of factual consistency evaluation
(Kryscinski et al., 2020; Scialom et al., 2021; Fab-
bri et al., 2022), Nan et al. (2021) propose to use a
NER model to detect hallucinated named entities in
summaries. While their approach also focuses on
specific words in summaries as our ROUGE-K, it is
limited because (1) not all critical information con-
sists of named entities, (2) strong NER models are
not available in many domains, and (3) NER per-
formance is unknown for summarization datasets.
Ng and Abrecht (2015) and Zhang et al. (2020)
propose to use vector representations to compute
semantic similarity between reference and candi-
date summaries. Eyal et al. (2019) instead propose
to use a question-answering system to assess the
summary quality. While these methods can exploit
semantic knowledge stored in parameters in large
models, as a side-effect, they introduce ‘blackbox-
ness’ that hinders transparent model development.
In contrast, we take a ‘bottom-up’ approach by
proposing to focus on keyword availability.

7 Conclusion

In this paper, we proposed ROUGE-K, an extension
of ROUGE to quantify how summary-relevant key-
words are included in summaries. Using ROUGE-
K, we showed human annotators prefer summaries
with more keywords and how models often miss
several essential keywords in their output. In a va-
riety of experiments using the baseline provided
by a large pre-trained language model (BART) we
showed how ROUGE-K only moderately correlates
with ROUGE and BERTScore, thus indicating that
it can complement them, and correlates with the
length of the generated summaries on a par with
ROUGE F1 and BERTScore, despite being a recall-
oriented metric. Finally, we proposed four ways to
guide BART to include more keywords in its sum-


https://openreview.net/forum?id=H1xmqiAqFm
https://arxiv.org/abs/2004.02071

maries. We plan in future work to further test our
metric’s applicability across different domains and
languages, e.g., by relying on WikiLingua (Lad-
hak et al., 2020) and X-SciTLDR (Takeshita et al.,
2022).

8 Limitations

This work has the following limitations: (1) Our
new evaluation metric, ROUGE-K, uses a heuristic
to extract keywords automatically. Although it en-
ables to obtain better and more comprehensive key-
words compared to other existing methods, some
nonessential words are still included thus can bring
some noise into the evaluation. (2) ROUGE-K does
not take the context of keywords into consideration
which leaves the possibility open that generated
summaries with keywords still convey the meaning
of keywords wrongly. (3) Like traditional ROUGE
scores, ROUGE-K is based on hard string match,
which cannot compensate for the semantics of, e.g.,
(near-)synonyms and paraphrases.
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Abstract

Aspect, a linguistic category describing how ac-
tions and events unfold over time, is tradition-
ally characterized by three semantic properties:
stativity, durativity and telicity.

In this study, we investigate whether and to
what extent these properties are encoded in the
verb token embeddings of the contextualized
spaces of two English language models — BERT
and GPT-2. First, we propose an experiment
using semantic projections to examine whether
the values of the vector dimensions of anno-
tated verbs for stativity, durativity and telicity
reflect human linguistic distinctions. Second,
we use distributional similarity to replicate the
notorious Imperfective Paradox described by
Dowty (1977), and assess whether the embed-
ding models are sensitive to capture contextual
nuances of the verb telicity.

Our results show that both models encode the
semantic distinctions for the aspect properties
of stativity and telicity in most of their layers,
while durativity is the most challenging feature.
As for the Imperfective Paradox, only the em-
bedding similarities computed with the vectors
from the early layers of the BERT model align
with the expected pattern.

1 Introduction

Since the introduction of Transformer architectures
in NLP (Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2019), their increasing success urged
researchers to get more insights about the linguis-
tic knowledge encoded in their internal represen-
tations. The literature on probing tasks is a clear
example of this trend: a simple classification model
is asked to solve a task requiring linguistic knowl-
edge using embeddings representations extracted
from a language model (LM) with little or mini-
mal linguistic supervision, and if the classification
model is successful, one can infer that the LM’s
representations do encode the targeted knowledge
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(e.g. Tenney et al. (2019); Hewitt and Liang (2019);
Goldberg (2019); Jawahar et al. (2019); Wu et al.
(2020); Ravichander et al. (2020); Madabushi et al.
(2020); Chen et al. (2021); Koto et al. (2021); Be-
linkov (2022), inter alia).

An alternative approach, especially popular for
probing the semantic knowledge contained in the
embeddings, involves mapping them onto human-
interpretable features (Chersoni et al., 2021; Proi-
etti et al., 2022; Wang et al., 2023). Yet the probing
methodology involves a trainable classifier, and
therefore the relation between the probe results
and the knowledge in the original representations
is not always clear (Levy et al., 2023). Moderate
correlations with human ratings/norms can some-
times be obtained even by using random vectors as
features (Chersoni et al., 2020), and thus alterna-
tive methods for directly analysing/modifying the
structure of the semantic space have been proposed
(e.g. indicator tasks, Levy et al. (2023)). A recent
study by Grand et al. (2022) introduced the usage
of semantic projections to interpret the content of
word embeddings, by constructing subspaces cor-
responding to human-interpretable semantic scales.
Such semantic scales were shown to be very use-
ful in modeling human judgements for a variety of
concepts in the semantics of nominals (Grand et al.,
2022; Diachek et al., 2023).

In our paper, we focus on aspect, a concept in
verb semantics that characterizes the temporal re-
lationship of actions and events. Aspect has been
shown to be important in several NLP tasks, such
as next event prediction (Chambers et al., 2014)
and textual entailment (Kober et al., 2019). Com-
bining the usage of semantic scales and embedding
similarity measurements, in two experiments, we
address the question of whether and to what the ex-
tent the contextualized word embeddings produced
by LMs encode the aspectual properties of stativity,
telicity and durativity. In the first experiment, we
use semantic scales to quantify the values of the
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three aspectual properties in the verb token embed-
dings produced by different hidden layers of BERT
and GPT-2. We examine whether the projected
scores reflect the binary distinction in the aspectual
properties of the verbs described by Vendler (1957),
assuming that verbs having different values for a
property (e.g. telic vs. a) should have significantly
different scores. To our knowledge, we are the first
to adopt the semantic scales method for modeling
verb semantics. In the second experiment, we ex-
amine the similarity between simple past and past
progressive forms of telic and atelic verbs that ex-
press activities and accomplishments. According
to the Imperfective Paradox in Dowty (1977), the
past progressive of activity verb entails its simple
past, while this entailment does not hold for ac-
complishment verbs. Again, we extracted the verb
token embeddings from different internal layers: if
a BERT/GPT-2 embedding from a given layer cor-
rectly encodes telicity, we expect that the similarity
between past progressive and simple past of an ac-
tivity verb will be higher - since the former entails
the latter- than between the two corresponding past
forms of an accomplishment verb.

We found that both LMs are capable of consis-
tently encoding aspectual features, especially for
stativity and telicity. However, BERT was more
sensitive to the nuanced difference in telicity, as we
found in the Imperfective Paradox experiment. Our
findings reveal the extents to which prototypical
LMs encode core verb properties, which has impor-
tant implications for selecting LMs for downstream
fine-tuning. For example, based on our results, we
can hypothesize that fine-tuning BERT-family mod-
els may be proven more beneficial for improving
the performance of textual entailment.

2 Related Work

In the semantics literature, verb aspect is generally
characterized in terms of three properties: stativity,
telicity and durativity (Moens and Steedman, 1988;
Prus et al., 2024).

Stativity refers to the distinction between states
and events. Verbs of high stativity generally cannot
be used in progressive forms: for example, it is not
possible to use ‘I am knowing/loving’. In compari-
son, verbs of low stativity can typically be used in
progressive forms (e.g. ‘I am running/swimming’).

Telicity refers to whether an event unfolds in
time in an homogeneous way, and whether any
part of the process is of the same nature as the
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whole. Telic verbs can often be collocated with
‘in” adverbial phrases but not with ‘for’ adverbial
phrases; e.g. ‘eat’ can be used in ‘He ate the apple
in a minute’ but not in ‘He ate the apple for a
minute’. Notice that verbs of this type describe
actions/events with a natural end point (e.g. the
moment in which the apple is finished). The use of
‘in’ signifies that the action (of eating the apple) is
completed within a specific timeframe. In contrast,
atelic verbs usually collocate with ‘for’ but not with
‘in’, e.g. ‘He was running for an hour’ but not ‘He
war running in an hour’.

Finally, durativity refers to how long an event
lasts. Durative actions like ‘love’ can be questioned
by ‘How long have you loved her?’, but punctual
actions like ‘recognize’ cannot be questioned in a
similar way ("How long have you recognized her?’
sounds odd without additional context). These ex-
amples show that a verb can vary along the three
dimensions. For example, ‘love’ is simultaneously
stative, durative, and atelic.

The work conducted by Friedrich and Palmer
(2014) focuses on the automatic classification of
verb stativity in context, using a combination of
distributional and manually crafted linguistic fea-
tures. It is one of the first to introduce a dataset
of annotated sentences specifically for this feature.
Friedrich and Gateva (2017) expanded on this work,
by releasing datasets also for telicity and durativ-
ity with gold and silver annotations; the latter was
automatically extracted from a parallel corpus be-
tween English and Czech texts, exploiting the fact
that Czech aspectual features are signaled with spe-
cific morphological markers. Kober et al. (2020)
proposed an approach based on compositional dis-
tributional models to distinguish between stative
and dynamic verbs, and between telic and atelic
ones. Interestingly, their classification results con-
firmed that the tense is always a strong indicator of
telicity; in particular, past tense is often correlated
with telic events.

Cho et al. (2021) presented a study on using
BERT surprisal to model human typicality ratings
of the location arguments in natural language sen-
tences, which were shown in the studies by Ferretti
et al. (2001, 2007) to be strongly related to verb
aspect: humans show priming effects for typical
locations in sentences, but only when the tense of
the main verb is progressive (or, in other words, the
description of an action as ongoing makes the loca-
tion argument more salient for human conceptual
representations). BERT surprisal scores showed



some sensitivity to the aspect of the verb, although
they produced human-like patterns only when the
entire sentence context other than the verb and the
location were masked.

More recently, Metheniti et al. (2022) reported
a classification experiment on telicity and durativ-
ity on English and French, suggesting that Trans-
former models encode a non-trivial amount of
knowledge of aspect even before fine-tuning, al-
though they have biases regards verb tense and
word order. Finally, Liu and Chersoni (2023) pre-
sented a modeling study of the shortening effect
that the usage of light verb constructions has on the
perceived duration of event descriptions, and they
also used the semantic scales method by Grand
et al. (2022) to project BERT vectors onto inter-
pretable dimensions. They showed that certain
type of events (e.g. punctive) have smaller values
in their DURATION-related dimensions when ex-
pressed in the light verb form (e.g. fo give a kiss
takes less time than 7o kiss).

3 Experiment 1: Measuring Aspect
Properties with Semantic Scales

In the first experiment, we select a set of verbs
from the study by Vendler (1957). For each of the
three aspect properties, the verbs are divided into
two groups: stative versus dynamic for stativity,
telic versus atelic for telicity, and punctive versus
durative for durativity.

Our primary goal is to construct a semantic scale
for each property, and then to project the word em-
beddings of the verbs on the semantic scales, in
order to assign them scores of stativity, telicity, and
durativity. If the distributional space effectively
captures the different value that a verb can express
with respect to a given property (e.g. telicity), we
expect the scores for the verbs of the two groups to
be different (e.g. telic verbs should have consider-
ably higher scores on the telicity scale compared to
atelic verbs).

3.1 Verb Selection

To begin, we selected verbs based on the catego-
rization in Vendler (1957) that divides verb into
four classes: state, activity, accomplishment, and
achievement. These classes often show differences
in one crucial verb property while sharing similar-
ities in other properties. For example, state verbs
and activity verbs differ in stativity but are similar
in terms of telicity and durativity. Therefore, state
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verbs and activity verbs can represent two extremes
of stativity, with state verbs representing more sta-
tive nature and activity verbs more dynamic. Simi-
larly, we used the ’accomplishment-activity’ con-
trast to capture telicity, and the *accomplishment-
achievement’ contrast to capture durativity. Select-
ing representative verbs for each extreme in this
controlled manner can ensure that the constructed
scales reflect the difference in the target property as
much as possible. For each category, we prompted
the ChatGPT online interface to generate 50 ex-
emplars, and manually verified the results (See the
Appendix for the full list of the experiment items).

3.2 Scale Construction

We followed Grand et al. (2022)’s method of iden-
tifying semantic scales from vector spaces. To
obtain an ‘out-of-context’ representation for each
target word, we averaged their contextualized em-
beddings from a sample of 20 randomly selected
sentences from the British National Corpus (BNC)
(Leech, 1992)". If the target token was not included
in the base vocabulary of a model and was split into
sub-tokens, we used the average of the sub-tokens’
embeddings as the representation for the target to-
ken. The same method was consistently applied in
this study when extracting the representation for a
target word in context.

Next, for each target property, we randomly sam-
pled three words from the word lists to represent
each extreme of the scale and we clustered their
out-of-context embeddings, following the setup of
the original study by Grand et al. (2022). For exam-
ple, we sampled three words from the state verbs
(e.g. exist, lack, matter) and three words from
the activity verbs (dance, walk, drive) to represent
the extremes of stativity. The authors recommend
using this clustering step in order to avoid biases
specific to the lexical meaning of a single word.

Finally, we constructed the scales by subtracting
the embedding of one extreme by another extreme.
This yielded a vector that represents the scale of
values for a specific target property from one ex-
treme to another. Since we had three target words
for each extreme, we could construct nine scales
based on different extreme pairings and average
them to generate the final scale, which is meant

"Vulié et al. (2020) actually showed that sampling more
than 10 contextualized instances leads to little differences in
the representation. However, to ensure more robust results,
we still chose to use 20 instances to build each out-of-context
representations



Figure 1: Semantic projection of verbs on stativity scale constructed by the 12th layer embeddings from BERT

to prevent the scale from being heavily influenced
by the specific choice of antonym pairs (Grand
et al., 2022). For example, if we used ‘admire’,
‘appreciate’ and ‘dislike’ to represent stative ex-
treme, and ‘swim’, ‘dance’ and ‘jog’ to represent
the dynamic extreme, we could have nine pairs,
like [’admire’ - ’swim’], ["admire’ - ’dance’] and
[admire’ - ’jog’], and subsequently average them
to get the final scale.

3.3 Semantic Projection

After we constructed scales for the verb prop-
erties (henceforth as statfvity, durazivity, and
telizity), we assessed the validity of the scales by
projecting other verbs onto the scales. Our hypoth-
esis was that if the scale accurately reflected the
semantic distinctions of the verbs in terms of the
target property, the projection scores of one group
of verbs would be significantly different from their
semantic opposites. For example, we expected
that the projection scores of the stative verbs on
stativity to be significantly different from the pro-
jection scores of the dynamic verbs.

The projected verbs for projection are all the
verbs in the original lists that are not used to build
the scale extremes. For example, if we initially had
fifty candidates for representing the one semantic
extreme of a target property, we sampled three of

&3

them to represent the extreme, and then we used
the remaining 47 words for projection. Therefore,
for each property, we had in total 94 words for
projection and difference testing.

To project the verbs on the scale, we used the
standard scalar projection formula as follows:

target - prop_érty

Proj(target) = =
[property]|

The aggregated vector of each target event is
denoted as tar—g>et. The result of projection is a
scalar value, and a larger value indicates a higher
degree of the property represented by the scale.
Figure 1 provides a visualization of examples of
semantic projection for the stative vs. dynamic
opposition in a three-dimensional space.

After the projection, we analyzed the difference
in the projection scores for the two verb groups for
each scale, and we saw a significant difference as
evidence that a model is able to set apart the verbs
according to a specific semantic dimension (e.g.
we expect stative and dynamic verb to differ signif-
icantly in their stat;vity scores). Specifically, we
compared the projection scores of the verb groups
for each scale by using the Mann-Whitney U statis-
tical test (we chose a non-parametric test because
the projected scores from some of our extraction
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experiments were not normally distributed).

3.4 Embedding Models

To obtain the contextualized embedding represen-
tations, we used the pre-trained BERT (’bert-base-
uncased’) (Devlin et al., 2019) and GPT-2 Base
("openai-community/gpt2’) (Radford et al., 2019);
both of them are available on HuggingFace”. The
first model is a bidirectional, encoder-only Trans-
former, typically used for classification tasks, while
GPT-2 is a unidirectional, decoder-only Trans-
former and it is often used for generation. The
extraction of verb token embeddings was imple-
mented in Pytorch. For verbs that were not in-
cluded in the Transformers’ vocabulary and were
splitted in multiple subtokens, we obtained a single

2bert-base-uncased” can be found at: https:
//huggingface.co/google-bert/bert-base-uncased,
"gpt2-base’ can be found at: https://huggingface.co/
openai-community/gpt2
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embedding via mean pooling of the embeddings of
the subtokens. To have a finer-grained understand-
ing of how Transformers encode verb properties,
we ran the experiment by extracting the embed-
dings from all the 12 internal layers. As pointed out
by Tenney et al. (2019), early Transformer layers
tend to encode more permanent, ‘out-of-context’
features of a word (e.g. POS, syntax), while later
layers tend to encode context-dependent seman-
tics. Even if contextualized embeddings are able to
model aspect properties, indeed, one may still be
interested in understanding in what layers are best
at separating the two verb groups for each property.

3.5 Results of Experiment 1

Figure 2 and Figure 3 show the layer-wise dif-
ference of projection scores of verbs of different
groups on three semantic scales for BERT and GPT-
2, respectively, and the dots indicate that a signifi-
cant difference between the two groups at p < 0.05


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2

for the Mann Whitney U Test. More detailed infor-
mation for scale construction and projection can be
found in Appendix A.

In both Transformer models, stativity is by far
the property that is better encoded (blue line): it can
be observed, indeed, that the differences between
stative and dynamic verbs are almost always signif-
icant across layers. This is not a surprising finding,
as the difference between states and events is prob-
ably one of the main distinction in verb semantics.
In the BERT model, the absolute difference be-
tween the scores of the two groups is the largest
across properties and it is statistically significant in
all layers; in GPT-2 the difference widens in deeper
layers and remains significant for all of them.

As for telicity (green line), although the projec-
tion scores of telic and atelic verbs are closer than
stative and dynamic ones, the differences are still
significant for all the BERT layers. For GPT-2, the
difference in telicity becomes more salient as in
deeper layers and finally drops in the last one, the
only layer in which it is not significant. Durativity
(orange line) is the most challenging property to
model, with BERT managing to set the two groups
apart in the first layer, around the middle layers (4-
6) and in some of the later layers (8 and 10). The
GPT-2 model can distinguish the two groups in the
early (layer 1-4) and in the middle layers (layer 6;
8-9), but it fails to do so in the later layers.

It can be seen that later layers of both models are
less consistent in discriminating the verb groups
across different properties. Probably, in the later
layers the embeddings become too context-specific
to reflect the distinctions: the issue could be pos-
sibly related to the anisotropy of contextualized
vector spaces (Ethayarajh, 2019), that is, the ten-
dency for the representations to occupy just a small
cone of the vector space, with the result that the
similarities even between randomly sampled words
tend to be very high. Interestingly, it has been re-
ported than GPT-2 tends to have a much higher
degree of anisotropy than bidirectional models in
the later layers (Ethayarajh, 2019), which could ex-
plain why the performance of BERT is more stable
and consistent across properties and layers.

4 Experiment 2: Modeling the
Imperfective Paradox with
Distributional Similarity

Our first experiment showed that the models gener-
ally have a good grasp of the semantic distinctions
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related to the three main aspectual properties. In
our second experiment, we test if the distributional
similarities between verb token embeddings reflect
the entailment properties of telic and atelic verbs
when we manipulate their tense. With this goal
in mind, we aim at replicating the Imperfective
Paradox described by Dowty (1977). In his work,
Dowty focuses on the opposition of activities and
accomplishments in the past progressive and in the
simple past tense, as in the following example:

(1) a. Maria was singing the national an-
them = Maria sang the national an-
them (activity - atelic)

b.  The children were building a sandcas-

tle V= The children built a sandcastle
(accomplishment - telic)

Given that our models encode telicity in the em-
bedding representations, we extract the token verb
embeddings for the verbs in the provided sentence
pairs in a. and b., and for each verb we measure the
distributional similarity to itself when used in the
other tense. Our hypothesis is that the similarity
will reflect the entailment relation between the two
statements. Specifically, we expect the similarity
to be significantly higher for activities than accom-
plishments, since the simple past is entailed by the
progressive in the former, but not in the latter case.

Similar to the previous experiment, we used the

‘accomplishment-activity’ contrast to define telicity,

e.g. accomplishment verbs are telic while activity
verbs are atelic. For these two groups, we used the
same verbs from Experiment 1. For each group, we
constructed 100 pairs of simple/progressive past
sentence pairs, resulting in a total of 200 pairs.

Initially, we extracted sentences from the BNC
that contained the target verbs in the simple past
tense, and for each sentence we created an equiva-
lent sentence in the past progressive by changing
the verb’s aspect. For telic verbs, we used word
types from the ‘accomplishment’ verb class, while
for atelic verbs, we used word types from the ‘activ-
ity’ verb class. In total, we collected 100 samples
for each verb group. For each verb type in the lists,
we randomly sampled 10 sentences in which the
verbs are in the form of past particle, and filtered
those sentences that are marked as passives rather
than simple past sentences. The remaining sen-
tences were evaluated by the authors and deemed
less suitable for aspect conversion. We also made
sure that each verb type occurred at most 5 times
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telic and atelic groups. Dots mark the layers in which the similarity scores differ significantly between two groups.

in the sample after filtering, to prevent the results
from being too influenced by specific verb types.

As a result, we obtained 100 instances for the
telic (32 verb types) and atelic group respectively

(21 verb types). 3 The sentences in each pair are

exactly the same, except for the main verb tense *,

and we also manually checked that they did not be-
come incoherent due to the aspect conversion.Once
obtained the sentence pairs, we extracted the verb
embeddings from each of them by using Pytorch.

3Notice that, after the filtering procedure, for several verb
types we did not have any sentences left in the sample. Still,
we considered the existing sample size as sufficient for statis-
tical testing, and the diversity of verb types as high enough to
make generalizations about the population.

“For a small number of cases (7 sentences in total) we
had to adjust the additional context, as they have verbs linked
by coordinate conjuctions, e.g., to convert ‘shopped’ in ‘She
walked and shopped’ to ‘was shopping’ we had to change the
aspect of ‘walk’ to make the sentence coherent.
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For the sentences with the verb in the past progres-
sive, we used the embedding of the progressive
form, not including the auxiliary (e.g. from The
children were building a sandcastle, we extract the
embedding of building).Once again, embeddings
for multi-token verbs were obtained via mean pool-
ing of the embeddings of the subtokens. The simi-
larity between embeddings was computed with the
standard cosine metric and with Spearman correla-
tion: we chose the latter as an additional measure
because of the notorious issue of the anisotropy of
contextualized vector spaces, as rank-based metrics
were shown to be more robust to anisotropy and
more consistently correlated with human similarity
judgements (Timkey and van Schijndel, 2021).



4.1 Results of Experiment 2

Figure 4 and 5 show the two models’ layer-wise
semantic similarities of the target words in simple
past/past progressive pairs for the telic and atelic
groups, respectively; the dots on the figures indi-
cate significant differences at threshold of p < 0.05.
Unlike the previous experiment, more striking dif-
ferences between BERT and GPT-2 are observed.
Specifically, for BERT, the cosine similarity be-
tween the target words with different aspect fea-
tures gradually increase across the layers. More
importantly, the similarity in the telic group was
constantly lower than the similarity in the atelic
group, although the difference was only significant
in the first four layers. This aligns with our hypoth-
esis that telic verbs show difference in entailment
compared to atelic verbs, and this difference is
reflected by the distributional similarity between
word vectors.

In contrast, GPT-2 embeddings behave in an un-
expected way. The similarity in the telic group was
almost always significantly higher than the atelic
group across all the layers, except for the first and
the final one. Additionally, the general similarity
between the verbs in the two tenses is higher for
GPT-2 than for BERT, and it gets very close to 1 in
the later layers - which complies with Ethayarajh
(2019)’s finding that the embeddings of autoregres-
sive models are much more affected by anisotropy.

With Spearman, we observe that the scores are
generally lower, which confirms the higher robust-
ness to anisotropy of this metric. We can see that
the similarities for BERT follow a similar pattern,
with some additional significant differences in layer
5 and in the last, more contextualized layer; on the
other hand, with GPT-2 the significance pattern is
totally reversed, as it becomes significant only for
the last layer. Once again, and surprisingly, telic
verbs are more similar than atelic ones.

In general, the BERT model is the only one that
approximates the expected behavior, with the atelic
verbs having higher self-similarity in both tenses.
Our results also confirm the recent finding that
embeddings from autoregressive models are much
weaker for similarity tasks, possibly because of
anisotropy and of the lack of encoding of the in-
formation from later tokens (Springer et al., 2024).
Specifically, GPT-2 similarities, indeed, appear to
be more unstable across metrics and heavily af-
fected by anisotropy (all the scores are increasingly
close to 1 in the later layers).
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Interestingly, in BERT, the difference tends to
be significant only in the earlier, less contextual-
ized layers. One possible explanation is that the
model may be too "distracted" by the context in
later layers. It has been reported that the capacity
of BERT to reproduce human behavior in tasks re-
lated to verb semantics (e.g. selectional preference
modeling, Metheniti et al. (2020); thematic fit esti-
mation, Cho et al. (2021)) may improve by simply
applying attention masks to the context words other
than the verb and its arguments, which prevents the
model from focusing on other elements of the sen-
tence. Another possibility is that the semantics
of these verbs in context is more ambiguous than
traditionally assumed by linguists. In such cases,
the decision about the existence of an entailment
relation between progressive and simple past may
not be straightforward even for humans (the results
of Prus$ et al. (2024) seem to go in this direction.
Please also refer to the Limitations section).

We also conducted a qualitative analysis to iden-
tify cases whose similarity scores deviated from
the majority examples. Specifically, we focused
on BERT embeddings from layer 4, which was the
last layer for which the difference in similarity was
significant for both metrics. We defined outliers as
data points with a z-score lower than -2 or higher
than +2. Interestingly, we found no outliers for
the telic group, while several outliers in the atelic
group were found.

We further examined these outliers by projecting
their past progressive form onto the three property
scales, and found that besides being low in telicity,
they generally have high durativity values (see also
Figure 6 in the Appendix). Therefore, the conver-
sion into the simple past form not only made them
more ‘bounded’ by a natural end (i.e. increase in
telicity), but also shortened their duration (i.e. de-
crease in durativity), which in turn led to lower
similarity between the two aspectual forms. This
finding is supported by an examination of the con-
texts of these outliers. For example, ‘shop’ in ‘We
were shopping in village stores as we went along,
and my diary lists items of food bought rather than
consumed’ has low telicity and high durativity, but
it has high telicity and low durativity in its simple
past counterpart, as the former suggests that the
shopping may last for the whole walk, while the
latter suggest that they might be several times of
quick shopping. Thus, in such cases telicity is not
the only determinant of verb behaviour: the context
might coerce the verb into wider meaning changes.



5 Conclusion

In our study, we presented an analysis of the con-
textualized verb embeddings of BERT and GPT-2
to assess to what extent they encode semantic dis-
tinctions related to the three aspectual properties
of stativity, telicity, and durativity. Our first exper-
iment, making use of the technique of the projec-
tion on a semantic scale by Grand et al. (2022),
showed that both models could consistently distin-
guish verbs with different values for stativity and
telicity, but faced more challenges with durativity,
and gave less consistent results. To our knowledge,
this study is the first that applies the method of se-
mantic scales to analyse features of verb semantics.

As an additional contribution, we used the distri-
butional similarities between the simple past and
the past progressive of telic and atelic verbs to
‘recreate’ the Imperfective Paradox (Dowty, 1977)
in a contextualized vector space. We showed that
only the BERT model in the early layers reflects
the distinction proposed by the theory — Progres-
sive forms of atelic verbs, which entail their simple
past, are more similar to the simple past than the
corresponding forms of telic verbs.

Limitations

Our work suffers from some obvious limitations:
first of all, we run our experiments on English,
so we cannot be sure that Transformer models for
other languages would show similar patterns in
encoding aspect properties; secondly, we focused
on two types of architectures, BERT and GPT-2,
but due to the limitations of our computational
resources we could not test the more recent Large
Language Models (Wei et al., 2022).

Finally, both of our experiments assume binary
distinctions in natural language semantics, with
regards to the aspect properties in Experiment 1
(stative vs. dynamic verbs, telic vs. atelic, punctive
vs. durative) and with regards to the entailment in
Experiment 2 (either the past progressive of a verb
entails its simple past, or it does not). However, this
is likely to be just a simplifying assumption: for
example, the ratings collected by Prus§ et al. (2024)
suggest that humans tends to disagree about the
entailments of verbs with the same telicity features.
Future studies on the topic might need to adopt a
perspectivist approach to account for differences in
human semantic intuitions (Cabitza et al., 2023).
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A Verb Lists for Experiment 1

The verbs selected for Experiment 1 -divided
into States, Activities, Accomplishments and
Achievements- can be found in Table 1.

B Qualititative Analysis of Experiment 2

As a complement to the final qualitative analysis
in Section 4.1, Figure 6 shows an illustration of
the projection of the embeddings of Experiment
2 onto the three semantic scales that we used for
Experiment 1. Outliers are displayed in red.
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State Activity Accomplishment | Achievement
admire dance construct discover
cherish play compose recognize
dislike jog win reach
fear swim deliver spot
perceive draw encode quit
pertain sing bond forfeit
savor cook rebuild explode
wish travel harvest solve
disagree study decorate die

deny read complete notice
exist run bake arrive
lack chat translate find
concern explore repair retire
depend listen fall cure
equal cycle illustrate hire
involve push produce espouse
possess hunt train score
rely knit freeze break
signify garden thrive invent
vary exercise drown crack
value sketch organize finalize
hope juggle renovate overcome
weigh weave navigate disappear
regret drift install detect
know browse educate unlock
appear shop cultivate depart
imply wait assemble ignite
matter daydream | migrate collide
include hike generate elect
respect fish formulate vanish
appreciate | wander activate baptize
resemble babble unveil capture
contain shiver fabricate resign
desire walk distill convince
envy glow master enlist
remember | lounge establish marry
forget march restore quantify
mean quarrel digitize provoke
believe drive synthesize succumb
have whisper innovate withdraw
suspect celebrate | craft originate
adore drum demolish conquer
understand | giggle export divorce
belong hum forge emerge
doubt nap launch hop

owe guard implement erupt
seem rehearse refurbish plunge
prefer watch paint shatter
consist sail upgrade topple
need relax recover unravel

Table 1: Verb list for Experiment 1
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Abstract

Research in Language & Vision rarely uses
naturally occurring multimodal documents as
Wikipedia articles, since they feature complex
image-text relations and implicit image-text
alignments. In this paper, we provide one of
the first datasets that provides ground-truth an-
notations of image-text alignments in multi-
paragraph multi-image articles. The dataset
can be used to study phenomena of visual lan-
guage grounding in longer documents and as-
sess retrieval capabilities of language models
trained on, e.g., captioning data. Our analy-
ses show that there are systematic linguistic
differences between the image captions and de-
scriptive sentences from the article’s text and
that intra-document retrieval is a challenging
task for state-of-the-art models in L&V (CLIP,
VILT, MCSE).

1 Introduction

Research in Language & Vision (L&V) aims at
building models that ground language in the visual
modality and therefore requires datasets that align
text and images. To date, most work in L&V uses
datasets that have been obtained via annotation of
images in a way that image and text are aligned
by construction as in, e.g., image captioning or
VQA datasets (Thomee et al., 2016; Lin et al.,
2014b; Young et al., 2014a). Multimodal image-
text data that occurs “in the wild”, as in, e.g., arti-
cles, recipes, comics, etc., is less commonly used
since their image-text relations are much more com-
plex (Bateman, 2008) and the alignment of images
and text is often left implicit. Existing work on pro-
cessing image-text alignment in multi-modal doc-
uments has usually been unsupervised, facing the
challenge of missing evaluation and training data
(Hessel et al., 2019). For this reason, it is unclear to
what extent state-of-the-art (multi-modal) language
models can discover text-image alignments in com-
plex multi-image multi-paragraph documents and
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to what extent grounding capabilities in these mod-
els are biased by specific linguistic properties of an-
notated captions. With this work, we contribute to
closing this gap and provide one of the first datasets
that provide ground-truth annotations of image-text
alignment in complex multimodal documents.'

Figure 1 shows a paragraph from the Wikipedia
article on the Reims Cathedral?, illustrating some
of the complexities that can arise in text-image
alignment in real multimodal documents. The para-
graph contains highly descriptive sentences that
refer to visual elements of the building shown in
corresponding images. Thus, in this example, three
sentences from the same paragraph match three
different images, but there is no explicit alignment
between sentences and images (e.g. through ref-
erences). The paragraph also contains sentences
that are not descriptive and do not match any of the
images. At the same time, the images are accom-
panied by captions that briefly describe the image
content and make it easier for the reader to estab-
lish its relation to the main text. Furthermore, this
paragraph is embedded in a much longer document
which contains many more, possibly matching im-
ages of this building. These alignment patterns
between images and sentences in a longer text as
well as captions of these images and correspond-
ing sentences have, to date, not been extensively
studied in L&V research and there is currently no
available dataset that provides annotations for text-
image alignments in Wikipedia articles.

In this paper, we conduct an annotation study
on an existing dataset of multimodal Wikipedia
articles on buildings, WikiScenes (Wu et al.,
2021), and enrich the dataset with annotations of
alignments between textual elements (sentences,
paragraphs) and images. Since the articles in

The dataset is available here: https://github.com/
clause-bielefeld/wikiscenes_descriptions

Zhttps://en.wikipedia.org/wiki/Reims_
Cathedral
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Figure 1: A highly descriptive paragraph and corresponding images from the Wikipedia article on the Reims
Cathedral. Sentences that match an image are highlighted in the same color as the caption of the respective image.

Wikiscenes are about visual entities from the do-
main of historical buildings, they feature text that
is at times highly descriptive and, thereby, com-
parable to caption-like descriptions (see, e.g., the
mention of the facade of the Reims Cathedral in
Figure 1). We restrict our annotation study to de-
scriptive relations between text and images, i.e. tex-
tual elements that describe visual content shown in
an image within the article, refraining from includ-
ing more complex discourse relations involving
complementary relations and others (Kruk et al.,
2019). To deal with the fact that the articles are
rather long and contain many images, we introduce
a two-step annotation procedure, where we first
ask annotators to skim the article for relations be-
tween paragraphs and images, and then annotate
sentence-image alignments in a second step.

The dataset we obtain from our annotation set-
up, WikiScenes with Descriptions, can enhance re-
search on visual language grounding in longer doc-
uments and assess grounding capabilities in lan-
guage models. Our initial analyses in this paper fo-
cus on understanding how the descriptive sentences
that occur within the main text and that match a
particular image differ from captions of that image.
We also experiment with baseline intra-document
retrieval to evaluate L&V models on image-text
alignment in our dataset. These analyses address
the following research questions:

* Do descriptions of images in articles show
different linguistic properties than captions of
the corresponding images?

* Do the original captions in Wikipedia dif-
fer systematically from captions generated by
captioning models?
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* Can similarity-based retrieval based on the
images’ captions serve as a robust baseline for
image-text alignment?

* How does image-sentence retrieval baselines
with pretrained VILT (Kim et al.,, 2021)
and CLIP (Radford et al., 2021) compare to
caption-sentence retrieval?

Our analyses reveal systematic linguistic differ-
ences between the image captions on the one and
descriptive sentences from the article’s text at both
linguistic and conceptual levels. We show that our
dataset can serve as a challenging benchmark for
image-text alignment in long documents.

2 Background

Our data collection is related to other efforts fo-
cused on multi-modal articles, e.g., WikiCaps
(Schamoni et al., 2018) and WIT (Srinivasan et al.,
2021), or datasets for news image captioning (Liu
et al., 2020; Biten et al., 2019; Hollink et al., 2016).
In comparison to these, our extension of Wu et al.
(2021)’sWikiScenes features more detailed annota-
tions of grounded text spans within sentences of the
main text. Annotation of relations between spans
or entities in longer text is generally challenging, as
discussed in, e.g., work on coreference (Ghaddar
and Langlais, 2016; Bamman et al., 2019). An-
notation of multi-modal documents further comes
with the significant complication that the number
of possible combinations of text spans and images
increases quadratically with the length of the text
and the number of images.

There is some work on L&V datasets and tasks
that capture more varied semantic or discursive re-
lations between image and text: Kruk et al. (2019)
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Figure 2: Illustration of the overall annotation procedure for the WikiScenes with Descriptions datasets, showing
different levels and modalities of the annotation scheme

tag the image intent in multi-modal Twitter posts,
distinguishing between intents like ‘provocative’,
‘expressive’ or ‘promotive’. Their annotations as-
sign a global label to the image which captures the
relation to the text as a whole. This goes beyond
literal image descriptions but still does not capture
structurally diverse referential relations. Alikhani
et al. (2019) investigate text-image coherence in
recipe texts that describe sequences of consecu-
tive actions in a cooking context. Structurally, the
recipe text is already segmented, with an image
aligned to each step. Alikhani et al. (2019) distin-
guish image-text relations concerning which part
of the action is shown and whether all entities af-
fected by an action are visible/ mentioned in the
text. Both papers work on naturally occurring texts,
though these are still relatively short (tweets and
1-2 sentences per step respectively). Cheema et al.
(2023) propose to combine frameworks from the
area of semiotics with computational analysis of
image-text relations, suggesting a framework for
multimodal news analysis. In contrast to these ac-
counts, our dataset features more or less uniform
relations between texts centered on buildings and
images, i.e. the texts stand in a descriptive relation
to the content of images.

Muraoka et al. (2020) work with a more coarse-
grained and somewhat simplified version of the
problem discussed in this paper. Their task is
to correctly predict the physical alignment of im-
ages and sections in Wikipedia articles. This ap-
proach utilizes the inherent document structure and
consequently saves on expensive manual annota-
tion. However, our observations call into question
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the presupposition that alignment in layout entails
alignment in content. A similar text-image match-
ing task is discussed in Hessel et al. (2019), where
the authors seek to match the images in a docu-
ment to the most relevant sentences in it (leaving
out the captions). Their model is trained on col-
lections of sentences and images from the same
documents or different documents, for instances of
non-relatedness. This information is used at test
time to estimate the individual links between the
sentences and images of a given document. Hessel
et al. (2019) is highly relevant to the concerns dis-
cussed in this paper because it shows some success
in handling comparatively large amounts of text in
the genre of Wikipedia articles. Very recently, (Liu
et al., 2023) presented the DocumentCLIP model
designed to capture the interaction of text and im-
ages in longer multimodal documents. Importantly,
they assume that images are, by default, aligned
to the paragraph they co-occur with in the spatial
document layout. This is a strong assumption and
our dataset of ground-truth alignments between
sentences, paragraphs, and images can be used to
further test and benchmark such models.

3 Data collection

In this Section, we introduce our data collection
and annotation procedures. Figure 2 shows an
overview of the procedures, consisting of sev-
eral stages with annotations completed at differ-
ent levels, employing expert annotators and crowd-
sourcing. In the following, we detail each annota-
tion stage.



3.1 Text and Paragraph Selection

From the WikiScenes corpus (Wu et al., 2021), we
randomly sample 47 articles from the set of 98 arti-
cles. The first annotation step is a preselection of
paragraphs and images that are candidates for text-
image alignment. The three annotators annotated
1101 images and 1900 paragraphs. Due to the ex-
cessive number of possible paragraph-image com-
binations, thirty short to medium-length and one
long articles were exhaustively annotated. Anno-
tators were instructed (i) to make a snap judgment
on whether a paragraph contained at least one ref-
erence to the image, (ii) to ignore non-photograph
images such as plans, schemes, and paintings as
well as aerial images and (iii) to consider only
what is visible an image. The second and third
instructions intend to exclude more complex image-
paragraph correspondences and relations, that go
beyond merely descriptive relations. As an exam-
ple, given an image of a tower, annotators were
instructed to consider sentences like The tower was
built in 1700. as (potentially) related, while The
original altar was destroyed in the French Revo-
lution. is not related (even though it could be the
case that the altar is inside the tower).

3.2 Fine-grained Image-Paragraph
Annotations

The second annotation phase involves sentence &
word-level annotations on the pre-selected para-
graphs. 623 image-paragraph combinations were
randomly sampled from the items collected in the
previous annotation stage and evaluated by three
annotators using crowd-sourcing. We recruited a
group of 255 workers through Amazon Mechanical
Turk. The annotators were given image and para-
graph pairs, and instructed to highlight only text
spans that describe something visible in the accom-
panying image. This ensures that the annotated text
spans contain descriptions of the image or some-
thing in it. The annotation instruction are given in
the Appendix, Figure 6. The average time per task
was 137.6 seconds, workers were paid 0.35 $ per
task.

The result of the annotation process is a collec-
tion of pairs of text spans (at sentence- and word-
level) and captioned images that depict real-world
objects.

Interrater agreement. At the sentence, level, if
the majority of the annotators (two out of three)
annotated at least one word in a sentence, the sen-
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tence is considered as depicted/matched to the re-
spective image. We removed the cases where an
annotator selects the entire paragraph instead of
highlighting relevant parts. On average, the three
crowd-workers who annotated each item agreed
on the match or non-match of 65 % of sentences.
While Wikipedia articles are aimed at a general
audience, the annotation task is nonetheless non-
trivial due to the complexity of the subject matter
that requires a specialized vocabulary of the do-
main. For this reason, we believe this agreement
to be of sufficient quality for further analysis. The
dataset with the annotations and the generated cap-
tions at both sentence and text-span levels will be
publicly available. For the rest of the paper, we
present text-to-caption/image or caption/image-to-
text at sentence-level alignment.

3.3 Captions

As illustrated in Figure 2, in addition to the original
captions provided with the image in the wiki arti-
cles, we generated captions for the images using
existing image captioning models, namely ClipCap
(Mokady et al., 2021) and IBM-MAX.

ClipCap® (Mokady et al., 2021) is a lightweight
caption generation model, based on CLIP encod-
ings (Radford et al., 2021). It benefits from CLIP’s
rich semantic latent space shared by both visual
and textual data trained on more than 400 M text-
image pairs. In addition to the base model, we
also further finetune it with several settings, the
details of the finetuning are given in Appendix A.4.
ClipCap-based models are listed as:

1. clip-base: It is the base ClipCap model with-

out finetuning (using the CLIP Model ViT-

B/32 and greedy search decoding)

clip-ft: It is created by finetuning the CLIP

Image Encoder instead of the ClipCap model.

1270 unseen image-caption pairs are used for

finetuning.

. clip-ft-gpt-20e: 1t is obtained by finetuning
the ClipCap model (both the prefix encoder
and GPT-2

On the other hand, the IBM-MAX, inspired by
Vinyals et al., 2017, does not use a transformer
architecture or a large pretrained language model;
instead, it utilizes an image encoder based on a

3https://github.com/rmokady/CLIP_prefix_
caption

*with 10 epochs, prefix length 10, MLP Mapping with
prefix size 512, Ir 2e-5, with longer epochs (n=20)
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deep convolutional net trained on MSCOCO im-
ages (Lin et al., 2014a), and an LSTM-based text
decoder to generate the description. Both models
generate a sentence describing the image content.

3.4 Data overview.

The dataset contains unique 3923 sentence-image-
caption triples, with 1989 unique sentences. Af-
ter the agreement analysis, we ended up with 683
matched sentences — image/caption pairs (A in Fig-
ure 2) and 1306 unmatched sentences (i.e. sen-
tences from the same set of articles with no relation
to any image (B in Figure 2).

4 Methods

This Section introduces the methods we use to ana-
lyze our dataset and to test L&V models on it. In
our experiments, we look at two ways of aligning
text and images: first, we study sentence-caption
alignment, i.e. we investigate whether captions
of images in an article are similar to sentences in
the article’s text that annotators marked as match-
ing this image. Second, we study sentence-image
alignment using multimodal L&V models.

4.1 Sentence — Caption Alignments

To explore the relations between sentences and cap-
tions, we investigate whether semantic similarities
between image captions and matched/unmatched
sentences constitute a promising baseline for auto-
matic image-text alignments. We employ two types
of sentence embeddings. First, we use text-only
sentence representations extracted from the sen-
tence transformer model (SBERT) from the Hug-
gingface platform (Reimers and Gurevych, 2019).
As the second method, we utilize pre-trained
multimodal sentence representations (MCSE) pro-
vided by Zhang et al. (2022). MCSE are visually
grounded sentence embeddings obtained by fine-
tuning pre-trained models (e.g., ROBERTA-base
(Liu et al., 2019) ) in a contrastive learning frame-
work. The sentence embeddings are enriched by
training on a subset of Flickr30k (Young et al.,
2014b) or MS-COCO (Lin et al., 2014b) image-
caption dataset (30K images with multiple cap-
tions) and Wiki-1M text-only corpus. We used the
pretrained weights using flickr-mcse-roberta-base-
uncased’. We give each textual element as input to
each pre-trained model and extract their CLS token
embeddings.

Shttps://github.com/uds-1sv/MCSE
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We compute text-image alignments in two di-
rections and with different candidate sets: we re-
trieve captions (or images) based on the sentence
(sentence-to-caption) or retrieve the sentence given
the caption (caption-to-sentence). In both cases, we
distinguish between the match condition, where
the set of candidate sentences is restricted to sen-
tences that match at least one of the images in the
article, and the all condition where we include all
sentences, i.e. un-matched sentences that are not
grounded in any of the images.

Sentence-to-caption. For this condition, the re-
trieval analysis is conducted by calculating the
ranking of each sentence in (i) paragraph-related
captions, (ii) article-related captions, and (iii) all
captions in the dataset. These are referred to as
caption-sets for the following analysis. We have
also calculated the paired sentence-caption similar-
ities and presented them in the Appendix A.5.

Caption-to-sentence. In this condition, we mea-
sure the ranking of each caption in three respective
sentence sets: (i) the sentences in the same para-
graph, (ii) the sentences in the same article, and
(i11) all sentences in the dataset.

4.2 Sentence — Image Alignments

In addition to comparing the sentence embeddings
among various textual elements of the articles, we
also analyze the similarities between image and tex-
tual element pairs (A to D separately, see Figure 2).
To obtain image—text embeddings, we employ two
state-of-the-art multimodal models with zero-shot
capabilities: CLIP and VILT® .

VILT. VILT (Kim et al., 2021) is proposed as
an efficient solution for real-time image retrieval
or visual question-answering tasks. It handles the
modalities in a single unified manner, instead of
a simple fusion of the modalities, the training al-
gorithm utilizes a more elaborate inter-modal in-
teraction scheme, which in return could be very
valuable for more complex vision-language tasks
like our case. The efficiency comes from how they
process and represent the images with convolution-
free encoding. It is trained in a wide variety of
datasets, including MSCOCO (Lin et al., 2014b)
and Flickr30K (Young et al., 2014a).

SWe also experimented with BLIP-2 model from
the huggingface library https://huggingface.co/docs/
transformers/main/en/model_doc/blip-2. Since the ini-
tial exploration indicates a similar performance to the CLIP
with a longer calculation time, we abandoned it.
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CLIP. The CLIP (Radford et al., 2021) model
uses two separate encoders to embed text and im-
ages. It is trained on 400 M image—text pairs using
contrastive learning utilizing Visual Transformers
(Dosovitskiy et al., 2020). It is widely used for
many L&V tasks, including zero-shot classifica-
tion and retrieval.

Similar to the analysis of sentence-caption rela-
tions, we explored the sentence-image relations in
two directions and distinguished the match condi-
tion (candidates restricted to matched sentences)
and the all condition (all sentences).

Sentence-to-image. The ranking of each
matched and unmatched sentence in two different
sets of candidate lists to all images (i) from the
same paragraph and (ii) from the same article. Due
to the computational costs, we exclude the retrieval
from the entire dataset for the multimodal models.

Image-to-sentence The ranking of each image in
two different sets of candidate lists to all sentences
(i) from the same paragraph and (ii) from the same
article.

5 Results and Analysis

In this Section, we analyze the relationship be-
tween images, captions, and sentences from a lin-
guistic and application perspective. Section 5.1
compares linguistic properties between captions
and descriptions. Then we conduct experiments
on intra-document retrieval using the methods for
sentence—caption and sentence—image alignment
in Section 4. , comparing the performance of uni-
modal and multimodal embedding models.
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5.1 Analysis: Linguistic Differences between
Sentences and Captions

To compare language use in descriptive sentences
in the main text of an article to captions below
images, we look at the distribution of tokens, PoS,
and NER tags in sentences and captions.

Table 1 lists the number of unique captions and
the average token length for each method. Clip-
Cap produced 157 unique captions (such as ‘En-
glish baroque structure on a sunny day’ for the
image in Figure 1 but also the number of halluci-
nations or meaningless captions like ’a city in the
smoke’ and ’a city is a city’ were not negligible. On
the other hand, IBM-MAX generated 109 unique
captions, significantly fewer compared to ClipCap.
Yet, these are often visual descriptions such as ‘a
large building with a clock tower on top’ and ‘a
large cathedral with a clock on the wall’.

As expected, the wiki captions are significantly
shorter (7.43) than the sentences in the main text
(28.47). ClipCap and IBM MAX models produce
captions of lengths similar to the wiki captions
(6.81 and 10.04). CLIP-base captions tend to be
shorter, while IBM captions are slightly longer than
the original captions. With CLIP fine-tuning, the
generated captions get longer (8.09), but incorpo-
rating GPT-2 prefixes causes the model to generate
fewer unique sentences (128). Because the main
text sentences are significantly longer than any cap-
tion, the rest of the analysis is conducted on the

Table 1: Basic statistics on original and generated cap-
tions in WikiScenes with Descriptions

Wiki
325
7.43

Clip-base

157
6.81

IBM Clipft Clip-ft-gpt-20

109 240 128
10.04 7.22 8.09

Unique captions
Average token count




normalized counts by the sentence length.

Figure 3 shows the distribution of POS and NER
tags, obtained with spaCy’s PoS and NER taggers
(Honnibal and Johnson, 2015). To compare the
distributions, we conducted statistical analysis on
each parameter using the non-parametric Kruskal-
Wallis test followed by the post-hoc Tukey test for
pairwise comparisons. The analysis of PoS-tag dis-
tributions (Figure 3 (left)) does not show significant
differences between matched and unmatched sen-
tences from the article’s main text. This suggests
annotators did not exhibit a particular PoS prefer-
ence when highlighting matched sentences. Yet,
the POS-tag distribution of the main text sentences
differs significantly from all kinds of captions. The
details of the results are listed in Appendix Table 4.
There are also significant differences between the
captions types in terms of nouns, proper nouns, and
determiners. The original captions are more dis-
tinct — they contain a noticeably higher proportion
of proper names but a lower percentage of verbs, ad-
verbs, and auxiliaries. The generated captions tend
to have more nouns compared to human-generated
captions. Just the opposite pattern is observed for
the use of proper nouns. As expected, generated
models avoid using this type and prefer general-
ized nouns. We observed no striking difference
among the generated caption models except the
clip-ft-gpt, which produces more proper nouns and
fewer verbs.

The NER-tag analysis shows that human-
generated wiki captions mostly contain entities that
refer to a person, while generated captions avoid it.
The IBM model’s use of named entities is negligi-
ble in general. The details of the NER Distribution
are presented in Figure 5 in the Appendix A.1.
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To examine how sentences and captions are dis-
tributed in the semantic space, we plot their embed-
dings computed with SBERT, shown in Figure 4.
IBM-MAX captions cluster together and are lo-
cated farther from the main text and ClipCap cap-
tions. Similarly, ClipCap captions are located in a
specific area of the space, while original (wiki) cap-
tions, clip-ft-gpt+ captions, and matched sentences
are distributed more widely. This corroborates the
observation that captions show different linguis-
tic properties and styles and sentences from the
article’s main text and, additionally, suggests that
sentences may be more varied and linguistically
diverse compared to generated captions.

5.2 Results: Intra-document Retrieval of
Sentences and Images

We now compare different embedding models in
terms of their ability to align sentences and cap-
tions, and sentences and images, using retrieval
accuracies. We calculate the ranks of the target sen-
tence, caption, or image (see Section 4) and report
top-1 and top-5 accuracies. Additionally, the mean
similarity scores between (un)matched sentences,
captions, and images are presented in the Appendix
Table 6 and Table 7.

The top-k accuracy scores for (i) sentence-to-
caption/image and (ii) caption/image-to-sentence
retrieval are presented in Table 2 and Table 3 respec-
tively. Results from SBERT and MCSE are based
on sentence-caption alignment, whereas CLIP and
VILT results show sentence-image alignment. This
allows us to compare unimodal to multimodal
retrieval. We report retrieval accuracies on the
paragraph-, text- and corpus level, as explained
in Section 4.

In Table 2 and Table 3, we observe that the top-1
retrieval accuracy is overall very poor, even in the
simpler match condition. On the paragraph level,
the highest score for the matched sentences at top-1
is 0.66, achieved by multimodal retrieval with CLIP
(in Table 2). The VILT model produces a slightly
lower score, while the SBERT and MCSE models
are notably low on aligning at paragraph level. For
the article and corpus level, the top-1 accuracies are
drastically low, in particular for caption/image-to-
sentence alignment. Generally, caption/image-to-
sentence retrieval is more complex than sentence-
to-caption/image retrieval, regardless of the model.

"We use TSNE in scikit-learn: https://scikit-learn.
org/stable/modules/generated/sklearn.manifold.
TSNE. html
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The top-5 accuracies look more promising across
models and settings in the match condition, but it
should also be noted that when retrieving from the
paragraph-related sets the size of the candidate set
is often less than five items. In the more realistic
scenario of article-level retrieval, sentence embed-
dings (text-only and multimodal) perform better.
The lowest retrieval accuracy is observed at the
corpus level, as expected.

When we look at the retrieval scores of all sen-
tences (column “all” in Table 2 and Table 3), the
performance of SBERT and MCSE models fur-
ther decreases, while average multimodal retrieval
scores with CLIP and VILT is higher for all sen-
tences than the matched sentences. This means that
CLIP and VILT models will favor irrelevant im-
ages/sentences compared to relevant ones in top-1
and top-5 retrieval.

Finally, we look at the differences between vari-
ous caption types and their similarities to the sen-
tences. In sentence-to-caption conditions, for both
SBERT and MCSE models, the generated captions
are better at the paragraph and article level align-
ment. In contrast, the retrieval scored of wiki cap-
tions are higher at the entire set level. Among the
generated captions, the clip-base model is a better
fit for the task.

6 Discussion

We introduced a dataset for text—image alignment
in multi-paragraph, multi-image documents, con-
necting captioned images with text spans from the
main text which are depicted in the image. Our
experiments show that these annotations provide
a valuable benchmark dataset to evaluate the capa-
bilities of zero-shot unimodal and multimodal pre-
trained models, that are challenged by image-text
alignment in long and domain-specific documents.
Based on the results, we revisit our research ques-
tions and possible implications of our experiments
for future research on multimodal documents.

Do descriptions of images in articles show dif-
ferent linguistic properties than captions of the
corresponding images? Yes. The analysis in
Section 5.1 shows that descriptive, matched sen-
tences from the main text exhibit different POS and
NER distributions compared to the original cap-
tions written by Wikipedia authors. This highlights
the importance of moving beyond the strong focus
on captions in L&V research and indicates that dif-
ferent types of descriptions occurring within (and

across) documents may exhibit different linguistic
phenomena for visual language grounding.

Do the original captions in Wikipedia differ
systematically from captions generated by cap-
tioning models? Partially. The analysis in Sec-
tion 5.1 indicates that original captions written by
Wikipedia authors differ in some aspects from the
generated captions, which we expect to reflect the
style of crowdsourced captions that many L&V
models are currently trained on. This is not sur-
prising but showcases that the style of captions
collected in annotation and crowdsourcing exper-
iments differs from naturally occurring captions
found in real documents. This may bias or limit
L&V models in a way that they do not encounter
descriptive, visually grounded language in its full
breadth in their pretraining data.

Are similarities between descriptive sentences
within a text and captions robust enough to
serve as a baseline for intra-document retrieval?
Partially. The results in Section 5.2 show that
intra-document retrieval for sentences and im-
ages via their captions works when the set of im-
ages/captions is restricted to the paragraph level,
but drastically decreases at the article level. This
holds for different types of captions. The retrieval
score analysis shows inconclusive results in terms
of the effect of captioning on different models.

How do image-sentence retrieval baselines com-
pare to caption-sentence retrieval? The results
in Section 5.2 show that sentence embeddings
can distinguish more accurately between matched
and unmatched sentences than multimodal mod-
els when looking at retrieval within an entire ar-
ticle. We believe that this may be because ex-
isting L&V models are typically trained on short
texts that prioritize visually grounded language, but
rarely on datasets of longer texts that include non-
descriptive sentences. Generally, it appears that
the multimodal models we tested lack awareness
of depictability (i.e. detecting language that is vi-
sually grounded). Uni-modal sentence embedding
models, on the other hand, seem to be less accu-
rate in distinguishing grounded from non-grounded
sentences at the more fine-grained paragraph level.
For applications like intra-document retrieval in
text-dominated documents, unimodal sentence em-
beddings still provide a better solution, but multi-
modal models have complementary strengths at the
more fine-grained paragraph level distinctions. It
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Table 2: Top-1 and Top-5 Retrieval Accuracy Scores for the sentence to caption/image conditions. The underlined
scores represent the highest retrieval performance along the vertical axes. The match condition restricts candidate

sentences to matched sentences.

Top-1 Top-5

paragraph article entire set paragraph article entire set

caption_type | Match Al | Match All | Match Al | Match All | Match All | Match All
SBERT wiki 0.54  0.50 024 0.21 0.09 0.05 0.98 0.98 0.66  0.62 0.18 0.12
SBERT clip-base 056  0.54 021 021 0.02  0.01 0.99 0.99 0.73  0.68 0.09 0.07
SBERT clip-ft-gpt+ 056  0.54 020  0.18 0.02  0.01 0.99 0.98 0.70  0.66 0.09 0.07
MCSE wiki 0.52  0.50 020  0.19 0.05 0.03 0.99 0.99 0.68 0.63 0.11 0.08
MCSE clip-base 0.58 0.53 0.23 0.19 0.01 0.01 1.00 0.99 0.71 0.68 0.09 0.06
MCSE clip-ft-gpt+ 0.55 0.53 0.19 0.18 0.01 0.01 0.99 0.99 0.68 0.67 0.08 0.06
CLIP wiki | 0.66 0.72 0.14 0.20 0.00  0.01 0.99 1.00 0.56  0.60 0.02 0.02
VILT wiki 0.65 0.71 0.19 0.18 - - 0.99 0.99 0.62 0.59 - -

Table 3: Top-1 and Top-5 Retrieval Accuracy Scores for the caption/image to sentence conditions. The match
condition restricts candidate sentences to matched sentences.

Top-1 Top-5
paragraph article entire set paragraph article entire set

caption_type | Match ~ All | Match All | Match All | Match All | Match All | Match All
SBERT wiki | 024 014 | 008 004 | 004 0.02| 085 0.73 025  0.17 0.09  0.05
SBERT clip-base 0.22 0.15 0.04 0.03 0.00 0.00 0.83 0.73 0.15 0.13 0.01 0.01
SBERT clip-ft-gpt+ | 0.21 0.15 0.04  0.03 000 0.00 | 083 0.73 0.17  0.12 0.02  0.00
MCSE wiki | 024 014 | 009 0.04 | 003 0.01 083  0.73 025 0.16 | 007 0.04
MCSE clip-base | 022  0.15 0.05  0.03 000 0.00 | 084 0.73 020  0.13 0.01 0.01
MCSE clip-ft-gpt+ | 020  0.15 0.04  0.03 000 0.00 | 084 073 0.17  0.13 0.01 0.01
CLIP wiki | 0.16 0.16 | 0.01 0.03 - - 0.76  0.75 0.09  0.13 - -
VILT wiki | 0.15  0.16 | 0.01 0.03 0.76  0.75 0.09  0.13

seems to be a promising direction for future work
to explore models that exploit sentence-image and
sentence-caption alignment in a joint fashion, and
to develop multi-modal models that can handle text
that includes non-descriptive language.

7 Conclusion

Wikipedia articles represent a genre of multimodal
text that contains large amount of textual and visual
information. Some foundational linguistic work on
multimodal texts (Delin and Bateman, 2002; Hardy-
Vallée, 2016) argues that in order to analyze mul-
timodal texts, elements from different modalities
should equally be treated as part of the document.
With state-of-the-art L&V models being able to
jointly represent text and image elements, this be-
comes increasingly feasible to do computationally
as well. However, longer and more complex mul-
timodal texts are not the norm in L&V research.
With the collection of WikiScenes with Descrip-
tions, we take a first step towards tackling the chal-
lenge of image-text alignment in naturally occur-
ring, text-heavy, multi-image documents. This rep-
resents an important step in empirically-informed

research on the topic of multimodal documents and
provides a dataset for future modeling.

Limitations

Our extension of WikiScenes is a relatively small,
domain-specific dataset so the results presented in
this paper should not be assumed to necessarily
generalize to other domains. The models used for
the retrieval tasks were achieved with the respective
base models and were not fine-tuned in our specific
domain.

Ethics Statement

Images in the dataset are either under CC3.0 li-
censes or Open Domain. They are attributed via
their identifications in Wikimedia Commons. We
did not collect any personal information from anno-
tators. Annotators were not presented with harmful
materials during data collection. Crowdworkers
were paid 0.35$ per item, which translates to an
hourly wage of 9.018$.
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A Appendix
A.1 Text Analysis (Cont.)

Compared to the sentences, ClipCap captions con-
tains similar amount of entities that refer to nation-
alities or religious or political groups (NORP), and
significantly higher proportion of the dates or time
periods (DATE). There is one named-entity cate-
gory, ORGANIZATION was observed at similar rates
among all textual elements.

Table 4: Statistical Difference between (i) matched and
unmatched sentences and (ii) sentence, wiki captions
and clip-ft-gpt20e captions in terms of POS- and NER-
tag uses

Sentence-Caption-Image

NOUN 554.19 (0.01 at all levels)
PROPN 105.79 (0.01 at all levels)

ADV 194.75 (0.01 sentence vs both captions)
VERB 765.87 (0.01 sentence vs both captions)
DET 494.13 (0.01 at all levels)
ADP 587.56 (0.01 at all levels)
AUX 636.11 (0.01 sentence vs both captions)

PERSON 84.92 (0.01 at all levels)

NORP 38.58 (0.01 at all levels)

DATE 120.86 (0.01 sentence vs both captions)

ORG 29.33 (0.01 clip-ft versus sent. and wiki capt.)

A.2 Annotation Instructions

Figure 6 shows the annotation instructions used for
collecting annotations that align/match text spans
and images from crowd workers.

A.3 Computational Resources

The experiments are conducted on a GPU worksta-
tion with NVIDIA® RTX™ A6000 (48GB). Ta-
ble 5 list the approximate total time spent for ex-

Table 5: Analysis time (extracting embeddings and com-
puting similarities) for each model on each condition

sentence-to-caption/image image/caption-to-sentence

SBERT around 1 hours 3 hours
MCSE around 2 hours 8 hours
CLIP  (all >32 hours) 4 hours® 10 hours
VILT (all >2 days hours) 8 hours 19 hours
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NER-Tag Distributions
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(a) NER tag distributions for matched (b) NER tag distributions for matched sentences and
and unmatched sentences captions

Figure 5: Comparing NER-tag distributions between textual elements

tracting the embeddings for each element (sentence,
caption and image) and computing the similarities.

A.4 ClipCap finetuning

ClipCap finetuning follows the instructions from
the original code repository: https://github.
com/rmokady/CLIP_prefix_caption. First, the
image is preprocessed using CLIP ("ViT-B/32")
and mapped to a prefix vector. The prefix vector is
projected into embedding space using a finetuned
ClipCap model pretrained on Conceptual Captions.
The prefix embedding is used as input for the GPT-
2 model, as part of the ClipCap model. Greedy
sampling with top-p=0.8 is used to generate the
output sequence.

A.5 Similarity based Analysis

Table 6 and Table 7 present the average similarity
scores of the target item against various candidate
sets in two directions; sentence-to-caption/image
and caption/image-to-sentence respectively.
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Detailed Instructions X
You'll be shown an image and a snippet of text from a Wikipedia article about a
historic building.

Please mark any text passage that talks about objects pictured in the assosciated
image.

Important! Only mark objects that are shown in the image, including any descriptions
of their physical appearance or their position in the building.

When you're done, press the 'submit' button to the right of the text.

(a) Main instructions for paragraph-image alignment
annotation

Detailed Instructions X

The cathedral fagade is dominated by
two polygonal unsymmetrical towers with
a height nearing 50 metres. Above the
central door is a terrace which enabled
the bishop to address a crowd.

[The various parts of the building

(facade, towers, door, terrace) are
describing objects in the image, but the

terrace's function is not.]

(c) Example shown in instructions for paragraph-image
alignment annotation with a longer text span matching
the visual content of the image

Detailed Instructions X

Examples:

The original organ was destroyed in
1506 by the collapse of the neighbouring
tower.

[The image is a modern photograph and
so cannot show the original organ. A

tower is also not visible.]

(b) Example shown in instructions for paragraph-image
alignment annotation with none of the text spans match-
ing the visual content of the image

Detailed Instructions X

The Gothic west front of Cologne
Cathedral was not completed until the
19th century.

[The image doesn’t show when the
cathedral was completed, but it does
show the west front.]

(d) Example shown in instructions for paragraph-image
alignment annotation with a shorter text span matching
the visual content of the image

Figure 6: Instructions used for the collection of annotations on paragraph-image alignments

Table 6: Average similarity scores for the sentence-to-caption or sentence-to-image conditions. Bold face represents
the highest score along the horizontal axes, while the underlined text corresponds to highest score among the three

caption types within each embedding space.

paired

paragraph

article entire

Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched

SBERT wiki 0.754 0.767 0.754 0.767 0.745 0.752 0.733 0.738
SBERT clip-base 0.744 0.752 0.743 0.751 0.739 0.746 0.726 0.731
SBERT clip-ft-gpt+ 0.752 0.764 0.752 0.762 0.750 0.759 0.739 0.746
MCSE wiki 0.174 0.216 0.176 0.212 0.154 0.179 0.122 0.140
MCSE clip-base 0.187 0.221 0.187 0.216 0.180 0.206 0.146 0.167
MCSE  clip-ft-gpt+ 0.202 0.235 0.203 0.232 0.198 0.226 0.167 0.193
clip wiki 0.813 0.772 0.810 0.780 0.803 0.785 0.791 0.775

Table 7: Average similarity scores for the caption-to-sentence or image-to-sentence conditions

paired paragraph article entire
Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched
SBERT wiki | 0.754 0.767 0.756 0.756 0.746 0.743 0.736 0.735
SBERT clip-base | 0.743 0.751 0.745 0.744 0.741 0.739 0.737 0.737
SBERT clip-ft-gpt+ | 0.752 0.764 0.754 0.756 0.752 0.752 0.748 0.748
MCSE wiki | 0.174 0.216 0.180 0.186 0.158 0.154 0.135 0.132
MCSE clip-base | 0.187 0.221 0.192 0.196 0.184 0.182 0.175 0.175
MCSE clip-ft-gpt+ | 0.202 0.235 0.207 0.213 0.204 0.200 0.192 0.189
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Abstract

Zero-shot text classification involves catego-
rizing text into classes without labeled data,
typically using a pre-trained language model
to compute the correlation between text and
class names. This makes it essential for class
names to contain sufficient information. Ex-
isting methods incorporate semantically sim-
ilar keywords related to class names, but the
properties of effective keywords remain unclear.
We demonstrate that effective keywords should
possess three properties: 1) keyword relevance
to the task objective, 2) inter-class exclusivity,
and 3) intra-class diversity. We also propose
an automatic method for acquiring keywords
that satisfy these properties without additional
knowledge bases or data. Experiments on nine
real-world datasets show our method outper-
forms existing approaches in fully zero-shot
and generalized zero-shot settings. Ablation
studies further confirm the importance of all
three properties for superior performance.

1 Introduction

Zero-shot text classification is the process of cate-
gorizing text into classes without any training data,
which is essential in scenarios where creating a
large amount of labeled data is impractical. To this
end, most zero-shot classification techniques utilize
signals that indicate the relationship between each
instance and class, such as semantic textual similar-
ity between instances and class names (Sappadla
etal., 2016; Yin et al., 2019) or the contextual word
co-occurrence of the instance and the class name
found in large language models like BERT (Schick
and Schiitze, 2021) and T5 (Sanh et al., 2022; Wei
et al., 2022).

The performance of zero-shot classifiers is heav-
ily influenced by keywords related to each class
(including the class name itself), as these classi-
fiers use the keywords as queries to compute the
similarity between each instance and class. For ex-
ample, PET (Schick and Schiitze, 2021) employs a
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Figure 1: Overview of the proposed method REDEX.
Zero-shot text classification needs proper assignment
of keywords on each class. REDEX considers three
properties regarding the nature of classification to assign
the optimal keywords.

Keyword 2B

masked language model like BERT to estimate the
class of a text instance by synthesizing a sentence
from the text using a template such as “${text} This
text is about [MASK].”, calculating token proba-
bilities at the masked position, and aggregating
the probabilities of keywords related to each class
(e.g., token “news” for class “News” and token
“finance” for class “Economics”). This class to re-
lated keywords mapping is sometimes referred to as
a verbalizer (Schick and Schiitze, 2021). Since de-
termining optimal keywords for each class is hard,
several works tried to determine proper related key-
words for classes using external sources such as
knowledge graphs (Hu et al., 2022) or language
models (Zhao et al., 2023; Shi et al., 2022).

Regardless of whether it is manual or automatic,
conventional ways to determine related keywords
of each class often overlook the nature of classifi-
cation. (1) Keywords Relevance to the Objective:
First, the keywords attached to each class should
be relevant to the classification objective, while
the conventional method always attaches the same
keywords for the same class name. For example,
a class-keywords mapping { “Beauty” — (“mas-
cara”, “lipstick™) } is suitable for product classifi-
cation in E-commerce but may not be the best fit
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for movie classification. (2) Intra-class Diversity
of Keywords: Second, the related keywords for
a class should cover as broad a range of concepts
as possible. Existing methods do not always con-
sider the diversity of keywords within a class. (3)
Inter-class Exclusivity of Keywords: Third, the
related keywords for each class should be as dis-
tinct as possible, ensuring that two or more classes
do not share similar keywords. For instance, the
classes “Food” and “Cell Phone” might both have
the keyword “apple,” which can confuse zero-shot
classifiers. Existing methods can produce such con-
fusing class-keyword mappings because the key-
word assignment for each class is performed inde-
pendently.

In this paper, we explore the strategy of iden-
tifying optimal keywords for classes in zero-shot
classifiers, considering the three properties men-
tioned above. Through extensive experiments,
we found that considering all properties is nec-
essary for obtaining better zero-shot classifica-
tion performance in popular classifiers. To gen-
erate the optimal keywords automatically, we pro-
pose a new generate-then-rerank framework RE-
DEX (RElevance, Diversity, EXclusivity) for key-
word generation based on the concept of maximal
marginal relevance (MMR) (Carbonell and Gold-
stein, 1998), which is often used in information
retrieval. The extensive experiments demonstrate
the effectiveness and versatility of the proposed
method as it improved the performance of two
types of state-of-the-art zero-shot classifiers dras-
tically without any modifications to those meth-
ods (Zhang et al., 2022b; Yin et al., 2019; Zhang
et al., 2022a; Geng and Liu, 2023; Holtzman et al.,
2021) across all zero-shot settings, including gen-
eralized zero-shot text classification (GZTC) and
fully-zero-shot text classification.

Our main contributions are as follows.

* We propose an automatic class-keyword map-
ping generation method REDEX, which gen-
erates keyword candidates by a generative lan-
guage model and reranks them by considering
three keyword properties: relevance to the ob-
jective of the classification, intra-class diver-
sity of keywords, and inter-class exclusivity
the keywords.

» Extensive experiments of REDEX for state-of-
the-art zero-shot classifiers of fully or gener-
alized zero-shot text classification in various

domain datasets confirmed the effectiveness
and versatility.

2 Proposed Method
2.1 Problem Setting

Zero-shot text classification is a task to estimate the
optimal class y; € K of a test instance x;, where
K ={1,2,..., K} represents indices of all target
classes. This paper assumes two types of zero-
shot text classification: fully zero-shot setting and
generalized zero-shot setting. The fully zero-shot
setting provides only target class names to classify
texts. The generalized zero-shot setting is where
labeled data are available for a subset of target
classes called seen classes, while those are not for
the rest of the target classes called unseen classes.
We assume that additional information, such as
knowledge bases or unlabeled corpus, is unavail-
able.

2.2 Overview

Our method REDEX automatically finds keywords
for each target class k € K to improve classifica-
tion performances. Through our experiments in
Section 3, we found valuable keywords in enhanc-
ing the performance should possess three properties
simultaneously: the semantic relatedness to class
names, the intra-class diversity, and the inter-class
exclusivity. The properties represent that keywords
for a class should be not only related to the class
name but also be diverse to cover features of in-
stances belonging to the class and be semantically
distant from keywords of the other classes to avoid
misclassification.

Figure 2 illustrates our method, which gener-
ates keyword candidates for each class and reranks
them to find valuable keywords with the aforemen-
tioned properties. The first step generates keyword
candidates from a generative language model to
obtain diverse and task-aware candidates without
auxiliary information. The second step reranks
keyword candidates to select keywords with the de-
sired properties: semantic relatedness, intra-class
diversity, and inter-class exclusivity.

2.3 Keyword Candidate Generation

In the first step of our method, we use a generative
language model and prompting to generate key-
word candidates. Compared to the conventional
methods (Hu et al., 2022; Meng et al., 2020b) that
find keywords from a knowledge base or in-domain
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Figure 2: Overview of the proposed method REDEX for generating keyword candidates by a generative language
model and reranking keyword candidates to select the suitable keywords for each class.

unlabeled data, our approach does not require any
additional auxiliary information.

We manually construct prompts to input the
model, such as “{class name} is related to”!. We
then sample 20 texts using a generative language
model and Nucleus Sampling (Holtzman et al.,
2020). In our preliminary experiments, generat-
ing texts of more than 20 did not change most of
the selected keyword candidates. We then extract
phrases from generated texts by their term frequen-
cies to acquire keyword candidates for each class.
We select three times as many keyword candidates
as the final number of target keywords. For details
on hyperparameters and templates for generating
texts, see Appendix A.

The proposed method can generate appropriate
keywords by designing prompts depending on prob-
lem settings. In generalized zero-shot text classifi-
cation, our method generates task-aware keywords
for unseen classes using prompts that demonstrate
task-aware keywords of seen classes. For instance,
the task-aware keywords in the “Beauty” class in a
product classification are “mascara” and “lipstick”,
and “elegance” and “landscapes” in a movie classi-
fication. We extract task-aware keywords for seen
classes from labeled data using TF-IDF.

2.4 Reranking Keywords

Given sets of keyword candidates for classes V' =
{Vk}‘klill, we rerank them to select suitable key-
words Py, for each class k. While keyword can-
didates semantically relate to each class, without
reranking candidate keywords, we do not capture
the other properties of desirable keywords: the
intra-class diversity of keywords for robust classifi-
cation and the inter-class exclusivity of keywords

'The prompts to generate keyword candidates used in our
experiments list in Appendix A.3.

Task-aware
Relevance

([ Beauty ) Health care

1. mascara 1.
2. lipstick 2.

777

medicine
vitamins

Intra-class
diversity

Inter-class exclusivity

Candidates
moisturizer, hair, dry, product, face, skin care

Figure 3: CE-MMR determines keywords for each class
from its candidates incrementally in order of rank.

for preventing misclassification. To ensure these
features of keywords, we propose class-exclusive
maximal marginal relevance (CE-MMR) that ex-
tends maximal marginal relevance (MMR) for doc-
ument retrieval to class-keyword reranking.

To consider the intra-class diversity, one can use
maximal marginal relevance (MMR) (Carbonell
and Goldstein, 1998), which reranks documents
{d} for a query ¢. MMR incrementally determines
the rank of documents from top to bottom by the
following scoring function:

S(d,q,R) = \1 s(d,q) — Aemaxs(d,d’), (1)
dEeR

where s(d1, d) is a function that returns a similar-
ity of d; and da, R is a list of reranked documents,
and A1, A2 € [0, 1] are hyperparameters controlling
importance of the diversity of ranked documents
and satisfy A; + A2 = 1. This approach can be
mapped to reranking keywords with their diversity.
Considering a query and documents as a class name
and its keyword candidates, MMR can be applied
to the keyword reranking task. The formulation is
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Algorithm 1 Reranking keywords for all classes
Require: C,V
Ensure: P
1: INITIALIZE Vk, P, < list()
2: for rank =1 — ?a%\VH do
€

3: fork e Kdo

4: Select pzank in a deterministic way by
arg max S*(cg, v, {Pe }5_,)
Vg EVk\Pk

5: Append p};ank to Py

6:  end for

7: end for

8: return P

as follows:

S(Ck;,Uk,Pk) — AlS(Ck,Uk;) - )\2 max S(Ukvpk)a
PLEPy
(2)

where ¢ denotes the class name of k, vi(€ Vi \ Px)
does a keyword candidate for class k£ except for
Py, and P, does the reranked keywords of class k.
Using this extended MMR, we can incrementally
rerank keywords to preserve the diversity of key-
words for each class and class-keyword relevance.

However, the method does not consider the inter-
class exclusivity of keywords in reranking. To pre-
vent misclassification due to assigning a similar
keyword to multiple classes, we use CE-MMR,
which adds the inter-class exclusivity of keywords
into the above method, as illustrated in Figure 3.
Put the last term for inter-class exclusivity (marked
in red), the scoring function of CE-MMR

S*(ck, vg, P) = a s(cx, v) — B max s(vg, pi)
PrEPy

—7y max max S(Vg, Pk’ (3)
/k‘IGK\k‘ ]);C/EPk‘/ ( )’

where «, (5, and -y are hyperparameters for control-
ling the importance of the class-keyword related-
ness, intra-class diversity, and inter-class exclusiv-
ity and satisfy o + 3 + v = 1.

For reranking class keywords with the CE-MMR
scoring function, we take a greedy reranking ap-
proach as shown in Algorithm 1. This algorithm
repeats the following steps: calculating scores for
keywords, appending the top-scored keyword for
a class to a list of reranked keywords for the class,
and removing the keyword from candidates.

3 Experiments

3.1 Zero-shot Text Classification

We conduct fully zero-shot experiments to
demonstrate the effectiveness of our method.

3.1.1 Experimental Setup

Datasets. We use widely used benchmark datasets
for topic classification and sentiment analysis.
Topic classification datasets are AG News (Zhang
et al., 2015), a collection of news articles and their
topic categories, DBpedia (Lehmann et al., 2015)
consisting of contents and their ontology classes,
and Yahoo (Zhang et al., 2015), a collection of
question-answer pairs and their topic categories.
Sentiment analysis datasets are Stanford Sentiment
Treebank (SST2) (Socher et al., 2013), a widely
used benchmark, and Rotten Tomatoes (RT) (Pang
and Lee, 2005), a collection of movie reviews and
their sentiments. Statistics of datasets are shown in
Appendix A.1.

Preprocessing. We use the same class names
and prompt templates as the previous work Shi
et al. (2022); Min et al. (2023, 2022) described in
Appendix A.1. For datasets of more than 3,000 in-
stances, due to limited computational resources, we
run the experiment for three times with a randomly
selected subset of 3,000 with different seeds, as in
prior work (Zhao et al., 2021; Lyu et al., 2022).

Evaluation Metrics. We use accuracy to evalu-
ate methods as in Zhao et al. (2023).

3.1.2 Compared Methods

OPT-6.7b (Zhang et al., 2022a) and OpenL.LaMA -
7b (Geng and Liu, 2023; Computer, 2023) are base-
line methods that classify texts using next-token
prediction with score calibration (Zhao et al., 2021;
Holtzman et al., 2021) and length normalization
of log-likelihood (Brown et al., 2020) techniques
to improve classification accuracy as in Min et al.
(2022); Holtzman et al. (2021). Also, as a com-
pared method, we utilize NPPrompt (Zhao et al.,
2023) (indicated by w/ NPPrompt in tables) that
selects top-k similar keywords to class names from
the vocabulary of the language models based on
cosine similarities of token embeddings. We exper-
imented with two variants of NPPrompt, one using
the same vocabulary and embedding vectors as the
base model and the other using roberta-large
vocabulary and embedding vectors as in Zhao et al.
(2023), and adopted roberta-large, which
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Table 1: Performance on zero-shot text classification. The
with keywords selected by our method outperform method

best scores are marked in bold. OPT and OpenLLaMA
s without keywords and by NPPrompt.

Method AG News DBpedia Yahoo SST-2 RT  Avg.
OPT-6.7b 75.8 50.7 33.7 55.1 58.8 54.8

w/ NPPrompt 79.6 44.9 459 49.8 51.8 544

w/ Ours 79.7 494 49.5 68.5 693 63.3(18.5)
OpenLLaMA-7b  65.7 36.1 45.1 7477 704 584

w/ NPPrompt 65.3 40.7 38.8 50.9 50.0 49.1

w/ Ours 61.9 51.3 36.9 775 727 60.1 (11.7)

Table 2: Case studies of zero-shot text classification experiments using the Yahoo dataset. Keywords in a bold font

have the largest scores in the correct class.

Text Method Prediction Keywords for the Correct Class
. NPP; litics ENT, i
what is the name the cartoon about the french cats? w/ rompt po 1t1_cs ent, ENT, ents, enting
w/ Ours v entertainment cartoon, theater, sport
Please answer this chem problem for me? w/ NPPrompt society science, Science, scientific, technology
p . w/ Ours V'science chemistry, iphone, scientist, experiment

showed better performances. Our method (indi-
cated by w/ Ours in tables) generates keyword
candidates by corresponding language models and
reranks them to use in inference. In our reranking,
we use the cosine similarity of roberta-large
embedding vectors as the similarity s(-, -). We set
the number of keywords to five for w/ NPPrompt
and w/ Ours. As another hyperparameters of
reranking, we set « = 3 = vy = 1/3 for w/ Ours
because small changes in these values, such as 1/3
to 1/4, barely changed the selected keywords, re-
sulting in a minor influence on the accuracy.

3.1.3 Results

Overall Performances. Table 1 shows the exper-
imental results of zero-shot text classification. In
comparison to the baseline, our proposed method
demonstrates an average accuracy improvement of
8.5 points (8.9 points compared to w/ NPPrompt)
in OPT-6.7b, 1.7 points against the baseline (11.9
points compared to w/ NPPrompt) in OpenLLaMA-
7b.

For some task-model combinations (Yahoo, AG
News and OpenLLaMA-7b), the proposed method
underperforms the vanilla OpenLLaMA-7b. To un-
derstand the reason for this, we show the confusion
matrix in Figure 4. The figure shows that when the
proposed method performs poorly, OpenLLaMA -
7b prefers to predict specific classes incorrectly.
For the case of the AG News dataset, OpenLLaMA-
7b with our keywords prefers the “politics” class.
We believe this is due to the bias of OpenLLaMA-
7b to give higher scores to keywords in the “politics”

,,,,,

‘‘‘‘‘‘‘‘‘

Figure 4: Error analysis for experimental results using
OpenLLaMA-7b with our keywords. The left and right
figures correspond to the AG News and Yahoo dataset
results, respectively. OpenLLaMA-7b prefers to predict
specific classes incorrectly due to the bias of giving
higher scores to keywords of those incorrect classes.

class. In practice, we observed that OpenLLaMA-
7b gave a high score to the keywords of the “poli-
tics” class even though the keywords seem to have
no relationship with the input text. Although our
proposed method subtracts the null prompt score to
reduce the biases as in Zhao et al. (2021); Holtzman
et al. (2021), there is still room for improvement
regarding the score calibration method to alleviate
the problem.

Case Studies. To further understand the dispar-
ity between NPPrompt and our method, we analyze
the selected keywords and predictions on the Yahoo
dataset. Table 2 shows that our diverse keywords
can encourage a classifier to make a prediction
based on the relatedness between a text and vari-
ous semantics of the class. For example, the pro-
posed method gives a high score to the keyword
“chemistry” in the “science” class for the input text
“Please answer this chem problem for me?”. Thus,
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Table 3: Relationship between the properties of keywords and accuracy. While considering only intra-class diversity
or inter-class exclusivity underperform the vanilla model, considering both outperform in most cases.

Method AG News DBpedia Yahoo SST-2 RT  Avg.
OPT-6.7b 75.8 50.7 33.7 55.1 58.8 54.8
w/ Sim 84.2 64.8 47.6 56.0 583 62.1
w/ Sim + Exc 75.7 53.0 49.0 68.6 643 62.1
w/ Sim + Div 74.3 524 48.1 55.1 523 564
w/ Sim + Exc + Div  79.7 494 49.5 68.5 69.3 633

the proposed method correctly classifies the in-
put text into the “science” class, while NPPrompt,
which does not have the keyword “chemistry”, fails
to correctly classify the input text.

3.1.4 Analysis

To confirm the effectiveness of intra-class diver-
sity and inter-class exclusivity in keyword rerank-
ing, we conduct experiments with varying keyword
reranking methods. We compare four variants of
CE-MMR with OPT-6.7b and vanilla OPT-6.7b as
a baseline. For CE-MMR, we turn on and off three
terms in Equation 3, where we denote the first,
second, and third terms by Sim, Div, and Exc.

Table 3 shows the results. On average, Sim + Exc
+ Div, which considers intra-class diversity, inter-
class exclusivity, and similarity to class names,
achieves the highest accuracy. In sentiment anal-
ysis datasets, we find that inter-class exclusivity
of keywords is more critical than intra-class di-
versity by comparing Sim+Exc to Sim+Div. This
result suggests that when class names are antonyms
such as “great” and “terrible”, models are prone
to give confusing keywords unless inter-class ex-
clusivity is taken into account. Sim achieves the
best results in the topic classification AG News and
DBpedia. This result indicates that similarity is
more important for some datasets and assigning
reranking weights to exclusivity is sometimes semi-
optimal. In practical applications, we can select
the values of «, (3, and v according to the accu-
racy of the validation data. In addition, Sim + Div
showed lower performance for all data in the zero-
shot setting, while Sim + Exc + Div showed the
best on average. This result suggests that it is not
sufficient to consider only intra-class diversity, but
it is essential to simultaneously consider inter-class
exclusivity in order to achieve high accuracy.

3.2 Generalized Zero-shot Text Classification

We conduct experiments to confirm that our pro-
posed method is also effective for the generalized
zero-shot classification setting.

3.2.1 Datasets

We use four publicly available multi-class text clas-
sification datasets, including topic classification, in-
tent classification, and emotion classification. The
topic classification datasets are Amazon (McAuley
et al., 2015), a collection of reviews for prod-
ucts and their categories, and WoS (Kowsari
et al.,, 2017), a collection of academic papers
and their research areas. The intent classification
dataset is Snips (Coucke et al., 2018) that con-
tains crowdsourced queries and their intent, such as
“Book Restaurant”. The emotion dataset is Emo-
tion (Bostan and Klinger, 2018), a widely used
benchmark for zero-shot text classification (Yin
et al., 2019; Ye et al., 2020), a collection of short
sequences and their emotion labels such as “joy”
and “sad”.

Preprocessing. We randomly select 50% from
all classes as seen classes, the other 25% as unseen
classes, and the other 25% as validation classes.
Then, training data is selected from seen classes,
validation data from seen and validation classes,
and test data from the seen and unseen classes.

3.2.2 Compared Methods

We evaluate our methods, several baselines for
GZSTC, and a method for a fully supervised setting
as a reference. LabelSim (Sappadla et al., 2016)
uses word embeddings to calculate similarities be-
tween an instance and class names. LTA (Zhang
et al., 2022b) is a meta-learning method that re-
hearse on fake unseen classes selected from seen
classes. Entailment (Yin et al., 2019) treats text
classification tasks as textual entailment that pre-
dict whether a given text entails “This text is
about {class name}.” using a pre-trained language
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Table 4: Harmonic mean accuracies of seen and unseen classes on generalized zero-shot text classification (seen and
unseen class accuracies in the brackets). Bold values indicate the best results among GZSTC methods. Notice that
LTA splits seen classes into fake seen and fake unseen classes, which is not applicable for datasets with a small
number of seen classes, such as WoS and Snips. t Averaged on only Amazon and Emotion datasets.

Method Amazon WoS Snips Emotion Avg

LabelSim 7.95(7.83,8.08) 40.5(204,653) 70.6(75.7,66.1) 0.46(10.0,22.3) 32-2(33.8, 36.4)

LTA 53.5(69.5435) N/A N/A 42.7(37.9.489) T48.1(53.7,46.2)
w/ Ours 66.6¢82717) N/A N/A 356305453 15110442605

Entailment 03.2(89.1,40.0) 83.1(92875.3) 98.999.898.1) 40.5(720343) 72.9(884,64.1)
w/ Ours 7739206677 8639020813 99-2(99.4989) 564(60.0476) 79-8(s8.1,73.6)

Fully Supervised

BERT 9249279200 92.8(89.2,06.7) 99-7(09.9.00.6) 01.6(68.4,54.0) 80.0(87.585.5)

Table 5: Effectiveness of considering intra-class diversity and inter-class exclusivity on harmonic mean accuracies

with seen and unseen class accuracies in brackets.

Method Amazon WoS Snips Emotion Avg

No Reranking

Term-Frequency 7"1.4916,585 79-8(902.8, 69.9) 989100, 97.8) 94-4(67.6,455 76-1(88.0, 67.9)
Reranking

w/ Sim 77.3(92.3,66.5) 19992.5644) 97-T(100,955 31.4@6s.1,204) 70.6(s8.2, 61.7)

w/ Sim + Exc
w/ Sim + Div
w/ Sim + Exc + Div

74.0(927, 61.5)
68.7(92.2, 54.8)
77.3(92.0, 66.7)

76.1(932, 64.3)
83.8(92.4, 76.7)
86.3(92.0, 81.3)

68.2(90.1, 59.0)
76.2(85.4, 70.5)
79.8(35.1, 73.6)

25.3(7456, 15.2)
60.3(69.7, 53.1)
56.4(69.0, 47.6)

97.4(100, 94.9)
92.1(87.4, 97.3)
99.2(99.4, 98.9)

model. In addition to these baselines, we denote
our method combined with baselines as w/ Ours.
We combine Entailment, LTA and the proposed
method by simply replacing a class name with the
keyword expanded class name “{class name} such
as {keywordl}, {keyword2}, {keyword3} , {key-
word4}” because we found this simple method to
be sufficient for improving performance, as it re-
quires the same order of computation as the vanilla
method.

To find out how much room for improvement is
left compared to the fully supervised setting, we
compare BERT trained on the training data for
seen classes and training data for unseen classes
that is not available for GZSTC methods.

3.2.3 Experimental Setup

Evaluation Metrics. We use accuracies of seen
and unseen classes and their harmonic mean as
evaluation metrics as in Zhang et al. (2022b). We
use the harmonic mean to measure overall perfor-
mances since there is a trade-off between seen and
unseen class accuracy.

Implementation Details. We use
bert-base—-uncased (Devlin et al., 2019) as

a pre-trained language model for Entailment, En-
tailment w/ ours, LTA, and Supervised BERT. For
Entailment, we do not conduct pre-finetuning on
an NLI dataset suggested in the original paper (Yin
et al.,, 2019) since the original BERT without
pre-finetuning shows better performances in our
experiments. Our method uses GPT-J-6B (Wang
and Komatsuzaki, 2021) as a generative language
model. Furthermore, for reranking keywords,
we use the cosine similarity of embeddings
obtained by the BERT encoder as similarities
in Equation 3 and select the top-4 keywords per
class. For LabelSim, we use the bi-gram of public
fastText (Grave et al., 2018) embeddings trained on
the Wikipedia corpus. Please refer to Appendix A
for other implementation details.

Hyperparameters. To validate the model, we
use validation data that consists of labeled data of
seen classes and validation classes. Search spaces
and determined values of hyperparameters are de-
scribed in Appendix A.2.

3.2.4 Results

Table 4 shows the results of the end-to-end experi-
ments. In comparison, Entailment overperformes
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Table 6: Effectiveness of task-aware keyword generation on harmonic mean accuracies of seen and unseen classes
(seen and unseen class accuracies in the brackets). Bold values indicate the best results among methods.

Generation Method Amazon WoS

Snips Emotion Avg

Language Model
In-Context

78.5(90.5, 69.3)
77.3(92.0, 66.7)

84.5(92.5, 77.8)
86.3(92.0, 81.3)

77.2(88.2, 69.9)
79.8(33.1, 73.6)

47.8(69.7, 36.4)
56.4 9.0, 47.6)

98.0(100, 96.1)
99.2(99.4, 98.9)

the other baselines, and Entailment and LTA with
our extension overperformes methods without us-
ing our extension on average. The results suggest
that the Entailment method generalizes better than
the dual-encoder approach (LTA), as pointed out in
the few-shot settings in Miiller et al. (2022). Also,
the results suggest that keywords selected with our
method help improve unseen class accuracy due to
the keywords complementing the lack of informa-
tion on unseen classes. Compared to the result of
the fully supervised method, there is a little room
for improvement.

3.2.5 Analysis

We analyze the contribution of each component of
our method by conducting additional experiments.

Keyword Reranking Methods. To confirm the
effectiveness of reranking keywords by the intra-
class diversity and inter-class exclusivity in the
generalized zero-shot settings, we conduct abla-
tion studies on reranking methods similar to Sec-
tion 3.1.4. We use the Entailment method without
reranked keywords as a baseline and compare four
reranking methods to the baseline.

Table 5 shows the comparison results of key-
word reranking methods. Consistent with the anal-
ysis in Section 3.1, the method considering all the
characteristics is the best among compared meth-
ods on average. An inconsistent trend with the
fully zero-shot setting is that intra-class diversity is
more important than inter-class exclusivity in the
generalized zero-shot setting. We hypothesize that
the classifier learns to ignore noisy keywords and
concentrate only on relevant ones through model
training.

Keyword Candidate Generation Methods. To
study the effectiveness of task-aware keywords de-
scribed in Section 2.3 compared to task-unaware
keywords, we compare keyword candidate genera-
tion technique that uses in-context demonstrations
of class name and keyword pairs of seen classes
(In-Context) to generate task-aware keywords and
keyword candidates generation technique that uses
only class names to generate task-unawware key-

word candidates (Language Model). Implemen-
tation details are described in Appendix A. In the
experiment, we use our keyword reranking method
described in Section 2.4 to rerank keyword candi-
dates and Entailment as the base classifier. Table 6
shows the experimental results to confirm the ef-
fectiveness of task-aware keywords. In-Context
outperforms Language Model by 2.6 points on the
harmonic mean of accuracies on average. This re-
sult indicates that task-aware keywords generated
with in-context learning are more effective than
task-unaware keywords generated with only class
names.

4 Related Work

Zero-shot Text Classification. Zero-shot text clas-
sification is a text classification task in a special
situation where some target classes do not have
any training data. Existing methods for zero-shot
text classification decide the class y of an input in-
stance = based on the relationship between a class
name and an instance (Sappadla et al., 2016; Yin
et al., 2019) such as semantic similarity. Recent
methods use a pre-trained language model (PLM)
to calculate the similarity (Holtzman et al., 2021;
Xia et al., 2022; Sun et al., 2022) of the class and
the instance. For example, Schick and Schiitze
(2021) transforms similarity calculations into the
predictions of masked token probabilities such as
“Good movie! [SEP] The sentiment of this review
is [MASK].”. If the likelihood of “great” is higher
than “bad” for “[MASK]”, one can classify “Good
movie!” into the positive class. At this time, it is
necessary to associate the vocabulary of the PLMs
and the target classes.

When training data for a part of target classes are
available, the task is generalized zero-shot text clas-
sification (GZSTC). Similar to zero-shot text classi-
fication, Pushp and Srivastava (2017) predicts the
relatedness between texts and classes by a trained
neural network with the training data, and Yin et al.
(2019) proposes a textual entailment-based method
with PLMs, where textual entailment-based meth-
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ods show effectiveness in other zero-shot tasks such
as stance detection (Xu et al., 2022) and ultra-fine
entity typing (Li et al., 2022). LTA (Zhang et al.,
2022b) applies meta-learning for GZSTC, which
learns how to adapt the encoder to new classes by
episodic training on fake unseen classes selected
from seen classes.

In another line of work, when a large amount
of unlabeled data for target classes is available,
the task is called weakly supervised text classi-
fication and has been studied in (Meng et al.,
2018; Mekala and Shang, 2020; Mekala et al.,
2022; Zhang et al., 2021; Wang et al., 2021). X-
Class (Wang et al., 2021) uses class-adaptive em-
bedding representations of instances to obtain high-
quality pseudo-labeled data. Zhang et al. (2023)
proposes PIEClass that iteratively trains two types
of classifiers, a prompt-based classifier, and a head-
token classifier, to correct pseudo-label errors with
each other. Since the existing weakly supervised
text classification methods require a large amount
of in-domain unlabeled data that are unavailable
for unseen classes in zero-shot scenarios, those
methods are not applicable in our problem settings.

Class-keyword Mapping Construction. What
keywords are associated with the target classes is
crucial. In PET (Schick and Schiitze, 2021), a map-
ping from keywords to classes is designed by users.
For instance, in sentiment analysis, the word “ter-
rible” is associated with the negative class, and
“great” is associated with the positive class. How-
ever, since manually constructing class-keyword
mappings is costly, methods to automate the pro-
cess have been proposed (Schick et al., 2020; Shin
et al., 2020; Shi et al., 2022; Hu et al., 2022; Zhao
et al., 2023). If training data is available, they can
be utilized in the construction method (Schick et al.,
2020; Shin et al., 2020). When a large amount of
unlabeled corpus is available, weakly supervised
methods (Meng et al., 2020c,a,b) are practical to
acquire keywords. LOTClass (Meng et al., 2020b)
masks class names in unlabeled data and obtains
mask tokens predicted by the mask language model
as keywords associated with the class names. As
in our problem setting, when both labeled and un-
labeled data are unavailable, one approach is to
select words that resemble the class name based on
embedding similarity (Zhao et al., 2023).

While the conventional methods select keywords
for each class independently, the attached keywords
ignore the nature of classification as described in

Figure 1. To avoid choosing such keywords, our
proposed method selects keywords carefully by
considering intra-class diversity and inter-class ex-
clusivity of keywords.

5 Conclusion

This paper proposes a novel method for improving
zero-shot text classification that finds keywords re-
lated to classes properly. Our method generates di-
verse keyword candidates by a generative language
model and reranks the candidates by an extended
maximal marginal relevance method to acquire the
keywords that are diverse within a class and exclu-
sive among different classes. Experimental results
on fully zero-shot and generalized zero-shot text
classification tasks demonstrate the effectiveness
of the proposed method.

6 Limitations

We used a limited variety of language models in
the experiments, but further work will be needed
to confirm that our results are maintained for other
models, such as multi-lingual models or larger-
sized models. Even if we use our proposed method,
it is still necessary to provide appropriate seed class
names manually. Also, our proposed method is
applicable to few-shot learning, so we need to in-
vestigate whether the proposed method is effective
in these settings.
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A Other Experimental Details.

A.1 Datasets

Table 7 and Table 8 are statistics of datasets
used in experiments of Section 3.1 and Section 3.2,
respectively.

Table 9 shows class names and templates used
in our experiments.
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Table 7: Statistics of datasets used in the zero-shot ex-
periments.

#Instances  #Classes Domain
AG News’ 3000 4 News
DBpedia’® 3000 14 Wikipedia
Yahoo! 3000 10 Yahoo Answers
SST-2° 872 2 Movie review
RT® 1066 2 Movie review

Table 8: Statistics of datasets used in the experiments
before splitting into seen and unseen classes.

#Instances  #Classes Domain
Amazon 24,000 24 Product Review
WoS? 46,985 7 Academic Paper
Snips 13,802 7 Voice Assistant
Emotion 36,463 10 Mixed

A.2 Hyperparameters

Table 10 shows the hyperparameters used for model
training in Section 3.2. We use the same values of
hyperparameters in the original papers, except for
parameters that the original papers use different
values for different datasets. We use the same hy-
perparameters as the vanilla LTA or Entailment for
our methods combined with LTA or Entailment.

In addition to the hyperparameters described
in the table, parameters that are unique for each
method are set as follows.

LTA We use the hyperparameters for LTA in
the original paper as d, = 768,d, = 768, =
10.0,7 = 10.0,N¥t = N% =2 K =5,d, = 32.

Entailment For the template to generate a hy-
pothesis, we use “This text is about {class name}.”
as suggested in the original paper.

Ours When generating sequences that contain
keyword candidates in our method, the temperature
parameters that control the generation probabilities,
top_p parameter (the threshold for top-p sampling),
and generation length are manually set to 0.9, 0.8,
and 16, respectively. We generate 20 sequences for
each class and extract 24 keyword candidates with
the highest Term-Frequency value per class.

A.3 Templates for Generating Keyword
Candidates

Zero-Shot Text Classification. We use the follow-
ing templates to generate keyword candidates for
experiments in Section 3.1.

e “{class name} such as ”

e “{class name}: ”

* “examples of {class name} are ”
* “{class name} also”
* “{class name} and ”

Generalized Zero-Shot Text Classification.
We use the following templates to generate key-
word candidates for experiments in Section 3.2.

* “{class name} such as {keyword candidatel},
{keyword candidate2}, - - - 7,

» “{class name}: {keyword candidatel}, {key-
word candidate2}, - - -7,

* “examples of {class name} are {keyword can-
didatel}, {keyword candidate2}, - - -7,

where a {keyword candidate} is a keyword of the
seen class extracted from training data. We concate-
nate the class-keyword pairs of several seen classes
with a line break “\n” in between and add instruc-
tions of the same format to generate the unseen
class keywords on the last line. When retrieving
keyword candidates from training data for seen
classes, we aggregate training data for each class
and use TF-IDF to retrieve class-specific keywords,
which is similar to class-based TF-IDF (Grooten-
dorst, 2022).
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Table 9: Templates and class names used in our experiments.

Dataset

Class Name

Template

AG News

EEINT3

“politics”, “sports”, “business”, “technology”

“{text}topic: "

DBpedia

“Company”, “school”, “Artist”, “Athlete”,
“OfficeHolder”, “transportation”, “Building”, “Mountain”
“Village”, “Animal”, “Plant”, “Album”,

“Film”, “book”

71

“{title}{content}{title} isa "

Yahoo

“society”, “science”, “health”, “education”,
“computer”, “sports”, “business”, “entertainment”, 1

CLITS

“amily”, “politics”

“{question title }topic:

SST-2

5

“terrible”, “great”

“{text}It was "

RT

3 ¢

“terrible”, “great”

“{text}It was "

Amazon

(seen) “Apps for Android”, “Baby”, “Beauty”,

“Clothing Shoes and Jewelry”, “Digital Music”,
“Electronics”, “Movies and TV”,

“Patio Lawn and Garden”, “Pet Supplies”,

“Tools and Home Improvement”,

“Toys and Games”, “Video Games”

(unseen) “Amazon Instant Video”, “CDs and Vinyl”,

“Cell Phones and Accessories”, “Grocery and Gourmet Food”,
“Kindle Store”, “Office Productsy”

(valid) “Automotive”, “Books”, “Health and Personal Care”,
“Home and Kitchen”, “Musical Instruments”,

“Sports and Outdoors”

1 “{text}This text is about {class name}”

WoS

(seen) “Civil Engineering”, “Computer Science”,
“Mechanical Engineering” |
(unseen) “Electrical Engineering”, “Medical Science”

LIS

(valid) “Psychology”, “biochemistry”

“{text} This text is about {class name}”

Snips

(seen) “book”, “movie”, “playlist”,

(unseen) “music”, “restaurant” 1
(valid) “search”, “weather”

“{text} This text is about {class name}”

Emotion

(seen) “anger”, “fear”, “love”, “no emotion”

LEIY3 LEIY3

(unseen) “disgust”, “sadness”, “shame” 1

9 <

(valid) “guilt”, “joy”, “surprise”

“{text} This text is about {class name}”

Table 10: Hyperparameters for fine-tuning. Notice that the batch size of LTA (step2) is determined by K, N%, and

NYi,
Hyperparameter LTA (stepl) LTA (step2) Entailment
# of maximum epochs 10 300 3
Model selection early stopping (3epochs) early stopping (30epochs) best epoch
Learning rate le-3 le-5 le-5
Scheduler None None linear
Optimizer Adam Adam AdamW
Adam epsilon 1e-08 le-08 1e-08
Adam beta weights 0.9, 0.999 0.9, 0.999 0.9, 0.999
Weight decay 0.0 0.0 0.01
Batch size 64 N/A 32
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Abstract

Causal language models such as the GPT series
have achieved significant success across vari-
ous domains. However, their application to the
lexical substitution task (LST) remains largely
unexplored due to inherent limitations in autore-
gressive decoding. Our work is motivated by
our observation that existing LST approaches
tend to suffer from a misalignment between the
pre-training objectives of the language models
that they employ, and their subsequent fine-
tuning and application for substitute generation.
We introduce PromptSub, the first system to
use causal language modeling (CLM) for LST.
Through prompt-aware fine-tuning, PromptSub
not only enriches the given context with addi-
tional knowledge, but also leverages the uni-
directional nature of autoregressive decoding.
PromptSub consistently outperforms GeneSis,
the best previously published supervised LST
method. Further analysis demonstrates the po-
tential of PromptSub to further benefit from
increased model capacity, expanded data re-
sources, and retrieval of external knowledge.
By framing LST within the paradigm of CLM,
our approach indicates the versatility of gen-
eral CLM-based systems, such as ChatGPT, in
catering to specialized tasks, including LST.!

1 Introduction

Lexical substitution task (L.ST) is to identify appro-
priate replacements for a designated target word
in context while maintaining the contextual mean-
ing and coherence of the text (McCarthy, 2002;
McCarthy and Navigli, 2007). For example, given
the sentence “Let me begin again”, an LST system
would be expected to provide words such as start
or commence as substitutes for begin. LST is an
important task due to its numerous applications,
including word sense disambiguation (Hou et al.,
2020), word sense induction (Eyal et al., 2022),

'Our code and data are publicly available on GitHub:
https://github.com/ShiningLab/PromptSub

Let me <t> begin </t> again. Encoder-Decoder start, commence, open, ...

(a) GeneSis

The "{Target}" in the sentence "{Context}" can be substituted with "{Substitute}".

____________________________________ b

The "begin" in the sentence "Let me begin again." can be substituted with "

Decoder-Only

(b) PromptSub

Figure 1: Comparison between (a) GeneSis (Lacerra
et al., 2021b) and (b) our proposed PromptSub.

lexical simplification (Aumiller and Gertz, 2022),
adversarial attacks and defenses (Li et al., 2021), se-
mantic change detection (Card, 2023), and natural
language watermarking (Yang et al., 2022).

Recent prior work on LST leverages pre-trained
language models (PLMs), specifically masked
language models (MLMs) (Lin et al.,, 2022;
Michalopoulos et al., 2022; Omarov and Kondrak,
2023), of which BERT (Devlin et al., 2019) is a
well-known example. Since MLMs are trained on
the task of predicting likely words in a context
where a single word is masked, they seem to be
a natural fit for LST. However, masking a word
is an information-losing process. As a result, the
predicted substitutes may fit the context well, but
can significantly alter the original meaning of the
sentence.

As an alternative to masked language modeling,
we propose to employ causal language modeling
instead. While MLMs first encode the entire con-
text around the mask and then decode output from
this encoding, causal language models (CLMs) are
trained to predict the next token in a sequence given
only the previous tokens as context (Radford et al.,
2018). This linear processing of text is referred to
as auto-regressive decoding; by eschewing the need
for discrete encoding and decoding phases, these
models can achieve high performance in generative
tasks, without an encoder that increases the number
of parameters. These decoder-only models include
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the well-known GPT series (Brown et al., 2020),
which powers popular language generation tools
such as ChatGPT (OpenAl, 2023). However, prior
methods for applying a pre-trained CLM to LST go
no further than simple prompting (Lee et al., 2021).

In this paper, we present the first method to ef-
ficiently reduce LST to causal language model-
ing: PromptSub, a system based on lexical substi-
tution via prompt-aware fine-tuning. Our approach
bridges the gap between the pre-training of CLMs
and their fine-tuning for LST via the same training
objective (i.e., to predict the next token). By way
of an innovative prompting strategy, PromptSub
empowers a decoder-only CLM to leverage the full
bidirectional context of a given LST instance, and
also seamlessly integrate external knowledge into
an auto-regressive language modeling strategy.

In our experiments, PromptSub consistently sur-
passes the previous best supervised method, Gen-
eSis (Lacerra et al., 2021b), across all datasets,
metrics, and settings. Figure 1 illustrates how
GeneSis and PromptSub employ encoder-decoder
(Sutskever et al., 2014) and decoder-only models
respectively. Our extensive evaluations indicate
that PromptSub either matches or exceeds previ-
ously published methods, establishing a new state
of the art on the most recent LST benchmark,
SWORDS (Lee et al., 2021). Notably, Prompt-
Sub outperforms MLM-based approaches, previ-
ously recognized state-of-the-art, by a large mar-
gin (Yang et al., 2022; Wada et al., 2022). Our
detailed analysis highlights the robustness and ex-
tensibility of PromptSub, showing that it can take
advantage of greater model capacity, leverage a
broad array of resources, and benefit from external
knowledge through retrieval-augmented generation
(RAG; Lewis et al., 2020Db).

2 Related Work

Conventional LST techniques predominantly capi-
talize on external knowledge bases (Hassan et al.,
2007; Szarvas et al., 2013a; Hintz and Biemann,
2016) and learned word embeddings to identify
and rank potential substitution candidates based
on predefined metrics (Melamud et al., 2015b,a;
Gari Soler et al., 2019). These methods often de-
pend heavily on external resources like WordNet
(Miller, 1995), with additional processes such as
the manual ranking and rule construction often re-
quired to optimize outcomes. Recognizing these
limitations, recent initiatives have emerged to har-

ness the advantages of PLMs.

Prior work indicates that contextualized repre-
sentations obtained from PLMs can be applied to
LST by incorporating context-based scores (Senevi-
ratne et al., 2022) and decontextualized embed-
dings (Wada et al., 2022). In an effort to aug-
ment PLMs with knowledge derived from lexical
resources, Lin et al. (2022) proposed involving
gloss matching in pre-training. Michalopoulos et al.
(2022) advocate for the incorporation of structured
knowledge from lexical databases.

On the one hand, certain of these approaches
utilize PLMs primarily as feature extractors. Thus,
the complete potential of PLMs remains untapped
due to the disconnect between their pre-training
objectives and subsequent applications. On the
other hand, to align with pre-training, others (Zhou
et al., 2019) estimate the probability distribution of
potential replacements through masked language
modeling (Devlin et al., 2019). This inclination to-
wards MLMs, as opposed to CLMs, has led to the
over-representation of encoder-only PLMs, leav-
ing the application of decoder-only architectures
largely unexplored.

Similarly, while prior work has explored the
ideas of enriching LST inputs with target words
(Arefyev et al., 2020) and semantic knowledge
(Omarov and Kondrak, 2023), how to inject such
knowledge into PLMs remains an open question.
This issue is particularly true within the prevail-
ing trend of unsupervised methods that exclude the
fine-tuning stage.

Supervised approaches to LST, such as those
by Szarvas et al. (2013a,b), were initially lim-
ited by data scarcity until the advent of GeneSis
(Lacerra et al., 2021a,b) and Paral.S (Qiang et al.,
2023). GeneSis adopts a sequence-to-sequence
model, generating substitutes given the context and
marked target word. By concatenating multiple
datasets, fine-tuning a PLM specifically for LST
was made viable, achieving strong results despite
the scarcity of annotated data in the domain. Par-
alLS produces substitutes through a paraphraser,
utilizing a heuristics-based decoding strategy. This
facilitates fine-tuning PLMs on paraphrase data,
which is available in relatively large quantities.

However, in both GeneSis and ParalLS, a dis-
cernible gap persists between the pre-training of
PLMs and their subsequent fine-tuning. Further-
more, they are both rooted in an encoder-decoder
framework (Lewis et al., 2020a), depending on ex-
ternal resources, and require post-processing steps
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Causal Language Model

A

start". </s>
commence". </s>
open". </s>

Input

| initiate". </s>
introduce". </s>
try". </s>
Output

At position @ in the sentence, "Let me begin again.", the verb "begin", derived from the lemma "begin", can be substituted with "

At position { } in the sentence, "{Context}", the {PoS} "{Context[

TPrompt Template
1}", derived from the lemma "{Target}", can be substituted with "{Substitute}"."

_/

Target PoS Context

Substitute::Frequency

begin verb

Let me begin again. |start::6, commence::2, open::2, initiate::1, introduce::1, try::1, ...

Raw LST Instance

Sampling

Figure 2: An illustration of PromptSub. An LST instance is transformed into a description by populating a prompt
with details. A CLM estimates the probability distribution of potential substitutes at the final placeholder.

that involve adjustable heuristics and thresholds.
This raises a pivotal question: does LST have to
be approached in a two-step manner, where substi-
tutions are first generated and then reranked using
manually designed scores? Or, is it possible to
create a single-step, end-to-end, generative solu-
tion, that also sidesteps the need for external re-
sources and manually-crafted heuristics? In pre-
senting PromptSub, we argue for the latter: a first-
of-its-kind single-step approach to generating sub-
stitutions via a decoder-only language model.

3 Methodology

In this section, we formally define LST and CLM,
outline our sampling strategy, and detail our prompt
engineering techniques.

3.1 Definitions

We introduce our theoretical framework that re-
duces LST to CLM, building upon two binary prob-
lems we defined.

Lexical substitution task (LST) involves identi-
fying suitable replacements for target words while
preserving the contextual meaning of the sentence.
Formally, given an input sentence S = wj' contain-
ing a target word w,, the objective of LST is to
return a ranked list of m appropriate replacements
for w,, which are selected from a vocabulary V.
For example, consider begin as the target word w,
in the sentence S = “Let me begin again”. If
we are to specify m = 3 substitutes, a reasonable
output would be [“start”, “commence”, “open”].

Causal language modeling (CLM) refers to
prediction of the next word in a sequence given the
preceding words. Formally, given a sequence of
words s = w{ of length n, the objective of CLM is

to model the conditional probability distribution of
the next word: p(wp+1 | w}). CLM is autoregres-
sive: words are predicted one at a time, conditioned
on the context of the previous words. By applying
a decoder-only model repeatedly, CLM can be used

to model the probability of any sequence of words:

k
p(wﬁil | wi).

We define a binary decision problem of lexical
substitution (LexSub) which returns TRUE if two
words are lexical substitutes in a given sentence,
and FALSE otherwise (Hauer and Kondrak, 2023):

LexSub(S, w,, w,) = “the word w, can be re-
placed by the word w, in the sentence S without
altering its meaning”

Similarly, we define a binary decision problem
of word prediction (WP) as:

WP(S, w) := “the word w has the same meaning
as the masked word in the sentence S”

LexSub is thus reducible to WP in a straightfor-
ward way:

LexSub(S, wy, wy) < WP(S, w;) A WP(S, w,)

In practice, implementations of methods for Lex-
Sub or WP may return a probability value instead
of a Boolean. LST datasets often require a ranked
list of substitutes for each instance. To satisfy this,
given a method for solving WP as we defined, we
can simply rank each word w in the vocabulary by
the probability returned by WP(S, w). To apply
CLM to LST, we constrain the word to be identi-
fied (in WP) or replaced (in LexSub) to appear at
the end of the context. We can thus model LexSub
and WP as autoregressive language modeling tasks
suitable for use with decoder-only models.
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3.2 PromptSub definition

The most direct application of CLM to LST would
entail modeling the probability distribution at the
position of the target word given only the preceding
words, denoted as p(w, | wi™'), where w, € V.
However, this would omit wy, |, the part of the
sentence after w,, which may contain vital infor-
mation. An example can be found in Appendix B.

We therefore propose PromptSub, the first LST
method to give CLMs access to the full context of
an LST instance. PromptSub uses carefully con-
structed prompts which allow a CLM to produce a
substitute based on the full context, including the
target word wy,, itself.

The following prompt template illustrates how a

CLM can be fine-tuned for LST:
The “w,” in “S” can be
substituted with “y”. </s>

where S is the input sentence, w,, the target word,
and y a selected gold substitute. The underlined
part is what the decoder-only model is fine-tuned
to predict. Formally, given an LST instance, we
construct a prompt s by filling in the placehold-
ers in a prompt template with w, and S. This
reconstruction allows us to reframe LST as CLM,
where the objective is to model the probability of:
P(Szﬁ | S1,0 0 7{wx}7 U ){S}v e 752)' To en-
sure the generation of appropriate substitutes, we
fix the last five tokens as follows:

* s,: an open quotation mark

* 5,+1: a sampled gold substitute y

* 5.192: aclose quotation mark

* S,13: aperiod

* 5.14: the end of sentence symbol </s>

Using static quotation marks and a period effec-
tively aids in extracting the eventual substitutes
from the generated text. In practice, we notice no
adverse effects on loss or performance, and out-
puts always reliably incorporate these punctuation
marks before the sentence concludes.

We then fine-tune the decoder-only model to
specifically minimize the cross-entropy loss on
Sz+1s Sz42, S243, and s,44, where s, 4 is included
for the model to learn the end of inference. We can
then generate a list of potential substitutes ¢ by sam-
pling from the probability distribution at s, € V.
Consider again our LST example from Section 3.1.
We construct the filled prompt as follows:

The “begin” in “let me begin again.” can

be substituted with “start”. </s>

3.3 Sampling strategy

Generating a corpus from an LST dataset for fine-
tuning CLMs is not straightforward, since LST
instances often have multiple substitute options (of-
ten ranked), creating many choices for verbalizing
these instances. We therefore introduce two sam-
pling strategies, described below:

TopSub selects only the top-ranked substitute.
By doing so, we aim to capture the most probable
and relevant substitute for the given context.

FreqSub exploits the frequency information as-
sociated with gold substitutes in LST datasets,
where frequency is determined by the number of
annotations in agreement for each substitute. These
frequencies, gathered during the dataset annotation
process, are often overlooked in previous methods.
Applying a softmax function to these frequencies
creates a probability distribution over the gold sub-
stitutes, reflecting their likelihood of selection. We
then sample one substitute from this distribution,
ensuring the model encounters substitutes in pro-
portion to their data-driven frequencies.

3.4 Prompt engineering

This section outlines the prompt engineering for
corpus construction, grounded in integrating con-
textual information into the templates. From an
informational standpoint, we operate under the as-
sumption that enriching prompts with more rele-
vant information leads to improved outcomes. In-
stead of manual, iterative adjustments, we focus
on demonstrating the impact of prompts by con-
trasting several distinct variants. Examples of each
template, filled with a single shared LST instance,
can be found in Table 1.

BaseP, shown in Figure 1, is the basic prompt
template from Section 3.2. It provides the model
only the target word and its context. It serves as the
foundation for developing more complex prompts.

InfoP seeks to harness the comprehensive in-
formation available in LST data. Traditional ap-
proaches often focus on the target word and its
immediate context, while LST instances often pro-
vide additional details that can be valuable. In
InfoP, as exemplified in Figure 2, we incorporate
three additional attributes of the target word: its
position in the sentence, its part of speech (PoS)
tag, and its lemma form. These additions work as
enriched contextual cues, guiding the model to pro-
duce more appropriate substitutions. It is important
to note that these attributes utilized in InfoP are
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Instance:

let me begin again.

BaseP: the “begin” in the sentence “let me begin again.” can be substituted with “start”.

InfoP: at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be substituted with “start”.

AugP (Train): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

AugP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be best substituted with “start”.

ExP (Train):  at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”
with synonyms “commence”, “get”, “get down”, “lead off”, “set about”, “set out”, “start”, “start out”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

ExP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin” with

LEINTS LIS

synonyms ‘“‘commence”, “get”,
best substituted with “start”.

get down”, “lead off™, “set about”,

9 ¢, CLINTS 9 ¢,

set out”, “start”, “start out”, can be

Table 1: Comparative overview of prompting strategies for a given LST instance. Notably, AugP and ExP utilize
distinct prompts for training and inference phases. The masked sentence portion, highlighted in blue, is used for
loss calculation during training and autoregressive decoding in testing.

exclusively derived from the LST datasets, without
reliance on external resources. Furthermore, as evi-
denced in Section 5, PromptSub remains flexible,
allowing for the incorporation of external knowl-
edge if needed.

AugP is designed to boost the diversity of the
generated corpus by further augmenting InfoP. In
LST tasks, there is often a need to delineate both
the best or “top-1" substitute, and a list of the top
10 substitutes. We therefore specifically embed the
term “best” into the prompt, where only the top-
ranked gold substitute is presented. To incorporate
multiple possible substitutes, we exclude the word
“best”, instead including the top 10 gold substitutes,
as determined by the weighted sampling strategy,
following the open quotation mark s,. This means
multiple y € y will occupy the s, slot, rather
than just one; substitutes are separated by a comma
followed by a space. During the training phase, the
fine-tuning prompt is drawn randomly from tem-
plates that either include or exclude the term “best”.
For inference, potential substitutes are solely sam-
pled using the “best” prompt, the intuition being
that this will help the model to produce substitutes
that are not only acceptable but optimal. This strat-
egy offers deeper insights into the efficacy of our
approach when melded with advanced prompt tech-
niques, such as prompt augmentation.

4 Experiments

In this section, we describe our empirical compari-
son of PromptSub to the top-performing previously
published LST methods. After brief descriptions
of the benchmark datasets (Section 4.1) and our
experimental setup (Section 4.2), we proceed with
a comparative analysis of PromptSub and Gene-
Sis, two supervised generative approaches (Sec-
tion 4.3). We then extend this experiment to include
more methods and test of the full suite of datasets
(Section 4.4). Unless stated otherwise, we apply
PromptSub with FreqSub sampling and AugP for
corpus generation, as these settings gave the best
performance in our development experiments. Fur-
ther sensitivity analysis will be presented in Sec-
tion 5.

4.1 Datasets

LST datasets are few in number and small in size,
presenting a challenge for supervised approaches.
Thus, we adopt the strategy used by Lacerra et al.
(2021b) of merging multiple LST resources for
fine-tuning and evaluating on the remainder.

LS07 facilitates comparison with GeneSis, as
we can directly compare the results reported by the
authors to those we obtain using PromptSub. We
carefully follow the dataset construction procedure
described in the GeneSis paper.

LS14 includes the ColnCo (Kremer et al., 2014)
training set combined with LST and TWSI (Bie-
mann, 2012), as well as a subset of SWORDS (se-
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Backbone Size  Method best best-m oot oot-m P@1
bart—large 406M GeneSis 19.2406 31.1415 45.7:{:3.7 60.0+4.6 47.9:{:141
GeneSis+WN 20.6+0.8 332417 50.042.4 65.142.4 49.241.9
gp2-medium  345M PromptSub (ours) 214102  358+03  50.5+02  66.2104  50.4+0.3
PromptSub+ (ours) 21.540.2 359404 51.1402 67.0105 50.7103

Table 2: Evaluation results on LSO7. For all the metrics, the higher, the better. The best are bolded.

lected to avoid overlap with the ColnCo test set).
The dataset is divided into training (90%) and val-
idation (10%) splits. The ColnCo test set is pro-
vided for testing.

LS21 follows a similar procedure, but with the
SWORDS training set combined with LST and
TWSI. A section of ColInCo is added, again en-
suring no overlap with the SWORDS test set. The
dataset is partitioned into 90% for training and 10%
for validation. The original SWORDS test set is
preserved for evaluation.

4.2 Experimental setup

Per established practices, we evaluate model perfor-
mance on L.SO7 and LS14 using the metrics from
the SemEval-2007 task (McCarthy and Navigli,
2007). We use best and out-of-ten (oot), along
with their modal variations best-m and oot-m, to
assess the top-1 and top-10 predictions, respec-
tively. These metrics weight the gold substitutes ac-
cording to their selection frequency by annotators.
For the more recent LS21 dataset, we follow the
evaluation protocol developed for the SWORDS
benchmark (Lee et al., 2021). We use the F''0 score,
the harmonic mean of precision and recall, for the
top 10 predictions against both acceptable (F'°,)
and conceivable (F'°.) gold substitutes. SWORDS
assigns a score to each substitute to indicate its
appropriateness, defining acceptable substitutes as
those with scores above 50%, and conceivable sub-
stitutes as those with scores above 0%. For thor-
oughness, we also report a variety of metrics: top-1
precision (P@1), top-3 precision (P@3), and top-10
recall (R@1@). Our results, including standard devia-
tions, are averages from five iterations with random
seeds O to 4.

We utilize GPT-2 (Radford et al., 2019) as our
primary CLM. In particular, we use gpt2-medium,
except where otherwise specified. This decision
stems from constraints related to computational
resources and the restrictions on access to more
advanced models like GPT-3 (Brown et al., 2020),
as well as the desire to compare PromptSub to

GeneSis using models with comparable numbers
of parameters.

To evaluate the impact of fine-tuning data size
on PromptSub, after determining the optimal hyper-
parameters, we repeat the fine-tuning process on
the concatenation of the training and validation
sets. We refer to this more fine-tuned variant of
PromptSub as PromptSub+. To reiterate, the only
distinction between PromptSub and PromptSub+
lies in the training data volume.

To optimize GPU memory utilization on the
Nvidia Tesla V100 we use for training, we employ
a batch size of 16 with mixed precision training
and gradient accumulation. For fine-tuning, we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate 1e~> and an /5 gradient
clipping of 1.0, following Pascanu et al. (2013).
To prevent overfitting, we use early stopping with
respect to P@1 on validation for a maximum of 8
epochs (Prechelt, 1998). We set the dropout rate
to 0.2, following Srivastava et al. (2014). During
inference, we use a beam search with a width of
50, in line with prior methods (Zhou et al., 2019;
Lacerra et al., 2021b). All implementations are
executed using PyTorch (Paszke et al., 2019), with
pre-trained models sourced from the HuggingFace
repository (Wolf et al., 2020).

4.3 Experiments on LS07

In evaluating GeneSis, Lacerra et al. (2021b) in-
troduces a set of post-processing steps to the sys-
tem’s output. To ensure a fair comparison, we
apply the same post-processing steps to the output
of PromptSub. We also test its enhanced variant
GeneSis+WN with two extra tricks applied: Fall-
back strategy (FS) ensures at least ten substitutes
are returned by first including previously discarded
substitutes and, if necessary, adding more from the
vocabulary ranked by cosine similarity to the target,
until 10 substitutes are obtained. Vocabulary cut
(VC) limits the model to a specified output vocabu-
lary; it discards any generated substitutes outside
this vocabulary. It is noteworthy that both FS and
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Method best best-m oot oot-m P@1
BalAdd 5.6 11.9 20.0 33.8 11.8
Substitute Vector 8.1 17.4 26.7  46.2 -

BERT 14.5 33.9 45.9 69.9 56.3
GeneSis 13.8 30.4 456 723 58.8
LexSubCon 11.3 23.8 33.6 54.4 41.3
GR-RoBERTa 13.1 28.8 40.9 66.6 48.8
ParalLS 13.8 29.5 41.7  65.6  50.0
Paral.S™ 16.8 35.4 48.3 750 57.8

PromptSub (ours) 14.5 33.1 46.2 729 577
PromptSub+ (ours) 14.9 33.9 470 73.9 595

Table 3: Evaluation results on LS14. The upper section
presents the complete system outcomes, while the lower
focuses on the generation step. Results for BalAdd
(Melamud et al., 2015b) and Substitute Vector (Melamud
etal., 2015a) are sourced from BERT (Zhou et al., 2019).
LexSubCon (Michalopoulos et al., 2022), GR-RoBERTa
(Lin et al., 2022), ParaLLS, and Paral.S" are reported by
Qiang et al. (2023). The best are in bold, with the
second-best underlined.

VC rely on external resources such as WordNet
(Miller, 1995), while PromptSub does not. How-
ever, we still incorporate GeneSis+WN for a thor-
ough comparison.

In Table 2, PromptSub outperforms GeneSis
across all metrics. Using gpt2-medium, a model
with 15% fewer parameters than the bart-large
model used by GeneSis, our PromptSub method
yields better results, attaining for example 21.5
in best and 50.7 in P@1. With both FS and VC
enabled, GeneSis+WN is still outperformed by
PromptSub, even when the former leverages Word-
Net for post-processing. The results support the
hypothesis that PromptSub can benefit from addi-
tional training data, as evidenced by the improve-
ments of PromptSub+ over the standard Prompt-
Sub.

Another salient point is the pronounced stabil-
ity exhibited by PromptSub, evident from the re-
duced variance we observed across random seeds.
For instance, PromptSub shows a variance of 0.2,
markedly less than the 3.7 of Genesis, in terms of
oot. This can be attributed to the fact that Prompt-
Sub generates substitutes through greedy sampling
from a single-step probability distribution, leading
to a more stable and consistent output. In contrast,
GeneSis relies on multiple decoding steps, result-
ing in higher variability across runs.

4.4 Experiments on LS14 and L.S21

As detailed in Section 4.3, we follow the same
evaluation procedure as in GeneSis to ensure a fair

Method F.°  F°
BERT (Zhou et al., 2019) 174 27.5

GeneSis (Lacerra et al., 2021b) 23.3 43.0
GPT-3 (Lee et al., 2021) 22.7  36.3
WordTune (Lee et al., 2021) 23.4  33.2
CALS (Yang et al., 2022) 16.7 284
mBERT (Wada et al., 2022) 124 22.6
SpanBERT (Wada et al., 2022) 209 34.0
MPNet (Wada et al., 2022) 22.0 34.1
XLNet (Wada et al., 2022) 23.3 374
ELECTRA (Wada et al., 2022) 23.2  36.7
DeBERTa-V3 (Wada et al., 2022) 24.5 39.9
BART (Wada et al., 2022) 23.5 372
Paral.S (Qiang et al., 2023) 23.5 38.6
ParaLS” (Qiang et al., 2023) 24.9  40.1
GPT-3 (Lee et al., 2021) 22.2 343
WordTune (Lee et al., 2021) 22.8 32.1
BERT (Wada et al., 2022) 20.7 34.4
BERT-K (Wada et al., 2022) 15.7 244
BERT-M (Wada et al., 2022) 10.7 16.5
CILex3 (Seneviratne et al., 2022) 19.9 315
ParalS" (Qiang et al., 2023) 22.8 37.0
PromptSub (ours) 23.2 454
PromptSub+ (ours) 24.0 464

Table 4: Evaluation results on LS21. The upper section
presents the performance of their complete systems,
while the lower section reports that of the generation
step only. Results of BERT (Zhou et al., 2019), CALS
(Yang et al., 2022), and GPT-3 (Lee et al., 2021) are
borrowed from Wada et al. (2022). That of CILex3
(Seneviratne et al., 2022) is reported by Qiang et al.
(2023). The best are bolded.

comparison. Other competing systems were tested
under different experimental configurations, com-
plicating the comparison. Moreover, existing ap-
proaches typically involve multiple stages, such as
substitute generation and contextualized reranking.
This complicates the isolation and evaluation of the
specific impact of PromptSub, which is a single-
stage end-to-end generative approach, as opposed
to the “pipeline” approaches of the methods we
compare to. To address this, we expand our evalua-
tion scope to include LS14 and LS21, emphasizing
the substitute generation aspect. In Tables 3 and 4,
we compare PromptSub (and PromptSub+) to pre-
viously published methods on LS14 and LS21 re-
spectively. Results reported in the second part of
each table (below the double horizontal line) evalu-
ate performance after the generation stage, with no
post-processing. To further verify the advantages
of our PromptSub, we re-implement GeneSis using
the same configurations, maintaining gpt2-medium
for PromptSub and bart-large for GeneSis.

For results on LS14 (Table 3), PromptSub+
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yields competitive performance, ranking first or
second on all metrics. A standout observation is the
prowess of PromptSub+ in the P@1 metric, where it
achieves the top result by a wide margin. We find
that this disparity between P@1 and other metrics is
attributed to annotator preference induced by the
weighted task metrics of SemEval-2007 (McCarthy
and Navigli, 2007). This thus suggests that certain
methods, such as Paral.S", may be biased toward
the substitutes preferred by annotators.

Turning to LS21 (Table 4), both PromptSub and
PromptSub+ outperform prior methods, including
GeneSis, setting a new state of the art. Specifi-
cally, PromptSub+ achieves an unprecedented F'.
of 46.4, surpassing the previous best by almost
10. It also achieves the best F'°, at 24.0 using
PromptSub+. Notably, despite using gpt2-medium,
PromptSub and PromptSub+ are able to outperform
GPT-3 by a substantial margin, demonstrating the
utility of the knowledge-rich prompting techniques
we built into PromptSub. Based on these results,
we speculate that, with full access to GPT-3 (or
even more powerful models), and additional la-
beled LST data for fine-tuning, PromptSub could
yield even stronger results.

4.5 Error examples

In this section, we discuss the most frequent types
of errors made by our method.

The first such category that we identified in-
volves instances where the substitutes provided by
annotators include phrases rather than single words.
For example, one test instance from LS21 has the
context “That is why I cannot take payment”; the
target word fake is annotated with substitutions
including accept and ask for. While accept is a sin-
gle element of the vocabulary, ask for is a phrase
that models trained predominantly to predict single-
word substitutes may not generate.

Besides, we observed some potential omissions
in the datasets. One example involves substituting
the target word voice in the context “How should
I reply? Her voice had grown quiet”. The top
prediction of PromptSub, sound, is not among the
provided substitutes, and so is considered incorrect.
However, the annotations include talk, utterance,
and rongue, which are, arguably, less suitable as
substitutes than sound. This highlights the need for
benchmarks which are more comprehensive, and
which have more consistent criteria for substitutes.

LS14 LS21
oot-m F10 TFl0

gpt2 13.8 31.7 43.8  68.8 221 426
gpt2-medium  14.5 33.1 46.2 729 232 454
gpt2-large 14.7 34.5 46.2 724 238 46.7

2pt2 14.1 324 443 694 228 443
PromptSub+  gpt2-medium  14.9 339 470 739 24.0 464
gpt2-large 151 349 468 729 238 476

Method Backbone

best best-m oot

PromptSub

Table 5: Analysis results of PromptSub on LS14 and
LS21, showing the impact of varying model capacity.

— gpt2 —— gpt2-medium — gptZ—Iarge‘
(a) LS14 (b) LS21
0.6 e e
@0.4 f [/—
& 0.2 /
0 20 40

0 20 40 60 80
Training Epochs

60

Figure 3: Learning curve of PromptSub for various
model sizes on LS14 and LS21 validation sets. Vertical
dotted lines indicate the last training epoch before early

stopping.

S Analysis

We now present a sensitivity analysis of our method.
We measure the impact of various aspects of our ex-
perimental setup, including training size, model ca-
pacity, sampling strategy, prompt engineering, and
external knowledge. We maintain the same experi-
mental setup, modifying one aspect of our methods
to observe the resulting performance change on
LS21. The random seed is held constant at 0.

Training size Regarding training data size, we
have introduced PromptSub+, a variant of Prompt-
Sub, that includes the validation set in its training
data. Across all experiments, PromptSub+ con-
sistently outperforms PromptSub on the test data,
demonstrating its ability to benefit from additional
data. This finding underscores the challenge posed
by limited data resources in most existing LST
benchmarks, which affects the broader application
of PromptSub and other supervised methods (Lac-
erra et al., 2021a,b).

Model capacity We tested three GPT2 model
sizes to measure the impact of model capacity (i.e.
number of parameters). As reported in Table 5,
the results demonstrate the trend of improved per-
formance, across most evaluation metrics, as we
scale from gpt2 to gpt2-medium, then to gpt2-large.
Figure 3 depicts the learning curve in relation to
model capacity, showing a drop in the number of
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Sampling Fi° F° P@1 P@3 R@10
TopSub 209 399 694 57.8  40.1
FreqSub ~ 22.0 423 71.0 607 425

Table 6: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the sampling strategy to fill
in the prompt template with label substitutes.

training epochs before early stopping is triggered.
It also becomes apparent that larger models are
more prone to overfitting the training set. This
trend again reflects the challenge posed by limited
data resources in LST, particularly when deploying
PLMs in scale.

Sampling strategy In Section 3.3, we consid-
ered two different sampling techniques, TopSub
and FreqSub. The results obtained by our method
with each sampling strategy are presented in Ta-
ble 6. We observe a constant improvement from
TopSub to FreqSub, hence its usage in our principal
experiments. These results support that FreqSub
successfully addresses the one-to-many mapping
issue during corpus generation and facilitates the
generation of more accurate and diverse substitutes.

Prompt engineering We next quantify the im-
pact of different prompt templates (Section 3.4) on
PromptSub. Table 7 shows that InfoP generally
outperforms BaseP, validating the value of extra
contextualized cues. AugP outperforms both, align-
ing with our expectations as the information pro-
vided to the language model by AugP is a superset
of what InfoP provides. This comparison effec-
tively serves as an ablation study, showcasing the
significance of incorporating additional knowledge
into prompts. Interestingly, although augmented
prompt templates are not used during inference,
their inclusion in the training phase still leads to
noticeable performance improvements.

External knowledge To validate the efficacy of
incorporating external knowledge in PromptSub,
we introduce a new prompting strategy, ExP, as
a simple form of retrieval-augmented generation
(RAG; Lewis et al., 2020b). Building upon AugP,
ExP utilizes WordNet as an external knowledge
base, retrieving WordNet synsets for the word
to be substituted, and which share the same part
of speech. These synsets are integrated into the
prompt templates as descriptions, following a sim-
ilar approach to that used for other information.
Comparison with AugP in Table 7 reveals the su-

BaseP —— InfoP — AugP — ExP
(a) Loss (b) P@1
2.0 " s
1.5 0.4
0.2
1.0 —

0 20 40 60 0 20 40 60
Training Epochs

Figure 4: Training dynamics of gpt2 under PromptSub,
showing the average loss (a) and P@1 (b) across dif-
ferent prompt templates on the validation set of LS21.
Vertical dotted lines mark the early stopping epochs.

Prompt F.° F!° P@1 P@3 Re@I10
BaseP 21.1 376 727 583 386
InfoP 20.7 384 723 59.0 395
AugP 221 422 719 620 43.6
ExP 220 423 730 626 434

Table 7: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the prompt templates.

periority of ExP in P@1 and P@3, indicating that
high-quality substitutes are more likely to be near
the top of the list produced by PromptSub. Training
results in Figure 4 also demonstrate the advantages
of ExP, with lower loss, higher P@1, and earlier con-
vergence. These results indicate the potential ben-
efits of grounding PromptSub on external sources
of knowledge through RAG.

6 Conclusion

We have presented PromptSub, a framework for
recasting LST as CLM, which overcomes the limi-
tations of earlier methods by bridging the gap be-
tween pre-training and fine-tuning. PromptSub is
flexible and extensible: it allows for variations in
the prompt template, facilitating the inclusion of
additional knowledge; further analysis reveals the
potential for further improvement through scaling
up model capacity and data size, applying prompt
engineering, and retrieving external knowledge
via RAG. Our extensive experiments found that
PromptSub consistently outperforms the previous
generative approach, GeneSis, on LS07, and estab-
lishes a new overall state of the art. As the first
attempt to fine-tune decoder-only PLMs for LST,
our work highlights the broader applicability of
PLMs to semantic tasks.
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Limitations

While PromptSub is a significant step forward in
LST, it is not without its limitations. Firstly, its ef-
fectiveness is limited by the quality and diversity of
its training data, a common challenge in supervised
methods. This is particularly relevant given the
data scarcity in LST, restricting our ability to scale
with data extension. Furthermore, PromptSub has
not been tested with the latest PLMs due to limited
computing resources and closed-source constraints.
The computational demands for fine-tuning large-
scale language models may limit its practicality,
especially in resource-constrained environments.
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A PromptSub vs. TS

Our approach distinguishes itself from TS5 (Raffel
et al., 2020) in several key aspects:

Architecture. Unlike the encoder-decoder frame-
work of T5, PromptSub leverages a decoder-only
model to reframe LST as CLM, taking advantage
of its inherent strengths in generating text.
Prompting. TS5 utilizes a short prefix to specify
each task. One example is “cola sentence: ~ for
the CoLA dataset. In contrast, PromptSub employs
in-context placeholder prompts that not only ver-
balize raw LST data instances but also provide a
descriptive context for CLM.

Method. The text-to-text format has inherent lim-
itations, thus, aside from GeneSis, there has been
no effective method to address LST within this
framework. PromptSub, however, offers a fresh
perspective and demonstrates a new solution.
Task. PromptSub has successfully adapted causal
language models to LST, a domain where, to the
best of our knowledge, TS5 has not been demon-
strated to operate.

Performance. Empirical evidence show that
PromptSub outperforms GeneSis, which takes
BART as the backbone. Given that GeneSis uses an
encoder-decoder framework akin to T5, it stands to
reason that PromptSub could extend its advantages
over approaches that merely transition from BART
to TS.

B MLM & CLM

Consider the following example illustrating the di-
rect application of MLM and CLM to LST:

¢ Sentence: I live in a beautiful house .
e MLM: I live in a [MASK] house .
e CLM: I live in a [MASK] [MASK] [MASK]

The target word (i.e., “beautiful”’) is masked for
the model to predict it, potentially leading to a
substitute (e.g., “big”) that fits the context but does
not preserve the original sentence semantics due to
the absence of the target word information.
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Abstract

Paraphrase identification (PI) and natural lan-
guage inference (NLI) are two important tasks
in natural language processing. Despite their
distinct objectives, an underlying connection
exists, which has been notably under-explored
in empirical investigations. We formalize the
relationship between these semantic tasks and
introduce a method for solving PI using an NLI
system, including the adaptation of PI datasets
for fine-tuning NLI models. Through extensive
evaluations on six PI benchmarks, across both
zero-shot and fine-tuned settings, we show-
case the efficacy of NLI models for PI through
our proposed reduction. Remarkably, our fine-
tuning procedure enables NLI models to out-
perform dedicated PI models on PI datasets. In
addition, our findings provide insights into the
limitations of current PI benchmarks.'

1 Introduction

Semantic relationships have been the subject of
extensive research, and play pivotal roles in natural
language processing (Burdick et al., 2022; Hauer
and Kondrak, 2023; Pamies et al., 2023; Peng et al.,
2023a; Wahle et al., 2023), including the study and
evaluation of the reasoning capabilities of language
models (Liu et al., 2019; Yang et al., 2019). Two
important tasks that depend on semantic relations
between sentences are paraphrase identification (PI;
Bai et al., 2023; Peng et al., 2023b) and natural
language inference (NLI; Williams et al., 2018;
Nie et al., 2020; Williams et al., 2022). PI is the
task of deciding whether two sentences are in the
paraphrase relation, that is, whether they convey
the same meaning (Bhagat and Hovy, 2013). NLI
involves three labels that describe the relationship
between two sentences: entailment, contradiction,
and neutral (MacCartney, 2009).

Our focus is specifically on detecting textual en-
tailment, as indicated by the first of these categories

'We make our code and data publicly available on GitHub:
https://github.com/ShiningLab/PI2NLI

Asymmetric Symmetric

[ Textual Entailment

[ Textual Inference

Contextual Non-Contextual

Figure 1: Four sentence-level relations in terms of sym-
metry and contextuality. Arrows indicate interdepen-
dence between the relations (Section 2).

(Bos and Markert, 2005; Dagan et al., 2005; Po-
liak, 2020), or, more generally, textual inference
(Manning, 2006), which is the relation between
sentences where one can be inferred from the other
in a given context. Take the example from SNLI
(Bowman et al., 2015); while the premise “this man
is surfing” does not always entail the hypothesis “a
man is on water”, the broader context may make
it clear that the word surfing refers to an aquatic
activity rather than website browsing, and so the
latter sentence can be inferred from the former.

Prior work has hypothesized that paraphrasing
corresponds to bidirectional textual entailment; see,
for example, the surveys of Androutsopoulos and
Malakasiotis (2010) and Madnani and Dorr (2010).
However, to the best of our knowledge, the only
work that empirically investigates the connection
between these two tasks is Seethamol and Manju
(2017). They incorporate a blend of modules, in-
cluding word sense disambiguation for sentence
similarity and a Markov logic network for proba-
bilistic inference, which complicates the analysis
of the interplay between paraphrases and entail-
ment. Moreover, their approach aligns more with
traditional PI methods than with our approach, and
lacks any theoretical formalization.

In this work, we formalize prior informal obser-
vations on the relationship between textual entail-
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ment and paraphrasing into a coherent theoretical
framework (Figure 1). We formally define four
semantic relations and classify them according to
two criteria: symmetry and contextuality. This
formalization implies a practical reduction of PI
to NLI, which we empirically validate by employ-
ing two widely used pre-trained transformer-based
language models, ROBERTa and XL.Net. We intro-
duce a dataset adaptation process for fine-tuning
an NLI model for PI, and test our implementation
on six PI benchmarks. Our results indicate that in
the fine-tuned setting, our PI to NLI reduction can
actually yield better performance compared to the
direct application of a PI system. This provides
strong support for the utility of our reduction, and
the theoretical model upon which it is based.

2 Methodology

In this section, we present our theoretical frame-
work linking four semantic relations. We also intro-
duce a novel method for fine-tuning an NLI model
for PI, proposing a dataset adaptation procedure
that converts PI datasets to labeled NLI instances.

2.1 Equivalence and Paraphrasing

We define the semantic equivalence relation (SEQ)
as follows:

SEQ(S1, S2) := “the sentences S and S con-
vey the same meaning”

The paraphrase relation (PR) between sentences
is related to semantic equivalence; specifically,
SEQ implies PR. Our definition of PR is contex-
tual, so that it also admits semantic equivalence
in a broader context, which may include common
sense and world knowledge.

PR(C, Sy, S2) := “the sentences S; and Sy con-
vey the same meaning given the context C”’

Bhagat and Hovy (2013) refer to this type of
paraphrases as quasi-paraphrases; for example:

e S1: We must work hard to win this election.

¢ So: The Democrats must work hard to win
this election.

We postulate the following relationship between
the semantic equivalence and paraphrase relations:

SEQ(S1, S2) < VC : PR(C, Sy, S)

2.2 Entailment and Inference

Textual entailment (TE) is a directional relation
between sentences which holds if the truth of one

sentence follows from another sentence (Dagan and
Glickman, 2004):

TE(S7, S2) := “the sentence So can be inferred
from the sentence S;”

The proposition that 7" entails H is denoted as
T = H. The entailment relation is not symmetric:
T = H does notimply H =T

Following prior work, we assume that sentences
are semantically equivalent if and only if each en-
tails the other:

SEQ(Sl, Sg) & TE(Sl, 52) A TE(SQ, Sl)

Finally, we define textual inference (TI) as a con-
textual generalization of textual entailment which
takes into account the broad context of the state-
ments, which may include common sense and
world knowledge (Manning, 2006):

TI(C, S1,S2) := “the sentence Sy can be in-
ferred from the sentence S given the context C”

Intuitively, T'1(C, S, S2) expresses the follow-
ing inference property: (C' + S1) | So.

Analogous to the relationship between SEQ and
PR, we postulate the following relationship be-
tween TE and TI:

TE(Sl, SQ) S VO : TI(C, S1, SQ)

The following proposition establishes a connec-
tion between PR and TI:

Proposition 1 Given context C, sentences S1 and
So are paraphrases if and only if they can be mutu-
ally inferred from each other.

PR(C, S, S3) < TI(C, Sy, S2) A TI(C, S2, S1)

Thus, the paraphrase relation can be viewed as
the conjunction of the inference relation in both
directions.

2.3 Dataset Adaptation

Building on our theoretical formalization, we posit
that the task of PI, which depends on detecting the
PR relation, can be reduced to NLI, specifically the
detection of the TI relation. To implement and test
our PI to NLI reduction — henceforth PI2NLI — we
present a novel fine-tuning procedure that allows an
NLI model to be fine-tuned for solving PI instances.
Our goal is to mitigate biases stemming from the
transfer learning and any domain-specific dispari-
ties or other properties of the data that may degrade
performance on PI datasets. Our dataset adaptation
procedure transforms PI datasets to be compatible
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with NLI systems so as to facilitate fine-tuning on
adapted PI data.

We convert each positive PI instance into two
distinct positive NLI instances, one in each direc-
tion, indicating mutual TI between two paraphrases,
as postulated in Proposition 1. Conversely, since
determining in which direction TT fails to hold in a
negative PI instance is not straightforward, we gen-
erate a negative NLI instance in a random direction.
While this heuristic is not theoretically justified, we
found that it works well in practice.

3 Experiments

The experiments in this section are aimed at validat-
ing the proposed theoretical framework. Additional
data specifics and training details can be found in
Appendices B and C.

3.1 Models

We implement and test our reduction with each of
two freely available transformer-based (Vaswani
et al., 2017) language models, RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). Specific
model names have been provided in the footnotes.
We choose them because of their low hardware
requirements, and their status as well-known and
well-studied models (Peng et al., 2022). The pri-
mary distinction between them lies in their design:
RoBERTza is an autoencoding-based model, while
XLNet is an autoregressive model. Note that the
prior works we will mainly compare to are as re-
cent as 2022, thus we gain no advantage from our
choice of models.

In our implementation, we apply the NLI classi-
fication head because pre-trained NLI models are
readily available (Nie et al., 2020). We consider the
relation labeled as “entailment” in the NLI datasets
as TI rather than TE because the positive instances
typically require broader contextual knowledge, as
exemplified by the “surfing” instance in Section 1.
Since NLI models are not typically trained on para-
phrase data (PI being an entirely separate task from
NLI), this maintains a sound experimental setup.

Since recognizing TI is a binary task (outputs
are positive or negative), while NLI is a ternary
task (outputs are entailment, neutral, or contradic-
tion), we require a means of converting labeled TI
instances to NLI instances (so that we can fine-tune
NLI models), and NLI outputs to TI outputs (so that
we can evaluate them). We map positive TI labels
to “entailment” NLI labels and negative TI labels

Data #Train. #Valid. #Test Test Pos.%
PIT 11,530 4,142 838 20.88
QQP 384,290 10,000 10,000 50.00
MSRP 3,668 408 1,725 66.49
PAWS QQP 11,988 8,000 677 28.21
PAWS Wiki 49,401 8,000 8,000 44.20
PARADE 7,550 1,275 1,357 47.90

Table 1: Statistics of all six benchmarks, including the
positive rate of the test set (Test Pos.%).

to “neutral” or “contradiction” labels at random.
We map “entailment” NLI output to a positive TI
classification, and “neutral” or “contradiction” to
a negative TI classification. Further details and
discussion can be found in Appendix A.

For the zero-shot application of PI2NLI,
pi2nlizer,, We employ two trained NLI models:
ROBERTa,,;;2 and XLNet,;;>. For the fine-tuned
version, pi2nli, these models undergo fine-tuning
on the NLI dataset derived from the corresponding
PI dataset through dataset adaptation (Section 2.3).
This yields a TI (or, more accurately, NLI) model
adapted for PI following our PI2NLI reduction.

3.2 Setup

Data We test our reduction on six PI benchmarks:
PIT (Xu et al., 2015), QQP (Iyer et al., 2017),
MSRP (Dolan and Brockett, 2005), PAWS QQP
(Zhang et al., 2019), PAWS Wiki (Zhang et al.,
2019), and PARADE (He et al., 2020). We follow
the data processing established by prior work (He
et al., 2020; Peng et al., 2022). Detailed specifica-
tions of each dataset are provided in Table 1.

Baselines We adopt baselines from previous stud-
ies, citing each source for reference. Beyond
referencing prior work, we set new benchmarks
pi by training dedicated PI models using the
same language models as pi2nli, alongside vanilla
RoBERTa and XLNet.* Furthermore, we ensure
that all classification heads are initialized from
scratch. This facilitates a controlled comparison to
isolate the distinct contributions of the PI2NLI re-
duction from the language models used. We metic-
ulously follow the experimental setups and data
preprocessing detailed in the referenced works, par-
ticularly aligning with the protocol established by
Peng et al. (2022) for hyperparameter tuning.

2r0bel’ta—large—snli_mnli_fever_anli_R 1_R2_R3-nli
3xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli
*roberta-large, xInet-large-cased
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Backbone  Method PIT QQP MSRP  PAWS QQP PAWS Wiki PARADE
— Random 27.18 50.31 56.47 35.01 46.94 51.22
Reimers and Gurevych (2019) 52.0311_44 90.783:0_09 81.67:(:0_46 66.0110_45 81.57:&0_53 -
BERTbﬂge Peng etal. (2021) 59.113:0‘93 90.41i0(09 81‘70j:()‘17 66.22i0(75 81~14j:0.81 -
Peng et al. (2022) 59.194185  90.744006  83.424023  68.8540.73 82.6040.18 -
BERTrge He et al. (2020) 74.60 87.70 89.30 — 93.30 70.90
RoBERTa Reimers and Gurevych (2019)  52.674275  90.7910.00  81.69+053  67.351097  81.421093 -
b3 peng et al. (2022) 59.504274  90.764003  83.224046  69.68+072  82.874035 -
ROBERTalarge pi (Liu et al., 2019) 81.20i0439 91.66i0422 91‘17i0.15 88.92i1409 94'05i0.22 71'1017.18
XLNC(]arge pi (Yang et al., 2019) 56.39i32.39 73~19i40.92 87‘51i4,3(5 89.83i1424 74'91i41,88 59~02i32.82
pi (Nie et al., 2020) 79.6411_72 91.6210_28 91-4810.68 90.0611_81 93-89;&0_22 74.6510_64
RoBERTay; pi2nlize, (ours) 10.70 53.03 35.92 61.36 71.40 27.00
piani (ours) 83.64i1‘44 92‘27i0A14 92~38i0A30 88‘67i1A84 93.87i(],13 75~04i0.85
pi (Nie et al., 2020) 78.80+082  91.271030 91.001063  89.68103s  93.661024  73.971021
XLNetyy; pi2nlizero (ours) 18.46 60.28 50.38 56.00 69.97 33.74
pi2nli (ours) 82.071131  91.954020 91.411040  87.551126 93901035  74.241075

Table 2: F1 scores (%) of PI2NLI in zero-shot (pi2nliz,) and fine-tuned (pi2nli) settings, compared with the
Random and pi baselines we implemented, as well as prior methods cited. Scores highlighted in bold signify the
best performance with a p-value < 0.005, denoting high statistical significance.

Metrics To address the inherent class imbalance
in most datasets and follow prior work (Peng et al.,
2022), we use the F1 score as our primary evalua-
tion metric. We run each method on each dataset
five times, using each integer from 0 to 4 as a ran-
dom seed, and report the average F1 score.

3.3 Results

We present our results in Table 2.

Zero-shot The zero-shot performance of PI2NLI
is erratic, with highly variable F1 scores across
datasets. Indeed, pi2nli,e, outperforms the ran-
dom baseline on only half of the datasets. Our
analysis reveals that this is not indicative of a flaw
in our PI2NLI reduction but rather due to inherent
flaws in the PI benchmarks. Specifically, the an-
notations in these datasets do not strictly conform
to the criteria imposed by our hypothesis. Table 3
highlights instances where paraphrasing-induced
information loss disrupts mutual TI, leading to dis-
crepancies between the original PI labels (Ypy) and
the outputs (S?pl) derived from the PI2NLI hypoth-
esis. In essence, our results suggest that PI2NLI
is able to identify and rectify inconsistencies in
PI benchmarks. Such inconsistencies also sug-
gest that context information essentially represents
the dataset-specific distribution in practice: a para-
phrase identified in one dataset might not necessar-
ily be considered a valid paraphrase in the other.
Taken together, these findings strongly suggests the
need for a dataset adaptation procedure, to prepare
the model for the unique properties of each dataset.

Fine-tuning Contrariwise, the fine-tuned version
of our PI2NLI reduction yields consistently high F1
scores, outperforming the reported results obtained
by prior work on all six datasets. In particular,
the F1 score of the ROBERTay,e.-based PI2NLI
implementation increases from 10.70 to 83.64 on
the PIT dataset. Notably, our top performances
of 92.27 on QQP and 75.04 on PARADE also sur-
pass the 89.6 (Peng et al., 2023b) and 74.06 (Bai
et al., 2023) reported by the latest work respec-
tively. This demonstrates that our dataset adapta-
tion procedure successfully empowers NLI models
to adapt to the peculiarities of various PI datasets
and to yield state-of-the-art results. Moreover, our
experiments show that PI2NLI consistently outper-
forms dedicated PI models using the same underly-
ing language models on four of six datasets. This
controlled experiment therefore confirms that the
performance gains achieved can be attributed to
our PI2NLI reduction, rather than other factors like
the differing model capacities.

Pre-training Another critical observation is that
pre-training® on additional NLI data leads to better
and more stable fine-tuned performance on PI tasks.
This observation is especially evident when tran-
sitioning pi from XLNetjyge to XLNety;. While
it is a common belief that pre-training on addi-
tional tasks (e.g., NLI) could inherently improve
performance on one certain task (e.g., PI), this is

>We regard “pre-training” as any foundational training
conducted prior to our task-specific fine-tuning in this work.
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Input

S1ES: S2ES1 Ypr Yer

Si: The district also sent letters yesterday informing parents of the situation .

Sa: Parents received letters informing them of the possible contamination yesterday . T T T T
S1: Two kids from Michigan are in today ’s third round . F F F F
Sa: Both will compete in today ’s third round , which is all oral examination .

S1: Pacific Northwest has more than 800 employees , and Wells Fargo has 2,400 in Washington . T P F T
Sa: It has 800 employees , compared with Wells Fargo s 2,400 .

S1: Six Democrats are vying to succeed Jacques and have qualified for the Feb. 3 primary ballot . T F T

Sa: Six Democrats and two Republicans are running for her seat and have qualified for the Feb. 3 primary ballot .

Table 3: Four PI instances that differ in the detected entailment direction. Although all eight individual TI outputs
are arguably correct, the last two instances are counted as false negatives.

[ Positive Accuracy [ Negative Accuracy
(a) PI2NLI Zero-shot

90

60

30

0
PIT QQP MSRP
PI2NLI Fine-tuned

(b)
90
60
s [ [ [
0 PIT QQP

MSRP PAWS QQP PAWS Wiki

PAWS QQP PAWS Wiki  PARADE

I

PARADE

Figure 2: The results of (a) pi2nliz, and (b) pi2nli
using RoBERTay;; in Table 2, separated into positive
and negative accuracy.

not always a given. Several factors could poten-
tially lead to a negative impact after such additional
pre-training. These include domain mismatches,
biases inherent in the pre-training data, and the phe-
nomenon of catastrophic forgetting (McCloskey
and Cohen, 1989). Following NLI pre-training, the
improved performance of PI serves as a positive
indicator. They support our hypothesis of a closely
related and synergistic relationship between PI and
NLI. This synergy is not automatic but is indica-
tive of the effective transfer of relevant skills and
knowledge from NLI to PI tasks.

Boundary In Figure 2, we split the results into
positive and negative accuracy. In (a), pi2nlizer
tends to have relatively higher negative accuracy,
leading to a lower likelihood of classifying sen-
tences as paraphrases. In (b), both positive and
negative accuracy of pi2nli increase and become
more balanced. This supports our earlier findings
that, in order to perform better in the PI task, NLI
models can correct their decision boundaries after
fine-tuning. We view this adjustment as the process
of how models learn the context inherent in each
PI dataset.

PAWS Our error analysis reveals that the results
of pi2nli on PAWS QQP and PAWS Wiki are due to
the presence of adversarial examples (Zhang et al.,
2019). This becomes particularly evident when
comparing the QQP results with those of PAWS
QQP, as both derive from the same source. These
PAWS datasets are augmented with paraphrase ad-
versaries to offer refined versions of the original
datasets, presenting a challenge for models to pre-
dict the correct outcomes. Applying PI2NLI re-
quires an NLI model to predict the TI relation in
each direction. Therefore, the impact of the para-
phrase adversaries becomes more apparent due to
error accumulation from making two predictions.

4 Conclusion

We have presented a novel theoretical and empir-
ical study of the relationship between two impor-
tant semantic tasks, PI and NLI, a topic that has
remained largely unexplored. Our experiments pro-
vide strong evidence that our innovative PI2NLI
reduction, combined with fine-tuning on the NLI
data facilitated by our dataset adaptation procedure,
yields substantial F1 improvements on the PI task,
outperforming dedicated PI models on benchmark
PI datasets. The variable outcomes observed when
applying PI2NLI in a zero-shot setting also offer
insights into the existing limitations of the current
PI datasets. In addition to advancing the state of
the art, our findings offer valuable insights into the
relation between PI and NLI, and set the stage for
further investigation.

Limitations

While our work has made significant strides in un-
derstanding the four semantic relations, it is not
without its limitations.

Firstly, our zero-shot results suggest mismatches
between our theoretical proposition and existing
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PI benchmarks. These benchmarks may not ade-
quately capture the bidirectional inference relation
integral to genuine paraphrase identification.

Secondly, our study focuses on the application of
NLI models in solving PI tasks through the PIZNLI
reduction, but there are still avenues left to explore.
For instance, augmenting the PI dataset with an
NLI one could potentially yield new insights.

Finally, our study has been NLI-centric so far, al-
lowing us to delve deeply into the potential of NLI
models in PI tasks. However, there is an opportu-
nity for future research to explore the relationship
from a PI-centric perspective. This could include
investigating the capability of PI models in solving
NLI tasks. A more balanced exploration would
provide a more comprehensive understanding of
the four semantic relations.
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A Dataset Adaptation

The alignment of PI data with NLI data starts with
converting PI data to NLI format, as outlined in
Section 2.3. While converting positive PI instances
to positive NLI instances is straightforward, that
for negative NLI instances is not. A negative PI in-
stance is transformed into a negative NLI instance
in one direction. When fine-tuning the NLI model,
both “contradiction” and “neutral” are used to rep-
resent these negative NLI instances. In this context,
a FALSE label is randomly assigned as either “con-
tradiction” or “neutral” in NLI. This is justified in
the context of our work because both labels can
align with a negative TI relation.

Determining the precise TI direction and corre-
sponding NLI class without additional resources
or explicit human judgment presents a significant
challenge. Hence, we adopted random sampling
as a practical solution in our research. However,
we recognize that further refining this aspect, such
as using a pre-trained NLI model for more gran-
ular annotation of negative NLI instances, could
enhance the performance of PI2NLI. We believe
this represents a promising direction for future re-
search.

B Training

The AdamW optimizer (Loshchilov and Hutter,
2019) is employed with an initial learning rate of
le-5 and a batch size of 32. We tune the learn-
ing rate within the range of [le-5, 2e-5, 5e-5] and
choose the batch size to optimize the GPU mem-
ory utilization on a single Nvidia Tesla V100. To
prevent overfitting, we adopt early stopping on
the F1 score of validation for 6 epochs (Prechelt,
1998). All implementations are executed using Py-
Torch (Paszke et al., 2019), with pre-trained models
sourced from the HuggingFace repository (Wolf
et al., 2020).

In our implementation, we transitioned from a
standard PI pipeline consistent with established
practices in existing literature (Peng et al., 2022).
to our PI2NLI. This strategic shift was executed
with an emphasis on ensuring fairness and com-
parability across tests. Thus, our setup may even
slightly favor the PI baselines. While more precise
tuning of training configurations might enhance
the performance of PI2NLI, our primary focus has
been on validating our hypothesis. Our future work
will explore optimizing these configurations to fur-
ther improve performance.

C Data

The Paraphrase and Semantic Similarity in Twitter
(PIT) dataset is sourced from Twitter’s trending
service and annotated using Amazon Mechanical
Turk (Xu et al., 2015). The labels range from O to
5. We follow the suggested binary data processing
where labels 4 and 5 indicate a paraphrase, and
labels O through 2 do not.°

The Quora Question Pairs (QQP) dataset orig-
inates from the question-and-answer platform
Quora, consisting of question pairs annotated for
potential duplicity (Iyer et al., 2017). The dataset
labels are binary, indicating whether question pairs
are duplicates (TRUE) or not (FALSE).”

The Microsoft Research Paraphrase Corpus
(MSRP) is derived from sentence pairs generated
by clustering news articles using heuristic extrac-
tion and an SVM classifier, with human annota-
tions provided (Dolan and Brockett, 2005). For
this study, we adhere to the GLUE benchmark stan-
dards for processing and splitting the data (Wang
etal., 2018).8

The PARAphrase identification based on Do-
main knowledgE (PARADE) dataset is tailored for
PI in computer science, requiring in-depth domain
knowledge (He et al., 2020). It challenges models
to identify paraphrases that, despite minimal lexical
and syntactic overlap, are semantically equivalent
due to the specialized context of computer science.
The dataset offers annotations in both four-class
and binary formats, provided by annotators with
domain expertise.” In this work, we use binary
labels to maintain consistency with prior studies.

The Paraphrase Adversaries from Word Scram-
bling (PAWS) benchmark, including PAWS QQP
and PAWS Wiki, is proposed to test models to dis-
cern semantic relationships despite superficial lexi-
cal similarities (Zhang et al., 2019). These datasets
utilize word scrambling and back-translation to
create adversarial examples that, while sharing
high lexical overlap, differ significantly in mean-
ing. PAWS QQP draws questions from the QQP
corpus and PAWS Wiki is based on sentences from
Wikipedia.!? Labels are provided in binary for-
mat, and we follow the standard data processing
protocols as originally released.!!

®https://github.com/cocoxu/SemEval-PIT2015
"https://huggingface.co/datasets/quora
8https://huggingface.co/datasets/nyu-mll/glue
*https://github.com/heyunh2015/PARADE_dataset
https://dumps.wikimedia.org/
"https://github.com/google-research-datasets/paws
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Abstract

Emotion identification and polarity classifica-
tion seek to determine the sentiment expressed
by a writer. Sentiment lexicons that provide
classifications at the word level fail to distin-
guish between different senses of polysemous
words. To address this problem, we propose a
translation-based method for labeling each indi-
vidual lexical concept and word sense. Specifi-
cally, we translate synsets into 20 different lan-
guages and verify the sentiment of these transla-
tions in multilingual sentiment lexicons. By ap-
plying our method to all WordNet synsets, we
produce SentiSynset, a synset-level sentiment
resource containing 12,429 emotional synsets
and 15,567 polar synsets, which is significantly
larger than previous resources. Experimental
evaluation shows that our method outperforms
prior automated methods that classify word
senses, in addition to outperforming ChatGPT.
‘We make the resulting resource publicly avail-
able on GitHub.

1 Introduction

Emotion identification is the semantic task of ana-
lyzing a piece of text to identify a set of underlying
emotions from a predefined inventory (de Albornoz
et al., 2012). Polarity classification is the closely
related task of determining the polarity of a text,
which can be positive, negative, or neutral (Pang
and Lee, 2004; Turney, 2002). These two tasks are
variations on sentiment analysis, the extraction of
sentiment that a writer expresses toward some ob-
ject (Jurafsky and Martin, 2009). Following Kakko-
nen and Gali¢ Kakkonen (2011), we refer to a text,
a word token, or a lexical concept as sentimental
if it is associated with any emotion or non-neutral
polarity.

The scope of sentiment analysis can be a single
word (Pennebaker et al., 2001; Mohammad and
Turney, 2010, 2013), a sentence (Abdul-Mageed
and Ungar, 2017; Sosea and Caragea, 2020), or

longer texts such as Twitter posts and customer
reviews (Liew and Turtle, 2016; Dini and Bittar,
2016; Hu and Liu, 2004). In this paper, we focus
on sense-level sentiment; knowing the sentiment of
the individual words in a text can help determine
its overall sentiment.

Emotion identification is more informative than
polarity classification, but it is also more subjective
in the sense that we would expect more disagree-
ment among annotators. For example, determining
that the word murder has a negative polarity is
more objective than deciding which combination
of emotions, such as anger, disgust, fear, and sad-
ness, best relate to the word. This subjectivity is
only heightened by the lack of consensus on the
set of basic human emotions. Researchers have
proposed inventories of six (Ekman, 1992), eight
(Plutchik, 1962), or more fundamental emotions.
Therefore, while we explore both tasks, we place
greater emphasis on polarity classification.

Since many emotion-bearing words are polyse-
mous, we focus our attention on word senses and
lexical concepts. Senses are associated with one
specific meaning of a word, so classifying senti-
ments at the level of senses avoids the ambiguity
that arises from words having multiple meanings.
In WordNet (Miller, 1995), sets of words that ex-
press the same concept are grouped together in
synsets, each uniquely corresponding to a single
concept. For example, the synset that contains the
words sadness, sorrow, and sorrowfulness corre-
sponds to the concept which is defined as “the state
of being sad”. Synsets in WordNet are connected
via various relations. A word can convey different
sentiments depending on its sense in a given con-
text; we assume that the sentiment associated with
a specific sense/synset/concept is fixed. While it is
true that the sentiment of a sense can too change
depending on the context in which it is used, this
ambiguity is much less prevalent among senses
than it is among words. Thus, by labeling a synset,
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we provide a single emotional label for all word
senses in the synset.

Furthermore, we hypothesize that the sentiment
of a given concept is likely to be the same in other
languages. For example, the concept mentioned
above is also expressed by the Spanish word tris-
teza and the Yoruba word ibanuje. We test this
hypothesis by developing methods that classify En-
glish word senses by leveraging multilingual trans-
lations. Conversely, we leverage English sentiment
labels for other languages.

In this paper, we outline the development of an
automatic method that leverages multilinguality to
identify sentimental concepts. Unlike existing re-
sources that were constructed by expanding a core
of manually-annotated synsets, we propose a fully
automatic method that can provide labels for a sig-
nificantly larger number of synsets. Our method
achieves a precision of 96.0% and 92.0% on iden-
tifying emotional and polar synsets, respectively.
Of those, a correct emotional label is assigned with
an accuracy of 84.3%, and a correct polarity label
is assigned with an accuracy of 95.8%. The result-
ing resource, which we call SentiSynset, contains
12,429 emotional and 15,567 polar synset labels.
When used in conjunction with word sense disam-
biguation techniques, the resource could be useful
for the downstream application of sentiment anal-
ysis at the level of sentences and documents. Sen-
tiSynset is publicly available on GitHub, together
with our code.!

2 Related Work

In this section, we provide an overview of the re-
lated work on emotion identification and polarity
classification at the synset level. Our focus is on the
resources based on the Princeton WordNet (Miller,
1995), which consists of 117,659 synsets, each
corresponding to a specific concept defined by its
gloss.

Emotion identification WordNet-Affect (Strap-
parava and Valitutti, 2004; Strapparava et al., 20006)
and SentiSense (de Albornoz et al., 2012; Carrillo-
de Albornoz and Plaza, 2013) associate a subset
of WordNet synsets with emotional classifications.
WordNet-Affect contains 2,874 synsets, each asso-
ciated with one or more of 32 emotions. It was
constructed by first manually annotating a rela-
tively small “core” of emotional synsets, which

Thttps://github.com/UAlberta-NLP/SentiSynset

was later expanded by leveraging inter-synset rela-
tions in WordNet. SentiSense encompasses 2,190
synsets labeled with one of 14 emotional categories.
While its development is similar to that of WordNet-
Affect, they differ in their specific sets of manually
annotated synsets and the WordNet relations cho-
sen for extension.

WordNet-Affect and SentiSense are built upon
emotional inventories that are not only mutually
incompatible but also rooted in separate psycho-
logical theories of emotion. This misalignment
complicates data integration, consistency mainte-
nance, and interpretation. Meanwhile, reconciling
the two resources by mapping their distinct emo-
tion inventories remains problematic. For exam-
ple, senses of the words abashed and upset are
both identified with anxiety in WordNet-Affect, but
are respectively labeled with disgust and anger
in SentiSense; however, senses of the words em-
barrassment and nausea are both identified with
disgust in SentiSense, but are respectively labeled
with shame and general-dislike in WordNet-Affect.
These discrepancies highlight the inherent subjec-
tivity in emotion identification, thus motivating our
prioritization of the more objective task of polarity
classification. Additionally, both resources provide
limited coverage of WordNet of less than 3,000
synsets each; this limited coverage arises from their
semi-automatic construction. We aim to address
this problem by developing a scalable automatic
method that can classify a much larger proportion
of WordNet synsets.

Polarity classification SentiWordNet (Esuli and
Sebastiani, 2006; Baccianella et al., 2010) stands
as a prominent resource for polarity classification.
It assigns each synset a positive, negative, and ob-
jective score, with values ranging from 0.0 to 1.0,
summing up to 1 across the three categories. These
scores are produced by a committee of classifiers
which leverage synset glosses. Since the method is
entirely automated, polarity scores are assigned to
every WordNet synset. Contrariwise, our method,
while automated, is focused on precision, rather
than coverage; we do not seek to label every synset,
but rather aim to label as many synsets as possible
with high confidence.

ML-SentiCon (Cruz et al., 2014) attains polarity
labels for synsets using a variation of the method
used to create SentiWordNet. As such, the resource
has the same drawbacks as SentiWordNet. In addi-
tion to the synset labels, ML-Senticon also contains
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lemma-level lexicons for English, Spanish, Catalan,
Basque, and Galician that were developed by aver-
aging the polarity values of all synsets belonging
to a lemma. While these are useful lexicons, par-
ticularly because of the inclusion of low-resource
languages, assigning labels to lemmas introduces
issues with polysemy.

Multilinguality Chen and Skiena (2014) lever-
age multilingual information to develop word-level
polarity lexicons for 136 major world languages.
They create graphs connecting words from these
languages, considering both cross-language links,
such as translations and transliterations, and intra-
language links, such as synonyms and antonymes.
They propagate English word-level polarity labels
across the graphs to create lexicons for the non-
English languages. While these automatically de-
veloped lexicons have high levels of agreement
with human-annotated lexicons, they still retain the
ambiguity that arises when sentiment labels are
assigned to words rather than senses.

Applications of Synset Lexicons Synset-level
lexicons can be used for sentiment analysis at the
broader levels of sentences and documents (Hung
and Chen, 2016; Pamungkas and Putri, 2017).
These works find that using synset lexicons in
conjunction with word sense disambiguation tech-
niques for English texts results in more precise
sentiment predictions than those achieved using
word-level lexicons. Similar improvements were
observed using synset lexicons to classify non-
English text as well (Denecke, 2008). Thus, the
resource we develop can be used with these ex-
isting methods to perform downstream sentiment
analysis tasks in multilingual settings.

3 Methodology

Our method to create a large set of sentiment-
labeled synsets (SentiSynset) consists of two main
stages. The first stage is to identify a set of emo-
tional or polar synsets that we refer to as the core.
In the second stage, this core is extended via Word-
Net relations that preserve sentiment. Our approach
differs from prior works in that we create our core
automatically, rather than manually. While assign-
ing labels, we follow the precedent established in
previously mentioned related works to map a synset
to only one sentiment label.

3.1 Leveraging Word-Level Lexicons

To automatically develop the core of SentiSynset,
we leverage existing multilingual sentiment lex-
icons created for sentiment analysis tasks at the
word level. Sentiment labels for polysemous words
may be inaccurate, due to different senses having
different associated sentiments. We aim to resolve
this ambiguity by leveraging translations, based on
the observation that different senses of a word may
translate differently. For example, lick translates
into three distinct Dutch words, ranselen, likken,
and oplossen, depending on the sense in which it
is used. The sentiment labels associated with each
Dutch translation can therefore be used to deter-
mine the appropriate label for each sense of lick.
While our method is bootstrapped from emotion
lexicons, we make no assumptions about the lan-
guages or emotion inventories. Thus, our method
is flexible and can be applied to other lexicons,
potentially with larger vocabularies, or pertaining
to specific domains. While emotional inventories
vary, polarity labels are positive or negative.
Translating polysemous words into another lan-
guage is not guaranteed to resolve all ambigui-
ties that exist in word-level lexicons. For example,
the two senses of star meaning “a celestial body
of hot gases that radiates energy” and “someone
who is dazzlingly skilled in a field” (definitions
from WordNet) can both be translated as estrella
in Spanish. This phenomenon is particularly preva-
lent among closely related languages; it is therefore
advisable to perform translations into multiple lan-
guages with varying levels of similarity to English.

3.2 Developing the Core

Our method is designed to generate a core of high-
precision synsets, which contain multiple words
that are known to express a given sentiment. When
labeling a synset, we consider the number of lan-
guages that contain sentimental lemmas belonging
to the synset. For a lemma in a language other
than English to be considered sentimental, it must
share a sentiment label with an English lemma in
the synset. For example, since the Indonesian lem-
mas in Figure 1 are associated with a disjoint set of
emotions and polarity with respect to the English
lemmas, they are disregarded when processing this
synset.

To provide an emotional label (from a given emo-
tion inventory) or polarity label (positive or neg-
ative), our method takes in a synset and finds all
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p
English Synset
Gloss: marked by intense
convictions; inclined to react violently
Part of Speech: adjective
Lemmas and Associated Sentiments:
« fierce: {anger, fear}, {negative}
* vehement: {anger, fear}, {negative}
N * violent: {anger, surprise}, {negative} )

Translation Source

T\

" Translations
Finnish: {hurja, kiihkea}
French: {véhément}
Y German: {vehement, heftig}
— | Indonesian: {kuat, hebat}
Russian: {pbsHbIiA, HENCTOBbII}
Slovenian: {silovit}
\_Spanish: {violento, feroz} J

|

Multilingual Sentiment

Finnish fear, anger negative -
Emotion Prediction innl { ger}  {neg TV } Lexicons
Confidence Score: 0.71 French  {fear, anger} {negative} e

| Predicted Emotion: fear German f{fear, anger} {negative} —

Indonesian {joy, trust ositive
Polarity Prediction : sian {joy, trust} : {fposi “_/ ;

Confidence Score: 0.71 Russian  {fear, surprise} {negative}

| Predicted Polarity: negative | Slovenian {} I

Spanish  {fear, anger} {negative}

Figure 1: Illustration of performing emotion identification and polarity classification on a synset.

corresponding lemmas in the selected languages.
We then determine which sentiments are associated
with these lemmas using multilingual word-level
lexicons. We finally associate the synset with the
sentiment class which is associated with the high-
est number of translations. For example, since the
synset in Figure 1 is associated with fear in 5 lan-
guages, anger in 4 languages, and surprise in 1
language, the synset is labeled with fear. Through
a similar process, the synset is also associated with
a negative polarity.

We calculate the confidence score of each can-
didate synset as the ratio of languages with senti-
mental lemmas to the total number of languages
for which the synset has translations. For exam-
ple, since the synset in Figure 1 has translations in
seven languages, and lemmas that are considered
emotional in five of the languages, it receives a
confidence score of 5/7 ~ 0.71.

Since each synset is assigned a single label, we
proceed to break any ties that exist between senti-
ments that share the highest number of associated
languages. For emotion identification, this is done
by finding sentence embeddings for the gloss of the
target synset and gloss for the most frequent sense
of each of the top emotions. The synset is identified
with the single emotion that has the most similar
sentence embedding. For polarity identification,
when a synset is associated with positive and nega-
tive polarities in the same number of languages, a
similar process using sentence embeddings is ap-

plied to break the tie. We perform a comparison
to this embedding-based approach as a baseline in
Section 5.2.

3.3 Extending the Core

To expand the set of core synsets, we leverage
WordNet’s graph-based structure, which connects
synsets through both semantic and lexical rela-
tions. Specifically, we propagate sentiment labels
from the core to neighboring synsets via sentiment-
preserving relations. If a synset is related to mul-
tiple core synsets with differing sentiments, we
resolve this conflict with the embedding-based tie-
breaking algorithm described in Section 3.2. In
order to maintain high precision, we do not apply
this procedure recursively or transitively.

We adopt the comprehensive set of sentiment-
preserving relations used by WordNet-Affect,
which differs slightly from the one used by Sen-
tiSense, and contains the following WordNet rela-
tions: antonym, similar to, derived from, pertains
to, attribute, and also-sees. For example, the synset
in Figure 1 is classified as having negative polarity,
and is associated with the emotion of fear. The
synset containing the adverbial sense of fiercely is
related to this synset by the WordNet pertains to re-
lation, and so is also labeled with negative polarity
and the emotion of fear.

The relation of antonymy is unique in that it con-
nects synsets that convey the opposite rather than
identical sentiments. We follow Plutchik (1962)
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by identifying the following pairs of antonymic
emotions: anger/fear, anticipation/surprise, dis-
gust/trust, and joy/sadness. If a core synset is la-
beled with one of these sentiments, its antonyms
are labeled with the opposite sentiment. Similarly,
if a synset is labeled with positive or negative po-
larity, its antonyms are labeled with the opposite.

4 Experimental Setup

In this section, we provide details of our implemen-
tation and the datasets that we use.

4.1 Datasets

The NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010, 2013),
is a word-level sentiment lexicon which contains
14,182 English words tagged with emotional and
polar labels by human annotators. Of those words,
4,454 are tagged with one or more of Plutchik’s
8 fundamental emotions: anger, anticipation, dis-
gust, fear, joy, sadness, surprise, and trust. As
well, 5,543 of these words are tagged with positive
and/or negative polarity. EmoLex was originally
developed in English but has since been translated
into 108 different languages. It is these translations
that we use as our multilingual sentiment lexicons.

To evaluate the quality of SentiSynset, we con-
struct both a validation set and a test set, each
containing 1,000 synsets. Each set includes a ran-
dom sample of 500 synsets from the SentiSense
resource; these constitute the sentimental instances.
Each also includes a random sample of 500 synsets
that have no emotional or polar lemmas according
to EmoLex or the LIWC dictionary (Pennebaker
et al., 2001); these provide non-sentimental in-
stances. We ensure that the validation and test
sets are disjoint.

4.2 Synsets and Translations

The core of SentiSynset is found by applying the
multilingual method described in Section 3.2 to all
117,659 WordNet synsets for the two independent
tasks. We use the NLP library spaCy? to obtain
sentence embeddings (c.f., Section 3.2).

Our method also requires a way of obtaining,
for each synset, a set of words in various lan-
guages which lexicalize the concept to which
that synset corresponds; for brevity, we refer to
these multilingual terms as translations. We use
translations for WordNet synsets in 20 languages

Zhttps://spacy.io

covered by EmoLex: Chinese, Dutch, Estonian,
Finnish, French, German, Greek, Indonesian, Ko-
rean, Lithuanian, Norwegian, Polish, Romanian,
Russian, Slovak, Slovenian, Spanish, Swedish,
Turkish, and Ukrainian.

During development, we considered two trans-
lation sources. The first set of translations comes
from the multilingual lexical database BabelNet
(Navigli and Ponzetto, 2010). BabelNet was built
by integrating various large lexical databases such
as WordNet, Wikipedia, and Open Multilingual
WordNet among others, alongside machine transla-
tion. We make use of BabelNet version 5.1, which
covers over 500 languages; however, it does not
contain translations for every synset in every lan-
guage. On average, each of the selected 20 lan-
guages has BabelNet translations for 70.7% of all
WordNet synsets. WordNet synsets have Babel-
Net translations in 14 of the selected languages on
average, and 99.9% of all WordNet synsets have
a BabelNet translation in at least one of the 20
selected languages.

The second set of translations comes from
Google Translate (GT). To obtain sense-accurate
translations, we translate an example sentence as-
sociated with the synset. WordNet provides such
sentences for some synsets. For synsets without
examples, we construct an example using the Word-
Net gloss. For instance, for the synset in Figure 1,
we would construct the following sentence: “to be
fierce is to be marked by intense convictions; in-
clined to react violently.” Note that the templates
used to construct sentences differ slightly depend-
ing on the synset’s part of speech. We compile all
the English sentences together and use the docu-
ment translator on the GT online interface to attain
the sentence translations. We then use the align-
ment system SimAlign (Jalili Sabet et al., 2020) to
find the translation of the target word in the trans-
lated sentences. GT provides translations for every
synset in every language, but not all translations
are correct.

After obtaining translations from both BabelNet
and GT, we lemmatize the translations using the
Simplemma? library This step is skipped for lan-
guages such as Chinese and Korean where lemma-
tization is not applicable.

We consider four approaches to obtaining synset
translations: GT alone, BabelNet alone, BabelNet
supplemented with GT (i.e., BabelNet is used if

3https://github.com/adbar/simplemma
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Figure 2: Precision-recall curve across various transla-
tion sources. Each curve is marked with a point corre-
sponding to a high-confidence threshold of 0.70.

translations exist for a synset, otherwise GT is
used), and the union of BabelNet and GT. On the
validation set, we calculate the 11-point interpo-
lated average precision (11-PIAP) (Manning et al.,
2008) for each of these approaches and find that
BabelNet alone results in the highest 11-PIAP of
83.9%, while GT, BabelNet Supplemented, and
the union of BabelNet and GT result in the 11-
PIAP’s of 74.5%, 82.8% and 70.5% respectively.
We also considered the precision and recall scores
that the four translation approaches achieve on the
validation set in the task of detecting emotional
synsets (see Figure 2). Therefore, we use the best-
performing method of BabelNet alone as the source
of synset translations.

5 Results

In this section, we evaluate our method’s perfor-
mance in the desired tasks and discuss the newly
created resource.

5.1 Core Synsets

To determine the confidence threshold of the
method, we look at the experimental results of us-
ing BabelNet translations on the validation set (as
shown in Figure 2). Since we want high-precision
predictions, we choose the confidence threshold
with a precision above 0.95 which has the highest
recall. We find that a confidence threshold of 0.70
satisfies this condition, and thus all synsets that
are predicted to be sentimental with a confidence
score of 0.70 or above are added to the core of
SentiSynset.

With the high-confidence threshold set, running

Sentiment  #Synsets
Anger 1891
Anticipation 1192
Disgust 1078
Fear 1939
Joy 1048
Sadness 1877
Surprise 391
Trust 3013
Positive 7081
Negative 8486

Table 1: Number of synsets associated with different
sentiments in SentiSynset.

the method on all WordNet synsets for the tasks
of emotion identification and polarity classification
results in a core containing 6,056 synsets that are
predicted to be emotional and a core containing
8,519 synsets that are predicted to be polar. After
extending these cores through the use of sentiment-
preserving WordNet relations, SentiSynset contains
a total of 12,429 emotional synsets and a total of
15,567 polar synsets. Information regarding the
distribution of sentiments and parts of speech in
these synset sets is shown in Tables 1 and 2.

5.2 Emotion Identification

To evaluate the quality of our newly constructed
emotion resource, we measure the proportion of
correct sentiment labels. We consider synsets in
the intersection of our emotion resource and the
test set. If a synset labeled as sentimental is in the
intersection, we consider this a true positive. If a
non-sentimental synset is in the intersection, we
consider this a false positive. Using these classifica-
tions, we find that our method achieves a precision
of 96.0% and a recall of 57.2% in the task of de-
tecting emotional synsets.

To determine the accuracy of the emotion labels
given by our method, three native English-speaking
authors of this paper independently annotated all
true positive synsets in the test set with one of the 8
fundamental emotions. The annotators achieved an
average pairwise Cohen’s kappa coefficient of 0.60,
suggesting substantial agreement between the anno-
tations. Similarly, at least 2 annotators agreed on a
label for 92.3% of the synsets, and all 3 annotators
agreed on a label for 53.3% of the synsets. For the
7.7% of synsets that all three annotators disagreed
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POS Emotional Polar
Adjective 4531 5879
Adverb 144 237
Noun 5301 6464
Verb 2453 2987
Total 12,429 15,567

Table 2: Number of synsets associated with different
parts of speech (POS) in SentiSynset.

on, the annotators were asked to reconsider their la-
bels after being shown the emotions assigned to the
synsets by the other annotators. Once all synsets
had a single emotion that the majority of annotators
agreed upon, these emotions were taken as the true
labels.

We compare our method to several approaches.
As a baseline, we find all emotions related to the
English lemmas of a synset in EmoLex, then la-
bel a synset with a random emotion from this set.
Sentence Embeddings takes these same emotions
found in the English lexicon, computes sentence
embeddings for the gloss of the target synset and
for the gloss of the most frequent sense of each
of these emotions, and labels the synset with the
most similar emotion. We also prompt GPT-3.5
(Brown et al., 2020) to provide emotional labels
for the synsets based on gloss and the lemmas. Fi-
nally, we classify synsets with the emotion labels
assigned by our multilingual method. The accu-
racy of these different approaches can be found in
Table 3, and we find that our method achieves the
best performance.

No comparisons are made between the emotion
labels assigned by our method and those of an exist-
ing resource because of the incongruent emotional
inventories used between different synset-level re-
sources; neither WordNet-Affect nor SentiSense
uses Plutchik’s 8 fundamental emotions as we do.

5.3 Polarity Classification

We evaluate the quality of our newly constructed
polarity resource through a similar process used to
evaluate our performance in emotion identification.
When comparing the intersection of the test set
and our polarity resource, we find that our method
achieves a precision of 92.0% and a recall of 67.0%
in the task of detecting polar synsets. We com-
pare our polarity resource to SentiWordNet. Since
SentiWordNet assigns synsets polarity scores in

Method Emotion Polarity
Random EmoLex 34.5 82.0
Sentence Embeddings 41.5 85.4
SentiWordNet - 91.3
ChatGPT 79.0 93.1
Ours 824 95.8

Table 3: Accuracy of our method versus other ap-
proaches on the test set (in %).

the range [0.0, 1.0], we assign synsets a single po-
larity label based on these scores. We do so by
associating a synset with the polarity category (pos-
itive, negative, or objective) with the highest score.
For the intersection between the test set and polar
SentiWordNet synsets, SentiWordNet achieves a
precision of 91.6% and recall of 41.6%.

To determine the accuracy of the polarity labels
given by different methods, we convert the emo-
tional labels given to the synsets by SentiSense to
polarity labels. The emotions of calmness, hope,
joy, like, and love are associated with positive po-
larity, while anger, despair, disgust, fear, hate, and
sadness are associated with negative polarity. We
disregard synsets associated with the emotions of
ambiguity, anticipation, or surprise since synsets
labeled with these emotions are not strongly corre-
lated to either polarity. These emotion-to-polarity
mappings, alongside equivalent polarity labels, are
considered the true positives.

The methods that we compare for polarity clas-
sification are similar to those for emotion identi-
fication. Our baseline is to assign synsets with
a random polarity that is associated with the En-
glish lemmas in EmoLex. We also compare to
Sentence Embeddings, SentiWordNet, and Chat-
GPT. As shown in the rightmost column of Table 3,
our method again achieves the best performance.

5.4 Polysemous Words

We investigate how well our method can resolve
the ambiguity of polysemous words. To do so, we
identify pairs of synsets in the test set that share a
lemma but have opposite sentiments (polar and non-
polar, emotional and non-emotional). Since our
method focuses on precision over accuracy, we only
consider pairs of synsets that share a polysemous
word when at least one of the synsets is predicted
to be sentimental.

We find 18 pairs of synsets with polar and non-
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polar labels in the test set, and our method provides
correct classifications for both senses with 94.4%
accuracy. The only pair of synsets that the method
fails to correctly classify contains the polar and non-
polar senses of sublime meaning “of high moral or
intellectual value” and to “vaporize and then con-
dense right back again” (WordNet). Our method
identifies both senses as being positive, while this
is only true for the first sense.

Our method is 100.0% accurate on 10 pairs of
synsets with emotional and non-emotional labels
that exist in the test set. For example, given the
senses of plume meaning to “be proud of” and
“(of a bird) to clean with one’s beak” our method
correctly identifies the first one as emotional and
associated with joy, and the second one as non-
emotional.

6 Error Analysis

In this section, we investigate incorrect labels pro-
duced by our method and discuss possible causes
and solutions for such errors.

6.1 Parallel Polysemy

Our method struggles to correctly label concepts
that exhibit parallel polysemy across many of the
selected languages. For example, two nominal
senses of resistance meaning “the action of oppos-
ing something that you disapprove or disagree with”
and “a material’s opposition to the flow of electric
current; measured in ohms” share the same transla-
tion in French (résistance), German (widerstehen),
Polish (opdr), and 12 other languages. This causes
the first sentimental sense to be viewed the same
as the second non-sentimental sense, leading to an
incorrect classification.

Although our selected languages do not all come
from the same language family, the majority of
them are European. This relatedness means they
are more susceptible to exhibiting parallel poly-
semy than if we were to use more non-European
languages. However, most non-European lan-
guages have considerably fewer lexical resources
available than European languages, even for widely
spoken non-European languages. For example, Es-
tonian has 1.1 million speakers while Yoruba has
44.0 million speakers (Eberhard et al., 2023); nev-
ertheless, BabelNet has translations available in
Estonian for 6.4 times as many synsets than those
that are available in Yoruba.

If synset translations were more readily avail-

able for languages such as Yoruba or Igbo, parallel
polysemy would present less of a problem. Re-
garding the example of resistance above, the two
senses would be translated to atako and resistance
in Yoruba. In Igbo, the first sense translates to
iguzogide while the second does not translate to
a single word. Thus, translations from either lan-
guage would help disambiguate the sentiment of
the senses.

6.2 EmoLex Errors

The multilingual versions of EmoLex are trans-
lations of the original English EmoLex, so some
translation errors exist in these translated lexicons.
Words are typically translated as their most fre-
quent sense (MFS), which causes issues when the
MEFS is non-sentimental. For example, the MFS
of waffle is the non-sentimental nominal sense
meaning “pancake batter baked in a waffle iron.”
However, waffle is considered sentimental in En-
glish Emolex due to the verbal sense meaning to
“pause or hold back in uncertainty or unwilling-
ness” (WordNet). When EmoLex is translated to
other languages, waffle is translated as the non-
sentimental MFS, but retains the sentiments associ-
ated with the verbal sense. Therefore, errors arise
such as the Slovak word vafle being associated with
the emotion of sadness and a negative polarity, de-
spite the word referring strictly to the food item.
These translation errors in EmoLex result in the
MES of waffle being incorrectly classified as senti-
mental.

6.3 Subjectivity

Other errors arise from the inherently subjective
nature of the given tasks. It is very possible
that one person may view a synset as sentimental,
while another person views the same synset as non-
sentimental. This causes issues when the method
correctly determines which word sense EmoLex
references, but the accuracy of the EmolLex an-
notation itself is debatable. For example, bee is
associated with the emotions of anger and fear in
EmoLex, with this annotation most likely referring
to the MFS of the word meaning “any of numerous
hairy-bodied insects including social and solitary
species” (WordNet). Since the method bases its
classifications on EmoLex, this sense of bee is as-
sociated with fear. However, some people may
feel that this classification is inappropriate, instead
viewing the synset as non-emotional. This oppos-
ing view is supported by the fact that wasp is not
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Language Pair  Emotion Polarity

Igbo Yoruba 0.446 0.360
Chinese Igbo 0.410 0.166
Chinese Yoruba 0.390 0.401
Polish ~ Chinese 0.334 0.105
Polish  Igbo 0.353 0.354
Polish  Yoruba 0.292 0.355

Table 4: Cohen’s kappa coefficient between emotion
and polarity labels for different languages.

associated with any emotions in EmoLex, despite
this term being very similar to bee.

Subjectivity is also influenced by cultural dif-
ferences. While an English-speaking annotator
labeled bee with the negative emotions of anger
and fear in EmoLex, people from other cultures
may associate bees with positive emotions as they
are often considered hard-working creatures. This
contrasting sentiment of the word that exists in En-
glish may be projected onto sentiment lexicons in
other languages because of the virtual hegemony
of English resources.

6.4 Cultural Differences

Our multilingual method hinges upon the idea that
the sentiments associated with synsets tend to be
universal across languages and cultures. However,
the bee example demonstrates that this is not al-
ways the case. We therefore perform a multilingual
analysis to quantify the influence of cultural differ-
ences on synset classifications.

We utilize plWordNet (Maziarz et al., 2016), a
Polish wordnet that contains over 30,000 word
senses that have been manually annotated with
emotion and polarity labels (Zasko-Zielinska et al.,
2015). Of these labeled synsets, many have map-
pings onto Princeton WordNet, thus allowing us
to investigate the effect of cultural differences on
synset labels. There are 1,729 polar synsets and
1,506 emotional synsets that have sentiment labels
in both our resource and plWordNet. The polarity
and emotional labels have 94.9% and 73.3% agree-
ment, respectively, between the two resources.

Authors of this paper who are native Chinese,
Igbo, Polish, and Yoruba speakers labeled 40 polar
synsets and 60 emotional synsets, which are among
those that pIlWordNet and SentiSynset disagree on.
The annotators were provided with the lemmas and
glosses of synsets in their native language, with this
information coming from BabelNet when available

and Google Translate when not. For the Polish
annotator, lemmas and glosses for all synsets were
available from plWordNet.

The results of this experiment are shown in Ta-
ble 4. The average Cohen’s Kappa coefficient be-
tween the annotations for Polish and the three other
languages (the last three rows of the table) are 0.326
and 0.271 for emotion and polarity, respectively.
The Cohen’s Kappa coefficient between our Polish
annotator and plWordNet are 0.387 and 0.203 for
emotion and polarity, respectively. Thus, the agree-
ment between our Polish annotator and plWordNet
for these contentious synsets is at a similarly low
level as the agreement between annotators from
different cultures.

7 Conclusion

We have presented a novel method that leverages
multilingual translations to shift the sentimental
classifications of word-level lexicons from words
to synsets. The method is sufficiently general to be
applied to the related yet independent tasks of emo-
tion identification and polarity classification. The
method outperforms existing methods used to auto-
matically construct resources for the task of polar-
ity classification. With our method, we constructed
SentiSynset, which is substantially larger than com-
parable English sentiment resources. The large
number of labeled synsets, and the high precision
of labeling demonstrate the method’s usefulness.
The new resource can be paired with word-sense
disambiguation techniques for the downstream task
of sentiment analysis at the level of sentences or
documents. Since our method is not dependent on
EmolLex, it could also leverage information from
multiple word-level lexicons, which could further
improve the quality and size of SentiSynset.
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Abstract

As generated text becomes more common-
place, it is increasingly important to evaluate
how well-supported such text is by external
knowledge sources. Many approaches for eval-
uating textual support rely on some method
for decomposing text into its individual sub-
claims which are scored against a trusted ref-
erence. We investigate how various meth-
ods of claim decomposition—especially LLM-
based methods—affect the result of an evalu-
ation approach such as the recently proposed
FACTSCORE, finding that it is sensitive to the
decomposition method used. This sensitivity
arises because such metrics attribute overall
textual support to the model that generated the
text even though error can also come from the
metric’s decomposition step. To measure de-
composition quality, we introduce an adapta-
tion of FACTSCORE, which we call DECOMP-
SCORE. We then propose an LLM-based ap-
proach to generating decompositions inspired
by Bertrand Russell’s theory of logical atomism
and neo-Davidsonian semantics and demon-
strate its improved decomposition quality over
previous methods.

1 Introduction

Recent work uses claim decomposition to deter-
mine how well supported a claim is for applica-
tions in factual precision of generated text (Min
et al., 2023), entailment of human generated text
(Kamoi et al., 2023; Chen et al., 2023b), and claim
verification (Chen et al., 2023a; Li et al., 2023; Mil-
bauer et al., 2023; Tang et al., 2024), with similar
ideas going back over a decade (Hickl and Bensley,
2007). In each of these cases, a claim is decom-
posed into natural language subclaims,! typically
using a large language model (LLM), and each sub-

* . .
Equal contribution
!The terms “atomic fact” and “atomic proposition” are also
used for similar concepts.

Charles Babbage was a French
mathematician, philosopher, and food critic.

Low coverage
(omits claims)

Charles Babbage was a mathematician.

Low coherence
(contains unclaimed information)

Charles Babbage was a mathematician.
Charles Babbage was a philosopher.

X Charles Babbage was an engineer.

X Charles Babbage was a dancer.
Charles Babbage was a food critic.
Charles Babbage was French.

Low atomicity
(doesn’t separate claims enough)

Charles Babbage was a French mathematician.
Charles Babbage was a philosopher and food critic.

High coverage, high coherence, high atomicity
(reflects what the sentence is saying)

Charles Babbage was a mathematician.
Charles Babbage was a philosopher.
Charles Babbage was a food critic.
Charles Babbage was French.

Figure 1: Modes of claim decomposition. The extent
to which textual support can be determined depends
on how the generated text (yellow box) is decomposed
into its subclaims (white boxes). Higher quality de-
compositions enable more complete identification of
discrepancies between generated text and a reference
(not shown), which consequently increases the reliabil-
ity of the downstream textual support metric. Checks
and Xs denote that the statement is claimed or is not
claimed, respectively, by the generated text.

claim is then scored or aligned to information from
external sources using a task-specific metric.

Claim decompositions with various characteris-
tics are shown in Figure 1. Coverage denotes how
much of the information in the claim is present in
the subclaims, coherence denotes whether the in-
formation in the subclaims accurately reflects what
is stated in the claim, and atomicity denotes how
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separated the information in each subclaim is.

Evaluating subclaims individually, as opposed
to the entire claim at once, we can assign partial
credit to a claim (e.g., for partial support), identify
which parts of the claim differ from reference texts
(such as a retrieved or pre-specified document or
passage), and more easily identify relevant source
material for each part of the claim.? Claims can
come from human-authored text based on cited doc-
uments (Kamoi et al., 2023; Chen et al., 2023b,c) or
from machine-generated text based on dynamically
provided grounding text or text observed during
pre-training (Min et al., 2023).

Since claim decomposition determines the num-
ber and scope of each evaluated subclaim, any anal-
ysis or resulting metric will be inherently tied to the
decomposition method. Nevertheless, prior work
has left decomposition itself largely untested. How
do different decomposition strategies affect down-
stream analysis? What are their qualitative and
quantitative similarities and differences?

We show that a downstream metric of textual
support such as FACTSCORE (Min et al., 2023)
is sensitive to the decomposition method it uses
(Figure 2). While FACTSCORE aims to measure
the factual precision of generated text, the number
and nature of the subclaims it evaluates from that
text depend on the metric’s claim decomposition
method. The higher the quality of the decompo-
sition method, and the better we understand its
characteristics, the more we can attribute the fac-
tual precision that FACTSCORE aims to measure
to the text generation model rather than to artifacts
of the decomposition.

Finding that the method of claim decomposition
matters, we introduce DECOMPSCORE, an adapta-
tion of FACTSCORE that measures decomposition
quality, an important step in determining the relia-
bility of the downstream metric. DECOMPSCORE
measures the number of subclaims supported by
the original claim that was decomposed. Because
a decomposition with high atomicity and coverage
will have more subclaims than a decomposition that
doesn’t, we then favor the decomposition method
with the greatest DECOMPSCORE, especially when

2For example, separating the claim “Charles Babbage was
a French mathematician” into the atomic subclaims “Charles
Babbage was French” and “Charles Babbage was a mathe-
matician” enables a claim verification system to determine
that the subclaim about his occupation is supported by trusted
reference documents and that the subclaim about his national-
ity is not supported. The non-atomic original claim as written,
however, is not supported.

coupled with qualitative evidence of high atomicity
and coverage.

With a way to compare decomposition methods
in hand, we propose an LLM-based decomposition
approach inspired by Bertrand Russell’s theory of
logical atomism and neo-Davidsonian semantics.
Our approach gives far more subclaims than other
methods while maintaining high coherence with the
claim being decomposed, and thus results in greater
confidence in the entire pipeline for evaluating the
level of textual support.

Our contributions are:

1. Empirical evidence that the method of claim
decomposition affects a downstream metric of
textual support;

2. Quantitative and qualitative comparisons of
claim decomposition methods;

3. A method for claim decomposition inspired
by philosophical and semantic theories that
outperforms previous methods.
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Figure 2: FACTSCORE (macro-averaged across

LMgyg;j) using different decomposition methods. The
same underlying set of documents is assigned different
FACTSCORE values depending on the decomposition
method used.

2 Localized Textual Support

FACTSCORE (Min et al., 2023) and WICE (Kamoi
et al., 2023) are representative examples of current
LLM-based approaches for determining support
for particular claims for different downstream use
cases. Broadly, methods of this type decompose
a claim into its subclaims, evaluate each subclaim
for its level of support based on external sources,

154



Name Instruction

In-Context Examples

Static

Dynamic Sentences Decompositions

“Please breakdown the following sentence into
independent facts:” (Min et al., 2023)
“Segment the following sentence into individ- 6
ual facts:” (Kamoi et al., 2023)

“Given the following sentence, tell me what

claims they are making. Please split the sen-

tence as much as possible, but do not include 7
information not in the sentence:” (Chen et al.,

2023c)

“The sentence below is given in CoNLL-U

7

Dracrscore

Dwice

DChen etal.

format. Word lines contain the annotation of
a word/token/node in 10 fields separated by
DcoNLL-U single tab characters. Sentences consist of one 1
or more word lines. Please break down the
following sentence given in CoONLL-U format
into independent facts:”
“Please decompose the following sentence into 7

DR-ND
individual facts:”

1 Min et al. (2023) Min et al. (2023)

0 Kamoi et al. (2023)  Kamoi et al. (2023)

1 Min et al. (2023) Min et al. (2023)

Min et al. (2023) +

CoNLL-U Parse Min et al. (2023)

1 Min et al. (2023) Manual (ours)

Table 1: Summary of LLM prompted claim decomposition methods used in this work (method names are prefixed
with D for “decomposer”). The prompt given to the LLM is a concatenation of the instruction, statically and
dynamically selected in-context examples, and the sentence to be decomposed. The in-context decomposition
examples used in our approach (Dgr.np) are based on Russellian and neo-Davidsonian theories (§5).

and then aggregate results to give a single score or
label for the entire claim. Since each subclaim is
evaluated, we get a localized view of which parts of
the claim are supported. The more atomic the sub-
claims are, the more precisely we can localize the
information in the claim that differs from a trusted
reference. Since these approaches rely on decom-
position, the better the decomposition method the
more reliable the results.

FACTSCORE (Min et al., 2023) measures factual
precision of model-generated text with respect to
a knowledge source. A generated passage is split
into sentences, which are decomposed into sub-
claims by an LLM. The percentage of subclaims
supported by a retrieved knowledge source (e.g.,
Wikipedia excerpts) is the FACTSCORE for the
passage. FAITHSCORE (Jing et al., 2023) takes
a similar approach for evaluating the outputs of
vision-language models, in which the knowledge
source against which the subclaims are evaluated
is an image. They additionally require that the sub-
claims fit into certain domain-specific categories
such as color and count.

The WICE dataset (Kamoi et al., 2023) con-
tains annotations for whether subclaims in human-
written text are supported, partially supported, or
not supported by external reference documents,
from which claim-level support labels are derived.
Kamoi et al. (2023) also apply their LLM-based
Claim-Split approach to entailment classification,

in which entailment scores for each subclaim are
aggregated to give an entailment score for the
whole claim.

3 Evaluating Decomposition Quality

Previous work on evaluating the veracity of gener-
ated text attributes the resulting score to the quality
of the generation, overlooking the role of metric’s
decomposition step. However, higher quality de-
compositions mean that we can more reliably mea-
sure the quality of the generation. Depending on
the characteristics of the decomposition method
(e.g., how atomic its decompositions are), a met-
ric like FACTSCORE can change for the same un-
derlying generated text (Figure 2). Furthermore,
FACTSCORE implicitly assumes complete and co-
herent decompositions. However, the decomposi-
tion step can introduce unclaimed information or
omit existing (possibly incorrect) claims, which
introduces measurement error into FACTSCORE.

3.1 Qualitative Evaluation

What makes a decomposition higher quality? The
subclaims must be faithful to the original claim.
In other words, they must cohere with (are sup-
ported or entailed by) the original claim.? To be of

3In contrast to the coherence theory of truth, the corre-
spondence theory deems a statement to be true if it matches a
situation in reality. It is not in the purview of a decomposition
model to determine whether a claim agrees with a knowledge
source; that is the purpose of the validator. In other words,
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the greatest use for localizing discrepancies with
a trusted reference, the subclaims should cover all
parts of the claim and also be as atomic as possible.
Different methods decompose claims to various de-
grees, with some methods producing more or fewer
subclaims. We explore these various characteristics
across decomposition methods in §8.1.

3.2 Quantitative Evaluation: DECOMPSCORE

We develop a measure of decomposition method
quality by utilizing the same procedure as
FACTSCORE, namely using an LLM to assign a
binary judgment of support for every subclaim.
Rather than providing an external knowledge
source as context for the validator, we provide the
original sentence that was decomposed, thus identi-
fying the subclaims that are supported by the origi-
nal sentence.

The DECOMPSCORE of a decomposition
method is the average number of supported sub-
claims per passage produced by that decomposi-
tion method. This metric indicates which method
generates the most subclaims that cohere with the
sentence being decomposed. For example, if a text
is decomposed into a large number of subclaims
but DECOMPSCORE is low, we can infer that the
subclaims produced by the decomposition method
are not of good quality. The optimal value of DE-
COMPSCORE for a particular passage is difficult to
determine because we do not have a set of refer-
ence decompositions, but in general, methods that
produce decompositions with high atomicity and
coverage will achieve higher DECOMPSCORE.

Entailment is another notion of coherence that
could be used to evaluate whether a subclaim is a
valid part of the decomposition. In practice, we
find high correlation (Figure 7 in Appendix C) be-
tween DECOMPSCORE and the average number
of subclaims entailed by the original claim using
a strong natural language inference (NLI) model
(Nie et al., 2020).*

the validator is the “fact checker”. A validator that appeals to
a knowledge source is actually following a coherence theory
of truth (where the given set of statements is the information
contained in the knowledge source). The validator’s adherence
to a coherence theory of truth is apparent if we consider a case
in which the subclaims are not grounded in reality but rather
derived from a work of fiction. We can judge a statement like
“Sherlock Holmes lives at 221B Baker Street” to be true even
though it is false in reality.
4https ://huggingface.co/ynie/

roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

4 Methods of Claim Decomposition

We study three types of claim decomposition meth-
ods, which are discussed below.

4.1 LLM prompting

Much of the recent work for claim decomposition
utilizes a prompted LLM-based method, typically
with in-context example decompositions (Min et al.,
2023; Kamoi et al., 2023; Chen et al., 2023c; Jing
et al., 2023; Mohri and Hashimoto, 2024). The
in-context examples can be dynamically selected
using a retrieval model (Min et al., 2023). We
use three instructions from prior work (Min et al.,
2023; Chen et al., 2023c; Kamoi et al., 2023) and
one of our own, with various static and retrieved
in-context examples. Notably, our approach uses
manually decomposed in-context examples based
on philosophical and linguistic theories, which are
discussed in §5. The approaches’ configurations
are outlined in Table 1.

The LLM prompting approach is flexible and
unstructured, allowing for the generation of arbi-
trary text. This text generation nature of LLMs
produces fluent natural language decompositions
by incorporating words outside the original sen-
tence (in contrast to, e.g., PROPSEGMENT (Chen
et al., 2023b)), but this also permits hallucinations
and forces us to relinquish control over the model’s
outputs due to the large output space. We can adapt
the instructions and in-context examples to encour-
age certain characteristics in the output (such as
coherence and atomicity), but ultimately there is
no mechanism to guarantee they are reflected in
the output. However, in-context examples that are
dynamically chosen based on high similarity with
the claim to be decomposed could encourage sim-
ilar styles of decomposition, which may provide
some amount of controllability. A simple prompt-
in, subclaims-out interface also avoids issues of
parsing into and generating out of an explicit inter-
mediate semantic representation, designing such a
representation in the first place, and overcoming
any structural weaknesses in such a representation.

4.2 Shallow semantic parsing

Rather than relying on an LLM for the decomposi-
tion, we can use a more structured analysis of the
text. We use PredPatt (White et al., 2016; Zhang
et al., 2017), a rule-based system for extracting
predicate-argument sub-structures from a syntactic
dependency parse. We take these sub-structures
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as representing the propositional content of sub-
claims. Goyal and Durrett (2020) use similar in-
tuitions about a correspondence between syntactic
dependency arcs and semantic units to decompose
a claim based on arcs in a dependency parse.

The resulting subclaims contain only words from
the original sentence, and are often not grammatical
sentences.” The subclaims in a valid decomposition
should be full sentences in order to be validated by
DECOMPSCORE and FACTSCORE, and for this rea-
son, we use an LLM (gpt-3.5-turbo-instruct)
to convert the PredPatt outputs into fluent, natu-
ral language. Details are given in Appendix B.
Although the resulting strings are often full gram-
matical sentences, the LLM does not guarantee this
behavior.®

4.3 LLM prompting with parse

Combining syntactic structure with the flexibility
of text generation could support a more grounded
decomposition from an LLM. We use an LLM
prompting method, but this time supplied with a
parsed version of the original sentence. We use
Trankit (Nguyen et al., 2021), a state-of-the-art
dependency parser, to obtain dependency parses
(Zeman et al., 2019) (in the CoNLL-U format) of
each claim as well as each in-context learning ex-
ample. Because CoNLL-U formatted parses (Nivre
et al., 2017) are token-heavy, fewer in-context ex-
amples are provided. Prompt details can be found
in Table 1.

This method inherits the fluency and flexibility
of LLM prompting while grounding the LLM’s
response in a syntactic analysis, resulting in (hope-
fully) a higher quality decomposition. While we
hope the added structure imposes controllability,
LLMs can still generate subclaims that do not co-
here with the original claim.

5 Russellian and Neo-Davidsonian
decomposition

The notion of claim decomposition has roots in
the philosophical literature. We draw inspiration
from Bertrand Russell’s theory of logical atomism
for how claims should be decomposed into their
atomic components.

SPredPatt can add short strings like “is/are” and “poss” to
indicate being and possession, respectively, but these additions
do not make the propositions fluent.

®A model for determining grammatical acceptability could
be included in this approach to filter out ungrammatical strings
or send them back for rewriting (Warstadt et al., 2019).

Russell defines atomic facts as properties of in-
dividuals or relations between individuals from
which all other facts are composed (Russell,
1918b).”> 8 We take individuals to be entities and
eventualities mentioned in the sentence. This
kind of Russellian analysis accords with neo-
Davidsonian analysis (Castafieda, 1967; Parsons,
1990) (building on Davidson (1967)), in which the
logical form of a sentence is decomposed fully to
a conjunction of unary predicates (akin to proper-
ties of individuals) and binary predicates (akin to
relations between individuals).

We manually decompose the 21 in-context ex-
amples from Min et al. (2023) into lists of such
Russellian atomic propositions that we further de-
compose following neo-Davidsonian intuitions into
unary and binary relations to obtain the smallest
units that are claimed in each sentence: each sub-
claim designates a property of an individual or a
relation between two individuals.” Our decomposi-
tions are listed in Table 10. These in-context exam-
ples are retrieved in the same way as the examples
are retrieved for the FACTSCORE prompt.

6 Data

We use the released data from Min et al. (2023),
which consists of biographies of 500 individu-
als generated from each of 12 LMs (following
their notation, we call the text generation models
LMsugy).'? We do not modify the biographies gen-
erated by Min et al. (2023), nor do we generate

"Ludwig Wittgenstein theorizes a similar idea of elemen-
tary propositions that assert atomic “states of affairs”. On
the whole, we find Wittgenstein’s theory to be less actionable
than Russell’s. Incidentally, Wittgenstein later abandoned this
theory in part due to the color exclusion problem, which we
avoid by not requiring independence of subclaims, instead
requiring only that each subclaim is claimed by the sentence.

8For Russell, “facts” are “the kind of thing that makes a
proposition true or false” (Russell, 1918a), and for Wittgen-
stein they are states of affairs. In both cases, they are not
propositions but rather conditions of the world. Russell and
Wittgenstein use the terms “atomic proposition” and “elemen-
tary proposition”, respectively, to refer to the corresponding
truth function or expression of an atomic fact. The NLP liter-
ature uses the term “atomic fact” to mean the corresponding
proposition, typically written in natural language.

"We do not include existence as a property of entities.
Consider the sentences: “Allan Pinkerton was a detective who
worked in the United States.” and “Sherlock Holmes was a
detective who worked in London.” From just the sentences
alone and without external knowledge, there is no way to tell
that one of these people existed and one didn’t.

"YGPT-4 (OpenAl, 2023); ChatGPT; InstructGPT; Alpaca
7B, 13B, 65B (Taori et al., 2023); Vicuna 7B, 13B (Chiang
et al., 2023); Dolly 12B (Biderman et al., 2023); StableLM-
tuned-alpha 7B (Taori et al., 2023; Chiang et al., 2023; Anand
et al., 2023); Oasst-pythia 12B; and MPT Chat 7B.

157


https://huggingface.co/databricks/dolly-v2-12b
https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b
https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b
https://huggingface.co/OpenAssistant/oasst-sft-1-pythia-12b
https://huggingface.co/mosaicml/mpt-7b-chat

401

353 )
=1 [=}
! !

DecompScore

—_
(=}
!

. W\ P © o0 W
W peot o om@‘o P pe”

4y

Decomposition Method

Figure 3: DECOMPSCORE (macro-averaged across
LMgygy) of different decomposition methods. A higher
DECOMPSCORE is better.

additional ones. We treat them as static documents
to investigate various decomposition methods ap-
plied to the sentences in the biographies.

7 Experiments

We use the data described in §6 for sentence-level
decomposition with the methods outlined in §4
and §5. Model specifications are listed in Ap-
pendix B. We evaluate using DECOMPSCORE with
Inst-LLAMA from Min et al. (2023) (LLAMA
trained on Super Natural Instructions (Wang et al.,
2022; Touvron et al., 2023)) and FACTSCORE with
the Inst-LLAMA + retrieval + NPM setting. In
total, generating decompositions took 120 GPU-
hours, computing DECOMPSCORE took 250 GPU-
hours, and computing FACTSCORE took 450 GPU-
hours, all using a Quadro RTX 6000.

8 Results

DECOMPSCORE results are shown in Figure 3,
with full results in Table 2 (Appendix A). Dr.ND
attains the highest DECOMPSCORE (i.e., highest
average number of supported subclaims per bi-
ography) with 42.3, followed by Dcpepetal. and
Dracrscore, both with around 32. Dyy,cg produces
the fewest average supported subclaims, with a DE-
COMPSCORE of 20.0, less than half that of Dr_np.
The DECOMPSCORES of Dpredpart and DcoNLL-U
fall between Dwcg and Dracrscore, With Dpredpart
achieving a slightly higher DECOMPSCORE (29.2)
than Deonip-u (27.1).

FACTSCORE results are shown in Figure 2, with
full results in Table 4 and Figure 4 (Appendix A).
Undesirably, the FACTSCORE values vary based
on the decomposition method used.

8.1 Qualitative Analysis

We analyze all decomposition methods on two sen-
tences generated by GPT-4: one about Alfred Hitch-
cock and one about John Nash.!! The decomposi-
tions, alongside our own manual decompositions,
are shown in Table 8 and Table 9 in Appendix D.
The evaluation criteria we use are coherence to
the original sentence, coverage of the information
claimed, and atomicity.

We observe that for the sentence about Alfred
Hitchcock (Table 8), no decomposition method sep-
arates the date into month, day, and year or the
location into city and state. No method generates
the subclaim “Alfred Hitchcock passed away”, opt-
ing to always include the date or location. Addi-
tionally, no method outputs all four combinations
arising from the conjunction of “captivate” and “in-
spire” with “audiences” and “filmmakers”. Dr-np
is the only method to separate “suspenseful” from
“thrilling”; every other method keeps them as one
unit. Similarly, many methods keep “captivate and
inspire” as one unit; Dr_np and Dracrscore are the
only ones to always split this conjunction.

We see that for the sentence about John Nash (Ta-
ble 9), Dr.ND> Dracrscores and Dchen et al. all out-
put a large number of subclaims. However, many
of the subclaims generated by Dracrscors and
Dchen et a1, incrementally add information to their
other subclaims, which makes them non-atomic.
This behavior of incrementally adding informa-
tion can be expected given that it occurs in the
in-context examples used by Min et al. (2023). This
incrementality makes it more difficult to localize
errors in the original claim because the textual sup-
port of the new information in the subclaim undesir-
ably depends on the re-used information also being
supported. All methods except for Dywcg generate
non-atomic subclaims that combine Nash’s bache-
lor’s and master’s degrees. Dr.Np, DPcoNLL-U, and
Dpredpae mention the degrees without the additional
information that they were for mathematics, which
increases atomicity; the other methods describe
them always as “degree[s] in mathematics”.

In our experiments, Dracrscore and Dchen et al.
use the same in-context examples with slightly dif-

HeAlfred Hitchcock passed away on April 29, 1980, in Bel-
Air, California, leaving behind a rich legacy of suspenseful
and thrilling films that continue to captivate and inspire au-
diences and filmmakers alike.” and “Nash demonstrated a
natural aptitude for mathematics from a young age and earned
his bachelor’s and master’s degrees in mathematics from the
Carnegie Institute of Technology (now Carnegie Mellon Uni-
versity) in 1948.”
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ferent instructions and generate similar decompo-
sitions on the two sentences (identical decomposi-
tions on the Nash sentence). This behavior suggests
that the in-context examples influence the decom-
position more than the instruction does.

Takeaways For both sentences, we observe that
many subclaims in our manual decompositions
are missed by the decomposition methods, but
the methods with the most coverage are Dr.np,
Dchen et al.» Dactscore, and Dywcg. All methods
but Dpreqpat have perfect coherence for both sen-
tences. In general, we observe that Dy,cg has low
atomicity,'? as does Dconri-u because it does not
split conjunctions. Dpegpar €xhibits many issues:
its subclaims are not atomic, often not fluent (de-
spite using an LLM to make them more fluent),
and not coherent with the original claim (e.g., “The
bachelor possessed a master’s degree”).

8.2 Quantitative Analysis

Even though all decomposition methods are run
on the same set of static biographies, they differ in
FACTSCORE and number of subclaims generated
(averaged over LMgyg;j: Figure 2, per LMgyg;j: Ta-
ble 4). This finding indicates that FACTSCORE is
sensitive to the method of decomposition that is
used. The most reliable estimate of the generated
text’s “true” factual precision is the FACTSCORE
achieved by the highest quality decomposition
method.

We hypothesize that Dpgegpar’s FACTSCORE is
low because it produces subclaims not likely to
be supported by the external knowledge source,'?
while also being constrained to using only the
words in the sentence and missing implicit sub-
claims not extractable as predicate-argument struc-
tures from the dependency parse. Additionally,
only 86% of the subclaims it produces are sup-
ported by the original claim (Table 6 in Ap-
pendix A), which agrees with our previous obser-
vation that its outputs have low coherence.

Dracrscore ANd Dcpen et a1, bOth achieve a DE-
COMPSCORE around 32, and since they use the
same in-context examples in our experiments, this
further suggests that the decompositions are robust

’The instructions given to annotators for evaluating
WICE’s Claim-Split decomposition method include an ex-
ample that explicitly states that one of its subclaims can be
further decomposed but to ignore that issue, which suggests
atomicity is not prioritized in that method.

BFor example, the mention of “civil rights” results in the

subclaim “Rights are civil”, which is likely not explicitly
asserted in the retrieved Wikipedia passages.

to the wording of the instruction in the prompt.
Additionally, the similarity of the configuration of
Dr-np to those of Dracrscore and Dcpen et al. SUE-
gests that it is the manually decomposed in-context
examples used in Dgr_np that are responsible for its
higher DECOMPSCORE.

Because the in-context examples seem to have a
larger effect on the decompositions than the instruc-
tions do and because we provide fewer examples in
DconrL-u due to the large token count of the parses,
we evaluate the effect on decomposition of the num-
ber of in-context examples given. We use the same
prompt specifications as in Dgracrscore in Table 1,
but use the same number of static examples as in
DconLL-u (one). We find that using fewer examples
produces around the same number of subclaims
(+1.3 subclaims on average), and achieves simi-
lar DECOMPSCORE (-0.69%) and FACTSCORE
(+0.06%). Overall, using fewer in-context exam-
ples does not appear to have much impact on either
decomposition quality or factual precision.

When evaluating FACTSCORE on only the sup-
ported subclaims (as determined in the calculation
of DECOMPSCORE), in most cases, this subset of
subclaims yields a higher FACTSCORE (Table 4,
Table 5, Figure 4, Figure 5 in Appendix A),'* in-
dicating that subclaims which do not cohere with
the original sentence are likely also not supported
by the knowledge source. Although simple, this
filtering step removes potential errors introduced
during decomposition. The fewest amount of sub-
claims (0.2 on average) are removed from Dw,cg’s
decompositions (compare Table 2 and Table 3 in
Appendix A), indicating very high coherence, and
the most are removed from Dpegpart’s decompo-
sitions (4 subclaims per biography on average),
suggesting low coherence to the original sentence.
On average, 1.2 out of 43.5 subclaims are removed
from Dgr.np’s decompositions.

To ensure that decompositions have high coher-
ence, we recommend that subclaims produced by
a decomposition method that are not supported by
the original claim be filtered out (giving full co-
herence by construction). In doing so, unclaimed
information that is introduced during the decompo-
sition step is removed and not incorrectly attributed
back to the generated text being evaluated.

Takeaways Despite Dw;cg having high coher-
ence and coverage, it has the lowest DECOMP-

“There are 4 exceptions out of 84 cases, and the maximum
decrease in FACTSCORE is 0.2%.
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SCORE because it has low atomicity, which makes
it undesirable as a decomposition method for use
in a localized textual support metric.

Achieving a higher FACTSCORE with a partic-
ular decomposition method does not necessarily
mean the decompositions are also of high quality.
Although Dr.np achieves lower FACTSCORE than
most of the other methods, it has a far higher DE-
COMPSCORE than the other methods, which we
hypothesize is due to our manually decomposed
in-context examples. Such a method that produces
a large number of supported subclaims that (qual-
itatively) have high coverage and atomicity is far
more favorable in the textual support evaluation set-
ting because it increases confidence in the results
obtained from the downstream metric.

9 Related Work

Evaluation We evaluated decomposition meth-
ods that produce subclaims in sentential natural lan-
guage, primarily by using contemporary technolo-
gies like large language models (§4). We review
other methods of decomposition used in evaluation
of textual support here.

Question answering (Wang et al., 2020; Durmus
et al., 2020; Scialom et al., 2021; Fabbri et al.,
2022) has been used for evaluating abstractive sum-
marization. These methods generally ask questions
only about noun phrases, require generating ques-
tions (the decomposition step), and require extract-
ing answer spans, after which (typically lexical)
heuristics determine if the answers between the
summary and reference agree. Higher decomposi-
tion quality in this paradigm would involve gener-
ating a large number of highly focused questions,
which would give better localized coverage of the
claims made in the summary.

Goodrich et al. (2019) evaluate summariza-
tion by extracting relation tuples from a model-
generated summary which are compared to rela-
tions extracted from a ground-truth summary. Fan
et al. (2023) improve upon this approach by extract-
ing fact tuples using semantic role labeling. Goyal
and Durrett (2020) evaluate the factuality of model-
generated text by obtaining entailment labels on
each arc in a dependency parse, which assumes
a correspondence between syntactic dependency
arcs and semantic units (the same core assumption
made by PredPatt).

In addition to evaluating whether text is sup-
ported, there has also been work on evaluating

types of textual errors (Pagnoni et al., 2021; De-
varaj et al., 2022; Mishra et al., 2024) and eval-
uating ambiguously supported claims (Glockner
et al., 2024). Although designed to be used at
the sentence-level, such methodologies can also
be applied to subclaims. For further discussion
about identifying and mitigating errors in model-
generated text, such as hallucinations, we refer the
reader to Ji et al. (2023) and Ye et al. (2023).

NLI Decomposition is also used for sub-sentence
level NLI. PROPSEGMENT (Chen et al., 2023b)
identifies subclaims by marking tokens in a
claim that are part of the subclaim. They use
propositional-level NLI to detect hallucinations
by comparing tokens in entailed and non-entailed
propositions. Sub-sentence entailment judgments
can also be combined to make sentence-level or
paragraph-level entailment judgments more inter-
pretable and robust (Stacey et al., 2022, 2023;
Kamoi et al., 2023).

Fact Verification Verifying the accuracy of state-
ments depends on high quality decompositions to
facilitate evidence retrieval. Chen et al. (2023a)
build a system for complex claim verification by
generating lists of yes/no questions that align to spe-
cific aspects of a claim. Chen et al. (2022) build a
similar system that also asks implied subquestions.
Li et al. (2023) and Milbauer et al. (2023) align
generated claims with statements in documents that
entail or contradict the claim. Similarly, Ernst et al.
(2021) align propositions between reference sum-
maries and source documents—which is similar to
the fact verification task. A model trained on their
dataset was later used to cluster propositions in a
system for multi-document summarization (Ernst
et al., 2022). Chen et al. (2023c) use decomposition
to find matching subclaims (“atomic propositions”™)
across sentences to train proposition-level represen-
tations using contrastive learning. The proposition
representations are used for retrieving propositions
from a corpus that support a given proposition.

10 Conclusion

We observe that a downstream metric of textual
support, namely factual precision as measured by
FACTSCORE, is sensitive to the method it uses to
decompose a claim into its subclaims. This find-
ing leads us to measure decomposition quality us-
ing our proposed metric DECOMPSCORE so that
we can use the most appropriate decomposition
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method among those we consider.

We show that an LLM prompted with in-context
learning examples that we manually decompose by
following intuitions from logical atomism and neo-
Davidsonian semantics outperforms other meth-
ods. Decompositions generated by our method con-
tain the greatest number of subclaims supported by
the original claim among the methods we consider.
Qualitative analysis and comparison to manual de-
compositions demonstrate that all the decomposi-
tion methods we consider still miss subclaims and
many generate non-atomic subclaims, indicating
there still remains room for improvement.

Limitations

Metrics like FACTSCORE and DECOMPSCORE are
able to evaluate only information that is claimed
in a generated text. Information relevant to an
upstream query may be absent in the text, whether
accidentally or intentionally, and these evaluation
approaches cannot account for that.

This study is limited to the domain of entity
biographies, so it is not representative of all use
cases. Additionally, the data is monolingual (En-
glish), and we do not know if these results hold
across other languages.

Running LLMs can be expensive. Because of
this, we chose to use LLAMA instead of ChatGPT
as the validator, but even running that model is not
financially feasible for everyone to use.

Ethics Statement

LLMs are well-known to hallucinate information,
and mitigation of hallucination is still an active
area of research. Using LLMs to decompose a
claim into subclaims can introduce new factual
errors. Despite attempts to remove such errors
(for example, by filtering out subclaims that are
not supported by the original claim according to
DECOMPSCORE), errors can still persist. Caution
must be taken when relying on text generated from
a model.
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A Full Results

FACTSCORE evaluation is outlined in §2, and
full results are reported in Table 4 and Figure 4.
DECOMPSCORE evaluation is discussed in §3.2,
and full results are reported in Table 2. Unlike
FACTSCORE, we do not impose a length penalty
in DECOMPSCORE because shorter passages nat-
urally contain fewer subclaims. Percentages of
subclaims that are judged to be supported (i.e., the
coherence of each method) are shown in Table 6
and Figure 6.

FACTSCORE results based on the subclaims
judged to cohere with the original claim (based
on judgments obtained when computing DECOMP-
SCORE) are shown in Table 5 and Figure 5. The
average numbers of subclaims per biography are
reported in Table 3, and the average numbers of
supported subclaims (i.e., the DECOMPSCORE) are
reported in Table 2.

It is important to note the special cases and con-
ditions placed on these results:

¢ The released data from Min et al. (2023) in-
cludes uninformative LM responses (e.g. “I’'m
sorry, I don’t have any information on a per-
son named. ..”). Including these generations
is valuable for evaluating factuality of a lan-
guage model, however results in noise when
evaluating decomposition quality. These un-
informative responses are still processed by
the decomposition methods we wish to evalu-
ate, however the quality of decomposition is
unaffected.

* Different language models are trained on dif-
ferent versions of Wikipedia, which intro-
duces inconsistencies from the Wikipedia con-
text used for fact-checking. This can affect
FACTSCORE but does not affect DECOMP-
SCORE because it does not make use of exter-
nal knowledge sources.

B Model Details

To reduce cost using the text-davinci-003
model used by Min et al. (2023), we instead
use InstructGPT (gpt-3.5-turbo-instruct) as
the LLLM for decomposition with 4K token con-
text window, 512 max_tokens and a temper-
ature of 0.7. This model costs $0.0015 per
1K input tokens and $0.0020 per 1K output to-
kens. gpt-3.5-turbo-instruct achieves Pear-
son correlation coefficients of over 0.97 for both

FACTSCORE and number of subclaims generated
compared to results reported by Min et al. (2023)
(Table 7).

Inst-LLAMA is LLAMA trained on Su-
per Natural Instructions (Wang et al., 2022;
Touvron et al.,, 2023), and is used for all
FACTSCORE and DECOMPSCORE evaluations.
We use max_sequence_length of 2048 and
max_output_length of 128.

For Dpregpart, We use Trankit for generating
the dependency parse for each sentence. This
parse is then used by PredPatt with the follow-
ing flags: relative clauses, appositional modifiers,
adjectival modifiers, conjunction, possessives, bor-
row_arg_for_relcl and strip all set to True, with the
remaining flags (simple, cut, and big_args) set to
False. We use PredPatt with Universal Dependen-
cies v2.

We use gpt-3.5-turbo-instruct with the
settings enumerated above for converting PredPatt
outputs into natural language sentences with the
following prompt:

Please turn my input utterances into a grammatically
correct natural English sentence by resolving tense, fixing
grammatical errors, and reordering words without changing
meanings. Your output should not contain “is/are” or “poss”.
Your output should contain no hallucinated information and
no redundant sentences. Just the modified utterance.

Input: born 1908 community leader
Output: The community leader was born in 1908.

Input: date of death is/are unknown
Output: The date of death is unknown.

Input: was an African - American social worker activist

Output: They were an African-American social worker
activist.

Input: <subclaim>

Output:

When a prompt in the Dconrr-u approach ex-
ceeds the length allowed for the context win-
dow, examples are incrementally removed until
the prompt fits. When a zero-shot prompt (no
in-context examples) exceeds the size of the con-
text window, we backoff and set the entire original
sentence as the subclaim. In practice, we backoff
0.05% of the time: across 6000 passages (500 pas-
sages generated by each of 12 LMgygj), twice we
use one example and once we use the original sen-
tence. We leave it to future work to reduce the size
of the parses used in the prompt.
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DECOMPSCORE

LMsug; Dpgxp Dchen Dwice Des  Drs2 Dconir  Drp
Alpaca 7B 21.9 17.7 11.2 17.2 18.8 154 15.2
Alpaca 13B 21.6 16.9 10.5 16.5 182 15.0 14.9
Alpaca 65B 21.9 17.3 10.8 16.7 18.5 15.2 14.8

ChatGPT 43.0 32.5 20.2 324 339 27.3 29.0
Dolly 12B 32.1 249 15.2 243 26.8 21.9 20.5

GPT4 76.0 57.5 359 57.2 585 47.0 54.8

InstructGPT 35.5 27.6 172 269 288 234 231
MPT-Chat 7B 47.7 36.5 227 359 374 302 331
Oasst-pythia 12B  56.7 41.6 254 409 423 348 397
StableLM 7B 38.2 29.5 18.9 293 306 255 281
Vicuna 7B 58.4 43.8 274 434 454 36.7  41.1
Vicuna 13B 54.6 39.8 249 399 415 33.1 36.2
Macro-average 4.3 32.1 20.0 317 334 27.1 29.2

Table 2: DECOMPSCORE for each decomposition method and LMgyg;. Average number of subclaims generated per
biography that are determined to be supported by the original sentence.

# Subclaims

LMsug; Dpgxp Dchen Dwice Des  Drs2 Dconir  Dpp
Alpaca 7B 22.2 17.9 11.3 17.3  19.0 15.7 16.4
Alpaca 13B 22.0 17.2 10.6 16,6 184 15.3 16.2
Alpaca 65B 22.2 17.5 10.9 169 18.6 15.5 16.0
ChatGPT 44.2 33.0 20.4 33.0 34.6 28.5 33.2
Dolly 12B 33.0 25.2 154 247 272 22.9 234
GPT4 77.7 58.2 36.2 579 592 48.6 63.6

InstructGPT 36.3 27.9 173 272 29.1 239 256
MPT-Chat 7B 49.0 37.0 229 363 378 31.1 374
Oasst-pythia 12B ~ 57.7 41.8 255 412 426 354 446
StableLM 7B 40.4 30.7 194 304 320 274 334
Vicuna 7B 59.8 443 27.6 439 459 37.7 463
Vicuna 13B 57.3 44.6 25.1 458 428 348 422
Macro-average 43.5 32.9 202 32,6 339 28.1 33.2

Table 3: Average number of subclaims generated per biography.
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FACTSCORE (%)

LMsug; Dpgxp Dchen Dwice Drs Drs2 Dconir  Dep
Alpaca 7B 35.0 36.9 33.7 369 37.5 34.9 27.4
Alpaca 13B 38.9 40.3 35.1 40.8 41.1 38.3 30.0
Alpaca 65B 44.0 47.0 42.8 469 473 45.0 36.5
ChatGPT 48.2 52.1 514 522 522 50.7 36.8
Dolly 12B 16.5 16.3 13.9 16.7 172 15.5 10.4
GPT4 51.1 56.1 54.8 559 549 53.3 35.6

InstructGPT 40.1 432 432 43.6 434 417 315
MPT-Chat 7B 24.8 25.9 244 262 252 25.1 16.1
Oasst-pythia 12B 20.1 20.8 192 212 21.1 20.5 11.7
StableLM 7B 13.8 13.1 11.6 135 134 13.3 8.2
Vicuna 7B 324 34.5 340 352 349 33.8 217
Vicuna 13B 31.1 32.8 31.8 341 357 33.1 23.3
Macro-average 33.0 34.9 33.0 353 353 33.8 24.1

Table 4: FACTSCORE of biographies generated by each LMgyg; and decomposed with each method. Note: For
evaluating decomposition quality, a larger FACTSCORE is not necessarily better; we care about high confidence that
FACTSCORE is correct.
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Figure 4: FACTSCORE results for all claim decomposition methods and LMgyg;.
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FACTSCORE (%) After Filtering Out Unsupported Subclaims
LMsugs Dpgxy Dchen Dwice Drs Drs2 Dconie  Dep
Alpaca 7B 349 36.7 36.1 36.8 37.6 358  29.1
Alpaca 13B 40.1 40.8 402 414 412 399 313
Alpaca 65B 45.0 48.4 470 476 479 463 394

ChatGPT 55.8 60.5 60.2 599 599 59.1 45.1
Dolly 12B 17.1 17.1 16.1 17.6  17.7 16.9 12.2
GPT4 57.0 62.6 614 62.0 610 59.9 438

InstructGPT 40.7 43.5 43.6 440 440 426 343
MPT-Chat 7B 27.0 28.3 275 287 276 28.0 19.5
Oasst-pythia 12B 20.4 21.2 202 214 214 21.0 12.8
StableLM 7B 16.0 15.6 146 16.0 15.8 15.9 8.9
Vicuna 7B 35.7 38.6 384 38.8 384 37.6 253
Vicuna 13B 37.7 41.7 413 417 411 40.6 293
Macro-average 35.6 37.9 372 38.0 37.8 37.0 276

Table 5: FACTSCORE of biographies after filtering out subclaims determined to be not supported by the original
sentence (using DECOMPSCORE judgments). Note: For evaluating decomposition quality, a larger FACTSCORE is
not necessarily better; we care about high confidence that FACTSCORE is correct.
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Figure 5: FACTSCORE results after filtering out subclaims determined to be not supported by the original sentence
(using DECOMPSCORE judgments) for all claim decomposition methods and LMgyg;.
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% Subclaims Supported

LMsugs Dpgxp  Dchen Dwice Des  Drs2 Dconir  Drp
Alpaca 7B 98.7 98.9 99.2 99.1 99.1 98.4 93.6
Alpaca 13B 98.6 99.0 994 99.0 99.2 98.2 93.2
Alpaca 65B 98.6 99.3 994 99.2 99.3 98.5 93.7
ChatGPT 93.0 959 96.7 994 945 89.0 80.0
Dolly 12B 97.4 98.7 99.0 98.7 98.6 96.5 89.6
GPT4 96.2 974 98.3 974 97.2 94.2 83.2

InstructGPT 98.1 99.1 99.3 99.0 99.0 98.0  90.8
MPT-Chat 7B 96.5 97.6 984 97.6 978 954 869
Oasst-pythia 12B~ 98.3 99.3 994 993 993 984 894
StableLM 7B 89.2 90.7 941 905 894 84.8 744
Vicuna 7B 94.8 97.0 98.1 963 96.5 929  84.1
Vicuna 13B 88.9 93.3 954 90.8 88.1 826  72.6
Macro-average 96.0 97.2 98.1 972 96.5 939  86.0

Table 6: Percentage of subclaims from each decomposition method and LMgyg; that are judged to be supported by
(cohere with) the original claim.
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Figure 6: Percentage of subclaims that are supported by (cohere with) the original claim.
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FACTSCORE Reported FACTSCORE # subclaims

Reported # subclaims

Alpaca 7B 36.9 36.5 17.3 17.4
Alpaca 13B 40.8 40.3 16.6 16.6
Alpaca 65B 46.9 46.3 16.9 17.1

ChatGPT 52.2 60.4 33.0 37.0
Dolly 12B 16.7 17.1 24.7 24.6
GPT4 55.9 59.9 579 60.8
InstructGPT 43.6 41.7 27.2 27.7
MPT-Chat 7B 26.2 279 36.3 37.3
Oasst-pythia 12B 21.2 20.8 41.2 39.7
StableLM 7B 13.5 16.3 30.4 38.0

Vicuna 7B 35.2 36.9 43.9 45.6
Vicuna 13B 34.1 40.7 45.8 50.9

p 0.9786 0.9821
Table 7: Pearson correlation coefficients (p) between our setup for computing FACTSCORE (using

gpt-3.5-turbo-instruct for subclaim generation) and results reported by Min et al. (2023) (using

text-davinci-@03 for subclaim generation).

C NLI Entailment

The numbers of subclaims that are judged to be
entailed by the original sentence are highly cor-
related with the numbers of subclaims judged by
an LLM to be supported by the original sentence
(DECOMPSCORE), achieving a Pearson correlation
coefficient of 0.9978 (Figure 7).
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Figure 7: Average number of subclaims per passage
that are entailed by their original sentential claim, as
determined by an NLI model (Nie et al., 2020). Values
are macro-averaged across LMgug;.

D Decomposition Examples

We include examples of two sentences decomposed
manually and by all claim decomposition methods
evaluated. Table 8 contains the decompositions for
the sentence “Alfred Hitchcock passed away on
April 29, 1980, in Bel-Air, California, leaving be-

hind a rich legacy of suspenseful and thrilling films
that continue to captivate and inspire audiences and
filmmakers alike." Table 9 contains the decomposi-
tions for the sentence “Nash demonstrated a natu-
ral aptitude for mathematics from a young age and
earned his bachelor’s and master’s degrees in math-
ematics from the Carnegie Institute of Technology
(now Carnegie Mellon University) in 1948.”

E Russellian/Neo-Davidsonian In-context
Learning Examples

The manually decomposed sentences used as in-
context examples for Dr_np are shown in Table 10.
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Manual - Alfred Hitchcock passed away.
- Alfred Hitchcock’s death occurred in April.
- Alfred Hitchcock’s death occurred on the 29th day of a month.
- Alfred Hitchcock’s death occurred in 1980.
- Alfred Hitchcock’s death occurred in Bel-Air.
- Bel-Air is in California.
- Alfred Hitchcock left behind a legacy.
- Alfred Hitchcock’s legacy is rich.
- Alfred Hitchcock’s legacy contains films.
- The films in Alfred Hitchcock’s legacy are suspenseful.
- The films in Alfred Hitchcock’s legacy are thrilling.
- The films in Alfred Hitchcock’s legacy captivate audiences.
- The films in Alfred Hitchcock’s legacy captivate filmmakers.
- The films in Alfred Hitchcock’s legacy inspire audiences.
- The films in Alfred Hitchcock’s legacy inspire filmmakers.
Dr-NnD - Alfred Hitchcock passed away on April 29, 1980.
- His death occurred in Bel-Air, California.
- Alfred Hitchcock had a legacy.
- Alfred Hitchcock’s legacy contains suspenseful films.
- Alfred Hitchcock’s legacy contains thrilling films.
- Alfred Hitchcock’s films continue to captivate audiences.
- Alfred Hitchcock’s films continue to inspire filmmakers.
- Alfred Hitchcock left behind his legacy.
Dchen et al. - Alfred Hitchcock passed away on April 29, 1980.
- Alfred Hitchcock passed away in Bel-Air, California.
- Alfred Hitchcock left behind a rich legacy.
- Alfred Hitchcock’s legacy includes suspenseful and thrilling films.
- Alfred Hitchcock’s films continue to captivate and inspire audiences.
- Alfred Hitchcock’s films continue to captivate and inspire filmmakers.
Dwick - Alfred Hitchcock passed away on April 29, 1980.
- He passed away in Bel-Air, California.
- He left behind a rich legacy of suspenseful and thrilling films.
- His films continue to captivate and inspire audiences.
- His films continue to inspire filmmakers.
Dracrscore - Alfred Hitchcock passed away on April 29, 1980.
- Alfred Hitchcock passed away in Bel-Air, California.
- Alfred Hitchcock left behind a legacy of films.
- Alfred Hitchcock’s films were suspenseful and thrilling.
- Alfred Hitchcock’s films continue to captivate audiences.
- Alfred Hitchcock’s films continue to inspire filmmakers.
DCoNLL-U - Alfred Hitchcock passed away on April 29, 1980.
- He passed away in Bel-Air, California.
- He left behind a rich legacy.
- His legacy includes suspenseful and thrilling films.
- His films continue to captivate and inspire audiences and filmmakers.
Drredpatt - Alfred Hitchcock passed away on April 29, 1980 , in Bel - Air.
- Bel - Air is/are in California
- Alfred Hitchcock left behind a rich legacy of suspenseful and thrilling films that
continue to captivate and inspire audiences and filmmakers alike
- The legacy of suspenseful and thrilling films that continue to captivate and inspire
audiences and filmmakers alike is/are rich
- The films that continue to captivate and inspire audiences and filmmakers alike
are suspenseful
- Suspenseful and thrilling films continue to captivate audiences.
- Suspenseful and thrilling films continue to captivate filmmakers alike.
- That continue to inspire.

Table 8: Decomposition comparison for the sentence “Alfred Hitchcock passed away on April 29, 1980, in Bel-Air,
California, leaving behind a rich legacy of suspenseful and thrilling films that continue to captivate and inspire
audiences and filmmakers alike.”
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Manual - Nash demonstrated an aptitude for mathematics.
- Nash’s aptitude for mathematics was natural.
- Nash’s demonstration of an aptitude for mathematics began at a young age.
- Nash earned his bachelor’s degree.
- Nash’s bachelor’s degree is in mathematics.
- Nash’s bachelor’s degree is from the Carnegie Institute of Technology.
- Nash’s bachelor’s degree was earned in 1948.
- Nash earned his master’s degree.
- Nash’s master’s degree is in mathematics.
- Nash’s master’s degree is from the Carnegie Institute of Technology.
- Nash’s master’s degree was earned in 1948.
- The Carnegie Institute of Technology is now Carnegie Mellon University.
Dr-np - Nash demonstrated a natural aptitude for mathematics.
- His natural aptitude for mathematics was evident from a young age.
- He earned a bachelor’s degree in mathematics.
- He earned a master’s degree in mathematics.
- He earned his degrees from the Carnegie Institute of Technology.
- The Carnegie Institute of Technology is now known as Carnegie Mellon University.
- He earned his degrees in 1948.
- He earned his bachelor’s degree in mathematics in 1948.
- He earned his master’s degree in mathematics in 1948.
Dchen et al. - Nash demonstrated a natural aptitude for mathematics.
- Nash demonstrated a natural aptitude for mathematics from a young age.
- Nash earned his bachelor’s degree in mathematics.
- Nash earned his master’s degree in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology.
- The Carnegie Institute of Technology is now Carnegie Mellon University.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology (now Carnegie Mellon University).
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology (now Carnegie Mellon University) in 1948.
Dwick - Nash demonstrated a natural aptitude for mathematics from a young age.
- Nash earned his bachelor’s degree in mathematics from the Carnegie Institute of
Technology in 1948.
- Nash earned his master’s degree in mathematics from the Carnegie Institute of
Technology in 1948.
- The Carnegie Institute of Technology is now known as Carnegie Mellon University.
Dracrscore - Nash demonstrated a natural aptitude for mathematics.
- Nash demonstrated a natural aptitude for mathematics from a young age.
- Nash earned his bachelor’s degree in mathematics.
- Nash earned his master’s degree in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology.
- Carnegie Institute of Technology is now called Carnegie Mellon University.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology (now Carnegie Mellon University).
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie
Institute of Technology (now Carnegie Mellon University) in 1948.
Dconti-u - Nash demonstrated an aptitude for mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash’s degrees were from Carnegie Institute of Technology.
- The institute is now known as Carnegie Mellon University.
- Nash received his degrees in 1948.
Deredpatt - Nash demonstrated a natural aptitude for mathematics from a young age.
- Aptitude for mathematics is natural.
- They were young.
- Nash earned his bachelor ’s and master ’s degrees in mathematics from the Carnegie
Institute of Technology in 1948.
- He had a bachelor ’s and master ’s degrees in mathematics.
- The bachelor possessed a master’s degree.
- The Carnegie Institute of Technology is now Carnegie Mellon University.

Table 9: Decomposition comparison for the sentence “Nash demonstrated a natural aptitude for mathematics from a
young age and earned his bachelor’s and master’s degrees in mathematics from the Carnegie Institute of Technology
(now Carnegie Mellon University) in 1948.”
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He made his acting debut in the film The Moon is the Sun’s Dream (1992), and continued to appear in small and
supporting roles throughout the 1990s.

- He has an acting debut.

- He acted in a film.

- His acting debut was in a film.

- His acting debut was in The Moon is the Sun’s Dream.

- He acted in The Moon is the Sun’s Dream.

- The Moon is the Sun’s Dream is a film.

- The Moon is the Sun’s Dream was released in 1992.

- His acting debut occurred in 1992.

- He appeared in small roles.

- He appeared in supporting roles.

- His small roles occurred throughout the 1990s.

- His supporting roles occurred throughout the 1990s.

- His appearance in small roles occurred after his acting debut.

- His appearance in supporting roles occurred after his acting debut.

He is also a successful producer and engineer, having worked with a wide variety of artists, including Willie Nelson,
Tim McGraw, and Taylor Swift.

- He is a producer.

- He is successful at being a producer.

- He is an engineer.

- He is successful at being an engineer.

- He has worked with a wide variety of artists.
- Willie Nelson is an artist.

- He has worked with Willie Nelson.

- Tim McGraw is an artist.

- He has worked with Tim McGraw.

- Taylor Swift is an artist.

- He has worked with Taylor Swift.

In 1963, Collins became one of the third group of astronauts selected by NASA and he served as the back-up Command
Module Pilot for the Gemini 7 mission.

- NASA selected a third group of astronauts.

- Collins belonged to the third group of astronauts.

- Collins was selected by NASA.

- Collins’s selection by NASA occurred in 1963.

- The Gemini 7 mission has a back-up Command Module Pilot.

- Collins’s role in the Gemini 7 mission was as the back-up Command Module Pilot.

- Collins participated in the Gemini 7 mission.

In addition to his acting roles, Bateman has written and directed two short films and is currently in development
on his feature debut.

- Bateman has acting roles.

- Bateman has written short films.

- The number of short films Bateman has written is two.

- Bateman has directed short films.

- The number of short films Bateman has directed is two.

- Bateman is currently in development on his feature debut.

- The two short films were made before his feature debut.

- His acting roles came before his feature debut.

Michael Collins (born October 31, 1930) is a retired American astronaut and test pilot who was the Command Module
Pilot for the Apollo 11 mission in 1969.

- Michael Collins was born in October.

- Michael Collins was born on the 31st day of a month.

- Michael Collins was born in 1930.

- Michael Collins is retired.

- Michael Collins is American.

- Michael Collins was an astronaut.

- Michael Collins was a test pilot.

- Michael Collins participated in the Apollo 11 mission.

- Michael Collins’s participation in the Apollo 11 mission occurred in 1969.

- The Apollo 11 mission was active in 1969.

- The day of Michael Collins’s birth occurred before his year of participation in the Apollo 11 mission.
- The Apollo 11 mission had a Command Module Pilot.

- Michael Collins’s role in the Apollo 11 mission was as the Command Module Pilot.
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He was an American composer, conductor, and musical director.
- He was American.

- He was a composer.

- He was a conductor.

- He was a musical director.

She currently stars in the romantic comedy series, Love and Destiny, which premiered in 2019.
- She stars in Love and Destiny.

- Love and Destiny is a series.

- Love and Destiny is a romantic comedy.

- Love and Destiny premiered in 2019.

His music has been described as a mix of traditional Mexican and Latin American styles, as well as
jazz, folk, and rock.

- He has music.

- His music has been described.

- His music has been described as a mix of styles.

- His music has been described as containing elements of traditional styles of music.

- His music has been described as containing elements of Mexican style of music.

- His music has been described as containing elements of Latin American style of music.
- His music has been described as containing elements of jazz music.

- His music has been described as containing elements of folk music.

- His music has been described as containing elements of rock music.

He also serves as an ambassador for the charity Leonard Cheshire Disability.
- He has a role in Leonard Cheshire Disability.

- His role in Leonard Cheshire Disability is as an ambassador.

- Leonard Cheshire Disability is a charity.

He began his career in Nashville in the late 1950s and has since released numerous albums, including a greatest hits
collection in 1999.

- He has a career.

- His career began in Nashville.

- His career began in the late 1950s.

- He has released albums.

- His released albums are numerous.

- He released a collection.

- His collection contains greatest hits.

- His collection was released in 1999.

- The release of his albums occurred after he began his career.

He has been performing since the age of 8, when he joined a band in his hometown of Guadalajara and has since
gone on to record six studio albums and several singles of his own original material.
- He has been performing.

- He started performing at the age of 8.

- He joined a band.

- He joined a band at the age of 8.

- His band was in Guadalajara.

- His hometown is Guadalajara.

- He has recorded studio albums.

- The number of studio albums he has recorded is six.

- He has recorded singles.

- He has several singles.

- His studio albums are his own original material.

- His singles are his own original material.

- His recording of studio albums occurred after he joined a band.

- His recording of singles occurred after he joined a band.

She is also the former President of the Malaysian Chinese Association (MCA) from 2010 to 2013.
- She had a role in the Malaysian Chinese Association.

- Her role in the Malaysian Chinese Association was as its President.

- Her tenure as President of the Malaysian Chinese Association started in 2010.

- Her tenure as President of the Malaysian Chinese Association ended in 2013.

- MCA is another name for the Malaysian Chinese Association.

During his professional career, McCoy played for the Broncos, the San Diego Chargers, the Minnesota Vikings,
and the Jacksonville Jaguars.

- McCoy had a professional career.

- McCoy played for the Broncos.

- McCoy played for the San Diego Chargers.

- The Chargers are from San Diego.

- McCoy played for the Minnesota Vikings.

- The Vikings are from Minnesota.

- McCoy played for the Jacksonville Jaguars.

- The Jaguars are from Jacksonville.
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Miller has been described as the architect of Trump’s controversial immigration policies, and has previously worked
for Alabama Senator Jeff Sessions on immigration issues.

- Miller has been described.

- Miller has been described as an architect.

- Miller has been described as an architect of Trump’s controversial immigration policies.
- Trump has immigration policies.

- Trump’s immigration policies are controversial.

- Miller worked for Jeff Sessions.

- Jeff Sessions is a Senator.

- Jeff Sessions represents Alabama.

- Miller worked on immigration issues.

- Miller’s work for Jeff Sessions involved immigration issues.

Her work is often described as whimsical and dreamlike.

- She has work.

- Her work has been described.

- Her work is described as whimsical.

- Her work is described as dreamlike.

- The description of her work as whimsical has occurred often.
- The description of her work as dreamlike has occurred often.

He graduated from the United States Military Academy in 1952, and then went on to serve in the

United States Air Force.

- He graduated from the United States Military Academy.

- His graduation from the United States Military Academy occurred in 1952.

- He served in the United States Air Force.

- His service in the United States Air Force occurred after his graduation from the United States Military Academy.

He is best known for his roles in the films Memories of Murder (2003), The Host (2006), (...) and Parasite (2019).
- He had a role in Memories of Murder.

- Memories of Murder is a film.

- Memories of Murder was released in 2003.

- He had a role in The Host.

- The Host is a film.

- The Host was released in 2006.

- He had a role in Parasite.

- Parasite is a film.

- Parasite was released in 2009.

- His role in Memories of Murder is one of his best known.
- His role in The Host is one of his best known.

- His role in Parasite is one of his best known.

Song Kang-ho was born in Gongju, South Korea in 1967.
- Song Kang-ho was born.

- Song Kang-ho’s birth occurred in Gongju.

- Song Kang-ho’s birth occurred in South Korea.

- Song Kang-ho’s birth occurred in 1967.

- Gongju is in South Korea.

He studied theater at Chung-Ang University in Seoul.

- He studied.

- He studied theater.

- He studied at Chung-Ang University.

- His study of theater occurred at Chung-Ang University.
- Chung-Ang University is located in Seoul.

His breakthrough came with the leading role in the acclaimed crime-drama film Memories of Murder in 2003.
- He had a breakthrough.

- His breakthrough was based on a leading role.

- His breakthrough was based on his role in Memories of Murder.
- His breakthrough occurred in 2003.

- He had a leading role.

- He had a leading role in Memories of Murder.

- Memories of Murder is a film.

- The genre of Memories of Murder is crime-drama.

- Memories of Murder is acclaimed.

- Memories of Murder was released in 2003.

This was followed by the monster movie The Host in 2006, which became the highest-grossing film in
Korean history at the time.

- This was followed by The Host.

- The Host is a movie.

- The Host was released in 2006.

- The genre of The Host is monster movie.

- The Host became the highest-grossing film in Korean history.

Table 10: Manually decomposed examples used for in-context examples by Dr.np.
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Abstract

Large language models (LLM) are now a very
common and successful path to approach lan-
guage and retrieval tasks. While these LLM
achieve surprisingly good results it is a chal-
lenge to use them on more constrained re-
sources. Techniques to compress these LLM
into smaller and faster models have emerged
for English or Multilingual settings, but it is
still a challenge for other languages. In fact,
Spanish is the second language with most na-
tive speakers but lacks of these kind of re-
sources. In this work, we evaluate all the
models publicly available for Spanish on a set
of 6 tasks and then, by leveraging on Knowl-
edge Distillation, we present Speedy Gonza-
les, a collection of inference-efficient task-
specific language models based on the AL-
BERT architecture. All of our models (fine-
tuned and distilled) are publicly available on:
https://huggingface.co/dccuchile.

1 Introduction

The utilization of learned dense representations
of text is nowadays a common and successful ap-
proach for different kind of information retrieval
(IR) tasks (Yates et al., 2021). These learned rep-
resentations are usually obtained by training a lan-
guage model using large collections of texts from
the web. Two key aspects to watch to make the
most of these models are size and speed of them.

The size of these models has grown overtime
and now very large language models (LLM) are
common, with models that range from hundred
of millions to billions of parameters. These pre-
trained models are not only heavy on memory re-
quirements but also on the operations they do on
every inference, which is a bottleneck when trying
to deploy these models for tasks that are expected
to be fast such as question answering or semantic
search.

These LLMs are usually trained on English
by big technology companies using web-scale

datasets and substantial computational resources.
Prominent examples include the well-known GPT-
3 model (Brown et al., 2020). For languages other
than English the available models are typically vari-
ants of BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) or ALBERT (Lan et al., 2020). In
the case of Spanish, which is one of the five most
spoken languages in the world and the second with
most native speakers, the available models range
from 5M to 335M of parameters. In Figure 1 we
showed how different Spanish pre-trained models
compare in terms of model size (number of param-
eters) and inference speed (MACs).

Despite the remarkable performance of these
LLMs across a range of tasks, it remains a chal-
lenge to utilize them effectively in computing envi-
ronments that are constrained by limited resources,
such as web or mobile applications.

New techniques to address this problem have
emerged for English (Tang et al., 2019; Turc et al.,
2019; Sanh et al., 2019; Wang et al., 2020; Jiao
et al., 2020) or Multilingual (Jiao et al., 2021) mod-
els. These typically leverage on different kinds
of Knowledge Distillation (Hinton et al., 2015)
to compress the results of a large and performant
model into another one which is typically lighter
and more inference efficient. For other languages
this is still an open challenge, where we lack from
this kind of resources.

In this work we try to close this gap with new
resources (inference-efficient models) for the Span-
ish language. Our contributions are the following:

* We perform a comprehensive evaluation of all
publicly available Spanish pre-trained models,
which are trained on general-domain corpora,
by fine-tuning them across six different tasks
and eight datasets.

* By selecting the best model on each evaluated
dataset, we distilled its knowledge into lighter
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Figure 1: The size (number of parameters) and speed (MACsSs) of every Spanish model evaluated on this work.
MACs are measured using a single sequence of length 512, which is the maximum sequence length of all the

evaluated models.

ALBERT models, achieving more lighter and
inference efficient models, while retaining
most of the task performance of the bigger
counterparts.

* We make our newly created resource, Speedy
Gonzales, consisting of over 140 fine-tuned
and distilled models, publicly accessible
on the HuggingFace Hub at: https://
huggingface.co/dccuchile.

2 Related Work

Transformers, introduced by Vaswani et al. (2017)
have become the default architecture for text-
related tasks. Transformer encoders like BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) are some of the most
popular, by its ability to encode complex relations
on texts by training on large collections of texts,
with the training task consisting of corrupt some
parts of a text sequence and train a model to recon-
struct the correct sequence.

While models with billions of parameters have
become common for English language (Brown
et al., 2020), it is not the case for most other lan-
guages, which are typically restricted to hundreds
of millions of parameters. For Spanish language,
which is one of the most spoken languages in the
world, the models available follow the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) architecture and are
described in further detail in Section 4.2.

Several ways to compress these models have
been proposed through the years. The most com-

mon ones are quantization (Gholami et al., 2021),
pruning (Blalock et al., 2020) and knowledge dis-
tillation (Hinton et al., 2015).

Network quantization compresses the original
network by reducing the number of bits required to
represent each weight, resulting in a lighter model.
In the case of BERT, examples of these kinds of
methods are TernaryBERT (Zhang et al., 2020) and
BinaryBERT (Bai et al., 2021) where they were
able to reduce the weight size to 2 and 1 bit re-
spectively, while maintaining most of the original
BERT performance.

The technique of pruning aims to reduce the
number of connections (weights) in a neural net-
work, which results in a reduction of the model
size and also a very sparse pattern of the weights.
Frankle and Carbin (2019) showed that in most
feed-forward neural networks it is possible to find
a subnetwork that achieves similar or better accu-
racy.

In Knowledge Distillation (KD) (Hinton et al.,
2015) the knowledge learned by a big and strong
model, the teacher model, is transferred to a lighter
model, the student model, by forcing this student
to mimic the teacher. Multiples ways of knowledge
distillation have been proposed (Gou et al., 2021).

Tang et al. (2019) uses KD to transfer the knowl-
edge from BERT to lighter RNNs. Turc et al.
(2019) proposes pre-training compact BERT mod-
els and then using task-specific KD to achieve bet-
ter results. Sanh et al. (2019) introduces a task-
agnostic scheme where KD is used on the pre-
training task. Wang et al. (2020) and Jiao et al.
(2020) proposed different methods exclusive for
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Figure 2: The figure provides a visual representation of the Knowledge Distillation framework applied in this work.
In line with common practices, the framework includes both a distillation loss between the teacher and student
models and a cross-entropy loss between the gold labels and the student’s predictions, as indicated by the dashed

line.

Transformers, to directly distill the knowledge from
the self-attention layers of the teacher model to the
student model.

Our work is similar to Turc et al. (2019) by
proposing the use of compact Transformers but we
use the ALBERT architecture instead of the BERT
one. We also use the idea from Sanh et al. (2019)
of reusing the layers of a pre-trained model, instead
of random initializing a new one. Differently from
that work, that has to choose which layers to reuse,
we only adjust the number of layers (and thus, the
inference speed) since all the ALBERT layers are
shared. Another difference with those two works
is that in our work we skip pre-training (or KD on
the pre-training task) and directly apply KD on the
task-specific phase.

3 Methodology

In pursuit of our goal to have efficient models for
Spanish in various tasks, we employ the method
of Knowledge Distillation. This method will be
further elaborated in the subsequent section.

3.1 Knowledge Distillation

The technique of Knowledge Distillation aims to
transfer the knowledge learned from a big and ca-
pable model, usually called the teacher model, say
M, to a more restricted model, called the student
model, say Mg. To achieve this objective, we train
Mg to imitate M7. There are multiple ways to imi-
tate M (Gou et al., 2021), in this work we use the
simple, yet powerful approach, of directly mimic
the output of M given a input text.

Formally, we define the distillation objective as

1;}(132

Lkp = Lo(Mr(x), Ms(x))

Where Lo is a loss function that works on the
logits of M and Mg. The most common choices
for this loss are the cross entropy loss, the KL-
divergence loss and the mean-squared error loss.
In the case of KL-divergence or cross-entropy loss
is it a common practice to use soft-targets (Hinton
et al., 2015) instead of direct logits, which means to
apply a softmax with temperature 7' (with 7" >= 1)
to Mr(z) and Mg(x) in order to produce a soft
probability distribution over the classes.

Also, typically we use not only the output of My
but also the gold labels from the training dataset.
The complete loss, accounting these labels can be
seen as:

L=aLcg+ (1—a)Lgp

Where L¢g is the traditional cross-entropy loss
against gold labels and « defines the weight of each
loss.

An overview of the entire framework is shown
in Figure 2.

3.2 Approach

Our approach has two stages, in the first one, we
fine-tune a set of candidate teacher models in a
set of tasks of interest. Then, for each task we
select the best teacher model (which we define as
the model with minimum validation loss among all
candidate models) as the teacher model for that task.
In stage two, we apply KD using these teachers
models and a set of students models.
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The complete set of evaluated tasks and possible
teacher models is described in Section 4.

3.3 Student Models

For the student models, we rely on the ALBERT
(Lan et al., 2020) architecture. This architecture
is lighter in terms of parameters because all layers
are weight-tied. Specifically, we adopt ALBETO
models (Cafiete et al., 2022) models, adhering to
the ALBERT architecture and exclusively trained
for the Spanish language. We considered ALBETO
tiny, which is the lightest models of all ALBETO
models and also, inspired by Sanh et al. (2019) we
propose models with less layers (and thus faster)
that match the configuration of ALBETO base, ex-
cept on the number of layers. These lighter AL-
BERTS are then initialized with the weights of AL-
BETO base. These models are noted in the tables
as ALBETO base-n, where n is the number of lay-
ers of the model.

3.4 Implementation Details

All our code uses Python and PyTorch (Paszke
et al., 2019) as machine learning framework and is
publicly available on GitHub!.

The evaluation of the inference speed of the pro-
posed models is performed through the utilization
of the Multiply-Accumulate (MACs) metric, which
provides a hardware-agnostic evaluation and is thus
considered to be a more robust evaluation criterion.
This measurement is conducted using the THOP?
library, which operates on PyTorch models, to ac-
curately measure MACs. In addition, to provide
a more intuitive understanding of the models’ per-
formance, actual inference speeds on commonly
used hardware configurations are also reported in
Section 3.5.

For KD, we first experimented using the three
different losses, with different parameters o and
T using Optuna (Akiba et al., 2019). These exper-
iments showed that the best results where using
a = 0 and T' = 1. With that parameters, while the
three different losses works well, KL-divergence
was slightly better, so we conducted the rest of the
experiments using that configuration.

For both stages of our approach, the only pre-
processing applied was tokenization of the input
texts according to the subword vocabulary of every
model.

"https://github.com/dccuchile/speedy-gonzales
Zhttps://github.com/Lyken17/pytorch-OpCounter

For the first stage, which is fine-tuning of the
possible teacher models we rely heavily on the
HuggingFace Transformers (Wolf et al., 2020) li-
brary. For all models and tasks, we run a grid
search over the hyperparameters batch size = {16,
32, 64} and epochs = {2, 3, 4}. We experimented
with learning rate = {1e-5, 2e-5, 3e-5, 5e-5} for all
models except ALBETO large, xlarge, and xxlarge,
where we used learning rate = {1e-6, 2e-6, 3e-6,
5e-6}, which are the same hyperparameters used
on (Caiiete et al., 2022).

For the second stage, which is applying KD, the
implementation depended on the task. For text clas-
sification tasks we do the KD between the pooled
output of both models. For sequence tagging and
question answering tasks, we aligned the first to-
ken of every word (because the vocabulary of both
models is not always the same, which implies that
the subword tokenization can result in a different
number of tokens) and then we do the KD using
the sequence of representations of first tokens for
every word in the text between the two models. We
note that this approach is not new and is almost the
same applied on the original BERT (Devlin et al.,
2019) for sequence tagging tasks, that was adapted
to work on KD.

For the experiments on this second stage we did
a grid search using the hyperparameters: learning
rate = {S5e-5, 1le-4}, batch sizes = {16, 32, 64} and
epochs = 50, we also use early stopping with a
tolerance of 10 epochs of no improving.

To accelerate experimentation, we employ a
teacher output cache, with its impact on training
times discussed in Appendix C.

In Tables 2 and 3 we report results of the models
on the test set of each dataset. These models were
selected based on the best results on the valida-
tion set among the grid search experiments. These
models are also the ones publicly available on the
HuggingFace Hub.

3.5 Inference Speed on Common Hardware

In our work we measure inference speed in terms
of Multiply-Accumulate (MAC) operations. This
metric is advantageous as it is agnostic to hardware
variations. However, it can be useful to also report
the actual inference speed of models on common
hardware, as this can provide a more intuitive un-
derstanding of their performance.

Table 1 presents the average number of infer-
ences per second that can be achieved on two
different hardware platforms, a CPU with an In-
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Inferences per second

Model CPU GPU
Fine-tuning
BETO uncased 3.96 107.19
BETO cased 4.26 109.02
DistilBETO 9.12 217.40
ALBETO tiny 32.53 539.61
ALBETO base 4.50 108.62
ALBETO large 1.29 33.62
ALBETO xlarge 0.35 11.72
ALBETO xxlarge 0.14 6.60
BERTIN 3.99 109.39
RoBERTa BNE base 3.82 107.77
RoBERTa BNE large  1.18 33.65
Task-specific Knowledge Distillation

ALBETO tiny 32.53 539.61
ALBETO base-2 31.08 625.30
ALBETO base-4 15.16 319.32
ALBETO base-6 10.45 213.53
ALBETO base-8 6.82 160.66
ALBETO base-10 6.01 128.38

Table 1: The number of inferences per second of each
model on two different hardware settings, CPU and
GPU.

tel Core 17-11700K and a GPU with a NVIDIA
GeForce RTX 3090. To account for variance in
the measurements, we first conducted 10 warm-
up inferences followed by 100 real measures for
each model. We then applied an aggressive out-
lier filtering method based on the modified Z-Score
(Iglewicz and Hoaglin, 1993) with a threshold of
0.75, which resulted in the removal of approxi-
mately 40-45% of the measures. The remaining
55-60% of the measures were used to calculate,
with very low variance, the average inference speed
(in milliseconds) and the number of inferences that
could be performed in one second, which serves
as a clearer illustration of the model’s inference
speed.

It is worth noting that the difference in speed
between the larger models and the proposed mod-
els trained using task-specific KD is substantial.
Specifically, on the CPU setting, which is repre-
sentative of popular serverless platforms used in
industry, the best model found in this study in terms
of task performance, ALBETO xxlarge, would take
several seconds for a single inference, making it un-
suitable for real-time user-facing applications. On
the other hand, if we consider our proposed faster

models, we can observe that ALBETO base-6 is
capable of executing more than 10 inferences per
second, which is a much more acceptable latency
for a real-time application.

4 Evaluating Spanish Pre-trained
Language Models

In order to achieve our goal of have efficient mod-
els for Spanish in a variety of tasks we first define
a set of tasks to evaluate those models. These tasks
are the same evaluated by Caifiete et al. (2022) and
are described in Section 4.1. We then define a set of
possible teacher models, in particular, we wanted
to try every model that was pre-trained on general
domain Spanish text and is publicly available, there-
fore we exclude RigoBERTa (Serrano et al., 2022),
which is a DeBERTa (He et al., 2021) model for
Spanish that is not public and RoBERTuito (Pérez
et al., 2022) which is a RoBERTa-like model for
Spanish that was trained on Twitter datasets and
should be better suited for social media related
tasks. All considered models are described in Sec-
tion 4.2. After evaluating all models on each task,
we selected the model with lowest validation loss as
the teacher model for the task. The list of selected
models can be found in Appendix A.

4.1 Tasks and Data

4.1.1 Document Classification

The task of document classification consists on
the assignment of an entire document to a cate-
gory according to its semantic meaning. For our
evaluation we are using the Spanish portion of ML-
Doc (Schwenk and Li, 2018) which is a multilin-
gual dataset for document classification in eight
languages. MLDoc is based on the Reuters Cor-
pus (Lewis et al., 2004) and has four different
categories for its documents, which are: Corpo-
rate/Industrial, Economics, Government/Social and
Markets.

4.1.2 Paraphrase Identification

On Paraphrase Identification we aim to assess
whether two sentences share the same semantic
meaning. To evaluate our models in this task we are
using the Spanish subset of PAWS-X (Yang et al.,
2019). This dataset can be seen as a translation to
six different languages of the PAWS (Zhang et al.,
2019) dataset, where the train set is machine trans-
lated and the validation and test sets were translated
professionally by humans.
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Text Classification Sequence Tagging Question Answering
Model (Accuracy) (F1 Score) (F1 Score / Exact Match)
MLDoc PAWS-X XNLI POS NER MLQA SQAC TAR / XQuAD
Fine-tuning
BETO uncased 96.38 84.25 7776 97.81 80.85 64.12/40.83 72.22/53.45  74.81/54.62
BETO cased 96.65 89.80 81.98 98.95 87.14 67.65/43.38 78.65/60.94  77.81/56.97
DistilBETO 96.35 75.80 76.59 97.67 78.13 57.97/3550 64.41/4534  66.97/46.55
ALBETO tiny 95.82 80.20 7343 9734 75.42 51.84/2828 59.28/39.16  66.43/45.71
ALBETO base 96.07 87.95 79.88 98.21 82.89 66.12/41.10 77.71/59.84  77.18/57.05
ALBETO large 92.22 86.05 78.94 9798 82.36 65.56/40.98 76.36/56.54  76.72/56.21
ALBETO xlarge 95.70 89.05 81.68 98.20 81.42 68.26/43.76 78.64/59.26  80.15/59.66
ALBETO xxlarge 96.85 89.85 82.42 98.43 83.06 70.17/45.99 81.49/62.67 79.13/58.40
BERTIN 96.47 88.65 80.50  99.02 85.66 66.06/42.16 78.42/60.05  77.05/57.14
RoBERTa BNE base 96.82 89.90 81.12  99.00 86.80 67.31/44.50 80.53/62.72  77.16/55.46
RoBERTa BNE large  97.00 90.00 51.62 61.83 21.47 67.69/44.88 80.41/62.14  77.34/56.97
Task-specific Knowledge Distillation
ALBETO tiny 96.40 85.05 75.99 97.36 72.51 54.17/3222 63.03/43.35 67.47/46.13
ALBETO base-2 96.20 76.75 73.65 97.17 69.69 48.62/26.17 58.40/39.00  63.41/42.35
ALBETO base-4 96.35 86.40 78.68 97.60 74.58 62.19/38.28 71.41/52.87  73.31/52.43
ALBETO base-6 96.40 88.45 81.66 97.82 78.41 66.35/42.01 76.99/59.00  75.59/56.72
ALBETO base-8 96.70 89.75 82.55 97.96 80.23 67.39/4294 77.79/59.63  77.89/56.72
ALBETO base-10 96.88 89.95 82.26 98.00 81.10 68.29/44.29 79.89/62.04 78.21/56.21

Table 2: Results of every evaluated model on the test set of each task. On Text Classification datasets (MLDoc,
PAWS-X, XNLI) we use Accuracy as metric. For POS and NER, which are Sequence Tagging tasks, we report the
F1 Score. On Question Answering, we report two metrics, noted as F1 Score / Exact Match.

Model Parameters Speedup Score
Fine-tuning
BETO uncased 110M 1.00x 81.02
BETO cased 110M 1.00x 84.82
DistilBETO 67M 2.00x 76.73
ALBETO tiny M 18.05x  74.97
ALBETO base 12M 0.99x 83.25
ALBETO large 18M 0.28x 82.02
ALBETO xlarge 59M 0.07x 84.13
ALBETO xxlarge 223M 0.03x 85.17
BERTIN 125M 1.00x 83.97
RoBERTa BNE base 125M 1.00x 84.83
RoBERTa BNE large 355M 0.28x 68.42
Task-specific Knowledge Distillation
ALBETO tiny 5M 18.05x  76.49
ALBETO base-2 12M 5.96x 72.98
ALBETO base-4 12M 2.99x 80.06
ALBETO base-6 12M 1.99x 82.70
ALBETO base-8 12M 1.49x 83.78
ALBETO base-10 12M 1.19x 84.32

Table 3: The summary of results of every evaluated
model in terms of parameters, inference speedup and
overall score across tasks. The speedup is relative to
BETO models. The score column shows the average of
the metrics on all tasks.
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4.1.3 Natural Language Inference

In the task of Natural Language Inference we
are given two sentences, an "hypothesis” and a
"premise", and our task is to determine if one en-
tails the other one, contradicts it or is neutral to it.
For this task we use the Spanish subset of XNLI
(Conneau et al., 2018), which, very similarly to
PAWS-X, offers a machine translated train set from
MultiNLI (Williams et al., 2018) and professionally
translated validation and test sets to 15 languages.

4.1.4 Part of Speech Tagging

The objective of the task of Part of Speech Tagging
is to label words within a sentence according to
its corresponding syntactic categories. There are
different categories of parts of speech, for example,
nouns, verbs, adjectives, adverbs, pronouns, etc. In
this task the dataset used was AnCora (Taulé et al.,
2008) which is included on the Spanish part of
Universal Dependencies (de Marneffe et al., 2021)
Treebank.

4.1.5 Named Entity Recognition

Named Entity Recognition is a sequence labeling
task in which the goal is to classify entities within
a text with their corresponding type. These types
are usually names of people, places, organizations
or miscellaneous. These entities can be formed by
more than one word, that is why the datasets typi-



cally adopt the BIO annotation, which means for
a word that it can be the beggining (B) of a entity,
inside (I) a entity or out (O) of it. For this task the
dataset used as evaluation is from the shared task
of CoNLL-2002 (Tjong Kim Sang, 2002), we use
the Spanish subset of it.

4.1.6 Question Answering

There are different types of Question Answering
tasks. In this evaluation our focus is Extractive
Question Answering, that is, given a context text
and question about that context, point out the span
of words that fully answers the question. On this
task we considered four different datasets, which
are, MLQA (Lewis et al., 2020), SQAC (Gutiérrez-
Fandifio et al., 2022), TAR (Carrino et al., 2020)
and XQuAD (Artetxe et al., 2020). MLQA is a
multilingual dataset created by using English QA
instances and then professionally translated them to
six different languages, from these they provide a
validation and a test set, but they also provide a ma-
chine translated version of SQuUAD v1.1 (Rajpurkar
etal., 2016) as train set to each of the languages, we
use the Spanish subsets of it. TAR offers a different
machine translated dataset from SQuAD vl1.1 to
Spanish. XQuAD provides a test set obtained from
SQuAD vl.1 and professionally translated to 11 dif-
ferent languages. Following the setup by (Caiete
et al., 2020) we pair the train and validation sets
from TAR and the Spanish test set from XQuAD
as a single evaluation dataset. Finally, SQAC is the
only dataset evaluated that was built exclusively for
Spanish.

4.2 Models
4.2.1 BETO

BETO (Canete et al., 2020) is the first Transformer
encoder pre-trained exclusively on Spanish corpora.
It is BERT-base sized model that has two versions
available, uncased and cased. They have an approx-
imate of 110M parameters and each have a vocabu-
lary of 31K BPE (Sennrich et al., 2016) subwords
which was constructed using SentencePiece (Kudo
and Richardson, 2018). Both models were trained
for 2M optimization steps on the SUC (Caiiete,
2019) dataset.

4.2.2 ALBETO

ALBETO (Canete et al., 2022) is a series of AL-
BERT (Lan et al., 2020) models for Spanish. There
are 5 different sizes, that range from 5SM to 223M
parameters, which are tiny, base, large, xlarge and

xxlarge. The tiny model is similar to the one trained
on Chinese >, the rest follow closely the configura-
tions trained on the original ALBERT work. They
share a vocabulary of 31K lowercase BPE (Sen-
nrich et al., 2016) subwords created using Sentence-
Piece (Kudo and Richardson, 2018). All ALBETO
models were trained on SUC (Caiete, 2019).

4.2.3 DistilBETO

DistilBETO (Caiiete et al., 2022) is a lighter Trans-
former encoder based on the weights of BETO and
further pre-trained using the knowledge distillation
technique presented by (Sanh et al., 2019) on Dis-
tilBERT. It has 67M parameters and uses the same
lowercase vocabulary from BETO uncased.

4.2.4 RoBERTa-BNE

RoBERTa-BNE (Gutiérrez-Fandifio et al., 2022)
are two different sized RoOBERTa (Liu et al., 2019)
models trained on Spanish using the National Li-
brary of Spain (BNE) (Gutiérrez-Fandifio et al.,
2022) corpus which is also the larger Spanish cor-
pus of this type to this date. The base model has
125M parameters while the large version has 355M.
Both version share a vocabulary of 50K BPE (Sen-
nrich et al., 2016) subwords.

4.2.5 BERTIN

BERTIN (de la Rosa et al., 2022) is a RoBERTa-
base model trained on the Spanish portion of the
mC4 (Raffel et al., 2020) dataset. It has the same
size, configuration and vocabulary of the RoOBERTa-
BNE base model.

5 Results

Table 2 presents the results of each model across all
evaluated tasks. A general observation is that there
are two distinct behaviors among the tasks. Firstly,
there is minimal variation in performance between
smaller and larger models in certain tasks, as ev-
idenced by the comparable high scores achieved
by all models in the MLDoc and POS tasks. It
is hypothesized that these tasks are relatively sim-
ple, and as a result, the utilization of larger models
results in overparameterization.

Secondly, there are tasks where there is a no-
table difference in performance between smaller
and bigger models. This is evident in tasks such
as Paraphrase Identification (PAWS-X), Natural
Language Inference (XNLI), Named Entity Recog-
nition (NER) and Question Answering (MLQA,

3https://github.com/ckiplab/ckip-transformers
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SQAC, TAR/XQuAD), where the larger models
tend to outperform the smaller models. This sug-
gests that these tasks are more complex and require
a greater model capacity. Overall, the results of
this evaluation demonstrate the importance of con-
sidering the appropriate model size for a given task,
as overparameterization can lead to suboptimal in-
ference performance.

5.1 Text Classification

In our experiments on text classification tasks, we
observed that models with a depth of 8 or more
layers exhibit performance comparable to the best
larger models, while also demonstrating significant
improvements in inference time. Specifically, for
the XNLI dataset, we found that the ALBETO base-
8 model outperforms all other models evaluated in
our study.

5.2 Sequence Tagging

On NER we observe a significant difference be-
tween our faster models and the cased mod-
els (BETO, BERTIN, RoBERTa-BNE), especially
with BETO cased, which was the best model on
the task. Furthermore, we observe a difference
of almost 4.1 percentual difference (pd) between
ALBETO xxlarge, and BETO cased, even though
ALBETO xxlarge is one of the largest models in
the fine-tuning setting. Additionally, we find a dif-
ference of almost 6.3 pd between the cased and
uncased versions of BETO. Based on these ob-
servations, we posit that the difference in perfor-
mance between cased and uncased models can be
attributed to the additional hints provided by cap-
italization for solving the NER task. Specifically,
the names of persons, organizations, and places
typically begin with a capital letter. Furthermore,
our results from models trained using knowledge
distillation (KD) suggest that this hint is not easily
replicable in an uncased model.

5.3 Question Answering

The performance on Question Answering datasets,
as indicated in the final three columns of the table,
follows a pattern similar to that observed in text
classification tasks. The larger models, specially
ALBETO xxlarge and xlarge, exhibit higher perfor-
mance, while our proposed models featuring 8 or
more layers present results similar to those of the
base-sized models.

5.4 Discussion and Summary

It should be noted that some models performed
significantly worse than the others. Specifically,
the utilization of ROBERTa-BNE large on XNLI,
POS, and NER tasks produced subpar results. This
deviation from the performance of the same model
on other tasks, as well as the results reported
by Gutiérrez-Fandifio et al. (2022), suggests that
RoBERTa-BNE large may be particularly sensitive
to hyperparameter selection and may benefit from
additional hyperparameter tuning.

Our results show a general progression in per-
formance of our proposed models as the number
of layers increases. A clear trade-off between task
performance and inference speed is observed, with
a more pronounced effect in text classification and
question answering tasks, and a weaker effect in
sequence tagging. Additionally, at equal inference
speed, our models trained with task-specific distil-
lation exhibit improved performance compared to
DistilBETO, which was trained with task-agnostic
distillation, despite having significantly fewer pa-
rameters.

A similar effect can be observed when com-
paring ALBETO base-{8-10} to the original 12-
layer ALBETO base fine-tuned using standard tech-
niques, the former exhibits improved performance.
This underscores the vital role of task-specific
knowledge distillation in obtaining improved per-
formance for these faster models. Additional exper-
iments comparing straightforward fine-tuning and
the application of knowledge distillation on these
more compact and faster models are presented in
Appendix B.

Table 3 summarizes our findings. Following
the methodology of GLUE (Wang et al., 2018),
we compute a global score that encompasses all
tasks, which is displayed in the third column. The
score is the simple mean of the individual task
results. In the instance of Question Answering,
which provides two metrics, we opted for the F1
Score as the representative score for the task. The
ALBETO xxlarge model achieved the best overall
performance, although it was also the slowest and
had the second largest number of parameters. With
a mere 0.35 performance drop from the top model,
the ROBERTa BNE base and BETO cased mod-
els exhibited comparable results. The ALBETO
base-10, exhibiting a 19% improvement in speed
compared to BETO models, is our strongest pro-
posed model with a difference of approximately 0.5
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performance drop from the aforementioned models.
Our remaining models display varying degrees of
improved inference speed, at the expense of slight
reductions in task performance.

6 Conclusion and Future Work

In this work, we introduce Speedy Gonzales, a
novel resource for the Spanish NLP and IR com-
munities comprising a collection of computation-
ally efficient language models trained on six tasks
and eight datasets. By applying the Knowledge
Distillation technique, our models achieve compa-
rable performance to state-of-the-art models, while
showing faster inference speeds.

The full collection of models, including our pro-
posed models and all the teacher models fine-tuned
on the tasks considered, are made publicly avail-
able for further research.

We believe that the availability of these mod-
els and the expansion of the Knowledge Distil-
lation method to additional tasks will drive the
widespread utilization of large language models
in the Spanish speaking community, particularly
for individuals and organizations seeking to tackle
crucial information retrieval challenges, such as
question answering, text similarity and semantic
search, in both academic and industrial settings.

Potential directions for future research include
exploring the use of multiple teachers in the distil-
lation process and developing metrics to formally
evaluate the balance between inference speed and
task performance.
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A Selected Teacher Models

Table 4 presents the teacher models selected for
each task. The selection process is based on the
lowest validation loss achieved among the candi-
date teacher models that were fine-tuned for each
task.

Dataset Teacher Model
MLDoc RoBERTa BNE large
PAWS-X ALBETO xxlarge
XNLI ALBETO xxlarge
POS RoBERTa BNE base
NER RoBERTa BNE base
MLQA ALBETO xxlarge
SQAC ALBETO xxlarge

TAR / XQuAD ALBETO xxlarge

Table 4: The teacher models selected for each task.

B Importance of Knowledge Distillation

In addition to other experiments, we conducted
ablation experiments to evaluate the contribution of
Task-Specific Knowledge Distillation to the results
of our faster models based on ALBETO.

Tables 5, 6, and 7 compare the performance of
each of our proposed models under two training
settings: regular fine-tuning (FT) and task-specific
knowledge distillation (KD). For fine-tuning and
KD we followed the settings described in Section
3.4.

Overall, our results indicate that training using
KD generally yields better results than simple fine-
tuning, except for sequence tagging tasks (POS,
NER), where the results are mixed.

Table 5 presents the results of text classification
tasks, where we observe that KD outperforms fine-
tuning. In MLDoc, which is hypothesized as an
easier task, the performance is similar for both
training schemes and different models. However,
in PAWS-X and XNLI, we observe a significant
difference between the fine-tuning and KD training
schemes.

Table 6 presents the results for sequence tagging
tasks, where the performance of models under the

KD and fine-tuning settings are mixed. Unlike
other types of tasks, where the KD training method
is the clear winner, the results here vary. In the case
of NER, faster models perform better under the
fine-tuning setting, while those with larger compute
requirements perform better under the KD setting.

Finally, Table 7 presents the results for question
answering, where we observe that models trained
using KD generally exhibit better performance than
those trained using simple fine-tuning, with a sig-
nificant difference of around 3-4 percentage points,
depending on the model and dataset.

In summary, our results underscore the signifi-
cance of KD, particularly for harder tasks where the
effect is more pronounced, allowing for lighter and
faster models to achieve better task performance.

C Effect of Caching Teacher Outputs
During Training

A significant challenge in our experimental study
is the use of large and costly language models as
teacher models for our faster and lighter models.
Despite this, as discussed in Appendix B, the im-
portance of these teacher models is essential for
achieving better results with our proposed models.

Thus, the use of these teacher models poses chal-
lenges in terms of experimentation, particularly
when working with restricted budgets, as is often
the case in research outside big tech companies. To
mitigate this issue, we implement a cache for the
outputs of the teacher model, which allows us to
train and experiment more efficiently.

The idea behind this approach is straightforward:
since the teacher model is fixed during training,
its outputs on an input x remain unchanged during
different epochs, allowing us to compute them once
and reuse them in subsequent epochs.

Formally, suppose F; and F represent the com-
putational cost of the forward pass for the teacher
and student models, respectively, on an entire
dataset, and F is the number of epochs used to train
our proposed models. By caching the teacher’s out-
put, the total cost of computing the forward pass
reduces from O(E - (F; + Fy)) to O(F; + E - Fy).

It is worth noting that typically F} >> Fj, and
the number of epochs used in knowledge distilla-
tion is often higher than that used in simple fine-
tuning. To illustrate, our fine-tuning experiments
employ between 2 and 4 epochs, while our knowl-
edge distillation experiments use a maximum of 50
epochs.
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MLDoc PAWS-X XNLI
FT KD FT KD FT KD
ALBETO tiny 95.82 96.40 80.20 85.05 73.43 75.99
ALBETO base-2  94.67 96.20 7345 76.75 72.08 73.65
ALBETO base-4  95.88 96.35 8290 86.40 7583 78.68
ALBETO base-6  95.88 96.40 85.20 88.45 7842 81.66
ALBETO base-8 9582 96.70 87.30 89.75 79.44 82.55
ALBETO base-10 95.65 96.88 88.80 89.95 79.62 82.26

Model

Table 5: Comparison of the performance of our proposed models on text classification tasks on two settings:
fine-tuning and task-specific knowledge distillation.

POS NER
FT KD FT KD
ALBETO tiny 97.34 97.36 7542 7251
ALBETO base-2 9746 97.17 71.70 69.69
ALBETO base-4  97.87 97.60 76.18 74.58
ALBETO base-6  98.03 97.82 78.10 78.41
ALBETO base-8  98.18 97.96 79.46 80.23
ALBETO base-10 98.17 98.00 80.46 81.10

Model

Table 6: Comparison of the performance of our pro-
posed models on sequence tagging tasks on two settings:
fine-tuning and task-specific knowledge distillation.

To evaluate the impact of our cache implementa-
tion, we compare the training times of our proposed
models on the XNLI dataset, which is the largest
dataset considered in this study, for only 5 epochs
(1/10 of the epochs used in our primary experi-
ments) when using the cache and when not using
it. Table 8 reports the results of this experiment,
presenting the mean (noted as M) and standard de-
viation (noted as SD) over three runs. As expected,
the use of the cache reduces the training time sig-
nificantly, with results indicating that training time
is approximately 1/4 of the time required to train
without a cache. This reduction in training time
is expected since the forward pass of the teacher
model is the most costly operation and is computed
only in the first epoch and then retrieved in the next
4 epochs. Furthermore, this difference will increase
as the number of epochs increases.

In conclusion, while our cache implementation
is a simple engineering trick, it has a significant
impact on our experimentation phase in terms of
training time and required compute.
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Model MLQA SQAC TAR, XQuAD

FT KD FT KD FT KD
ALBETO tiny 51.84/2828 54.17/32.22 59.28/39.16 63.03/4335 66.43/45.71 67.47/46.13
ALBETO base-2  45.97/23.60 48.62/26.17 53.32/34.34 58.40/39.00 61.82/40.67 63.41/42.35
ALBETO base-4  59.99/35.69 62.19/38.28 65.66/45.54 71.41/52.87 68.91/49.07 73.31/52.43
ALBETO base-6  63.75/38.58 66.35/42.01 72.22/53.61 76.99/59.00 74.33/52.68 75.59/54.95
ALBETO base-8  64.99/40.58 67.39/42.94 75.22/56.43 77.79/59.63 75.47/54.11 77.89/56.72
ALBETO base-10 66.29/41.69 68.29/44.29 77.14/59.21 79.89/62.04 77.06/56.47 78.21/56.21

Table 7: Comparison of the performance of our proposed models on question answering on two settings: fine-tuning
and task-specific knowledge distillation.

Training Time (hours)

Model Cache No Cache

M SD M SD
ALBETO tiny 38 3.1x107%2 162 3.1x1073
ALBETO base-2 38 1.6x1073 163 3.6 x1073
ALBETO base-4 42 33x10™%* 166 26x1073
ALBETO base-6 45 15x1073 170 1.5x1073
ALBETO base-8§ 48 19x10~* 173 58x1073
ALBETO base-10 53 9.6 x 1073 17.6 5.6 x 1073

Table 8: Training times when using teacher cache vs
not using it. Table report the mean (M) and standard
deviation (SD) over three runs.
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Abstract

We explore the relationship between factuality
and Natural Language Inference (NLI) by in-
troducing FactRel — a novel annotation scheme
that models factual rather than textual entail-
ment, and use it to annotate a dataset of nat-
urally occurring sentences from news articles.
Our analysis shows that 84% of factually sup-
porting pairs and 63% of factually undermining
pairs do not amount to NLI entailment or con-
tradiction, respectively, suggesting that factual
relationships are more apt for analyzing media
discourse. We experiment with models for pair-
wise classification on the new dataset, and find
that in some cases, generating synthetic data
with GPT-4 on the basis of the annotated dataset
can improve performance. Surprisingly, few-
shot learning with GPT-4 yields strong results
on par with medium LMs (DeBERTa) trained
on the labelled dataset. We hypothesize that
these results indicate the fundamental depen-
dence of this task on both world knowledge and
advanced reasoning abilities.

1 Introduction

In recent years, the concept of factuality in news
media has garnered increasing attention. Studies
increasingly examine the relation between facts -
as presented in news coverage - and phenomena
such as political polarization, misinformation and
fake news (Roy and Goldwasser, 2020; Levy, 2021;
Bakshy et al., 2015; Garimella et al., 2021). As a
result, the ability to model factual relations between
claims becomes increasingly important. This has
led to a line of work on automated fact-checking,
which involves textual pipelines for detecting and
evaluating factual claims (Zeng et al., 2021).

In automatic fact-checking, fact verification is
predominantly addressed via the Natural Language
Inference (NLI) task, also known as Recognizing
Textual Entailment (RTE) (Zeng et al., 2021; Arana-
Catania et al., 2022; Nie et al., 2018; Sathe et al.,

Effi Levi
Hebrew University of Jerusalem
efle@cs.huji.ac.il

2020), which has been used for decades for evalu-
ating natural language understanding capabilities
(Poliak, 2020). NLI is traditionally formulated as a
categorical classification task between a premise p
and a hypothesis h, where p can either contradict,
entail or be neutral with respect to h. Large NLI
datasets such as SNLI and MNLI (Bowman et al.,
2015; Williams et al., 2018) have become highly
popular, leading NLI to be adapted to various uses
such as zero-shot classification (Yin et al., 2019)
and semantic similarity (Reimers and Gurevych,
2019). In fact verification, NLI is used to evaluate
the relations between a candidate fact and trusted
pieces of evidence (Zeng et al., 2021).

However, the adequacy of NLI for analyzing
factual relationships in news media is hindered by
two primary reasons, relating to the nature of the
task as well as to the characteristics of commonly
used NLI datasets. First, large NLI datasets such
SNLI and MNLI define the pairwise relationship
in terms of necessity of meaning (Bowman et al.,
2015; Williams et al., 2018). Thus, in MNLI an en-
tailment is defined to be the case whereby a hypoth-
esis “is necessarily true or appropriate whenever
the premise is true”, and similarly a contradiction
is when the hypothesis “is necessarily false or inap-
propriate whenever the premise is true” (Williams
et al., 2018). However, these types of relationships
may be too restrictive for the analysis of media
discourse, where explicit contradictions and entail-
ments are likely to be rare, as such discourse tends
take place in the margins of plausibility.

Secondly, texts in popular NLI datasets consider-
ably differ from news texts. While sentences in NLI
datasets tend to be short, simple, highly generic and
convey a single idea or statement, media sentences
tend to be longer, more complex, more specific and
convey multiple pieces of information.

A common feature of NLI datasets such as RTE,
SNLI and MNLI is that while premises are natu-
rally occurring texts, the hypotheses are specifically
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written to correspond to the categories (Chatzikyr-
iakidis et al., 2017; Williams et al., 2018). While
this method is effective in generating large amounts
of data, constructed hypotheses are likely to ex-
press a simple relationship to the premise and thus
not resemble pairs of naturally occurring sentences.
Additionally, Chatzikyriakidis et al. (2017) notes
that these datasets feature strictly logical relation-
ships and stresses the need for datasets capturing
other sorts of inferential relationships.

In this work, we set out to examine the relation-
ship between NLI and textual factuality. For this
purpose, we have developed a novel annotation
scheme that expresses factual rather than rextual
entailment, encoding each pair of sentences with
the relation of factual support, factual undermin-
ing, or neither. We have annotated a new dataset
of naturally occurring sentence pairs from news
media using both our factual entailment scheme
and NLI, enabling a comparison of the schemes
on news media. We also check the ability of re-
cent generative LLMs (GPT-4) to generate such
pairs correctly. We end with a set of experiments
that demonstrate the ability to learn the factual en-
tailment task using fine-tuned models as well as
generative LLMs, and draw conclusions regarding
the task’s relation to real world knowledge in com-
parison to NLI. Overall, we analyze differences
between NLI and factual entailment in their scope,
relevance to news text and dependence on world
knowledge, and show potential for new ways to
model factual relations.

2 Factual Entailment

For the purpose of exploring the relationship be-
tween factual relations and textual entailment, we
have developed FactRel, a novel annotation scheme
encoding the factual entailment between pairs of
sentences. Similarly to NLI, FactRel is a 3-category
pairwise classification task. Given a premise p and
a hypothesis h, p can either factually support h
(SUPPORT), factually undermine h (UNDERMIN-
ING), or be factually neutral w.r.t h (NEUTRAL).
p is said to factually support i when p being true
would make h more plausible or likely to be true,
compared to a situation in which the truth value of
p is unknown. p is said to factually undermine h
when p being true would make h less plausible or
likely to be true, compared to a situation in which
the truth value of p is unknown. Finally, p is said to
be factually neutral w.r.t to p when p’s truth has no

bearing on the plausibility of &, and the likelihood
of h would not change if p was known to be either
true or false.

While both NLI and FactRel encode a ternary
entailment relation between pairs of sentences, the
factual relation encoded by FactRel is quite differ-
ent from the one encoded by NLI. For example,
consider the following pair of sentences:

(1) p. “Youcan’trun a festival or you can’t run
anightclub or a live-music gig with social
distancing,” Lord said.

h. Peter Marks, the CEO of Rekom,
Britain’s largest specialist late-night bar
operator, told Insider the company’s
venues were set to open on June 21 “with-
out COVID measures.”

The above example exhibits a relation of factual
SUPPORT while its NLI label is NEUTRAL. The
hypothesis matches the premise and exemplifies it,
but the premise does not necessitate the hypothesis.
A parallel example can be observed in the fol-
lowing pair of sentences:
(2) p. FILE —In this April 12, 2021 file photo,
people queue outside a Hermes store in
Mayfair in London.

h. Sales of luxury apparel, jewelry, leather
goods and beauty products plunged to
217 billion euros in the pandemic year
of 2020, from 281 billion euros in 2019,
shedding six years of growth.

This example exhibits a relation of factual UNDER-
MINING while its NLI label is NEUTRAL. There is
factual tension between the premise and hypothesis,
as the premise can be considered a counter-example
to the hypothesis, but it does not necessitate the hy-
pothesis’ falsity.

There are, however, cases in which the two
schemes converge to the same relation. For ex-
ample,
(3) p. Woman accused of attempted murder af-
ter driving into President Trump support-
ers in Southern California

h. The vast majority of those cases tallied
by Weil involved motorists who ran into
those demonstrating for causes aligned
with the Black Lives Matter movement,
Weil said.
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Item Agreement % Kappa Factual / NLI | Contra. Entail. Neutral

Factual Entailment 95.2% 0.93 Support 0 48 245

NLI 95.2% 0.85 Undermining 67 0 113
Neutral 0 0 1130

Table 1: Intercoder reliability for annotations of NLI
and factual entailment, showing raw agreement rate and
Cohen’s Kappa.

This example is factually NEUTRAL, and its NLI
label is NEUTRAL as well.

3 Dataset

3.1 Construction

The core dataset comprises 1,507 sentence pairs
sampled from 211 news articles appearing in di-
verse English-language digital news outlets in the
period 2020-2022. Pairs were sampled from the
same news article in order to increase the likelihood
of the pairs having a non-neutral relationship. The
sentence pairs were independently labelled by two
annotators — one of the authors and a research assis-
tant — with a subset annotated by both for calculat-
ing inter-coder reliability (Table 1). Annotators are
instructed to categorize only non-negligible rela-
tions of support and undermining as such. Conflicts
were resolved by committee consultation.

The core dataset is augmented by two additions.
First, a subset of 500 sentence pairs from the MNLI
dataset was annotated with factual entailment, for
the purpose of examining differences between the
MNLI dataset and the proposed dataset. Secondly,
a synthetic dataset was generated using GPT-4 on
the basis of the training set split from the core
dataset. Each sentence pair in the training set was
sent to GPT-4 accompanied by an explanation of
the factual relationship task, the annotated label for
that pair, and the definition of the label. GPT-4 was
asked to generate 10 diverse examples possessing
the same label, modelled on the sentence pair from
the annotated dataset (see appendix A for prompts).
Thus, the synthesized addendum is 10 times larger
than the core training set and consists of 12,050
pairs. A subset of 500 GPT generated pairs was
randomly sampled for manual validation, showing
that in 98.4% of the pairs the manual labelling is
consistent with GPT.

3.2 Analysis

In the core dataset, 93% of sentence pairs are NLI-
neutral, whereas a smaller share of 70% are fac-
tually neutral (see Table 2). This indicates that

Table 2: Cross-tabulation between NLI and Factual En-
tailment, core dataset.

Factual / NLI | Contra. Entail. Neutral
Support 5 155 67
Undermining 174 1 2
Neutral 17 10 69

Table 3: Cross-tabulation between NLI and Factual En-
tailment, MNLI subset.

non-neutral factual relationships are significantly
more common in news media than non-neutral NLI
relationships. In terms of length, we observe a
significant difference between FactRel and NLI
datasets — the average number of tokens per sen-
tence in FactRel is 20.2, compared to 10.1 and
15.01 in the respective training splits of SNLI and
MNLI

The dual annotation of the dataset with factual
entailment and NLI labels allows us to examine
the relationship between the two. We examine the
correlation between the labels utilizing Cramér’s V
association measure for discrete variables. While
factual categories are strongly correlated with the
categories in the MNLI subset (¢, = 0.72), the
correlation is lower in the core dataset of news sen-
tence pairs (¢, = 0.49). In the core dataset, 84%
of factually supporting pairs and 63% of factually
undermining pairs do not amount to entailment or
contradiction, respectively (Table 2). In the MNLI
subset, the numbers are respectively 32% and 2%
(Table 3). This discrepancy like