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Preface by the Conference Organizers

We are excited to welcome you to *SEM 2024, the 13th Joint Conference on Lexical and Computational
Semantics! We are pleased to present this volume containing the accepted long and short papers. *SEM
2024 is being held from June 20 to 21, 2024, in Mexico City, Mexico, co-located with NAACL 2024.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, theoretical semantics, mul-
tilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.

*SEM 2024 accepted both papers submitted directly to *SEM and those already reviewed through ARR
(ACL Rolling Review). We received submissions in 11 areas:

• Lexical Semantics

• Semantic Composition and Sentence-level Semantics

• Discourse, Dialogue and Generation

• Commonsense Reasoning and NLU

• Resources and Evaluation

• Theoretical and Formal Semantics

• Multilinguality

• Semantics in NLP Applications

• Psycholinguistics, Cognitive Linguistics, and Semantic Processing

• Social Biases and Ethics

• Interpretability and Explainability

We had 65 submissions this year combining both direct submissions and ARR commits. We compiled an
exciting and wide-ranging program, accepting a total of 35 papers (27 long papers and 8 short papers).
The submitted papers were carefully evaluated by a program committee led by 14 area chairs, who
coordinated a large team of reviewers. The reviews were almost all of very high-quality, and for that we
are extremely grateful! Area chairs then added meta-reviews to explain their accept/reject decisions. The
final selection was made by the program co-chairs after a careful check of the reviews, meta-reviews,
and discussions with the area chairs. We are also very excited to have two excellent keynote speakers:
Greg Durrett from the University of Texas at Austin and Heng Ji from the University of Illinois Urbana-
Champaign.

We are honored to serve as the organizing committee for *SEM 2024, and we absolutely could not have
made this happen without a huge amount of help. First, tremendous thanks to all area chairs and reviewers
for their invaluable help in selecting the program, for their engagement in thoughtful discussions, and
for providing valuable feedback to authors. Second, thanks to our Publicity Chair Yi Zhou (Cardiff
University) for taking care of the website and social media updates. Next, thanks to our Publication Chair
Tom McCoy (Yale University) for putting together the proceedings, and to the NAACL 2024 workshop
organizers for help and support with all organizational aspects of the conference. Finally, thank you to
the authors and presenters for making *SEM 2024 such an engaging and exciting event! We hope that
you will find the content of these proceedings as engaging as we do, and we hope to see you at future
iterations of *SEM!

Danushka Bollegala and Vered Shwartz, co-Program Chairs
Jose Camacho-Collados, General Chair
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Abstract

Abstract Meaning Representation (AMR) is
a semantic formalism that captures the core
meaning of an utterance. There has been
substantial work developing AMR corpora in
English and more recently across languages,
though the limited size of existing datasets and
the cost of collecting more annotations are pro-
hibitive. With both engineering and scientific
questions in mind, we introduce MASSIVE-
AMR, a dataset with more than 84,000 text-to-
graph annotations, currently the largest and
most diverse of its kind: AMR graphs for
1,685 information-seeking utterances mapped
to 50+ typologically diverse languages. We de-
scribe how we built our resource and its unique
features before reporting on experiments us-
ing large language models for multilingual
AMR and SPARQL parsing as well as applying
AMRs for hallucination detection in the context
of knowledge base question answering, with re-
sults shedding light on persistent issues using
LLMs for structured parsing.

1 Introduction

Knowledge base question answering (KBQA) has
a long history in natural language processing, with
the task of retrieving an answer from a knowledge
base such as Wikidata or DBPedia (Lehmann et al.,
2015) integral to many large-scale question answer-
ing systems (Kapanipathi et al., 2021). In KBQA,
a question is converted into a structured query lan-
guage such as SPARQL, an executable semantic
parse. However, data to train models is expen-
sive, few multilingual resources are available, and
performance is limited for long-tail queries, a prob-
lem compounded by arbitrary variability in form-
meaning mappings across languages (Croft, 2002).

Most notably, research in multilingual KBQA
is hindered by lack of data (Usbeck et al., 2018;
Cui et al., 2022; Perevalov et al., 2022). Following
work using meaning representations for this prob-
lem, we create a dataset 20 times larger and with

AMR3.0 QALD9-AMR OURS

# of languages 1 9+ 52
domain various QA QA
# utterances 59K 508 1685
# utts-to-graphs 59K 5K 84K
mean tokens/utt 15.9 EN: 7.5 EN: 8.2
entities - not local local
gold SPARQL No Yes No

Table 1: Other AMR treebanks and ours, MASSIVE-
AMR. Compared with QALD9-AMR (Lee et al., 2022),
MASSIVE-AMR covers more languages, has more ut-
terances, and has localized or translated entities for each
language (see exs. Table 2).

5-6 times more languages than existing resources
(Lee et al., 2022) (Table 1). For MASSIVE-AMR,
we select 1685 QA utterances with manual trans-
lations from MASSIVE (FitzGerald et al., 2023)
and manually compose Abstract Meaning Repre-
sentation (AMR) graphs (Banarescu et al., 2013),
amounting to 84,000 text-to-graph annotations, a
significant boon to AMR and KBQA research.

Graphs with localized, language-specific entities
(Table 2) and the long-tail utterances in MASSIVE-
AMR (Appendix A.2) increase the challenge of our
multilingual dataset (§3). To explore the resource’s
utility, we design and carry out experimentation
leveraging AMRs to gauge a model’s confidence
in SPARQL query production (§4), reporting on
multilingual structured parsing and SPARQL rela-
tion hallucination detection using large language
models (LLMs) (§5).

Our research contributions thus include: (1) cre-
ation of the largest-scale multilingual AMR ques-
tion corpus to date; (2) evaluation of LLMs on
parsing of SPARQL and AMRs structures across
languages; and (3) design, development, and eval-
uation of generative models leveraging AMRs for
SPARQL relation hallucination detection.1

1We release the MASSIVE-AMR training and val-
idation data at https://github.com/amazon-science/
MASSIVE-AMR.

1
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Utterance AMR
M

A
SS

IV
E

-A
M

R
when was obama born (b / bear-02

:ARG1 (o / “obama")
:time (u / unknown))

quand est né sarkozy (b / bear-02
:ARG1 (s / “sarkozy")
:time (u / unknown))

+50 langs. +50 AMRs, local entities

Q
A

L
D

9-
A

M
R Who developed Skype? (d / develop-02

Qui a développé Skype? :ARG0 (u / unknown)
:ARG1 (s / “Skype"))

9+ langs. Same AMR, all langs.

Table 2: MASSIVE-AMR (top) has localized entities
(English-US ‘obama’, French-FR ‘sarkozy’) and covers
>5x more languages compared to QALD9-AMR (bot-
tom). AMRs simplified to fit table.

2 Related Work

We present related work in QA, Knowledge base
question answering (KBQA), the AMR formalism,
AMRs for KBQA, and hallucination detection.

2.1 Question Answering

Question answering (QA) is the task of retrieving
or predicting an answer to a natural language query
given document(s), a list of answers, knowledge
triples, or with a generative model. QA encom-
passes research in Information Retrieval (Lewis
et al., 2020), Machine Reading Comprehension
(MRC) (Das et al., 2018), and Open-Domain Ques-
tion Answering (Lewis et al., 2021; Zhang et al.,
2023). Research targeting model confidence for
calibration of QA systems (Jiang et al., 2021; Ka-
davath et al., 2022) has aims similar to our own.

For research in multilingual dialogue systems,
MASSIVE (FitzGerald et al., 2023) is a collection
of 20K utterances with manual translations into 50+
typologically diverse languages (with 52 languages
in v1.1). For our dataset, we select all QA utter-
ances from MASSIVE and add AMR annotations
(see Section 3).

2.2 Knowledge Base Question Answering

Knowledge base question answering (KBQA) is
the task of retrieving answers from a knowledge
base given a question. The challenges in retriev-
ing textual information are fundamentally different
from the primary challenge of KBQA: producing
semantically accurate knowledge base queries.

Various approaches to KBQA have been pro-
posed over the decades, including converting
queries to logical forms, semantic parses, and de-
composing complex questions (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Talmor and
Berant, 2018). Scalable KBQA systems utilize
structured representations (SPARQL) to query a
knowledge base (e.g., DBPedia2), a collection of
triples of form <subject, relj , object> with relj a se-
mantic relation from ontologyR (of various sizes,
e.g., ∣RDBPedia∣ > 2500). Baselines for SPARQL
parsing are available (Banerjee et al., 2022), with
a central challenge being how to identify parsed
queries not covered by a given R, cases where
models tend to hallucinate relations.

In the age of large language models, querying
manually-curated knowledge bases provides nu-
merous advantages such as: (1) factuality guaran-
tees, (2) the ability to update information in real
time, and (3) risk mitigation for users, reducing ex-
posure to sensitive or toxic content. With these mo-
tivations in mind, we turn our attention to AMRs.

2.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a linguistic formalism that
represents utterance meaning as directed, mostly
acyclic graphs. Graph nodes denote key concepts
associated with the meaning of the utterance, tar-
geting events and event participants. Nodes in turn
are connected by labeled edges for event-event,
event-entity, entity-entity, and other relations.

Early AMR research focused on text-to-AMR
parsing, with the JAMR parser (Flanigan et al.,
2014) paving the way for state-of-the-art models
based on transitions (Drozdov et al., 2022), seq2seq
approaches (Bevilacqua et al., 2021), and ensemble
distillation (Lee et al., 2022). In lieu of such heav-
ily engineered approaches, we target generative
models with in-context learning and fine-tuning
following recent work (Ettinger et al., 2023).

The original AMR reference-based metric is
Smatch (Cai and Knight, 2013), a measure of
overlapping triples, which has led to the newly
optimized Smatch++ (Opitz, 2023) and S2match
(Opitz et al., 2020) which uses embeddings to
match concepts within triples. Wein and Schneider
(2022) released multilingual AMR metrics such as
XS2match using LaBSE embeddings (Feng et al.,
2022) for cross-lingual AMR evaluation.

2
https://www.dbpedia.org/

2
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AMRs were not designed to function across lan-
guages (Banarescu et al., 2013), and while lan-
guage has a measurable effect on AMR structure
(Wein et al., 2022), efforts have been made to ef-
fectively represent the meaning of non-English sen-
tences in AMRs (Xue et al., 2014; Hajič et al., 2014;
Wein and Schneider, 2024). In typology, a Uniform
Meaning Representation (Van Gysel et al., 2021)
helps account for formal and semantic differences
across languages more consistently than AMR, and
work tying multilingual resources to a common
formalism is ongoing (Navigli et al., 2022).

2.4 AMR for KBQA

Using symbolic representations for QA is well stud-
ied in NLP (Niu et al., 2023; Wang et al., 2023). A
mapping of AMR nodes to SPARQL concepts and
variables is shown to improve KBQA systems (Ka-
panipathi et al., 2021), and sequence-to-sequence
models learn to apply these rules selectively for
improved generalization (Bornea et al., 2022).

The multilingual QA resource most similar to
ours is QALD9-AMR (Lee et al., 2022), which
maps utterances from 9+ languages to the same
English-only AMR and gold SPARQL queries (Us-
beck et al., 2018). In comparison, graphs in
MASSIVE-AMR consist of multilingual entities
(Table 2) either translated or localized (e.g., a re-
gional entity for where the language is spoken) for
each of 50+ languages (Tables 2 and 3).

2.5 Hallucination detection

Hallucinations, the inclusion of flawed or incon-
gruous assertions in synthetic text, represent a per-
sistent problem with LLMs (Ji et al., 2023). Much
research in hallucination detection targets the text-
to-text paradigm, for example checking factuality
or faithfulness of summarized texts (Gabriel et al.,
2021; Qiu et al., 2023) or proposing mitigation
strategies to make synthetic text attributable (Aksi-
tov et al., 2023; Rashkin et al., 2023). In contrast,
we examine text-to-graph systems that produce exe-
cutable semantic parses, experimenting with AMRs
to detect easy and hard cases of semantic relation
hallucination, ranking parses of dual representation
types in a joint space, as we will detail in Section 4.

3 Data: Corpus Creation

To create a corpus of multilingual AMR graphs,
we started with an existing dataset of QA utter-
ances, tailored AMR 3.0 guidelines to our use case,

trained a team of professional annotators to cre-
ate AMRs for English utterances, and then made
automatic mappings to multilingual utterances us-
ing existing entity mention spans, a process which
from start to finish took three months. In this sec-
tion, we report details about the data we started
with, guidelines, and annotation agreement scores.

Acquiring scaleable multilingual data. We
wanted a resource targeting a wide distribution of
QA utterances and thus selected 1685 English ex-
amples from MASSIVE (FitzGerald et al., 2023)
including entity annotations like in the multilingual
examples in Table 3.

Lang. Example utterance

en-US what is the population of [place: new york]
sl-SL koliko prebivalcev ima [place: ljubljana]
it-IT qual è la popolazione di [place: roma]

sq-AL cila është popullësia e [place: tiranës]
cy-GB beth yw poblogaeth [place: efrog newydd]
af-ZA wat is die bevolking van [place: kaapstad]

is-IS hver er íbúafjöldi [place: reykjavíkur]
az-AZ [place: sumqayıtın] @halisi n@q@d@rdir

Table 3: Example multilingual questions from MAS-
SIVE (FitzGerald et al., 2023) about the populations
of regional cities, with annotations for entity spans and
types given.

Long-tail QA. Many utterances in MASSIVE
are described as long-tail, that is, associated with
low user feedback in interactions with a digital as-
sistant. In some cases, it is clear what increases
friction (an incomplete utterance, or a speech-to-
text error). Examining translations of English utter-
ances provides insight (Appendix A.2).

Localized entities. In comparable datasets (Cui
et al., 2022; Perevalov et al., 2022), entities are
shared across languages (e.g., English Where did
Abraham Lincoln die? corresponds to German Wo
starb Abraham Lincoln?). To address challenges
of large-scale QA, MASSIVE entities are mostly
language-specific, e.g. German questions target
German entities (wo starb otto von bismarck3).

AMR datasets differ in composition: AMR
3.0 (Banarescu et al., 2013) is based on news and
other written discourse and consists of relatively
few factoid or information-seeking questions (less
than 10%). In contrast, MASSIVE-AMR includes
requests about currency conversions, quantities,
comparative and superlatives, and simple arith-
metic. For more details about how the corpora
compare, see Appendix A and Table 11.

3MASSIVE utterances are uncased with no punctuation.
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Annotation principles: Canonical forms. In
keeping with original AMR guidelines, an AMR
captures meaning, not form (Banarescu et al.,
2019). We hence prefer canonical forms for ut-
terances like currency conversion and arithmetic:
e.g., ‘how much is the euro versus the dollar’ and
‘what is the euro worth compared to the dollar’ map
to similar graphs. Likewise, arithmetic questions
are associated with top node ‘equal-01’ even with-
out token ‘equal’ present (‘how much is two plus
two’ and ‘sum of two and two’ treated like ‘what
does two and two equal’).

Question-imperative continuum. It proved dif-
ficult to reach agreement for annotations of ques-
tion versus imperative forms. In English, ‘could
you tell me the price of google’, ‘what is the price
of google’, and ‘tell me the price of google’ share
the same meaning. However, treating the impera-
tive (e.g., an embedded question ‘tell me what the
price is’) as a question is out-of-line with AMR 3.0.
The guideline we adopt is to preserve imperative
form and treat polite questions (e.g., English ‘could
you tell me the price’) the same as base question
forms (e.g., ‘what is the price’).

Annotation agreement scores. 4-5 trained an-
notators created AMRs for 1685 utterances, exam-
ining differences in batches of 200 weekly, with
inter-annotator agreement ranging from 78-82%
Smatch, comparable to reported agreement for
AMR experts (Banarescu et al., 2013). We note that
MASSIVE-AMR consists of many similar ques-
tions and simple utterances, with on average 50%
fewer tokens compared to AMR 3.0 (Table 1). We
select the single best AMR in candidate sets and
manually retrofit to increase consistency.

For non-English entities, we replace AMR
node labels using MASSIVE annotations. We note
that not all utterances have annotations, and that
a lack of entity alignments adds noise since often
word order matters (e.g., currency conversion). To
improve data quality, we manually curate valida-
tion and test sets (25% of total).

4 SPARQL Hallucination Detection

Our original motivation for creating a multilin-
gual AMR dataset (§3) was to help improve large-
scale QA systems. Scaleable QA systems often
utilize structured representations (e.g., SPARQL)
for knowledge base retrieval, pairing a natural lan-
guage utterance with an executable semantic query.
The SPARQL in the Wikidata or DBPedia case is

straightforward: we get a question in, the system
produces an answer out. However, in practice we
simply need a system capable of judging if a given
answer is correct, which using generative methods
we study as hallucination detection.

Hallucinations. A problem in open-domain
question-answering regards hallucinations, cases
when effectively the target Ontology (in our case,
DBPedia) does not have valid symbols for a given
input question (see Figure 1). For example, if the
relation ‘crimeRate’ does not exist, a SPARQL
generation model may stumble on a question like
‘What is the crime rate in LA?’ by parsing a query
with a non-existing relation, which we can verify
with a set membership check. A harder case to
detect is when the model predicts a relation for
an utterance that is ambiguous, e.g., ‘Who created
Iron Man’ may refer to its fictional (Tony Stark) or
non-fictional (Stan Lee) creator. We would like to
design and test methods for the detection of such
cases using LLMs.

An advantage of AMR is that its ontology is
open: i.e. if a given concept is missing, we can
practically lemmatize the English. Or more of-
ten, AMR tends to be more granular, and more
complex meanings (that in an Ontology might be
collapsed into a single symbol) are split into sev-
eral constituents (i.e. ‘crimeRate’ might be a single
symbol in an Ontology, but it is instead split into
constituents by AMR). Hence, hallucinations are
much less of a problem in AMR.

We hypothesize that if we train a single semantic
parser to parse both SPARQL and AMRs, simply
mixing the training data (i.e. for multi-task learn-
ing), and produce multiple parse candidates in a
target N-best, the inclusion of AMRs will allow
us to detect SPARQL hallucinations. That is to
say, a high confidence AMR and lower confidence
SPARQL serve as a signal that a given utterance
is not covered by an ontology or is in some way
ambiguous, as in the examples in Figure 1.

We examine dual subtasks of SPARQL halluci-
nation detection: (1) How accurate are models at
the easy task of checking set membership, in our
case, verifying produced relations are in a given
relation set:

rpred
?
∈ Rgiven

and, (2) How good are models at flagging ambigu-
ous queries (e.g., ‘Who created Iron Man?’), the
task of hard hallucination detection, detailed more
in the next section.
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"Who created Iron Man?" (c / create-01 
:ARG0 ( u / unknow n)
:ARG1 ( i  / Iron_Man)

SELECT DISTINCT ?ur i
WHERE {
res:Iron_man dbo:cr eator  ?ur i
}

#1 SPARQL #2 AMR

"Who created Iron Man?" (c / create-01 
:ARG0 ( u / unknow n)
:ARG1 ( i  / Iron_Man)

SELECT DISTINCT ?ur i
WHERE {
res:Iron_man dbo:author  ?ur i
}

#2 SPARQL#1 AMR

"Cr ime rate in NYC?"
(c / cr ime-02

:location (n / NYC)
:fr equency (r  / r ate-enti ty-91

:ARG1 (u / unknow n)))

SELECT ?rate
WHERE {
res:NYC dbo:cr im eRate ?rate
}

#2 SPARQL#1 AMR

SPARQL ranks higher :
Quer y l ikely OK

Explanation

Utterance l ikely ambiguous
creator  vs. author
'Hard' to detect

Explanation

Relation doesn't exist
Hallucination: cr im eRate
'Easy' to detect

Explanation

AMR-SPARQL 
Model

AMR-SPARQL 
Model

AMR-SPARQL 
Model

Figure 1: As a proxy for QA correctness, we test a joint AMR-SPARQL model, controlling for semantic relations
(in bold). Given an utterance like Who created Iron Man?, a model outputs a N-best list of candidates of mixed
representation types. When the relation creator is allowed (top), we expect the model to rank SPARQL higher than
AMR. If the we change the ontology, the AMR may rank higher (middle), suggesting an ambiguity exists (creator
≈ author). Models also produce non-existent relations (bottom), detected via ranking or a look-up operation.

5 Experiments

To gain insight into our hypothesis that AMRs can
help detect SPARQL relation hallucinations (§4),
we first report on experiments in semantic repre-
sentation parsing, a first-of-its-kind in a diverse
multilingual setting. Next, we experimentally con-
firm models do indeed hallucinate relations, before
moving on to our target task of hallucination de-
tection. We compare in-context learning and fine-
tuned LLMs, training and evaluating on an existing
corpus of questions with gold AMRs and SPARQL
and sampled MASSIVE-AMR. We are guided by
the following research questions:

1. How effective are LLMs at parsing AMRs
and SPARQL queries across languages?

2. How prevalent are SPARQL relation halluci-
nations with generative models?

3. How accurate are models at detecting hallu-
cinated SPARQL relations?

4. Can we use a joint AMR-SPARQL model to
do better relation hallucination detection?

The standard approach to study the coverage of
a set of relations is use all the data associated with
a relation setR to train semantic parser SPR; we
then remove all examples that contain relation rj
and train SP{R−rj}, measuring how well the model
does for queries likely to require rj .

An advantage of training a joint AMR-SPARQL
model from scratch is having complete control over
the input relations; a disadvantage is that, in the
case we use a LLM, we have no knowledge about
what relations the model may have seen in pre-
training. For our early experiments, we use LLMs
trained on 1000s of examples without hard con-
straints on allowed relations4.

We define hallucination detection as the ability
of an LLM to verify produced relations are mem-
bers of a predefined set. We consider cases of hard
hallucination detection, when a model produces a
relation that may be imprecise, a case which occurs
when the needed relation for a query is not cov-
ered by a given R. For experiments, we compare
in-context learning with fine-tuned LLMs.

5.1 In-context Learning

For in-context learning, we use GPT models (Ope-
nAI, 2023) (GPT-3.5/GPT-4-0613) with prompts of
length <2400 tokens (see Appendix C) composed
employing strategies we describe in this section.

Strategy #1: Constrain and verify relations.
Prompts include a list of allowed SPARQL rela-
tions with which we instruct the model to verify
predicted relations. For in-context learning, we

4Ideally, this could be done at decoding time, setting logits
of all non-relation tokens to -inf after a colon, an unambigu-
ous signal of a SPARQL relation.
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Relations Subset descriptions

All observed Robs

In-context Rcontext ⊂ Robs

Subsets similar {Rsim
1 , . . . ,Rsim

j },Rsim
i ⊂ Robs

Controlled rcntl ∈ Rsim
i ,∉ Rcontext

Ground truth {rm, .., rcntl, .., rn} ⊂ Robs

Table 4: Different subsets of relations, R, for exper-
imentation. To test if a generation model adheres to
instructions for allowed relations, we disallow one re-
lation from a subset of similar relations as a control
(4th row). We observe model performance for questions
with ground truth relations we control (last row).

include eight examples of joint AMR-SPARQL
predictions, with example hallucinations.

Strategy #2: Simulate missing relations. To
control for relations (Table 4), we count DBPedia
relations in QALD9-AMR training data, select the
140 more frequent relations, and set aside 1+ re-
lations for utterances in prompt where the model
should prefer AMR over SPARQL, ensuring exam-
ples abide by constraints. We define the more fre-
quent relations as being observed >1 times, which
is the case for about 50% of the data.

To test our hard hallucination detection hypoth-
esis, we determine DBPedia relations to control
for by manually grouping similar relations (e.g.,
‘creator,’ ‘writer,’ and ‘developer’ are similar; Ta-
ble 4, row 3) and select questions associated with
any of these relations. We compare predictions al-
lowing all relations versus the allowed list less the
controlled relation (Table 4, row 4).

Strategy #3: Simulate ranking. We would like
the model to rank without access to ground truth
confidence scores, so we assign random confidence
scores to in-context examples using a Dirichlet dis-
tribution (K=3), dropping the minimum value.5

However, at decoding we consider only relative
ranking, leaving a rigorous examination of confi-
dence scores for future work.

Strategy #4: In-context examples of halluci-
nation detection. Prompts (Appendix C) include
cases of easy and hard hallucination detection, and
we direct the model to specific cases where AMRs
should rank higher.6

5The minimum value represents the probability density of
bottom predictions in latent N-best ranking.

6The prompt reads: “Rank AMRs higher when predicted
SPARQL is likely wrong, like in examples 5 and 8.”

5.2 Additional Controls

We include results with an oracle, in which we
direct the model’s attention to the disallowed re-
lation, providing an upper bound on achievable
performance and giving insight into analysis. For
consistency across datasets, we normalize all utter-
ances (lower case, no punctuation).

5.3 Data: Language Subsets for Parsing

For experiments in AMR and SPARQL parsing,
we identify a subset of languages: for comparison
with QALD9, we select Indo-European languages
from MASSIVE-AMR, the subset we refer to as
MASSIVE-, and a more diverse sample with dif-
ferent scripts and less representation in Wikipedia,
referred to as MASSIVE+ (Table 5).

For structured parsing experiments using in-
context learning, we sample about 100 utterances
each from QALD9, MASSIVE-, and MASSIVE+
(e.g., the same 16 questions in 6 different lan-
guages), reporting average results across languages
in each subset.

5.4 Fine-tuning

We fine-tune joint AMR-SPARQL models using
publicly available LLMs: GPT-2-XLDISTILL, a 1.5B
parameter variant distilled on graph-structured
knowledge (West et al., 2022) and LLaMA-13B
(Touvron et al., 2023); for model fine-tuning de-
tails, consult Appendix B. For a challenging test
set, we select same-sized samples from QALD9
and MASSIVE-AMR (900 each) of the same Indo-
European languages (namely: English, Spanish,
German, French, and Russian).

5.5 Evaluation Guidelines

For AMR parsing, we report Smatch (Cai and
Knight, 2013), while for SPARQL we check
(1) query executability (using the Python SPAR-
QLWrapper) and (2) whether the query returns
an answer from DBPedia. We do not check an-
swer factuality, as our objective is to measure
model confidence in semantic parse correctness,
not the model’s knowledge of the contents of a
given knowledge base (given that knowledge bases
change over time and many local entities do not
have a DBPedia entry, for example).

For hallucination detection experiments using
in-context learning, we employ quantitative and
qualitative means of analysis. For perturbed ex-
amples (i.e., parse a query for a question likely to
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Language # speakers # Wiki pgs

Q
A

L
D

9/
M

A
SS

IV
E

- English 1.5b 58.7m
French 320m 12.6m
Russian 258m 7.7m
German 76.5m 7.8m
Italian 66m 7.7m
Lithuanian 2.8m 0.5m

M
A

SS
IV

E
+

Vietnamese 85.2m 19.4m
Japanese 125m 4.0m
Korean 81.7m 3.1m
Hungarian 8.2m 1.5m
Urdu 91.5m 1.0m
Amharic 31m 15k
Azeri 24m 195k
Finnish 5.1m 1.4m

Table 5: For AMR and SPARQL parsing, we assemble
test sets selecting utterances from two subsets of lan-
guages: (1) The presumably easier subset MASSIVE-
(top) covering the same Indo-European languages as
QALD9, and (2) the more diverse MASSIVE+ (bot-
tom), e.g., targeting different writing systems. Statistics
are estimates, based on https://meta.wikimedia.org/
wiki/List_of_Wikipedias and Google search results.

require a known disallowed relation), a predicted
ranking is good if the model: (1) ranks the AMR
higher, (2) ranks the SPARQL higher yet verifies
the relation is not allowed, or (3) produces a valid
alternative SPARQL. We stratify results by dataset,
check executability and whether the query returns
an existing record, and also evaluate manually.

For fine-tuned joint AMR-SPARQL, we use a
diverse beam search (n=5) and different methods
to determine relative ranking: (1) check the top-
ranked produced sequence, (2) count the major-
ity structure in the N-best ranking, and (3) com-
pare transition scores for the first token produced.7

Our hypothesis is models will prefer SPARQL over
AMR for QALD9 and vice versa for MASSIVE-
AMR. This is a reasonable hypothesis, as all
QALD9 is known to be matched with ground
truth SPARQL, while fewer queries in MASSIVE-
AMR are likely convertible into an executable
query, an assumption we assess qualitatively (Ap-
pendix A.2).

For evaluation, models output a queryable object
(JSON) with three key-value pairs: parsed query,
list of relations in query, and list of relation veri-
fications (boolean values) (see Appendix C), with
very few structural errors observed (<1% in our
studies).

7Either ‘AMR’ or ‘SPARQL,’ or the first sub-token therein.

Model Data Smatch ↑

Fe
w

-s
ho

t/E
N GPT-3.5 MASSIVE-EN 0.43±0.20

QALD9-EN 0.57±0.17
GPT-4 MASSIVE-EN 0.53±0.21

QALD9-EN 0.70±0.16

Fe
w

-s
ho

t/n
on

-E
N GPT-3.5 MASSIVE+ 0.33±0.22

MASSIVE- 0.42±0.20
QALD9 0.44±0.20

GPT-4 MASSIVE+ 0.46±0.21
MASSIVE- 0.49±0.20
QALD9 0.58±0.22

SO
TA MBSE QALD9-EN 0.90

AMR 3.0 0.84

Table 6: AMR parsing results by model, dataset, and
language subset, comparing in-context learning (top
and middle) with SOTA (Lee et al., 2022) (bottom).
Overall, in-context learning is less effective than more
engineered approaches.

5.6 Results

We present results on in-context learning for AMR
parsing (Table 6) and SPARQL queries (Table 7)
across languages, report on SPARQL hallucina-
tions (Table 8), followed by results in hallucination
detection using in-context joint models (Table 9),
as well as fine-tuned joint models (Table 10).

5.7 Analysis and Discussion

For AMR parsing (Research question 1), re-
sults (Table 6, examples and error analysis in Ap-
pendix D) show that state-of-the-art AMR systems
still outperform in-context learning with margins
between 10-20%, a display of the strengths of en-
gineered modular systems, data augmentation, and
AMR post-processing. Comparing few-shot mod-
els, GPT-4 outperforms GPT-3.5 by a margin of
10-13% F1, with performance on QALD9 14-17%
F1 higher than MASSIVE-AMR, evidence of the
challenge of the latter. Models perform 5-12% F1
higher for MASSIVE- compared to more diverse
MASSIVE+ (see Section 5.3), the first reported
AMR results we are aware of for many of these
languages.

SPARQL parsing. Results of SPARQL query
parsing with in-context learning (Table 7, exam-
ples in Appendix E) provide evidence that LLMs
perform well in a few-shot setting, exceeding 90%
F1 in executability across datasets and languages.
However, as LLMs are not trained on up-to-date
data, no more than 52% of queries for QALD9 and
32% of MASSIVE-AMR return existing DBPedia
records. Additionally, models display good perfor-
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Data Exec. ↑ Returns ↑

G
PT

-3
.5 MASSIVE+ 0.93 0.32

MASSIVE- 0.94 0.41
QALD9 0.97 0.53

G
PT

-4 MASSIVE+ 0.94 0.34
MASSIVE- 0.99 0.50
QALD9 1.00 0.52

Table 7: Few-shot SPARQL parsing results across
datasets and models. We report executability and how
many return existing records. Overall, models produce
structurally viable SPARQL across languages.

Data Perturb #Utts Halluc. ↓ Detects ↑

G
PT

-3
.5

MASSIVE+ No 38 0.21 0.0
Yes 62 0.71 0.04

MASSIVE- No 38 0.16 0.0
Yes 62 0.59 0.0

QALD9 No 110 0.22 0.09
Yes 110 0.84 0.0

G
PT

-4

MASSIVE+ No 34 0.06 0.50
Yes 66 0.48 0.09

MASSIVE- No 36 0.0 n/a
Yes 64 0.54 0.14

QALD9 No 50 0.04 0.0
Yes 50 0.46 0.08

Table 8: Rates of SPARQL hallucination and hallucina-
tion detection with a SPARQL-only model. When we
perturb a relation, hallucination is high, that is, models
produce top-ranked queries with disallowed relations; in
all settings, detection rates (gray) are consistently poor,
that is models fail to verify relations are allowed or not.

mance for MASSIVE+, where AMR performance
was observed to decrease, evidence that LLMs have
more knowledge of SPARQL than AMR structures.

SPARQL relation hallucination rates (Re-
search question 2). In Table 8, we examine if:
(1) models hallucinate SPARQL relations when we
remove some relations from an allowed list, and
(2) models also can detect cases of generated rela-
tions not being allowed (i.e. hallucinations). In a
nutshell, results confirm all models often halluci-
nate relations and yet fail at detection consistently.

Specifically, we find that under normal, non-
perturbed conditions across languages (odd rows
of Table 8), GPT-3.5 exhibits hallucination rates
between 16-22%, which GPT-4 reduces to 0-6%.
When we disallow a relation likely to be needed
in the query (rows where Perturb=Yes), hallucina-
tion rates increase considerably: for GPT-3.5 to
between 40-60%, and for GPT-4 between 42-54%.

Hallucination detection, non-joint model.
With 2-shot SPARQL query parsing, models show

Model Oracle #Perturb Halluc. ↓ Detects ↑

GPT-3.5 no 60/120 0.58 0.07
GPT-4 no 60/120 0.39 0.17
GPT-4 yes 150/240 0.31 0.76

Table 9: Results of joint AMR-SPARQL detection
with in-context learning (8-shot, GPTs), targeting 140
SPARQL relations and 8 languages. Hallucination oc-
curs in at least 1 in 3 cases, and hallucination detection
is not effective, except with an oracle (last row).

poor rates of hallucination detection (Table 8), with
GPT-4 detecting no more than 14% of all halluci-
nations. In a vast majority of cases (86-100%, gray
column), models are deceptive, incorrectly report-
ing that disallowed relations are allowed (Ex. 2
in Appendix E), providing us with justification to
test if we can do better with a joint AMR-SPARQL
model.

Hallucination detection, in-context joint
model (Research question 3). Overall, in-context
learning for hallucination detection is quite chal-
lenging. With oracle knowledge of which relation
has been disallowed (Table 9), GPT-4 still misre-
ports 24% of cases.

Nevertheless, we find evidence that GPT-4 with
an oracle employs dual hallucination detection
strategies in some cases: for 1 in 5 hallucinations,
the model ranks AMRs higher, and, for 3 of 5, it
parses queries with disallowed relations which it
accurately verifies as non-existent.

Without an oracle, the rate of deception (i.e. not
detecting a hallucinated relation) exceeds 80% in
both cases tested, which proved challenging to over-
come despite multiple prompt variations, including
promised rewards for sticking to allowed relations,
veiled (and unveiled) threats, repeated warnings,
and legalese which bound the model to abide by
restrictions, tactics the models consistently disre-
garded, suggesting space for future research into
LLM confidence measures for QA as well as struc-
tural integrity metrics for a semantic critic.

Considering cases of ambiguous utterances
(hard hallucination detection), GPT-4 mostly fol-
lows the rules (e.g., perhaps parsing ‘creator’ when
disallowed for ‘who created iron man’ but verify-
ing correctly the relation is fallacious). However, it
is difficult in many cases to qualitatively determine
query plausibility for various other relations parsed,
as the correctness of any of a large range of queries
that models actually produce depends on the target
knowledge base, left implicit in our experiments.
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Langs. Data Top1 Top5 Token1
G

PT
2 D

IS
T

IL
L EN QALD9 0.50 0.68 ✓ 0.83 ✓

MASSIVE-AMR 0.58 0.62 0.80
Non-EN QALD9 0.53 0.55 0.74 ✓

MASSIVE-AMR 0.54 0.54 0.70

L
L

aM
a-

13
B EN QALD9 0.82 ✓ 0.95 0.90 ∼

MASSIVE-AMR 0.76 0.95 0.88
Non-EN QALD9 0.78 0.95 0.82

MASSIVE-AMR 0.88 0.98 0.95

Table 10: The proportion of cases models pre-
fer SPARQL over AMR structures for QALD9 and
MASSIVE-AMR, comparing fine-tuned GPT2-xlDISTILL

(top) and Llama-13B (bottom) with English (EN) and
non-English data. The hypothesis in each case is that
models will prefer SPARQL for QALD9, with a (✓) in-
dicating evidence in support. Results from preliminary
studies are overall inconclusive.

Hallucination detection, fine-tuned joint mod-
els (Research question 4). Results of fine-tuned
models are inconclusive (Table 10). With GPT-2-
XLdistill, preference between SPARQL vs AMR is
mostly 50-50, with variation only observed with
first token transition scores. LLaMa, in contrast,
shows bias towards SPARQL under every condi-
tion (between 75-95%), and only in one setting
(top-1) favoring SPARQL consistently for QALD9.
Qualitative analysis shows LLaMa prefers AMR
for incomplete utterances such as ‘describe’ and
‘calculate this’, yet it often misclassifies currency
conversion utterances as having valid SPARQL.8

With our fine-tuned models, we examined an
N-best space from multiple perspectives (top-1 pre-
diction, majority, transition scores). We speculate
that the proportion of AMRs versus SPARQL in
fine-tuning likely has an effect: in our experiments,
we include more AMRs than SPARQL (Appendix
B), suggesting a study with varied proportions of
training data is warranted as well as training with
more data (we used <6k examples in fine-tuning).

6 Conclusion

We present MASSIVE-AMR, the largest and most
diverse dataset of multilingual questions paired
with Abstract Meaning Representation (AMR)
graphs, which we publicly release for research pur-
poses. We discuss the origins of the data, and de-
tail the processes of dataset creation, curation, and
quality control.

8In principle, currency conversion values could be stored
in a knowledge base, but in practice knowledge bases are not
updated in real-time.

To examine the utility of our dataset in controlled
experimentation using large language models, we
first consider the task of structure parsing, show-
ing results for both AMR graph and SPARQL query
parsing across languages. Overall, performance
for AMR parsing with in-context learning is less
effective compared with reported state-of-the-art
using fine-tuning; still, qualitative assessment of
produced structures reveals many coherent, correct
graphs despite low similarity with a ground truth.
In comparison, SPARQL parsing performance is
high across languages, at least in small studies us-
ing the QALD9-AMR dataset.

One motivating factor behind the creation of
MASSIVE-AMR was to be able to test the utility
of AMRs for knowledge base question answering
(KBQA), specifically ascertaining whether AMRs
can help detect incongruous SPARQL queries,
essentially serving as a proxy confidence measure
for the correctness of an answer suggested by a
QA system. In these experiments, we first con-
firm that the GPT models do indeed hallucinate
semantic relations, and then discover that ‘easy’
hallucination detection—asking a model to verify
relations are allowed—is actually quite challeng-
ing, even for GPT-4. Further, ‘hard’ hallucination
detection—the identification of utterances that are
likely ambiguous—is also challenging, with a joint
AMR-SPARQL model only detecting 1 in 5 cases.

Beyond the AMR-for-KBQA investigations we
performed in this work, we hope that the release of
MASSIVE-AMR will support additional research
into using structured meaning representations for
multilingual QA and model interpretability.
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8 Ethical Considerations

Informed Consent: We ensured that all individuals
providing annotations were fully informed about
the purpose of the annotation task, how their data
will be used, and what rights they have in relation
to their data.

Fair Compensation: We ensured that individ-
uals providing annotations were fairly compen-
sated for their time and effort. For this project,
professional annotators were compensated at least
$30/hour, working between 20-80 hours each for
the duration of data collection.

Transparency: We were transparent about the
purpose and scope of the annotation task, as well
as the potential benefits of the project, helping to
build trust with individuals providing annotations
and ensuring that they understood the significance
of their contributions. We intend that through these
practices data annotation efforts are overall more
effective, resulting in a higher quality resource.

Environmental impact: We considered the en-
vironmental impact of the research, including the
energy consumption of computing resources used.
With GPT-4 inference, we limited input to 100s of
examples to reduce costs. In-house fine-tuning was
done using parameter efficient fine-tuning meth-
ods, allowing each experiment to be done on 1-2
NVIDIA Quadro RTX 8000 GPUs in <24 hours.

9 Limitations

1. Our work involved research into multilin-
gual SPARQL and AMR parsing; though our
dataset includes 52 languages, we report re-
sults on no more than 10-12 of these. Many of
the languages we included are Indo-European,
with only a few exceptions (Korean, Japanese,
Amharic, Vietnamese).

2. No experiments in joint AMR-SPARQL pars-
ing involved hypotheses about performance
across languages, though some evidence of
performance shifts has been observed.

3. Fine-tuning models was done with less than
6k AMRs and 3-4k SPARQL training exam-
ples. Test data was limited to 100s examples
per language in order to allow for multiple it-
erations and explore hyperparameter settings.
Increasing the sizes of training and test sets is
left for future work.

4. Testing was limited to four large language
models in this work (GPT-2-XLdistill, GPT-
3.5, GPT-4, LLaMa). LLaMa does include
multilingual data in training (Touvron et al.,
2023), particularly languages using Latin and
Cyrillic scripts. We did not test models explic-
itly trained for multilingual purposes and for
other scripts, leaving such work for the future.

5. The MASSIVE-AMR dataset matches mul-
tilingual utterances to unique AMR graphs,
making it the largest such dataset to date.
However, unlike QALD9-AMR (Lee et al.,
2022), MASSIVE-AMR does not include
gold SPARQL queries. We emphasize that the
use case we explore in this paper is only one
of many possible, and we hope future research
explores beyond this single application.
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11 Appendices

A Characterizing Massive-AMR

A.1 AMR Top Nodes Across Datasets

AMR 3.0 # QALD9-AMR # MASSIVE-AMR #

and 7k give-01 76 rate-01 105
say-01 3k have-03 50 define-01 103

contrast-01 3k have-degree 27 tell-01 94
multi-sentence 1.7k have-org-role 21 have-quant 87

possible-01 1.7k be-located-at 15 equal-01 86
cause-01 1.6k die-01 14 price-01 70
state-01 1.5k write-01 14 describe-01 66

have-concession 944 bear-02 13 be-located-at 64
think-01 901 marry-01 13 person 58

person 705 show-01 12 mean-01 50
have-03 618 locate-01 10 have-degree 50

have-condition 605 have-rel-role 10 bear-02 46
date-entity 538 person 9 have-org-role 32

know-01 451 name-01 9 show-01 21
have-degree 440 list-01 8 find-01 21

Table 11: 15 most frequent top AMR nodes in AMR
3.0, QALD9-AMR and MASSIVE-AMR, with counts
for a single language (English).

A.2 Describing the MASSIVE Long Tail

We note long-tail characteristics of utterances in
MASSIVE (FitzGerald et al., 2023).

• Outliers in terms of utterance length: some
1-2 tokens, others quite long (40+ tokens)

• Ambiguous referents (‘chase’ in ‘is chase do-
ing good’ could be a bank, person, or activity)

• Incomplete arithmetic (‘tell me what equals
two three’)

• Less frequent expressions (‘who is the better
half of obama’)

• Incomplete questions (‘synonym for word’,
‘is equal to’, ‘research someone’)

B Model Details

For experiments in joint AMR-SPARQL halluci-
nation and hallucination detection, we tested both
fine-tuned models (Table 12) and in-context learn-
ing (Table 13).

Element Detail
Fi

ne
-t

un
in

g
Train set (QALD9/MASSIVE-AMR) 6000/2000
Train set (SPARQL/AMR) 3000/5000
Train set (langs) 1300 each, 6 lgs
Test set (QALD9/MASSIVE-AMR) 700/500
Test set (langs) 200 each, 6 lgs
Block size (GPT-2/LlaMa) 512/2048
Number epochs 8-16
Learning rate 3e

−5

Optimizer AdamW

In
fe

re
nc

e Number beams 20
Beam size 5
Number beam groups 10
Diversity penalty 1.0
Minimum length 8
Maximum length 256

Table 12: Details about training and test splits (top),
with model parameters for fine-tuning GPT-2-XLdistill
and LlaMa using Hugging Face transformers and PEFT.

Element Detail

Number in-context exs. 8-12
Number tokens in prompt 2400
In-context langs. English, Spanish
Test set (QALD9/MASSIVE-AMR) 150/150
Test set (langs) 20-40 each, 10 lgs
Temperature 1.0

Table 13: Details about in-context learning (GPT-3.5
and GPT-4-0613).
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C Example prompts

C.1 SPARQL Parsing (Research question 1b)

{ [ " messages " : [
{

" r o l e " : " sys tem " ,
" c o n t e n t " : "You a r e SPARQL− P r e d i c t o r −GPT , a l a n g u a g e model t h a t p r e d i c t s

one SPARQL query f o r a g i v e n q u e s t i o n . "
} ,
{

" r o l e " : " sys tem " ,
" c o n t e n t " : " Th i s i s i m p o r t a n t ! A l l r e l a t i o n s i n t h e p r e d i c t e d SPARQL query must be i n

t h e a l l o w e d _ r e l a t i o n _ l i s t : [ ' a b b r e v i a t i o n ' , ' a c c e s s i o n e u d a t e ' , . . . ' l eadername ' ] . "
} ,
{

" r o l e " : " sys tem " ,
" c o n t e n t " : "Make a l i s t o f a l l t h e r e l a t i o n s i n t h e p r e d i c t e d SPARQL query .

V e r i f y t h a t a l l r e l a t i o n s a r e i n a l l o w e d _ r e l a t i o n _ l i s t ,
r e p o r t i n g True o r F a l s e f o r each r e l a t i o n . "

} ,
{

" r o l e " : " sys tem " ,
" c o n t e n t " : " Re t u r n t h e p r e d i c t i o n i n JSON form :

{ ' s p a r q l _ q u e r y ' : s t r , ' r e l a t i o n s ' : l i s t ( ) , ' v e r i f i c a t i o n ' : l i s t ( ) } "
} ,
{

" r o l e " : " u s e r " ,
" c o n t e n t " : " where d i d abraham l i n c o l n d i e "

} ,
{

" r o l e " : " a s s i s t a n t " ,
" c o n t e n t " : " { ' s p a r q l _ q u e r y ' : ' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >

PREFIX r e s : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
SELECT DISTINCT ? u r i WHERE
{ r e s : Abraham_Lincoln dbo : d e a t h P l a c e ? u r i . } ' ,

' r e l a t i o n s ' : [ ' d e a t h p l a c e ' ] ,
' v e r i f i c a t i o n ' : [ True ] }"

} ,
{

" r o l e " : " u s e r " ,
" c o n t e n t " : " g i v e me a l l cosmonau ts . "

}
] ,
" g o l d _ s p a r q l " : "SELECT DISTINCT ? u r i WHERE

{ ? u r i a < h t t p : / / d b p e d i a . o rg / o n t o l o g y / A s t r o n a u t >
{ ? u r i < h t t p : / / d b p e d i a . o rg / o n t o l o g y / n a t i o n a l i t y > < h t t p : / / d b p e d i a . o rg / r e s o u r c e / Russ ia > }
UNION
{ ? u r i < h t t p : / / d b p e d i a . o rg / o n t o l o g y / n a t i o n a l i t y >
< h t t p : / / d b p e d i a . o rg / r e s o u r c e / Sov ie t_Union > } } " ,

" p e r t u r b e d " : 1 ,
" r e l _ e x c l u d e d " : " n a t i o n a l i t y " ,
" q u e s t i o n " : " g i v e me a l l cosmonau ts . " ,
" c o m p l e t i o n " : " { ' s p a r q l _ q u e r y ' : ' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >

PREFIX r d f : < h t t p : / / www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − r d f − syn tax −ns #>
SELECT DISTINCT ? cosmonaut WHERE
{ ? cosmonaut r d f : t y p e dbo : A s t r o n a u t . } ' ,

' r e l a t i o n s ' : [ ' type ' ] ,
' v e r i f i c a t i o n ' : [ True ] } " ,

" l a b e l " : " q a l d 9 " ,
" h a l l u c i n a t i o n " : 0 ,
" h a l l u c i n a t i o n − d e t e c t i o n " : 0 ,
" s p a r q l _ e x e c u t a b l e " : 1 ,
" s p a r q l _ r e s u l t " : 1 , " s p a r q l _ m a l f o r m e d " : 0}

Figure 2: Example prompt for SPARQL parsing with generation completion and associated features. Our controlled
setting for hallucination detection is then reduced to verifying all relations in a parsed query are in the given list,
verification the model outputs along with the parsed SPARQL_QUERY. For considerations of space, we show only 3
(of 140) relations, the ALLOWED_RELATION_LIST (second system message in prompt).
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D Parsed AMR Examples (GPT-4, 8-shot learning) with Error Analysis

Ex. 1 (QALD9, Spanish): cuánto pesa el satélite más ligero de júpiter (English: ‘how much does jupiter’s
lightest moon weigh’)

Reference

(h2 / heavy
:quant (a / amr-unknown)
:domain (m / moon

:ARG1-of (h / have-degree-91
:ARG2 (l / light-06

:ARG1 m)
:ARG3 (m2 / most)
:ARG5 (m3 / moon

:poss (p / planet
:name (n / name

:op1 "Jupiter"))))))

Generated

(p / pesar-01
:ARG1 (s / satellite

:degree (m / more
:quant (l / light))

:location-of (j / planet
:name (n / name

:op1 "Júpiter"))))

F1: 0.3
Error: missing amr-unknown; non-English frame

Ex. 2 (QALD9, French): combien de théories albert einstein a-t-il produit (English: ‘how many theories
did albert einstein come up with’)

Reference

(c / come-up-11
:ARG0 (p / person

:name (n / name
:op1 "Albert"
:op2 "Einstein"))

:ARG1 (t / theory
:quant (a / amr-unknown)))

Generated

(p / produce-01
:ARG0 (p2 / person

:name (n / name
:op1 "Albert"
:op2 "Einstein"))

:ARG1 (t / theory
:quant (c / count-01

:op1 (a / amr-unknown))))

F1: 0.77
Diff: English come-up-11 vs French produce-01
Note: Better semantic similarity metric needed

Ex. 3 (Massive, English): what is the worlds record for the longest head of hair

Reference

(h / have-degree-91
:ARG1 (h2 / hair

:part-of (h3 / head)
:mod (a / amr-unknown))

:ARG2 (l / long-03
:ARG1 h2)

:ARG3 (m / most)
:ARG5 (w2 / world)
:ARG1-of (r / record-01))

Generated

(r / record-01
:mod (w / world)
:topic (l / long-02

:degree (m / most)
:ARG1 (h / hair-01

:part-of (p / person))
:duration (a / amr-unknown)))

F1: 0.38
Error: invents hair-01
Semantics of amr-unknown as 'duration'
Good: 'longest head of hair' = 'longest hair'

Errors in AMR parsing include:

• Lack of AMR token for questions ‘amr-unknown’ (33/100 examples, see Ex. 1); We note 6 of 8
examples in the prompt model this (2 of 8 are imperatives);

• 3/100 parses filtered by Smatch (missing parenthesis or nodes with duplicate variable name);

• Frequent errors with AMR -91 frames (Exs. 1 & 3), e.g., rate-entity-91, have-degree-91;

• 21 of 100 examples have F1<0.5 (Ex. 3); of these, 5 are QALD9 and 16 are MASSIVE-AMR

• Arithmetic problems are correct but do not follow canonical form, though we note there are
no math examples in prompts; this suggests more than one reference graph would be helpful for
evaluation.
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E Results of SPARQL Parsing

Example 1 : Massive − ( I t a l i a n ) , P e r t u r b e d = F a l s e , H a l l u c i n a t i o n = F a l s e , D e t e c t i o n = F a l s e , D i f f i c u l t = F a l s e

Q u e s t i o n : q u a n t i a n n i ha g i o r g i a ( E n g l i s h : `how o l d i s g i o r g i a `)

Comple t ion : { ' g e n e r a t e d _ s p a r q l _ q u e r y ' :
' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX r e s : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
SELECT (YEAR(NOW( ) ) − YEAR( ? b i r t h D a t e ) ) AS ? age WHERE

{ r e s : G i o r g i a dbo : b i r t h d a t e ? b i r t h D a t e . } ' ,
' r e l a t i o n s ' : [ ' b i r t h d a t e ' ] ,
' v e r i f i c a t i o n ' : [ True ] }

−−−−−−−

Example 2 : Mass ive + ( Hungar i an ) , P e r t u r b e d =True , H a l l u c i n a t i o n =True , D e t e c t i o n = F a l s e , D i f f i c u l t = F a l s e

R e l a t i o n e x c l u d e d : [ ' b i r t h d a t e ' ]

Q u e s t i o n : mi lyen i d o s t o t h v e r a ( E n g l i s h : `how o l d i s t o t h vera `)

Comple t ion : { ' g e n e r a t e d _ s p a r q l _ q u e r y ' :
' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX r e s : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
SELECT (YEAR(NOW( ) ) − YEAR( ? b i r t h d a t e ) ) WHERE

{ r e s : Toth_Vera dbo : b i r t h D a t e ? b i r t h d a t e . } ' ,
' r e l a t i o n s ' : [ ' b i r t h D a t e ' ] ,
' v e r i f i c a t i o n ' : [ True ] }

−−−−−−−

Example 3 : Mass ive + ( J a p a n e s e ) , P e r t u r b e d =True , H a l l u c i n a t i o n =True , D e t e c t i o n =True , D i f f i c u l t = F a l s e

R e l a t i o n e x c l u d e d : [ ' b i r t h d a t e ' ]

Q u e s t i o n : 渡部篤郎の誕生日はいつ ( E n g l i s h : `how o l d i s a t s u r o watabe `)

Comple t ion : { ' g e n e r a t e d _ s p a r q l _ q u e r y ' :
' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX r e s : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
SELECT DISTINCT ? d a t e WHERE

{ r e s : Atsuro_Watabe dbo : b i r t h D a t e ? d a t e . } ' ,
' r e l a t i o n s ' : [ ' b i r t h D a t e ' ] ,
' v e r i f i c a t i o n ' : [ F a l s e ] }

−−−−−−−

Example 4 : Massive − ( E n g l i s h ) , P e r t u r b e d =True , H a l l u c i n a t i o n =?? , D e t e c t i o n = F a l s e , D i f f i c u l t =True

R e l a t i o n e x c l u d e d : [ ' c r e a t o r ' ]

Q u e s t i o n : who c r e a t e d t h e comic c a p t a i n a m e r i c a ?

{ ' g e n e r a t e d _ s p a r q l _ q u e r y ' :
' PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >

PREFIX r e s : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
SELECT DISTINCT ? u r i WHERE

{ r e s : Cap ta in_Amer i ca dbo : foundedby ? u r i . } ' ,
' r e l a t i o n s ' : [ ' foundedby ' ] ,
' v e r i f i c a t i o n ' : [ True ] }

Figure 3: Examples of SPARQL parsing using GPT-3.5 showing hallucinations and hallucination detection.
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Abstract

For decades, psychologists have been study-
ing stereotypes using specially-designed rat-
ing scales to capture people’s beliefs and opin-
ions about different social groups. Now, using
NLP tools on extensive collections of text, we
have the opportunity to study stereotypes “in
the wild” and on a large scale. However, are
we truly capturing the same information? In
this paper we compare measurements along six
psychologically-motivated, stereotype-relevant
dimensions (Sociability, Morality, Ability, As-
sertiveness, Beliefs, and Status) for 10 groups,
defined by occupation. We compute these mea-
surements on stereotypical English sentences
written by crowd-workers, stereotypical sen-
tences generated by ChatGPT, and more gen-
eral data collected from social media, and con-
trast the findings with traditional, survey-based
results, as well as a spontaneous word-list gen-
eration task. We find that while the correlation
with the traditional scales varies across dimen-
sions, the free-text data can be used to specify
the particular traits associated with each group,
and provide context for numerical survey data.

1 Introduction

There is growing interest in the possibility of using
NLP and large corpora to augment, complement,
or even replace traditional psychological surveys to
collect social sciences data (Goldstone and Lupyan,
2016; Argyle et al., 2022; Jackson et al., 2022;
Dillion et al., 2023). One area where NLP research
has started to contribute is in the study and analysis
of stereotypes.

Stereotypes are “a set of cognitive generaliza-
tions (e.g., beliefs, expectations) about the qualities
and characteristics of the members of a group or
social category” (VandenBos, 2007). There are a
number of properties of stereotypes that motivate
the use of NLP tools to better study and under-
stand them. First, stereotypes are often commu-
nicated and perpetuated through natural language

(Beukeboom and Burgers, 2019). Second, they
are by definition widely-held and pervasive, and
so should be detectable in large samples of data
(Garg et al., 2018). Third, they can lead to far-
reaching negative consequences, and so there is
practical interest in understanding how stereotypes
are expressed “in the wild” in order to develop
effective counter-strategies (Fraser et al., 2021).
NLP researchers have begun to study methods of
uncovering stereotype information in Twitter data
(Marzouki et al., 2020; Fokkens et al., 2018), news
texts and books (Garg et al., 2018), spoken con-
versations (Charlesworth et al., 2021), and large
language models (Cao et al., 2022).

However, the question remains whether the in-
formation we can extract from these natural lan-
guage datasets can actually replicate the informa-
tion obtained from more traditional methods in so-
cial psychology; namely, rating scales. A common
paradigm in stereotype research involves choos-
ing a set of attributes, or dimensions, of interest,
and then asking human participants (often college
undergraduates) to rate social groups along those
dimensions. The dimensions of interest vary ac-
cording to different theoretical models, but can
include, for example, warmth and competence in
the Stereotype Content Model (Fiske et al., 2007),
or agency, beliefs, and communion in the ABC
Model (Koch et al., 2016). The social groups may
be categorized based on gender, race, age, or any
other social variable relevant to the research. As a
result, for each social group, the researchers obtain
annotations along each dimension.

In this work, we investigate the possibility of
reproducing the results of such a scale-based study,
using low-dimensional vector representations of
natural language data to estimate the dimensions
of interest. We consider six psychologically-
motivated dimensions – Sociability, Morality, Abil-
ity, Assertiveness, Status, and Beliefs1 – and a set

1See Appendix A for detailed definitions of each dimen-
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of ten groups defined by occupation. We conduct
a detailed comparison of the kind of stereotype
data we obtained through (1) direct stereotype elic-
itation from crowd-workers, (2) direct stereotype
elicitation from a generative large language model,
and (3) targeted data collection from Twitter (now
known as ‘X’). We compare these sources of infor-
mation to two paradigms in the psychology liter-
ature: the traditional method using rating scales,
as mentioned above, and a newer method involv-
ing spontaneous word list elicitation. We consider
three research questions in the current study:

1. Can we reproduce the numerical, scale-based
results from the social psychology literature
through analysis of natural language? We
explore this question using three different
sources of text: crowd-workers, social media,
and ChatGPT, and by transforming the data to
a 6-dimensional representation such that each
dimension corresponds to a scale measure.

2. Are all of the six aforementioned dimensions
spontaneously mentioned in the free text, or
are certain dimensions more frequently dis-
cussed than others?

3. Are there certain types of information which
are available only from the ratings scales, or
only in the natural language data? Or can we
treat them equivalently?

Our findings suggest that particular dimensions
can be estimated more reliably than others, with
Morality and Status measurements being highly
correlated with the traditional scales on all of the
text datasets. The dimensions of Assertiveness and
Beliefs were less accurately estimated; statements
relevant to these dimensions were also less frequent
in the data. However, the natural language texts
were found to contain additional types of informa-
tion not available in the scale-based dataset, adding
detail and specificity to the stereotype descriptions.

2 Background

2.1 Psychological Models of Stereotypes

Stereotyping is an extensive area of research in
social psychology. Numerous models have been
developed to explain the underlying dimensions
of social cognition, including stereotyping (Fiske
et al., 2007; Koch et al., 2016; Abele and Wojciszke,
2007). Regardless of the specific dimensions in
question, the measurements have almost always

sion.

been collected using scales or checklists (i.e., a
forced-choice paradigm).

One recent study has questioned whether the ex-
clusive use of forced-choice methods has limited,
or even biased, the resulting information about how
different social groups are viewed. Nicolas et al.
(2022) propose a Spontaneous Stereotype Content
Model, arguing that “free-response, open-ended
stereotypes of social groups may best systemati-
cally reveal the complex contents that are spon-
taneously available to perceivers upon encounter-
ing a target.” For a given dimension, the authors
distinguish between direction (e.g., is the group
perceived as friendly or unfriendly), which is mea-
sured directly by the scales and can be inferred
from the open-ended responses, and representa-
tiveness, which measures how strongly a given di-
mension is associated with a group (regardless of
polarity). In an example from Nicolas et al. (2022),
doctors and nurses are both rated as being highly
Warm and Competent on rating scales. However,
when people spontaneously think about doctors
and nurses, they think more about nurses’ Warmth
traits, and more about doctors’ Competence traits.
Such differences cannot be observed using the tra-
ditional, scale-based methods.

Nicolas et al. compare traditional, scaled-based
methods against open-ended responses in the form
of single words, and sets of words. We use their
data as a baseline, and build on this basic premise
by extending the types of open-ended responses to
include full sentence stereotypes (generated either
by humans or ChatGPT), and then further extend-
ing the analysis to the case of Twitter data (which
is not specifically stereotypical in nature, but repre-
sents a large sample of public opinions on various
topics).

2.2 NLP Methods for Analyzing Stereotypes

Numerous NLP methods have been used to extract,
discover, and track stereotype content in naturally-
occurring texts (Marzouki et al., 2020; Fokkens
et al., 2018; Garg et al., 2018; Charlesworth et al.,
2021; Fast et al., 2016). In some cases, stereo-
typing has been labelled as a subcategory of hate
speech or offensive language, including gender
stereotypes (Chiril et al., 2021; Parikh et al., 2019;
Fersini et al., 2018) and stereotypes about immi-
grants (Sanguinetti et al., 2018; Sánchez-Junquera
et al., 2021). For example, the EVALITA 2020
Hate Speech Detection Task involved a subtask
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Scales ✓ ✓ ✓ ✘

Adjectives ✓ ✘ ✓ ✘

Stereoset ✓ ✘ ✓ ✓

ChatGPT ✓ ✘ ✘ ✓

Tweets ✘ ✘ ✓ ✓

Table 1: Summary of some relevant differences between
the various data sources under consideration.

on detecting stereotypes targeting Muslims, Roma,
and immigrants (Sanguinetti et al., 2020). Other
closely-related work has compared stereotypical
biases in large language models with human survey
data (Cao et al., 2022). Our work is most similar
to that of Fraser et al. (2022), which presents a
computational model of Fiske et al.’s Stereotype
Content Model (SCM), using the POLAR frame-
work introduced by Mathew et al. (2020). We make
use of a similar method to define an interpretable,
psychologically-motivated, low-dimensional em-
bedding space.

Other relevant NLP work has examined the verbs
and adjectives which are mostly highly associated
with certain social groups. Dong et al. (2019) col-
lected words describing various social ‘roles’ from
crowd-workers from different cultures, and also
used NLP methods to predict the most likely so-
cial role, given a descriptor. Choenni et al. (2021)
probed the stereotypes present in pretrained lan-
guage models with prompts such as “Why are
[TARGET GROUP] so [MASK]?” and observed
the output attributes.

While similar in spirit to some of these earlier
works, our work differs critically in our goal of
trying to map natural language sentences down
to six numerical dimensions, for direct compar-
ison against the social psychology rating scales.
Furthermore, we compare and contrast these dif-
ferent ways of collecting stereotypical beliefs to
explore the types of information available from
each source.

3 Methods

In the following section, we describe several dif-
ferent sources of survey and natural language data

in English, namely: psychological rating scales
(Sec 3.1) as well as lists of spontaneously-produced
adjectives, crowd-sourced stereotypes from the
Stereoset dataset (Nadeem et al., 2020), stereotypes
prompted from ChatGPT, and tweets from Twitter
(Sec 3.2). These data sources differ in many rele-
vant aspects, summarized in Table 1. For example,
were the writers of the text asked specifically to
come up with stereotypes, or are they writing on
a more general topic, that may or may not convey
implicit stereotypes? Were the annotators required
to make a judgement on every dimension, or did
they comment only on the dimensions that most
easily came to mind? Was the text generated by
humans or by a language model? And does the
format of the text provide context for the attributes
being assigned, or must they be interpreted in iso-
lation? We will discuss these aspects in relation to
each dataset in the following.

To make a direct comparison across all the
data sources, we first identify the subset of social
groups for which data is available in all the existing
datasets. The majority of this subset consists of
different occupations: Politicians, Teachers, CEOs,
Scientists, Bankers, Accountants, Engineers, Farm-
ers, Lawyers, and Nurses. Thus we consider only
these 10 target groups in the analysis.

Following our discussion of the datasets, in Sec-
tion 3.3 we present the dimensionality-reduction
method we use to reduce the free-text sentences in
the four natural language datasets down to six di-
mensions, so that they can be compared directly to
the 6-dimensional gold standard rating scale data.

3.1 Gold Standard Rating Scales

The gold-standard rating scale values are obtained
from the supplemental materials for Experiment 1
in Nicolas et al. (2022). In that experiment, 400
Amazon Turk workers provided annotations for 43
social groups. Each annotator saw a random sam-
ple of six groups, and for each group provided six
open-ended, free text responses describing “char-
acteristics, traits, or descriptions of the group.” An-
notators were additionally informed that it was not
necessary that they personally believe these charac-
teristics to be true, in order to reduce social desir-
ability bias. Most responses are single adjectives.

After annotators provided their free text re-
sponses, they were asked to provide a rating from
1 through 5 for “how society views the targets”
along various dimensions: Sociability (measured
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by two subscales, friendly and sociable), Morality
(trustworthy and honest), Ability (competent and
skilled), Assertiveness (confident and assertive),
Beliefs (traditional and conservative), and Status
(wealthy and high-status).

In our analysis, we combine the two subscales
for each dimension, and normalize the values to lie
between -1 and +1, for better comparison with our
computational models. We average the annotations
for each group over all annotators (on average, 57
per group).

3.2 Alternative Data Sources

Spontaneous Adjectives As the first alternative
data source, we consider the adjectives from Ex-
periment 1, described above (Nicolas et al., 2022).
The sets of adjectives represent an intermediate step
between the rating scales and the spontaneously-
produced sentences in the rest of the data sources.
Additionally, the adjectives were provided by pre-
cisely the same annotators as the scale-based rat-
ings. Thus, the information conveyed by the adjec-
tives likely represents an upper bound for how well
we can reproduce the scale ratings via language.
Since our NLP analysis (described in Section 3.3)
operates on the sentence level, we embed each ad-
jective into a sentence template of the form: These
people are always ADJ.

StereoSet We also consider data from the Stere-
oSet dataset (Nadeem et al., 2020). This dataset
was crowd-sourced on Mechanical Turk. 2 An-
notators were asked to generate sentences about a
particular group which were (1) stereotypical, (2)
anti-stereotypical, and (3) neutral. In this work, we
use the stereotypical sentences. There are approxi-
mately 55 sentences per target group. These data
differ from the adjective sets in that they consist
of complete sentences, of varying length and com-
plexity. However, they were still generated in an
artificial scenario, with the goal of communicating
stereotype information.

ChatGPT As an additional source of data, we
generate novel sentences using ChatGTP.3 Unlike
the other data sources, this text does not originate
from human authors. However, other researchers
have begun exploring the possibility of using large

2The annotators were all located in the USA, and the stereo-
types were validated by an independent set of annotators to
ensure that they represented commonly-held views.

3https://chat.openai.com/chat, GPT-3.5, September
25 2023 version

language models as potential sources of informa-
tion for studying bias and stereotypes (Cao et al.,
2022), or even as replacements for human partici-
pants in psychological studies (Argyle et al., 2022;
Dillion et al., 2023).

We consider three prompts to ChatGPT: (1)
What are some adjectives people in North
America use to describe GROUP? This prompt
attempts to directly replicate the open-response por-
tion of Experiment 1 from Nicolas et al. (2) In
North America, what are some commonly
held stereotypes about GROUP? This prompt
attempts to directly elicit stereotypes about vari-
ous groups. (3) What are some beliefs that
many North Americans hold about GROUP? Af-
ter observing that many of the generations for the
previous prompt focused on negative beliefs about
groups, we added this prompt to elicit more neu-
tral/positive characteristics. We re-run each prompt
three times for each group, with the default temper-
ature. Each response from ChatGPT contains a list
of characteristics, each taken as a separate obser-
vation, resulting in an average of 81 sentences for
each group.

Twitter Finally, we consider Twitter as a poten-
tial source of data about social groups. One signifi-
cant difference between this dataset and the others
is that the writers of the texts were not instructed
to generate stereotypes, but rather had other com-
municative goals in mind. Another factor that may
affect the Twitter data is social desirability bias.
While someone might hold a belief privately, and
even report it on an anonymous survey, it doesn’t
necessarily mean they will state that belief openly
on a public forum. However, our hypothesis is that
if we have a large data sample, the most common
beliefs about different groups should emerge.

We used the Research API4 to collect data con-
taining the substring ‘GROUP are’ for the target
groups of interest, from 1 January 2022, to 7 Octo-
ber 2022. We ignored re-tweets, duplicates, tweets
with more than five hashtags, tweets with URLs,
and tweets written by bots (user name or descrip-
tion contains ‘bot’) and other prolific users. This
resulted in a large number of tweets, on average
118,768 per group.

To increase the likelihood of capturing relevant
tweets, we then performed the following filtering
steps: (1) filter by the user ‘location’ field to in-
clude only those tweets from the US and Canada;

4Prior to the introduction of the data paywall.
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(2) parse the sentence and include only those sen-
tences where the target group is not modified by a
quantifier or adjective (Some lawyers are ..., Re-
publican politicians are ...), (3) using the sen-
tence parse, include only those sentences where
are is followed by an adjective (e.g., keep Nurses
are angry, but discard Nurses are going to go on
strike). This last filtering step is based on research
that stereotype-consistent information tends to be
communicated with abstract terms, like adjectives,
while concrete terms like action verbs describe a
particular, contextual behaviour that is not necessar-
ily an essential trait that is present across situations
(Beukeboom and Burgers, 2019). These filtering
steps drastically reduce the amount of data avail-
able (to an average of 2,830 tweets per group), but
with the goal of increasing the relevance.

3.3 POLAR Model

Here, we describe our methodology for embedding
the text sentences into the six-dimensional social
space. For each sentence, we begin by masking the
target group name with the generic phrase these
people. This is to avoid any bias in the sentence
embeddings related to the group name (e.g., we
want Scientists are smart and Nurses are smart to
map to the same point, regardless of any intrin-
sic bias in the embedding model related to scien-
tists and nurses). We represent each input sentence
as a 1024-dimensional RoBERTa sentence embed-
ding, and then reduce the embedding space to the
six dimensions of interest using a variation on the
method described by Fraser et al. (2022). The math-
ematical details are given in Appendix B, but essen-
tially the method is as follows: For each dimension,
collect a set of examples to define each pole of the
axis. Here, since we want to reproduce the scale
ratings of Nicolas et al. (2022), we use the same
adjectives that were presented to the participants
during data collection (e.g., for the dimension So-
ciability, they were shown friendly and sociable, for
Morality they were shown trustworthy and honest,
and so on). To define the negative pole, we used the
direct antonym according to our own judgement
(e.g., unfriendly, unsociable, untrustworthy, and
dishonest). We then inserted those adjectives into
the sentence template These people are always
ADJ, to generate representative stereotypical sen-
tences for the two poles of each dimension.

The positive examples are then averaged to de-
fine the positive direction, and the negative exam-

ples are averaged to define the negative direction.
The difference between the positive and negative
vectors, for each dimension, is then used to define
a transformation matrix such that sentence embed-
dings in the high-dimensional embedding space
can then be projected onto the interpretable, six-
dimensional space. The dimension score for each
sentence is simply the scalar projection of the sen-
tence onto that dimension, ranging from -1 to 1. For
each group, we then obtain the average dimension
ratings over all sentences in the dataset.

The POLAR model has a small number of pa-
rameters that should be optimized for best perfor-
mance. We validate the model on a hand-crafted
lexicon of adjectives for each dimension (Nicolas
et al., 2021). Our optimized model uses RoBERTa-
NLI embeddings5, Partial Least Squares (Rosipal
and Krämer, 2005) to initially reduce the embed-
ding dimensionality from 1024 to 30, and achieves
an average accuracy of 95% at correctly predict-
ing whether each word is positively or negatively
associated with the relevant dimension. Further in-
formation about the validation process is available
in Appendix C.

3.4 Word-Counting Baseline

We also consider a word-counting baseline. Al-
though word-counting tends to be less effective in
assessing sentence-level meaning due to negation,
sarcasm, etc. (Fraser et al., 2022), we can use this
as a baseline method in the case of the adjective
lists. Nicolas et al. (2021) provides a set of lexicons
for various psychologically-motivated dimensions,
including the six dimensions studied here. Words
in each lexicon are assigned either a positive (+1)
or negative (-1) value according to their direction.
Thus, the estimated score for each group on a given
dimension is simply the average of all the lexicon
values for the words associated with each group
(ignoring words that are not in the lexicon for that
dimension).

4 Results

4.1 Correlation with Rating Scales

To compare the scores from the text data sources
with the gold-standard scale ratings, we measure
correlation. Because the most important informa-
tion is the relative differences between the groups,

5https://huggingface.co/sentence-transformers/
nli-roberta-large
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Figure 1: Spearman rank correlation with the scale-
based measurement, for each dimension and dataset.

rather than absolute values, we compute Spear-
man’s rank correlation. Correlation values for each
dimension and each data source are shown in Fig-
ure 1 (full correlation matrices in Appendix D).

We begin by observing that the adjectives,
elicited at the same time as the scales, are gen-
erally good (though not perfect) at approximating
the scale values, and that our POLAR model is, in
most cases, more effective than the word-counting
approach at associating the adjectives with the scale
values (first and second rows of Figure 1). One ex-
ception to both of these observations occurs in the
case of Assertiveness, where our model achieves a
correlation of only 0.53 with the scale values. As
an example, we examine the data for farmers, the
group ranked lowest on Assertiveness in the scale
data, but second-highest in the adjectives data. The
main underlying cause of the divergence seems
to be that annotators interpreted the “Assertive”
trait rather narrowly, as being pushy or demand-
ing. However, when we look at the adjectives,
many people mentioned words like hard-working
or strong, which are also associated with Assertive-
ness in our model. As a result, farmers are rated
higher than most other groups on this dimension.

Moving on to the free-text data sources, we ob-
serve that some dimensions are estimated more
consistently across data sources. Morality in par-
ticular shows very high correlation across all data
sources. Whether someone is judged as friend or
foe, good or bad, has evolutionary significance and
forms the basis of many of our social interactions
(Fiske et al., 2007). Therefore it is not surprising
that many of the data sources mention morality-
related traits (more on this in Sec 4.2) and tend to

agree on the direction and relative magnitude of
those traits for different groups.

The estimates for Sociability show a somewhat
different pattern, with the ChatGPT achieving a
moderate correlation of 0.56, and Stereoset some-
what lower at 0.43. In the case of the Twitter data
however, the correlation with the scales is actually
negative. There are many possible explanations for
this, stemming from the heterogeneity and diver-
sity of topics in the Twitter dataset. For example,
the scales rate nurses as high-Sociability and ac-
countants as low-Sociability. Many of the tweets
expressing low-Sociability traits in nurses are writ-
ten in the context of the COVID-19 pandemic, such
as Nurses are frustrated and tired or Nurses are
not ok!. Conversely, some of the tweets expressing
high Sociability for other groups are likely sarcas-
tic, e.g. Accountants are super fun haha. In Sec 4.3,
we perform topic modelling to disaggregate the dif-
ferent topics so they can be examined separately.

Considering now Assertiveness and Ability,
sometimes considered two facets of a single dimen-
sion “Competence,” we again observe a divergence
in the results, with Ability estimates being more
highly correlated with the scale ratings for all data
sources except Stereoset. This may be an artifact of
our particular dataset, as the Ability dimension is
particularly relevant in the context of occupations.
We also observe that in the Twitter data, groups
with high Assertiveness on the traditional scales
are often criticized as being ineffectual, e.g. All
politicians are spineless.

For Beliefs, all data sources have only moderate
correlation with the scales. In fact, Nicolas et al.
(2022) found that very few of the spontaneously
produced adjectives (around 5%) carried informa-
tion about the Beliefs dimension. The data gen-
erated by ChatGPT has the best correlation score
of the free-test data sources, specifically labelling
accountants, bankers, and farmers as conservative.

Finally, the Status dimension shows reasonably
high correlation between the scales and the text
data. Again, this may be related to the fact that all
of our target groups are based on occupation: in all
data sources, we observe statements about CEOs
and lawyers being rich, and teachers and nurses
being underpaid.

4.2 Prevalence of Each Dimension

We now analyze how many of the texts in each
dataset are directly relevant to each dimension. Un-
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Figure 2: The proportion of text instances assigned an
absolute value greater than 0.5. for each dimension.

like in the scale-based paradigm, there may be
certain dimensions that simply are not mentioned,
leading to difficulties in generating an accurate es-
timation. This is related to Nicolas et al.’s concept
of representativeness (Section 2), except that we
calculate it over all groups (for the results separated
by group, see Appendix E).

Figure 2 shows the proportion of texts in each
dataset that are assigned an absolute value greater
than (or equal to) 0.5 on each dimension.6 As hy-
pothesized in the previous section, many of the
sentences express Ability judgments, as expected
when discussing groups based on occupation. The
Morality dimension is mentioned quite often, con-
sistent with the findings of Nicolas et al. (2022). A
very small proportion of texts are relevant to the
dimension of Beliefs, in all datasets.

However, we note that the trends do look dif-
ferent when considered on a group-by-group basis
(Fig D.1). For example, Morality is mentioned
in a much higher proportion of texts about politi-
cians. Similarly, the Status dimension is described
more frequently in texts about CEOs, bankers, and
lawyers. The Ability dimension is the most preva-
lent dimension when discussing scientists, engi-
neers, and accountants, while for teachers we ob-

6The threshold of 0.5 was chosen based on the validation
set data, where it was observed that a score of 0.5 roughly
differentiated the words associated with each dimension from
words associated with other dimensions.

Group Mor. Soc. Abil. Ass. Bel. Stat.
Politicians -0.60 0.17 -0.11 0.50 0.08 0.43
Teachers 0.56 0.53 0.46 0.30 0.26 -0.30
CEOs -0.14 0.13 0.50 0.64 0.23 0.73
Scientists 0.48 0.04 0.81 0.49 -0.19 0.21
Bankers -0.20 0.10 0.40 0.43 0.39 0.59
Accountants 0.29 0.02 0.59 0.32 0.43 0.22
Engineers 0.48 0.15 0.86 0.44 0.19 0.49
Farmers 0.60 0.36 0.46 0.23 0.63 -0.43
Lawyers -0.47 -0.09 0.50 0.60 0.20 0.64
Nurses 0.56 0.57 0.69 0.40 0.23 -0.16

Table 2: Dimension estimates for each group, from the
scale data, with most salient dimensions in boldface.

serve that Ability and Sociability traits are men-
tioned equally often. The Belief dimension is
brought up slightly more in texts about farmers
(often described as being conservative).

4.3 Topic Modeling

As we have seen in Section 4.1, our estimates of
relevant psychological dimensions from text do not
perfectly reproduce those obtained through tradi-
tional survey-based methods. However, the survey-
based methods also have limited interpretability.
For example, Nicolas et al. (2022) found in their
original study that the limited set of dimensions
did not always align well with people’s perceptions
of groups. When annotators were asked, “Which
of the following characteristics fits best what you
meant by [response]?” and given a choice of di-
mensions (Assertive, Friendly, etc.), “No Match”
was actually the most common response. So when
forced to make a choice, the annotators might rate
politicians as being Sociable (because they are
charismatic), but it doesn’t really mean the same
thing as rating nurses as highly Sociable (because
they care deeply about other people). Therefore,
in this section, we propose to use natural language
resources as complementary data to explain and
differentiate between the ratings obtained on the
six-dimensional scales.

Our procedure is as follows: for each group, we
defined the most ‘salient’ dimensions of the group
stereotype as those dimensions with an average
absolute scale-based estimate of 0.5 or greater (cor-
responding to an average response on the original
survey of less than 2/5, or greater than 4/5). These
dimensions are indicated with boldface in Table 2.
We then seek to provide evidence, or further elu-
cidation, of those dimensions by examining the
topics arising in the free-text data sources.

For the topic modelling, we employ BERTopic
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(Grootendorst, 2022), which uses the HDBSCAN
clustering algorithm to remove outliers and concen-
trate on the most densely populated areas of the em-
bedding space. This aligns with our understanding
of stereotypes as being widely-held beliefs, rather
than idiosyncratic opinions about a group.

Here, we want to find those topics that help ex-
plain the rating scales. Therefore, we then compute
the centroid of each topic in the sentence embed-
ding space, and then project the centroid down to
the six-dimensional space using the same POLAR
model. This allows us to compare the topics along
the same dimensions as the rating scales.

We do not expect any single topic to be relevant
to all six dimensions simultaneously; rather, we
examine one dimension at a time, focusing on the
most salient dimensions for each group (as defined
above). For a given dimension, we first select all
topics where the centroid projection has the same
sign as the scale-based score. If there are multiple
topics, we rank them according to their centroid
projection along that dimension and keep the top
three topics (i.e., three most positive or most nega-
tive) to analyze. These topics should be the most
relevant to understanding why the group would be
rated as they were along that dimension. Extended
results are given in Appendix F, but we consider
several illustrative cases in Table 3:

Differentiating similar groups One way that the
text data can be useful is to provide information
that differentiates groups that are similarly ranked
along a given dimension. For example, scientists,
CEOs, and nurses all have high Ability as a salient
dimension. However, by examining the text data,
we observe qualitative differences in what aspects
of Ability stereotypically apply to each group (Ta-
ble 3, Examples 1–3).

Increasing specificity of a stereotype In other
cases, even within a particular group, looking at the
text data gives a much more specific interpretation
of the stereotype. In Example 4 in Table 3, we
see that the stereotype of politicians as being low-
Morality has a more precise interpretation: i.e.,
politicians are specifically seen as corrupt.

Different responses to stereotypes In other
cases, even when there is agreement on the rel-
evance of a dimension in the scale-based data, the
text data can reveal different interpretations of that
value. In Example 5 (Table 3), we see that teachers
are rated as high-Morality. The related topic in the

StereoSet data portrays this as kindness, while the
high-morality topic in the ChatGPT data describes
teachers as strict and concerned with discipline.

Finally, we briefly consider the set of topics not
included in the above analysis; that is, those topics
which are not strongly associated with one of the
salient dimensions. As Nicolas et al. (2022) argue,
not all of our social judgements are captured by the
dimensions typically studied in social psychology.
Aspects of social judgement not directly captured
in the six dimensions used here include appearance,
gender, and ethnicity, among others.

Table 4 shows examples of some common stereo-
types which appear in the text data and are surfaced
by the topic modelling, but are not identified with
a salient dimension in Table 2. In Example 1 we
see the stereotype that nurses are always women,
as well as the associated stereotype of the “sexy
nurse.” In Example 2, in contrast, we see that
scientists are stereotyped as being male. In that
example, as well as in Example 3, we also see the
stereotype that scientists and engineers are “nerdy.”
Nicolas et al. (2022) identified Appearance as one
factor orthogonal to the original scales, and we find
some evidence for a stereotype of bankers as be-
ing sharply dressed (Ex 4). More concerning, the
Stereoset and Twitter data also reveal the offensive
stereotype that all bankers are Jewish (Ex 5).

While we have presented only a handful of ex-
amples, many of the stereotypes in Table 4, which
are not visible in the scale-based data, are arguably
more harmful than those summarized in Table 3.
Thus the information available in the free text re-
sponses provides a valuable and complementary
perspective on how certain groups are stereotyped.

5 Conclusion

We conducted a comparison of stereotypes of 10 oc-
cupational groups across traditional survey-based
data and various text sources. The answers to
our research questions are summarized as follows:
(1) While our computational analysis of the text
data does not perfectly replicate the scale data, cer-
tain dimensions (e.g., Morality and Status) could
be consistently estimated, with correlation values
greater than 0.5 across all text sources. (2) This
finding may be partially attributed to the fact that
not all dimensions are mentioned spontaneously
in the data sources we considered: in particular,
adjectives and statements relating to the Beliefs
dimension were infrequent. (3) Following from
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Group Dim. Scales Adjectives StereoSet ChatGPT Twitter
1 Scientists Ability 0.81 thoughtful,

observant,
careful

the scientist who devel-
oped this formula must
have been smart

scientists are intelligent
and analytical

scientists are usually in-
herently sane and intel-
ligent

2 CEOs Ability 0.50 savvy, cun-
ning

he was ruthless and cun-
ning

CEOs are strategic and
decisive

CEOs are important to a
business

3 Nurses Ability 0.69 hard-
working,
tending,
caring

a nurse has to be sup-
portive to do their job
well

nurses understand the
physical and emotional
needs of patients

nurses are essential to
effective health care

4 Politicians Morality -0.60 sneaky, sly,
lying

known for being corrupt politicians are corrupt
and dishonest

all politicians are cor-
rupt at some level

5 Teachers Morality 0.56 loyal, pa-
tient, strict

she was kind and main-
tained order in class

strict disciplinarians
who enforced rules

these people are never
inappropriate, abusive
or violent

Table 3: Example stereotype words and sentences extracted using the topic modelling approach, associated with
highly-salient dimensions in the scale-based data.

Group Adjectives StereoSet ChatGPT Twitter
1 Nurses female,

women,
girls

she had a very short skirt
while changing the iv

nurses are primarily fe-
male

nurses are the sexiest women alive

2 Scientists male he was middle aged man and
was socially awkward

historically, there have
been stereotypes associ-
ated with gender

cause scientists are all male and
lonely

3 Engineers awkward,
nerdy, shy

geeks who are not good at
social interaction

engineers are “nerds” or
“geeks”

engineers are so weird

4 Bankers shoes,
suits, well-
dressed

he wears a crisp suit and
makes a lot of money

bankers are always
wearing suits

(none)

5 Bankers (none) the person was a Jewish man (none) the left always assumes bankers are
exclusively Jewish

Table 4: Example stereotype words and sentences extracted using the topic modelling approach, which are associated
with traits not easily mapped to the six dimensions previously considered.

this, the scale data do contain important informa-
tion not available in the text data, as participants
are required to make a judgement for each dimen-
sion. However, the natural language data sources
also contain useful information not available in
the scale-based data, distinguishing between differ-
ent groups that were rated similarly along a given
dimension, and increasing the specificity of the
stereotypes. In particular, topic modelling revealed
specific beliefs about groups that were not captured
by the abstract, high-level, numerical responses.
Free text responses were able to distinguish be-
tween different groups that were rated similarly
along a given dimension, and increase the speci-
ficity of the stereotypes.

Deepening our understanding of stereotypes
can help in the development of effective counter-
strategies. The work presented in this paper can
support these goals in a number of ways. For ex-
ample, if we consider the ratings of scientists and
engineers on the scale-based data, it is not entirely
clear what an appropriate counter-example should
be (a scientist with low morality and low ability?).

However, the natural language data helps surface
the more specifically harmful stereotype that scien-
tists are all male and anti-social. Challenging that
aspect of the stereotype is more likely to be effec-
tive at increasing women’s participation in science.
At the same time, the scale-based data may provide
information that is “hidden” in the social media
data, such as the stereotypical idea that most farm-
ers are religious and politically right-wing. This
type of information, although essential in gaining
a broader understanding of stereotypes, does not
tend to be explicitly stated on social media. We
also observed that the scale-based data, as well as
the ChatGPT data, do not clearly communicate ex-
tremely negative or offensive stereotypes – even
though these should be the highest priority for miti-
gation. Therefore, understanding the strengths and
weaknesses of the information available in differ-
ent datasets can have important real-world impli-
cations. Furthermore, future work could examine
how the data from unconventional sources, such as
social media or ChatGPT, may be used to augment
more traditional sources, such as lexicons.
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Limitations

In this study, we focused on English-language re-
sources only. Further, the collected stereotypes
in these resources (survey-based rating scales and
word lists, StereoSet) may only be common in the
North-American culture. Twitter has a biased de-
mographic representation of users, with most users
residing in the U.S. For a fair comparison, we also
constrained the ChatGPT responses to the North-
American context. Future studies should expand
the language and cultural range of stereotype in-
formation, although data unavailability may pose a
significant barrier.

We examined ten social groups based on occu-
pation since they were common in all the consid-
ered data sources. However, stereotypes targeting
groups based on other characteristics, such as gen-
der, ethnicity, or socio-economic status, are also
prevalent in online and offline communications and
may result in severe consequences for the groups
and the society at large. Future work should include
a wide variety of social groups to investigate how
well the results can generalize across the groups.

While social media presents a valuable data
source for studying people’s opinions and track-
ing common beliefs, the sheer volume of these
data requires computational tools to process the
data efficiently. In this study, we applied unsu-
pervised topic modeling, but other unsupervised,
semi-supervised, and supervised techniques should
be explored and evaluated in this context and may
result in different findings. Also, topic modeling
and clustering methods tend to be sensitive to pa-
rameter settings, and re-running the analysis with
different parameters may lead to different results.

Finally, the stereotype information in the dif-
ferent data sources was obtained from different
population samples, each of which introducing its
own sampling bias. Since for most data sources the
information was collected as stereotypical beliefs
common in the society (as opposed to individuals’
beliefs), we expect the effects of sample bias to
be small. Still, this may have contributed to the
observed differences in findings. Complementary
use of several data sources may provide a fuller and
less biased view.

Ethics Statement

While collecting stereotype data is a necessary step
in studying stereotyping, such resources could inad-
vertently propagate harmful beliefs or be misused

by adversaries to target vulnerable populations. An-
other open issue is how to counter stereotypical
beliefs and mitigate their negative effects. There
is a tension between the right to free speech and
respect for equality and dignity. Rigid prohibitive
mechanisms (e.g., banning any stereotype informa-
tion from public view) would likely be ineffective.
Counter-strategies should work towards weakening
stereotypical associations and emphasize the fact
that individuals do not neatly fit in boxes prescribed
by their demographic characteristics.
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A Stereotype Dimensions

We consider the same 6 psychological dimensions
of stereotyping as Nicolas et al. (2022), to enable
comparison against the ratings of the annotators
in that study. These dimensions are: Sociability,
Morality, Ability, Assertiveness, Status, and Beliefs.
The dimensions are based on previous theories in
the social psychology literature. Fiske et al. (2007)
present the Stereotype Content Model (“SCM”),
which posits that the two primary dimensions of
stereotype content are Warmth and Competence.
Sociability and Morality are two facets of Warmth,
and Ability and Assertiveness are two facets of
Competence. Koch et al. (2016) present a differ-
ent, three-dimensional theory of stereotype content
known as the “ABC Model,” where A = Agency,
B = Beliefs, and C = Communion. While Com-
munion is similar to the concept of Warmth, the
other two dimensions diverge from the SCM, with
Agency being related to socioeconomic Status, and
Beliefs capturing progressive versus conservative
values. To compare the SCM and ABC models,
Nicolas et al. (2022) included all 6 distinct dimen-
sions, as did we in the current work.

In the instructions to annotators, Nicolas et al.
(2022) define the dimensions with adjectives, as
shown in Table A.1. Additional information for
each dimension is as follows:

• Sociability: friendliness, likability; “pertains
to cooperation and to forming connections
with others” (Brambilla et al., 2011)

• Morality: fairness, honesty, trustworthiness;
“ being benevolent to people in ways that fa-
cilitate correct and principled relations with
them by the adherence to ethics and important
social values” (Abele et al., 2016)

• Ability: capability, intelligence, competence;
relating to the capability to achieve goals (sep-
arately from the motivation to actively pursue
those goals) (Abele et al., 2016)

• Assertiveness: ambition, confidence, active-
ness; related to the motivation to achieve goals
(separately from the ability to do so) (Abele
et al., 2016)

• Beliefs: measured across a continuum
from progressive/liberal/modern to conser-
vative/traditional; can encompass political
as well as religious beliefs; “conservative-
progressive beliefs are informative of main-
stream society’s views about a group’s inten-
tion to preserve versus change the status quo”

(Koch et al., 2016)
• Status: related to power, wealth, dominance,

and social standing (Koch et al., 2016)
To give a few examples, society might stereo-

type a CEO as being intelligent (high-Ability),
competitive (high-Assertiveness), right-wing (high-
Beliefs), wealthy (high-Status) while at the same
time uncaring (low-Sociability) and willing to cheat
to get ahead (low-Morality). In contrast, an Asian
high-schooler might be stereotyped as very smart
(high-Ability) and honest (high-Morality), but pas-
sive (low-Assertiveness) and shy (low-Sociability).
Some dimensions are more salient for certain social
groups, as described in Appendix E below.

B POLAR Model

The following method is adapted from the POLAR
framework introduced by Mathew et al. (2020).

Suppose we want to transform from the orig-
inal sentence embedding space E, |E| = D, to
the reduced embedding space E′, |E′| = D′, with
D′ < D.

In general, for each dimension d ∈
{1, 2, ..., D′}, we define the set of Nd+ sentences
associated with the positive pole of that dimension
as Pd+ = {p1d+, p2d+, ..., p

Nd+

d+ }, and a set of Nd−
sentences associated with the negative pole of
that dimension as Pd− = {p1d−, p2d−, ..., p

Nd−
d− }.

We obtain the POLAR directional vector for that
dimension as follows:

−−→
dird =

1

Nd+

Nd+∑

i=1

Vpid+
− 1

Nd−

Nd−∑

i=1

Vpid−
(1)

where Vs represents the vector representation of
the sentence s in the embedding space E.

The set of POLAR direction vectors are then
stacked to form dir ∈ RD′×D, which represents
the change of basis matrix for the new reduced-
dimensional embedding subspace E′. In the new
subspace, a sentence s is represented by V′

s, which
is calculated using the following linear transforma-
tion:

V′
s = (dirT )−1Vs (2)

Each dimension in E′ can now be interpreted in
terms of the polar opposites used to define

−−→
dir1,−−→

dir2, ...
−−−→
dirD′ .

Here, we transform from a high-dimensional
RoBERTa sentence embedding space (D = 1024),
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Dimension Positive Negative
Sociability friendly, sociable unfriendly, antisocial
Morality trustworthy, honest untrustworthy, dishonest
Ability competent, skilled incompetent, unskilled
Assertiveness confident, assertive meek, submissive
Beliefs conservative, traditional liberal, modern
Status high-status, wealthy low-status, poor

Table A.1: Adjectives used to define the poles of each dimension. Each adjective was embedded in the sentence
template These people are always <ADJ>.

to a six-dimensional space, interpretable in terms of
six psychologically-defined dimensions (D′ = 6).

To define our six-dimensional model, we use 12
sets of seed words, each set containing two adjec-
tives (Nd+ = Nd− = 2 for d = 1, 2, 3, 4, 5, 6).
The adjectives representing the positive poles of
each dimension are taken from Nicolas et al. (2022).
They are the same adjectives that the annotators
saw when filling out the rating scales. For the set
of adjectives defining the negative poles, we use
the direct antonyms of the positive adjectives. See
Table A.1 for the full set of adjectives used. Since
we want a model that operates on the sentence
level, each adjective is inserted in the sentence tem-
plate These people are always <ADJ>. The
sentences are then represented as sentence vectors
using the 1024-dimensional RoBERTa embedding
model, and the change of basis matrix is calculated
according to the above.

C Validation Experiments

As a preliminary step to confirm that the POLAR
model is capturing the expected information and to
select the best parameters, we run a series of small
experiments. Briefly, we use lexicons available
from Nicolas et al. (2021) to create a validation set
of words that should be associated with each dimen-
sion. These lexicons were created by hand, based
on the existing literature in social psychology.

We then experiment with various parameters re-
lating to the dimensionality reduction. Following
Fraser et al. (2022), we consider the options:

• No dimensionality reduction
• Principal Components Analysis (Gewers et al.,

2021), optimizing the number of dimensions
between 10-100

• Partial Least Squares (Rosipal and Krämer,
2005), optimizing the number of dimensions
between 10-100

We considered two evaluation criteria: (1) High

accuracy (percentage of times a word was correctly
associated with either the positive or negative di-
rection of the salient dimension), (2) Low correla-
tion between dimensions (while we expect some
correlation between the dimensions, the POLAR
model should represent them as separate, distinct
concepts). Fortunately, the setting with the highest
accuracy also resulted in the lowest correlation, and
so in what follows we use the model with Partial
Least Squares applied to reduce the embedding size
to 30. This led to an average accuracy of 95% on
the validation set, and a mean absolute correlation
between the dimensions of 0.13.

We did not optimize the choice of word embed-
dings, as extensive exploration was previously doc-
umented by Fraser et al. (2022), and we use the
RoBERTa-NLI embeddings7 that they found to be
optimal across multiple functional test cases.

D Correlations between Datasets

Figure C.1 shows the full correlation matrices for
each dimension. In general, no unexpected patterns
emerge. The two methods of processing the adjec-
tives (our computational method and simple word-
counting) tend to be correlated with each other, and
the filtered and unfiltered Twitter datasets tend to
be correlated with each other. Stereoset and Chat-
GPT (i.e., human and machine-generated stereo-
type sentences) are highly correlated (ρ > 0.5)
for all dimensions except for Ability. The correla-
tions between different datasets are almost always
positive, with the notable exception of Sociability
estimates based on Twitter, as discussed in the main
text.

E Representativeness

In contrast to scale-based measures collected us-
ing a forced-choice methodology, when people are

7https://huggingface.co/sentence-transformers/
nli-roberta-large
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(a) Morality (b) Sociability

(c) Ability (d) Assertiveness

(e) Beliefs (f) Status

Figure C.1: Spearman rank correlations between estimates from each of the data sources, for each dimension.
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generating spontaneous, free-text responses, they
can choose which dimension(s) to focus on for any
given group. This choice provides additional in-
formation about what stereotype dimensions are
seen as being most relevant to each group. Nico-
las et al. (2022) defined this as representativeness:
“the prevalence of a stereotype dimension in per-
ceivers’ spontaneous beliefs about a social group.”
Here, we operationalize this as the proportion of
text samples that are assigned an absolute value
greater than 0.5 along a given dimension.8 In the
main text, we computed this proportion over all
groups, and called it prevalence, with the goal of
understanding more generally how many text sam-
ples make strong statements about the different
dimensions. Here, we calculate the proportion per
group, and thus call it representativeness, as it now
captures the information about how representative,
or important, any given dimension is perceived as
being when describing each target group.

The values are shown in Figure D.1. Briefly, we
observe that over 50% of the data in the adjectives
dataset, Stereoset, and ChatGPT make statements
about politicians’ morality. This suggests that when
people think about stereotypes of politicians, one of
the first things they think about is their (im)morality.
From a computational perspective, it also means
our estimates of that dimension are based on a
much larger dataset than our estimates for the other
dimensions.

In contrast, for teachers, we see a more even
distribution across the different dimensions. Still,
dimensions like Assertiveness and Beliefs are more
sparsely represented. CEOs have Morality and
Ability as the most representative dimensions, with
Status also mentioned 10-20% of the time. Scien-
tists, accountants, engineers, farmers, and nurses
all have Ability as the most representative dimen-
sion. For nurses, Sociability traits are also men-
tioned more often than for other groups.

Figure D.1 also shows that some data sources are
more extreme in their representativeness values. In
particular, the adjectives, Stereoset, and ChatGPT
(all of which were collected by explicitly asking for
stereotype information) have more extreme values,
while the Twitter data is more uniformly distributed
across dimensions. This reflects the more general
nature of the Twitter data.

8The threshold of 0.5 was chosen based on the validation
set data, where it was observed that a score of 0.5 roughly
differentiated the words associated with each dimension from
words associated with other dimensions.

F Topic-Modelling Results

BERTopic is available to install at https://
maartengr.github.io/BERTopic/index.html.
We used v0.13.0. For simplicity, we used the
default parameters as much as possible.

We use the RoBERTa-NLI pre-trained embed-
ding model, as mentioned in Appendix C. For
the vectorizer model, we used the scikit-learn
CountVectorizer method, removing English stop-
words and ignoring terms that appear in less than
1% of the sentences (min_df = 0.01). To ensure
reproducibility, we set random_state = 42 in the
UMAP model. For the HDBSCAN clustering al-
gorithm, we specified the min_samples = 1, to
promote less-conservative clustering.9 Since we
don’t know a priori how many topics to expect
for each group, we set nr_topics = ‘auto’. For
all the other parameters, the default settings of the
BERTopic package were used.

G Data Licensing for Existing Datasets

The data associated with Nicolas et al. (2022) is
freely available on the Open Science Framework:
https://osf.io/74rax/. The OSF Terms of Use
permit public data to be used for a wide range of
non-commercial and commercial uses.

The StereoSet data is available here: https://
huggingface.co/datasets/stereoset with Li-
cense CC-BY-SA 4.0.

The Nicolas et al. data was collected with the
intention of studying stereotypes. The StereoSet
dataset was collected for the purpose of measur-
ing stereotypical biases in language models. We
believe our present research is in line with these
purposes.

H ChatGPT Dataset

The CSV file containing the pre-processed text is
available by contacting the authors.

I Twitter Dataset

The Twitter data was collected in November 2022,
under an approved Academic Project on the Twitter
developer portal. This was prior to the removal of
the Research API and the introduction of a pay-
wall in April 2023. Unfortunately, due to Twitter
Terms of Service, we cannot redistribute the Twitter
dataset.

9https://hdbscan.readthedocs.io/en/latest/
parameter_selection.html
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Figure D.1: The proportion of text instances assigned a value greater than 0.5, for each group, dimension, and data
source.
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Abstract
Polysemes are words that can have different
senses depending on the context of utterance:
for instance, ‘newspaper’ can refer to an organi-
zation (as in ‘manage the newspaper’) or to an
object (as in ‘open the newspaper’). Contrary
to a large body of evidence coming from psy-
cholinguistics, polysemy has been traditionally
modelled in NLP by assuming that each sense
should be given a separate representation in a
lexicon (e.g. WordNet). This led to the current
situation, where datasets used to evaluate the
ability of computational models of semantics
miss crucial details about the representation
of polysemes, thus limiting the amount of evi-
dence that can be gained from their use.

In this paper we propose a framework to ap-
proach polysemy as a continuous variation in
psycholinguistic properties of a word in con-
text. This approach accommodates different
sense interpretations, without postulating clear-
cut jumps between senses. First we describe a
publicly available English dataset that we col-
lected, where polysemes in context (verb-noun
phrases) are annotated for their concreteness
and body sensory strength. Then, we evaluate
static and contextualized language models in
their ability to predict the ratings of each pol-
yseme in context, as well as in their ability to
capture the distinction among senses, revealing
and characterizing in an interpretable way the
models’ flaws.

1 Introduction

The meaning of individual words taken in isolation
can look unambiguous. Take for instance the word
book. If encountered on its own, it evokes the im-
age of an object made of sheets of paper bound
together. However, when put in context, such as in
the phrase ‘explain the book’, it clearly does not re-
fer to that same concrete object - rather, it denotes
its immaterial, abstract content. A word like book
is called a polyseme (Falkum and Benito, 2015; Vi-
cente and Falkum, 2017; Haber and Poesio, 2023).

Polysemes are easily understood when contrasted
with monosemes (words with only one possible
interpretation, like leaf ) and homonyms (words
that can that can take two completely unrelated
interpretations, like bat): polysemes can take dif-
ferent interpretations - also called senses - which
are related among them and that follow patterns
that also apply to other words (so-called regular
polysemy; Apresjan, 1974). In the case of book,
for instance, the pattern is an alternation between
a concrete object and an abstract meaning, which
also characterizes other words like newspaper or
painting.

In computational linguistics and Natural Lan-
guage Processing (NLP), a large body of work has
looked at polysemy. Mainly, the aim is that of
finding out to what extent the distinctions between
different senses can be captured by current mod-
els - either with a theoretical focus (Erk and Padó,
2010; Boleda et al., 2012; Del Tredici and Bel,
2015; Lopukhina and Lopukhin, 2016; Garí Soler
and Apidianaki, 2021; Haber and Poesio, 2021; Li
and Armstrong, 2023) or in applied tasks (word
sense disambiguation Navigli, 2009; Bevilacqua
et al., 2021; Loureiro et al., 2021 and induction
Agirre and Soroa, 2007; Manandhar et al., 2010;
Lau et al., 2012; Eyal et al., 2022). However, as
pointed out in McCarthy et al. (2016); Haber and
Poesio (2023), a fundamental conceptual limitation
has characterized approaches to polysemy in NLP
so far. Namely, they have (almost) exclusively as-
sumed a traditional view of polysemy, the so-called
sense enumeration view (Katz and Fodor, 1963),
which has been shown to afford only limited ex-
planatory power. According to this theory, each
sense of a polysemous word like book should be
given a separate, dedicated representation – like the
meanings of distinct words like leaf and curtain.
This is the way in which knowledge graphs like
WordNet (Miller, 1995) or BabelNet (Navigli and
Ponzetto, 2012), the resources that are most typ-
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ically used as the golden standard for polysemy
in NLP, are structured: for book, we find mul-
tiple entries - e.g. <noun.communication> and
<noun.artifact>. However, this view is challenged
from a large body of work in cognitive psychology
and psycholinguistics. Experimental approaches
have rather proposed the so-called one represen-
tation view of polysemous nouns: different senses
are not assumed not to be represented differently,
but just to be different aspects or facets of the same
semantic representation (among others, Klepous-
niotou, 2002; Rodd et al., 2004; Schumacher, 2013;
see Falkum and Benito, 2015; Haber and Poesio,
2023 for comprehensive reviews).

As a reflection of this theoretical gap, the
datasets typically used for the evaluation of com-
putational models of language at capturing poly-
semy are built according the sense enumeration
view. Lack of diverse evaluation approaches not
only leaves a large amount of potential evidence
untapped, but also obscures important insights that
could emerge by taking a different perspective.

We concur with McCarthy et al. (2016); Haber
and Poesio (2023) that, to investigate in depth the
ability of current computational models of semantic
to capture polysemy, it is necessary to go beyond
the sense enumeration view. To this aim, we pro-
pose to take a hybrid approach. We break down reg-
ularized patterns of polysemy – from the sense enu-
meration view – in terms of psycholinguistic vari-
ables like concreteness – inspired by the one rep-
resentation view. In this framework, the variation
happening when varying the interpretation of book
from <noun.artifact> to <noun.communication>
can be captured by observing that the second is
interpreted as a less concrete entity – which can
be further characterized as a reduction in manip-
ulability (touch) and readability (sight), possibly
accompanied by an increase in its audibility (hear-
ing). We build on previous work showing how hard
distinctions between senses emerge from (and are
contained by) complex representations of words
(Pustejovsky, 1991; Cruse, 1995; Ortega-Andrés
and Vicente, 2019). What we add is an explicit
specification (i.e. in terms of psycholinguistic vari-
ables) of how sense alternations in polysemy take
place. From previous approaches in NLP that rely
on similarities in latent vector spaces (Boleda et al.,
2012; McCarthy et al., 2016; Haber and Poesio,
2021), we retain the notion of using continuous
measures of similarity/distance – i.e. a ‘soft’ ap-
proach to senses: however, while dimensions of

language are not interpretable from a cognitive
point of view, ours are. Importantly, this frame-
work has been previously successfully applied to
model how the brain processes fine-grained lexical
meaning variations (Bruera et al., 2023). Since our
framework revolves around cognitively motivated
semantic features, it aims at fostering research con-
necting computational and cognitive models of lan-
guage – with the broader goal of allowing to gain
insights on how similar the two are, which is a
fundamental open question in the field (Antonello
and Huth, 2023; Beinborn and Hollenstein, 2023;
Golan et al., 2023; Kanwisher et al., 2023).

Starting from this theoretical approach, in the
current work we present two main contributions.
First, we describe how we created an original
dataset of examples of lexical polysemy. For each
polyseme, the dataset provides ratings provided by
human subjects in terms of concreteness and of
sensory strength (with separate ratings for sight,
hearing, touch, smell, taste) for phrases where the
different senses are evoked. Our dataset is care-
fully crafted by controlling for psycholinguistic
variables, with the aim of allowing its use both for
in silico and cognitive experiments.

Secondly, we evaluate static and contextualized
language models on their ability to predict the rat-
ings provided by humans and to distinguish among
different senses of polysemous words. We hypoth-
esized that contextualized language models would
consistently outperform static language models.
Our results confirm our prediction, but they also
show that there is large room for improvement in
overall accuracy for contextualized language mod-
els too - indicating that polysemy is still a challeng-
ing semantic phenomenon for language models to
capture.

We publish the dataset together with the code1.

2 Data

2.1 Overview of the dataset

We select a set of 25 polysemic nouns admitting
both an abstract and a concrete interpretation. Then,
for each noun we select two verbs that, when com-
bined with the noun in a verb-noun phrase, give rise
to an abstract (e.g. ‘explain the book’, ‘describe
the picture’, ‘know the medicine’) interpretation
and two that evoke a concrete (e.g. ‘open the book’,
‘carry the picture’, ‘swallow the medicine’) read-

1they can be found at this link: https://osf.io/nfcuq/
?view_only=9c7137bc88d543dbaaa17225cbfdef34
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Figure 1: Distribution of concreteness and sensory
strength ratings for the 100 verb-noun polysemic
phrases. Ratings (y axis) are normalized in the range 0-
1. As shown by the averages (horizontal coloured lines),
concrete phrases show higher concreteness and stronger
involvement of all types of sensory information.

ing of the noun. This is the process of so-called
‘sense coercion’ (Pustejovsky, 1991; Lauwers and
Willems, 2011) or ‘sense selection’, where verbs
make the interpretation of the noun go towards one
sense or the other (Klepousniotou, 2002). In this
way, phrases are equally divided into two mirrored
sets of abstract and concrete senses.

Finally, we collect a set of psycholinguistic rat-
ings for all of the nouns within each phrase. We
collect ratings for concreteness – the most relevant
cognitive dimension –and for the five body senses,
since sensory strength can better characterize vari-
ation in meaning than simple concreteness (Lynott
et al., 2020).

The main aim of this dataset is to fill a gap in
existing resources that can be used to evaluate NLP
models with respect to polysemy. Our hope is also
to foster further research along these lines, with
a strong focus on cognitive evaluation of compu-
tational models of semantics (Beinborn and Hol-
lenstein, 2023). Therefore, we wanted our stimuli
selection to be valid for further testing involving the
collection of behavioural and brain data. In such
studies, it is fundamental to control for experimen-
tal confounds which are not relevant for NLP mod-
els, but play an important role in human cognition.
Such confounds can be related to non-semantic,
low-level sensory properties of the stimuli (Hauk
and Pulvermüller, 2004; Laszlo and Federmeier,
2014; Dufau et al., 2015) or, within semantics, to
emotional processing (Kuperman et al., 2014; Hi-
nojosa et al., 2020).

In the following we will describe the stimuli
selection procedure in detail. A visualization of
the distributions of the ratings, directly comparing
abstract and concrete senses, is displayed in Figure
1.

2.2 Stimuli selection

2.2.1 Nouns

We selected the set of 25 polysemous nouns to be
used among the polysemes annotated in CoreLex
(Buitelaar, 1998). CoreLex is an annotation made
on top of WordNet (Miller, 1995) specifically cre-
ated for polysemy. In CoreLex, a number of pol-
ysemous nouns from WordNet are annotated ac-
cording to their polysemy pattern - e.g. annotating
with the same label all words that behave similarly
to ‘book’. For our purpose, the advantage of the
annotation provided by CoreLex is that it allows to
automatically isolate cases of polysemy where an
alternation of a concrete and an abstract sense is
present (cf. Boleda et al., 2012).

To extract the nouns, we therefore first looked
at the types of nouns present in CoreLex (e.g.
‘art’=‘artifact’ or ‘com’=‘informational content’;
so-called ‘Corelex basic types’). We anno-
tated them according to whether they referred
to ‘concrete’, ‘abstract’ or ‘other’ entities (where
‘art’=‘concrete’, ‘com’=‘abstract’). From this list,
we moved to the list of the polysemy classes
(‘CoreLex classes’), retaining only the classes
where an alternation of an abstract and a concrete
sense was present (e.g. a CoreLex class like ‘cae’,
where both a ‘art’ and a ‘com’ sense are found).
Finally, we chose our candidate nouns by taking
the nouns which were annotated in CoreLex as in-
stances of the selected polysemous classes - like
‘book’, which is a case of the CoreLex class ‘cae’.

In parallel, we computed word (lemma) fre-
quencies for the selected polysemous nouns from
UKWaC (Baroni et al., 2009), a corpus reflecting
general internet language use which has been val-
idated as a corpus for psycholinguistic studies in
previous work (Mandera et al., 2017). Since most
words occurred with very low frequencies in the
corpus, we selected as our candidate polysemes
only the top 10% most frequent nouns . Among
those, we tried to minimize variance in word length,
so as to minimize this possible confounding fac-
tor which has a strong impact on cognitive pro-
cessing (Hauk and Pulvermüller, 2004) . Given
that word concreteness correlates negatively with
word length (Reilly et al., 2017), we had to strike
a balance, avoiding short (whose majority would
be concrete) and long (overwhelmingly abstract)
words. Therefore, we chose as a criterion to con-
sider nouns between six and nine letters in length.
This left us with 571 candidate polysemous nouns.
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2.2.2 Verbs
Having thus reduced the set of polysemous nouns,
we moved on to select the verbs to be used to create
the phrases. We applied a procedure inspired by
recent work on predicting concreteness from distri-
butional semantics models (Bhaskar et al., 2017).
First, we took the 40000 concreteness ratings for
English words from (Brysbaert et al., 2014). Then,
we filtered this list, considering only words whose
most common POS was that of verb. To do so we
used a corpus-based measure of POS prevalence
provided by the same authors (Brysbaert et al.,
2012). Then, to find verbs eliciting the concrete
senses of the polysemes, we took the 1000 most
concrete verbs; for the abstract senses, we took
the 1000 least concrete verbs. We decided, here
again, to reduce the variance in word length for the
verbs. However, we kept a wider variance range
(4-8 letters, extremes included), considering that
we could balance length when choosing the final
phrases. After this selection step, the number of
concrete verbs was 811, and of abstract verbs 571
(incidentally, the same number of nouns retained
from CoreLex).

2.2.3 Verb-noun phrases
Then we looked for the selected verbs’ frequen-
cies of co-occurrence with the polysemous nouns
within the UKWaC corpus. The aim was that of
obtaining a measure of the frequency of occurrence
of each of the potential verb-noun phrases, so as
to balance them for frequency across abstract and
concrete senses. To do so, we exploited the POS
annotation provided by UKWaC. We adapted the
procedure already validated by Bruera et al. (2023)
to extract verb-noun phrase mentions from corpora
to be used with language models. We thus con-
sidered as relevant verb-noun co-occurrences (i.e.
mentions of phrases) only cases where the (lem-
matized) verb preceded the (lemmatized) polyse-
mous noun, within a window of three words to the
right (to be able to consider cases such as “open
an old book”, where the linear distance in words
between the verb and the noun is three). Then, for
each polyseme, we retained the 100 abstract and
100 concrete verbs that co-occurred the most with
it. Finally, we proceeded to manually select the
twenty-five nouns for which we could find clear
cases of sense selection for two verbs and two
nouns, thus obtaining the final set of 100 stimuli.
We adjusted iteratively our choices so the resulting
phrases did not differ statistically across abstract

and concrete senses along relevant psycholinguis-
tic variables. As statistical tests we used t-tests;
reported p-values are not corrected for multiple
comparisons - corrected p-values would be even
more conservative. All differences among concrete
and abstract phrases are not statistically significant.
Since the nouns were the same in both conditions
(abstract and concrete), for most variables it was
enough to look at the verbs - the main exceptions
being phrase frequency (p = 0.952) and phrase
length (p = 0.79). Regarding verbs, we checked
that no difference in valence (p = 0.298), arousal
(p = 0.103), dominance (p = 0.769) was statis-
tically significant, using the norms provided by
(Warriner et al., 2013). Additionally, difference in
frequency for concrete and abstract verbs is also not
significant (p = 0.0687). By contrast, statistically
significant differences between verbs emerge, as
required by design, in concreteness (p < 0.0001).

2.3 Concreteness and sensory strength ratings
Given the 100 phrases selected following the pro-
cedure reported above, we then collected from 25
human volunteers ratings for concreteness and sen-
sory strength in all of the five body senses. Sen-
sory strength norms capture more precisely what
drives the sense alternation in terms of semantic
variables (e.g. the case of book can be explained in
terms of variation in sight and touch, but no taste
is involved). Participants were recruited among
the communities of the authors’ university depart-
ments, which are located in the same anglophone
country. We did not require participants to be na-
tive speakers of English. Twenty-five (25) subjects,
between 18 and 40 years of age, took part as volun-
teers to the rating experiment after giving their writ-
ten consent. In the rating experiment, subjects were
presented one by one with all of the 100 phrases,
and asked to rate on a Likert scale from 1 to 5 how
concrete the polysemous noun in that context was,
as well as its so called sensory strength (Lynott
et al., 2020). Before starting the experiment, partic-
ipants were provided with an explanation for each
variable, taken from previous rating experiments
(Scott et al., 2019; Lynott et al., 2020) and with an
example.

The distributions of the resulting ratings are re-
ported in Figure 1. As it can be seen, the largest dif-
ference between distributions for concrete/abstract
senses is found for concreteness, sight and touch
(in all cases p < 0.0001), followed by hearing
(p = 0.0163). The difference is also statistically
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significant for smell (p = 0.00012) and close to
significance for taste (p = 0.083), however the rat-
ings for the nouns are in both cases always low
(averages after normalization: abstractsmell =
0.12, concretesmell = 0.198, abstracttaste =
0.088, concretetaste = 0.128).

We further compute the reliability of the scores
provided by the raters. As a measure of inter-
rater reliability we use the mean intra-class cor-
relation (ICC, Shrout and Fleiss, 1979), which
can take a value between 0 (random agreement)
and 1 (perfect agreement). This is the recom-
mended choice for cases like ours where multi-
ple raters provide a single non-nominal score for
the same set of items (Hallgren, 2012). We treat
subjects as random effects, thus we report what
is referred to as type 2 ICC, with 25 subjects –
in the terminology of Shrout and Fleiss (1979),
ICC(2, k = 25). When aggregating all types
of scores together (i.e. concreteness and all sen-
sory modalities), ICC = 0.945, indicating ex-
cellent agreement (the lower threshold for excel-
lence, according to the guidelines of Cicchetti,
1994; Hallgren, 2012, is ICC > 0.75). This
confirms that the measurements contained in our
dataset are reliable. To understand whether reli-
ability is affected by each of the sensory modali-
ties, we further compute the corresponding sepa-
rate ICC scores. We find that reliability is highest
for concreteness (ICCconcreteness = 0.924), touch
(ICCtouch = 0.913) and sight (ICCsight = 0.895.
ICCs are slightly lower, but still indicate excel-
lent agreement, for taste ICCtaste = 0.87, hear-
ing (ICChearing = 0.82) and smell (ICCsmell =
0.789).

3 Models

A fine-grained semantic phenomenon like poly-
semy has proven particularly challenging to capture
for language models. Older approaches (so-called
static language models; Bommasani et al., 2020),
were particularly unsuited to face its subtleties
(Camacho-Collados and Pilehvar, 2018). Static
language models learn fixed semantic representa-
tions for words, abstracted from specific contexts
of usage. This made it hard to successfully model
meaning of words in context - and consequently
context-dependent phenomena such as polysemy
(Schütze, 1998; Yaghoobzadeh and Schütze, 2016).
The more recent language models, called contextu-
alized language models (Rogers et al., 2021; Min

et al., 2023)), should be in principle better equipped
to face the challenge of polysemy. They are trained
to create semantic representations of words which
are context-specific. When focusing broadly on
NLP tasks requiring to consider contextual seman-
tic knowledge (e.g. natural language generation,
inference, relation classification), contexualized
models are clearly able to reach impressive perfor-
mance, outperforming static models (Lenci et al.,
2022). However, when zooming in through the lens
of extremely specific semantic knowledge such as
polysemy, synonymy, hypernymy and categoriza-
tion, the picture changes: contextualized models
appear to capture such phenomena only to a mod-
est extent, leaving much room for improvement
(Ravichander et al., 2020; Haber and Poesio, 2021;
Lenci et al., 2022; Haber and Poesio, 2023).

To provide a better picture with regards to this,
we use four models, including both static and con-
textualized language models (Lenci et al., 2022). In
the following we will briefly describe each model,
and how the vectors for the polysemous nouns in
context were extracted from each one of them. In
Appendix A we report an analysis measuring how
similar the representations are across the models:
the phrases that compose our dataset make notable
differences emerge across different types of models,
converging with our prediction and sense discrimi-
nation results (see Sections 5.1, 3, 4).

3.1 Baseline: count-based model
As a baseline model, we use a so-called count
model, following previous work on using distri-
butional models predicting concreteness ratings
(Bhaskar et al., 2017). We used the same window
size used for fasttext (Bojanowski et al., 2017) -
therefore we counted word co-occurrences within
a sliding window of ten words (five on the left
and five on the right of the target word). As train-
ing corpus we used UKWaC. To reduce computa-
tional effort, we tried to keep vector dimensionality
low by reducing the vocabulary size as done in
Bhaskar et al. (2017); Charbonnier and Wartena
(2019). Therefore, we reduced the vocabulary to
the top 20% most frequent words that appeared in
the concreteness norms of (Brysbaert et al., 2014),
which makes vectors have 5220 dimensions. As
is commonplace in the literature, we transform the
raw co-occurrence counts using Pointwise-Mutual
Information - therefore the model will be referred
to as count-pmi (Levy et al., 2015).

We modelled the meaning of the polysemous
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noun in the phrase by following the procedure vali-
dated in Bruera et al. (2023). It consists of adapting
the noun’s representation to the context by averag-
ing it with the representation for the verb. Averag-
ing was chosen because, despite its simplicity, it
has been shown to be a strong baseline to compose
the meaning of words both in NLP and in cognitive
neuroscience (Dinu et al., 2013; Wu et al., 2022).
We first extracted the pre-trained vector representa-
tions for each verb and noun present in the set of
stimuli. Then, each phrase’s vector representation
was obtained by averaging the vectors for the verb
and the noun.

3.2 fasttext

As a static model, we chose fasttext, using the
pre-trained version for English, which is publicly
available (Bojanowski et al., 2017; Grave et al.,
2018). This version was trained on a combination
of Common Crawl and Wikipedia and has 300-
dimensional vectors. We extract word vectors for
all nouns and verbs and create a phrase-specific
representation for each noun as described for count-
pmi.

3.3 ConceptNet Numberbatch

As discussed above, senses for polysemous are
annotated explicitly in graph-based resources like
WordNet. In recent years, ways to integrate graph-
and vector- based approaches to semantic repre-
sentation have been devised. To evaluate how the
explicit knowledge about senses encoded in graph-
based models can help language models, we used
ConceptNet Numberbatch (in the following, num-
berbatch; Speer et al., 2017). Numberbatch is
a widely used model that combines distributional
and graph-based information: it brings together se-
mantic knowledge from ConceptNet, a graph-based
resource that includes WordNet annotations, and
two word embeddings models (word2vec (Mikolov
et al., 2013) and Glove (Pennington et al., 2014))
using the retrofitting procedure (Faruqui and Dyer,
2015). Recently, its performance has been shown
to be superior to distributional-only models in mod-
elling cognitive data (Turton et al., 2020; Alacam
et al., 2022; Yang et al., 2024). We compose word
vectors for the phrase using the same methodol-
ogy as count-pmi and fasttext; the resulting phrase
vectors have 300 dimensions.

3.4 XGLM

As a contextualized language model, we used
XGLM, a recently proposed multilingual model
(Lin et al., 2021). Since contextualized models are
specialized for representation of language in con-
text, and given previous results (Haber and Poesio,
2021; Bruera et al., 2023), we expect that XGLM
should in principle provide the best performance at
capturing polysemy. XGLM can beat a similarly-
sized GPT-3, a monolingual model, at a number of
NLP tasks – arguably thanks to the cross-linguistic
transfer of semantic information (Lin et al., 2021).
Also, it is publicly available and it has been al-
ready used in previous experiments with cognitive
datasets (De Varda and Marelli, 2023). We ex-
periment with different model sizes (as reported
in the Section 5.3) and for the main comparisons
we report results using the best layer (7) for the
best-performing model, XGLM-1.7B.

To extract vectors for the phrases, we use Hug-
gingFace’s Transformers library (Wolf et al., 2020).
We employed ‘representation pooling’, a method-
ology for creating ‘static’ representations in con-
textualized language models that was validated in
(Bommasani et al., 2020; Vulić et al., 2020; Apid-
ianaki, 2022) for NLP tasks and in (Bruera and
Poesio, 2022, 2023; Bruera et al., 2023) for brain
data. In our implementation, first we collected
from UKWaC all the sentences containing each
one of the selected phrases. To do so, we used
the procedure described above for counting the
frequencies of verb-noun co-occurrences during
stimuli selection. Then, we used XGLM to encode
all the sentences separately. Having done so, we
extracted the hidden layers of the deep neural net-
work, considering the tokens corresponding to the
words contained in the phrase. We followed Bruera
et al. (2023), where authors found that the best re-
sults with a causal language model like XGLM are
obtained when considering all of the phrase tokens
+ 1, thus capturing both the meaning of the verb
and the noun. In Section 5.3 we report results us-
ing different sizes of XGLM and all the layers. For
the analyses reported in Sections 5.1 and 5.2 we
use the layer and the model with the best perfor-
mances (XGLM 1.7B, layer 7). For each mention
of the phrase, we averaged vectors across layers
and tokens. In this way, we could obtain a single
contextualized vector for each phrase mention. Fi-
nally, we averaged, for each phrase, ten randomly
sampled mention vectors, following (Vulić et al.,
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2020). This allowed us to obtain one single vec-
tor capturing reliably the information encoded in
XGLM for each phrase.

4 Evaluation

Having obtained the vectors for each verb-noun
phrase, we measure to what extent it is pos-
sible to learn to predict the ratings obtained
from human subjects. We use a cross-validated
procedure, with a Ridge regression model (α
is cross-validated within the train set among
0.01, 0.1, 1, 10, 100, 1000). We employ a linear
model, an efficient choice given the low number
of data points (100; Lin et al., 2023). For cross-
validation, we use Monte Carlo Cross-Validation
(Kim, 2009) - which entails randomly sampling
train and test sets many times (in our case, 20), in
order to obtain a reliable average statistics. For the
evaluation, we use two measures, explained below.

Correlation The first one simply measures the
average Pearson correlation between predicted and
real values, averaged across all 20 randomized
train-test splits (proportion: 80% train - 20% test).
This is the metric typically used in similar studies
using language models to predict psycholinguistic
variables (Bhaskar et al., 2017; Charbonnier and
Wartena, 2019; Chersoni et al., 2020).

Sense discrimination The second measure, by
contrast, is directly aimed at testing the ability of
each language model to distinguish among differ-
ent senses. It was originally introduced in cogni-
tive neuroscience, to quantify how well a model
could distinguish between two brain images refer-
ring to two different concepts (Mitchell et al., 2008;
Pereira et al., 2018).

It works in the following way. First, as in
Bruera et al. (2023), we consider each word
and its two senses as a separate test set – con-
sisting of two phrases for each sense. Sup-
pose they are named a = phr1sense1, b =
phr2sense1, p = phr1sense2, q = phr2sense2. At
test time, the desired semantic variable for the
four test items is predicted (e.g. for concreteness
âconc, b̂conc, p̂conc, q̂conc). The predicted ratings are
then used to quantify, with a binary accuracy metric,
how well the model can distinguish between differ-
ent senses. All possible pairs of phrases belonging
to two different senses are taken (i.e. {a, p}, {b, p},
{a, q}, {b, q}). Intuitively, given a pair (e.g. {a, p})
we measure if the prediction âconc is closer to the

Figure 2: Pearson correlation between predicted and
true variables for each model. We plot each cross-
validation split as a separate scatter point. XGLM con-
sistently provides the best correlation scores across all
variables.

real value for its corresponding sense aconc than it
is to the other sense pconc; and vice versa. If this
is the case, then accuracy = 1 because the dis-
tinction between the two senses has been correctly
captured; else, accuracy = 0.

More formally, accuracy = 1 if abs(aconc −
ˆaconc)+abs(pconc− ˆpconc) < abs(aconc− ˆpconc)+

abs(pconc − ˆaconc); else accuracy = 0. This eval-
uation is repeated for all combinations of phrases
for the two senses of each word, then averaged;
the final evaluation is the average of the scores for
all the test sets. This procedure is repeated for all
the semantic variables; overall results refer to their
average. Since it is a binary accuracy measure,
chance performance is at 0.5.

5 Results and discussion

5.1 Correlation analysis

In Figure 2 we report the average Pearson
correlation between predicted and real ratings.
XGLM (best performing layer and version: layer
7 of XGLM-1.7B; see Section 5.3) provides
the best performance in all variables except
taste (XGLMsight = 0.839, XGLMtouch =
0.774, XGLMhearing = 0.837, XGLMsmell =
0.672; best performance in taste by Conceptnet
Numberbatch numberbatchtaste = 0.725). Over-
all low performance in taste and smell can be ex-
plained by the fact that, as shown in Figure 1, these
two sensory variables had the smallest variance
overall, and tended to cluster around low values –
thus making it difficult to differentiate among val-
ues for different phrases.

Despite the superiority of XGLM, however,
differences between different models are surpris-
ingly small (XGLMoverall = 0.771, count −
pmioverall = 0.72, fasttextoverall =
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0.743, numberbatchoverall = 0.749). This
suggests that simpler, more efficient approaches
can capture information about polysemy. Impor-
tantly, this concurs with the results of Lenci et al.
(2022) in showing that even count-based models
often can outperform much more complex ones at
fine-grained semantic tasks.

The performance of our models are largely com-
parable to those obtained when predicting single-
word semantic variables. For concreteness, Char-
bonnier and Wartena (2019) report scores for fast-
text oscillating among 0.85 and 0.9, depending on
the dataset; here fasttext is at 0.804 (the best perfor-
mance is afforded by XGLM at 0.838). For sensory
strength, Chersoni et al. (2020) report overall lower
Spearman correlation for fasttext (average across
body senses: 0.596) than us (body sensory average
for fasttext: 0.731; top performance by XGLM at
0.758). We assume that such differences are due
to the fact that our dataset is much smaller than
those used for single-words evaluations, that range
in the tens of thousands of words, and possibly to
the different correlation metrics used (Spearman vs
Pearson correlation).

Turning our approach on its head, our results
show that it is possible to automatically obtain reli-
able concreteness and sensory ratings for phrases
(an approach that has been recently advocated es-
pecially for low resource languages; Turton et al.,
2020; Grand et al., 2022; Wang et al., 2023), and
use those to induce word senses. In other words,
our methodology can be used to automatically find
in corpora contexts of use where the same polyse-
mous word is used in different senses. This would
also allow for an automated large scale expansion
of the current dataset .

5.2 Sense discrimination analysis
While correlation scores provide a general
evaluation of prediction performance, we sep-
arately assess the ability of the four models
at discriminating among different senses of
polysemous words using the dedicated pairwise
evaluation (see above). We also run statistical
significance t-tests against the chance base-
line of 0.5. Results are reported in Figure 3.
XGLM performs better overall (XGLMoverall =
0.672, p = 0.0001;XGLMconcreteness =
0.88, p < 0.0001;XGLMhearing =
0.62, p = 0.093;XGLMsmell = 0.61, p =
0.156;XGLMtaste = 0.35, p = 0.99),
as hypothesized. ConceptNet Number-

Figure 3: Sense discrimination scores for each model,
using all semantic variables. Error bars indicate the
standard error of the mean across test splits. Overall
indicate that the sense discrimination task is challenging
for all models.

batch affords the best results only for
sight (numberbatchsight = 0.81, p =
0.0002;XGLMsight = 0.8, p = 0.0004.
The performance of the contextualized model is
always better at capturing polysemy than both
purely distributional models (count-pmi and
fasttext), confirming previous reports (Haber
and Poesio, 2021; Bruera et al., 2023). XGLM
can also (in most cases) outperform ConceptNet
Numberbatch, which incorporates hand-coded
information about senses. This suggests that
such fine-grained semantic knowledge can be
alternatively captured by looking at linguistic
contexts – i.e. at language in use. However, the
fact that all models perform significantly above
chance for the same variables, the small magnitude
of the differences among models, and the rather
low average performance taken together suggest
that polysemy is still hard to capture.

5.3 In-depth evaluation of XGLM on sense
discrimination

In Figure 4 we report the layer-by-layer results for
the XGLM family of models (1.7B, 4.5B, 7.5B pa-
rameters). We plot overall performance – i.e. the
average across all variables. In accordance with
previous results on lexical information encoded in
contextualized models, performance is better in ear-
lier layers (Bommasani et al., 2020). A relatively
small model (1.7B) can provide the best results
overall, outperforming both static and larger-sized
variants in almost all layers. This converges with
previous results casting doubts over the need of
ever-larger language models when it comes to mod-
elling human cognition (Oh and Schuler (2023) for
reading times, De Varda and Marelli (2023) for eye-
tracking, Bruera et al. (2023) for fMRI; cf. Rogers
et al., 2021).
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Figure 4: Overall sense discrimination scores for a
number of contextualized models, across all layers.
Overall, all versions of XGLM perform better in the first
half of the layers. We indicate with a circle the layer
used for the analyses reported above.

6 Limitations and future directions

The main limitation of our study is the size of the
dataset, and the fact that we focus on only one case
of regular polysemy. Future work could expand
this dataset by considering more, and more specific
types of polysemy that can be modelled within a
similar framework – cases like chicken where an-
other variable, taste, can explain sense alternations
(animal vs taste; Boleda et al., 2012).

Another interesting direction could be investi-
gating to what extent language models and human
cognition align while processing these polysemes
(e.g. using brain data; cf. Bruera et al., 2023).
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Figure 5: Pairwise similarities as measured by Repre-
sentational Similarity Analysis among models. The
scores reported in white are Pearson correlation scores,
indicating a clear distinction between static and contex-
tualized models.

A Appendix A: Representational
Similarity Analysis of the models’
representations

In order to gain some insights into how the models
used in our work relate to each other, in Figure
5 we report a visualization of the similarity of
the semantic representations across all pairs of
models. We carry out the comparisons using
the Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008) framework. RSA
measures how similar two quantitative ways of
representing the same stimuli are by looking at
the similarity between the vectors of all pairwise
similarities between individual representations
in the space. We follow the traditional im-
plementation and we measure similarity with
Pearson correlation. As we can see, as it can be
expected, static models are rather similar among
each other (corrcount−pmi, fasttext = 0.59,
corrcount−pmi, numberbatch = 0.62,
corrfasttext, numberbatch = 0.88), while the
contextualized model has a different way of repre-
senting the phrases (corrXGLM−7.5B, count−pmi =
0.22, corrXGLM−7.5B, fasttext = 0.35,
corrXGLM−7.5B, numberbatch = 0.34).
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Abstract

Attributing answer text to its source document
for information-seeking questions is crucial
for building trustworthy, reliable, and account-
able systems. We formulate a new task of
post-hoc answer attribution for long document
comprehension (LDC). Owing to the lack of
long-form abstractive and information-seeking
LDC datasets, we refactor existing datasets to
assess the strengths and weaknesses of exist-
ing retrieval-based and proposed answer de-
composition and textual entailment-based opti-
mal selection attribution systems for this task.
We throw light on the limitations of existing
datasets and the need for datasets to assess the
actual performance of systems on this task.

1 Introduction

Users now benefit from the help of automatic
question-answering (QA) systems on a day-to-day
basis when faced with an information need. Such
systems are integrated into search engines (e.g.,
BingAI1) and digital assistants (e.g., ChatGPT).
However, such systems are prone to generating an-
swers lacking sufficient grounding to knowledge
sources (Dziri et al., 2022; Ji et al., 2023), lead-
ing to the risks of misinformation and hallucina-
tion (Metzler et al., 2021; Shah and Bender, 2022;
Huo et al., 2023). Therefore, attributing the gen-
erated answers to the respective sources is crucial
for building trustworthy, reliable, verifiable, and
accountable systems (Bohnet et al., 2022; Huang
and Chang, 2023; Rashkin et al., 2023; Yue et al.,
2023); by allowing users to verify outputs.

Existing works mainly consider generating at-
tributed text in open-ended settings. These attribu-
tions are generated along with the answers either
one per answer paragraph (Bohnet et al., 2022; Hu

∗This work was done when the author was at Adobe.
1https://www.microsoft.com/en-gb/bing?

form=MW00X7
2A subset of sentences is shown due to space constraints.

Input
Question: When does the next assasins creed come out?
Document: [1] Ubisoft has announced that its next Assassin’s Creed game
will be revealed in September 2022.
[2] Ubisoft shared the first trailer for the game on Saturday.
[3] Assassin’s Creed Mirage, the next entry in Ubisoft’s long-running
action-adventure series, will arrive in 2023.
[4] The publisher announced the release date today during its Ubisoft
Forward event. . . .
Answer: The next Assassin’s Creed game, Assassin’s Creed Mirage, will
arrive in 2023 according to Ubisoft’s announcement during its Ubisoft
Forward event. It will be released for Xbox . . . The game will be revealed
in September 2022.

Output
Attributed answer: The next Assassin’s Creed game, Assassin’s Creed
Mirage, . . . Ubisoft’s announcement during its Ubisoft Forward event [3,4]
. . . The game will be revealed in September 2022 [1].

Table 1: An example taken from reformulated verifiabil-
ity dataset (Liu et al., 2023) that includes a question, a
document,2 and an answer as inputs, and the document-
grounded attributions for each sentence (some may not
have any attribution) in the answer as output.

et al., 2024) or per answer sentence (Gao et al.,
2023a,b; Malaviya et al., 2023). Evidence retrieval
is used to select an answer in reading comprehen-
sion setting (Wang et al., 2019; Yadav et al., 2020;
Cui et al., 2022) for short and extractive answers.
Attribution becomes challenging when answers are
abstractive such that each sentence could be com-
posed of multiple sentences in the source docu-
ment, requiring more sophisticated approaches. To
address this gap, we aim to identify fine-grained
attributions (i.e., sentences grounded in a provided
long document) for each sentence (unlike para-
graph or article) of a long-form abstractive answer
to an information-seeking question asked over a
user-provided document (closed-domain). Such
fine-grained attributions can lead to more trustwor-
thy, reliable, and accountable systems. Specifi-
cally, we propose a new task (Table 1) of post-hoc
answer attribution for long document compre-
hension wherein the input to a system is a (ques-
tion, answer, document) triplet, and output is an
attributed answer consisting of pointers to sen-
tences in the document that provide supporting evi-
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dence for each sentence in the answer.
Building systems for this task is challenging

due to the unavailability of appropriate datasets
as answers in existing information-seeking read-
ing comprehension datasets (e.g., Dasigi et al.,
2021) are short and extractive. Moreover, obtain-
ing attribution annotations is cognitively demand-
ing, labor-intensive, and expensive as it requires
expertise (Kamalloo et al., 2023). Thus, we (a) pro-
pose to reformulate existing datasets curated for
evaluating citation verifiability in generative search
engines (Liu et al., 2023), and generating attributed
explanations in generative information-seeking sys-
tems (Kamalloo et al., 2023), and (b) assess the fea-
sibility of using existing textual entailment models
by proposing ADiOSAA– consisting of an answer
decomposer and a textual entailment-based attrib-
utor that uses an optimal selection strategy to find
attributions for each sentence of an answer.

This work contributes the following: (1) intro-
duces the task of post-hoc answer attribution for
LDC for building trustworthy, verifiable, reliable,
and accountable QA systems (§2); (2) reformu-
lates existing datasets for this task, owing to the
lack of availability of long-form abstractive read-
ing comprehension datasets (§2), and (3) assesses
the strengths and weaknesses of existing retrieval-
based systems, and proposed answer decomposi-
tion and textual entailment-based optimal selection
system, ADiOSAA (§3), by adopting information
retrieval measures (§4).

2 Adapting existing datasets for our task

Task Definition We formalize the task of post-
hoc answer attribution for long document com-
prehension as: given a query Q, a set of sen-
tences S = s1, . . . , sn from document D (namely,
source sentences), and an answer (either generated
from a system or ground-truth) to query Q, the
goal is to identify supporting sentences (namely,
attributions) si ∈ S for each answer sentence
ai ∈ A = a1, . . . , am (may be attributed to mul-
tiple source sentences or none). Since there are
no datasets that match the needs of our task, we
propose to reformulate the Citation Verifiability
dataset (Liu et al., 2023) and Hagrid dataset (Ka-
malloo et al., 2023) for the proposed task.

Reformulation Citation Verifiability Dataset
Citation verifiability dataset (Liu et al., 2023)
consists of questions from NaturalQues-
tions (Kwiatkowski et al., 2019) and ELI5 (Fan

Split Size Avg. No.
of source
sentences

Avg. No.
of attribu-
tions per
sentence

Avg. No.
of sen-
tences per
answer

Avg. No.
of an-
swers per
question

Verifiability/Hagrid

Train 1138/1922 128.58/2.82 1.45/1.26 2.11/1.63 2.63/1.67
Dev 146/716 141.68/2.83 1.49/1.40 2.18/1.71 2.56/1.84
Test 136/− 130.03/− 1.60/− 2.13/− 2.75/−

Table 2: Dataset statistics. No test set in Hagrid.

et al., 2019) and answers are generated from
different generative search engines; Bing Chat,
NeevaAI, perplexity.ai, and YouChat. These
answers are embedded with inline citations
pointing to the web pages. Human annotators
were shown a question and a verification-worthy
sentence from the generated answer with its
corresponding generated citations and were asked
to judge if the citations fully, partially, or do not
support the sentence. For sentences that are fully
supported, annotators also provide sentences on
the webpage that support the answer sentence.
In this open-domian setup, the citations in an
answer may belong to multiple web pages. To
obtain a pseudo document for a question, we focus
on questions anchored to a given document by
combining fully supported web page contents
cited for sentences. Hence, we have a corpus with
questions, answers, a document to which questions
are grounded, and ground truth attributions for
sentences in an answer.

Reformulating Hagrid Dataset Kamalloo et al.
(2023) introduced Hagrid which is constructed
based on human and LLM collaboration by first
automatically collecting attributed answers (for
information-seeking questions in MIRACL (Zhang
et al., 2022) dataset) that follow an inline citation
style using GPT-3.5. Then, asking human annota-
tors to evaluate the LLM answers based on infor-
mativeness and attributability. We establish bench-
marks for this dataset by considering the LLM-
generated answers to be the gold-answers required
as input (as opposed to the task formulation of
Hagrid, wherein output is an attributed answer),
attributability annotations as attributions for sen-
tences in an answer, and labeled relevant passages
as the document. We provide dataset statistics in
Table 2.

3 Answer Decomposition and Optimal
Selection for Answer Attribution

We propose an Answer Decomposition and
Optimal Selection Answer Attribution system for
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MAUs grew 19% Y/Y to 422 
million, or 419 million 
excluding a one-time 
benefit of 3 million MAUs.

Answer

Answer 
Decomposer Attributor

1. MAUs grew 19% Y/Y.
2. MAUs totaled 422 million.
3. MAUs totaled 419 million 

excluding a one-time benefit. 
4. The one-time benefit was 3 

million MAUs.

Decomposed
answer

Document

Supporting 
sentences    in the 

document

Supporting
sentences

Figure 1: Overview of proposed answer attribution sys-
tem, ADiOSAA. The answer decomposer breaks the
given answer into information units, and the attributor
finds the supporting sentences as attributions for each
information unit in the answer.

the introduced task. ADiOSAA consists of two
components (Figure 1): (1) An answer decom-
poser to break each sentence of an answer into
one or more information units (Nenkova and Pas-
sonneau, 2004; Stanovsky et al., 2018; Ernst et al.,
2021) as we believe that an answer sentence is
composed of information from multiple sentences
in the input document. (2) An attributor to find
supporting sentences in the document for a given
information unit in the answer sentence.

Answer Decomposer We prompt (“Please break-
down the following sentence into independent facts:
..") ChatGPT (OpenAI, 2023) to decompose the
given answer into its information units, following
Min et al. (2023) who found such decompositions
to be effective and close to human. This decomposi-
tion resembles past frameworks derived from Ope-
nIE (Stanovsky et al., 2018; Ernst et al., 2021) or
Pyramid (Nenkova and Passonneau, 2004; Shapira
et al., 2019), but avoids relying on annotated data
and achieves greater flexibility by using ChatGPT.
Such decomposition to information units has been
successfully used for claim-verification (Kamoi
et al., 2023) and propositional semantic representa-
tions (Chen et al., 2023).

Attributor Once the answer is decomposed into
its information units, each unit needs to be mapped
to sentences in the input document to provide the
desired attributions. We pose this task of find-
ing supporting sentences in the document for a
given information unit as a textual entailment task.
Textual entailment is the task of identifying if a
given premise (P) entails or does not entail the
given hypothesis (H). For our purpose, we con-
sider sentence(s) in the document as the premise
and an information unit as the hypothesis. We use

Algorithm 1 Optimal Selection Algorithm
1: Inputs: Information unit (iu), D = d1, d2 . . . dn,

Attr(P,H), δ
2: Outputs: L = A list of supporting sentences in D which

together attribute iu
3: L← [], RS← D, prev_score← −1 //

RS: remaining sentences; Initialization
4: while RS is not empty do
5: curr_score← maxdi∈RS Attr(L+ di, iu)
6: dmax ← argmaxdi∈RS Attr(L+ di, iu)
7: if curr_score > prev_score + δ then
8: L += dmax

9: RS −= dmax

10: prev_score = curr_score
11: else
12: break
13: end if
14: end while

RoBERTa-L (Liu et al., 2019) pretrained3 on Doc-
NLI (Yin et al., 2021) dataset (contains paragraph-
level (premise, hypothesis) pairs, see §B for more
details) as the entailment model (attributor) to pre-
dict if the given information unit can be inferred
from the given sentence(s) from the document.

Optimal Selection An answer sentence could be
attributed to multiple sentences in the provided doc-
ument when: (a) the same information is available
in the document at multiple places, and (b) pieces
of information in the answer sentence is available
in different parts of the document. (a) can be solved
by considering the top k (premise hypothesis) pairs
where the premise is the sentence from the docu-
ment and the hypothesis is the sentence or informa-
tion unit of the answer. To solve (b), it is required to
check if a sentence or information unit of an answer
can be entailed from a combination of sentences in
the document as a premise. However, this becomes
computationally expensive; for a document consist-
ing of N sentences, there will be 2N combinations.
To address this issue, we propose an optimal selec-
tion approach that greedily selects sentences from
the document that has the maximum probability of
entailment as described in Algorithm 1. Attr(P ,H)
refers to DocNLI-based attributor which takes sen-
tences from the input document and the informa-
tion unit (or sentence in an answer) and outputs the
probability of entailment of H from P . For each
information unit in a sentence, Algorithm 1 itera-
tively selects a sentence from the set of remaining
source sentences that maximizes the probability of
entailment until the entailment score keeps increas-

3We use the official code and trained model available at
https://github.com/salesforce/DocNLI.
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Model Verifiability Hagrid

(P/R/F1)@1 (P/R/F1)@2 (P/R/F1)@4 (P/R/F1)@1 (P/R/F1)@2 (P/R/F1)@4

BM25 0.669/0.529/0.567 0.443/0.648/0.499 0.270/0.722/0.369 0.815/0.686/0.722 0.740/0.919/0.788 0.678/0.990/0.760
GTR 0.656/0.511/0.550 0.432/0.623/0.483 0.270/0.723/0.371 0.899/0.768/0.804 0.744/0.918/0.790 0.677/0.987/0.759
MonoT5 0.698/0.552/0.593 0.466/0.675/0.522 0.284/0.757/0.389 0.962/0.827/0.864 0.763/0.946/0.811 0.680/0.993/0.762
ADiOSAA 0.545/0.428/0.459 0.484/0.546/0.487 0.476/0.604/0.499 0.856/0.734/0.768 0.848/0.810/0.799 0.848/0.817/0.801
ADiOSAA - D 0.473/0.388/0.412 0.445/0.418/0.412 0.442/0.418/0.411 0.869/0.749/0.782 0.861/0.758/0.783 0.861/0.758/0.783
ADiOSAA - OS 0.375/0.295/0.317 0.280/0.333/0.284 0.256/0.360/0.276 0.793/0.679/0.710 0.745/0.783/0.736 0.743/0.830/0.752
ADiOSAA - D - OS 0.269/0.234/0.243 0.269/0.234/0.243 0.269/0.234/0.243 0.567/0.466/0.494 0.567/0.466/0.494 0.567/0.466/0.494

Table 3: Evaluation results: ADiOSAA systems use top 150 source sentences (see Table 6 in Appendix for results
with GTR, MonoT5, and all the source sentences) retrieved using BM25 for the Verifiability dataset. D denotes
Answer Decomposer, and OS refers to Optimal Selection.

ing above a threshold δ as compared to that in the
previous iteration.

We reorder the attributions for each information
unit based on their score and deduplicate (as dif-
ferent information units may be attributed to the
same source sentence) them to obtain the predicted
attributions for each sentence of an answer.

4 Evaluation

As answer sentence attribution to sentences in the
source document could also be considered as an
information retrieval task, we benchmark the per-
formance of a range of retrieval-based systems:
(1) BM25 (sparse), (2) GTR (dense), and (3)
MonoT5, considering an answer sentence as the
query, and the sentences/passages from the input
document as the document (refer to §A). Because
our task assumes the answer as an input, inline
attribution-based systems like vanilla LLM prompt-
ing (Tay et al., 2022; Weller et al., 2023) and
retrieve-and-read-based systems (Guu et al., 2020;
Borgeaud et al., 2022; Izacard et al., 2022) do not fit
here. For the Verifiability dataset, ADiOSAA sys-
tem and its variants use top 150 retrieved sentences
as the source sentences. As Hagrid has only 2.83
passages per question in total, we consider all the
passages as the source sentences. Additionally, we
perform ablation experiments to demonstrate the
importance of decomposition and optimal selection
in ADiOSAA in the following ways.

ADiOSAA - D considers an answer sentence as
the information unit instead of decomposing it.
This system establishes the importance of the an-
swer decomposer in ADiOSAA.

ADiOSAA - OS decomposes each answer sen-
tence into its information units, and then ranks
source sentences based on their entailment prob-
abilities from the Attr(P ,H) for each information
unit. To obtain attributions for each sentence of the
answer, it deduplicates and reorders the attributions

for all the information units of the sentence based
on the entailment probabilities.

ADiOSAA - D - OS neither uses the answer de-
composer or the optimal selection algorithm rather
for each sentence in the answer, it ranks source
sentences based on their entailment probabilities
from the Attr(P ,H). This system demonstrates the
effectiveness of both the components in ADiOSSA.

Evaluation Measures We report precision (P),
recall (R), and F1@k ∈ {1, 2, 4} predicted attri-
butions per sentence of an answer4 for the test set
of Verifiability dataset and development set of the
Hagrid dataset (as no test set is available). We tune
the threshold for attributor’s entailment probability
(=0.5) and δ (=0.3) in Algorithm 1 based on the
Verifiability development set.

5 Results and Discussion

While MonoT5-based retrieval system outperforms
(Table 3) others for the top-1 prediction, ADiOSAA
variants attain the highest precision when top 2 or
4 predictions are considered. Having a high pre-
cision for top 2 or 4 predictions is important as
the mean number of attributions per sentence > 1
(see Table 2) and with the increase in the number
of predictions, recall may increase or remain the
same however, precision may increase, decrease,
or stay the same. ADiOSAA variants retain higher
precision (as compared to retrieval-based systems)
even with the increase in the number of predictions,
indicating that retrieval-based systems are good at
retrieving one attribution correctly but fail for the
second (or more) one compared to our systems.
This shows that our systems capture abstractive
and compositional attributions more correctly. Op-
timal selection results in a significant improvement.
Higher gains due to optimal selection under no
decomposition (difference between ADiOSAA-D

4We filter out the instances where answer sentences were
extracted directly from the documents.
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and ADiOSAA-D-OS) than under decomposition
(difference between ADiOSAA and ADiOSAA-OS)
shows that the answer sentence is composed of mul-
tiple document sentences which are better captured
with optimal selection. However, under decompo-
sition, it is more likely that now the decomposed
units could be attributed to a single sentence in the
document. Decomposition also helps in better pre-
dictions (compare ADiOSAA-OS with ADiOSAA-
D-OS) showing that compositional answers have
multiple attributions to different sentences in the
input document. Further, due to a small number of
source sentences (avg. 2.83) in Hagrid, the preci-
sion and recall values are higher as compared to
that in the Verifiability dataset.

Good performance of retrieval-based systems in-
dicate that the existing datasets are less abstractive
for long-form comprehension, suggesting the need
for research in creating more challenging datasets
to foster the development of trustworthy, reliable,
and accountable systems that can be used in real-
world information-seeking scenarios.

Quality of Decompositions Prior works have
used ChatGPT for decomposing facts (Min et al.,
2023) or claims (Kamoi et al., 2023) and have
shown it to perform reasonably well. We manually
examine a subset of decompositions and find that
the decomposer might sometimes over-decompose
a simple sentence, or generate hallucinated infor-
mation units (see Table 4 in the appendix for ex-
amples). We leave a careful analysis of error cat-
egories, and ways to mitigate hallucinations and
over-decompositions for future work.

6 Conclusion

We introduce a task of post-hoc answer attribu-
tion for long document comprehension, reformu-
late existing datasets, and asses the feasibility of
existing textual entailment and retrieval-based sys-
tems in performing this task. Evaluation shows that
retrieval-based systems are good at top one predic-
tion however, our proposed answer decomposition
and textual entailment-based optimal selection sys-
tem, ADiOSAA, performs better when more than
one predictions are considered. This further in-
dicates the need for highly abstractive long-form
reading comprehension datasets that can foster the
development and evaluation of more sophisticated
attribution systems.

7 Limitations

We note the following limitations of our work.
(1) The decompositions are obtained without tak-
ing into consideration the source document which
might result in unnecessary answer decompositions.
This issue can be resolved if the information units
are explicitly constrained in the input document,
and (2) ADiOSAA is a post-hoc inference time at-
tribution system which uses off-the-shelf trained
model, DocNLI. However, future work may con-
sider developing supervised systems for perform-
ing the task on the verifiability dataset, and building
end-to-end systems where decomposition and opti-
mal selection may happen in an interactive manner.
(3) We acknowledge the performance dependence
of ADiOSAA on the Attributor. Further investiga-
tion into the impact of NLI model’s performance
on the final results is an avenue for future work.
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Appendix

A Baseline Models

• BM25 (sparse) is a classical bag-of-words
based sparse retrieval method that relies on
lexical overlap, term frequency heuristics,
inverse document frequency and document
length for retrieval relevant passages given a
query.

• GTR (dense) is a dense retrieval method
that embeds both documents and queries into
low-dimensional representations using T5-
based (Raffel et al., 2020) dual encoders, with
one of the encoders tailored to the queries and
the other to the documents.

• MonoT5 is a T5-based model that takes a
query and a document, and outputs the proba-
bility of relevance of document with respect
to the query. The documents are ranked based
on this probability.

B Entailment model DocNLI

We have used RoBERTa-L model trained on Doc-
NLI dataset as our go-to entailment model. Doc-
NLI contains an array of reformulated versions
of existing datasets (adversarial NLI (ANLI) (Nie
et al., 2019), the question answering benchmark
SQuAD (Rajpurkar et al., 2016) and three sum-
marization benchmarks (CNN/DailyMail (Nalla-
pati et al., 2016), DUC20015, and Curation (Cu-
ration, 2020))) by transforming various summa-
rization and question answering datasets into nat-
ural language inference form to ensure that the
premise and hypothesis are paragraph-level long
and that the dataset does not contain any artifacts
such as hypothesis length bias, direct overlap be-
tween premise and hypothesis. Table 5 reports
the accuracy results of DocNLI on various NLI
datasets.

C Additional Results

We present results on verifiability dataset when top
150 sentences retrieved using GTR and MonoT5
are used by ADiOSAA and when all the sentences
in a document are used in Table 6. In all the cases,
ADiOSAA outperforms all the ablations - remov-
ing decompose, optimal selection or both. This

5https://www-nlpir.nist.gov/projects/
duc/guidelines/2001.html

shows that each of the components of the proposed
approach is important for the attribution task.

C.1 Implementation Details
The RoBERTa-L model contains 355 million pa-
rameters. We use off-the-shelf model so no train-
ing is required. We only perform inference on one
NVIDIA T4 16GB GPU machine. All the reported
scores are from one run of the model inference. Hy-
perparameter tuning is done for δ and entailment
probability threshold using the development set of
Verifiability dataset.
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S.No. Input Output Decompositions

Correct Decompositions

1. Based on the given contexts, the University Library of the Library of
Congress in Washington D.C. is the biggest library in the world, with more
than 167 million items including books, printed materials, recordings,
photographs, maps, sheet music, and manuscripts.

The University Library of the Library of Congress is in Washington D.C.
The University Library of the Library of Congress is the biggest library in
the world. The University Library of the Library of Congress has more than
167 million items. The items include books, printed materials, recordings,
photographs, maps, sheet music, and manuscripts.

2. The Islamic Golden Age is traditionally dated from the 8th century to the
14th century.

The Islamic Golden Age is traditionally dated. The Islamic Golden Age
is traditionally dated from the 8th century. The Islamic Golden Age is
traditionally dated to the 14th century.

Erroneous Decompositions

1. Ronnie Van Zant was born in Jacksonville, Florida. Ronnie Van Zant was born. Ronnie Van Zant was born in Jacksonville,
Florida

2. The Beer Store, also known as Brewers Retail Inc, was founded in 1927. The Beer Store is also known as Brewers Retail Inc. The Beer Store was
founded in 1927. The Beer Store was founded in Ontario, Canada

Table 4: Sample outputs from the Answer Decomposer. 1. shows over-decomposition, and 2. shows hallucination
error under Erroneous Decompositions.

FEVER MCTest (v160) MCTest (v500) SciTail MNLI

88.84 90.00 85.83 78.17 91.13

Table 5: Accuracy of DocNLI (used as the Attributor in our work) model on various NLI datasets. We report the
numbers as-is from Yin et al. (2021).

Model Top 1 Top 2 Top 4

P R F1 P R F1 P R F1

All + ADIOSAA 0.537 0.422 0.452 0.479 0.540 0.482 0.471 0.598 0.494
All + ADIOSAA - Decomposer 0.462 0.381 0.404 0.435 0.408 0.402 0.433 0.408 0.401
All + ADIOSAA - Optimal Selection 0.368 0.289 0.311 0.272 0.327 0.279 0.250 0.353 0.270
All + ADIOSAA - Decomposer - Optimal Selection 0.262 0.226 0.236 0.262 0.226 0.236 0.262 0.226 0.236

GTR + ADIOSAA 0.538 0.423 0.453 0.479 0.541 0.483 0.471 0.598 0.494
GTR + ADIOSAA - Decomposer 0.463 0.382 0.405 0.435 0.409 0.403 0.433 0.409 0.402
GTR + ADIOSAA - Optimal Selection 0.372 0.294 0.315 0.275 0.332 0.282 0.252 0.358 0.273
GTR + ADIOSAA - Decomposer - Optimal Selection 0.265 0.229 0.238 0.265 0.229 0.238 0.265 0.229 0.238

MonoT5 + ADIOSAA 0.537 0.422 0.452 0.479 0.540 0.482 0.471 0.598 0.494
MonoT5 + ADIOSAA - Decomposer 0.467 0.385 0.408 0.439 0.412 0.407 0.437 0.413 0.406
MonoT5 + ADIOSAA - Optimal Selection 0.371 0.292 0.314 0.274 0.330 0.281 0.251 0.356 0.272
MonoT5 + ADIOSAA - Decomposer - Optimal Selection 0.265 0.229 0.238 0.265 0.229 0.238 0.265 0.229 0.238

Table 6: Evaluation results with GTR, MonoT5 and all sentences for Verifiability dataset.
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Abstract
To develop high-performance and robust natu-
ral language processing (NLP) models, it is
important to have various question answer-
ing (QA) datasets to train, evaluate, and an-
alyze them. Although there are various QA
datasets available in English, there are only a
few QA datasets in other languages. We focus
on Japanese, a language with only a few ba-
sic QA datasets, and aim to build a Japanese
version of Natural Questions (NQ) consisting
of questions that naturally arise from human
information needs. We collect natural ques-
tions from query logs of a Japanese search en-
gine and build the dataset using crowdsourcing.
We also re-define the dataset specification of
the original NQ to construct Japanese Natural
Questions (JNQ). Furthermore, we construct a
Japanese version of BoolQ (JBoolQ), which is
derived from NQ and consists of yes/no ques-
tions. JNQ consists of 16,871 questions, and
JBoolQ consists of 6,467 questions. We also de-
fine two tasks from JNQ and one from JBoolQ
and establish baselines using competitive meth-
ods drawn from related literature. We hope that
these datasets will facilitate research on QA
and NLP models in Japanese. We will make
JNQ and JBoolQ publicly available.

1 Introduction

To develop high-performance and robust natural
language processing (NLP) models, it is important
to have various question answering (QA) datasets
to train, evaluate, and analyze them. There are di-
verse extractive and generative QA datasets that
require many techniques and knowledge to solve,
such as multi-hop inference (Yang et al., 2018) and
real-world knowledge (Dua et al., 2019). There
have been some studies to solve many QA tasks
in an integrated manner, rather than solving them
individually, such as Unified QA (Khashabi et al.,
2020) and FLAN (Wei et al., 2022). However,
such an integrated analysis is possible only in En-
glish but not in other languages because of the lack

of QA datasets. This study focuses on Japanese,
which has only a few basic QA datasets, such as
JSQuAD (Kurihara et al., 2022), JaQuAD (So et al.,
2022), and JAQKET (Suzuki et al., 2020).

In this paper, we focus on Natural Questions
(NQ) (Kwiatkowski et al., 2019), which consist of
questions that arise naturally from human informa-
tion needs, as a critical QA dataset that does not
exist in Japanese. QA datasets such as SQuAD (Ra-
jpurkar et al., 2016) have the problem of annotation
artifacts (Gururangan et al., 2018) because the ques-
tions are manually created by annotators, which are
not natural. In contrast, NQ uses queries entered by
users in a search engine, which are considered nat-
ural questions. One possible approach to creating a
Japanese version of NQ is translating the original
NQ dataset into Japanese. However, we do not use
translation due to concerns about the unnaturalness
of translated sentences, which can result from dif-
ferences in grammar and other linguistic factors,
as well as potential cultural differences between
Japan and other countries. Instead, we build and
publish Japanese Natural Questions (JNQ) using
query logs from a Japanese search engine. We also
re-define the dataset specification of the original
NQ to obtain a better NQ dataset. Kwiatkowski
et al. (2019) have hired trained annotators to build
the NQ dataset, but for JNQ, we use crowdsourcing
to reduce costs. This method can be applied to any
language in which search engine query logs are
available.

In addition to JNQ, we build JBoolQ, a Japanese
version of BoolQ (Clark et al., 2019). BoolQ is
derived from NQ and consists of yes/no questions.
JBoolQ questions and yes/no answers are collected
in the same way as JNQ. In the original BoolQ,
there are only two options: “yes” or “no”. However,
to make the setting more realistic, we add an option
of “unable to answer” to JBoolQ, represented as
“NONE”. This makes our dataset more challenging
than the original BoolQ.
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Q: ⻑岡市がある都道府県はどこでしょう?
(Which prefecture is Nagaoka City located in?)

JNQ JBoolQ

Long Answer: ⻑岡市 (ながおかし) は、新潟県の中南部
(中越地⽅) に位置する市。県内では新潟市に次いで第 2位
の⼈⼝を持ち、中越地⽅では最⼤の⼈⼝を有する。..
(Nagaoka City is a city located in the central-southern 
part of Niigata Prefecture (Chuetsu region). It has the 
second largest population in the prefecture after Niigata 
City, and the largest population in the Chuetsu region. ..)

Short Answer: 新潟県 (Niigata Prefecture)

⻑岡市の中央部は信濃川により形成された沖積平野に位置
し、江⼾時代には⻑岡藩の城下町として栄えた。
(The central part of Nagaoka City is located on an 
alluvial plain formed by the Shinano River, and prospered 
as a castle town of the Nagaoka clan during the Edo 
period.)

…

Document Title: ⻑岡市 (Nagaoka City)

Q: 宝くじの当選⾦に税⾦はかかる?
(Are taxes imposed on lottery winnings?)

Long Answer: 当せん⾦付証票法第 13 条の規定により、
宝くじの当せん⾦については⾮課税と規定されている。し
たがって所得税は課されず、確定申告も不要。
(According to Article 13 of the Winning Money Securities 
Act, lottery winnings are exempt from tax. Therefore, no 
income tax is levied, and no final tax return is required.)

Short Answer: NO

宝くじ(たからくじ)は、⽇本において当せん⾦付証票法に
基づき発⾏される富くじである。
(A lottery ticket (takara-kuji) is a lottery ticket issued in 
Japan under the Lottery Prize Certificate Law.)

Document Title: 宝くじ (lottery)

…

…
…

Figure 1: Examples of JNQ and JBoolQ.

In consequence, JNQ contains 16,871 queries
and 80,288 paragraphs. JBoolQ, combined with the
JNQ yes/no questions, contains 6,467 queries and
31,677 paragraphs. Examples of JNQ and JBoolQ
are shown in Figure 1.

Furthermore, we define three tasks using the
two datasets as a new QA benchmark in Japanese:
long answer extraction, short answer extraction,
and yes/no answer identification (BoolQ). We also
evaluate these tasks with their respective baselines.
JNQ and JBoolQ will be available online.

2 Related Work
Existing QA datasets can be broadly categorized
into those where the questions are natural and those
where they are not.

QA datasets where the questions are not natural
mainly include SQuAD (Rajpurkar et al., 2016) and
SQuAD 2.0 (Rajpurkar et al., 2018). The questions
in these datasets are not natural because annotators
create them after reading a paragraph. Therefore,
annotation artifacts in the created questions and
lexical overlap between questions and paragraphs
are problematic when using these datasets.

Natural Questions (Kwiatkowski et al., 2019)
and BoolQ (Clark et al., 2019) are QA datasets that
contain natural questions. To build these datasets,
search engine query logs are used to collect natural
questions arising from human information needs.
The documents are Wikipedia articles, and the an-
swers consist of long answers (e.g., paragraphs
or tables) and short answers (spans or Yes/No).
Other datasets that collect questions from query
logs include WikiQA (Yang et al., 2015) and MS

MARCO (Bajaj et al., 2018). In these datasets, the
answer format differs from NQ and BoolQ, with a
single sentence in the document or a hand-crafted
summary.

QA datasets whose questions are not derived
from query logs but are claimed to be natural
include TyDi QA (Clark et al., 2020), Icelandic
NQ (Snæbjarnarson and Einarsson, 2022), and Rus-
sian BoolQ (Glushkova et al., 2021). In these
datasets, annotators are given a prompt consisting
of a part or summary of a document and asked to
think of a question that cannot be answered by read-
ing only the prompt. These questions are claimed
to be “natural” because they are derived from what
humans wanted to know about the prompt. How-
ever, they are not naturally occurring questions
because the authors ask them to think of a question.
Thus, we consider that they are not truly natural
questions.

For non-English QA datasets, there are several
multilingual QA datasets, such as TyDi QA (Clark
et al., 2020), MLQA (Lewis et al., 2020), XOR
QA (Asai et al., 2021), and XQuAD (Artetxe
et al., 2020). However, only approximately half
of them include Japanese. Due to the lack of di-
verse datasets in Japanese, we construct Japanese
Natural Questions from scratch.

3 Japanese Natural Questions
Natural Questions (NQ) (Kwiatkowski et al., 2019)
is a dataset that focuses on the ability to answer
natural questions by reading documents. Each in-
stance consists of a quadruple of a question, a doc-
ument, a long answer, and a short answer. The
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Figure 2: Construction flow of Japanese Natural Questions.

questions are collected from search engine query
logs. The documents are Wikipedia articles, with
one document provided for each question. The
long answer is a paragraph or table in a document
containing enough information to infer the answer.
The short answer is the shortest possible answer to
the question and is a span in the document.

Japanese Natural Questions (JNQ), like NQ, con-
sists of quadruples of a question, a document, long
answer(s), and short answer(s). The questions are
extracted from search engine query logs, and the
documents are Japanese Wikipedia articles. The
long answers and short answers are obtained us-
ing crowdsourcing. By using crowdsourcing, it is
possible to construct a dataset at a low cost and
with some quality level without expert annotators.
We limit the long answers only to paragraphs to
simplify the task, considering that dataset construc-
tion is conducted using crowdsourcing. Although
NQ has a strict restriction that there is at most one
long answer in a document, there are often multiple
paragraphs containing answers. Therefore, JNQ al-
lows for scenarios with multiple long answers to a
single question.

We describe each stage of building JNQ below.
In crowdsourcing, 10 crowdworkers are assigned
to deal with a task to build a high-quality bench-
mark. In cases where ambiguity is detected due to
diverging opinions among crowdworkers at each
stage, such instances are not incorporated into JNQ.
We illustrate the construction flow in Figure 2.

3.1 Question and Document Collection
Question candidates of JNQ are taken from the
search query logs accumulated by a company1.
When people search, they sometimes use word se-
quences instead of full sentences. Such queries are
specific to search engines and may include non-
questions. Therefore, queries with spaces are ex-
cluded from the pool of question candidates2. Fur-
thermore, short queries are often not in the form
of questions; therefore, only queries composed of
eight or more words are extracted3. Subsequently,
we prepare the following question patterns and ex-
tract queries that match any of them.

1. Contains “は” (Japanese topic marker) + an
interrogative word

2. The final character is “?”
3. Contains the specific word such as “意味”

(meaning), “方法” (method), and “理由” (rea-
son).

We perform a Google search with the question can-
didates obtained above. If there is a Wikipedia
article within the top five search results, we select
the top-ranked article as the document. Question
candidates for which there are no Wikipedia arti-
cles within the top five search results are excluded.

1The name of the company will remain anonymous until
the paper is accepted.

2Japanese is a language that does not use spaces between
words, and Japanese sentences usually do not contain spaces.

3Word segmentation is performed using the morpho-
logical analyzer Juman++: https://github.com/ku-nlp/
jumanpp.
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3.2 Good Question Identification
The extracted question candidates contain non-
questions and inappropriate questions. Therefore,
we use crowdsourcing to obtain good questions.
A good question is one that inquires about facts,
methods, causes, or reasons. A bad question is am-
biguous, based on incorrect assumptions, soliciting
opinions, asking about the title of a work, or posing
questions with answers that vary depending on the
timing. 10 crowdworkers judge whether the given
question is good or bad. Among the 10 crowdwork-
ers, question candidates that are judged as good
questions by six or more workers are adopted as
questions for JNQ. Examples of good questions
are provided in Appendix A. Examples judged as
bad questions are “今日はどこに行こうか？”
(Where shall we go today?) and “Amazon支払い
方法が承認されません” (The Amazon payment
method is not approved).

3.3 Long Answer Identification
Through crowdsourcing, we extract paragraphs
from the document that contain sufficient infor-
mation to answer a question and designate them
as long answers. We provide crowdworkers with
a maximum of five paragraphs to reduce annota-
tion costs. These five paragraphs consist of the
document’s first paragraph and four paragraphs (ex-
cluding the first one) that have high relevance to the
snippet obtained from the Google search conducted
in Section 3.1. This is because the first paragraph,
which usually provides an overview, and the para-
graphs with high relevance to the snippet are likely
to contain the answer. The paragraphs that are not
included in these five paragraphs are identified as
not containing the long answer and are accordingly
labeled as “NONE”. The relevance is calculated
by the cosine similarity between the snippet and a
paragraph, with both represented as bag-of-words
vectors. We illustrate the paragraph selection pro-
cess in Figure 3.

We provide a question and each paragraph to 10
crowdworkers, prompting them to make a binary
choice on whether the paragraph contains “suffi-
cient information to infer an answer to the question”
or not. We classify the paragraphs into three groups
based on the votes of the 10 workers. If seven or
more “Yes” votes are collected, we categorize the
paragraph as a long answer and assign it the label
“EXIST”. If four to six “Yes” votes are collected,
we categorize the paragraph as ambiguous in terms
of being a long answer and label it as “AMBIGU-

Document (Wikipedia)

Paragraph 1
Paragraph 2

…
…
…
…
…

0.38

0.37

0.40

0.69

0.36

0.43

Similarity between a snippet 
and each paragraph

The first paragraph is 
always chosen

Figure 3: An illustration for choosing paragraphs from
documents to ask crowdworkers whether they qualify
as long answers.

OUS”. Excluding this paragraph during the training
process can help reduce noise. If three or fewer
votes are collected, we categorize the paragraph
as lacking a long answer and label it as “NONE”.
Since the judgment is done on a per-paragraph ba-
sis, multiple paragraphs may be classified as long
answers for a single question, or there may be no
long answer at all. If none of the paragraphs within
these five paragraphs qualifies as the long answer,
we infer that the document does not contain a long
answer to the question.

3.4 Yes/No Question Identification
In the following step, detailed in Section 3.5, we
extract short answers from paragraphs designated
as long answers. The task of short answer extrac-
tion varies depending on whether the question is a
yes/no question. Therefore, we first crowdsource
the judgment of whether the question is a yes/no
question. If seven or more crowdworkers judge
the question to be a yes/no question, the question
is considered as a yes/no question. If a question
receives between four and six votes, we remove it
from the dataset due to its ambiguity.

3.5 Short Answer Identification
We categorize the cases based on whether the ques-
tion is a yes/no question. For each category, we
obtain a short answer, i.e., a yes/no answer or a
span answer, using the following procedure.

Yes/No Answer Identification If the question is
a yes/no question, crowdworkers judge whether the
answer is “YES” or “NO” based on the paragraph
of a long answer. If more than seven crowdworkers
judge the answer as either “YES” or “NO”, the
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Number Length (# of chars)
Mean Max Min

Question 16,871 17.7 50 8
Paragraph 192,514 159.0 999 10
Span answer 5,463 9.6 180 1

Table 1: Numbers and lengths of questions and para-
graphs, and short answers in JNQ. The paragraphs in
this table refer to all paragraphs, including unannotated
paragraphs (i.e., considered as no long answer).

Long→ EXIST AMBIGUOUS NONE
Short→ Span Yes/No NONE

5,463 143 2,280 10,866 61,536

Table 2: Statistics of paragraphs in JNQ. The total num-
ber of paragraphs is 80,288.

answer is considered as a short answer. Paragraphs
with seven or fewer “YES” or “NO” votes are con-
sidered ambiguous paragraphs, and a “NONE” la-
bel is assigned to the short answer. In other words,
this paragraph is judged to have only a long answer.

Span Answer Identification If the question is
not a yes/no question, we ask 10 crowdworkers to
extract a span answer from the paragraph. If there
is no span answer in the paragraph, crowdworkers
judge it as “NONE”. We aggregate the 10 answers
by majority voting. As a pre-process, if one an-
swer is subsumed by another, the votes are added
to the shorter one. If there is a tie with multiple
short answers receiving the most votes, the shortest
one is chosen. Furthermore, answers that receive
only one vote are considered unreliable and are not
adopted.

4 Japanese BoolQ

BoolQ (Clark et al., 2019) is a QA dataset focus-
ing on natural yes/no questions. It contains many
non-factoid questions that require a wide range of
inferential abilities to answer. Each instance con-
sists of a question, a paragraph (equivalent to a
long answer in NQ), and an answer (yes/no). The
questions and paragraphs are extracted from search
engine query logs and Wikipedia articles, like NQ.
BoolQ adopts only the questions with either yes or
no answers and pairs them with not a whole docu-
ment but a paragraph to simplify the specification.

Japanese BoolQ (JBoolQ) consists of a question,
a document, a long answer, and a yes/no answer,
like yes/no questions in JNQ. Unlike BoolQ, each
question may have multiple long answers, and the
answers can include “NONE”, which means unan-
swerable, in addition to yes/no. Therefore, it is
more challenging than BoolQ, and a deeper under-

# of
long answers Number Ratio

0 11,126 65.9%
1 4,117 24.4%
2 1,203 7.1%
3 344 2.0%
4 74 0.4%
5 7 0.04%

Total 16,871 100%

Table 3: Distribution of the number of long answers per
question in JNQ.

standing of the documents is required to answer the
questions.

We construct JBoolQ using basically the same
procedure as JNQ. Since the ratio of yes/no ques-
tions in JNQ is only around 1%, for JBoolQ, we
collect questions from a larger query log pool than
JNQ. The construction procedure is as follows. The
details of each step are described in Section 3.

1. Question and document collection4

2. Good question identification

3. Yes/No question identification

4. Long answer identification

5. Yes/No answer identification

Compared to JNQ, the order of yes/no question
identification and long answer identification is re-
versed to narrow down the candidates to the target
yes/no questions at an early stage and reduce the
annotation cost later. Finally, we merge the yes/no
questions in JNQ into JBoolQ.

5 Analysis

In this section, we analyze JNQ and JBoolQ.

5.1 JNQ

Statistics JNQ contains 16,871 questions. Ta-
ble 1 shows the average, maximum, and minimum
numbers of characters in the questions, paragraphs,
and short answers. Statistics on the paragraphs are
shown in Table 2. In JNQ, multiple paragraphs can
be a long answer to a single question. The distri-
bution of the number of long answers per question
is shown in Table 3. Questions with multiple long
answers account for approximately 10% of all ques-
tions and 28% of the questions with long answers.

4We change the conditions of JNQ to extract yes/no ques-
tions as follows: more than six words and ending with "?" or
“か” (Japanese interrogative particle).
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Type Example
What 歌手「矢沢永吉」が1978年にヒットした曲は?
(39%) What was the song that the singer Eikichi Yazawa had a hit with in 1978?
Where 「伯方の塩」で知られる伯方島があるのはどこ?
(12%) Where is Hakata Island, known for “Hakata Salt”?
When パスポートに菊が描かれたのはいつ
(4%) When was the chrysanthemum depicted on passports?
Why 日本にはなぜ四季があるのか
(4%) Why does Japan have four seasons?
Who 「青の時代」といった、20世紀を代表する画家は誰でしょう?
(3%) Who is the iconic painter of the 20th century known for the ’Blue Period’?
How スマートフォンでqrコードを読み取る方法
(31%) How to read qr code with smartphone
Yes/No 源泉徴収票は市役所でもらえる?
(3%) Can I obtain a withholding slip at the city hall?
Other 冬に卵を生で食べられる期間は何日
(4%) How long can eggs be eaten raw in winter?

Table 4: Question types of JNQ.

Number Length (# of chars)
Mean Max Min

Question 6,467 11.4 48 6
Paragraph 27,954 171.7 988 21

Table 5: Numbers and lengths of questions and para-
graphs in JBoolQ.

Long→ EXIST AMBIGUOUS NONE
Short→ Yes/No NONE

1,742 833 3,723 25,379

Table 6: Statistics of paragraphs in JBoolQ. The total
number of paragraphs is 31,677.

Question Type We sampled 100 questions from
JNQ and classified them according to which wh-
word they begin with when translated into English.
The results are shown in Table 4. The most com-
mon question type is “What”, accounting for 39%.
The next most common question is “How”, ac-
counting for 31%. Of the questions asking “How”,
84% of the questions are about “How to”. In NQ,
questions starting with “How to” account for less
than 1% of the total, and thus there are more ”How
to” questions in JNQ, which can be considered
more difficult to answer than fact-seeking ones.

Lexical Overlap We investigated lexical overlap.
Lexical overlap refers to the ratio of overlapping
words between a paragraph and a question. It is
reported that when this ratio is high, the model can
easily provide answers (Clark et al., 2020). Each
question and paragraph pair of JNQ was segmented
at the word level5, and lexical overlap was calcu-
lated. Lexical overlap of JNQ is 59.4%, which
is much lower than 79.5% observed in Japanese
SQuAD (JSQuAD). This result indicates that we

5We used MeCab + IPAdic (https://taku910.github.
io/mecab/) for word segmentation.

# of
long answers Number Ratio

0 4,649 71.9%
1 1,252 19.4%
2 414 6.4%
3 117 1.8%
4 31 0.5%
5 4 0.06%

Total 6,467 100%

Table 7: Distribution of the number of long answers per
question in JBoolQ.

address, to some extent, the issue of annotation
artifacts, which are common in datasets such as
SQuAD, where an annotator is asked to create a
question after reading a paragraph.

5.2 JBoolQ

Statistics JBoolQ contains 6,467 questions. Ta-
ble 5 shows the average, maximum, and minimum
numbers of characters in the questions and para-
graphs. The average length of the questions is
shorter than JNQ. This is because when extracting
candidate questions from query logs, JNQ extracted
queries with eight or more words, while JBoolQ
extracted queries with six or more words to obtain
more yes/no questions. Statistics on the paragraphs
are shown in Table 6. The distribution of the num-
ber of long answers, shown in Table 7, is similar to
JNQ.

Question Type We sampled 100 questions from
JBoolQ and classified them according to their ques-
tion types. We basically adopted the classifica-
tion method used in BoolQ but added two cate-
gories: “Possibility” and “Necessity”. The results
are shown in Table 8. Questions asking facts about
a specific entity occupy 31%, which is the most
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Type Example
Possibility 新幹線で携帯充電できる?
(23%) Can I charge my cell phone on the Shinkansen?

Necessity 履歴書に印鑑は必要か
(11%) Do I need a seal on my resume?
Definitional ナショナルとパナソニックは同じ?
(7%) Are "National" and "Panasonic" the same?

Existence 国会議事堂の中に保育園ある?
(4%) Is there a daycare center in the Capitol?

Other General Fact疲れで熱は出る?
(24%) Does fatigue cause fever?
Other Entity Fact 久能山東照宮は神社?
(31%) Kunouzan Toshogu is a shrine?

Table 8: Question types of JBoolQ.

Task Train Dev Test
Long Answer Extraction 13,496 1,687 1,688
Short Answer Extraction 6,158 789 761
Yes/No Answer Identification 22,357 2,791 2,806

Table 9: Statistics of the three tasks. The number of
long answer extraction refers to the number of questions,
and the numbers of the other tasks refer to the number
of instances.

common. Questions asking about “Possibility” and
“Necessity”, newly added categories in JBoolQ, ac-
count for 23% and 11%, respectively, correspond-
ing to a total of 1/3 of the whole dataset.

6 Experiments

6.1 Experimental Setup

We define three tasks to use JNQ and JBoolQ as
a benchmark for evaluating QA systems. From
JNQ, we introduce the following two tasks: long
answer extraction, short answer extraction. From
JBoolQ, we introduce the task of yes/no answer
identification. We also establish baselines using
competitive methods drawn from related literature.
We implement hyperparameter searches and report
the best scores. We list the statistics of the tasks in
Table 9.

Long Answer Extraction Unlike NQ, in our
dataset, there can be multiple long answers or no
long answer in a document. Thus, we consider
long answer extraction as a paragraph-based multi-
label classification task. Given a question and a
document, a system tries to select all paragraphs
with long answers. We use precision, recall, and
F1 scores for evaluation metrics.

We introduce a baseline that considers the task a
binary classification problem. For each paragraph
in the document, we input the question-paragraph
pair into the model and binarily decide whether
the paragraph is a long answer. We use Japanese
BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019) as base models6. We use two kinds of
training sets in our experiments: (1) the paragraphs
collected in Section 3.3, which contain positive
examples and hard negative examples (challenge
candidates, which have high relevance to the snip-
pet but are considered as no long answer), and (2)
all paragraphs in the documents. The ambiguous
paragraphs are excluded from both. For testing, we
use all paragraphs in the documents, aiming to be
close to real extraction scenarios.

We also evaluate human performance using
crowdsourcing in the same way as the dataset con-
struction process. We asked 10 annotators to an-
swer. If seven or more annotators agree, it is consid-
ered that the paragraph is a long answer; otherwise,
it is not. Due to cost reasons, we sampled 100
questions for human evaluation instead of using the
whole test set.

Short Answer Extraction For short answer ex-
traction, we target question-paragraph pairs labeled
as being present for long answers. Following NQ,
we exclude yes/no questions. In practice, we treat
this task as a SQuAD 2.0 (Rajpurkar et al., 2018)
like task. Given a question-paragraph pair, a sys-
tem tries to extract a span as the short answer from
the paragraph. If the paragraph has no short an-
swer, we regard this question as unanswerable and
make the target span an empty string. We use ex-
act match (EM) and character-based F1 scores for
evaluation metrics.

We treat short answer extraction as a classifi-
cation problem of whether each token in a para-
graph is an answer span’s start/end position. We
use BERT and RoBERTa as base models.

We also evaluate human performance using
crowdsourcing on the whole test set. We asked
three annotators to answer and average their scores.

Yes/No Answer Identification As described in
Section 4, unlike BoolQ, our JBoolQ dataset con-
tains three kinds of labels: “YES”, “NO”, and
“NONE”. This makes our task a multiclass clas-
sification problem. Given a question-paragraph
pair, a system tries to answer Yes/No/None. We
use precision, recall, and F1 scores on labels “YES”
and “NO” for evaluation metrics.

We use BERT and RoBERTa as base models.
Since the instances with yes/no answers are scarce,
we oversample these instances five times.

6We use the transformers library provided by Hugging
Face. https://github.com/huggingface/transformers
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Trained on Only Hard Negatives Trained on All Data
Dev Test Dev Test

Model P R F1 P R F1 P R F1 P R F1
Tohoku-BERT-base1 36.6 74.6 49.1 35.0 72.3 47.2 53.1 67.4 59.4 51.2 68.3 58.5
Tohoku-BERT-large2 39.6 70.9 50.8 42.1 72.1 53.2 53.9 67.5 59.9 56.8 66.2 61.2
Waseda-RoBERTa-base3 42.5 73.8 53.9 44.6 74.8 55.9 63.7 73.0 68.0 64.2 73.4 68.5
Waseda-RoBERTa-large4 47.1 76.2 58.2 48.6 80.9 60.7 57.9 51.4 54.5 57.9 48.3 52.7
Human - - - - - - - - - 46.3 75.8 57.5

Table 10: Performance on long answer extraction. We list precision (P), recall (R), and F1 of baselines and human
annotators. Human evaluation was conducted by sampling 100 questions from the test set.

Dev Test
Model EM F1 EM F1

Tohoku-BERT-base 23.3 33.4 23.1 31.3
Tohoku-BERT-large 23.1 32.9 23.3 31.0
Waseda-RoBERTa-base 41.1 49.9 41.7 50.1
Waseda-RoBERTa-large 45.5 53.4 45.7 53.9
Human - - 51.1 62.5

Table 11: Performance on short answer extraction.

Dev Test
Model P R F1 P R F1

Tohoku-BERT-base 63.4 59.6 61.4 62.5 52.5 57.0
Tohoku-BERT-large 66.0 54.1 59.5 65.1 50.6 56.9
Waseda-RoBERTa-base 58.1 56.8 57.5 59.5 56.2 57.8
Waseda-RoBERTa-large 68.4 57.9 62.7 65.5 57.4 61.2
Human - - - 75.8 73.0 74.4

Table 12: Performance on yes/no answer identification.

We also evaluate human performance by ask-
ing 10 crowdworkers to conduct the following two
tasks. First, they check if a paragraph is a long
answer in a similar way to long answer extrac-
tion. Second, the workers judge “YES”, “NO”,
or “NONE” for a paragraph that is judged to be a
long answer. The answer with the most votes is
adopted, and if the number of the most votes is the
same, “NONE” is adopted.

6.2 Results

Long Answer Extraction We show the results
of long answer extraction in Table 10. The models
show high recall but low precision when trained
on only hard negative examples. The models’ pre-
cision becomes much higher when trained on all
data, indicating unlabeled negative examples are
also helpful to training.

Human annotators performed poorly in precision
for this task. This also indicates the possibility of
there being a few paragraphs with a long answer
within the unlabeled paragraphs (except five para-
graphs given to the crowdworkers). To tackle this
problem, a possible way is to provide the crowd-

workers with paragraphs except for the five para-
graphs judged as “long answers” by the models
and ask them to determine whether they are long
answers. We leave this exploration for future work.

Short Answer Extraction We show the results
of short answer extraction in Table 11. Waseda-
RoBERTa-base and Waseda-RoBERTa-large per-
form well, but the scores are very inferior to
the human performance. Tohoku-BERT-base and
Tohoku-BERT-large perform poorly. When exam-
ining the outputs, we found that Tohoku-BERTs
sometimes extract the entire paragraph as predic-
tions, which leads to underperformance. Since
the paragraph is a long answer, extracting the en-
tire paragraph could also be considered correct,
but it is wrong according to our task definition.
We speculate that insufficient data caused this phe-
nomenon, considering our data is only one-tenth of
JSQuAD (Kurihara et al., 2022).

Yes/No Answer Identification We show the re-
sults of yes/no answer identification in Table 12.
The models show high precision and relatively
low recall scores, indicating that they predict a
large proportion of yes/no instances as “NONE”.
“NONE” instances make our task more challenging
than the original BoolQ, which makes our bench-
mark more valuable since advanced training tech-
niques are needed to overcome the unbalanced data
distribution and improve model performance.

Human annotators could recognize more yes/no
answers correctly than the models. This leads to a
higher recall.

7 Conclusion

We constructed two QA datasets: Japanese Natural
Questions (JNQ) and Japanese BoolQ (JBoolQ).
The questions in these datasets are collected from
query logs from a Japanese search engine and are
natural, derived from human information needs.
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The annotation process was conducted through
crowdsourcing. We also defined a total of three
tasks, including long answer extraction, short an-
swer extraction, and yes/no answer identification.
We evaluated the performance of the baseline mod-
els. The constructed datasets can be used for train-
ing, evaluating, and analyzing QA and NLP mod-
els and are expected to facilitate these studies in
Japanese.
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A Examples of Good Questions

Examples of good questions obtained in Section 3.2 are shown in Table 13.

Type Example
Fact ナスカの地上絵がある所はどこ?

Where are the Nazca Lines?
Reasonビール瓶の色が茶色なのはなぜでしょう?

Why are beer bottles brown?
How toナスに油を吸わせない方法

How to keep eggplant from absorbing oil?

Table 13: Examples of good questions.

B Open-Domain NQ

From JNQ, we additionally define the task of open-domain NQ tasks and establish baselines. We show
the statistics of the task in Table 14.

Experimental Setup Following the EfficientQA competition (Min et al., 2021), which uses the NQ
dataset for open-domain question answering, we use JNQ to conduct the same task. Given a question, a
system tries to output a short answer without reference. We target questions labeled as being present for
short answers and remove questions whose answers have more than three words because we considered
these questions to be difficult to answer precisely. We use exact match (EM) for an evaluation metric.

We use retriever-reader models as baselines. We use TF-IDF and a DPR retriever (Karpukhin et al.,
2020) for the retriever and a DPR reader for the reader. We first use the retriever to retrieve 100 relevant
paragraphs to the question from a database of Wikipedia and then employ the reader to find the answer
from the retrieved paragraphs. We use DPR checkpoints from the second AIO competition7.
Results We show the results of open-domain NQ in Table 15. The TF-IDF retriever performs slightly
better than DPR on the test set. We speculate that because the average length of the questions is relatively
short, salient phrases and rare entities in the questions make DPR difficult to retrieve accurately (Chen
et al., 2022). Additionally, we found that some questions are unsuitable for open-domain QA. For instance,
there is no standard answer to questions such as “なぜ貧しい国はなくならないのか” (Why don’t poor
countries disappear?) and “男の子の髪の毛の切り方” (How to cut a boy’s hair?). We plan to exclude
these questions in future work.

Task Train Dev Test
Open-Domain NQ 2,317 298 284

Table 14: Statistics of the task of open-domain NQ. The number refers to the number of instances.

Dev Test
EM

TF-IDF + DPR reader 30.2 30.3
DPR 31.2 29.9

Table 15: Performance on open-domain NQ.

7https://sites.google.com/view/project-aio/competition2
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Abstract

Keywords, that is, content-relevant words in
summaries play an important role in efficient
information conveyance, making it critical
to assess if system-generated summaries con-
tain such informative words during evalua-
tion. However, existing evaluation metrics
for extreme summarization models do not pay
explicit attention to keywords in summaries,
leaving developers ignorant of their presence.
To address this issue, we present a keyword-
oriented evaluation metric, dubbed ROUGE-K,
which provides a quantitative answer to the
question of – How well do summaries include
keywords? Through the lens of this keyword-
aware metric, we surprisingly find that a current
strong baseline model often misses essential in-
formation in their summaries. Our analysis
reveals that human annotators indeed find the
summaries with more keywords to be more
relevant to the source documents. This is an
important yet previously overlooked aspect in
evaluating summarization systems. Finally, to
enhance keyword inclusion, we propose four
approaches for incorporating word importance
into a transformer-based model and experimen-
tally show that it enables guiding models to
include more keywords while keeping the over-
all quality.1

1 Introduction

Summarization systems compress long documents
into shorter ones to convey important informa-
tion more effectively to readers (Rush et al., 2015;
Chopra et al., 2016). To convey all essential in-
formation correctly, it is crucial for summariza-
tion systems to include important, i.e., summary-
relevant keywords. In our analysis, human anno-
tators find that summaries with more keywords,
words that are relevant for the summary (see Sec-
tion 3), capture important information better than
the ones with fewer keywords. However, existing

1Our code: https://github.com/sobamchan/rougek.

Reference
A novel, hybrid deep learning approach provides the best
solution to a limited-data problem (which is important to
the conservation of the Hawaiian language)

R-1 BS
Hypothesis 1: 27.45 0.8718
We propose two methods to solve
the transliteration problem automatically,
given that there were not enough data to
train an end-to-end deep learning model.
Hypothesis 2: 26.09 0.8692
We propose two methods to solve
the Hawaiian orthography transliteration
problem automatically using finite state
transducers and a hybrid neural network.

Table 1: An example where ROUGE and BERTScore
(BS) can lead to misinterpretations. Although the in-
correct generation (not including the word “Hawaiian”)
in the first hypothesis is more critical than the one in
the second summary (“neural network” instead of “deep
learning”) to convey correct information, both metrics
assign a higher score to the former summary.

evaluation metrics do not explicitly take such word
importance into account. Table 1 shows an exam-
ple. Two commonly used metrics, namely ROUGE
(Lin, 2004) and BERTScore (Zhang et al., 2020),
assign lower scores to the second hypothesis even
though it contains an essential word that another
summary misses. This discrepancy, namely that
ROUGE assigns a lower score to a summary that
contains more keywords and annotators find rele-
vant, happens in 16.7% of the cases in our analysis.

In this paper, to shed light on this problem,
we propose ROUGE-K, an extension of ROUGE
which considers only those n-grams in the sum-
maries that match a set of pre-defined keywords.
We propose a simple heuristic that exploits the
common structure of summarization datasets to
extract keywords automatically, making it possible
for our metric to scale in size and domain without
additional annotation effort. Correlation analysis
reveals that there is only a weak strength of depen-
dence between our new metric and existing ones
as well as summary lengths, thus demonstrating
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that our approach can complement, rather than re-
place, previous metrics. Through a manual evalua-
tion, we find that human annotators show substan-
tially higher agreement with ROUGE-K than with
ROUGE and BERTScore on relevance, in other
words, how well summaries include important in-
formation, which is one of four commonly assessed
aspects in manual evaluations of summaries (Fab-
bri et al., 2021). This shows that while one still
would use traditional ROUGE to assess the over-
all qualities, our metric can provide a better in-
dex for evaluating the relevance of summaries. As
a showcase of this new metric, we evaluate both
extractive (Liu and Lapata, 2019) and abstractive
(Lewis et al., 2020; Dou et al., 2021; Saito et al.,
2020) state-of-the-art models on two extreme sum-
marization datasets from different domains, namely
XSum (Narayan et al., 2018) and SciTLDR (Ca-
chola et al., 2020), as well as a more traditional,
non-extreme dataset, ScisummNet (Yasunaga et al.,
2019). Besides news text (XSum), we choose sum-
marization of scientific publications (ScisummNet
and SciTLDR), since this is a domain where key-
word inclusion within summaries plays a crucial
role. Surprisingly, the results reveal that these
strong baseline models often fail to include essen-
tial words in their summaries, and that ROUGE-
K enables us to better distinguish systems’ per-
formance than alternative metrics. We also apply
our ROUGE-K to the evaluations of recent large
language models (LLMs) and show how our met-
ric better accounts for the powerful capabilities of
LLM-based summarizers when compared to tradi-
tional ROUGE metrics. Finally, As a first attempt
to address the limitations on summary keyword
inclusion, we introduce four ways to incorporate
a lightweight word importance feature into exist-
ing transformer-based models. Experiments show
that our methods can guide models to include more
keywords without any additional annotations and
negative effects on overall summarization quality.
Our contributions are the following ones:

• We introduce a new keyword-oriented evalua-
tion metric, dubbed ROUGE-K, which comple-
ments existing metrics by focusing on keywords.

• We validate our metric: a) against human judg-
ments of summary relevance, b) by quantifying
its correlation to existing metrics and summary
lengths, and c) its ability to distinguish perfor-
mance among different systems.

• Our experiments on three different datasets for

summarization of scientific and news articles re-
veal that current state-of-the-art models often
fail to include important words in summaries.

• We present experiments with four approaches
to incorporate word-importance scores into
BART and show that it can help to improve key-
word inclusion without hurting the overall sum-
marization qualities.

2 The need for another kind of ROUGE

ROUGE (Lin, 2004) is a long-running de facto
standard evaluation metric for summarization sys-
tems. It is very popular due to its high correlation
with human evaluation while keeping its simplic-
ity and interpretability. However, several works
report on its limitations (Akter et al., 2022; Fabbri
et al., 2021), one of which is that it only takes the
word surface into account and disregards semantics
(Ng and Abrecht, 2015). Because it considers all
n-gram matches to be equally important, ROUGE
fails to detect salient words that underpin a sum-
mary’s quality.

As an example, Table 1 shows two generated
summaries of the same article from the SciTLDR
dataset (Cachola et al., 2020) as well as their scores
computed by ROUGE and BERTScore (Zhang
et al., 2020), a pre-training language model based
metric. Both metrics assign a higher score to the
first summary even though it misses an important
keyword that the second summary contains. In
the case of ROUGE, this is because it favors the
longer but nonessential n-gram overlaps in the first
summary. This limitation of evaluation metrics
can mislead the development of summarization sys-
tems towards including more of longer but less
important words in summaries than truly essential
keywords. When multiple reference summaries
are available, ROUGE can assign higher scores to
words potentially more important than others by
counting n-grams that appear several times across
references, which indirectly considers word impor-
tance. However, most commonly used datasets con-
tain only one reference summary (Hermann et al.,
2015; Narayan et al., 2018). In addition, because
of its implicit nature, when a generated summary
has a different textual style (even if the semantics
of the summary did not change) from its reference
summary, the ROUGE score can easily deflate.
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SciTLDR (Cachola et al., 2020)
We show that autoregressive models can generate high
fidelity images.
We introduce a new inductive bias that integrates tree
structures in recurrent neural networks.

XSum (Narayan et al., 2018)
Opec, the oil producers’ group is back in the driving seat.
Lenovo and Acer have both unveiled smartphones with
much larger than normal batteries.

Table 2: Sample reference summaries with highlights
on keywords extracted by our heuristic.

3 ROUGE-K

We present ROUGE-K, an extension of ROUGE
that exclusively focuses on essential words in sum-
maries. Its core idea is simple: ROUGE-K assesses
the proportion of keywords from the reference sum-
mary that are included in the candidate summary.
We compute ROUGE-K as:

R-K =
Count(kws ∩ n-grams)

Count(kws)

where kws is a set of pre-defined keywords and
n-grams is a target hypothesis. This provides a di-
rect understanding of how well system summaries
contain essential pieces of information. ROUGE-K
is essentially a recall-oriented metric since it com-
putes coverage of keywords. While it is possible
to complement this formula with another one to
compute precision, this would give the proportion
of keywords in the candidate summary. However,
this metric would indicate how good the system is
at extracting keywords, not its summarization capa-
bilities, i.e., one could have a summary consisting
only of keywords but only marginally overlapping
with the reference summary.

Keyword extraction. An essential prerequisite
of ROUGE-K is the availability of keywords. Ide-
ally, we would like these keywords to be available
for any summarization corpus to enable the wide
applicability of our metric. A solution is thus to
extract keywords from reference summaries heuris-
tically. Nan et al. (2021), for instance, use words de-
tected by a named entity recognition (NER) model
to evaluate entity-level factual consistency in sum-
maries. However, (1) not all keywords are named
entities, (2) NER models accurate enough to be
used for evaluation are not available for all do-
mains (e.g., scholarly documents), (3) the accuracy
of NER models for documents in summarization
datasets is unknown.

R-1 R-2 R-L BS R-K

SciTLDR 61.11 58.89 60.00 57.78 72.22
XSum 63.73 59.80 56.86 62.75 70.59

Table 3: Agreement ratios (%) of each metric and hu-
man annotator on summary relevance, computed as the
proportion of documents for which a given metric gives
the highest score to the summary judged as most rele-
vant from humans.

In this paper, we present a simple and inter-
pretable way to extract keywords. We define key-
words as the n-grams used in multiple reference
summaries, assuming that words used in multiple
human-written summaries for the same document
repeatedly should be included in system summaries
as well. First, we tokenize and lowercase the refer-
ence summaries, extract n-grams, and then remove
stopwords from the extracted n-grams. Next, we
compare n-grams from multiple references and ex-
tract those that appear in multiple references. To
capture multi-word keywords, the extraction pro-
cess starts from 10-grams to unigrams. When there
is only one reference summary available, the corre-
sponding title is used as a proxy reference which
is known to contain key information (Koto et al.,
2022; Cachola et al., 2020). Table 2 shows exam-
ples of keywords extracted by our heuristic. We
benchmark our heuristic against TF-IDF (Salton
and Buckley, 1988) and TextRank (Mihalcea and
Tarau, 2004). To this end, we take the first 100
samples of the SciTLDR development data and for
each summary, we extract the same amount of key-
words as the one from our method (i.e., we keep
the recall level fixed). We then quantify for each
method a) the average number of wrong keywords
per summary and b) the overall false discovery rate
FDR (for both, lower is better) – our hunch is that
for humans, it is easier to judge whether something
is not a keyword (i.e., a word is unquestionably
not being essential to convey the information), as
opposed to being one. In both cases, our heuristic
achieves the best performance: 0.64 vs. 0.85 and
0.94 on average wrong extractions per summary
and 0.13 vs. 0.16 and 0.21 FDR when compared
against TF-IDF and TextRank, respectively.

Agreement with human judgments. We now
perform a manual evaluation to test how well
ROUGE-K aligns with human judgements on rat-
ing the relevance of summaries (we follow Fabbri
et al. (2021) and define ‘relevance’ as the selection
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of important content from the source. We focus
for manual evaluation on relevance only (as op-
posed to, e.g., Fabbri et al. (2021) considering three
other aspects) because the purpose of ROUGE-K is
to quantify how well summaries include essential
words, and thus preserve important, i.e., relevant
content, as opposed to, e.g., ROUGE taking into
account style aspects.

Our dataset consists of pairs of summaries gen-
erated using different instances of the same model
(BART), trained on each of SciTLDR and XSum
with different random seeds. To avoid ties, we
select a sample of 92 and 100, respectively from
SciTLDR and XSum, summary pairs where the
two models assign a different ROUGE-K score to
each summary. We then ask four annotators from
our CS graduate course to compare the summaries
and rank them (i.e., label the best one among the
two). We finally compute how often each evalua-
tion metric assigns higher scores to the summaries
preferred by the annotators. Results are shown
in Table 3. In line with Fabbri et al. (2021), R-1
shows higher agreement than R-2 and R-L, and
BERTScore marks a marginally lower score than
ROUGE-1. Finally, ROUGE-K shows much higher
agreement, indicating its strong ability to detect
human-preferable summarization models.

Benchmarking BART with ROUGE-K. As a
showcase of ROUGE-K, we evaluate BART (Lewis
et al., 2020), a strong transformer-based genera-
tive language model on three different datasets:
SciTLDR (Cachola et al., 2020), XSum (Narayan
et al., 2018) and ScisummNet (Yasunaga et al.,
2019). These cover different summarization tasks
– i.e., extreme (SciTLDR, XSum) vs. non-extreme
(ScisummNet) – as well as different domains – i.e.,
scholarly documents (SciTLDR, ScisummNet) vs.
news (XSum). Datasets details are shown in Table
4. BART models are fine-tuned on the training set
and early stopping is performed using validation
data, and finally evaluated on the test split using
the traditional ROUGE metrics and our ROUGE-
K. Table 5 shows the results. Each score is an
average of ten and three different random seeds,
respectively, for SciTLDR and XSum/ScisummNet
(a larger number of seeds is used for SciTLDR
to obtain stable scores on its relatively small test
dataset). Although one would consider the scores
achieved by BART on ROUGE-1/-2/-L to be high,
it only reaches 41.36% and 56.14% on ROUGE-K.
In other words, a strong baseline model fails to in-

clude half of the essential n-grams in its summaries,
unveiling a critical limitation previously missed by
standard metrics.

Correlation with summary lengths. Since
ROUGE-K is recall-oriented, it can potentially fa-
vor longer summaries, i.e., as suggested by the
overall absolute scores obtained by BART in Table
5 on non-extreme summarization with Scisumm-
Net data. To quantify this, we compute Pearson
correlations between the number of words in sum-
maries generated by BART and different evalua-
tion scores. As Table 6 shows, ROUGE-K scores
have marginally higher correlations with summary
lengths than other ROUGE (F1) metrics, although
they all are relatively weak, ranging from -0.07 to
0.17 on SciTLDR and even lower for XSum. These
results are different from those from Sun et al.
(2019), arguably because SciTLDR and XSum are
extreme summarization datasets. On non-extreme
summarization (ScisummNet), the results align in-
stead with previous findings. However, we ob-
serve the same level of moderate correlation with
the summary length between vanilla ROUGE and
ROUGE-K.

Correlation with existing metrics. To better un-
derstand the relationship between ROUGE-K and
other existing metrics, we perform an additional
correlation analysis (Table 7). R-1 (avg) computes
a R-1 for each reference given a sample and takes
the average while R-1 (max) takes only the largest
score. R-1 (avg) and R-1 (max) are the same for
XSum and ScisummNet because there is only one
reference summary in this dataset. The results in-
dicate only a moderate strength of association be-
tween ROUGE-K and existing metrics, thus pro-
viding evidence that our metric can partially com-
plement other metrics.

4 Importance-guided summarization

We next propose four ways to incorporate a soft
guiding signal into BART to enforce the inclusion
of keywords into the generated summaries.

Re-weighted encoding (RwEnc). The first ap-
proach is to modify the representations within the
model with TF-IDF scores. Concretely, we com-
pute the attention matrix in transformer layers as:

attention matrix = softmax(
QK⊺
√
dk

+ T )V
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Documents Summaries Extracted keywords

Dataset # documents
(train/val/test)

# words
per doc
on avg.

# words
per summary

on avg.

compress.
ratio

# references
on avg.

(train/val/test)

# keywords
on avg.

(train/val/test)

average
lengths

(train/val/test)
SciTLDR 1,992 / 619 / 618 5,000 21.00 238.10 2.0 / 3.3 / 4.2 1.9 / 4.2 / 5.2 1.7 / 1.5 / 1.5
XSum 204K / 11K / 11K 431 23.26 18.53 2.0 / 2.0 / 2.0 2.9 / 2.9 / 2.9 1.5 / 1.5 / 1.5
ScisummNet 750 / 92 / 91 4,700 167.49 28.06 2.0 / 2.0 / 2.0 2.8 / 3.0 / 2.6 1.7 / 1.6 / 1.6

Table 4: Statistic of datasets and extracted keywords.

R-1 R-2 R-L R-K

SciTLDR 43.93 22.31 36.58 41.36
XSum 44.43 21.00 35.94 56.14

ScisummNet 50.75 47.80 49.73 68.95

Table 5: BART performance evaluated by ROUGE-1/-
2/-L and our ROUGE-K.

R-1 R-2 R-L R-K

SciTLDR -0.102 -0.070 -0.154 0.167
XSum -0.003 -0.037 -0.075 0.057

ScisummNet 0.356 0.435 0.392 0.402

Table 6: Pearson Correlation between the number of
words in summaries and evaluation metrics.

The first term within the softmax function is from
the original transformer (Vaswani et al., 2017)
where Q and K are query and key matrices respec-
tively, and we introduce the second term T which is
a matrix of TF-IDF scores over the input text. This
enhances the model to propagate higher values for
the important words to the upper layers. We apply
this modification to the 0-, 4-, 8-th encoder layers,
empirically selected on the dev data.

Re-weighted generation (RwGen). The second
solution operates in the token selection phase. At
each generation step, BART computes a probabilis-
tic distribution over its vocabulary for the next to-
ken to produce. We modify this distribution by
summing TF-IDF scores so that the words with
higher scores are more likely to be selected:

score(ywt |w<t, X, T )′ =

(1− λ) ∗ score(ywt |w<t, X) + λ ∗ T

where score is a fine-tuned BART that takes previ-
ously generated words (w<t) and the source doc-
ument (X), and predicts scores which are further
transformed to the probability for the next token
at the time step t by a softmax function. We intro-
duce the second term (T ) which is a vector filled
with TF-IDF values for the source document. λ is a

R-1 (avg) R-1 (max) BS

SciTLDR 0.510 0.434 0.383
XSum 0.318 0.318 0.237

ScisummNet 0.288 0.288 0.413

Table 7: Pearson Correlation between ROUGE-K and
ROUGE-1 average, ROUGE-1 max and BERTScore.
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Figure 1: Overview of our TDSum model.

hyperparameter with which we control how much
we shift the distribution from vanilla BART.

Multi-Task Learning with TF-IDF (TDMTL).
Another solution is to modify the objective func-
tion to ask the model to predict TF-IDF scores in
parallel with generating summaries. For this, we
compute the mean squared error as loss for TF-IDF
score prediction Ltfidf and the standard cross en-
tropy loss for summarization Lsum. The final loss
we minimize is the linear interpolation of the two
task-specific losses: (1− λ)Lsum + λLtfidf .

Injecting TF-IDF into the decoder (TDSum).
Our last approach is inspired by Dou et al. (2021).
Since their approach requires an explicit guidance
signal (e.g., keywords), it uses additional models
for keyword extraction leading to a drastic increase
in computational costs. Instead, we propose to
use light-weight TF-IDF scores as shown in Fig-
ure 1. TDSum equips two linear layers to process
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TF-IDF scores for words in input documents and
uses resulting word importance features in newly
introduced cross-attention layers in each decoder
layer to guide the model towards keyword-oriented
summary generation. We train this model with the
aforementioned TDMTL loss.

5 Experiments and results

5.1 Experimental setup
Datasets. We experiment on different domains
and summarization tasks using SciTLDR (Cachola
et al., 2020), XSum (Narayan et al., 2018) and
ScisummNet (Yasunaga et al., 2019)

Baselines. We compare our models with three
abstractive and one extractive summarizer:

• BART (Lewis et al., 2020) is a transformer-based
generative language model, pre-trained with de-
noising objective function.

• GSum (Dou et al., 2021) is an extension of BART
with additional parameters for processing textual
guidance signals. Here, we input overlapping
keywords, extracted as explained in Section 3.

• MTL (Saito et al., 2020) performs multitask train-
ing to predict keywords in source documents in
addition to the summarization objective (we use
our extracted keywords from Section 3).

• PreSumm (Liu and Lapata, 2019) is an extractive
summarization model based on BERT (Devlin
et al., 2019).

Hyperparameter tuning. We perform a grid
search for each dataset and model using the de-
velopment data and ROUGE-1 as a reference. We
test for learning rate ∈ {1e−05, 2e−05, 3e−05},
gradient accumulation ∈ {4, 8}, number of beam
search ∈ {2, 3} and repetition penalty rate ∈
{0.8, 1.0}. We also explore λ ∈ {0.1, 0.2, 0.3}
for MTL and TDMTL and λ ∈ {30, 50} for Rw-
Gen. During hyperparameter search, we use one
random seed. The final reported results on the test
data are the averaged performance over models
fine-tuned with different random seeds. We use ten
seeds for SciTLDR and ScisummNet and three for
XSum. Our experiments are performed on RTX
A6000 and utilize the implementation by Deutsch
and Roth (2020) to compute ROUGE-1/2/L.

5.2 Results and discussion
We organize the discussion of our results around
the following research questions:

• RQ1: Can models that incorporate TF-IDF
scores increase the number of keywords in the
summaries without degrading ROUGE scores?

• RQ2: Which kinds of keywords do models find
hard to include in summaries?

RQ1: TF-IDF as guidance. We present our
main results in Table 8. On the SciTLDR dataset,
BART marginally outperforms two other baseline
models on ROUGE-1/2/L. However, MTL per-
forms the best on the ROUGE-K metric, thus show-
ing its effectiveness of explicit training guidance.
As reported by previous works (Cachola et al.,
2020; Narayan et al., 2018), an extractive model
considerably underperforms abstractive models on
all the metrics in extreme summarization since it
suffers from merging information across multiple
input sentences into its outputs. Because keywords
are also scattered over multiple sentences, it fails
to include most keywords. Three out of four of our
newly introduced TF-IDF-equipped models out-
perform vanilla BART on keyword inclusion, and
TDSum significantly outperforms all the baselines
on ROUGE-K while keeping its ROUGE scores on
par with BART. TDMTL follows the same training
procedure as MTL and learns to predict TF-IDF in-
stead of keywords. While results still improve over
BART, our results show that using hard signals
(i.e., keywords) is preferable. RwGen is simple
and fast to train, yet it includes more keywords
than BART. On XSum, BART outperforms other
baseline models on ROUGE-K. However, the MTL
model exceeds other traditional ROUGE metrics
showing that our metric can shed light on an aspect
that other metrics cannot capture. Among our pro-
posed methods, TDMTL performs well akin to the
results on SciTLDR, outperforming BART on tradi-
tional ROUGE metrics, although the BART model
still outperforms models with TF-IDF extensions
on ROUGE-K.

We see similar trends for non-extreme sum-
marization on ScisummNet, where our proposed
models are on par (sometimes outperform) with
baseline models on ROUGE metrics. All pro-
posed methods outperform all baseline models on
ROUGE-K, indicating that, even for longer sum-
maries, TF-IDF can enhance keyword inclusion.
One significant difference is that the extractive
model (PreSumm) performs better than abstractive
models on ROUGE-1/2. We speculate this is due
to much longer output summaries (181.88 words
on average for PreSumm vs. 48.01 for BART).
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Model SciTLDR XSum ScisummNet

R-1 R-2 R-L R-K R-1 R-2 R-L R-K R-1 R-2 R-L R-K

BART 43.93 22.31 36.58 41.36 44.43 21.00 35.94 56.14 50.75 47.80 49.73 68.95
GSum 43.65 22.09 36.50 41.00 43.86 20.47 35.60 52.85 24.37 21.11 23.35 43.36
MTL 43.82 22.24 36.29 42.83 44.50 21.05 36.10 56.06 50.75 47.81 49.73 68.81
PreSumm 30.43 11.36 24.08 25.06 22.16 4.13 15.91 24.67 60.58 49.15 46.22 68.85

Std (1–4) 5.79 4.70 5.36 7.25 9.57 7.24 8.65 13.12 13.45 11.77 11.01 11.05

RwEnc 43.98 22.39 36.68 41.03 44.42 20.93 36.07 55.58 50.75 47.92 49.89 69.40
RwGen 43.96 22.35 36.59 41.60 44.57 21.04 36.09 56.03 50.38 47.78 49.54 69.19
TDMTL 44.08 22.48 36.75 41.85 44.50 21.05 36.10 56.06 50.64 47.75 49.67 69.56
TDSum 43.55 21.74 35.82 43.04 44.13 20.95 35.57 55.39 50.50 47.63 49.55 69.43

Std (all) 4.44 3.60 4.10 5.59 7.34 5.56 6.62 10.23 9.72 8.90 8.62 8.54

Table 8: Results on SciTLDR, XSum, and ScisummNet. Best results per metric are bolded. Scores with underline
indicate that they significantly outperform all baseline models. We test for statistical significance using the Wilcoxon
signed-rank test with α = 0.05 (Dror et al., 2018).

Model Dataset IN-SRC OUT-SRC

BART
SciTLDR 54.53 0.92
XSum 73.78 30.34
ScisummNet 75.21 8.17

TDSum
SciTLDR 56.75 1.37
XSum 66.61 26.66
ScisummNet 75.04 14.41

Table 9: ROUGE-K scores on keywords seen (IN-SRC)
vs. unseen (OUT-SRC) in source documents.

RQ2: In search of missing keywords. We next
focus on studying the relationship between a few
specific characteristics of keywords and ROUGE-K
scores. First, we look at whether models can better
include keywords if they appear in source docu-
ments. We do this by splitting a list of pre-defined
keywords into two lists, (1) an IN-SRC keyword
list where all the keywords appear in the source
documents, (2) an OUT-SRC keyword list where
keywords cannot be found in the source documents,
and then evaluate a model with ROUGE-K using
each list. As Table 9 shows, on both datasets and
models, ROUGE-K with OUT-SRC keywords is no-
tably lower than IN-SRC ROUGE-K showing that
when keywords are not in the source texts it is chal-
lenging for models to include them in summaries.

We next investigate whether there is a correla-
tion between ROUGE-K and keyword length, that
is, whether longer keywords are more difficult to
include. Figure 2 shows that although there is one
exceptional case (N = 7), ROUGE-K scores con-
sistently decrease as keywords become longer, indi-
cating the difficulty of including longer keywords
in summaries. Another finding in this analysis is
that while BART outperforms TDSum on XSum
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Figure 2: ROUGE-K and keyword length.

when keywords with all lengths are used when the
n-grams are longer (N >= 5), TDSum starts to
surpass BART on ROUGE-K.

LLMs on ROUGE-K To shed light on the sum-
marization behaviour of recent large language mod-
els (LLMs), we evaluate an open-source model,
namely instruction fine-tuned Llama 2 (Touvron
et al., 2023) in two different sizes. The prompt used
in our experiments is “Generate a summary of the
following document in one sentence”. Due to our
limited computational resources, we cut off inputs
and outputs at 512 and 128 tokens, respectively,
and also truncate all the sentences after the first one
in the generated summary, if longer. Results are
shown in Table 10. While they perform remarkably
well on both ROUGE and our ROUGE-K given
that inferences are performed in zero-shot manner,
we observe that more than half of the keywords
are missing, calling for better prompting strategies.
On traditional ROUGE scores, which consider the
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Dataset Llama2 7B Llama2 13B

R-1 R-2 R-L R-K R-1 R-2 R-L R-K

SciTLDR 35.9 13.9 26.7 44.1 36.3 14.6 27.8 44.4
XSum 21.8 5.6 15.5 34.7 22.0 5.6 15.9 35.9
SciNet 46.1 24.1 32.5 64.6 46.7 25.3 33.0 69.5

Table 10: Results with Llama2 7B and 13B.

Generated summary (a)
Input: Deep convolutional neural networks (CNNs) are
known to be robust against label noise on extensive
datasets. However, at the same time, CNNs are [...]
(https://openreview.net/forum?id=H1xmqiAqFm)
TLDR: The authors challenge the CNNs robustness to
label noise using ImageNet 1k tree of WordNet.
BART: We investigate the behavior of CNNs under class-
dependently simulated label noise, which is generated
based on the conceptual distance between classes of a
large dataset.
TDSum: We show that CNNs are more robust to class-
dependent label noise than class-independent label noise,
which is generated based on the conceptual distance be-
tween classes of a large dataset.

Generated summary (b)
Input: We explore ways of incorporating bilingual dictio-
naries to enable semi-supervised neural machine [...]
(https://arxiv.org/abs/2004.02071)
TLDR: We use bilingual dictionaries for data augmen-
tation for neural machine translation.
BART: We propose a simple data augmentation technique
to address both this shortcoming.
TDSum: We propose a simple data augmentation tech-
nique to enable semi-supervised neural machine transla-
tion.

Table 11: Summaries generated by our models.

words related to writing style, Llama performs no-
ticeably worse than fine-tuned models because fine-
tuning can help models learn reference styles from
the dataset. However, results are comparable on
ROUGE-K. This indicates that ROUGE-K can bet-
ter account for the high quality of LLMs, despite
different styles between generated and reference
summaries, which has been noticed when evaluat-
ing zero-shot models (Goyal et al., 2022).

Model distinguishability. Most if not all recent
summarization papers perform evaluations using
multiple ROUGE metrics, yet the gap between sys-
tems is very small, making it hard to distinguish
models’ performance. Inspired by work from Xiao
et al. (2022) on characterizing the distinguishability
of datasets, we compute the standard deviation of
scores from our models (cf. Section 5.1) for each
metric, to see the distinguishability of ROUGE vari-
ants (larger deviation means higher distinguishabil-
ity). As shown in Table 8, ROUGE-K achieves the

highest standard deviation among other ROUGE
metrics for two extreme summarization datasets,
i.e., it differentiates models better when summaries
are required to be very short. We highlight this
by means of the sample output shown in Table 11.
In (a), BART fails to include one of the keywords
‘robust’ which is necessary to convey the purpose
of the paper. In (b), the summary by BART does
not mention the task the paper worked on (in this
case, neural machine translation) while TDSum
successfully includes it.

6 Related work

In the context of factual consistency evaluation
(Kryscinski et al., 2020; Scialom et al., 2021; Fab-
bri et al., 2022), Nan et al. (2021) propose to use a
NER model to detect hallucinated named entities in
summaries. While their approach also focuses on
specific words in summaries as our ROUGE-K, it is
limited because (1) not all critical information con-
sists of named entities, (2) strong NER models are
not available in many domains, and (3) NER per-
formance is unknown for summarization datasets.
Ng and Abrecht (2015) and Zhang et al. (2020)
propose to use vector representations to compute
semantic similarity between reference and candi-
date summaries. Eyal et al. (2019) instead propose
to use a question-answering system to assess the
summary quality. While these methods can exploit
semantic knowledge stored in parameters in large
models, as a side-effect, they introduce ‘blackbox-
ness’ that hinders transparent model development.
In contrast, we take a ‘bottom-up’ approach by
proposing to focus on keyword availability.

7 Conclusion

In this paper, we proposed ROUGE-K, an extension
of ROUGE to quantify how summary-relevant key-
words are included in summaries. Using ROUGE-
K, we showed human annotators prefer summaries
with more keywords and how models often miss
several essential keywords in their output. In a va-
riety of experiments using the baseline provided
by a large pre-trained language model (BART) we
showed how ROUGE-K only moderately correlates
with ROUGE and BERTScore, thus indicating that
it can complement them, and correlates with the
length of the generated summaries on a par with
ROUGE F1 and BERTScore, despite being a recall-
oriented metric. Finally, we proposed four ways to
guide BART to include more keywords in its sum-
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maries. We plan in future work to further test our
metric’s applicability across different domains and
languages, e.g., by relying on WikiLingua (Lad-
hak et al., 2020) and X-SciTLDR (Takeshita et al.,
2022).

8 Limitations

This work has the following limitations: (1) Our
new evaluation metric, ROUGE-K, uses a heuristic
to extract keywords automatically. Although it en-
ables to obtain better and more comprehensive key-
words compared to other existing methods, some
nonessential words are still included thus can bring
some noise into the evaluation. (2) ROUGE-K does
not take the context of keywords into consideration
which leaves the possibility open that generated
summaries with keywords still convey the meaning
of keywords wrongly. (3) Like traditional ROUGE
scores, ROUGE-K is based on hard string match,
which cannot compensate for the semantics of, e.g.,
(near-)synonyms and paraphrases.
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Abstract

Aspect, a linguistic category describing how ac-
tions and events unfold over time, is tradition-
ally characterized by three semantic properties:
stativity, durativity and telicity.

In this study, we investigate whether and to
what extent these properties are encoded in the
verb token embeddings of the contextualized
spaces of two English language models – BERT
and GPT-2. First, we propose an experiment
using semantic projections to examine whether
the values of the vector dimensions of anno-
tated verbs for stativity, durativity and telicity
reflect human linguistic distinctions. Second,
we use distributional similarity to replicate the
notorious Imperfective Paradox described by
Dowty (1977), and assess whether the embed-
ding models are sensitive to capture contextual
nuances of the verb telicity.

Our results show that both models encode the
semantic distinctions for the aspect properties
of stativity and telicity in most of their layers,
while durativity is the most challenging feature.
As for the Imperfective Paradox, only the em-
bedding similarities computed with the vectors
from the early layers of the BERT model align
with the expected pattern.

1 Introduction

Since the introduction of Transformer architectures
in NLP (Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2019), their increasing success urged
researchers to get more insights about the linguis-
tic knowledge encoded in their internal represen-
tations. The literature on probing tasks is a clear
example of this trend: a simple classification model
is asked to solve a task requiring linguistic knowl-
edge using embeddings representations extracted
from a language model (LM) with little or mini-
mal linguistic supervision, and if the classification
model is successful, one can infer that the LM’s
representations do encode the targeted knowledge

(e.g. Tenney et al. (2019); Hewitt and Liang (2019);
Goldberg (2019); Jawahar et al. (2019); Wu et al.
(2020); Ravichander et al. (2020); Madabushi et al.
(2020); Chen et al. (2021); Koto et al. (2021); Be-
linkov (2022), inter alia).

An alternative approach, especially popular for
probing the semantic knowledge contained in the
embeddings, involves mapping them onto human-
interpretable features (Chersoni et al., 2021; Proi-
etti et al., 2022; Wang et al., 2023). Yet the probing
methodology involves a trainable classifier, and
therefore the relation between the probe results
and the knowledge in the original representations
is not always clear (Levy et al., 2023). Moderate
correlations with human ratings/norms can some-
times be obtained even by using random vectors as
features (Chersoni et al., 2020), and thus alterna-
tive methods for directly analysing/modifying the
structure of the semantic space have been proposed
(e.g. indicator tasks, Levy et al. (2023)). A recent
study by Grand et al. (2022) introduced the usage
of semantic projections to interpret the content of
word embeddings, by constructing subspaces cor-
responding to human-interpretable semantic scales.
Such semantic scales were shown to be very use-
ful in modeling human judgements for a variety of
concepts in the semantics of nominals (Grand et al.,
2022; Diachek et al., 2023).

In our paper, we focus on aspect, a concept in
verb semantics that characterizes the temporal re-
lationship of actions and events. Aspect has been
shown to be important in several NLP tasks, such
as next event prediction (Chambers et al., 2014)
and textual entailment (Kober et al., 2019). Com-
bining the usage of semantic scales and embedding
similarity measurements, in two experiments, we
address the question of whether and to what the ex-
tent the contextualized word embeddings produced
by LMs encode the aspectual properties of stativity,
telicity and durativity. In the first experiment, we
use semantic scales to quantify the values of the
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three aspectual properties in the verb token embed-
dings produced by different hidden layers of BERT
and GPT-2. We examine whether the projected
scores reflect the binary distinction in the aspectual
properties of the verbs described by Vendler (1957),
assuming that verbs having different values for a
property (e.g. telic vs. a) should have significantly
different scores. To our knowledge, we are the first
to adopt the semantic scales method for modeling
verb semantics. In the second experiment, we ex-
amine the similarity between simple past and past
progressive forms of telic and atelic verbs that ex-
press activities and accomplishments. According
to the Imperfective Paradox in Dowty (1977), the
past progressive of activity verb entails its simple
past, while this entailment does not hold for ac-
complishment verbs. Again, we extracted the verb
token embeddings from different internal layers: if
a BERT/GPT-2 embedding from a given layer cor-
rectly encodes telicity, we expect that the similarity
between past progressive and simple past of an ac-
tivity verb will be higher - since the former entails
the latter- than between the two corresponding past
forms of an accomplishment verb.

We found that both LMs are capable of consis-
tently encoding aspectual features, especially for
stativity and telicity. However, BERT was more
sensitive to the nuanced difference in telicity, as we
found in the Imperfective Paradox experiment. Our
findings reveal the extents to which prototypical
LMs encode core verb properties, which has impor-
tant implications for selecting LMs for downstream
fine-tuning. For example, based on our results, we
can hypothesize that fine-tuning BERT-family mod-
els may be proven more beneficial for improving
the performance of textual entailment.

2 Related Work

In the semantics literature, verb aspect is generally
characterized in terms of three properties: stativity,
telicity and durativity (Moens and Steedman, 1988;
Pruś et al., 2024).

Stativity refers to the distinction between states
and events.Verbs of high stativity generally cannot
be used in progressive forms: for example, it is not
possible to use ‘I am knowing/loving’. In compari-
son, verbs of low stativity can typically be used in
progressive forms (e.g. ‘I am running/swimming’).

Telicity refers to whether an event unfolds in
time in an homogeneous way, and whether any
part of the process is of the same nature as the

whole. Telic verbs can often be collocated with
‘in’ adverbial phrases but not with ‘for’ adverbial
phrases; e.g. ‘eat’ can be used in ‘He ate the apple
in a minute’ but not in ‘He ate the apple for a
minute’. Notice that verbs of this type describe
actions/events with a natural end point (e.g. the
moment in which the apple is finished). The use of
‘in’ signifies that the action (of eating the apple) is
completed within a specific timeframe. In contrast,
atelic verbs usually collocate with ‘for’ but not with
‘in’, e.g. ‘He was running for an hour’ but not ‘He
war running in an hour’.

Finally, durativity refers to how long an event
lasts. Durative actions like ‘love’ can be questioned
by ‘How long have you loved her?’, but punctual
actions like ‘recognize’ cannot be questioned in a
similar way (’How long have you recognized her?’
sounds odd without additional context). These ex-
amples show that a verb can vary along the three
dimensions. For example, ‘love’ is simultaneously
stative, durative, and atelic.

The work conducted by Friedrich and Palmer
(2014) focuses on the automatic classification of
verb stativity in context, using a combination of
distributional and manually crafted linguistic fea-
tures. It is one of the first to introduce a dataset
of annotated sentences specifically for this feature.
Friedrich and Gateva (2017) expanded on this work,
by releasing datasets also for telicity and durativ-
ity with gold and silver annotations; the latter was
automatically extracted from a parallel corpus be-
tween English and Czech texts, exploiting the fact
that Czech aspectual features are signaled with spe-
cific morphological markers. Kober et al. (2020)
proposed an approach based on compositional dis-
tributional models to distinguish between stative
and dynamic verbs, and between telic and atelic
ones. Interestingly, their classification results con-
firmed that the tense is always a strong indicator of
telicity; in particular, past tense is often correlated
with telic events.

Cho et al. (2021) presented a study on using
BERT surprisal to model human typicality ratings
of the location arguments in natural language sen-
tences, which were shown in the studies by Ferretti
et al. (2001, 2007) to be strongly related to verb
aspect: humans show priming effects for typical
locations in sentences, but only when the tense of
the main verb is progressive (or, in other words, the
description of an action as ongoing makes the loca-
tion argument more salient for human conceptual
representations). BERT surprisal scores showed
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some sensitivity to the aspect of the verb, although
they produced human-like patterns only when the
entire sentence context other than the verb and the
location were masked.

More recently, Metheniti et al. (2022) reported
a classification experiment on telicity and durativ-
ity on English and French, suggesting that Trans-
former models encode a non-trivial amount of
knowledge of aspect even before fine-tuning, al-
though they have biases regards verb tense and
word order. Finally, Liu and Chersoni (2023) pre-
sented a modeling study of the shortening effect
that the usage of light verb constructions has on the
perceived duration of event descriptions, and they
also used the semantic scales method by Grand
et al. (2022) to project BERT vectors onto inter-
pretable dimensions. They showed that certain
type of events (e.g. punctive) have smaller values
in their DURATION-related dimensions when ex-
pressed in the light verb form (e.g. to give a kiss
takes less time than to kiss).

3 Experiment 1: Measuring Aspect
Properties with Semantic Scales

In the first experiment, we select a set of verbs
from the study by Vendler (1957). For each of the
three aspect properties, the verbs are divided into
two groups: stative versus dynamic for stativity,
telic versus atelic for telicity, and punctive versus
durative for durativity.

Our primary goal is to construct a semantic scale
for each property, and then to project the word em-
beddings of the verbs on the semantic scales, in
order to assign them scores of stativity, telicity, and
durativity. If the distributional space effectively
captures the different value that a verb can express
with respect to a given property (e.g. telicity), we
expect the scores for the verbs of the two groups to
be different (e.g. telic verbs should have consider-
ably higher scores on the telicity scale compared to
atelic verbs).

3.1 Verb Selection

To begin, we selected verbs based on the catego-
rization in Vendler (1957) that divides verb into
four classes: state, activity, accomplishment, and
achievement. These classes often show differences
in one crucial verb property while sharing similar-
ities in other properties. For example, state verbs
and activity verbs differ in stativity but are similar
in terms of telicity and durativity. Therefore, state

verbs and activity verbs can represent two extremes
of stativity, with state verbs representing more sta-
tive nature and activity verbs more dynamic. Simi-
larly, we used the ’accomplishment-activity’ con-
trast to capture telicity, and the ’accomplishment-
achievement’ contrast to capture durativity. Select-
ing representative verbs for each extreme in this
controlled manner can ensure that the constructed
scales reflect the difference in the target property as
much as possible. For each category, we prompted
the ChatGPT online interface to generate 50 ex-
emplars, and manually verified the results (See the
Appendix for the full list of the experiment items).

3.2 Scale Construction

We followed Grand et al. (2022)’s method of iden-
tifying semantic scales from vector spaces. To
obtain an ‘out-of-context’ representation for each
target word, we averaged their contextualized em-
beddings from a sample of 20 randomly selected
sentences from the British National Corpus (BNC)
(Leech, 1992)1. If the target token was not included
in the base vocabulary of a model and was split into
sub-tokens, we used the average of the sub-tokens’
embeddings as the representation for the target to-
ken. The same method was consistently applied in
this study when extracting the representation for a
target word in context.

Next, for each target property, we randomly sam-
pled three words from the word lists to represent
each extreme of the scale and we clustered their
out-of-context embeddings, following the setup of
the original study by Grand et al. (2022). For exam-
ple, we sampled three words from the state verbs
(e.g. exist, lack, matter) and three words from
the activity verbs (dance, walk, drive) to represent
the extremes of stativity. The authors recommend
using this clustering step in order to avoid biases
specific to the lexical meaning of a single word.

Finally, we constructed the scales by subtracting
the embedding of one extreme by another extreme.
This yielded a vector that represents the scale of
values for a specific target property from one ex-
treme to another. Since we had three target words
for each extreme, we could construct nine scales
based on different extreme pairings and average
them to generate the final scale, which is meant

1Vulić et al. (2020) actually showed that sampling more
than 10 contextualized instances leads to little differences in
the representation. However, to ensure more robust results,
we still chose to use 20 instances to build each out-of-context
representations
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Figure 1: Semantic projection of verbs on stativity scale constructed by the 12th layer embeddings from BERT

to prevent the scale from being heavily influenced
by the specific choice of antonym pairs (Grand
et al., 2022). For example, if we used ‘admire’,
‘appreciate’ and ‘dislike’ to represent stative ex-
treme, and ‘swim’, ‘dance’ and ‘jog’ to represent
the dynamic extreme, we could have nine pairs,
like [’admire’ - ’swim’], [’admire’ - ’dance’] and
[’admire’ - ’jog’], and subsequently average them
to get the final scale.

3.3 Semantic Projection
After we constructed scales for the verb prop-
erties (henceforth as ⃗stativity, ⃗durativity, and

⃗telicity), we assessed the validity of the scales by
projecting other verbs onto the scales. Our hypoth-
esis was that if the scale accurately reflected the
semantic distinctions of the verbs in terms of the
target property, the projection scores of one group
of verbs would be significantly different from their
semantic opposites. For example, we expected
that the projection scores of the stative verbs on

⃗stativity to be significantly different from the pro-
jection scores of the dynamic verbs.

The projected verbs for projection are all the
verbs in the original lists that are not used to build
the scale extremes. For example, if we initially had
fifty candidates for representing the one semantic
extreme of a target property, we sampled three of

them to represent the extreme, and then we used
the remaining 47 words for projection. Therefore,
for each property, we had in total 94 words for
projection and difference testing.

To project the verbs on the scale, we used the
standard scalar projection formula as follows:

Proj(−−−−→target) =
−−−−→
target · ⃗property

∥ ⃗property∥

The aggregated vector of each target event is
denoted as −−−−→target. The result of projection is a
scalar value, and a larger value indicates a higher
degree of the property represented by the scale.
Figure 1 provides a visualization of examples of
semantic projection for the stative vs. dynamic
opposition in a three-dimensional space.

After the projection, we analyzed the difference
in the projection scores for the two verb groups for
each scale, and we saw a significant difference as
evidence that a model is able to set apart the verbs
according to a specific semantic dimension (e.g.
we expect stative and dynamic verb to differ signif-
icantly in their ⃗stativity scores). Specifically, we
compared the projection scores of the verb groups
for each scale by using the Mann-Whitney U statis-
tical test (we chose a non-parametric test because
the projected scores from some of our extraction
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Figure 2: Layer-wise difference in the semantic projection score for stativity, durativity and telicity for each BERT
layer. Dots mark the layers in which the scores for the two Vendler groups differ significantly.

Figure 3: Layer-wise difference in the semantic projection score for stativity, durativity, and telicity for each GPT-2
layer. Dots mark the layers in which the scores for the two Vendler groups differ significantly.

experiments were not normally distributed).

3.4 Embedding Models

To obtain the contextualized embedding represen-
tations, we used the pre-trained BERT (’bert-base-
uncased’) (Devlin et al., 2019) and GPT-2 Base
(’openai-community/gpt2’) (Radford et al., 2019);
both of them are available on HuggingFace2. The
first model is a bidirectional, encoder-only Trans-
former, typically used for classification tasks, while
GPT-2 is a unidirectional, decoder-only Trans-
former and it is often used for generation. The
extraction of verb token embeddings was imple-
mented in Pytorch. For verbs that were not in-
cluded in the Transformers’ vocabulary and were
splitted in multiple subtokens, we obtained a single

2’bert-base-uncased’ can be found at: https:
//huggingface.co/google-bert/bert-base-uncased,
’gpt2-base’ can be found at: https://huggingface.co/
openai-community/gpt2

embedding via mean pooling of the embeddings of
the subtokens. To have a finer-grained understand-
ing of how Transformers encode verb properties,
we ran the experiment by extracting the embed-
dings from all the 12 internal layers. As pointed out
by Tenney et al. (2019), early Transformer layers
tend to encode more permanent, ‘out-of-context’
features of a word (e.g. POS, syntax), while later
layers tend to encode context-dependent seman-
tics. Even if contextualized embeddings are able to
model aspect properties, indeed, one may still be
interested in understanding in what layers are best
at separating the two verb groups for each property.

3.5 Results of Experiment 1

Figure 2 and Figure 3 show the layer-wise dif-
ference of projection scores of verbs of different
groups on three semantic scales for BERT and GPT-
2, respectively, and the dots indicate that a signifi-
cant difference between the two groups at p < 0.05
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for the Mann Whitney U Test. More detailed infor-
mation for scale construction and projection can be
found in Appendix A.

In both Transformer models, stativity is by far
the property that is better encoded (blue line): it can
be observed, indeed, that the differences between
stative and dynamic verbs are almost always signif-
icant across layers. This is not a surprising finding,
as the difference between states and events is prob-
ably one of the main distinction in verb semantics.
In the BERT model, the absolute difference be-
tween the scores of the two groups is the largest
across properties and it is statistically significant in
all layers; in GPT-2 the difference widens in deeper
layers and remains significant for all of them.

As for telicity (green line), although the projec-
tion scores of telic and atelic verbs are closer than
stative and dynamic ones, the differences are still
significant for all the BERT layers. For GPT-2, the
difference in telicity becomes more salient as in
deeper layers and finally drops in the last one, the
only layer in which it is not significant. Durativity
(orange line) is the most challenging property to
model, with BERT managing to set the two groups
apart in the first layer, around the middle layers (4-
6) and in some of the later layers (8 and 10). The
GPT-2 model can distinguish the two groups in the
early (layer 1-4) and in the middle layers (layer 6;
8-9), but it fails to do so in the later layers.

It can be seen that later layers of both models are
less consistent in discriminating the verb groups
across different properties. Probably, in the later
layers the embeddings become too context-specific
to reflect the distinctions: the issue could be pos-
sibly related to the anisotropy of contextualized
vector spaces (Ethayarajh, 2019), that is, the ten-
dency for the representations to occupy just a small
cone of the vector space, with the result that the
similarities even between randomly sampled words
tend to be very high. Interestingly, it has been re-
ported than GPT-2 tends to have a much higher
degree of anisotropy than bidirectional models in
the later layers (Ethayarajh, 2019), which could ex-
plain why the performance of BERT is more stable
and consistent across properties and layers.

4 Experiment 2: Modeling the
Imperfective Paradox with
Distributional Similarity

Our first experiment showed that the models gener-
ally have a good grasp of the semantic distinctions

related to the three main aspectual properties. In
our second experiment, we test if the distributional
similarities between verb token embeddings reflect
the entailment properties of telic and atelic verbs
when we manipulate their tense. With this goal
in mind, we aim at replicating the Imperfective
Paradox described by Dowty (1977). In his work,
Dowty focuses on the opposition of activities and
accomplishments in the past progressive and in the
simple past tense, as in the following example:

(1) a. Maria was singing the national an-
them |= Maria sang the national an-
them (activity - atelic)

b. The children were building a sandcas-
tle ̸|= The children built a sandcastle
(accomplishment - telic)

Given that our models encode telicity in the em-
bedding representations, we extract the token verb
embeddings for the verbs in the provided sentence
pairs in a. and b., and for each verb we measure the
distributional similarity to itself when used in the
other tense. Our hypothesis is that the similarity
will reflect the entailment relation between the two
statements. Specifically, we expect the similarity
to be significantly higher for activities than accom-
plishments, since the simple past is entailed by the
progressive in the former, but not in the latter case.

Similar to the previous experiment, we used the
‘accomplishment-activity’ contrast to define telicity,
e.g. accomplishment verbs are telic while activity
verbs are atelic. For these two groups, we used the
same verbs from Experiment 1. For each group, we
constructed 100 pairs of simple/progressive past
sentence pairs, resulting in a total of 200 pairs.

Initially, we extracted sentences from the BNC
that contained the target verbs in the simple past
tense, and for each sentence we created an equiva-
lent sentence in the past progressive by changing
the verb’s aspect. For telic verbs, we used word
types from the ‘accomplishment’ verb class, while
for atelic verbs, we used word types from the ‘activ-
ity’ verb class. In total, we collected 100 samples
for each verb group. For each verb type in the lists,
we randomly sampled 10 sentences in which the
verbs are in the form of past particle, and filtered
those sentences that are marked as passives rather
than simple past sentences. The remaining sen-
tences were evaluated by the authors and deemed
less suitable for aspect conversion. We also made
sure that each verb type occurred at most 5 times
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Figure 4: BERT: Layer-wise semantic similarity of the target words in simple past/past progressive pairs for the
telic and atelic groups. Dots mark the layers in which the similarity scores differ significantly between two groups.

Figure 5: GPT-2: Layer-wise semantic similarity of the target words in simple past/past progressive pairs for the
telic and atelic groups. Dots mark the layers in which the similarity scores differ significantly between two groups.

in the sample after filtering, to prevent the results
from being too influenced by specific verb types.

As a result, we obtained 100 instances for the
telic (32 verb types) and atelic group respectively
(21 verb types). 3 The sentences in each pair are
exactly the same, except for the main verb tense 4,
and we also manually checked that they did not be-
come incoherent due to the aspect conversion.Once
obtained the sentence pairs, we extracted the verb
embeddings from each of them by using Pytorch.

3Notice that, after the filtering procedure, for several verb
types we did not have any sentences left in the sample. Still,
we considered the existing sample size as sufficient for statis-
tical testing, and the diversity of verb types as high enough to
make generalizations about the population.

4For a small number of cases (7 sentences in total) we
had to adjust the additional context, as they have verbs linked
by coordinate conjuctions, e.g., to convert ‘shopped’ in ‘She
walked and shopped’ to ‘was shopping’ we had to change the
aspect of ‘walk’ to make the sentence coherent.

For the sentences with the verb in the past progres-
sive, we used the embedding of the progressive
form, not including the auxiliary (e.g. from The
children were building a sandcastle, we extract the
embedding of building).Once again, embeddings
for multi-token verbs were obtained via mean pool-
ing of the embeddings of the subtokens. The simi-
larity between embeddings was computed with the
standard cosine metric and with Spearman correla-
tion: we chose the latter as an additional measure
because of the notorious issue of the anisotropy of
contextualized vector spaces, as rank-based metrics
were shown to be more robust to anisotropy and
more consistently correlated with human similarity
judgements (Timkey and van Schijndel, 2021).
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4.1 Results of Experiment 2

Figure 4 and 5 show the two models’ layer-wise
semantic similarities of the target words in simple
past/past progressive pairs for the telic and atelic
groups, respectively; the dots on the figures indi-
cate significant differences at threshold of p < 0.05.
Unlike the previous experiment, more striking dif-
ferences between BERT and GPT-2 are observed.
Specifically, for BERT, the cosine similarity be-
tween the target words with different aspect fea-
tures gradually increase across the layers. More
importantly, the similarity in the telic group was
constantly lower than the similarity in the atelic
group, although the difference was only significant
in the first four layers. This aligns with our hypoth-
esis that telic verbs show difference in entailment
compared to atelic verbs, and this difference is
reflected by the distributional similarity between
word vectors.

In contrast, GPT-2 embeddings behave in an un-
expected way. The similarity in the telic group was
almost always significantly higher than the atelic
group across all the layers, except for the first and
the final one. Additionally, the general similarity
between the verbs in the two tenses is higher for
GPT-2 than for BERT, and it gets very close to 1 in
the later layers - which complies with Ethayarajh
(2019)’s finding that the embeddings of autoregres-
sive models are much more affected by anisotropy.

With Spearman, we observe that the scores are
generally lower, which confirms the higher robust-
ness to anisotropy of this metric. We can see that
the similarities for BERT follow a similar pattern,
with some additional significant differences in layer
5 and in the last, more contextualized layer; on the
other hand, with GPT-2 the significance pattern is
totally reversed, as it becomes significant only for
the last layer. Once again, and surprisingly, telic
verbs are more similar than atelic ones.

In general, the BERT model is the only one that
approximates the expected behavior, with the atelic
verbs having higher self-similarity in both tenses.
Our results also confirm the recent finding that
embeddings from autoregressive models are much
weaker for similarity tasks, possibly because of
anisotropy and of the lack of encoding of the in-
formation from later tokens (Springer et al., 2024).
Specifically, GPT-2 similarities, indeed, appear to
be more unstable across metrics and heavily af-
fected by anisotropy (all the scores are increasingly
close to 1 in the later layers).

Interestingly, in BERT, the difference tends to
be significant only in the earlier, less contextual-
ized layers. One possible explanation is that the
model may be too "distracted" by the context in
later layers. It has been reported that the capacity
of BERT to reproduce human behavior in tasks re-
lated to verb semantics (e.g. selectional preference
modeling, Metheniti et al. (2020); thematic fit esti-
mation, Cho et al. (2021)) may improve by simply
applying attention masks to the context words other
than the verb and its arguments, which prevents the
model from focusing on other elements of the sen-
tence. Another possibility is that the semantics
of these verbs in context is more ambiguous than
traditionally assumed by linguists. In such cases,
the decision about the existence of an entailment
relation between progressive and simple past may
not be straightforward even for humans (the results
of Pruś et al. (2024) seem to go in this direction.
Please also refer to the Limitations section).

We also conducted a qualitative analysis to iden-
tify cases whose similarity scores deviated from
the majority examples. Specifically, we focused
on BERT embeddings from layer 4, which was the
last layer for which the difference in similarity was
significant for both metrics. We defined outliers as
data points with a z-score lower than -2 or higher
than +2. Interestingly, we found no outliers for
the telic group, while several outliers in the atelic
group were found.

We further examined these outliers by projecting
their past progressive form onto the three property
scales, and found that besides being low in telicity,
they generally have high durativity values (see also
Figure 6 in the Appendix). Therefore, the conver-
sion into the simple past form not only made them
more ‘bounded’ by a natural end (i.e. increase in
telicity), but also shortened their duration (i.e. de-
crease in durativity), which in turn led to lower
similarity between the two aspectual forms. This
finding is supported by an examination of the con-
texts of these outliers. For example, ‘shop’ in ‘We
were shopping in village stores as we went along,
and my diary lists items of food bought rather than
consumed’ has low telicity and high durativity, but
it has high telicity and low durativity in its simple
past counterpart, as the former suggests that the
shopping may last for the whole walk, while the
latter suggest that they might be several times of
quick shopping. Thus, in such cases telicity is not
the only determinant of verb behaviour: the context
might coerce the verb into wider meaning changes.
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5 Conclusion

In our study, we presented an analysis of the con-
textualized verb embeddings of BERT and GPT-2
to assess to what extent they encode semantic dis-
tinctions related to the three aspectual properties
of stativity, telicity, and durativity. Our first exper-
iment, making use of the technique of the projec-
tion on a semantic scale by Grand et al. (2022),
showed that both models could consistently distin-
guish verbs with different values for stativity and
telicity, but faced more challenges with durativity,
and gave less consistent results. To our knowledge,
this study is the first that applies the method of se-
mantic scales to analyse features of verb semantics.

As an additional contribution, we used the distri-
butional similarities between the simple past and
the past progressive of telic and atelic verbs to
‘recreate’ the Imperfective Paradox (Dowty, 1977)
in a contextualized vector space. We showed that
only the BERT model in the early layers reflects
the distinction proposed by the theory – Progres-
sive forms of atelic verbs, which entail their simple
past, are more similar to the simple past than the
corresponding forms of telic verbs.

Limitations

Our work suffers from some obvious limitations:
first of all, we run our experiments on English,
so we cannot be sure that Transformer models for
other languages would show similar patterns in
encoding aspect properties; secondly, we focused
on two types of architectures, BERT and GPT-2,
but due to the limitations of our computational
resources we could not test the more recent Large
Language Models (Wei et al., 2022).

Finally, both of our experiments assume binary
distinctions in natural language semantics, with
regards to the aspect properties in Experiment 1
(stative vs. dynamic verbs, telic vs. atelic, punctive
vs. durative) and with regards to the entailment in
Experiment 2 (either the past progressive of a verb
entails its simple past, or it does not). However, this
is likely to be just a simplifying assumption: for
example, the ratings collected by Pruś et al. (2024)
suggest that humans tends to disagree about the
entailments of verbs with the same telicity features.
Future studies on the topic might need to adopt a
perspectivist approach to account for differences in
human semantic intuitions (Cabitza et al., 2023).
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A Verb Lists for Experiment 1

The verbs selected for Experiment 1 -divided
into States, Activities, Accomplishments and
Achievements- can be found in Table 1.

B Qualititative Analysis of Experiment 2

As a complement to the final qualitative analysis
in Section 4.1, Figure 6 shows an illustration of
the projection of the embeddings of Experiment
2 onto the three semantic scales that we used for
Experiment 1. Outliers are displayed in red.
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State Activity Accomplishment Achievement
admire dance construct discover
cherish play compose recognize
dislike jog win reach
fear swim deliver spot
perceive draw encode quit
pertain sing bond forfeit
savor cook rebuild explode
wish travel harvest solve
disagree study decorate die
deny read complete notice
exist run bake arrive
lack chat translate find
concern explore repair retire
depend listen fall cure
equal cycle illustrate hire
involve push produce espouse
possess hunt train score
rely knit freeze break
signify garden thrive invent
vary exercise drown crack
value sketch organize finalize
hope juggle renovate overcome
weigh weave navigate disappear
regret drift install detect
know browse educate unlock
appear shop cultivate depart
imply wait assemble ignite
matter daydream migrate collide
include hike generate elect
respect fish formulate vanish
appreciate wander activate baptize
resemble babble unveil capture
contain shiver fabricate resign
desire walk distill convince
envy glow master enlist
remember lounge establish marry
forget march restore quantify
mean quarrel digitize provoke
believe drive synthesize succumb
have whisper innovate withdraw
suspect celebrate craft originate
adore drum demolish conquer
understand giggle export divorce
belong hum forge emerge
doubt nap launch hop
owe guard implement erupt
seem rehearse refurbish plunge
prefer watch paint shatter
consist sail upgrade topple
need relax recover unravel

Table 1: Verb list for Experiment 1
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Figure 6: Visualization of aspect features of verbs in past progressive form, the red dots stand for the outliers
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Abstract

Research in Language & Vision rarely uses
naturally occurring multimodal documents as
Wikipedia articles, since they feature complex
image-text relations and implicit image-text
alignments. In this paper, we provide one of
the first datasets that provides ground-truth an-
notations of image-text alignments in multi-
paragraph multi-image articles. The dataset
can be used to study phenomena of visual lan-
guage grounding in longer documents and as-
sess retrieval capabilities of language models
trained on, e.g., captioning data. Our analy-
ses show that there are systematic linguistic
differences between the image captions and de-
scriptive sentences from the article’s text and
that intra-document retrieval is a challenging
task for state-of-the-art models in L&V (CLIP,
VILT, MCSE).

1 Introduction

Research in Language & Vision (L&V) aims at
building models that ground language in the visual
modality and therefore requires datasets that align
text and images. To date, most work in L&V uses
datasets that have been obtained via annotation of
images in a way that image and text are aligned
by construction as in, e.g., image captioning or
VQA datasets (Thomee et al., 2016; Lin et al.,
2014b; Young et al., 2014a). Multimodal image-
text data that occurs “in the wild”, as in, e.g., arti-
cles, recipes, comics, etc., is less commonly used
since their image-text relations are much more com-
plex (Bateman, 2008) and the alignment of images
and text is often left implicit. Existing work on pro-
cessing image-text alignment in multi-modal doc-
uments has usually been unsupervised, facing the
challenge of missing evaluation and training data
(Hessel et al., 2019). For this reason, it is unclear to
what extent state-of-the-art (multi-modal) language
models can discover text-image alignments in com-
plex multi-image multi-paragraph documents and

to what extent grounding capabilities in these mod-
els are biased by specific linguistic properties of an-
notated captions. With this work, we contribute to
closing this gap and provide one of the first datasets
that provide ground-truth annotations of image-text
alignment in complex multimodal documents.1

Figure 1 shows a paragraph from the Wikipedia
article on the Reims Cathedral2, illustrating some
of the complexities that can arise in text-image
alignment in real multimodal documents. The para-
graph contains highly descriptive sentences that
refer to visual elements of the building shown in
corresponding images. Thus, in this example, three
sentences from the same paragraph match three
different images, but there is no explicit alignment
between sentences and images (e.g. through ref-
erences). The paragraph also contains sentences
that are not descriptive and do not match any of the
images. At the same time, the images are accom-
panied by captions that briefly describe the image
content and make it easier for the reader to estab-
lish its relation to the main text. Furthermore, this
paragraph is embedded in a much longer document
which contains many more, possibly matching im-
ages of this building. These alignment patterns
between images and sentences in a longer text as
well as captions of these images and correspond-
ing sentences have, to date, not been extensively
studied in L&V research and there is currently no
available dataset that provides annotations for text-
image alignments in Wikipedia articles.

In this paper, we conduct an annotation study
on an existing dataset of multimodal Wikipedia
articles on buildings, WikiScenes (Wu et al.,
2021), and enrich the dataset with annotations of
alignments between textual elements (sentences,
paragraphs) and images. Since the articles in

1The dataset is available here: https://github.com/
clause-bielefeld/wikiscenes_descriptions

2https://en.wikipedia.org/wiki/Reims_
Cathedral
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Figure 1: A highly descriptive paragraph and corresponding images from the Wikipedia article on the Reims
Cathedral. Sentences that match an image are highlighted in the same color as the caption of the respective image.

Wikiscenes are about visual entities from the do-
main of historical buildings, they feature text that
is at times highly descriptive and, thereby, com-
parable to caption-like descriptions (see, e.g., the
mention of the facade of the Reims Cathedral in
Figure 1). We restrict our annotation study to de-
scriptive relations between text and images, i.e. tex-
tual elements that describe visual content shown in
an image within the article, refraining from includ-
ing more complex discourse relations involving
complementary relations and others (Kruk et al.,
2019). To deal with the fact that the articles are
rather long and contain many images, we introduce
a two-step annotation procedure, where we first
ask annotators to skim the article for relations be-
tween paragraphs and images, and then annotate
sentence-image alignments in a second step.

The dataset we obtain from our annotation set-
up, WikiScenes with Descriptions, can enhance re-
search on visual language grounding in longer doc-
uments and assess grounding capabilities in lan-
guage models. Our initial analyses in this paper fo-
cus on understanding how the descriptive sentences
that occur within the main text and that match a
particular image differ from captions of that image.
We also experiment with baseline intra-document
retrieval to evaluate L&V models on image-text
alignment in our dataset. These analyses address
the following research questions:

• Do descriptions of images in articles show
different linguistic properties than captions of
the corresponding images?

• Do the original captions in Wikipedia dif-
fer systematically from captions generated by
captioning models?

• Can similarity-based retrieval based on the
images’ captions serve as a robust baseline for
image-text alignment?

• How does image-sentence retrieval baselines
with pretrained VILT (Kim et al., 2021)
and CLIP (Radford et al., 2021) compare to
caption-sentence retrieval?

Our analyses reveal systematic linguistic differ-
ences between the image captions on the one and
descriptive sentences from the article’s text at both
linguistic and conceptual levels. We show that our
dataset can serve as a challenging benchmark for
image-text alignment in long documents.

2 Background

Our data collection is related to other efforts fo-
cused on multi-modal articles, e.g., WikiCaps
(Schamoni et al., 2018) and WIT (Srinivasan et al.,
2021), or datasets for news image captioning (Liu
et al., 2020; Biten et al., 2019; Hollink et al., 2016).
In comparison to these, our extension of Wu et al.
(2021)’sWikiScenes features more detailed annota-
tions of grounded text spans within sentences of the
main text. Annotation of relations between spans
or entities in longer text is generally challenging, as
discussed in, e.g., work on coreference (Ghaddar
and Langlais, 2016; Bamman et al., 2019). An-
notation of multi-modal documents further comes
with the significant complication that the number
of possible combinations of text spans and images
increases quadratically with the length of the text
and the number of images.

There is some work on L&V datasets and tasks
that capture more varied semantic or discursive re-
lations between image and text: Kruk et al. (2019)
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Figure 2: Illustration of the overall annotation procedure for the WikiScenes with Descriptions datasets, showing
different levels and modalities of the annotation scheme

tag the image intent in multi-modal Twitter posts,
distinguishing between intents like ‘provocative’,
‘expressive’ or ‘promotive’. Their annotations as-
sign a global label to the image which captures the
relation to the text as a whole. This goes beyond
literal image descriptions but still does not capture
structurally diverse referential relations. Alikhani
et al. (2019) investigate text-image coherence in
recipe texts that describe sequences of consecu-
tive actions in a cooking context. Structurally, the
recipe text is already segmented, with an image
aligned to each step. Alikhani et al. (2019) distin-
guish image-text relations concerning which part
of the action is shown and whether all entities af-
fected by an action are visible / mentioned in the
text. Both papers work on naturally occurring texts,
though these are still relatively short (tweets and
1-2 sentences per step respectively). Cheema et al.
(2023) propose to combine frameworks from the
area of semiotics with computational analysis of
image-text relations, suggesting a framework for
multimodal news analysis. In contrast to these ac-
counts, our dataset features more or less uniform
relations between texts centered on buildings and
images, i.e. the texts stand in a descriptive relation
to the content of images.

Muraoka et al. (2020) work with a more coarse-
grained and somewhat simplified version of the
problem discussed in this paper. Their task is
to correctly predict the physical alignment of im-
ages and sections in Wikipedia articles. This ap-
proach utilizes the inherent document structure and
consequently saves on expensive manual annota-
tion. However, our observations call into question

the presupposition that alignment in layout entails
alignment in content. A similar text-image match-
ing task is discussed in Hessel et al. (2019), where
the authors seek to match the images in a docu-
ment to the most relevant sentences in it (leaving
out the captions). Their model is trained on col-
lections of sentences and images from the same
documents or different documents, for instances of
non-relatedness. This information is used at test
time to estimate the individual links between the
sentences and images of a given document. Hessel
et al. (2019) is highly relevant to the concerns dis-
cussed in this paper because it shows some success
in handling comparatively large amounts of text in
the genre of Wikipedia articles. Very recently, (Liu
et al., 2023) presented the DocumentCLIP model
designed to capture the interaction of text and im-
ages in longer multimodal documents. Importantly,
they assume that images are, by default, aligned
to the paragraph they co-occur with in the spatial
document layout. This is a strong assumption and
our dataset of ground-truth alignments between
sentences, paragraphs, and images can be used to
further test and benchmark such models.

3 Data collection

In this Section, we introduce our data collection
and annotation procedures. Figure 2 shows an
overview of the procedures, consisting of sev-
eral stages with annotations completed at differ-
ent levels, employing expert annotators and crowd-
sourcing. In the following, we detail each annota-
tion stage.
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3.1 Text and Paragraph Selection
From the WikiScenes corpus (Wu et al., 2021), we
randomly sample 47 articles from the set of 98 arti-
cles. The first annotation step is a preselection of
paragraphs and images that are candidates for text-
image alignment. The three annotators annotated
1101 images and 1900 paragraphs. Due to the ex-
cessive number of possible paragraph-image com-
binations, thirty short to medium-length and one
long articles were exhaustively annotated. Anno-
tators were instructed (i) to make a snap judgment
on whether a paragraph contained at least one ref-
erence to the image, (ii) to ignore non-photograph
images such as plans, schemes, and paintings as
well as aerial images and (iii) to consider only
what is visible an image. The second and third
instructions intend to exclude more complex image-
paragraph correspondences and relations, that go
beyond merely descriptive relations. As an exam-
ple, given an image of a tower, annotators were
instructed to consider sentences like The tower was
built in 1700. as (potentially) related, while The
original altar was destroyed in the French Revo-
lution. is not related (even though it could be the
case that the altar is inside the tower).

3.2 Fine-grained Image-Paragraph
Annotations

The second annotation phase involves sentence &
word-level annotations on the pre-selected para-
graphs. 623 image-paragraph combinations were
randomly sampled from the items collected in the
previous annotation stage and evaluated by three
annotators using crowd-sourcing. We recruited a
group of 255 workers through Amazon Mechanical
Turk. The annotators were given image and para-
graph pairs, and instructed to highlight only text
spans that describe something visible in the accom-
panying image. This ensures that the annotated text
spans contain descriptions of the image or some-
thing in it. The annotation instruction are given in
the Appendix, Figure 6. The average time per task
was 137.6 seconds, workers were paid 0.35 $ per
task.

The result of the annotation process is a collec-
tion of pairs of text spans (at sentence- and word-
level) and captioned images that depict real-world
objects.

Interrater agreement. At the sentence, level, if
the majority of the annotators (two out of three)
annotated at least one word in a sentence, the sen-

tence is considered as depicted/matched to the re-
spective image. We removed the cases where an
annotator selects the entire paragraph instead of
highlighting relevant parts. On average, the three
crowd-workers who annotated each item agreed
on the match or non-match of 65 % of sentences.
While Wikipedia articles are aimed at a general
audience, the annotation task is nonetheless non-
trivial due to the complexity of the subject matter
that requires a specialized vocabulary of the do-
main. For this reason, we believe this agreement
to be of sufficient quality for further analysis. The
dataset with the annotations and the generated cap-
tions at both sentence and text-span levels will be
publicly available. For the rest of the paper, we
present text-to-caption/image or caption/image-to-
text at sentence-level alignment.

3.3 Captions
As illustrated in Figure 2, in addition to the original
captions provided with the image in the wiki arti-
cles, we generated captions for the images using
existing image captioning models, namely ClipCap
(Mokady et al., 2021) and IBM-MAX.

ClipCap3 (Mokady et al., 2021) is a lightweight
caption generation model, based on CLIP encod-
ings (Radford et al., 2021). It benefits from CLIP’s
rich semantic latent space shared by both visual
and textual data trained on more than 400 M text-
image pairs. In addition to the base model, we
also further finetune it with several settings, the
details of the finetuning are given in Appendix A.4.
ClipCap-based models are listed as:

1. clip-base: It is the base ClipCap model with-
out finetuning (using the CLIP Model ViT-
B/32 and greedy search decoding)

2. clip-ft: It is created by finetuning the CLIP
Image Encoder instead of the ClipCap model.
1270 unseen image-caption pairs are used for
finetuning.

3. clip-ft-gpt-20e: It is obtained by finetuning
the ClipCap model (both the prefix encoder
and GPT-2 4

On the other hand, the IBM-MAX, inspired by
Vinyals et al., 2017, does not use a transformer
architecture or a large pretrained language model;
instead, it utilizes an image encoder based on a

3https://github.com/rmokady/CLIP_prefix_
caption

4with 10 epochs, prefix length 10, MLP Mapping with
prefix size 512, lr 2e-5, with longer epochs (n=20)
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deep convolutional net trained on MSCOCO im-
ages (Lin et al., 2014a), and an LSTM-based text
decoder to generate the description. Both models
generate a sentence describing the image content.

3.4 Data overview.

The dataset contains unique 3923 sentence-image-
caption triples, with 1989 unique sentences. Af-
ter the agreement analysis, we ended up with 683
matched sentences – image/caption pairs (A in Fig-
ure 2) and 1306 unmatched sentences (i.e. sen-
tences from the same set of articles with no relation
to any image (B in Figure 2).

4 Methods

This Section introduces the methods we use to ana-
lyze our dataset and to test L&V models on it. In
our experiments, we look at two ways of aligning
text and images: first, we study sentence-caption
alignment, i.e. we investigate whether captions
of images in an article are similar to sentences in
the article’s text that annotators marked as match-
ing this image. Second, we study sentence-image
alignment using multimodal L&V models.

4.1 Sentence – Caption Alignments

To explore the relations between sentences and cap-
tions, we investigate whether semantic similarities
between image captions and matched/unmatched
sentences constitute a promising baseline for auto-
matic image-text alignments. We employ two types
of sentence embeddings. First, we use text-only
sentence representations extracted from the sen-
tence transformer model (SBERT) from the Hug-
gingface platform (Reimers and Gurevych, 2019).
As the second method, we utilize pre-trained
multimodal sentence representations (MCSE) pro-
vided by Zhang et al. (2022). MCSE are visually
grounded sentence embeddings obtained by fine-
tuning pre-trained models (e.g., ROBERTA-base
(Liu et al., 2019) ) in a contrastive learning frame-
work. The sentence embeddings are enriched by
training on a subset of Flickr30k (Young et al.,
2014b) or MS-COCO (Lin et al., 2014b) image-
caption dataset (30K images with multiple cap-
tions) and Wiki-1M text-only corpus. We used the
pretrained weights using flickr-mcse-roberta-base-
uncased5. We give each textual element as input to
each pre-trained model and extract their CLS token
embeddings.

5https://github.com/uds-lsv/MCSE

We compute text-image alignments in two di-
rections and with different candidate sets: we re-
trieve captions (or images) based on the sentence
(sentence-to-caption) or retrieve the sentence given
the caption (caption-to-sentence). In both cases, we
distinguish between the match condition, where
the set of candidate sentences is restricted to sen-
tences that match at least one of the images in the
article, and the all condition where we include all
sentences, i.e. un-matched sentences that are not
grounded in any of the images.

Sentence-to-caption. For this condition, the re-
trieval analysis is conducted by calculating the
ranking of each sentence in (i) paragraph-related
captions, (ii) article-related captions, and (iii) all
captions in the dataset. These are referred to as
caption-sets for the following analysis. We have
also calculated the paired sentence-caption similar-
ities and presented them in the Appendix A.5.

Caption-to-sentence. In this condition, we mea-
sure the ranking of each caption in three respective
sentence sets: (i) the sentences in the same para-
graph, (ii) the sentences in the same article, and
(iii) all sentences in the dataset.

4.2 Sentence – Image Alignments
In addition to comparing the sentence embeddings
among various textual elements of the articles, we
also analyze the similarities between image and tex-
tual element pairs (A to D separately, see Figure 2).
To obtain image–text embeddings, we employ two
state-of-the-art multimodal models with zero-shot
capabilities: CLIP and VILT6 .

VILT. VILT (Kim et al., 2021) is proposed as
an efficient solution for real-time image retrieval
or visual question-answering tasks. It handles the
modalities in a single unified manner, instead of
a simple fusion of the modalities, the training al-
gorithm utilizes a more elaborate inter-modal in-
teraction scheme, which in return could be very
valuable for more complex vision-language tasks
like our case. The efficiency comes from how they
process and represent the images with convolution-
free encoding. It is trained in a wide variety of
datasets, including MSCOCO (Lin et al., 2014b)
and Flickr30K (Young et al., 2014a).

6We also experimented with BLIP-2 model from
the huggingface library https://huggingface.co/docs/
transformers/main/en/model_doc/blip-2. Since the ini-
tial exploration indicates a similar performance to the CLIP
with a longer calculation time, we abandoned it.
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(a) Matched vs. unmatched sentences (b) Sentences versus all caption types

Figure 3: POS tag distributions of matched vs. unmatched sentences, and sentences vs. captions (original Wiki
captions and generated captions)

CLIP. The CLIP (Radford et al., 2021) model
uses two separate encoders to embed text and im-
ages. It is trained on 400 M image–text pairs using
contrastive learning utilizing Visual Transformers
(Dosovitskiy et al., 2020). It is widely used for
many L&V tasks, including zero-shot classifica-
tion and retrieval.

Similar to the analysis of sentence-caption rela-
tions, we explored the sentence-image relations in
two directions and distinguished the match condi-
tion (candidates restricted to matched sentences)
and the all condition (all sentences).

Sentence-to-image. The ranking of each
matched and unmatched sentence in two different
sets of candidate lists to all images (i) from the
same paragraph and (ii) from the same article. Due
to the computational costs, we exclude the retrieval
from the entire dataset for the multimodal models.

Image-to-sentence The ranking of each image in
two different sets of candidate lists to all sentences
(i) from the same paragraph and (ii) from the same
article.

5 Results and Analysis

In this Section, we analyze the relationship be-
tween images, captions, and sentences from a lin-
guistic and application perspective. Section 5.1
compares linguistic properties between captions
and descriptions. Then we conduct experiments
on intra-document retrieval using the methods for
sentence–caption and sentence–image alignment
in Section 4. , comparing the performance of uni-
modal and multimodal embedding models.

5.1 Analysis: Linguistic Differences between
Sentences and Captions

To compare language use in descriptive sentences
in the main text of an article to captions below
images, we look at the distribution of tokens, PoS,
and NER tags in sentences and captions.

Table 1 lists the number of unique captions and
the average token length for each method. Clip-
Cap produced 157 unique captions (such as ‘En-
glish baroque structure on a sunny day’ for the
image in Figure 1 but also the number of halluci-
nations or meaningless captions like ’a city in the
smoke’ and ’a city is a city’ were not negligible. On
the other hand, IBM-MAX generated 109 unique
captions, significantly fewer compared to ClipCap.
Yet, these are often visual descriptions such as ‘a
large building with a clock tower on top’ and ‘a
large cathedral with a clock on the wall’.

As expected, the wiki captions are significantly
shorter (7.43) than the sentences in the main text
(28.47). ClipCap and IBM MAX models produce
captions of lengths similar to the wiki captions
(6.81 and 10.04). CLIP-base captions tend to be
shorter, while IBM captions are slightly longer than
the original captions. With CLIP fine-tuning, the
generated captions get longer (8.09), but incorpo-
rating GPT-2 prefixes causes the model to generate
fewer unique sentences (128). Because the main
text sentences are significantly longer than any cap-
tion, the rest of the analysis is conducted on the

Table 1: Basic statistics on original and generated cap-
tions in WikiScenes with Descriptions

Wiki Clip-base IBM Clipft Clip-ft-gpt-20

Unique captions 325 157 109 240 128
Average token count 7.43 6.81 10.04 7.22 8.09
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normalized counts by the sentence length.
Figure 3 shows the distribution of POS and NER

tags, obtained with spaCy’s PoS and NER taggers
(Honnibal and Johnson, 2015). To compare the
distributions, we conducted statistical analysis on
each parameter using the non-parametric Kruskal-
Wallis test followed by the post-hoc Tukey test for
pairwise comparisons. The analysis of PoS-tag dis-
tributions (Figure 3 (left)) does not show significant
differences between matched and unmatched sen-
tences from the article’s main text. This suggests
annotators did not exhibit a particular PoS prefer-
ence when highlighting matched sentences. Yet,
the POS-tag distribution of the main text sentences
differs significantly from all kinds of captions. The
details of the results are listed in Appendix Table 4.
There are also significant differences between the
captions types in terms of nouns, proper nouns, and
determiners. The original captions are more dis-
tinct – they contain a noticeably higher proportion
of proper names but a lower percentage of verbs, ad-
verbs, and auxiliaries. The generated captions tend
to have more nouns compared to human-generated
captions. Just the opposite pattern is observed for
the use of proper nouns. As expected, generated
models avoid using this type and prefer general-
ized nouns. We observed no striking difference
among the generated caption models except the
clip-ft-gpt, which produces more proper nouns and
fewer verbs.

The NER-tag analysis shows that human-
generated wiki captions mostly contain entities that
refer to a person, while generated captions avoid it.
The IBM model’s use of named entities is negligi-
ble in general. The details of the NER Distribution
are presented in Figure 5 in the Appendix A.1.

Figure 4: TSNE plot of SBERT sentence embeddings
for matched sentences (blue), wiki captions (red), clip-
base captions (green), clip-ft-gpt+ captions (purple) and
IBM captions (orange)

To examine how sentences and captions are dis-
tributed in the semantic space, we plot their embed-
dings computed with SBERT, shown in Figure 47.
IBM-MAX captions cluster together and are lo-
cated farther from the main text and ClipCap cap-
tions. Similarly, ClipCap captions are located in a
specific area of the space, while original (wiki) cap-
tions, clip-ft-gpt+ captions, and matched sentences
are distributed more widely. This corroborates the
observation that captions show different linguis-
tic properties and styles and sentences from the
article’s main text and, additionally, suggests that
sentences may be more varied and linguistically
diverse compared to generated captions.

5.2 Results: Intra-document Retrieval of
Sentences and Images

We now compare different embedding models in
terms of their ability to align sentences and cap-
tions, and sentences and images, using retrieval
accuracies. We calculate the ranks of the target sen-
tence, caption, or image (see Section 4) and report
top-1 and top-5 accuracies. Additionally, the mean
similarity scores between (un)matched sentences,
captions, and images are presented in the Appendix
Table 6 and Table 7.

The top-k accuracy scores for (i) sentence-to-
caption/image and (ii) caption/image-to-sentence
retrieval are presented in Table 2 and Table 3 respec-
tively. Results from SBERT and MCSE are based
on sentence-caption alignment, whereas CLIP and
VILT results show sentence-image alignment. This
allows us to compare unimodal to multimodal
retrieval. We report retrieval accuracies on the
paragraph-, text- and corpus level, as explained
in Section 4.

In Table 2 and Table 3, we observe that the top-1
retrieval accuracy is overall very poor, even in the
simpler match condition. On the paragraph level,
the highest score for the matched sentences at top-1
is 0.66, achieved by multimodal retrieval with CLIP
(in Table 2). The VILT model produces a slightly
lower score, while the SBERT and MCSE models
are notably low on aligning at paragraph level. For
the article and corpus level, the top-1 accuracies are
drastically low, in particular for caption/image-to-
sentence alignment. Generally, caption/image-to-
sentence retrieval is more complex than sentence-
to-caption/image retrieval, regardless of the model.

7We use TSNE in scikit-learn: https://scikit-learn.
org/stable/modules/generated/sklearn.manifold.
TSNE.html
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The top-5 accuracies look more promising across
models and settings in the match condition, but it
should also be noted that when retrieving from the
paragraph-related sets the size of the candidate set
is often less than five items. In the more realistic
scenario of article-level retrieval, sentence embed-
dings (text-only and multimodal) perform better.
The lowest retrieval accuracy is observed at the
corpus level, as expected.

When we look at the retrieval scores of all sen-
tences (column “all” in Table 2 and Table 3), the
performance of SBERT and MCSE models fur-
ther decreases, while average multimodal retrieval
scores with CLIP and VILT is higher for all sen-
tences than the matched sentences. This means that
CLIP and VILT models will favor irrelevant im-
ages/sentences compared to relevant ones in top-1
and top-5 retrieval.

Finally, we look at the differences between vari-
ous caption types and their similarities to the sen-
tences. In sentence-to-caption conditions, for both
SBERT and MCSE models, the generated captions
are better at the paragraph and article level align-
ment. In contrast, the retrieval scored of wiki cap-
tions are higher at the entire set level. Among the
generated captions, the clip-base model is a better
fit for the task.

6 Discussion

We introduced a dataset for text–image alignment
in multi-paragraph, multi-image documents, con-
necting captioned images with text spans from the
main text which are depicted in the image. Our
experiments show that these annotations provide
a valuable benchmark dataset to evaluate the capa-
bilities of zero-shot unimodal and multimodal pre-
trained models, that are challenged by image-text
alignment in long and domain-specific documents.
Based on the results, we revisit our research ques-
tions and possible implications of our experiments
for future research on multimodal documents.

Do descriptions of images in articles show dif-
ferent linguistic properties than captions of the
corresponding images? Yes. The analysis in
Section 5.1 shows that descriptive, matched sen-
tences from the main text exhibit different POS and
NER distributions compared to the original cap-
tions written by Wikipedia authors. This highlights
the importance of moving beyond the strong focus
on captions in L&V research and indicates that dif-
ferent types of descriptions occurring within (and

across) documents may exhibit different linguistic
phenomena for visual language grounding.

Do the original captions in Wikipedia differ
systematically from captions generated by cap-
tioning models? Partially. The analysis in Sec-
tion 5.1 indicates that original captions written by
Wikipedia authors differ in some aspects from the
generated captions, which we expect to reflect the
style of crowdsourced captions that many L&V
models are currently trained on. This is not sur-
prising but showcases that the style of captions
collected in annotation and crowdsourcing exper-
iments differs from naturally occurring captions
found in real documents. This may bias or limit
L&V models in a way that they do not encounter
descriptive, visually grounded language in its full
breadth in their pretraining data.

Are similarities between descriptive sentences
within a text and captions robust enough to
serve as a baseline for intra-document retrieval?
Partially. The results in Section 5.2 show that
intra-document retrieval for sentences and im-
ages via their captions works when the set of im-
ages/captions is restricted to the paragraph level,
but drastically decreases at the article level. This
holds for different types of captions. The retrieval
score analysis shows inconclusive results in terms
of the effect of captioning on different models.

How do image-sentence retrieval baselines com-
pare to caption-sentence retrieval? The results
in Section 5.2 show that sentence embeddings
can distinguish more accurately between matched
and unmatched sentences than multimodal mod-
els when looking at retrieval within an entire ar-
ticle. We believe that this may be because ex-
isting L&V models are typically trained on short
texts that prioritize visually grounded language, but
rarely on datasets of longer texts that include non-
descriptive sentences. Generally, it appears that
the multimodal models we tested lack awareness
of depictability (i.e. detecting language that is vi-
sually grounded). Uni-modal sentence embedding
models, on the other hand, seem to be less accu-
rate in distinguishing grounded from non-grounded
sentences at the more fine-grained paragraph level.
For applications like intra-document retrieval in
text-dominated documents, unimodal sentence em-
beddings still provide a better solution, but multi-
modal models have complementary strengths at the
more fine-grained paragraph level distinctions. It
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Table 2: Top-1 and Top-5 Retrieval Accuracy Scores for the sentence to caption/image conditions. The underlined
scores represent the highest retrieval performance along the vertical axes. The match condition restricts candidate
sentences to matched sentences.

Top-1 Top-5
paragraph article entire set paragraph article entire set

caption_type Match All Match All Match All Match All Match All Match All

SBERT wiki 0.54 0.50 0.24 0.21 0.09 0.05 0.98 0.98 0.66 0.62 0.18 0.12
SBERT clip-base 0.56 0.54 0.21 0.21 0.02 0.01 0.99 0.99 0.73 0.68 0.09 0.07
SBERT clip-ft-gpt+ 0.56 0.54 0.20 0.18 0.02 0.01 0.99 0.98 0.70 0.66 0.09 0.07

MCSE wiki 0.52 0.50 0.20 0.19 0.05 0.03 0.99 0.99 0.68 0.63 0.11 0.08
MCSE clip-base 0.58 0.53 0.23 0.19 0.01 0.01 1.00 0.99 0.71 0.68 0.09 0.06
MCSE clip-ft-gpt+ 0.55 0.53 0.19 0.18 0.01 0.01 0.99 0.99 0.68 0.67 0.08 0.06

CLIP wiki 0.66 0.72 0.14 0.20 0.00 0.01 0.99 1.00 0.56 0.60 0.02 0.02
VILT wiki 0.65 0.71 0.19 0.18 - - 0.99 0.99 0.62 0.59 - -

Table 3: Top-1 and Top-5 Retrieval Accuracy Scores for the caption/image to sentence conditions. The match
condition restricts candidate sentences to matched sentences.

Top-1 Top-5
paragraph article entire set paragraph article entire set

caption_type Match All Match All Match All Match All Match All Match All

SBERT wiki 0.24 0.14 0.08 0.04 0.04 0.02 0.85 0.73 0.25 0.17 0.09 0.05
SBERT clip-base 0.22 0.15 0.04 0.03 0.00 0.00 0.83 0.73 0.15 0.13 0.01 0.01
SBERT clip-ft-gpt+ 0.21 0.15 0.04 0.03 0.00 0.00 0.83 0.73 0.17 0.12 0.02 0.00

MCSE wiki 0.24 0.14 0.09 0.04 0.03 0.01 0.83 0.73 0.25 0.16 0.07 0.04
MCSE clip-base 0.22 0.15 0.05 0.03 0.00 0.00 0.84 0.73 0.20 0.13 0.01 0.01
MCSE clip-ft-gpt+ 0.20 0.15 0.04 0.03 0.00 0.00 0.84 0.73 0.17 0.13 0.01 0.01

CLIP wiki 0.16 0.16 0.01 0.03 - - 0.76 0.75 0.09 0.13 - -
VILT wiki 0.15 0.16 0.01 0.03 0.76 0.75 0.09 0.13

seems to be a promising direction for future work
to explore models that exploit sentence-image and
sentence-caption alignment in a joint fashion, and
to develop multi-modal models that can handle text
that includes non-descriptive language.

7 Conclusion

Wikipedia articles represent a genre of multimodal
text that contains large amount of textual and visual
information. Some foundational linguistic work on
multimodal texts (Delin and Bateman, 2002; Hardy-
Vallée, 2016) argues that in order to analyze mul-
timodal texts, elements from different modalities
should equally be treated as part of the document.
With state-of-the-art L&V models being able to
jointly represent text and image elements, this be-
comes increasingly feasible to do computationally
as well. However, longer and more complex mul-
timodal texts are not the norm in L&V research.
With the collection of WikiScenes with Descrip-
tions, we take a first step towards tackling the chal-
lenge of image-text alignment in naturally occur-
ring, text-heavy, multi-image documents. This rep-
resents an important step in empirically-informed

research on the topic of multimodal documents and
provides a dataset for future modeling.

Limitations

Our extension of WikiScenes is a relatively small,
domain-specific dataset so the results presented in
this paper should not be assumed to necessarily
generalize to other domains. The models used for
the retrieval tasks were achieved with the respective
base models and were not fine-tuned in our specific
domain.

Ethics Statement

Images in the dataset are either under CC3.0 li-
censes or Open Domain. They are attributed via
their identifications in Wikimedia Commons. We
did not collect any personal information from anno-
tators. Annotators were not presented with harmful
materials during data collection. Crowdworkers
were paid 0.35$ per item, which translates to an
hourly wage of 9.01$.
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A Appendix

A.1 Text Analysis (Cont.)
Compared to the sentences, ClipCap captions con-
tains similar amount of entities that refer to nation-
alities or religious or political groups (NORP), and
significantly higher proportion of the dates or time
periods (DATE). There is one named-entity cate-
gory, ORGANIZATION was observed at similar rates
among all textual elements.

Table 4: Statistical Difference between (i) matched and
unmatched sentences and (ii) sentence, wiki captions
and clip-ft-gpt20e captions in terms of POS- and NER-
tag uses

Sentence-Caption-Image

NOUN 554.19 (0.01 at all levels)
PROPN 105.79 (0.01 at all levels)
ADV 194.75 (0.01 sentence vs both captions)
VERB 765.87 (0.01 sentence vs both captions)
DET 494.13 (0.01 at all levels)
ADP 587.56 (0.01 at all levels)
AUX 636.11 (0.01 sentence vs both captions)
PERSON 84.92 (0.01 at all levels)
NORP 38.58 (0.01 at all levels)
DATE 120.86 (0.01 sentence vs both captions)
ORG 29.33 (0.01 clip-ft versus sent. and wiki capt.)

A.2 Annotation Instructions
Figure 6 shows the annotation instructions used for
collecting annotations that align/match text spans
and images from crowd workers.

A.3 Computational Resources
The experiments are conducted on a GPU worksta-
tion with NVIDIA® RTX™ A6000 (48GB). Ta-
ble 5 list the approximate total time spent for ex-

Table 5: Analysis time (extracting embeddings and com-
puting similarities) for each model on each condition

sentence-to-caption/image image/caption-to-sentence

SBERT around 1 hours 3 hours
MCSE around 2 hours 8 hours
CLIP (all >32 hours) 4 hours8 10 hours
VILT (all >2 days hours) 8 hours 19 hours
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(a) NER tag distributions for matched
and unmatched sentences

(b) NER tag distributions for matched sentences and
captions

Figure 5: Comparing NER-tag distributions between textual elements

tracting the embeddings for each element (sentence,
caption and image) and computing the similarities.

A.4 ClipCap finetuning
ClipCap finetuning follows the instructions from
the original code repository: https://github.
com/rmokady/CLIP_prefix_caption. First, the
image is preprocessed using CLIP ("ViT-B/32")
and mapped to a prefix vector. The prefix vector is
projected into embedding space using a finetuned
ClipCap model pretrained on Conceptual Captions.
The prefix embedding is used as input for the GPT-
2 model, as part of the ClipCap model. Greedy
sampling with top-p=0.8 is used to generate the
output sequence.

A.5 Similarity based Analysis
Table 6 and Table 7 present the average similarity
scores of the target item against various candidate
sets in two directions; sentence-to-caption/image
and caption/image-to-sentence respectively.
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(a) Main instructions for paragraph-image alignment
annotation

(b) Example shown in instructions for paragraph-image
alignment annotation with none of the text spans match-
ing the visual content of the image

(c) Example shown in instructions for paragraph-image
alignment annotation with a longer text span matching
the visual content of the image

(d) Example shown in instructions for paragraph-image
alignment annotation with a shorter text span matching
the visual content of the image

Figure 6: Instructions used for the collection of annotations on paragraph-image alignments

Table 6: Average similarity scores for the sentence-to-caption or sentence-to-image conditions. Bold face represents
the highest score along the horizontal axes, while the underlined text corresponds to highest score among the three
caption types within each embedding space.

paired paragraph article entire
Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched

SBERT wiki 0.754 0.767 0.754 0.767 0.745 0.752 0.733 0.738
SBERT clip-base 0.744 0.752 0.743 0.751 0.739 0.746 0.726 0.731
SBERT clip-ft-gpt+ 0.752 0.764 0.752 0.762 0.750 0.759 0.739 0.746

MCSE wiki 0.174 0.216 0.176 0.212 0.154 0.179 0.122 0.140
MCSE clip-base 0.187 0.221 0.187 0.216 0.180 0.206 0.146 0.167
MCSE clip-ft-gpt+ 0.202 0.235 0.203 0.232 0.198 0.226 0.167 0.193

clip wiki 0.813 0.772 0.810 0.780 0.803 0.785 0.791 0.775

Table 7: Average similarity scores for the caption-to-sentence or image-to-sentence conditions

paired paragraph article entire
Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched

SBERT wiki 0.754 0.767 0.756 0.756 0.746 0.743 0.736 0.735
SBERT clip-base 0.743 0.751 0.745 0.744 0.741 0.739 0.737 0.737
SBERT clip-ft-gpt+ 0.752 0.764 0.754 0.756 0.752 0.752 0.748 0.748

MCSE wiki 0.174 0.216 0.180 0.186 0.158 0.154 0.135 0.132
MCSE clip-base 0.187 0.221 0.192 0.196 0.184 0.182 0.175 0.175
MCSE clip-ft-gpt+ 0.202 0.235 0.207 0.213 0.204 0.200 0.192 0.189
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Abstract

Zero-shot text classification involves catego-
rizing text into classes without labeled data,
typically using a pre-trained language model
to compute the correlation between text and
class names. This makes it essential for class
names to contain sufficient information. Ex-
isting methods incorporate semantically sim-
ilar keywords related to class names, but the
properties of effective keywords remain unclear.
We demonstrate that effective keywords should
possess three properties: 1) keyword relevance
to the task objective, 2) inter-class exclusivity,
and 3) intra-class diversity. We also propose
an automatic method for acquiring keywords
that satisfy these properties without additional
knowledge bases or data. Experiments on nine
real-world datasets show our method outper-
forms existing approaches in fully zero-shot
and generalized zero-shot settings. Ablation
studies further confirm the importance of all
three properties for superior performance.

1 Introduction

Zero-shot text classification is the process of cate-
gorizing text into classes without any training data,
which is essential in scenarios where creating a
large amount of labeled data is impractical. To this
end, most zero-shot classification techniques utilize
signals that indicate the relationship between each
instance and class, such as semantic textual similar-
ity between instances and class names (Sappadla
et al., 2016; Yin et al., 2019) or the contextual word
co-occurrence of the instance and the class name
found in large language models like BERT (Schick
and Schütze, 2021) and T5 (Sanh et al., 2022; Wei
et al., 2022).

The performance of zero-shot classifiers is heav-
ily influenced by keywords related to each class
(including the class name itself), as these classi-
fiers use the keywords as queries to compute the
similarity between each instance and class. For ex-
ample, PET (Schick and Schütze, 2021) employs a

Figure 1: Overview of the proposed method REDEX.
Zero-shot text classification needs proper assignment
of keywords on each class. REDEX considers three
properties regarding the nature of classification to assign
the optimal keywords.

masked language model like BERT to estimate the
class of a text instance by synthesizing a sentence
from the text using a template such as “${text} This
text is about [MASK].”, calculating token proba-
bilities at the masked position, and aggregating
the probabilities of keywords related to each class
(e.g., token “news” for class “News” and token
“finance” for class “Economics”). This class to re-
lated keywords mapping is sometimes referred to as
a verbalizer (Schick and Schütze, 2021). Since de-
termining optimal keywords for each class is hard,
several works tried to determine proper related key-
words for classes using external sources such as
knowledge graphs (Hu et al., 2022) or language
models (Zhao et al., 2023; Shi et al., 2022).

Regardless of whether it is manual or automatic,
conventional ways to determine related keywords
of each class often overlook the nature of classifi-
cation. (1) Keywords Relevance to the Objective:
First, the keywords attached to each class should
be relevant to the classification objective, while
the conventional method always attaches the same
keywords for the same class name. For example,
a class-keywords mapping { “Beauty” → (“mas-
cara”, “lipstick”) } is suitable for product classifi-
cation in E-commerce but may not be the best fit
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for movie classification. (2) Intra-class Diversity
of Keywords: Second, the related keywords for
a class should cover as broad a range of concepts
as possible. Existing methods do not always con-
sider the diversity of keywords within a class. (3)
Inter-class Exclusivity of Keywords: Third, the
related keywords for each class should be as dis-
tinct as possible, ensuring that two or more classes
do not share similar keywords. For instance, the
classes “Food” and “Cell Phone” might both have
the keyword “apple,” which can confuse zero-shot
classifiers. Existing methods can produce such con-
fusing class-keyword mappings because the key-
word assignment for each class is performed inde-
pendently.

In this paper, we explore the strategy of iden-
tifying optimal keywords for classes in zero-shot
classifiers, considering the three properties men-
tioned above. Through extensive experiments,
we found that considering all properties is nec-
essary for obtaining better zero-shot classifica-
tion performance in popular classifiers. To gen-
erate the optimal keywords automatically, we pro-
pose a new generate-then-rerank framework RE-
DEX (RElevance, Diversity, EXclusivity) for key-
word generation based on the concept of maximal
marginal relevance (MMR) (Carbonell and Gold-
stein, 1998), which is often used in information
retrieval. The extensive experiments demonstrate
the effectiveness and versatility of the proposed
method as it improved the performance of two
types of state-of-the-art zero-shot classifiers dras-
tically without any modifications to those meth-
ods (Zhang et al., 2022b; Yin et al., 2019; Zhang
et al., 2022a; Geng and Liu, 2023; Holtzman et al.,
2021) across all zero-shot settings, including gen-
eralized zero-shot text classification (GZTC) and
fully-zero-shot text classification.

Our main contributions are as follows.

• We propose an automatic class-keyword map-
ping generation method REDEX, which gen-
erates keyword candidates by a generative lan-
guage model and reranks them by considering
three keyword properties: relevance to the ob-
jective of the classification, intra-class diver-
sity of keywords, and inter-class exclusivity
the keywords.

• Extensive experiments of REDEX for state-of-
the-art zero-shot classifiers of fully or gener-
alized zero-shot text classification in various

domain datasets confirmed the effectiveness
and versatility.

2 Proposed Method

2.1 Problem Setting

Zero-shot text classification is a task to estimate the
optimal class yi ∈ K of a test instance xi, where
K = {1, 2, . . . ,K} represents indices of all target
classes. This paper assumes two types of zero-
shot text classification: fully zero-shot setting and
generalized zero-shot setting. The fully zero-shot
setting provides only target class names to classify
texts. The generalized zero-shot setting is where
labeled data are available for a subset of target
classes called seen classes, while those are not for
the rest of the target classes called unseen classes.
We assume that additional information, such as
knowledge bases or unlabeled corpus, is unavail-
able.

2.2 Overview

Our method REDEX automatically finds keywords
for each target class k ∈ K to improve classifica-
tion performances. Through our experiments in
Section 3, we found valuable keywords in enhanc-
ing the performance should possess three properties
simultaneously: the semantic relatedness to class
names, the intra-class diversity, and the inter-class
exclusivity. The properties represent that keywords
for a class should be not only related to the class
name but also be diverse to cover features of in-
stances belonging to the class and be semantically
distant from keywords of the other classes to avoid
misclassification.

Figure 2 illustrates our method, which gener-
ates keyword candidates for each class and reranks
them to find valuable keywords with the aforemen-
tioned properties. The first step generates keyword
candidates from a generative language model to
obtain diverse and task-aware candidates without
auxiliary information. The second step reranks
keyword candidates to select keywords with the de-
sired properties: semantic relatedness, intra-class
diversity, and inter-class exclusivity.

2.3 Keyword Candidate Generation

In the first step of our method, we use a generative
language model and prompting to generate key-
word candidates. Compared to the conventional
methods (Hu et al., 2022; Meng et al., 2020b) that
find keywords from a knowledge base or in-domain
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Figure 2: Overview of the proposed method REDEX for generating keyword candidates by a generative language
model and reranking keyword candidates to select the suitable keywords for each class.

unlabeled data, our approach does not require any
additional auxiliary information.

We manually construct prompts to input the
model, such as “{class name} is related to”1. We
then sample 20 texts using a generative language
model and Nucleus Sampling (Holtzman et al.,
2020). In our preliminary experiments, generat-
ing texts of more than 20 did not change most of
the selected keyword candidates. We then extract
phrases from generated texts by their term frequen-
cies to acquire keyword candidates for each class.
We select three times as many keyword candidates
as the final number of target keywords. For details
on hyperparameters and templates for generating
texts, see Appendix A.

The proposed method can generate appropriate
keywords by designing prompts depending on prob-
lem settings. In generalized zero-shot text classifi-
cation, our method generates task-aware keywords
for unseen classes using prompts that demonstrate
task-aware keywords of seen classes. For instance,
the task-aware keywords in the “Beauty” class in a
product classification are “mascara” and “lipstick”,
and “elegance” and “landscapes” in a movie classi-
fication. We extract task-aware keywords for seen
classes from labeled data using TF-IDF.

2.4 Reranking Keywords
Given sets of keyword candidates for classes V =

{Vk}|K|
k=1, we rerank them to select suitable key-

words Pk for each class k. While keyword can-
didates semantically relate to each class, without
reranking candidate keywords, we do not capture
the other properties of desirable keywords: the
intra-class diversity of keywords for robust classifi-
cation and the inter-class exclusivity of keywords

1The prompts to generate keyword candidates used in our
experiments list in Appendix A.3.

Figure 3: CE-MMR determines keywords for each class
from its candidates incrementally in order of rank.

for preventing misclassification. To ensure these
features of keywords, we propose class-exclusive
maximal marginal relevance (CE-MMR) that ex-
tends maximal marginal relevance (MMR) for doc-
ument retrieval to class-keyword reranking.

To consider the intra-class diversity, one can use
maximal marginal relevance (MMR) (Carbonell
and Goldstein, 1998), which reranks documents
{d} for a query q. MMR incrementally determines
the rank of documents from top to bottom by the
following scoring function:

S(d, q,R) = λ1 s(d, q)− λ2max
d′∈R

s(d, d′), (1)

where s(d1, d2) is a function that returns a similar-
ity of d1 and d2, R is a list of reranked documents,
and λ1, λ2 ∈ [0, 1] are hyperparameters controlling
importance of the diversity of ranked documents
and satisfy λ1 + λ2 = 1. This approach can be
mapped to reranking keywords with their diversity.
Considering a query and documents as a class name
and its keyword candidates, MMR can be applied
to the keyword reranking task. The formulation is
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Algorithm 1 Reranking keywords for all classes

Require: C, V
Ensure: P

1: INITIALIZE ∀k, Pk ← list()
2: for rank = 1→ max

k∈K
|Vk| do

3: for k ∈ K do
4: Select prankk in a deterministic way by

arg max
vk∈Vk\Pk

S⋆(ck, vk, {Pk′}Kk′=1)

5: Append prankk to Pk

6: end for
7: end for
8: return P

as follows:

S(ck, vk, Pk) = λ1s(ck, vk)− λ2 max
pk∈Pk

s(vk, pk),

(2)

where ck denotes the class name of k, vk(∈ Vk\Pk)
does a keyword candidate for class k except for
Pk, and Pk does the reranked keywords of class k.
Using this extended MMR, we can incrementally
rerank keywords to preserve the diversity of key-
words for each class and class-keyword relevance.

However, the method does not consider the inter-
class exclusivity of keywords in reranking. To pre-
vent misclassification due to assigning a similar
keyword to multiple classes, we use CE-MMR,
which adds the inter-class exclusivity of keywords
into the above method, as illustrated in Figure 3.
Put the last term for inter-class exclusivity (marked
in red), the scoring function of CE-MMR

S⋆(ck, vk, P ) = α s(ck, vk)− β max
pk∈Pk

s(vk, pk)

−γ max
k′∈K\k

max
pk′∈Pk′

s(vk, pk′), (3)

where α, β, and γ are hyperparameters for control-
ling the importance of the class-keyword related-
ness, intra-class diversity, and inter-class exclusiv-
ity and satisfy α+ β + γ = 1.

For reranking class keywords with the CE-MMR
scoring function, we take a greedy reranking ap-
proach as shown in Algorithm 1. This algorithm
repeats the following steps: calculating scores for
keywords, appending the top-scored keyword for
a class to a list of reranked keywords for the class,
and removing the keyword from candidates.

3 Experiments

3.1 Zero-shot Text Classification

We conduct fully zero-shot experiments to
demonstrate the effectiveness of our method.

3.1.1 Experimental Setup
Datasets. We use widely used benchmark datasets
for topic classification and sentiment analysis.
Topic classification datasets are AG News (Zhang
et al., 2015), a collection of news articles and their
topic categories, DBpedia (Lehmann et al., 2015)
consisting of contents and their ontology classes,
and Yahoo (Zhang et al., 2015), a collection of
question-answer pairs and their topic categories.
Sentiment analysis datasets are Stanford Sentiment
Treebank (SST2) (Socher et al., 2013), a widely
used benchmark, and Rotten Tomatoes (RT) (Pang
and Lee, 2005), a collection of movie reviews and
their sentiments. Statistics of datasets are shown in
Appendix A.1.

Preprocessing. We use the same class names
and prompt templates as the previous work Shi
et al. (2022); Min et al. (2023, 2022) described in
Appendix A.1. For datasets of more than 3,000 in-
stances, due to limited computational resources, we
run the experiment for three times with a randomly
selected subset of 3,000 with different seeds, as in
prior work (Zhao et al., 2021; Lyu et al., 2022).

Evaluation Metrics. We use accuracy to evalu-
ate methods as in Zhao et al. (2023).

3.1.2 Compared Methods
OPT-6.7b (Zhang et al., 2022a) and OpenLLaMA-
7b (Geng and Liu, 2023; Computer, 2023) are base-
line methods that classify texts using next-token
prediction with score calibration (Zhao et al., 2021;
Holtzman et al., 2021) and length normalization
of log-likelihood (Brown et al., 2020) techniques
to improve classification accuracy as in Min et al.
(2022); Holtzman et al. (2021). Also, as a com-
pared method, we utilize NPPrompt (Zhao et al.,
2023) (indicated by w/ NPPrompt in tables) that
selects top-k similar keywords to class names from
the vocabulary of the language models based on
cosine similarities of token embeddings. We exper-
imented with two variants of NPPrompt, one using
the same vocabulary and embedding vectors as the
base model and the other using roberta-large
vocabulary and embedding vectors as in Zhao et al.
(2023), and adopted roberta-large, which
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Table 1: Performance on zero-shot text classification. The best scores are marked in bold. OPT and OpenLLaMA
with keywords selected by our method outperform methods without keywords and by NPPrompt.

Method AG News DBpedia Yahoo SST-2 RT Avg.
OPT-6.7b 75.8 50.7 33.7 55.1 58.8 54.8
w/ NPPrompt 79.6 44.9 45.9 49.8 51.8 54.4
w/ Ours 79.7 49.4 49.5 68.5 69.3 63.3 (↑ 8.5)

OpenLLaMA-7b 65.7 36.1 45.1 74.7 70.4 58.4
w/ NPPrompt 65.3 40.7 38.8 50.9 50.0 49.1
w/ Ours 61.9 51.3 36.9 77.5 72.7 60.1 (↑1.7)

Table 2: Case studies of zero-shot text classification experiments using the Yahoo dataset. Keywords in a bold font
have the largest scores in the correct class.

Text Method Prediction Keywords for the Correct Class

what is the name the cartoon about the french cats? w/ NPPrompt politics ent, ENT, ents, enting
w/ Ours ✓entertainment cartoon, theater, sport

Please answer this chem problem for me? w/ NPPrompt society science, Science, scientific, technology
w/ Ours ✓science chemistry, iphone, scientist, experiment

showed better performances. Our method (indi-
cated by w/ Ours in tables) generates keyword
candidates by corresponding language models and
reranks them to use in inference. In our reranking,
we use the cosine similarity of roberta-large
embedding vectors as the similarity s(·, ·). We set
the number of keywords to five for w/ NPPrompt
and w/ Ours. As another hyperparameters of
reranking, we set α = β = γ = 1/3 for w/ Ours
because small changes in these values, such as 1/3
to 1/4, barely changed the selected keywords, re-
sulting in a minor influence on the accuracy.

3.1.3 Results
Overall Performances. Table 1 shows the exper-
imental results of zero-shot text classification. In
comparison to the baseline, our proposed method
demonstrates an average accuracy improvement of
8.5 points (8.9 points compared to w/ NPPrompt)
in OPT-6.7b, 1.7 points against the baseline (11.9
points compared to w/ NPPrompt) in OpenLLaMA-
7b.

For some task-model combinations (Yahoo, AG
News and OpenLLaMA-7b), the proposed method
underperforms the vanilla OpenLLaMA-7b. To un-
derstand the reason for this, we show the confusion
matrix in Figure 4. The figure shows that when the
proposed method performs poorly, OpenLLaMA-
7b prefers to predict specific classes incorrectly.
For the case of the AG News dataset, OpenLLaMA-
7b with our keywords prefers the “politics” class.
We believe this is due to the bias of OpenLLaMA-
7b to give higher scores to keywords in the “politics”

Figure 4: Error analysis for experimental results using
OpenLLaMA-7b with our keywords. The left and right
figures correspond to the AG News and Yahoo dataset
results, respectively. OpenLLaMA-7b prefers to predict
specific classes incorrectly due to the bias of giving
higher scores to keywords of those incorrect classes.

class. In practice, we observed that OpenLLaMA-
7b gave a high score to the keywords of the “poli-
tics” class even though the keywords seem to have
no relationship with the input text. Although our
proposed method subtracts the null prompt score to
reduce the biases as in Zhao et al. (2021); Holtzman
et al. (2021), there is still room for improvement
regarding the score calibration method to alleviate
the problem.

Case Studies. To further understand the dispar-
ity between NPPrompt and our method, we analyze
the selected keywords and predictions on the Yahoo
dataset. Table 2 shows that our diverse keywords
can encourage a classifier to make a prediction
based on the relatedness between a text and vari-
ous semantics of the class. For example, the pro-
posed method gives a high score to the keyword
“chemistry” in the “science” class for the input text
“Please answer this chem problem for me?”. Thus,
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Table 3: Relationship between the properties of keywords and accuracy. While considering only intra-class diversity
or inter-class exclusivity underperform the vanilla model, considering both outperform in most cases.

Method AG News DBpedia Yahoo SST-2 RT Avg.
OPT-6.7b 75.8 50.7 33.7 55.1 58.8 54.8
w/ Sim 84.2 64.8 47.6 56.0 58.3 62.1
w/ Sim + Exc 75.7 53.0 49.0 68.6 64.3 62.1
w/ Sim + Div 74.3 52.4 48.1 55.1 52.3 56.4
w/ Sim + Exc + Div 79.7 49.4 49.5 68.5 69.3 63.3

the proposed method correctly classifies the in-
put text into the “science” class, while NPPrompt,
which does not have the keyword “chemistry”, fails
to correctly classify the input text.

3.1.4 Analysis

To confirm the effectiveness of intra-class diver-
sity and inter-class exclusivity in keyword rerank-
ing, we conduct experiments with varying keyword
reranking methods. We compare four variants of
CE-MMR with OPT-6.7b and vanilla OPT-6.7b as
a baseline. For CE-MMR, we turn on and off three
terms in Equation 3, where we denote the first,
second, and third terms by Sim, Div, and Exc.

Table 3 shows the results. On average, Sim + Exc
+ Div, which considers intra-class diversity, inter-
class exclusivity, and similarity to class names,
achieves the highest accuracy. In sentiment anal-
ysis datasets, we find that inter-class exclusivity
of keywords is more critical than intra-class di-
versity by comparing Sim+Exc to Sim+Div. This
result suggests that when class names are antonyms
such as “great” and “terrible”, models are prone
to give confusing keywords unless inter-class ex-
clusivity is taken into account. Sim achieves the
best results in the topic classification AG News and
DBpedia. This result indicates that similarity is
more important for some datasets and assigning
reranking weights to exclusivity is sometimes semi-
optimal. In practical applications, we can select
the values of α, β, and γ according to the accu-
racy of the validation data. In addition, Sim + Div
showed lower performance for all data in the zero-
shot setting, while Sim + Exc + Div showed the
best on average. This result suggests that it is not
sufficient to consider only intra-class diversity, but
it is essential to simultaneously consider inter-class
exclusivity in order to achieve high accuracy.

3.2 Generalized Zero-shot Text Classification

We conduct experiments to confirm that our pro-
posed method is also effective for the generalized
zero-shot classification setting.

3.2.1 Datasets
We use four publicly available multi-class text clas-
sification datasets, including topic classification, in-
tent classification, and emotion classification. The
topic classification datasets are Amazon (McAuley
et al., 2015), a collection of reviews for prod-
ucts and their categories, and WoS (Kowsari
et al., 2017), a collection of academic papers
and their research areas. The intent classification
dataset is Snips (Coucke et al., 2018) that con-
tains crowdsourced queries and their intent, such as
“Book Restaurant”. The emotion dataset is Emo-
tion (Bostan and Klinger, 2018), a widely used
benchmark for zero-shot text classification (Yin
et al., 2019; Ye et al., 2020), a collection of short
sequences and their emotion labels such as “joy”
and “sad”.

Preprocessing. We randomly select 50% from
all classes as seen classes, the other 25% as unseen
classes, and the other 25% as validation classes.
Then, training data is selected from seen classes,
validation data from seen and validation classes,
and test data from the seen and unseen classes.

3.2.2 Compared Methods
We evaluate our methods, several baselines for
GZSTC, and a method for a fully supervised setting
as a reference. LabelSim (Sappadla et al., 2016)
uses word embeddings to calculate similarities be-
tween an instance and class names. LTA (Zhang
et al., 2022b) is a meta-learning method that re-
hearse on fake unseen classes selected from seen
classes. Entailment (Yin et al., 2019) treats text
classification tasks as textual entailment that pre-
dict whether a given text entails “This text is
about {class name}.” using a pre-trained language
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Table 4: Harmonic mean accuracies of seen and unseen classes on generalized zero-shot text classification (seen and
unseen class accuracies in the brackets). Bold values indicate the best results among GZSTC methods. Notice that
LTA splits seen classes into fake seen and fake unseen classes, which is not applicable for datasets with a small
number of seen classes, such as WoS and Snips. † Averaged on only Amazon and Emotion datasets.

Method Amazon WoS Snips Emotion Avg
LabelSim 7.95(7.83, 8.08) 40.5(29.4, 65.3) 70.6(75.7, 66.1) 6.46(10.0, 22.3) 32.2(33.8, 36.4)
LTA 53.5(69.5,43.5) N/A N/A 42.7(37.9,48.9) †48.1(53.7,46.2)
w/ Ours 66.6(58.2,77.7) N/A N/A 35.6(30.3,43.3) †51.1(44.2,60.5)

Entailment 63.2(89.1,49.0) 83.1(92.8,75.3) 98.9(99.8,98.1) 46.5(72.0,34.3) 72.9(88.4,64.1)
w/ Ours 77.3(92.0,66.7) 86.3(92.0,81.3) 99.2(99.4,98.9) 56.4(69.0,47.6) 79.8(88.1,73.6)

Fully Supervised
BERT 92.4(92.7,92.0) 92.8(89.2,96.7) 99.7(99.9,99.6) 61.6(68.4,54.0) 86.6(87.5,85.5)

Table 5: Effectiveness of considering intra-class diversity and inter-class exclusivity on harmonic mean accuracies
with seen and unseen class accuracies in brackets.

Method Amazon WoS Snips Emotion Avg
No Reranking
Term-Frequency 71.4(91.6, 58.5) 79.8(92.8, 69.9) 98.9(100, 97.8) 54.4(67.6, 45.5) 76.1(88.0, 67.9)
Reranking
w/ Sim 77.3(92.3, 66.5) 75.9(92.5,64.4) 97.7(100, 95.5) 31.4(68.1, 20.4) 70.6(88.2, 61.7)
w/ Sim + Exc 74.0(92.7, 61.5) 76.1(93.2, 64.3) 97.4(100, 94.9) 25.3(74.6, 15.2) 68.2(90.1, 59.0)
w/ Sim + Div 68.7(92.2, 54.8) 83.8(92.4, 76.7) 92.1(87.4, 97.3) 60.3(69.7, 53.1) 76.2(85.4, 70.5)
w/ Sim + Exc + Div 77.3(92.0, 66.7) 86.3(92.0, 81.3) 99.2(99.4, 98.9) 56.4(69.0, 47.6) 79.8(88.1, 73.6)

model. In addition to these baselines, we denote
our method combined with baselines as w/ Ours.
We combine Entailment, LTA and the proposed
method by simply replacing a class name with the
keyword expanded class name “{class name} such
as {keyword1}, {keyword2}, {keyword3} , {key-
word4}” because we found this simple method to
be sufficient for improving performance, as it re-
quires the same order of computation as the vanilla
method.

To find out how much room for improvement is
left compared to the fully supervised setting, we
compare BERT trained on the training data for
seen classes and training data for unseen classes
that is not available for GZSTC methods.

3.2.3 Experimental Setup

Evaluation Metrics. We use accuracies of seen
and unseen classes and their harmonic mean as
evaluation metrics as in Zhang et al. (2022b). We
use the harmonic mean to measure overall perfor-
mances since there is a trade-off between seen and
unseen class accuracy.

Implementation Details. We use
bert-base-uncased (Devlin et al., 2019) as

a pre-trained language model for Entailment, En-
tailment w/ ours, LTA, and Supervised BERT. For
Entailment, we do not conduct pre-finetuning on
an NLI dataset suggested in the original paper (Yin
et al., 2019) since the original BERT without
pre-finetuning shows better performances in our
experiments. Our method uses GPT-J-6B (Wang
and Komatsuzaki, 2021) as a generative language
model. Furthermore, for reranking keywords,
we use the cosine similarity of embeddings
obtained by the BERT encoder as similarities
in Equation 3 and select the top-4 keywords per
class. For LabelSim, we use the bi-gram of public
fastText (Grave et al., 2018) embeddings trained on
the Wikipedia corpus. Please refer to Appendix A
for other implementation details.

Hyperparameters. To validate the model, we
use validation data that consists of labeled data of
seen classes and validation classes. Search spaces
and determined values of hyperparameters are de-
scribed in Appendix A.2.

3.2.4 Results

Table 4 shows the results of the end-to-end experi-
ments. In comparison, Entailment overperformes
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Table 6: Effectiveness of task-aware keyword generation on harmonic mean accuracies of seen and unseen classes
(seen and unseen class accuracies in the brackets). Bold values indicate the best results among methods.

Generation Method Amazon WoS Snips Emotion Avg
Language Model 78.5(90.5, 69.3) 84.5(92.5, 77.8) 98.0(100, 96.1) 47.8(69.7, 36.4) 77.2(88.2, 69.9)
In-Context 77.3(92.0, 66.7) 86.3(92.0, 81.3) 99.2(99.4, 98.9) 56.4(69.0, 47.6) 79.8(88.1, 73.6)

the other baselines, and Entailment and LTA with
our extension overperformes methods without us-
ing our extension on average. The results suggest
that the Entailment method generalizes better than
the dual-encoder approach (LTA), as pointed out in
the few-shot settings in Müller et al. (2022). Also,
the results suggest that keywords selected with our
method help improve unseen class accuracy due to
the keywords complementing the lack of informa-
tion on unseen classes. Compared to the result of
the fully supervised method, there is a little room
for improvement.

3.2.5 Analysis
We analyze the contribution of each component of
our method by conducting additional experiments.

Keyword Reranking Methods. To confirm the
effectiveness of reranking keywords by the intra-
class diversity and inter-class exclusivity in the
generalized zero-shot settings, we conduct abla-
tion studies on reranking methods similar to Sec-
tion 3.1.4. We use the Entailment method without
reranked keywords as a baseline and compare four
reranking methods to the baseline.

Table 5 shows the comparison results of key-
word reranking methods. Consistent with the anal-
ysis in Section 3.1, the method considering all the
characteristics is the best among compared meth-
ods on average. An inconsistent trend with the
fully zero-shot setting is that intra-class diversity is
more important than inter-class exclusivity in the
generalized zero-shot setting. We hypothesize that
the classifier learns to ignore noisy keywords and
concentrate only on relevant ones through model
training.

Keyword Candidate Generation Methods. To
study the effectiveness of task-aware keywords de-
scribed in Section 2.3 compared to task-unaware
keywords, we compare keyword candidate genera-
tion technique that uses in-context demonstrations
of class name and keyword pairs of seen classes
(In-Context) to generate task-aware keywords and
keyword candidates generation technique that uses
only class names to generate task-unawware key-

word candidates (Language Model). Implemen-
tation details are described in Appendix A. In the
experiment, we use our keyword reranking method
described in Section 2.4 to rerank keyword candi-
dates and Entailment as the base classifier. Table 6
shows the experimental results to confirm the ef-
fectiveness of task-aware keywords. In-Context
outperforms Language Model by 2.6 points on the
harmonic mean of accuracies on average. This re-
sult indicates that task-aware keywords generated
with in-context learning are more effective than
task-unaware keywords generated with only class
names.

4 Related Work

Zero-shot Text Classification. Zero-shot text clas-
sification is a text classification task in a special
situation where some target classes do not have
any training data. Existing methods for zero-shot
text classification decide the class y of an input in-
stance x based on the relationship between a class
name and an instance (Sappadla et al., 2016; Yin
et al., 2019) such as semantic similarity. Recent
methods use a pre-trained language model (PLM)
to calculate the similarity (Holtzman et al., 2021;
Xia et al., 2022; Sun et al., 2022) of the class and
the instance. For example, Schick and Schütze
(2021) transforms similarity calculations into the
predictions of masked token probabilities such as
“Good movie! [SEP] The sentiment of this review
is [MASK].”. If the likelihood of “great” is higher
than “bad” for “[MASK]”, one can classify “Good
movie!” into the positive class. At this time, it is
necessary to associate the vocabulary of the PLMs
and the target classes.

When training data for a part of target classes are
available, the task is generalized zero-shot text clas-
sification (GZSTC). Similar to zero-shot text classi-
fication, Pushp and Srivastava (2017) predicts the
relatedness between texts and classes by a trained
neural network with the training data, and Yin et al.
(2019) proposes a textual entailment-based method
with PLMs, where textual entailment-based meth-
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ods show effectiveness in other zero-shot tasks such
as stance detection (Xu et al., 2022) and ultra-fine
entity typing (Li et al., 2022). LTA (Zhang et al.,
2022b) applies meta-learning for GZSTC, which
learns how to adapt the encoder to new classes by
episodic training on fake unseen classes selected
from seen classes.

In another line of work, when a large amount
of unlabeled data for target classes is available,
the task is called weakly supervised text classi-
fication and has been studied in (Meng et al.,
2018; Mekala and Shang, 2020; Mekala et al.,
2022; Zhang et al., 2021; Wang et al., 2021). X-
Class (Wang et al., 2021) uses class-adaptive em-
bedding representations of instances to obtain high-
quality pseudo-labeled data. Zhang et al. (2023)
proposes PIEClass that iteratively trains two types
of classifiers, a prompt-based classifier, and a head-
token classifier, to correct pseudo-label errors with
each other. Since the existing weakly supervised
text classification methods require a large amount
of in-domain unlabeled data that are unavailable
for unseen classes in zero-shot scenarios, those
methods are not applicable in our problem settings.

Class-keyword Mapping Construction. What
keywords are associated with the target classes is
crucial. In PET (Schick and Schütze, 2021), a map-
ping from keywords to classes is designed by users.
For instance, in sentiment analysis, the word “ter-
rible” is associated with the negative class, and
“great” is associated with the positive class. How-
ever, since manually constructing class-keyword
mappings is costly, methods to automate the pro-
cess have been proposed (Schick et al., 2020; Shin
et al., 2020; Shi et al., 2022; Hu et al., 2022; Zhao
et al., 2023). If training data is available, they can
be utilized in the construction method (Schick et al.,
2020; Shin et al., 2020). When a large amount of
unlabeled corpus is available, weakly supervised
methods (Meng et al., 2020c,a,b) are practical to
acquire keywords. LOTClass (Meng et al., 2020b)
masks class names in unlabeled data and obtains
mask tokens predicted by the mask language model
as keywords associated with the class names. As
in our problem setting, when both labeled and un-
labeled data are unavailable, one approach is to
select words that resemble the class name based on
embedding similarity (Zhao et al., 2023).

While the conventional methods select keywords
for each class independently, the attached keywords
ignore the nature of classification as described in

Figure 1. To avoid choosing such keywords, our
proposed method selects keywords carefully by
considering intra-class diversity and inter-class ex-
clusivity of keywords.

5 Conclusion

This paper proposes a novel method for improving
zero-shot text classification that finds keywords re-
lated to classes properly. Our method generates di-
verse keyword candidates by a generative language
model and reranks the candidates by an extended
maximal marginal relevance method to acquire the
keywords that are diverse within a class and exclu-
sive among different classes. Experimental results
on fully zero-shot and generalized zero-shot text
classification tasks demonstrate the effectiveness
of the proposed method.

6 Limitations

We used a limited variety of language models in
the experiments, but further work will be needed
to confirm that our results are maintained for other
models, such as multi-lingual models or larger-
sized models. Even if we use our proposed method,
it is still necessary to provide appropriate seed class
names manually. Also, our proposed method is
applicable to few-shot learning, so we need to in-
vestigate whether the proposed method is effective
in these settings.
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A Other Experimental Details.

A.1 Datasets

Table 7 and Table 8 are statistics of datasets
used in experiments of Section 3.1 and Section 3.2,
respectively.

Table 9 shows class names and templates used
in our experiments.
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Table 7: Statistics of datasets used in the zero-shot ex-
periments.

#Instances #Classes Domain
AG News2 3000 4 News
DBpedia3 3000 14 Wikipedia
Yahoo4 3000 10 Yahoo Answers
SST-25 872 2 Movie review
RT6 1066 2 Movie review

Table 8: Statistics of datasets used in the experiments
before splitting into seen and unseen classes.

#Instances #Classes Domain
Amazon7 24,000 24 Product Review
WoS8 46,985 7 Academic Paper
Snips 13,802 7 Voice Assistant
Emotion 36,463 10 Mixed

A.2 Hyperparameters

Table 10 shows the hyperparameters used for model
training in Section 3.2. We use the same values of
hyperparameters in the original papers, except for
parameters that the original papers use different
values for different datasets. We use the same hy-
perparameters as the vanilla LTA or Entailment for
our methods combined with LTA or Entailment.

In addition to the hyperparameters described
in the table, parameters that are unique for each
method are set as follows.

LTA We use the hyperparameters for LTA in
the original paper as dh = 768, da = 768, α =
10.0, τ = 10.0, N si = Nui = 2,K = 5, dr = 32.

Entailment For the template to generate a hy-
pothesis, we use “This text is about {class name}.”
as suggested in the original paper.

Ours When generating sequences that contain
keyword candidates in our method, the temperature
parameters that control the generation probabilities,
top_p parameter (the threshold for top-p sampling),
and generation length are manually set to 0.9, 0.8,
and 16, respectively. We generate 20 sequences for
each class and extract 24 keyword candidates with
the highest Term-Frequency value per class.

A.3 Templates for Generating Keyword
Candidates

Zero-Shot Text Classification. We use the follow-
ing templates to generate keyword candidates for
experiments in Section 3.1.

• “{class name} such as ”

• “{class name}: ”

• “examples of {class name} are ”

• “{class name} also ”

• “{class name} and ”

Generalized Zero-Shot Text Classification.
We use the following templates to generate key-
word candidates for experiments in Section 3.2.

• “{class name} such as {keyword candidate1},
{keyword candidate2}, · · · ”,

• “{class name}: {keyword candidate1}, {key-
word candidate2}, · · · ”,

• “examples of {class name} are {keyword can-
didate1}, {keyword candidate2}, · · · ”,

where a {keyword candidate} is a keyword of the
seen class extracted from training data. We concate-
nate the class-keyword pairs of several seen classes
with a line break “\n” in between and add instruc-
tions of the same format to generate the unseen
class keywords on the last line. When retrieving
keyword candidates from training data for seen
classes, we aggregate training data for each class
and use TF-IDF to retrieve class-specific keywords,
which is similar to class-based TF-IDF (Grooten-
dorst, 2022).
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Table 9: Templates and class names used in our experiments.

Dataset Class Name Template
AG News “politics”, “sports”, “business”, “technology” “{text}topic: "

DBpedia

“Company”, “school”, “Artist”, “Athlete”,
“OfficeHolder”, “transportation”, “Building”, “Mountain”,
“Village”, “Animal”, “Plant”, “Album”,
“Film”, “book”

l “{title}{content}{title} is a "

Yahoo
“society”, “science”, “health”, “education”,
“computer”, “sports”, “business”, “entertainment”,
“amily”, “politics”

l “{question title}topic: "

SST-2 “terrible”, “great” “{text}It was "
RT “terrible”, “great” “{text}It was "

Amazon

(seen) “Apps for Android”, “Baby”, “Beauty”,
“Clothing Shoes and Jewelry”, “Digital Music”,
“Electronics”, “Movies and TV”,
“Patio Lawn and Garden”, “Pet Supplies”,
“Tools and Home Improvement”,
“Toys and Games”, “Video Games”
(unseen) “Amazon Instant Video”, “CDs and Vinyl”,
“Cell Phones and Accessories”, “Grocery and Gourmet Food”,
“Kindle Store”, “Office Productsy”
(valid) “Automotive”, “Books”, “Health and Personal Care”,
“Home and Kitchen”, “Musical Instruments”,
“Sports and Outdoors”

l “{text}This text is about {class name}”

WoS

(seen) “Civil Engineering”, “Computer Science”,
“Mechanical Engineering”
(unseen) “Electrical Engineering”, “Medical Science”
(valid) “Psychology”, “biochemistry”

l “{text}This text is about {class name}”

Snips
(seen) “book”, “movie”, “playlist”,
(unseen) “music”, “restaurant”
(valid) “search”, “weather”

l “{text}This text is about {class name}”

Emotion
(seen) “anger”, “fear”, “love”, “no emotion”
(unseen) “disgust”, “sadness”, “shame”
(valid) “guilt”, “joy”, “surprise”

l “{text}This text is about {class name}”

Table 10: Hyperparameters for fine-tuning. Notice that the batch size of LTA (step2) is determined by K, Nsi , and
Nui .

Hyperparameter LTA (step1) LTA (step2) Entailment
# of maximum epochs 10 300 3

Model selection early stopping (3epochs) early stopping (30epochs) best epoch
Learning rate 1e-3 1e-5 1e-5

Scheduler None None linear
Optimizer Adam Adam AdamW

Adam epsilon 1e-08 1e-08 1e-08
Adam beta weights 0.9, 0.999 0.9, 0.999 0.9, 0.999

Weight decay 0.0 0.0 0.01
Batch size 64 N/A 32
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Abstract

Causal language models such as the GPT series
have achieved significant success across vari-
ous domains. However, their application to the
lexical substitution task (LST) remains largely
unexplored due to inherent limitations in autore-
gressive decoding. Our work is motivated by
our observation that existing LST approaches
tend to suffer from a misalignment between the
pre-training objectives of the language models
that they employ, and their subsequent fine-
tuning and application for substitute generation.
We introduce PromptSub, the first system to
use causal language modeling (CLM) for LST.
Through prompt-aware fine-tuning, PromptSub
not only enriches the given context with addi-
tional knowledge, but also leverages the uni-
directional nature of autoregressive decoding.
PromptSub consistently outperforms GeneSis,
the best previously published supervised LST
method. Further analysis demonstrates the po-
tential of PromptSub to further benefit from
increased model capacity, expanded data re-
sources, and retrieval of external knowledge.
By framing LST within the paradigm of CLM,
our approach indicates the versatility of gen-
eral CLM-based systems, such as ChatGPT, in
catering to specialized tasks, including LST.1

1 Introduction

Lexical substitution task (LST) is to identify appro-
priate replacements for a designated target word
in context while maintaining the contextual mean-
ing and coherence of the text (McCarthy, 2002;
McCarthy and Navigli, 2007). For example, given
the sentence “Let me begin again”, an LST system
would be expected to provide words such as start
or commence as substitutes for begin. LST is an
important task due to its numerous applications,
including word sense disambiguation (Hou et al.,
2020), word sense induction (Eyal et al., 2022),

1Our code and data are publicly available on GitHub:
https://github.com/ShiningLab/PromptSub

Encoder-Decoder

The "begin" in the sentence "Let me begin again." can be substituted with "

start, commence, open, ...

Decoder-Only start".

The "{Target}" in the sentence "{Context}" can be substituted with "{Substitute}".

(a) GeneSis

...

...

(b) PromptSub

Let me <t> begin </t> again.

Figure 1: Comparison between (a) GeneSis (Lacerra
et al., 2021b) and (b) our proposed PromptSub.

lexical simplification (Aumiller and Gertz, 2022),
adversarial attacks and defenses (Li et al., 2021), se-
mantic change detection (Card, 2023), and natural
language watermarking (Yang et al., 2022).

Recent prior work on LST leverages pre-trained
language models (PLMs), specifically masked
language models (MLMs) (Lin et al., 2022;
Michalopoulos et al., 2022; Omarov and Kondrak,
2023), of which BERT (Devlin et al., 2019) is a
well-known example. Since MLMs are trained on
the task of predicting likely words in a context
where a single word is masked, they seem to be
a natural fit for LST. However, masking a word
is an information-losing process. As a result, the
predicted substitutes may fit the context well, but
can significantly alter the original meaning of the
sentence.

As an alternative to masked language modeling,
we propose to employ causal language modeling
instead. While MLMs first encode the entire con-
text around the mask and then decode output from
this encoding, causal language models (CLMs) are
trained to predict the next token in a sequence given
only the previous tokens as context (Radford et al.,
2018). This linear processing of text is referred to
as auto-regressive decoding; by eschewing the need
for discrete encoding and decoding phases, these
models can achieve high performance in generative
tasks, without an encoder that increases the number
of parameters. These decoder-only models include
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the well-known GPT series (Brown et al., 2020),
which powers popular language generation tools
such as ChatGPT (OpenAI, 2023). However, prior
methods for applying a pre-trained CLM to LST go
no further than simple prompting (Lee et al., 2021).

In this paper, we present the first method to ef-
ficiently reduce LST to causal language model-
ing: PromptSub, a system based on lexical substi-
tution via prompt-aware fine-tuning. Our approach
bridges the gap between the pre-training of CLMs
and their fine-tuning for LST via the same training
objective (i.e., to predict the next token). By way
of an innovative prompting strategy, PromptSub
empowers a decoder-only CLM to leverage the full
bidirectional context of a given LST instance, and
also seamlessly integrate external knowledge into
an auto-regressive language modeling strategy.

In our experiments, PromptSub consistently sur-
passes the previous best supervised method, Gen-
eSis (Lacerra et al., 2021b), across all datasets,
metrics, and settings. Figure 1 illustrates how
GeneSis and PromptSub employ encoder-decoder
(Sutskever et al., 2014) and decoder-only models
respectively. Our extensive evaluations indicate
that PromptSub either matches or exceeds previ-
ously published methods, establishing a new state
of the art on the most recent LST benchmark,
SWORDS (Lee et al., 2021). Notably, Prompt-
Sub outperforms MLM-based approaches, previ-
ously recognized state-of-the-art, by a large mar-
gin (Yang et al., 2022; Wada et al., 2022). Our
detailed analysis highlights the robustness and ex-
tensibility of PromptSub, showing that it can take
advantage of greater model capacity, leverage a
broad array of resources, and benefit from external
knowledge through retrieval-augmented generation
(RAG; Lewis et al., 2020b).

2 Related Work

Conventional LST techniques predominantly capi-
talize on external knowledge bases (Hassan et al.,
2007; Szarvas et al., 2013a; Hintz and Biemann,
2016) and learned word embeddings to identify
and rank potential substitution candidates based
on predefined metrics (Melamud et al., 2015b,a;
Garí Soler et al., 2019). These methods often de-
pend heavily on external resources like WordNet
(Miller, 1995), with additional processes such as
the manual ranking and rule construction often re-
quired to optimize outcomes. Recognizing these
limitations, recent initiatives have emerged to har-

ness the advantages of PLMs.
Prior work indicates that contextualized repre-

sentations obtained from PLMs can be applied to
LST by incorporating context-based scores (Senevi-
ratne et al., 2022) and decontextualized embed-
dings (Wada et al., 2022). In an effort to aug-
ment PLMs with knowledge derived from lexical
resources, Lin et al. (2022) proposed involving
gloss matching in pre-training. Michalopoulos et al.
(2022) advocate for the incorporation of structured
knowledge from lexical databases.

On the one hand, certain of these approaches
utilize PLMs primarily as feature extractors. Thus,
the complete potential of PLMs remains untapped
due to the disconnect between their pre-training
objectives and subsequent applications. On the
other hand, to align with pre-training, others (Zhou
et al., 2019) estimate the probability distribution of
potential replacements through masked language
modeling (Devlin et al., 2019). This inclination to-
wards MLMs, as opposed to CLMs, has led to the
over-representation of encoder-only PLMs, leav-
ing the application of decoder-only architectures
largely unexplored.

Similarly, while prior work has explored the
ideas of enriching LST inputs with target words
(Arefyev et al., 2020) and semantic knowledge
(Omarov and Kondrak, 2023), how to inject such
knowledge into PLMs remains an open question.
This issue is particularly true within the prevail-
ing trend of unsupervised methods that exclude the
fine-tuning stage.

Supervised approaches to LST, such as those
by Szarvas et al. (2013a,b), were initially lim-
ited by data scarcity until the advent of GeneSis
(Lacerra et al., 2021a,b) and ParaLS (Qiang et al.,
2023). GeneSis adopts a sequence-to-sequence
model, generating substitutes given the context and
marked target word. By concatenating multiple
datasets, fine-tuning a PLM specifically for LST
was made viable, achieving strong results despite
the scarcity of annotated data in the domain. Par-
aLS produces substitutes through a paraphraser,
utilizing a heuristics-based decoding strategy. This
facilitates fine-tuning PLMs on paraphrase data,
which is available in relatively large quantities.

However, in both GeneSis and ParaLS, a dis-
cernible gap persists between the pre-training of
PLMs and their subsequent fine-tuning. Further-
more, they are both rooted in an encoder-decoder
framework (Lewis et al., 2020a), depending on ex-
ternal resources, and require post-processing steps
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At position {Position} in the sentence, "{Context}", the {PoS} "{Context[Position]}", derived from the lemma "{Target}", can be substituted with "{Substitute}".'

Target
begin

PoS
verb

Position
3

Context
Let me begin again.

Substitute::Frequency
start::6, commence::2, open::2, initiate::1, introduce::1, try::1, ...

At position 3 in the sentence, "Let me begin again.", the verb "begin", derived from the lemma "begin", can be substituted with "

start". </s>
commence". </s>
open". </s>
initiate". </s>
introduce". </s>
try". </s>

...

Raw LST Instance Sampling

Causal Language Model

OutputInput

Prompt Template

Figure 2: An illustration of PromptSub. An LST instance is transformed into a description by populating a prompt
with details. A CLM estimates the probability distribution of potential substitutes at the final placeholder.

that involve adjustable heuristics and thresholds.
This raises a pivotal question: does LST have to
be approached in a two-step manner, where substi-
tutions are first generated and then reranked using
manually designed scores? Or, is it possible to
create a single-step, end-to-end, generative solu-
tion, that also sidesteps the need for external re-
sources and manually-crafted heuristics? In pre-
senting PromptSub, we argue for the latter: a first-
of-its-kind single-step approach to generating sub-
stitutions via a decoder-only language model.

3 Methodology

In this section, we formally define LST and CLM,
outline our sampling strategy, and detail our prompt
engineering techniques.

3.1 Definitions
We introduce our theoretical framework that re-
duces LST to CLM, building upon two binary prob-
lems we defined.

Lexical substitution task (LST) involves identi-
fying suitable replacements for target words while
preserving the contextual meaning of the sentence.
Formally, given an input sentence S = wn

1 contain-
ing a target word wx, the objective of LST is to
return a ranked list of m appropriate replacements
for wx, which are selected from a vocabulary V .
For example, consider begin as the target word wx

in the sentence S = “Let me begin again”. If
we are to specify m = 3 substitutes, a reasonable
output would be [“start”, “commence”, “open”].

Causal language modeling (CLM) refers to
prediction of the next word in a sequence given the
preceding words. Formally, given a sequence of
words s = wn

1 of length n, the objective of CLM is

to model the conditional probability distribution of
the next word: p(wn+1 | wn

1 ). CLM is autoregres-
sive: words are predicted one at a time, conditioned
on the context of the previous words. By applying
a decoder-only model repeatedly, CLM can be used
to model the probability of any sequence of words:
p(wn+k

n+1 | wn
1 ).

We define a binary decision problem of lexical
substitution (LexSub) which returns TRUE if two
words are lexical substitutes in a given sentence,
and FALSE otherwise (Hauer and Kondrak, 2023):

LexSub(S,wx, wy) := “the word wx can be re-
placed by the word wy in the sentence S without
altering its meaning”

Similarly, we define a binary decision problem
of word prediction (WP) as:

WP(S,w) := “the word w has the same meaning
as the masked word in the sentence S”

LexSub is thus reducible to WP in a straightfor-
ward way:

LexSub(S,wx, wy)⇔WP(S,wx) ∧WP(S,wy)

In practice, implementations of methods for Lex-
Sub or WP may return a probability value instead
of a Boolean. LST datasets often require a ranked
list of substitutes for each instance. To satisfy this,
given a method for solving WP as we defined, we
can simply rank each word w in the vocabulary by
the probability returned by WP(S,w). To apply
CLM to LST, we constrain the word to be identi-
fied (in WP) or replaced (in LexSub) to appear at
the end of the context. We can thus model LexSub
and WP as autoregressive language modeling tasks
suitable for use with decoder-only models.
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3.2 PromptSub definition

The most direct application of CLM to LST would
entail modeling the probability distribution at the
position of the target word given only the preceding
words, denoted as p(wx | wx−1

1 ), where wx ∈ V .
However, this would omit wn

x+1, the part of the
sentence after wx, which may contain vital infor-
mation. An example can be found in Appendix B.

We therefore propose PromptSub, the first LST
method to give CLMs access to the full context of
an LST instance. PromptSub uses carefully con-
structed prompts which allow a CLM to produce a
substitute based on the full context, including the
target word wx itself.

The following prompt template illustrates how a
CLM can be fine-tuned for LST:

The “wx” in “S” can be
substituted with “y”. </s>

where S is the input sentence, wx the target word,
and y a selected gold substitute. The underlined
part is what the decoder-only model is fine-tuned
to predict. Formally, given an LST instance, we
construct a prompt s by filling in the placehold-
ers in a prompt template with wx and S. This
reconstruction allows us to reframe LST as CLM,
where the objective is to model the probability of:
p(sz+4

z+1 | s1, · · · , {wx}, · · · , {S}, · · · , sz). To en-
sure the generation of appropriate substitutes, we
fix the last five tokens as follows:
• sz: an open quotation mark
• sz+1: a sampled gold substitute y
• sz+2: a close quotation mark
• sz+3: a period
• sz+4: the end of sentence symbol </s>
Using static quotation marks and a period effec-
tively aids in extracting the eventual substitutes
from the generated text. In practice, we notice no
adverse effects on loss or performance, and out-
puts always reliably incorporate these punctuation
marks before the sentence concludes.

We then fine-tune the decoder-only model to
specifically minimize the cross-entropy loss on
sz+1, sz+2, sz+3, and sz+4, where sz+4 is included
for the model to learn the end of inference. We can
then generate a list of potential substitutes ŷ by sam-
pling from the probability distribution at sz+1 ∈ V .
Consider again our LST example from Section 3.1.
We construct the filled prompt as follows:
The “begin” in “let me begin again.” can

be substituted with “start”. </s>

3.3 Sampling strategy

Generating a corpus from an LST dataset for fine-
tuning CLMs is not straightforward, since LST
instances often have multiple substitute options (of-
ten ranked), creating many choices for verbalizing
these instances. We therefore introduce two sam-
pling strategies, described below:

TopSub selects only the top-ranked substitute.
By doing so, we aim to capture the most probable
and relevant substitute for the given context.

FreqSub exploits the frequency information as-
sociated with gold substitutes in LST datasets,
where frequency is determined by the number of
annotations in agreement for each substitute. These
frequencies, gathered during the dataset annotation
process, are often overlooked in previous methods.
Applying a softmax function to these frequencies
creates a probability distribution over the gold sub-
stitutes, reflecting their likelihood of selection. We
then sample one substitute from this distribution,
ensuring the model encounters substitutes in pro-
portion to their data-driven frequencies.

3.4 Prompt engineering

This section outlines the prompt engineering for
corpus construction, grounded in integrating con-
textual information into the templates. From an
informational standpoint, we operate under the as-
sumption that enriching prompts with more rele-
vant information leads to improved outcomes. In-
stead of manual, iterative adjustments, we focus
on demonstrating the impact of prompts by con-
trasting several distinct variants. Examples of each
template, filled with a single shared LST instance,
can be found in Table 1.

BaseP, shown in Figure 1, is the basic prompt
template from Section 3.2. It provides the model
only the target word and its context. It serves as the
foundation for developing more complex prompts.

InfoP seeks to harness the comprehensive in-
formation available in LST data. Traditional ap-
proaches often focus on the target word and its
immediate context, while LST instances often pro-
vide additional details that can be valuable. In
InfoP, as exemplified in Figure 2, we incorporate
three additional attributes of the target word: its
position in the sentence, its part of speech (PoS)
tag, and its lemma form. These additions work as
enriched contextual cues, guiding the model to pro-
duce more appropriate substitutions. It is important
to note that these attributes utilized in InfoP are
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Instance: let me begin again.

BaseP: the “begin” in the sentence “let me begin again.” can be substituted with “start”.

InfoP: at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be substituted with “start”.

AugP (Train): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

AugP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be best substituted with “start”.

ExP (Train): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”
with synonyms “commence”, “get”, “get down”, “lead off”, “set about”, “set out”, “start”, “start out”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

ExP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin” with
synonyms “commence”, “get”, “get down”, “lead off”, “set about”, “set out”, “start”, “start out”, can be
best substituted with “start”.

Table 1: Comparative overview of prompting strategies for a given LST instance. Notably, AugP and ExP utilize
distinct prompts for training and inference phases. The masked sentence portion, highlighted in blue, is used for
loss calculation during training and autoregressive decoding in testing.

exclusively derived from the LST datasets, without
reliance on external resources. Furthermore, as evi-
denced in Section 5, PromptSub remains flexible,
allowing for the incorporation of external knowl-
edge if needed.

AugP is designed to boost the diversity of the
generated corpus by further augmenting InfoP. In
LST tasks, there is often a need to delineate both
the best or “top-1” substitute, and a list of the top
10 substitutes. We therefore specifically embed the
term “best” into the prompt, where only the top-
ranked gold substitute is presented. To incorporate
multiple possible substitutes, we exclude the word
“best”, instead including the top 10 gold substitutes,
as determined by the weighted sampling strategy,
following the open quotation mark sn. This means
multiple y ∈ y will occupy the sn+1 slot, rather
than just one; substitutes are separated by a comma
followed by a space. During the training phase, the
fine-tuning prompt is drawn randomly from tem-
plates that either include or exclude the term “best”.
For inference, potential substitutes are solely sam-
pled using the “best” prompt, the intuition being
that this will help the model to produce substitutes
that are not only acceptable but optimal. This strat-
egy offers deeper insights into the efficacy of our
approach when melded with advanced prompt tech-
niques, such as prompt augmentation.

4 Experiments

In this section, we describe our empirical compari-
son of PromptSub to the top-performing previously
published LST methods. After brief descriptions
of the benchmark datasets (Section 4.1) and our
experimental setup (Section 4.2), we proceed with
a comparative analysis of PromptSub and Gene-
Sis, two supervised generative approaches (Sec-
tion 4.3). We then extend this experiment to include
more methods and test of the full suite of datasets
(Section 4.4). Unless stated otherwise, we apply
PromptSub with FreqSub sampling and AugP for
corpus generation, as these settings gave the best
performance in our development experiments. Fur-
ther sensitivity analysis will be presented in Sec-
tion 5.

4.1 Datasets

LST datasets are few in number and small in size,
presenting a challenge for supervised approaches.
Thus, we adopt the strategy used by Lacerra et al.
(2021b) of merging multiple LST resources for
fine-tuning and evaluating on the remainder.

LS07 facilitates comparison with GeneSis, as
we can directly compare the results reported by the
authors to those we obtain using PromptSub. We
carefully follow the dataset construction procedure
described in the GeneSis paper.

LS14 includes the CoInCo (Kremer et al., 2014)
training set combined with LST and TWSI (Bie-
mann, 2012), as well as a subset of SWORDS (se-
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Backbone Size Method best best-m oot oot-m P@1

bart-large 406M GeneSis 19.2±0.6 31.1±1.5 45.7±3.7 60.0±4.6 47.9±1.1

GeneSis+WN 20.6±0.8 33.2±1.7 50.0±2.4 65.1±2.4 49.2±1.9

gpt2-medium 345M PromptSub (ours) 21.4±0.2 35.8±0.3 50.5±0.2 66.2±0.4 50.4±0.3

PromptSub+ (ours) 21.5±0.2 35.9±0.4 51.1±0.2 67.0±0.5 50.7±0.3

Table 2: Evaluation results on LS07. For all the metrics, the higher, the better. The best are bolded.

lected to avoid overlap with the CoInCo test set).
The dataset is divided into training (90%) and val-
idation (10%) splits. The CoInCo test set is pro-
vided for testing.

LS21 follows a similar procedure, but with the
SWORDS training set combined with LST and
TWSI. A section of CoInCo is added, again en-
suring no overlap with the SWORDS test set. The
dataset is partitioned into 90% for training and 10%
for validation. The original SWORDS test set is
preserved for evaluation.

4.2 Experimental setup

Per established practices, we evaluate model perfor-
mance on LS07 and LS14 using the metrics from
the SemEval-2007 task (McCarthy and Navigli,
2007). We use best and out-of-ten (oot), along
with their modal variations best-m and oot-m, to
assess the top-1 and top-10 predictions, respec-
tively. These metrics weight the gold substitutes ac-
cording to their selection frequency by annotators.
For the more recent LS21 dataset, we follow the
evaluation protocol developed for the SWORDS
benchmark (Lee et al., 2021). We use the F 10 score,
the harmonic mean of precision and recall, for the
top 10 predictions against both acceptable (F10a)
and conceivable (F10c) gold substitutes. SWORDS
assigns a score to each substitute to indicate its
appropriateness, defining acceptable substitutes as
those with scores above 50%, and conceivable sub-
stitutes as those with scores above 0%. For thor-
oughness, we also report a variety of metrics: top-1
precision (P@1), top-3 precision (P@3), and top-10
recall (R@10). Our results, including standard devia-
tions, are averages from five iterations with random
seeds 0 to 4.

We utilize GPT-2 (Radford et al., 2019) as our
primary CLM. In particular, we use gpt2-medium,
except where otherwise specified. This decision
stems from constraints related to computational
resources and the restrictions on access to more
advanced models like GPT-3 (Brown et al., 2020),
as well as the desire to compare PromptSub to

GeneSis using models with comparable numbers
of parameters.

To evaluate the impact of fine-tuning data size
on PromptSub, after determining the optimal hyper-
parameters, we repeat the fine-tuning process on
the concatenation of the training and validation
sets. We refer to this more fine-tuned variant of
PromptSub as PromptSub+. To reiterate, the only
distinction between PromptSub and PromptSub+
lies in the training data volume.

To optimize GPU memory utilization on the
Nvidia Tesla V100 we use for training, we employ
a batch size of 16 with mixed precision training
and gradient accumulation. For fine-tuning, we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate 1e−5 and an ℓ2 gradient
clipping of 1.0, following Pascanu et al. (2013).
To prevent overfitting, we use early stopping with
respect to P@1 on validation for a maximum of 8
epochs (Prechelt, 1998). We set the dropout rate
to 0.2, following Srivastava et al. (2014). During
inference, we use a beam search with a width of
50, in line with prior methods (Zhou et al., 2019;
Lacerra et al., 2021b). All implementations are
executed using PyTorch (Paszke et al., 2019), with
pre-trained models sourced from the HuggingFace
repository (Wolf et al., 2020).

4.3 Experiments on LS07

In evaluating GeneSis, Lacerra et al. (2021b) in-
troduces a set of post-processing steps to the sys-
tem’s output. To ensure a fair comparison, we
apply the same post-processing steps to the output
of PromptSub. We also test its enhanced variant
GeneSis+WN with two extra tricks applied: Fall-
back strategy (FS) ensures at least ten substitutes
are returned by first including previously discarded
substitutes and, if necessary, adding more from the
vocabulary ranked by cosine similarity to the target,
until 10 substitutes are obtained. Vocabulary cut
(VC) limits the model to a specified output vocabu-
lary; it discards any generated substitutes outside
this vocabulary. It is noteworthy that both FS and
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Method best best-m oot oot-m P@1

BalAdd 5.6 11.9 20.0 33.8 11.8
SubstituteVector 8.1 17.4 26.7 46.2 −
BERT 14.5 33.9 45.9 69.9 56.3
GeneSis 13.8 30.4 45.6 72.3 58.8

LexSubCon 11.3 23.8 33.6 54.4 41.3
GR-RoBERTa 13.1 28.8 40.9 66.6 48.8
ParaLS 13.8 29.5 41.7 65.6 50.0
ParaLS* 16.8 35.4 48.3 75.0 57.8

PromptSub (ours) 14.5 33.1 46.2 72.9 57.7
PromptSub+ (ours) 14.9 33.9 47.0 73.9 59.5

Table 3: Evaluation results on LS14. The upper section
presents the complete system outcomes, while the lower
focuses on the generation step. Results for BalAdd
(Melamud et al., 2015b) and SubstituteVector (Melamud
et al., 2015a) are sourced from BERT (Zhou et al., 2019).
LexSubCon (Michalopoulos et al., 2022), GR-RoBERTa
(Lin et al., 2022), ParaLS, and ParaLS* are reported by
Qiang et al. (2023). The best are in bold, with the
second-best underlined.

VC rely on external resources such as WordNet
(Miller, 1995), while PromptSub does not. How-
ever, we still incorporate GeneSis+WN for a thor-
ough comparison.

In Table 2, PromptSub outperforms GeneSis
across all metrics. Using gpt2-medium, a model
with 15% fewer parameters than the bart-large
model used by GeneSis, our PromptSub method
yields better results, attaining for example 21.5
in best and 50.7 in P@1. With both FS and VC
enabled, GeneSis+WN is still outperformed by
PromptSub, even when the former leverages Word-
Net for post-processing. The results support the
hypothesis that PromptSub can benefit from addi-
tional training data, as evidenced by the improve-
ments of PromptSub+ over the standard Prompt-
Sub.

Another salient point is the pronounced stabil-
ity exhibited by PromptSub, evident from the re-
duced variance we observed across random seeds.
For instance, PromptSub shows a variance of 0.2,
markedly less than the 3.7 of Genesis, in terms of
oot. This can be attributed to the fact that Prompt-
Sub generates substitutes through greedy sampling
from a single-step probability distribution, leading
to a more stable and consistent output. In contrast,
GeneSis relies on multiple decoding steps, result-
ing in higher variability across runs.

4.4 Experiments on LS14 and LS21
As detailed in Section 4.3, we follow the same
evaluation procedure as in GeneSis to ensure a fair

Method F10
a F10

c

BERT (Zhou et al., 2019) 17.4 27.5
GeneSis (Lacerra et al., 2021b) 23.3 43.0
GPT-3 (Lee et al., 2021) 22.7 36.3
WordTune (Lee et al., 2021) 23.4 33.2
CALS (Yang et al., 2022) 16.7 28.4
mBERT (Wada et al., 2022) 12.4 22.6
SpanBERT (Wada et al., 2022) 20.9 34.0
MPNet (Wada et al., 2022) 22.0 34.1
XLNet (Wada et al., 2022) 23.3 37.4
ELECTRA (Wada et al., 2022) 23.2 36.7
DeBERTa-V3 (Wada et al., 2022) 24.5 39.9
BART (Wada et al., 2022) 23.5 37.2
ParaLS (Qiang et al., 2023) 23.5 38.6
ParaLS* (Qiang et al., 2023) 24.9 40.1

GPT-3 (Lee et al., 2021) 22.2 34.3
WordTune (Lee et al., 2021) 22.8 32.1
BERT (Wada et al., 2022) 20.7 34.4
BERT-K (Wada et al., 2022) 15.7 24.4
BERT-M (Wada et al., 2022) 10.7 16.5
CILex3 (Seneviratne et al., 2022) 19.9 31.5
ParaLS* (Qiang et al., 2023) 22.8 37.0

PromptSub (ours) 23.2 45.4
PromptSub+ (ours) 24.0 46.4

Table 4: Evaluation results on LS21. The upper section
presents the performance of their complete systems,
while the lower section reports that of the generation
step only. Results of BERT (Zhou et al., 2019), CALS
(Yang et al., 2022), and GPT-3 (Lee et al., 2021) are
borrowed from Wada et al. (2022). That of CILex3
(Seneviratne et al., 2022) is reported by Qiang et al.
(2023). The best are bolded.

comparison. Other competing systems were tested
under different experimental configurations, com-
plicating the comparison. Moreover, existing ap-
proaches typically involve multiple stages, such as
substitute generation and contextualized reranking.
This complicates the isolation and evaluation of the
specific impact of PromptSub, which is a single-
stage end-to-end generative approach, as opposed
to the “pipeline” approaches of the methods we
compare to. To address this, we expand our evalua-
tion scope to include LS14 and LS21, emphasizing
the substitute generation aspect. In Tables 3 and 4,
we compare PromptSub (and PromptSub+) to pre-
viously published methods on LS14 and LS21 re-
spectively. Results reported in the second part of
each table (below the double horizontal line) evalu-
ate performance after the generation stage, with no
post-processing. To further verify the advantages
of our PromptSub, we re-implement GeneSis using
the same configurations, maintaining gpt2-medium
for PromptSub and bart-large for GeneSis.

For results on LS14 (Table 3), PromptSub+
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yields competitive performance, ranking first or
second on all metrics. A standout observation is the
prowess of PromptSub+ in the P@1 metric, where it
achieves the top result by a wide margin. We find
that this disparity between P@1 and other metrics is
attributed to annotator preference induced by the
weighted task metrics of SemEval-2007 (McCarthy
and Navigli, 2007). This thus suggests that certain
methods, such as ParaLS*, may be biased toward
the substitutes preferred by annotators.

Turning to LS21 (Table 4), both PromptSub and
PromptSub+ outperform prior methods, including
GeneSis, setting a new state of the art. Specifi-
cally, PromptSub+ achieves an unprecedented F10c
of 46.4, surpassing the previous best by almost
10. It also achieves the best F10a at 24.0 using
PromptSub+. Notably, despite using gpt2-medium,
PromptSub and PromptSub+ are able to outperform
GPT-3 by a substantial margin, demonstrating the
utility of the knowledge-rich prompting techniques
we built into PromptSub. Based on these results,
we speculate that, with full access to GPT-3 (or
even more powerful models), and additional la-
beled LST data for fine-tuning, PromptSub could
yield even stronger results.

4.5 Error examples

In this section, we discuss the most frequent types
of errors made by our method.

The first such category that we identified in-
volves instances where the substitutes provided by
annotators include phrases rather than single words.
For example, one test instance from LS21 has the
context “That is why I cannot take payment”; the
target word take is annotated with substitutions
including accept and ask for. While accept is a sin-
gle element of the vocabulary, ask for is a phrase
that models trained predominantly to predict single-
word substitutes may not generate.

Besides, we observed some potential omissions
in the datasets. One example involves substituting
the target word voice in the context “How should
I reply? Her voice had grown quiet”. The top
prediction of PromptSub, sound, is not among the
provided substitutes, and so is considered incorrect.
However, the annotations include talk, utterance,
and tongue, which are, arguably, less suitable as
substitutes than sound. This highlights the need for
benchmarks which are more comprehensive, and
which have more consistent criteria for substitutes.

Method Backbone LS14 LS21

best best-m oot oot-m F10
a F10

c

PromptSub
gpt2 13.8 31.7 43.8 68.8 22.1 42.6
gpt2-medium 14.5 33.1 46.2 72.9 23.2 45.4
gpt2-large 14.7 34.5 46.2 72.4 23.8 46.7

PromptSub+
gpt2 14.1 32.4 44.3 69.4 22.8 44.3
gpt2-medium 14.9 33.9 47.0 73.9 24.0 46.4
gpt2-large 15.1 34.9 46.8 72.9 23.8 47.6

Table 5: Analysis results of PromptSub on LS14 and
LS21, showing the impact of varying model capacity.

0 20 40 60 80

0.2
0.4
0.6

P@
1

(a) LS14

0 20 40 60

(b) LS21

Training Epochs

gpt2 gpt2-medium gpt2-large

Figure 3: Learning curve of PromptSub for various
model sizes on LS14 and LS21 validation sets. Vertical
dotted lines indicate the last training epoch before early
stopping.

5 Analysis

We now present a sensitivity analysis of our method.
We measure the impact of various aspects of our ex-
perimental setup, including training size, model ca-
pacity, sampling strategy, prompt engineering, and
external knowledge. We maintain the same experi-
mental setup, modifying one aspect of our methods
to observe the resulting performance change on
LS21. The random seed is held constant at 0.

Training size Regarding training data size, we
have introduced PromptSub+, a variant of Prompt-
Sub, that includes the validation set in its training
data. Across all experiments, PromptSub+ con-
sistently outperforms PromptSub on the test data,
demonstrating its ability to benefit from additional
data. This finding underscores the challenge posed
by limited data resources in most existing LST
benchmarks, which affects the broader application
of PromptSub and other supervised methods (Lac-
erra et al., 2021a,b).

Model capacity We tested three GPT2 model
sizes to measure the impact of model capacity (i.e.
number of parameters). As reported in Table 5,
the results demonstrate the trend of improved per-
formance, across most evaluation metrics, as we
scale from gpt2 to gpt2-medium, then to gpt2-large.
Figure 3 depicts the learning curve in relation to
model capacity, showing a drop in the number of
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Sampling F10
a F10

c P@1 P@3 R@10

TopSub 20.9 39.9 69.4 57.8 40.1
FreqSub 22.0 42.3 71.0 60.7 42.5

Table 6: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the sampling strategy to fill
in the prompt template with label substitutes.

training epochs before early stopping is triggered.
It also becomes apparent that larger models are
more prone to overfitting the training set. This
trend again reflects the challenge posed by limited
data resources in LST, particularly when deploying
PLMs in scale.

Sampling strategy In Section 3.3, we consid-
ered two different sampling techniques, TopSub
and FreqSub. The results obtained by our method
with each sampling strategy are presented in Ta-
ble 6. We observe a constant improvement from
TopSub to FreqSub, hence its usage in our principal
experiments. These results support that FreqSub
successfully addresses the one-to-many mapping
issue during corpus generation and facilitates the
generation of more accurate and diverse substitutes.

Prompt engineering We next quantify the im-
pact of different prompt templates (Section 3.4) on
PromptSub. Table 7 shows that InfoP generally
outperforms BaseP, validating the value of extra
contextualized cues. AugP outperforms both, align-
ing with our expectations as the information pro-
vided to the language model by AugP is a superset
of what InfoP provides. This comparison effec-
tively serves as an ablation study, showcasing the
significance of incorporating additional knowledge
into prompts. Interestingly, although augmented
prompt templates are not used during inference,
their inclusion in the training phase still leads to
noticeable performance improvements.

External knowledge To validate the efficacy of
incorporating external knowledge in PromptSub,
we introduce a new prompting strategy, ExP, as
a simple form of retrieval-augmented generation
(RAG; Lewis et al., 2020b). Building upon AugP,
ExP utilizes WordNet as an external knowledge
base, retrieving WordNet synsets for the word
to be substituted, and which share the same part
of speech. These synsets are integrated into the
prompt templates as descriptions, following a sim-
ilar approach to that used for other information.
Comparison with AugP in Table 7 reveals the su-

0 20 40 60
1.0

1.5

2.0
(a) Loss

0 20 40 60

0.2
0.4
0.6

(b) P@1

Training Epochs

BaseP InfoP AugP ExP

Figure 4: Training dynamics of gpt2 under PromptSub,
showing the average loss (a) and P@1 (b) across dif-
ferent prompt templates on the validation set of LS21.
Vertical dotted lines mark the early stopping epochs.

Prompt F10
a F10

c P@1 P@3 R@10

BaseP 21.1 37.6 72.7 58.3 38.6
InfoP 20.7 38.4 72.3 59.0 39.5
AugP 22.1 42.2 71.9 62.0 43.6
ExP 22.0 42.3 73.0 62.6 43.4

Table 7: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the prompt templates.

periority of ExP in P@1 and P@3, indicating that
high-quality substitutes are more likely to be near
the top of the list produced by PromptSub. Training
results in Figure 4 also demonstrate the advantages
of ExP, with lower loss, higher P@1, and earlier con-
vergence. These results indicate the potential ben-
efits of grounding PromptSub on external sources
of knowledge through RAG.

6 Conclusion

We have presented PromptSub, a framework for
recasting LST as CLM, which overcomes the limi-
tations of earlier methods by bridging the gap be-
tween pre-training and fine-tuning. PromptSub is
flexible and extensible: it allows for variations in
the prompt template, facilitating the inclusion of
additional knowledge; further analysis reveals the
potential for further improvement through scaling
up model capacity and data size, applying prompt
engineering, and retrieving external knowledge
via RAG. Our extensive experiments found that
PromptSub consistently outperforms the previous
generative approach, GeneSis, on LS07, and estab-
lishes a new overall state of the art. As the first
attempt to fine-tune decoder-only PLMs for LST,
our work highlights the broader applicability of
PLMs to semantic tasks.
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Limitations

While PromptSub is a significant step forward in
LST, it is not without its limitations. Firstly, its ef-
fectiveness is limited by the quality and diversity of
its training data, a common challenge in supervised
methods. This is particularly relevant given the
data scarcity in LST, restricting our ability to scale
with data extension. Furthermore, PromptSub has
not been tested with the latest PLMs due to limited
computing resources and closed-source constraints.
The computational demands for fine-tuning large-
scale language models may limit its practicality,
especially in resource-constrained environments.
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A PromptSub vs. T5

Our approach distinguishes itself from T5 (Raffel
et al., 2020) in several key aspects:
Architecture. Unlike the encoder-decoder frame-
work of T5, PromptSub leverages a decoder-only
model to reframe LST as CLM, taking advantage
of its inherent strengths in generating text.
Prompting. T5 utilizes a short prefix to specify
each task. One example is “cola sentence: ” for
the CoLA dataset. In contrast, PromptSub employs
in-context placeholder prompts that not only ver-
balize raw LST data instances but also provide a
descriptive context for CLM.
Method. The text-to-text format has inherent lim-
itations, thus, aside from GeneSis, there has been
no effective method to address LST within this
framework. PromptSub, however, offers a fresh
perspective and demonstrates a new solution.
Task. PromptSub has successfully adapted causal
language models to LST, a domain where, to the
best of our knowledge, T5 has not been demon-
strated to operate.
Performance. Empirical evidence show that
PromptSub outperforms GeneSis, which takes
BART as the backbone. Given that GeneSis uses an
encoder-decoder framework akin to T5, it stands to
reason that PromptSub could extend its advantages
over approaches that merely transition from BART
to T5.

B MLM & CLM

Consider the following example illustrating the di-
rect application of MLM and CLM to LST:

• Sentence: I live in a beautiful house .

• MLM: I live in a [MASK] house .

• CLM: I live in a [MASK] [MASK] [MASK]

The target word (i.e., “beautiful”) is masked for
the model to predict it, potentially leading to a
substitute (e.g., “big”) that fits the context but does
not preserve the original sentence semantics due to
the absence of the target word information.
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Abstract
Paraphrase identification (PI) and natural lan-
guage inference (NLI) are two important tasks
in natural language processing. Despite their
distinct objectives, an underlying connection
exists, which has been notably under-explored
in empirical investigations. We formalize the
relationship between these semantic tasks and
introduce a method for solving PI using an NLI
system, including the adaptation of PI datasets
for fine-tuning NLI models. Through extensive
evaluations on six PI benchmarks, across both
zero-shot and fine-tuned settings, we show-
case the efficacy of NLI models for PI through
our proposed reduction. Remarkably, our fine-
tuning procedure enables NLI models to out-
perform dedicated PI models on PI datasets. In
addition, our findings provide insights into the
limitations of current PI benchmarks.1

1 Introduction

Semantic relationships have been the subject of
extensive research, and play pivotal roles in natural
language processing (Burdick et al., 2022; Hauer
and Kondrak, 2023; Pàmies et al., 2023; Peng et al.,
2023a; Wahle et al., 2023), including the study and
evaluation of the reasoning capabilities of language
models (Liu et al., 2019; Yang et al., 2019). Two
important tasks that depend on semantic relations
between sentences are paraphrase identification (PI;
Bai et al., 2023; Peng et al., 2023b) and natural
language inference (NLI; Williams et al., 2018;
Nie et al., 2020; Williams et al., 2022). PI is the
task of deciding whether two sentences are in the
paraphrase relation, that is, whether they convey
the same meaning (Bhagat and Hovy, 2013). NLI
involves three labels that describe the relationship
between two sentences: entailment, contradiction,
and neutral (MacCartney, 2009).

Our focus is specifically on detecting textual en-
tailment, as indicated by the first of these categories

1We make our code and data publicly available on GitHub:
https://github.com/ShiningLab/PI2NLI
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Figure 1: Four sentence-level relations in terms of sym-
metry and contextuality. Arrows indicate interdepen-
dence between the relations (Section 2).

(Bos and Markert, 2005; Dagan et al., 2005; Po-
liak, 2020), or, more generally, textual inference
(Manning, 2006), which is the relation between
sentences where one can be inferred from the other
in a given context. Take the example from SNLI
(Bowman et al., 2015); while the premise “this man
is surfing” does not always entail the hypothesis “a
man is on water”, the broader context may make
it clear that the word surfing refers to an aquatic
activity rather than website browsing, and so the
latter sentence can be inferred from the former.

Prior work has hypothesized that paraphrasing
corresponds to bidirectional textual entailment; see,
for example, the surveys of Androutsopoulos and
Malakasiotis (2010) and Madnani and Dorr (2010).
However, to the best of our knowledge, the only
work that empirically investigates the connection
between these two tasks is Seethamol and Manju
(2017). They incorporate a blend of modules, in-
cluding word sense disambiguation for sentence
similarity and a Markov logic network for proba-
bilistic inference, which complicates the analysis
of the interplay between paraphrases and entail-
ment. Moreover, their approach aligns more with
traditional PI methods than with our approach, and
lacks any theoretical formalization.

In this work, we formalize prior informal obser-
vations on the relationship between textual entail-
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ment and paraphrasing into a coherent theoretical
framework (Figure 1). We formally define four
semantic relations and classify them according to
two criteria: symmetry and contextuality. This
formalization implies a practical reduction of PI
to NLI, which we empirically validate by employ-
ing two widely used pre-trained transformer-based
language models, RoBERTa and XLNet. We intro-
duce a dataset adaptation process for fine-tuning
an NLI model for PI, and test our implementation
on six PI benchmarks. Our results indicate that in
the fine-tuned setting, our PI to NLI reduction can
actually yield better performance compared to the
direct application of a PI system. This provides
strong support for the utility of our reduction, and
the theoretical model upon which it is based.

2 Methodology

In this section, we present our theoretical frame-
work linking four semantic relations. We also intro-
duce a novel method for fine-tuning an NLI model
for PI, proposing a dataset adaptation procedure
that converts PI datasets to labeled NLI instances.

2.1 Equivalence and Paraphrasing
We define the semantic equivalence relation (SEQ)
as follows:

SEQ(S1, S2) := “the sentences S1 and S2 con-
vey the same meaning”

The paraphrase relation (PR) between sentences
is related to semantic equivalence; specifically,
SEQ implies PR. Our definition of PR is contex-
tual, so that it also admits semantic equivalence
in a broader context, which may include common
sense and world knowledge.

PR(C, S1, S2) := “the sentences S1 and S2 con-
vey the same meaning given the context C”

Bhagat and Hovy (2013) refer to this type of
paraphrases as quasi-paraphrases; for example:

• S1: We must work hard to win this election.

• S2: The Democrats must work hard to win
this election.

We postulate the following relationship between
the semantic equivalence and paraphrase relations:

SEQ(S1, S2)⇔ ∀C : PR(C, S1, S2)

2.2 Entailment and Inference
Textual entailment (TE) is a directional relation
between sentences which holds if the truth of one

sentence follows from another sentence (Dagan and
Glickman, 2004):

TE(S1, S2) := “the sentence S2 can be inferred
from the sentence S1”

The proposition that T entails H is denoted as
T |= H . The entailment relation is not symmetric:
T |= H does not imply H |= T .

Following prior work, we assume that sentences
are semantically equivalent if and only if each en-
tails the other:

SEQ(S1, S2)⇔ TE(S1, S2) ∧ TE(S2, S1)

Finally, we define textual inference (TI) as a con-
textual generalization of textual entailment which
takes into account the broad context of the state-
ments, which may include common sense and
world knowledge (Manning, 2006):

TI(C, S1, S2) := “the sentence S2 can be in-
ferred from the sentence S1 given the context C”

Intuitively, TI(C, S1, S2) expresses the follow-
ing inference property: (C + S1) |= S2.

Analogous to the relationship between SEQ and
PR, we postulate the following relationship be-
tween TE and TI:

TE(S1, S2)⇔ ∀C : TI(C, S1, S2)

The following proposition establishes a connec-
tion between PR and TI:

Proposition 1 Given context C, sentences S1 and
S2 are paraphrases if and only if they can be mutu-
ally inferred from each other.

PR(C, S1, S2)⇔ TI(C, S1, S2) ∧ TI(C, S2, S1)

Thus, the paraphrase relation can be viewed as
the conjunction of the inference relation in both
directions.

2.3 Dataset Adaptation
Building on our theoretical formalization, we posit
that the task of PI, which depends on detecting the
PR relation, can be reduced to NLI, specifically the
detection of the TI relation. To implement and test
our PI to NLI reduction – henceforth PI2NLI – we
present a novel fine-tuning procedure that allows an
NLI model to be fine-tuned for solving PI instances.
Our goal is to mitigate biases stemming from the
transfer learning and any domain-specific dispari-
ties or other properties of the data that may degrade
performance on PI datasets. Our dataset adaptation
procedure transforms PI datasets to be compatible
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with NLI systems so as to facilitate fine-tuning on
adapted PI data.

We convert each positive PI instance into two
distinct positive NLI instances, one in each direc-
tion, indicating mutual TI between two paraphrases,
as postulated in Proposition 1. Conversely, since
determining in which direction TI fails to hold in a
negative PI instance is not straightforward, we gen-
erate a negative NLI instance in a random direction.
While this heuristic is not theoretically justified, we
found that it works well in practice.

3 Experiments

The experiments in this section are aimed at validat-
ing the proposed theoretical framework. Additional
data specifics and training details can be found in
Appendices B and C.

3.1 Models

We implement and test our reduction with each of
two freely available transformer-based (Vaswani
et al., 2017) language models, RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). Specific
model names have been provided in the footnotes.
We choose them because of their low hardware
requirements, and their status as well-known and
well-studied models (Peng et al., 2022). The pri-
mary distinction between them lies in their design:
RoBERTa is an autoencoding-based model, while
XLNet is an autoregressive model. Note that the
prior works we will mainly compare to are as re-
cent as 2022, thus we gain no advantage from our
choice of models.

In our implementation, we apply the NLI classi-
fication head because pre-trained NLI models are
readily available (Nie et al., 2020). We consider the
relation labeled as “entailment” in the NLI datasets
as TI rather than TE because the positive instances
typically require broader contextual knowledge, as
exemplified by the “surfing” instance in Section 1.
Since NLI models are not typically trained on para-
phrase data (PI being an entirely separate task from
NLI), this maintains a sound experimental setup.

Since recognizing TI is a binary task (outputs
are positive or negative), while NLI is a ternary
task (outputs are entailment, neutral, or contradic-
tion), we require a means of converting labeled TI
instances to NLI instances (so that we can fine-tune
NLI models), and NLI outputs to TI outputs (so that
we can evaluate them). We map positive TI labels
to “entailment” NLI labels and negative TI labels

Data #Train. #Valid. #Test Test Pos.%

PIT 11,530 4,142 838 20.88
QQP 384,290 10,000 10,000 50.00
MSRP 3,668 408 1,725 66.49
PAWS QQP 11,988 8,000 677 28.21
PAWS Wiki 49,401 8,000 8,000 44.20
PARADE 7,550 1,275 1,357 47.90

Table 1: Statistics of all six benchmarks, including the
positive rate of the test set (Test Pos.%).

to “neutral” or “contradiction” labels at random.
We map “entailment” NLI output to a positive TI
classification, and “neutral” or “contradiction” to
a negative TI classification. Further details and
discussion can be found in Appendix A.

For the zero-shot application of PI2NLI,
pi2nlizero, we employ two trained NLI models:
RoBERTanli

2 and XLNetnli
3. For the fine-tuned

version, pi2nli, these models undergo fine-tuning
on the NLI dataset derived from the corresponding
PI dataset through dataset adaptation (Section 2.3).
This yields a TI (or, more accurately, NLI) model
adapted for PI following our PI2NLI reduction.

3.2 Setup

Data We test our reduction on six PI benchmarks:
PIT (Xu et al., 2015), QQP (Iyer et al., 2017),
MSRP (Dolan and Brockett, 2005), PAWS QQP
(Zhang et al., 2019), PAWS Wiki (Zhang et al.,
2019), and PARADE (He et al., 2020). We follow
the data processing established by prior work (He
et al., 2020; Peng et al., 2022). Detailed specifica-
tions of each dataset are provided in Table 1.

Baselines We adopt baselines from previous stud-
ies, citing each source for reference. Beyond
referencing prior work, we set new benchmarks
pi by training dedicated PI models using the
same language models as pi2nli, alongside vanilla
RoBERTa and XLNet.4 Furthermore, we ensure
that all classification heads are initialized from
scratch. This facilitates a controlled comparison to
isolate the distinct contributions of the PI2NLI re-
duction from the language models used. We metic-
ulously follow the experimental setups and data
preprocessing detailed in the referenced works, par-
ticularly aligning with the protocol established by
Peng et al. (2022) for hyperparameter tuning.

2roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
3xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli
4roberta-large, xlnet-large-cased
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Backbone Method PIT QQP MSRP PAWS QQP PAWS Wiki PARADE

− Random 27.18 50.31 56.47 35.01 46.94 51.22

BERTbase

Reimers and Gurevych (2019) 52.03±1.44 90.78±0.09 81.67±0.46 66.01±0.45 81.57±0.53 −
Peng et al. (2021) 59.11±0.93 90.41±0.09 81.70±0.17 66.22±0.75 81.14±0.81 −
Peng et al. (2022) 59.19±1.85 90.74±0.06 83.42±0.23 68.85±0.73 82.60±0.18 −

BERTlarge He et al. (2020) 74.60 87.70 89.30 − 93.30 70.90

RoBERTabase
Reimers and Gurevych (2019) 52.67±2.75 90.79±0.09 81.69±0.53 67.35±0.97 81.42±0.93 −
Peng et al. (2022) 59.50±2.74 90.76±0.03 83.22±0.46 69.68±0.72 82.87±0.35 −

RoBERTalarge pi (Liu et al., 2019) 81.20±0.89 91.66±0.22 91.17±0.15 88.92±1.09 94.05±0.22 71.10±7.18

XLNetlarge pi (Yang et al., 2019) 56.39±32.39 73.19±40.92 87.51±4.36 89.83±1.24 74.91±41.88 59.02±32.82

RoBERTanli

pi (Nie et al., 2020) 79.64±1.72 91.62±0.28 91.48±0.68 90.06±1.81 93.89±0.22 74.65±0.64

pi2nlizero (ours) 10.70 53.03 35.92 61.36 71.40 27.00
pi2nli (ours) 83.64±1.44 92.27±0.14 92.38±0.30 88.67±1.84 93.87±0.18 75.04±0.85

XLNetnli

pi (Nie et al., 2020) 78.80±0.82 91.27±0.30 91.00±0.63 89.68±0.38 93.66±0.24 73.97±0.21

pi2nlizero (ours) 18.46 60.28 50.38 56.00 69.97 33.74
pi2nli (ours) 82.07±1.31 91.95±0.20 91.41±0.40 87.55±1.26 93.90±0.35 74.24±0.75

Table 2: F1 scores (%) of PI2NLI in zero-shot (pi2nlizero) and fine-tuned (pi2nli) settings, compared with the
Random and pi baselines we implemented, as well as prior methods cited. Scores highlighted in bold signify the
best performance with a p-value < 0.005, denoting high statistical significance.

Metrics To address the inherent class imbalance
in most datasets and follow prior work (Peng et al.,
2022), we use the F1 score as our primary evalua-
tion metric. We run each method on each dataset
five times, using each integer from 0 to 4 as a ran-
dom seed, and report the average F1 score.

3.3 Results
We present our results in Table 2.

Zero-shot The zero-shot performance of PI2NLI
is erratic, with highly variable F1 scores across
datasets. Indeed, pi2nlizero outperforms the ran-
dom baseline on only half of the datasets. Our
analysis reveals that this is not indicative of a flaw
in our PI2NLI reduction but rather due to inherent
flaws in the PI benchmarks. Specifically, the an-
notations in these datasets do not strictly conform
to the criteria imposed by our hypothesis. Table 3
highlights instances where paraphrasing-induced
information loss disrupts mutual TI, leading to dis-
crepancies between the original PI labels (YPI) and
the outputs (ŶPI) derived from the PI2NLI hypoth-
esis. In essence, our results suggest that PI2NLI
is able to identify and rectify inconsistencies in
PI benchmarks. Such inconsistencies also sug-
gest that context information essentially represents
the dataset-specific distribution in practice: a para-
phrase identified in one dataset might not necessar-
ily be considered a valid paraphrase in the other.
Taken together, these findings strongly suggests the
need for a dataset adaptation procedure, to prepare
the model for the unique properties of each dataset.

Fine-tuning Contrariwise, the fine-tuned version
of our PI2NLI reduction yields consistently high F1
scores, outperforming the reported results obtained
by prior work on all six datasets. In particular,
the F1 score of the RoBERTalarge-based PI2NLI
implementation increases from 10.70 to 83.64 on
the PIT dataset. Notably, our top performances
of 92.27 on QQP and 75.04 on PARADE also sur-
pass the 89.6 (Peng et al., 2023b) and 74.06 (Bai
et al., 2023) reported by the latest work respec-
tively. This demonstrates that our dataset adapta-
tion procedure successfully empowers NLI models
to adapt to the peculiarities of various PI datasets
and to yield state-of-the-art results. Moreover, our
experiments show that PI2NLI consistently outper-
forms dedicated PI models using the same underly-
ing language models on four of six datasets. This
controlled experiment therefore confirms that the
performance gains achieved can be attributed to
our PI2NLI reduction, rather than other factors like
the differing model capacities.

Pre-training Another critical observation is that
pre-training5 on additional NLI data leads to better
and more stable fine-tuned performance on PI tasks.
This observation is especially evident when tran-
sitioning pi from XLNetlarge to XLNetnli. While
it is a common belief that pre-training on addi-
tional tasks (e.g., NLI) could inherently improve
performance on one certain task (e.g., PI), this is

5We regard “pre-training” as any foundational training
conducted prior to our task-specific fine-tuning in this work.

136



Input S1 |= S2 S2 |= S1 ŶPI YPI

S1: The district also sent letters yesterday informing parents of the situation .
T T T T

S2: Parents received letters informing them of the possible contamination yesterday .

S1: Two kids from Michigan are in today ’s third round .
F F F F

S2: Both will compete in today ’s third round , which is all oral examination .

S1: Pacific Northwest has more than 800 employees , and Wells Fargo has 2,400 in Washington .
T F F T

S2: It has 800 employees , compared with Wells Fargo ’s 2,400 .

S1: Six Democrats are vying to succeed Jacques and have qualified for the Feb. 3 primary ballot .
F T F T

S2: Six Democrats and two Republicans are running for her seat and have qualified for the Feb. 3 primary ballot .

Table 3: Four PI instances that differ in the detected entailment direction. Although all eight individual TI outputs
are arguably correct, the last two instances are counted as false negatives.

PIT QQP MSRP PAWS QQP PAWS Wiki PARADE0
30
60
90

(a) PI2NLI Zero-shot

PIT QQP MSRP PAWS QQP PAWS Wiki PARADE0
30
60
90

(b) PI2NLI Fine-tuned

Positive Accuracy Negative Accuracy

Figure 2: The results of (a) pi2nlizero and (b) pi2nli
using RoBERTanli in Table 2, separated into positive
and negative accuracy.

not always a given. Several factors could poten-
tially lead to a negative impact after such additional
pre-training. These include domain mismatches,
biases inherent in the pre-training data, and the phe-
nomenon of catastrophic forgetting (McCloskey
and Cohen, 1989). Following NLI pre-training, the
improved performance of PI serves as a positive
indicator. They support our hypothesis of a closely
related and synergistic relationship between PI and
NLI. This synergy is not automatic but is indica-
tive of the effective transfer of relevant skills and
knowledge from NLI to PI tasks.

Boundary In Figure 2, we split the results into
positive and negative accuracy. In (a), pi2nlizero
tends to have relatively higher negative accuracy,
leading to a lower likelihood of classifying sen-
tences as paraphrases. In (b), both positive and
negative accuracy of pi2nli increase and become
more balanced. This supports our earlier findings
that, in order to perform better in the PI task, NLI
models can correct their decision boundaries after
fine-tuning. We view this adjustment as the process
of how models learn the context inherent in each
PI dataset.

PAWS Our error analysis reveals that the results
of pi2nli on PAWS QQP and PAWS Wiki are due to
the presence of adversarial examples (Zhang et al.,
2019). This becomes particularly evident when
comparing the QQP results with those of PAWS
QQP, as both derive from the same source. These
PAWS datasets are augmented with paraphrase ad-
versaries to offer refined versions of the original
datasets, presenting a challenge for models to pre-
dict the correct outcomes. Applying PI2NLI re-
quires an NLI model to predict the TI relation in
each direction. Therefore, the impact of the para-
phrase adversaries becomes more apparent due to
error accumulation from making two predictions.

4 Conclusion

We have presented a novel theoretical and empir-
ical study of the relationship between two impor-
tant semantic tasks, PI and NLI, a topic that has
remained largely unexplored. Our experiments pro-
vide strong evidence that our innovative PI2NLI
reduction, combined with fine-tuning on the NLI
data facilitated by our dataset adaptation procedure,
yields substantial F1 improvements on the PI task,
outperforming dedicated PI models on benchmark
PI datasets. The variable outcomes observed when
applying PI2NLI in a zero-shot setting also offer
insights into the existing limitations of the current
PI datasets. In addition to advancing the state of
the art, our findings offer valuable insights into the
relation between PI and NLI, and set the stage for
further investigation.

Limitations

While our work has made significant strides in un-
derstanding the four semantic relations, it is not
without its limitations.

Firstly, our zero-shot results suggest mismatches
between our theoretical proposition and existing
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PI benchmarks. These benchmarks may not ade-
quately capture the bidirectional inference relation
integral to genuine paraphrase identification.

Secondly, our study focuses on the application of
NLI models in solving PI tasks through the PI2NLI
reduction, but there are still avenues left to explore.
For instance, augmenting the PI dataset with an
NLI one could potentially yield new insights.

Finally, our study has been NLI-centric so far, al-
lowing us to delve deeply into the potential of NLI
models in PI tasks. However, there is an opportu-
nity for future research to explore the relationship
from a PI-centric perspective. This could include
investigating the capability of PI models in solving
NLI tasks. A more balanced exploration would
provide a more comprehensive understanding of
the four semantic relations.
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A Dataset Adaptation

The alignment of PI data with NLI data starts with
converting PI data to NLI format, as outlined in
Section 2.3. While converting positive PI instances
to positive NLI instances is straightforward, that
for negative NLI instances is not. A negative PI in-
stance is transformed into a negative NLI instance
in one direction. When fine-tuning the NLI model,
both “contradiction” and “neutral” are used to rep-
resent these negative NLI instances. In this context,
a FALSE label is randomly assigned as either “con-
tradiction” or “neutral” in NLI. This is justified in
the context of our work because both labels can
align with a negative TI relation.

Determining the precise TI direction and corre-
sponding NLI class without additional resources
or explicit human judgment presents a significant
challenge. Hence, we adopted random sampling
as a practical solution in our research. However,
we recognize that further refining this aspect, such
as using a pre-trained NLI model for more gran-
ular annotation of negative NLI instances, could
enhance the performance of PI2NLI. We believe
this represents a promising direction for future re-
search.

B Training

The AdamW optimizer (Loshchilov and Hutter,
2019) is employed with an initial learning rate of
1e-5 and a batch size of 32. We tune the learn-
ing rate within the range of [1e-5, 2e-5, 5e-5] and
choose the batch size to optimize the GPU mem-
ory utilization on a single Nvidia Tesla V100. To
prevent overfitting, we adopt early stopping on
the F1 score of validation for 6 epochs (Prechelt,
1998). All implementations are executed using Py-
Torch (Paszke et al., 2019), with pre-trained models
sourced from the HuggingFace repository (Wolf
et al., 2020).

In our implementation, we transitioned from a
standard PI pipeline consistent with established
practices in existing literature (Peng et al., 2022).
to our PI2NLI. This strategic shift was executed
with an emphasis on ensuring fairness and com-
parability across tests. Thus, our setup may even
slightly favor the PI baselines. While more precise
tuning of training configurations might enhance
the performance of PI2NLI, our primary focus has
been on validating our hypothesis. Our future work
will explore optimizing these configurations to fur-
ther improve performance.

C Data

The Paraphrase and Semantic Similarity in Twitter
(PIT) dataset is sourced from Twitter’s trending
service and annotated using Amazon Mechanical
Turk (Xu et al., 2015). The labels range from 0 to
5. We follow the suggested binary data processing
where labels 4 and 5 indicate a paraphrase, and
labels 0 through 2 do not.6

The Quora Question Pairs (QQP) dataset orig-
inates from the question-and-answer platform
Quora, consisting of question pairs annotated for
potential duplicity (Iyer et al., 2017). The dataset
labels are binary, indicating whether question pairs
are duplicates (TRUE) or not (FALSE).7

The Microsoft Research Paraphrase Corpus
(MSRP) is derived from sentence pairs generated
by clustering news articles using heuristic extrac-
tion and an SVM classifier, with human annota-
tions provided (Dolan and Brockett, 2005). For
this study, we adhere to the GLUE benchmark stan-
dards for processing and splitting the data (Wang
et al., 2018).8

The PARAphrase identification based on Do-
main knowledgE (PARADE) dataset is tailored for
PI in computer science, requiring in-depth domain
knowledge (He et al., 2020). It challenges models
to identify paraphrases that, despite minimal lexical
and syntactic overlap, are semantically equivalent
due to the specialized context of computer science.
The dataset offers annotations in both four-class
and binary formats, provided by annotators with
domain expertise.9 In this work, we use binary
labels to maintain consistency with prior studies.

The Paraphrase Adversaries from Word Scram-
bling (PAWS) benchmark, including PAWS QQP
and PAWS Wiki, is proposed to test models to dis-
cern semantic relationships despite superficial lexi-
cal similarities (Zhang et al., 2019). These datasets
utilize word scrambling and back-translation to
create adversarial examples that, while sharing
high lexical overlap, differ significantly in mean-
ing. PAWS QQP draws questions from the QQP
corpus and PAWS Wiki is based on sentences from
Wikipedia.10 Labels are provided in binary for-
mat, and we follow the standard data processing
protocols as originally released.11

6https://github.com/cocoxu/SemEval-PIT2015
7https://huggingface.co/datasets/quora
8https://huggingface.co/datasets/nyu-mll/glue
9https://github.com/heyunh2015/PARADE_dataset

10https://dumps.wikimedia.org/
11https://github.com/google-research-datasets/paws
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Abstract

Emotion identification and polarity classifica-
tion seek to determine the sentiment expressed
by a writer. Sentiment lexicons that provide
classifications at the word level fail to distin-
guish between different senses of polysemous
words. To address this problem, we propose a
translation-based method for labeling each indi-
vidual lexical concept and word sense. Specifi-
cally, we translate synsets into 20 different lan-
guages and verify the sentiment of these transla-
tions in multilingual sentiment lexicons. By ap-
plying our method to all WordNet synsets, we
produce SentiSynset, a synset-level sentiment
resource containing 12,429 emotional synsets
and 15,567 polar synsets, which is significantly
larger than previous resources. Experimental
evaluation shows that our method outperforms
prior automated methods that classify word
senses, in addition to outperforming ChatGPT.
We make the resulting resource publicly avail-
able on GitHub.

1 Introduction

Emotion identification is the semantic task of ana-
lyzing a piece of text to identify a set of underlying
emotions from a predefined inventory (de Albornoz
et al., 2012). Polarity classification is the closely
related task of determining the polarity of a text,
which can be positive, negative, or neutral (Pang
and Lee, 2004; Turney, 2002). These two tasks are
variations on sentiment analysis, the extraction of
sentiment that a writer expresses toward some ob-
ject (Jurafsky and Martin, 2009). Following Kakko-
nen and Galić Kakkonen (2011), we refer to a text,
a word token, or a lexical concept as sentimental
if it is associated with any emotion or non-neutral
polarity.

The scope of sentiment analysis can be a single
word (Pennebaker et al., 2001; Mohammad and
Turney, 2010, 2013), a sentence (Abdul-Mageed
and Ungar, 2017; Sosea and Caragea, 2020), or

longer texts such as Twitter posts and customer
reviews (Liew and Turtle, 2016; Dini and Bittar,
2016; Hu and Liu, 2004). In this paper, we focus
on sense-level sentiment; knowing the sentiment of
the individual words in a text can help determine
its overall sentiment.

Emotion identification is more informative than
polarity classification, but it is also more subjective
in the sense that we would expect more disagree-
ment among annotators. For example, determining
that the word murder has a negative polarity is
more objective than deciding which combination
of emotions, such as anger, disgust, fear, and sad-
ness, best relate to the word. This subjectivity is
only heightened by the lack of consensus on the
set of basic human emotions. Researchers have
proposed inventories of six (Ekman, 1992), eight
(Plutchik, 1962), or more fundamental emotions.
Therefore, while we explore both tasks, we place
greater emphasis on polarity classification.

Since many emotion-bearing words are polyse-
mous, we focus our attention on word senses and
lexical concepts. Senses are associated with one
specific meaning of a word, so classifying senti-
ments at the level of senses avoids the ambiguity
that arises from words having multiple meanings.
In WordNet (Miller, 1995), sets of words that ex-
press the same concept are grouped together in
synsets, each uniquely corresponding to a single
concept. For example, the synset that contains the
words sadness, sorrow, and sorrowfulness corre-
sponds to the concept which is defined as “the state
of being sad”. Synsets in WordNet are connected
via various relations. A word can convey different
sentiments depending on its sense in a given con-
text; we assume that the sentiment associated with
a specific sense/synset/concept is fixed. While it is
true that the sentiment of a sense can too change
depending on the context in which it is used, this
ambiguity is much less prevalent among senses
than it is among words. Thus, by labeling a synset,
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we provide a single emotional label for all word
senses in the synset.

Furthermore, we hypothesize that the sentiment
of a given concept is likely to be the same in other
languages. For example, the concept mentioned
above is also expressed by the Spanish word tris-
teza and the Yoruba word ibanuje. We test this
hypothesis by developing methods that classify En-
glish word senses by leveraging multilingual trans-
lations. Conversely, we leverage English sentiment
labels for other languages.

In this paper, we outline the development of an
automatic method that leverages multilinguality to
identify sentimental concepts. Unlike existing re-
sources that were constructed by expanding a core
of manually-annotated synsets, we propose a fully
automatic method that can provide labels for a sig-
nificantly larger number of synsets. Our method
achieves a precision of 96.0% and 92.0% on iden-
tifying emotional and polar synsets, respectively.
Of those, a correct emotional label is assigned with
an accuracy of 84.3%, and a correct polarity label
is assigned with an accuracy of 95.8%. The result-
ing resource, which we call SentiSynset, contains
12,429 emotional and 15,567 polar synset labels.
When used in conjunction with word sense disam-
biguation techniques, the resource could be useful
for the downstream application of sentiment anal-
ysis at the level of sentences and documents. Sen-
tiSynset is publicly available on GitHub, together
with our code.1

2 Related Work

In this section, we provide an overview of the re-
lated work on emotion identification and polarity
classification at the synset level. Our focus is on the
resources based on the Princeton WordNet (Miller,
1995), which consists of 117,659 synsets, each
corresponding to a specific concept defined by its
gloss.

Emotion identification WordNet-Affect (Strap-
parava and Valitutti, 2004; Strapparava et al., 2006)
and SentiSense (de Albornoz et al., 2012; Carrillo-
de Albornoz and Plaza, 2013) associate a subset
of WordNet synsets with emotional classifications.
WordNet-Affect contains 2,874 synsets, each asso-
ciated with one or more of 32 emotions. It was
constructed by first manually annotating a rela-
tively small “core” of emotional synsets, which

1https://github.com/UAlberta-NLP/SentiSynset

was later expanded by leveraging inter-synset rela-
tions in WordNet. SentiSense encompasses 2,190
synsets labeled with one of 14 emotional categories.
While its development is similar to that of WordNet-
Affect, they differ in their specific sets of manually
annotated synsets and the WordNet relations cho-
sen for extension.

WordNet-Affect and SentiSense are built upon
emotional inventories that are not only mutually
incompatible but also rooted in separate psycho-
logical theories of emotion. This misalignment
complicates data integration, consistency mainte-
nance, and interpretation. Meanwhile, reconciling
the two resources by mapping their distinct emo-
tion inventories remains problematic. For exam-
ple, senses of the words abashed and upset are
both identified with anxiety in WordNet-Affect, but
are respectively labeled with disgust and anger
in SentiSense; however, senses of the words em-
barrassment and nausea are both identified with
disgust in SentiSense, but are respectively labeled
with shame and general-dislike in WordNet-Affect.
These discrepancies highlight the inherent subjec-
tivity in emotion identification, thus motivating our
prioritization of the more objective task of polarity
classification. Additionally, both resources provide
limited coverage of WordNet of less than 3,000
synsets each; this limited coverage arises from their
semi-automatic construction. We aim to address
this problem by developing a scalable automatic
method that can classify a much larger proportion
of WordNet synsets.

Polarity classification SentiWordNet (Esuli and
Sebastiani, 2006; Baccianella et al., 2010) stands
as a prominent resource for polarity classification.
It assigns each synset a positive, negative, and ob-
jective score, with values ranging from 0.0 to 1.0,
summing up to 1 across the three categories. These
scores are produced by a committee of classifiers
which leverage synset glosses. Since the method is
entirely automated, polarity scores are assigned to
every WordNet synset. Contrariwise, our method,
while automated, is focused on precision, rather
than coverage; we do not seek to label every synset,
but rather aim to label as many synsets as possible
with high confidence.

ML-SentiCon (Cruz et al., 2014) attains polarity
labels for synsets using a variation of the method
used to create SentiWordNet. As such, the resource
has the same drawbacks as SentiWordNet. In addi-
tion to the synset labels, ML-Senticon also contains
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lemma-level lexicons for English, Spanish, Catalan,
Basque, and Galician that were developed by aver-
aging the polarity values of all synsets belonging
to a lemma. While these are useful lexicons, par-
ticularly because of the inclusion of low-resource
languages, assigning labels to lemmas introduces
issues with polysemy.

Multilinguality Chen and Skiena (2014) lever-
age multilingual information to develop word-level
polarity lexicons for 136 major world languages.
They create graphs connecting words from these
languages, considering both cross-language links,
such as translations and transliterations, and intra-
language links, such as synonyms and antonyms.
They propagate English word-level polarity labels
across the graphs to create lexicons for the non-
English languages. While these automatically de-
veloped lexicons have high levels of agreement
with human-annotated lexicons, they still retain the
ambiguity that arises when sentiment labels are
assigned to words rather than senses.

Applications of Synset Lexicons Synset-level
lexicons can be used for sentiment analysis at the
broader levels of sentences and documents (Hung
and Chen, 2016; Pamungkas and Putri, 2017).
These works find that using synset lexicons in
conjunction with word sense disambiguation tech-
niques for English texts results in more precise
sentiment predictions than those achieved using
word-level lexicons. Similar improvements were
observed using synset lexicons to classify non-
English text as well (Denecke, 2008). Thus, the
resource we develop can be used with these ex-
isting methods to perform downstream sentiment
analysis tasks in multilingual settings.

3 Methodology

Our method to create a large set of sentiment-
labeled synsets (SentiSynset) consists of two main
stages. The first stage is to identify a set of emo-
tional or polar synsets that we refer to as the core.
In the second stage, this core is extended via Word-
Net relations that preserve sentiment. Our approach
differs from prior works in that we create our core
automatically, rather than manually. While assign-
ing labels, we follow the precedent established in
previously mentioned related works to map a synset
to only one sentiment label.

3.1 Leveraging Word-Level Lexicons

To automatically develop the core of SentiSynset,
we leverage existing multilingual sentiment lex-
icons created for sentiment analysis tasks at the
word level. Sentiment labels for polysemous words
may be inaccurate, due to different senses having
different associated sentiments. We aim to resolve
this ambiguity by leveraging translations, based on
the observation that different senses of a word may
translate differently. For example, lick translates
into three distinct Dutch words, ranselen, likken,
and oplossen, depending on the sense in which it
is used. The sentiment labels associated with each
Dutch translation can therefore be used to deter-
mine the appropriate label for each sense of lick.

While our method is bootstrapped from emotion
lexicons, we make no assumptions about the lan-
guages or emotion inventories. Thus, our method
is flexible and can be applied to other lexicons,
potentially with larger vocabularies, or pertaining
to specific domains. While emotional inventories
vary, polarity labels are positive or negative.

Translating polysemous words into another lan-
guage is not guaranteed to resolve all ambigui-
ties that exist in word-level lexicons. For example,
the two senses of star meaning “a celestial body
of hot gases that radiates energy” and “someone
who is dazzlingly skilled in a field” (definitions
from WordNet) can both be translated as estrella
in Spanish. This phenomenon is particularly preva-
lent among closely related languages; it is therefore
advisable to perform translations into multiple lan-
guages with varying levels of similarity to English.

3.2 Developing the Core

Our method is designed to generate a core of high-
precision synsets, which contain multiple words
that are known to express a given sentiment. When
labeling a synset, we consider the number of lan-
guages that contain sentimental lemmas belonging
to the synset. For a lemma in a language other
than English to be considered sentimental, it must
share a sentiment label with an English lemma in
the synset. For example, since the Indonesian lem-
mas in Figure 1 are associated with a disjoint set of
emotions and polarity with respect to the English
lemmas, they are disregarded when processing this
synset.

To provide an emotional label (from a given emo-
tion inventory) or polarity label (positive or neg-
ative), our method takes in a synset and finds all

144



Emotion Prediction
Confidence Score: 0.71
Predicted Emotion: fear

English Synset
Gloss: marked by intense 
convictions; inclined to react violently
Part of Speech: adjective
Lemmas and Associated Sentiments:  
● fierce: {anger, fear}, {negative}
● vehement: {anger, fear}, {negative}  
● violent: {anger, surprise}, {negative}

Translation Source

Translations
Finnish: {hurja, kiihkeä}
French: {véhément}
German: {vehement, heftig}
Indonesian: {kuat, hebat}
Russian: {рьяный, неистовый}
Slovenian: {silovit}
Spanish: {violento, feroz}

Multilingual Sentiment 
Lexicons

Polarity Prediction
Confidence Score: 0.71
Predicted Polarity: negative

Language Emotions Polarities

Finnish {fear, anger} {negative}

French {fear, anger} {negative}

German {fear, anger} {negative}

Indonesian {joy, trust} {positive}

Russian {fear, surprise} {negative}

Slovenian {} {}

Spanish {fear, anger} {negative}

Figure 1: Illustration of performing emotion identification and polarity classification on a synset.

corresponding lemmas in the selected languages.
We then determine which sentiments are associated
with these lemmas using multilingual word-level
lexicons. We finally associate the synset with the
sentiment class which is associated with the high-
est number of translations. For example, since the
synset in Figure 1 is associated with fear in 5 lan-
guages, anger in 4 languages, and surprise in 1
language, the synset is labeled with fear. Through
a similar process, the synset is also associated with
a negative polarity.

We calculate the confidence score of each can-
didate synset as the ratio of languages with senti-
mental lemmas to the total number of languages
for which the synset has translations. For exam-
ple, since the synset in Figure 1 has translations in
seven languages, and lemmas that are considered
emotional in five of the languages, it receives a
confidence score of 5/7 ≈ 0.71.

Since each synset is assigned a single label, we
proceed to break any ties that exist between senti-
ments that share the highest number of associated
languages. For emotion identification, this is done
by finding sentence embeddings for the gloss of the
target synset and gloss for the most frequent sense
of each of the top emotions. The synset is identified
with the single emotion that has the most similar
sentence embedding. For polarity identification,
when a synset is associated with positive and nega-
tive polarities in the same number of languages, a
similar process using sentence embeddings is ap-

plied to break the tie. We perform a comparison
to this embedding-based approach as a baseline in
Section 5.2.

3.3 Extending the Core

To expand the set of core synsets, we leverage
WordNet’s graph-based structure, which connects
synsets through both semantic and lexical rela-
tions. Specifically, we propagate sentiment labels
from the core to neighboring synsets via sentiment-
preserving relations. If a synset is related to mul-
tiple core synsets with differing sentiments, we
resolve this conflict with the embedding-based tie-
breaking algorithm described in Section 3.2. In
order to maintain high precision, we do not apply
this procedure recursively or transitively.

We adopt the comprehensive set of sentiment-
preserving relations used by WordNet-Affect,
which differs slightly from the one used by Sen-
tiSense, and contains the following WordNet rela-
tions: antonym, similar to, derived from, pertains
to, attribute, and also-sees. For example, the synset
in Figure 1 is classified as having negative polarity,
and is associated with the emotion of fear. The
synset containing the adverbial sense of fiercely is
related to this synset by the WordNet pertains to re-
lation, and so is also labeled with negative polarity
and the emotion of fear.

The relation of antonymy is unique in that it con-
nects synsets that convey the opposite rather than
identical sentiments. We follow Plutchik (1962)
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by identifying the following pairs of antonymic
emotions: anger/fear, anticipation/surprise, dis-
gust/trust, and joy/sadness. If a core synset is la-
beled with one of these sentiments, its antonyms
are labeled with the opposite sentiment. Similarly,
if a synset is labeled with positive or negative po-
larity, its antonyms are labeled with the opposite.

4 Experimental Setup

In this section, we provide details of our implemen-
tation and the datasets that we use.

4.1 Datasets

The NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010, 2013),
is a word-level sentiment lexicon which contains
14,182 English words tagged with emotional and
polar labels by human annotators. Of those words,
4,454 are tagged with one or more of Plutchik’s
8 fundamental emotions: anger, anticipation, dis-
gust, fear, joy, sadness, surprise, and trust. As
well, 5,543 of these words are tagged with positive
and/or negative polarity. EmoLex was originally
developed in English but has since been translated
into 108 different languages. It is these translations
that we use as our multilingual sentiment lexicons.

To evaluate the quality of SentiSynset, we con-
struct both a validation set and a test set, each
containing 1,000 synsets. Each set includes a ran-
dom sample of 500 synsets from the SentiSense
resource; these constitute the sentimental instances.
Each also includes a random sample of 500 synsets
that have no emotional or polar lemmas according
to EmoLex or the LIWC dictionary (Pennebaker
et al., 2001); these provide non-sentimental in-
stances. We ensure that the validation and test
sets are disjoint.

4.2 Synsets and Translations

The core of SentiSynset is found by applying the
multilingual method described in Section 3.2 to all
117,659 WordNet synsets for the two independent
tasks. We use the NLP library spaCy2 to obtain
sentence embeddings (c.f., Section 3.2).

Our method also requires a way of obtaining,
for each synset, a set of words in various lan-
guages which lexicalize the concept to which
that synset corresponds; for brevity, we refer to
these multilingual terms as translations. We use
translations for WordNet synsets in 20 languages

2https://spacy.io

covered by EmoLex: Chinese, Dutch, Estonian,
Finnish, French, German, Greek, Indonesian, Ko-
rean, Lithuanian, Norwegian, Polish, Romanian,
Russian, Slovak, Slovenian, Spanish, Swedish,
Turkish, and Ukrainian.

During development, we considered two trans-
lation sources. The first set of translations comes
from the multilingual lexical database BabelNet
(Navigli and Ponzetto, 2010). BabelNet was built
by integrating various large lexical databases such
as WordNet, Wikipedia, and Open Multilingual
WordNet among others, alongside machine transla-
tion. We make use of BabelNet version 5.1, which
covers over 500 languages; however, it does not
contain translations for every synset in every lan-
guage. On average, each of the selected 20 lan-
guages has BabelNet translations for 70.7% of all
WordNet synsets. WordNet synsets have Babel-
Net translations in 14 of the selected languages on
average, and 99.9% of all WordNet synsets have
a BabelNet translation in at least one of the 20
selected languages.

The second set of translations comes from
Google Translate (GT). To obtain sense-accurate
translations, we translate an example sentence as-
sociated with the synset. WordNet provides such
sentences for some synsets. For synsets without
examples, we construct an example using the Word-
Net gloss. For instance, for the synset in Figure 1,
we would construct the following sentence: “to be
fierce is to be marked by intense convictions; in-
clined to react violently.” Note that the templates
used to construct sentences differ slightly depend-
ing on the synset’s part of speech. We compile all
the English sentences together and use the docu-
ment translator on the GT online interface to attain
the sentence translations. We then use the align-
ment system SimAlign (Jalili Sabet et al., 2020) to
find the translation of the target word in the trans-
lated sentences. GT provides translations for every
synset in every language, but not all translations
are correct.

After obtaining translations from both BabelNet
and GT, we lemmatize the translations using the
Simplemma3 library This step is skipped for lan-
guages such as Chinese and Korean where lemma-
tization is not applicable.

We consider four approaches to obtaining synset
translations: GT alone, BabelNet alone, BabelNet
supplemented with GT (i.e., BabelNet is used if

3https://github.com/adbar/simplemma
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Figure 2: Precision-recall curve across various transla-
tion sources. Each curve is marked with a point corre-
sponding to a high-confidence threshold of 0.70.

translations exist for a synset, otherwise GT is
used), and the union of BabelNet and GT. On the
validation set, we calculate the 11-point interpo-
lated average precision (11-PIAP) (Manning et al.,
2008) for each of these approaches and find that
BabelNet alone results in the highest 11-PIAP of
83.9%, while GT, BabelNet Supplemented, and
the union of BabelNet and GT result in the 11-
PIAP’s of 74.5%, 82.8% and 70.5% respectively.
We also considered the precision and recall scores
that the four translation approaches achieve on the
validation set in the task of detecting emotional
synsets (see Figure 2). Therefore, we use the best-
performing method of BabelNet alone as the source
of synset translations.

5 Results

In this section, we evaluate our method’s perfor-
mance in the desired tasks and discuss the newly
created resource.

5.1 Core Synsets

To determine the confidence threshold of the
method, we look at the experimental results of us-
ing BabelNet translations on the validation set (as
shown in Figure 2). Since we want high-precision
predictions, we choose the confidence threshold
with a precision above 0.95 which has the highest
recall. We find that a confidence threshold of 0.70
satisfies this condition, and thus all synsets that
are predicted to be sentimental with a confidence
score of 0.70 or above are added to the core of
SentiSynset.

With the high-confidence threshold set, running

Sentiment #Synsets

Anger 1891
Anticipation 1192
Disgust 1078
Fear 1939
Joy 1048
Sadness 1877
Surprise 391
Trust 3013

Positive 7081
Negative 8486

Table 1: Number of synsets associated with different
sentiments in SentiSynset.

the method on all WordNet synsets for the tasks
of emotion identification and polarity classification
results in a core containing 6,056 synsets that are
predicted to be emotional and a core containing
8,519 synsets that are predicted to be polar. After
extending these cores through the use of sentiment-
preserving WordNet relations, SentiSynset contains
a total of 12,429 emotional synsets and a total of
15,567 polar synsets. Information regarding the
distribution of sentiments and parts of speech in
these synset sets is shown in Tables 1 and 2.

5.2 Emotion Identification

To evaluate the quality of our newly constructed
emotion resource, we measure the proportion of
correct sentiment labels. We consider synsets in
the intersection of our emotion resource and the
test set. If a synset labeled as sentimental is in the
intersection, we consider this a true positive. If a
non-sentimental synset is in the intersection, we
consider this a false positive. Using these classifica-
tions, we find that our method achieves a precision
of 96.0% and a recall of 57.2% in the task of de-
tecting emotional synsets.

To determine the accuracy of the emotion labels
given by our method, three native English-speaking
authors of this paper independently annotated all
true positive synsets in the test set with one of the 8
fundamental emotions. The annotators achieved an
average pairwise Cohen’s kappa coefficient of 0.60,
suggesting substantial agreement between the anno-
tations. Similarly, at least 2 annotators agreed on a
label for 92.3% of the synsets, and all 3 annotators
agreed on a label for 53.3% of the synsets. For the
7.7% of synsets that all three annotators disagreed
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POS Emotional Polar

Adjective 4531 5879
Adverb 144 237
Noun 5301 6464
Verb 2453 2987

Total 12,429 15,567

Table 2: Number of synsets associated with different
parts of speech (POS) in SentiSynset.

on, the annotators were asked to reconsider their la-
bels after being shown the emotions assigned to the
synsets by the other annotators. Once all synsets
had a single emotion that the majority of annotators
agreed upon, these emotions were taken as the true
labels.

We compare our method to several approaches.
As a baseline, we find all emotions related to the
English lemmas of a synset in EmoLex, then la-
bel a synset with a random emotion from this set.
Sentence Embeddings takes these same emotions
found in the English lexicon, computes sentence
embeddings for the gloss of the target synset and
for the gloss of the most frequent sense of each
of these emotions, and labels the synset with the
most similar emotion. We also prompt GPT-3.5
(Brown et al., 2020) to provide emotional labels
for the synsets based on gloss and the lemmas. Fi-
nally, we classify synsets with the emotion labels
assigned by our multilingual method. The accu-
racy of these different approaches can be found in
Table 3, and we find that our method achieves the
best performance.

No comparisons are made between the emotion
labels assigned by our method and those of an exist-
ing resource because of the incongruent emotional
inventories used between different synset-level re-
sources; neither WordNet-Affect nor SentiSense
uses Plutchik’s 8 fundamental emotions as we do.

5.3 Polarity Classification

We evaluate the quality of our newly constructed
polarity resource through a similar process used to
evaluate our performance in emotion identification.
When comparing the intersection of the test set
and our polarity resource, we find that our method
achieves a precision of 92.0% and a recall of 67.0%
in the task of detecting polar synsets. We com-
pare our polarity resource to SentiWordNet. Since
SentiWordNet assigns synsets polarity scores in

Method Emotion Polarity

Random EmoLex 34.5 82.0
Sentence Embeddings 41.5 85.4
SentiWordNet – 91.3
ChatGPT 79.0 93.1

Ours 82.4 95.8

Table 3: Accuracy of our method versus other ap-
proaches on the test set (in %).

the range [0.0, 1.0], we assign synsets a single po-
larity label based on these scores. We do so by
associating a synset with the polarity category (pos-
itive, negative, or objective) with the highest score.
For the intersection between the test set and polar
SentiWordNet synsets, SentiWordNet achieves a
precision of 91.6% and recall of 41.6%.

To determine the accuracy of the polarity labels
given by different methods, we convert the emo-
tional labels given to the synsets by SentiSense to
polarity labels. The emotions of calmness, hope,
joy, like, and love are associated with positive po-
larity, while anger, despair, disgust, fear, hate, and
sadness are associated with negative polarity. We
disregard synsets associated with the emotions of
ambiguity, anticipation, or surprise since synsets
labeled with these emotions are not strongly corre-
lated to either polarity. These emotion-to-polarity
mappings, alongside equivalent polarity labels, are
considered the true positives.

The methods that we compare for polarity clas-
sification are similar to those for emotion identi-
fication. Our baseline is to assign synsets with
a random polarity that is associated with the En-
glish lemmas in EmoLex. We also compare to
Sentence Embeddings, SentiWordNet, and Chat-
GPT. As shown in the rightmost column of Table 3,
our method again achieves the best performance.

5.4 Polysemous Words

We investigate how well our method can resolve
the ambiguity of polysemous words. To do so, we
identify pairs of synsets in the test set that share a
lemma but have opposite sentiments (polar and non-
polar, emotional and non-emotional). Since our
method focuses on precision over accuracy, we only
consider pairs of synsets that share a polysemous
word when at least one of the synsets is predicted
to be sentimental.

We find 18 pairs of synsets with polar and non-
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polar labels in the test set, and our method provides
correct classifications for both senses with 94.4%
accuracy. The only pair of synsets that the method
fails to correctly classify contains the polar and non-
polar senses of sublime meaning “of high moral or
intellectual value” and to “vaporize and then con-
dense right back again” (WordNet). Our method
identifies both senses as being positive, while this
is only true for the first sense.

Our method is 100.0% accurate on 10 pairs of
synsets with emotional and non-emotional labels
that exist in the test set. For example, given the
senses of plume meaning to “be proud of” and
“(of a bird) to clean with one’s beak” our method
correctly identifies the first one as emotional and
associated with joy, and the second one as non-
emotional.

6 Error Analysis

In this section, we investigate incorrect labels pro-
duced by our method and discuss possible causes
and solutions for such errors.

6.1 Parallel Polysemy

Our method struggles to correctly label concepts
that exhibit parallel polysemy across many of the
selected languages. For example, two nominal
senses of resistance meaning “the action of oppos-
ing something that you disapprove or disagree with”
and “a material’s opposition to the flow of electric
current; measured in ohms” share the same transla-
tion in French (résistance), German (widerstehen),
Polish (opór), and 12 other languages. This causes
the first sentimental sense to be viewed the same
as the second non-sentimental sense, leading to an
incorrect classification.

Although our selected languages do not all come
from the same language family, the majority of
them are European. This relatedness means they
are more susceptible to exhibiting parallel poly-
semy than if we were to use more non-European
languages. However, most non-European lan-
guages have considerably fewer lexical resources
available than European languages, even for widely
spoken non-European languages. For example, Es-
tonian has 1.1 million speakers while Yoruba has
44.0 million speakers (Eberhard et al., 2023); nev-
ertheless, BabelNet has translations available in
Estonian for 6.4 times as many synsets than those
that are available in Yoruba.

If synset translations were more readily avail-

able for languages such as Yoruba or Igbo, parallel
polysemy would present less of a problem. Re-
garding the example of resistance above, the two
senses would be translated to atako and resistance
in Yoruba. In Igbo, the first sense translates to
iguzogide while the second does not translate to
a single word. Thus, translations from either lan-
guage would help disambiguate the sentiment of
the senses.

6.2 EmoLex Errors

The multilingual versions of EmoLex are trans-
lations of the original English EmoLex, so some
translation errors exist in these translated lexicons.
Words are typically translated as their most fre-
quent sense (MFS), which causes issues when the
MFS is non-sentimental. For example, the MFS
of waffle is the non-sentimental nominal sense
meaning “pancake batter baked in a waffle iron.”
However, waffle is considered sentimental in En-
glish Emolex due to the verbal sense meaning to
“pause or hold back in uncertainty or unwilling-
ness” (WordNet). When EmoLex is translated to
other languages, waffle is translated as the non-
sentimental MFS, but retains the sentiments associ-
ated with the verbal sense. Therefore, errors arise
such as the Slovak word vafle being associated with
the emotion of sadness and a negative polarity, de-
spite the word referring strictly to the food item.
These translation errors in EmoLex result in the
MFS of waffle being incorrectly classified as senti-
mental.

6.3 Subjectivity

Other errors arise from the inherently subjective
nature of the given tasks. It is very possible
that one person may view a synset as sentimental,
while another person views the same synset as non-
sentimental. This causes issues when the method
correctly determines which word sense EmoLex
references, but the accuracy of the EmoLex an-
notation itself is debatable. For example, bee is
associated with the emotions of anger and fear in
EmoLex, with this annotation most likely referring
to the MFS of the word meaning “any of numerous
hairy-bodied insects including social and solitary
species” (WordNet). Since the method bases its
classifications on EmoLex, this sense of bee is as-
sociated with fear. However, some people may
feel that this classification is inappropriate, instead
viewing the synset as non-emotional. This oppos-
ing view is supported by the fact that wasp is not
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Language Pair Emotion Polarity

Igbo Yoruba 0.446 0.360
Chinese Igbo 0.410 0.166
Chinese Yoruba 0.390 0.401
Polish Chinese 0.334 0.105
Polish Igbo 0.353 0.354
Polish Yoruba 0.292 0.355

Table 4: Cohen’s kappa coefficient between emotion
and polarity labels for different languages.

associated with any emotions in EmoLex, despite
this term being very similar to bee.

Subjectivity is also influenced by cultural dif-
ferences. While an English-speaking annotator
labeled bee with the negative emotions of anger
and fear in EmoLex, people from other cultures
may associate bees with positive emotions as they
are often considered hard-working creatures. This
contrasting sentiment of the word that exists in En-
glish may be projected onto sentiment lexicons in
other languages because of the virtual hegemony
of English resources.

6.4 Cultural Differences

Our multilingual method hinges upon the idea that
the sentiments associated with synsets tend to be
universal across languages and cultures. However,
the bee example demonstrates that this is not al-
ways the case. We therefore perform a multilingual
analysis to quantify the influence of cultural differ-
ences on synset classifications.

We utilize plWordNet (Maziarz et al., 2016), a
Polish wordnet that contains over 30,000 word
senses that have been manually annotated with
emotion and polarity labels (Zaśko-Zielińska et al.,
2015). Of these labeled synsets, many have map-
pings onto Princeton WordNet, thus allowing us
to investigate the effect of cultural differences on
synset labels. There are 1,729 polar synsets and
1,506 emotional synsets that have sentiment labels
in both our resource and plWordNet. The polarity
and emotional labels have 94.9% and 73.3% agree-
ment, respectively, between the two resources.

Authors of this paper who are native Chinese,
Igbo, Polish, and Yoruba speakers labeled 40 polar
synsets and 60 emotional synsets, which are among
those that plWordNet and SentiSynset disagree on.
The annotators were provided with the lemmas and
glosses of synsets in their native language, with this
information coming from BabelNet when available

and Google Translate when not. For the Polish
annotator, lemmas and glosses for all synsets were
available from plWordNet.

The results of this experiment are shown in Ta-
ble 4. The average Cohen’s Kappa coefficient be-
tween the annotations for Polish and the three other
languages (the last three rows of the table) are 0.326
and 0.271 for emotion and polarity, respectively.
The Cohen’s Kappa coefficient between our Polish
annotator and plWordNet are 0.387 and 0.203 for
emotion and polarity, respectively. Thus, the agree-
ment between our Polish annotator and plWordNet
for these contentious synsets is at a similarly low
level as the agreement between annotators from
different cultures.

7 Conclusion

We have presented a novel method that leverages
multilingual translations to shift the sentimental
classifications of word-level lexicons from words
to synsets. The method is sufficiently general to be
applied to the related yet independent tasks of emo-
tion identification and polarity classification. The
method outperforms existing methods used to auto-
matically construct resources for the task of polar-
ity classification. With our method, we constructed
SentiSynset, which is substantially larger than com-
parable English sentiment resources. The large
number of labeled synsets, and the high precision
of labeling demonstrate the method’s usefulness.
The new resource can be paired with word-sense
disambiguation techniques for the downstream task
of sentiment analysis at the level of sentences or
documents. Since our method is not dependent on
EmoLex, it could also leverage information from
multiple word-level lexicons, which could further
improve the quality and size of SentiSynset.
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Abstract

As generated text becomes more common-
place, it is increasingly important to evaluate
how well-supported such text is by external
knowledge sources. Many approaches for eval-
uating textual support rely on some method
for decomposing text into its individual sub-
claims which are scored against a trusted ref-
erence. We investigate how various meth-
ods of claim decomposition—especially LLM-
based methods—affect the result of an evalu-
ation approach such as the recently proposed
FACTSCORE, finding that it is sensitive to the
decomposition method used. This sensitivity
arises because such metrics attribute overall
textual support to the model that generated the
text even though error can also come from the
metric’s decomposition step. To measure de-
composition quality, we introduce an adapta-
tion of FACTSCORE, which we call DECOMP-
SCORE. We then propose an LLM-based ap-
proach to generating decompositions inspired
by Bertrand Russell’s theory of logical atomism
and neo-Davidsonian semantics and demon-
strate its improved decomposition quality over
previous methods.

1 Introduction

Recent work uses claim decomposition to deter-
mine how well supported a claim is for applica-
tions in factual precision of generated text (Min
et al., 2023), entailment of human generated text
(Kamoi et al., 2023; Chen et al., 2023b), and claim
verification (Chen et al., 2023a; Li et al., 2023; Mil-
bauer et al., 2023; Tang et al., 2024), with similar
ideas going back over a decade (Hickl and Bensley,
2007). In each of these cases, a claim is decom-
posed into natural language subclaims,1 typically
using a large language model (LLM), and each sub-

*Equal contribution
1The terms “atomic fact” and “atomic proposition” are also

used for similar concepts.

     Charles Babbage was a mathematician.
     Charles Babbage was a philosopher.
     Charles Babbage was a food critic.
     Charles Babbage was French.

High coverage, high coherence, high atomicity
(reflects what the sentence is saying)

     Charles Babbage was a mathematician.

Low coverage
(omits claims)

     Charles Babbage was a mathematician.
     Charles Babbage was a philosopher.
     Charles Babbage was an engineer.
     Charles Babbage was a dancer.
     Charles Babbage was a food critic.
     Charles Babbage was French.

Low coherence
(contains unclaimed information)

Charles Babbage was a French 
mathematician, philosopher, and food critic.

✅✅✅✅✅✅❌✅❌

Low atomicity
(doesn’t separate claims enough)

     Charles Babbage was a French mathematician.
     Charles Babbage was a philosopher and food critic.

✅✅✅✅

Figure 1: Modes of claim decomposition. The extent
to which textual support can be determined depends
on how the generated text (yellow box) is decomposed
into its subclaims (white boxes). Higher quality de-
compositions enable more complete identification of
discrepancies between generated text and a reference
(not shown), which consequently increases the reliabil-
ity of the downstream textual support metric. Checks
and Xs denote that the statement is claimed or is not
claimed, respectively, by the generated text.

claim is then scored or aligned to information from
external sources using a task-specific metric.

Claim decompositions with various characteris-
tics are shown in Figure 1. Coverage denotes how
much of the information in the claim is present in
the subclaims, coherence denotes whether the in-
formation in the subclaims accurately reflects what
is stated in the claim, and atomicity denotes how
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separated the information in each subclaim is.
Evaluating subclaims individually, as opposed

to the entire claim at once, we can assign partial
credit to a claim (e.g., for partial support), identify
which parts of the claim differ from reference texts
(such as a retrieved or pre-specified document or
passage), and more easily identify relevant source
material for each part of the claim.2 Claims can
come from human-authored text based on cited doc-
uments (Kamoi et al., 2023; Chen et al., 2023b,c) or
from machine-generated text based on dynamically
provided grounding text or text observed during
pre-training (Min et al., 2023).

Since claim decomposition determines the num-
ber and scope of each evaluated subclaim, any anal-
ysis or resulting metric will be inherently tied to the
decomposition method. Nevertheless, prior work
has left decomposition itself largely untested. How
do different decomposition strategies affect down-
stream analysis? What are their qualitative and
quantitative similarities and differences?

We show that a downstream metric of textual
support such as FACTSCORE (Min et al., 2023)
is sensitive to the decomposition method it uses
(Figure 2). While FACTSCORE aims to measure
the factual precision of generated text, the number
and nature of the subclaims it evaluates from that
text depend on the metric’s claim decomposition
method. The higher the quality of the decompo-
sition method, and the better we understand its
characteristics, the more we can attribute the fac-
tual precision that FACTSCORE aims to measure
to the text generation model rather than to artifacts
of the decomposition.

Finding that the method of claim decomposition
matters, we introduce DECOMPSCORE, an adapta-
tion of FACTSCORE that measures decomposition
quality, an important step in determining the relia-
bility of the downstream metric. DECOMPSCORE

measures the number of subclaims supported by
the original claim that was decomposed. Because
a decomposition with high atomicity and coverage
will have more subclaims than a decomposition that
doesn’t, we then favor the decomposition method
with the greatest DECOMPSCORE, especially when

2For example, separating the claim “Charles Babbage was
a French mathematician” into the atomic subclaims “Charles
Babbage was French” and “Charles Babbage was a mathe-
matician” enables a claim verification system to determine
that the subclaim about his occupation is supported by trusted
reference documents and that the subclaim about his national-
ity is not supported. The non-atomic original claim as written,
however, is not supported.

coupled with qualitative evidence of high atomicity
and coverage.

With a way to compare decomposition methods
in hand, we propose an LLM-based decomposition
approach inspired by Bertrand Russell’s theory of
logical atomism and neo-Davidsonian semantics.
Our approach gives far more subclaims than other
methods while maintaining high coherence with the
claim being decomposed, and thus results in greater
confidence in the entire pipeline for evaluating the
level of textual support.

Our contributions are:

1. Empirical evidence that the method of claim
decomposition affects a downstream metric of
textual support;

2. Quantitative and qualitative comparisons of
claim decomposition methods;

3. A method for claim decomposition inspired
by philosophical and semantic theories that
outperforms previous methods.
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Figure 2: FACTSCORE (macro-averaged across
LMSUBJ) using different decomposition methods. The
same underlying set of documents is assigned different
FACTSCORE values depending on the decomposition
method used.

2 Localized Textual Support

FACTSCORE (Min et al., 2023) and WICE (Kamoi
et al., 2023) are representative examples of current
LLM-based approaches for determining support
for particular claims for different downstream use
cases. Broadly, methods of this type decompose
a claim into its subclaims, evaluate each subclaim
for its level of support based on external sources,
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Name Instruction In-Context Examples

Static Dynamic Sentences Decompositions

DFACTSCORE
“Please breakdown the following sentence into
independent facts:” (Min et al., 2023)

7 1 Min et al. (2023) Min et al. (2023)

DWICE
“Segment the following sentence into individ-
ual facts:” (Kamoi et al., 2023) 6 0 Kamoi et al. (2023) Kamoi et al. (2023)

DChen et al.

“Given the following sentence, tell me what
claims they are making. Please split the sen-
tence as much as possible, but do not include
information not in the sentence:” (Chen et al.,
2023c)

7 1 Min et al. (2023) Min et al. (2023)

DCoNLL-U

“The sentence below is given in CoNLL-U
format. Word lines contain the annotation of
a word/token/node in 10 fields separated by
single tab characters. Sentences consist of one
or more word lines. Please break down the
following sentence given in CoNLL-U format
into independent facts:”

1 1 Min et al. (2023) +
CoNLL-U Parse Min et al. (2023)

DR-ND
“Please decompose the following sentence into
individual facts:”

7 1 Min et al. (2023) Manual (ours)

Table 1: Summary of LLM prompted claim decomposition methods used in this work (method names are prefixed
with D for “decomposer”). The prompt given to the LLM is a concatenation of the instruction, statically and
dynamically selected in-context examples, and the sentence to be decomposed. The in-context decomposition
examples used in our approach (DR-ND) are based on Russellian and neo-Davidsonian theories (§5).

and then aggregate results to give a single score or
label for the entire claim. Since each subclaim is
evaluated, we get a localized view of which parts of
the claim are supported. The more atomic the sub-
claims are, the more precisely we can localize the
information in the claim that differs from a trusted
reference. Since these approaches rely on decom-
position, the better the decomposition method the
more reliable the results.

FACTSCORE (Min et al., 2023) measures factual
precision of model-generated text with respect to
a knowledge source. A generated passage is split
into sentences, which are decomposed into sub-
claims by an LLM. The percentage of subclaims
supported by a retrieved knowledge source (e.g.,
Wikipedia excerpts) is the FACTSCORE for the
passage. FAITHSCORE (Jing et al., 2023) takes
a similar approach for evaluating the outputs of
vision-language models, in which the knowledge
source against which the subclaims are evaluated
is an image. They additionally require that the sub-
claims fit into certain domain-specific categories
such as color and count.

The WICE dataset (Kamoi et al., 2023) con-
tains annotations for whether subclaims in human-
written text are supported, partially supported, or
not supported by external reference documents,
from which claim-level support labels are derived.
Kamoi et al. (2023) also apply their LLM-based
Claim-Split approach to entailment classification,

in which entailment scores for each subclaim are
aggregated to give an entailment score for the
whole claim.

3 Evaluating Decomposition Quality

Previous work on evaluating the veracity of gener-
ated text attributes the resulting score to the quality
of the generation, overlooking the role of metric’s
decomposition step. However, higher quality de-
compositions mean that we can more reliably mea-
sure the quality of the generation. Depending on
the characteristics of the decomposition method
(e.g., how atomic its decompositions are), a met-
ric like FACTSCORE can change for the same un-
derlying generated text (Figure 2). Furthermore,
FACTSCORE implicitly assumes complete and co-
herent decompositions. However, the decomposi-
tion step can introduce unclaimed information or
omit existing (possibly incorrect) claims, which
introduces measurement error into FACTSCORE.

3.1 Qualitative Evaluation

What makes a decomposition higher quality? The
subclaims must be faithful to the original claim.
In other words, they must cohere with (are sup-
ported or entailed by) the original claim.3 To be of

3In contrast to the coherence theory of truth, the corre-
spondence theory deems a statement to be true if it matches a
situation in reality. It is not in the purview of a decomposition
model to determine whether a claim agrees with a knowledge
source; that is the purpose of the validator. In other words,

155



the greatest use for localizing discrepancies with
a trusted reference, the subclaims should cover all
parts of the claim and also be as atomic as possible.
Different methods decompose claims to various de-
grees, with some methods producing more or fewer
subclaims. We explore these various characteristics
across decomposition methods in §8.1.

3.2 Quantitative Evaluation: DECOMPSCORE

We develop a measure of decomposition method
quality by utilizing the same procedure as
FACTSCORE, namely using an LLM to assign a
binary judgment of support for every subclaim.
Rather than providing an external knowledge
source as context for the validator, we provide the
original sentence that was decomposed, thus identi-
fying the subclaims that are supported by the origi-
nal sentence.

The DECOMPSCORE of a decomposition
method is the average number of supported sub-
claims per passage produced by that decomposi-
tion method. This metric indicates which method
generates the most subclaims that cohere with the
sentence being decomposed. For example, if a text
is decomposed into a large number of subclaims
but DECOMPSCORE is low, we can infer that the
subclaims produced by the decomposition method
are not of good quality. The optimal value of DE-
COMPSCORE for a particular passage is difficult to
determine because we do not have a set of refer-
ence decompositions, but in general, methods that
produce decompositions with high atomicity and
coverage will achieve higher DECOMPSCORE.

Entailment is another notion of coherence that
could be used to evaluate whether a subclaim is a
valid part of the decomposition. In practice, we
find high correlation (Figure 7 in Appendix C) be-
tween DECOMPSCORE and the average number
of subclaims entailed by the original claim using
a strong natural language inference (NLI) model
(Nie et al., 2020).4

the validator is the “fact checker”. A validator that appeals to
a knowledge source is actually following a coherence theory
of truth (where the given set of statements is the information
contained in the knowledge source). The validator’s adherence
to a coherence theory of truth is apparent if we consider a case
in which the subclaims are not grounded in reality but rather
derived from a work of fiction. We can judge a statement like
“Sherlock Holmes lives at 221B Baker Street” to be true even
though it is false in reality.

4https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

4 Methods of Claim Decomposition

We study three types of claim decomposition meth-
ods, which are discussed below.

4.1 LLM prompting

Much of the recent work for claim decomposition
utilizes a prompted LLM-based method, typically
with in-context example decompositions (Min et al.,
2023; Kamoi et al., 2023; Chen et al., 2023c; Jing
et al., 2023; Mohri and Hashimoto, 2024). The
in-context examples can be dynamically selected
using a retrieval model (Min et al., 2023). We
use three instructions from prior work (Min et al.,
2023; Chen et al., 2023c; Kamoi et al., 2023) and
one of our own, with various static and retrieved
in-context examples. Notably, our approach uses
manually decomposed in-context examples based
on philosophical and linguistic theories, which are
discussed in §5. The approaches’ configurations
are outlined in Table 1.

The LLM prompting approach is flexible and
unstructured, allowing for the generation of arbi-
trary text. This text generation nature of LLMs
produces fluent natural language decompositions
by incorporating words outside the original sen-
tence (in contrast to, e.g., PROPSEGMENT (Chen
et al., 2023b)), but this also permits hallucinations
and forces us to relinquish control over the model’s
outputs due to the large output space. We can adapt
the instructions and in-context examples to encour-
age certain characteristics in the output (such as
coherence and atomicity), but ultimately there is
no mechanism to guarantee they are reflected in
the output. However, in-context examples that are
dynamically chosen based on high similarity with
the claim to be decomposed could encourage sim-
ilar styles of decomposition, which may provide
some amount of controllability. A simple prompt-
in, subclaims-out interface also avoids issues of
parsing into and generating out of an explicit inter-
mediate semantic representation, designing such a
representation in the first place, and overcoming
any structural weaknesses in such a representation.

4.2 Shallow semantic parsing

Rather than relying on an LLM for the decomposi-
tion, we can use a more structured analysis of the
text. We use PredPatt (White et al., 2016; Zhang
et al., 2017), a rule-based system for extracting
predicate-argument sub-structures from a syntactic
dependency parse. We take these sub-structures
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as representing the propositional content of sub-
claims. Goyal and Durrett (2020) use similar in-
tuitions about a correspondence between syntactic
dependency arcs and semantic units to decompose
a claim based on arcs in a dependency parse.

The resulting subclaims contain only words from
the original sentence, and are often not grammatical
sentences.5 The subclaims in a valid decomposition
should be full sentences in order to be validated by
DECOMPSCORE and FACTSCORE, and for this rea-
son, we use an LLM (gpt-3.5-turbo-instruct)
to convert the PredPatt outputs into fluent, natu-
ral language. Details are given in Appendix B.
Although the resulting strings are often full gram-
matical sentences, the LLM does not guarantee this
behavior.6

4.3 LLM prompting with parse

Combining syntactic structure with the flexibility
of text generation could support a more grounded
decomposition from an LLM. We use an LLM
prompting method, but this time supplied with a
parsed version of the original sentence. We use
Trankit (Nguyen et al., 2021), a state-of-the-art
dependency parser, to obtain dependency parses
(Zeman et al., 2019) (in the CoNLL-U format) of
each claim as well as each in-context learning ex-
ample. Because CoNLL-U formatted parses (Nivre
et al., 2017) are token-heavy, fewer in-context ex-
amples are provided. Prompt details can be found
in Table 1.

This method inherits the fluency and flexibility
of LLM prompting while grounding the LLM’s
response in a syntactic analysis, resulting in (hope-
fully) a higher quality decomposition. While we
hope the added structure imposes controllability,
LLMs can still generate subclaims that do not co-
here with the original claim.

5 Russellian and Neo-Davidsonian
decomposition

The notion of claim decomposition has roots in
the philosophical literature. We draw inspiration
from Bertrand Russell’s theory of logical atomism
for how claims should be decomposed into their
atomic components.

5PredPatt can add short strings like “is/are” and “poss” to
indicate being and possession, respectively, but these additions
do not make the propositions fluent.

6A model for determining grammatical acceptability could
be included in this approach to filter out ungrammatical strings
or send them back for rewriting (Warstadt et al., 2019).

Russell defines atomic facts as properties of in-
dividuals or relations between individuals from
which all other facts are composed (Russell,
1918b).7, 8 We take individuals to be entities and
eventualities mentioned in the sentence. This
kind of Russellian analysis accords with neo-
Davidsonian analysis (Castañeda, 1967; Parsons,
1990) (building on Davidson (1967)), in which the
logical form of a sentence is decomposed fully to
a conjunction of unary predicates (akin to proper-
ties of individuals) and binary predicates (akin to
relations between individuals).

We manually decompose the 21 in-context ex-
amples from Min et al. (2023) into lists of such
Russellian atomic propositions that we further de-
compose following neo-Davidsonian intuitions into
unary and binary relations to obtain the smallest
units that are claimed in each sentence: each sub-
claim designates a property of an individual or a
relation between two individuals.9 Our decomposi-
tions are listed in Table 10. These in-context exam-
ples are retrieved in the same way as the examples
are retrieved for the FACTSCORE prompt.

6 Data

We use the released data from Min et al. (2023),
which consists of biographies of 500 individu-
als generated from each of 12 LMs (following
their notation, we call the text generation models
LMSUBJ).10 We do not modify the biographies gen-
erated by Min et al. (2023), nor do we generate

7Ludwig Wittgenstein theorizes a similar idea of elemen-
tary propositions that assert atomic “states of affairs”. On
the whole, we find Wittgenstein’s theory to be less actionable
than Russell’s. Incidentally, Wittgenstein later abandoned this
theory in part due to the color exclusion problem, which we
avoid by not requiring independence of subclaims, instead
requiring only that each subclaim is claimed by the sentence.

8For Russell, “facts” are “the kind of thing that makes a
proposition true or false” (Russell, 1918a), and for Wittgen-
stein they are states of affairs. In both cases, they are not
propositions but rather conditions of the world. Russell and
Wittgenstein use the terms “atomic proposition” and “elemen-
tary proposition”, respectively, to refer to the corresponding
truth function or expression of an atomic fact. The NLP liter-
ature uses the term “atomic fact” to mean the corresponding
proposition, typically written in natural language.

9We do not include existence as a property of entities.
Consider the sentences: “Allan Pinkerton was a detective who
worked in the United States.” and “Sherlock Holmes was a
detective who worked in London.” From just the sentences
alone and without external knowledge, there is no way to tell
that one of these people existed and one didn’t.

10GPT-4 (OpenAI, 2023); ChatGPT; InstructGPT; Alpaca
7B, 13B, 65B (Taori et al., 2023); Vicuna 7B, 13B (Chiang
et al., 2023); Dolly 12B (Biderman et al., 2023); StableLM-
tuned-alpha 7B (Taori et al., 2023; Chiang et al., 2023; Anand
et al., 2023); Oasst-pythia 12B; and MPT Chat 7B.
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Figure 3: DECOMPSCORE (macro-averaged across
LMSUBJ) of different decomposition methods. A higher
DECOMPSCORE is better.

additional ones. We treat them as static documents
to investigate various decomposition methods ap-
plied to the sentences in the biographies.

7 Experiments

We use the data described in §6 for sentence-level
decomposition with the methods outlined in §4
and §5. Model specifications are listed in Ap-
pendix B. We evaluate using DECOMPSCORE with
Inst-LLAMA from Min et al. (2023) (LLAMA
trained on Super Natural Instructions (Wang et al.,
2022; Touvron et al., 2023)) and FACTSCORE with
the Inst-LLAMA + retrieval + NPM setting. In
total, generating decompositions took 120 GPU-
hours, computing DECOMPSCORE took 250 GPU-
hours, and computing FACTSCORE took 450 GPU-
hours, all using a Quadro RTX 6000.

8 Results

DECOMPSCORE results are shown in Figure 3,
with full results in Table 2 (Appendix A). DR-ND
attains the highest DECOMPSCORE (i.e., highest
average number of supported subclaims per bi-
ography) with 42.3, followed by DChen et al. and
DFACTSCORE, both with around 32. DWICE produces
the fewest average supported subclaims, with a DE-
COMPSCORE of 20.0, less than half that of DR-ND.
The DECOMPSCOREs of DPredPatt and DCoNLL-U
fall betweenDWICE andDFACTSCORE, withDPredPatt
achieving a slightly higher DECOMPSCORE (29.2)
than DCoNLL-U (27.1).

FACTSCORE results are shown in Figure 2, with
full results in Table 4 and Figure 4 (Appendix A).
Undesirably, the FACTSCORE values vary based
on the decomposition method used.

8.1 Qualitative Analysis

We analyze all decomposition methods on two sen-
tences generated by GPT-4: one about Alfred Hitch-
cock and one about John Nash.11 The decomposi-
tions, alongside our own manual decompositions,
are shown in Table 8 and Table 9 in Appendix D.
The evaluation criteria we use are coherence to
the original sentence, coverage of the information
claimed, and atomicity.

We observe that for the sentence about Alfred
Hitchcock (Table 8), no decomposition method sep-
arates the date into month, day, and year or the
location into city and state. No method generates
the subclaim “Alfred Hitchcock passed away”, opt-
ing to always include the date or location. Addi-
tionally, no method outputs all four combinations
arising from the conjunction of “captivate” and “in-
spire” with “audiences” and “filmmakers”. DR-ND
is the only method to separate “suspenseful” from
“thrilling”; every other method keeps them as one
unit. Similarly, many methods keep “captivate and
inspire” as one unit;DR-ND andDFACTSCORE are the
only ones to always split this conjunction.

We see that for the sentence about John Nash (Ta-
ble 9), DR-ND, DFACTSCORE, and DChen et al. all out-
put a large number of subclaims. However, many
of the subclaims generated by DFACTSCORE and
DChen et al. incrementally add information to their
other subclaims, which makes them non-atomic.
This behavior of incrementally adding informa-
tion can be expected given that it occurs in the
in-context examples used by Min et al. (2023). This
incrementality makes it more difficult to localize
errors in the original claim because the textual sup-
port of the new information in the subclaim undesir-
ably depends on the re-used information also being
supported. All methods except for DWICE generate
non-atomic subclaims that combine Nash’s bache-
lor’s and master’s degrees. DR-ND, DCoNLL-U, and
DPredPatt mention the degrees without the additional
information that they were for mathematics, which
increases atomicity; the other methods describe
them always as “degree[s] in mathematics”.

In our experiments, DFACTSCORE and DChen et al.
use the same in-context examples with slightly dif-

11“Alfred Hitchcock passed away on April 29, 1980, in Bel-
Air, California, leaving behind a rich legacy of suspenseful
and thrilling films that continue to captivate and inspire au-
diences and filmmakers alike.” and “Nash demonstrated a
natural aptitude for mathematics from a young age and earned
his bachelor’s and master’s degrees in mathematics from the
Carnegie Institute of Technology (now Carnegie Mellon Uni-
versity) in 1948.”
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ferent instructions and generate similar decompo-
sitions on the two sentences (identical decomposi-
tions on the Nash sentence). This behavior suggests
that the in-context examples influence the decom-
position more than the instruction does.

Takeaways For both sentences, we observe that
many subclaims in our manual decompositions
are missed by the decomposition methods, but
the methods with the most coverage are DR-ND,
DChen et al., DFACTSCORE, and DWICE. All methods
but DPredPatt have perfect coherence for both sen-
tences. In general, we observe that DWICE has low
atomicity,12 as does DCoNLL-U because it does not
split conjunctions. DPredPatt exhibits many issues:
its subclaims are not atomic, often not fluent (de-
spite using an LLM to make them more fluent),
and not coherent with the original claim (e.g., “The
bachelor possessed a master’s degree”).

8.2 Quantitative Analysis
Even though all decomposition methods are run
on the same set of static biographies, they differ in
FACTSCORE and number of subclaims generated
(averaged over LMSUBJ: Figure 2, per LMSUBJ: Ta-
ble 4). This finding indicates that FACTSCORE is
sensitive to the method of decomposition that is
used. The most reliable estimate of the generated
text’s “true” factual precision is the FACTSCORE

achieved by the highest quality decomposition
method.

We hypothesize that DPredPatt’s FACTSCORE is
low because it produces subclaims not likely to
be supported by the external knowledge source,13

while also being constrained to using only the
words in the sentence and missing implicit sub-
claims not extractable as predicate-argument struc-
tures from the dependency parse. Additionally,
only 86% of the subclaims it produces are sup-
ported by the original claim (Table 6 in Ap-
pendix A), which agrees with our previous obser-
vation that its outputs have low coherence.
DFACTSCORE and DChen et al. both achieve a DE-

COMPSCORE around 32, and since they use the
same in-context examples in our experiments, this
further suggests that the decompositions are robust

12The instructions given to annotators for evaluating
WICE’s Claim-Split decomposition method include an ex-
ample that explicitly states that one of its subclaims can be
further decomposed but to ignore that issue, which suggests
atomicity is not prioritized in that method.

13For example, the mention of “civil rights” results in the
subclaim “Rights are civil”, which is likely not explicitly
asserted in the retrieved Wikipedia passages.

to the wording of the instruction in the prompt.
Additionally, the similarity of the configuration of
DR-ND to those of DFACTSCORE and DChen et al. sug-
gests that it is the manually decomposed in-context
examples used in DR-ND that are responsible for its
higher DECOMPSCORE.

Because the in-context examples seem to have a
larger effect on the decompositions than the instruc-
tions do and because we provide fewer examples in
DCoNLL-U due to the large token count of the parses,
we evaluate the effect on decomposition of the num-
ber of in-context examples given. We use the same
prompt specifications as in DFACTSCORE in Table 1,
but use the same number of static examples as in
DCoNLL-U (one). We find that using fewer examples
produces around the same number of subclaims
(+1.3 subclaims on average), and achieves simi-
lar DECOMPSCORE (-0.69%) and FACTSCORE

(+0.06%). Overall, using fewer in-context exam-
ples does not appear to have much impact on either
decomposition quality or factual precision.

When evaluating FACTSCORE on only the sup-
ported subclaims (as determined in the calculation
of DECOMPSCORE), in most cases, this subset of
subclaims yields a higher FACTSCORE (Table 4,
Table 5, Figure 4, Figure 5 in Appendix A),14 in-
dicating that subclaims which do not cohere with
the original sentence are likely also not supported
by the knowledge source. Although simple, this
filtering step removes potential errors introduced
during decomposition. The fewest amount of sub-
claims (0.2 on average) are removed from DWICE’s
decompositions (compare Table 2 and Table 3 in
Appendix A), indicating very high coherence, and
the most are removed from DPredPatt’s decompo-
sitions (4 subclaims per biography on average),
suggesting low coherence to the original sentence.
On average, 1.2 out of 43.5 subclaims are removed
from DR-ND’s decompositions.

To ensure that decompositions have high coher-
ence, we recommend that subclaims produced by
a decomposition method that are not supported by
the original claim be filtered out (giving full co-
herence by construction). In doing so, unclaimed
information that is introduced during the decompo-
sition step is removed and not incorrectly attributed
back to the generated text being evaluated.

Takeaways Despite DWICE having high coher-
ence and coverage, it has the lowest DECOMP-

14There are 4 exceptions out of 84 cases, and the maximum
decrease in FACTSCORE is 0.2%.
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SCORE because it has low atomicity, which makes
it undesirable as a decomposition method for use
in a localized textual support metric.

Achieving a higher FACTSCORE with a partic-
ular decomposition method does not necessarily
mean the decompositions are also of high quality.
Although DR-ND achieves lower FACTSCORE than
most of the other methods, it has a far higher DE-
COMPSCORE than the other methods, which we
hypothesize is due to our manually decomposed
in-context examples. Such a method that produces
a large number of supported subclaims that (qual-
itatively) have high coverage and atomicity is far
more favorable in the textual support evaluation set-
ting because it increases confidence in the results
obtained from the downstream metric.

9 Related Work

Evaluation We evaluated decomposition meth-
ods that produce subclaims in sentential natural lan-
guage, primarily by using contemporary technolo-
gies like large language models (§4). We review
other methods of decomposition used in evaluation
of textual support here.

Question answering (Wang et al., 2020; Durmus
et al., 2020; Scialom et al., 2021; Fabbri et al.,
2022) has been used for evaluating abstractive sum-
marization. These methods generally ask questions
only about noun phrases, require generating ques-
tions (the decomposition step), and require extract-
ing answer spans, after which (typically lexical)
heuristics determine if the answers between the
summary and reference agree. Higher decomposi-
tion quality in this paradigm would involve gener-
ating a large number of highly focused questions,
which would give better localized coverage of the
claims made in the summary.

Goodrich et al. (2019) evaluate summariza-
tion by extracting relation tuples from a model-
generated summary which are compared to rela-
tions extracted from a ground-truth summary. Fan
et al. (2023) improve upon this approach by extract-
ing fact tuples using semantic role labeling. Goyal
and Durrett (2020) evaluate the factuality of model-
generated text by obtaining entailment labels on
each arc in a dependency parse, which assumes
a correspondence between syntactic dependency
arcs and semantic units (the same core assumption
made by PredPatt).

In addition to evaluating whether text is sup-
ported, there has also been work on evaluating

types of textual errors (Pagnoni et al., 2021; De-
varaj et al., 2022; Mishra et al., 2024) and eval-
uating ambiguously supported claims (Glockner
et al., 2024). Although designed to be used at
the sentence-level, such methodologies can also
be applied to subclaims. For further discussion
about identifying and mitigating errors in model-
generated text, such as hallucinations, we refer the
reader to Ji et al. (2023) and Ye et al. (2023).

NLI Decomposition is also used for sub-sentence
level NLI. PROPSEGMENT (Chen et al., 2023b)
identifies subclaims by marking tokens in a
claim that are part of the subclaim. They use
propositional-level NLI to detect hallucinations
by comparing tokens in entailed and non-entailed
propositions. Sub-sentence entailment judgments
can also be combined to make sentence-level or
paragraph-level entailment judgments more inter-
pretable and robust (Stacey et al., 2022, 2023;
Kamoi et al., 2023).

Fact Verification Verifying the accuracy of state-
ments depends on high quality decompositions to
facilitate evidence retrieval. Chen et al. (2023a)
build a system for complex claim verification by
generating lists of yes/no questions that align to spe-
cific aspects of a claim. Chen et al. (2022) build a
similar system that also asks implied subquestions.
Li et al. (2023) and Milbauer et al. (2023) align
generated claims with statements in documents that
entail or contradict the claim. Similarly, Ernst et al.
(2021) align propositions between reference sum-
maries and source documents—which is similar to
the fact verification task. A model trained on their
dataset was later used to cluster propositions in a
system for multi-document summarization (Ernst
et al., 2022). Chen et al. (2023c) use decomposition
to find matching subclaims (“atomic propositions”)
across sentences to train proposition-level represen-
tations using contrastive learning. The proposition
representations are used for retrieving propositions
from a corpus that support a given proposition.

10 Conclusion

We observe that a downstream metric of textual
support, namely factual precision as measured by
FACTSCORE, is sensitive to the method it uses to
decompose a claim into its subclaims. This find-
ing leads us to measure decomposition quality us-
ing our proposed metric DECOMPSCORE so that
we can use the most appropriate decomposition
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method among those we consider.
We show that an LLM prompted with in-context

learning examples that we manually decompose by
following intuitions from logical atomism and neo-
Davidsonian semantics outperforms other meth-
ods. Decompositions generated by our method con-
tain the greatest number of subclaims supported by
the original claim among the methods we consider.
Qualitative analysis and comparison to manual de-
compositions demonstrate that all the decomposi-
tion methods we consider still miss subclaims and
many generate non-atomic subclaims, indicating
there still remains room for improvement.

Limitations

Metrics like FACTSCORE and DECOMPSCORE are
able to evaluate only information that is claimed
in a generated text. Information relevant to an
upstream query may be absent in the text, whether
accidentally or intentionally, and these evaluation
approaches cannot account for that.

This study is limited to the domain of entity
biographies, so it is not representative of all use
cases. Additionally, the data is monolingual (En-
glish), and we do not know if these results hold
across other languages.

Running LLMs can be expensive. Because of
this, we chose to use LLAMA instead of ChatGPT
as the validator, but even running that model is not
financially feasible for everyone to use.

Ethics Statement

LLMs are well-known to hallucinate information,
and mitigation of hallucination is still an active
area of research. Using LLMs to decompose a
claim into subclaims can introduce new factual
errors. Despite attempts to remove such errors
(for example, by filtering out subclaims that are
not supported by the original claim according to
DECOMPSCORE), errors can still persist. Caution
must be taken when relying on text generated from
a model.
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Kristina Brokaitė, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Tatiana Caval-
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Hajič jr., Mika Hämäläinen, Linh Hà Mỹ, Na-
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Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vaj-
jala, Daniel van Niekerk, Gertjan van Noord, Vik-
tor Varga, Eric Villemonte de la Clergerie, Veronika
Vincze, Lars Wallin, Abigail Walsh, Jing Xian Wang,
Jonathan North Washington, Maximilan Wendt, Seyi
Williams, Mats Wirén, Christian Wittern, Tsegay
Woldemariam, Tak-sum Wong, Alina Wróblewska,
Mary Yako, Naoki Yamazaki, Chunxiao Yan, Koichi
Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zdeněk
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A Full Results

FACTSCORE evaluation is outlined in §2, and
full results are reported in Table 4 and Figure 4.
DECOMPSCORE evaluation is discussed in §3.2,
and full results are reported in Table 2. Unlike
FACTSCORE, we do not impose a length penalty
in DECOMPSCORE because shorter passages nat-
urally contain fewer subclaims. Percentages of
subclaims that are judged to be supported (i.e., the
coherence of each method) are shown in Table 6
and Figure 6.

FACTSCORE results based on the subclaims
judged to cohere with the original claim (based
on judgments obtained when computing DECOMP-
SCORE) are shown in Table 5 and Figure 5. The
average numbers of subclaims per biography are
reported in Table 3, and the average numbers of
supported subclaims (i.e., the DECOMPSCORE) are
reported in Table 2.

It is important to note the special cases and con-
ditions placed on these results:

• The released data from Min et al. (2023) in-
cludes uninformative LM responses (e.g. “I’m
sorry, I don’t have any information on a per-
son named. . . ”). Including these generations
is valuable for evaluating factuality of a lan-
guage model, however results in noise when
evaluating decomposition quality. These un-
informative responses are still processed by
the decomposition methods we wish to evalu-
ate, however the quality of decomposition is
unaffected.

• Different language models are trained on dif-
ferent versions of Wikipedia, which intro-
duces inconsistencies from the Wikipedia con-
text used for fact-checking. This can affect
FACTSCORE but does not affect DECOMP-
SCORE because it does not make use of exter-
nal knowledge sources.

B Model Details

To reduce cost using the text-davinci-003
model used by Min et al. (2023), we instead
use InstructGPT (gpt-3.5-turbo-instruct) as
the LLM for decomposition with 4K token con-
text window, 512 max_tokens and a temper-
ature of 0.7. This model costs $0.0015 per
1K input tokens and $0.0020 per 1K output to-
kens. gpt-3.5-turbo-instruct achieves Pear-
son correlation coefficients of over 0.97 for both

FACTSCORE and number of subclaims generated
compared to results reported by Min et al. (2023)
(Table 7).

Inst-LLAMA is LLAMA trained on Su-
per Natural Instructions (Wang et al., 2022;
Touvron et al., 2023), and is used for all
FACTSCORE and DECOMPSCORE evaluations.
We use max_sequence_length of 2048 and
max_output_length of 128.

For DPredPatt, we use Trankit for generating
the dependency parse for each sentence. This
parse is then used by PredPatt with the follow-
ing flags: relative clauses, appositional modifiers,
adjectival modifiers, conjunction, possessives, bor-
row_arg_for_relcl and strip all set to True, with the
remaining flags (simple, cut, and big_args) set to
False. We use PredPatt with Universal Dependen-
cies v2.

We use gpt-3.5-turbo-instruct with the
settings enumerated above for converting PredPatt
outputs into natural language sentences with the
following prompt:

Please turn my input utterances into a grammatically
correct natural English sentence by resolving tense, fixing
grammatical errors, and reordering words without changing
meanings. Your output should not contain “is/are” or “poss”.
Your output should contain no hallucinated information and
no redundant sentences. Just the modified utterance.

Input: born 1908 community leader
Output: The community leader was born in 1908.

Input: date of death is/are unknown
Output: The date of death is unknown.

Input: was an African - American social worker activist
Output: They were an African-American social worker
activist.

Input: <subclaim>

Output:

When a prompt in the DCoNLL-U approach ex-
ceeds the length allowed for the context win-
dow, examples are incrementally removed until
the prompt fits. When a zero-shot prompt (no
in-context examples) exceeds the size of the con-
text window, we backoff and set the entire original
sentence as the subclaim. In practice, we backoff
0.05% of the time: across 6000 passages (500 pas-
sages generated by each of 12 LMSUBJ), twice we
use one example and once we use the original sen-
tence. We leave it to future work to reduce the size
of the parses used in the prompt.
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DECOMPSCORE

LMSUBJ DDR-ND DChen DWICE DFS DFS2 DCoNLL DPP

Alpaca 7B 21.9 17.7 11.2 17.2 18.8 15.4 15.2
Alpaca 13B 21.6 16.9 10.5 16.5 18.2 15.0 14.9
Alpaca 65B 21.9 17.3 10.8 16.7 18.5 15.2 14.8
ChatGPT 43.0 32.5 20.2 32.4 33.9 27.3 29.0
Dolly 12B 32.1 24.9 15.2 24.3 26.8 21.9 20.5

GPT4 76.0 57.5 35.9 57.2 58.5 47.0 54.8
InstructGPT 35.5 27.6 17.2 26.9 28.8 23.4 23.1

MPT-Chat 7B 47.7 36.5 22.7 35.9 37.4 30.2 33.1
Oasst-pythia 12B 56.7 41.6 25.4 40.9 42.3 34.8 39.7

StableLM 7B 38.2 29.5 18.9 29.3 30.6 25.5 28.1
Vicuna 7B 58.4 43.8 27.4 43.4 45.4 36.7 41.1

Vicuna 13B 54.6 39.8 24.9 39.9 41.5 33.1 36.2
Macro-average 42.3 32.1 20.0 31.7 33.4 27.1 29.2

Table 2: DECOMPSCORE for each decomposition method and LMSUBJ. Average number of subclaims generated per
biography that are determined to be supported by the original sentence.

# Subclaims
LMSUBJ DDR-ND DChen DWICE DFS DFS2 DCoNLL DPP

Alpaca 7B 22.2 17.9 11.3 17.3 19.0 15.7 16.4
Alpaca 13B 22.0 17.2 10.6 16.6 18.4 15.3 16.2
Alpaca 65B 22.2 17.5 10.9 16.9 18.6 15.5 16.0
ChatGPT 44.2 33.0 20.4 33.0 34.6 28.5 33.2
Dolly 12B 33.0 25.2 15.4 24.7 27.2 22.9 23.4

GPT4 77.7 58.2 36.2 57.9 59.2 48.6 63.6
InstructGPT 36.3 27.9 17.3 27.2 29.1 23.9 25.6

MPT-Chat 7B 49.0 37.0 22.9 36.3 37.8 31.1 37.4
Oasst-pythia 12B 57.7 41.8 25.5 41.2 42.6 35.4 44.6

StableLM 7B 40.4 30.7 19.4 30.4 32.0 27.4 33.4
Vicuna 7B 59.8 44.3 27.6 43.9 45.9 37.7 46.3

Vicuna 13B 57.3 44.6 25.1 45.8 42.8 34.8 42.2
Macro-average 43.5 32.9 20.2 32.6 33.9 28.1 33.2

Table 3: Average number of subclaims generated per biography.
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FACTSCORE (%)
LMSUBJ DDR-ND DChen DWICE DFS DFS2 DCoNLL DPP

Alpaca 7B 35.0 36.9 33.7 36.9 37.5 34.9 27.4
Alpaca 13B 38.9 40.3 35.1 40.8 41.1 38.3 30.0
Alpaca 65B 44.0 47.0 42.8 46.9 47.3 45.0 36.5
ChatGPT 48.2 52.1 51.4 52.2 52.2 50.7 36.8
Dolly 12B 16.5 16.3 13.9 16.7 17.2 15.5 10.4

GPT4 51.1 56.1 54.8 55.9 54.9 53.3 35.6
InstructGPT 40.1 43.2 43.2 43.6 43.4 41.7 31.5

MPT-Chat 7B 24.8 25.9 24.4 26.2 25.2 25.1 16.1
Oasst-pythia 12B 20.1 20.8 19.2 21.2 21.1 20.5 11.7

StableLM 7B 13.8 13.1 11.6 13.5 13.4 13.3 8.2
Vicuna 7B 32.4 34.5 34.0 35.2 34.9 33.8 21.7
Vicuna 13B 31.1 32.8 31.8 34.1 35.7 33.1 23.3

Macro-average 33.0 34.9 33.0 35.3 35.3 33.8 24.1

Table 4: FACTSCORE of biographies generated by each LMSUBJ and decomposed with each method. Note: For
evaluating decomposition quality, a larger FACTSCORE is not necessarily better; we care about high confidence that
FACTSCORE is correct.
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Figure 4: FACTSCORE results for all claim decomposition methods and LMSUBJ.
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FACTSCORE (%) After Filtering Out Unsupported Subclaims
LMSUBJ DDR-ND DChen DWICE DFS DFS2 DCoNLL DPP

Alpaca 7B 34.9 36.7 36.1 36.8 37.6 35.8 29.1
Alpaca 13B 40.1 40.8 40.2 41.4 41.2 39.9 31.3
Alpaca 65B 45.0 48.4 47.0 47.6 47.9 46.3 39.4
ChatGPT 55.8 60.5 60.2 59.9 59.9 59.1 45.1
Dolly 12B 17.1 17.1 16.1 17.6 17.7 16.9 12.2

GPT4 57.0 62.6 61.4 62.0 61.0 59.9 43.8
InstructGPT 40.7 43.5 43.6 44.0 44.0 42.6 34.3

MPT-Chat 7B 27.0 28.3 27.5 28.7 27.6 28.0 19.5
Oasst-pythia 12B 20.4 21.2 20.2 21.4 21.4 21.0 12.8

StableLM 7B 16.0 15.6 14.6 16.0 15.8 15.9 8.9
Vicuna 7B 35.7 38.6 38.4 38.8 38.4 37.6 25.3
Vicuna 13B 37.7 41.7 41.3 41.7 41.1 40.6 29.3

Macro-average 35.6 37.9 37.2 38.0 37.8 37.0 27.6

Table 5: FACTSCORE of biographies after filtering out subclaims determined to be not supported by the original
sentence (using DECOMPSCORE judgments). Note: For evaluating decomposition quality, a larger FACTSCORE is
not necessarily better; we care about high confidence that FACTSCORE is correct.
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Figure 5: FACTSCORE results after filtering out subclaims determined to be not supported by the original sentence
(using DECOMPSCORE judgments) for all claim decomposition methods and LMSUBJ.
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% Subclaims Supported
LMSUBJ DDR-ND DChen DWICE DFS DFS2 DCoNLL DPP

Alpaca 7B 98.7 98.9 99.2 99.1 99.1 98.4 93.6
Alpaca 13B 98.6 99.0 99.4 99.0 99.2 98.2 93.2
Alpaca 65B 98.6 99.3 99.4 99.2 99.3 98.5 93.7
ChatGPT 93.0 95.9 96.7 99.4 94.5 89.0 80.0
Dolly 12B 97.4 98.7 99.0 98.7 98.6 96.5 89.6

GPT4 96.2 97.4 98.3 97.4 97.2 94.2 83.2
InstructGPT 98.1 99.1 99.3 99.0 99.0 98.0 90.8

MPT-Chat 7B 96.5 97.6 98.4 97.6 97.8 95.4 86.9
Oasst-pythia 12B 98.3 99.3 99.4 99.3 99.3 98.4 89.4

StableLM 7B 89.2 90.7 94.1 90.5 89.4 84.8 74.4
Vicuna 7B 94.8 97.0 98.1 96.3 96.5 92.9 84.1
Vicuna 13B 88.9 93.3 95.4 90.8 88.1 82.6 72.6

Macro-average 96.0 97.2 98.1 97.2 96.5 93.9 86.0

Table 6: Percentage of subclaims from each decomposition method and LMSUBJ that are judged to be supported by
(cohere with) the original claim.
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Figure 6: Percentage of subclaims that are supported by (cohere with) the original claim.
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FACTSCORE Reported FACTSCORE # subclaims Reported # subclaims
Alpaca 7B 36.9 36.5 17.3 17.4
Alpaca 13B 40.8 40.3 16.6 16.6
Alpaca 65B 46.9 46.3 16.9 17.1
ChatGPT 52.2 60.4 33.0 37.0
Dolly 12B 16.7 17.1 24.7 24.6

GPT4 55.9 59.9 57.9 60.8
InstructGPT 43.6 41.7 27.2 27.7

MPT-Chat 7B 26.2 27.9 36.3 37.3
Oasst-pythia 12B 21.2 20.8 41.2 39.7

StableLM 7B 13.5 16.3 30.4 38.0
Vicuna 7B 35.2 36.9 43.9 45.6
Vicuna 13B 34.1 40.7 45.8 50.9

ρ 0.9786 0.9821

Table 7: Pearson correlation coefficients (ρ) between our setup for computing FACTSCORE (using
gpt-3.5-turbo-instruct for subclaim generation) and results reported by Min et al. (2023) (using
text-davinci-003 for subclaim generation).

C NLI Entailment

The numbers of subclaims that are judged to be
entailed by the original sentence are highly cor-
related with the numbers of subclaims judged by
an LLM to be supported by the original sentence
(DECOMPSCORE), achieving a Pearson correlation
coefficient of 0.9978 (Figure 7).
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Figure 7: Average number of subclaims per passage
that are entailed by their original sentential claim, as
determined by an NLI model (Nie et al., 2020). Values
are macro-averaged across LMSUBJ.

D Decomposition Examples

We include examples of two sentences decomposed
manually and by all claim decomposition methods
evaluated. Table 8 contains the decompositions for
the sentence “Alfred Hitchcock passed away on
April 29, 1980, in Bel-Air, California, leaving be-

hind a rich legacy of suspenseful and thrilling films
that continue to captivate and inspire audiences and
filmmakers alike." Table 9 contains the decomposi-
tions for the sentence “Nash demonstrated a natu-
ral aptitude for mathematics from a young age and
earned his bachelor’s and master’s degrees in math-
ematics from the Carnegie Institute of Technology
(now Carnegie Mellon University) in 1948.”

E Russellian/Neo-Davidsonian In-context
Learning Examples

The manually decomposed sentences used as in-
context examples for DR-ND are shown in Table 10.
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Manual - Alfred Hitchcock passed away.
- Alfred Hitchcock’s death occurred in April.
- Alfred Hitchcock’s death occurred on the 29th day of a month.
- Alfred Hitchcock’s death occurred in 1980.
- Alfred Hitchcock’s death occurred in Bel-Air.
- Bel-Air is in California.
- Alfred Hitchcock left behind a legacy.
- Alfred Hitchcock’s legacy is rich.
- Alfred Hitchcock’s legacy contains films.
- The films in Alfred Hitchcock’s legacy are suspenseful.
- The films in Alfred Hitchcock’s legacy are thrilling.
- The films in Alfred Hitchcock’s legacy captivate audiences.
- The films in Alfred Hitchcock’s legacy captivate filmmakers.
- The films in Alfred Hitchcock’s legacy inspire audiences.
- The films in Alfred Hitchcock’s legacy inspire filmmakers.

DR-ND - Alfred Hitchcock passed away on April 29, 1980.
- His death occurred in Bel-Air, California.
- Alfred Hitchcock had a legacy.
- Alfred Hitchcock’s legacy contains suspenseful films.
- Alfred Hitchcock’s legacy contains thrilling films.
- Alfred Hitchcock’s films continue to captivate audiences.
- Alfred Hitchcock’s films continue to inspire filmmakers.
- Alfred Hitchcock left behind his legacy.

DChen et al. - Alfred Hitchcock passed away on April 29, 1980.
- Alfred Hitchcock passed away in Bel-Air, California.
- Alfred Hitchcock left behind a rich legacy.
- Alfred Hitchcock’s legacy includes suspenseful and thrilling films.
- Alfred Hitchcock’s films continue to captivate and inspire audiences.
- Alfred Hitchcock’s films continue to captivate and inspire filmmakers.

DWICE - Alfred Hitchcock passed away on April 29, 1980.
- He passed away in Bel-Air, California.
- He left behind a rich legacy of suspenseful and thrilling films.
- His films continue to captivate and inspire audiences.
- His films continue to inspire filmmakers.

DFACTSCORE - Alfred Hitchcock passed away on April 29, 1980.
- Alfred Hitchcock passed away in Bel-Air, California.
- Alfred Hitchcock left behind a legacy of films.
- Alfred Hitchcock’s films were suspenseful and thrilling.
- Alfred Hitchcock’s films continue to captivate audiences.
- Alfred Hitchcock’s films continue to inspire filmmakers.

DCoNLL-U - Alfred Hitchcock passed away on April 29, 1980.
- He passed away in Bel-Air, California.
- He left behind a rich legacy.
- His legacy includes suspenseful and thrilling films.
- His films continue to captivate and inspire audiences and filmmakers.

DPredPatt - Alfred Hitchcock passed away on April 29 , 1980 , in Bel - Air.
- Bel - Air is/are in California
- Alfred Hitchcock left behind a rich legacy of suspenseful and thrilling films that

continue to captivate and inspire audiences and filmmakers alike
- The legacy of suspenseful and thrilling films that continue to captivate and inspire

audiences and filmmakers alike is/are rich
- The films that continue to captivate and inspire audiences and filmmakers alike

are suspenseful
- Suspenseful and thrilling films continue to captivate audiences.
- Suspenseful and thrilling films continue to captivate filmmakers alike.
- That continue to inspire.

Table 8: Decomposition comparison for the sentence “Alfred Hitchcock passed away on April 29, 1980, in Bel-Air,
California, leaving behind a rich legacy of suspenseful and thrilling films that continue to captivate and inspire
audiences and filmmakers alike.”
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Manual - Nash demonstrated an aptitude for mathematics.
- Nash’s aptitude for mathematics was natural.
- Nash’s demonstration of an aptitude for mathematics began at a young age.
- Nash earned his bachelor’s degree.
- Nash’s bachelor’s degree is in mathematics.
- Nash’s bachelor’s degree is from the Carnegie Institute of Technology.
- Nash’s bachelor’s degree was earned in 1948.
- Nash earned his master’s degree.
- Nash’s master’s degree is in mathematics.
- Nash’s master’s degree is from the Carnegie Institute of Technology.
- Nash’s master’s degree was earned in 1948.
- The Carnegie Institute of Technology is now Carnegie Mellon University.

DR-ND - Nash demonstrated a natural aptitude for mathematics.
- His natural aptitude for mathematics was evident from a young age.
- He earned a bachelor’s degree in mathematics.
- He earned a master’s degree in mathematics.
- He earned his degrees from the Carnegie Institute of Technology.
- The Carnegie Institute of Technology is now known as Carnegie Mellon University.
- He earned his degrees in 1948.
- He earned his bachelor’s degree in mathematics in 1948.
- He earned his master’s degree in mathematics in 1948.

DChen et al. - Nash demonstrated a natural aptitude for mathematics.
- Nash demonstrated a natural aptitude for mathematics from a young age.
- Nash earned his bachelor’s degree in mathematics.
- Nash earned his master’s degree in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology.
- The Carnegie Institute of Technology is now Carnegie Mellon University.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology (now Carnegie Mellon University).
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology (now Carnegie Mellon University) in 1948.
DWICE - Nash demonstrated a natural aptitude for mathematics from a young age.

- Nash earned his bachelor’s degree in mathematics from the Carnegie Institute of
Technology in 1948.

- Nash earned his master’s degree in mathematics from the Carnegie Institute of
Technology in 1948.

- The Carnegie Institute of Technology is now known as Carnegie Mellon University.
DFACTSCORE - Nash demonstrated a natural aptitude for mathematics.

- Nash demonstrated a natural aptitude for mathematics from a young age.
- Nash earned his bachelor’s degree in mathematics.
- Nash earned his master’s degree in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology.
- Carnegie Institute of Technology is now called Carnegie Mellon University.
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology (now Carnegie Mellon University).
- Nash earned his bachelor’s and master’s degrees in mathematics from the Carnegie

Institute of Technology (now Carnegie Mellon University) in 1948.
DCoNLL-U - Nash demonstrated an aptitude for mathematics.

- Nash earned his bachelor’s and master’s degrees in mathematics.
- Nash’s degrees were from Carnegie Institute of Technology.
- The institute is now known as Carnegie Mellon University.
- Nash received his degrees in 1948.

DPredPatt - Nash demonstrated a natural aptitude for mathematics from a young age.
- Aptitude for mathematics is natural.
- They were young.
- Nash earned his bachelor ’s and master ’s degrees in mathematics from the Carnegie

Institute of Technology in 1948.
- He had a bachelor ’s and master ’s degrees in mathematics.
- The bachelor possessed a master’s degree.
- The Carnegie Institute of Technology is now Carnegie Mellon University.

Table 9: Decomposition comparison for the sentence “Nash demonstrated a natural aptitude for mathematics from a
young age and earned his bachelor’s and master’s degrees in mathematics from the Carnegie Institute of Technology
(now Carnegie Mellon University) in 1948.”
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He made his acting debut in the film The Moon is the Sun’s Dream (1992), and continued to appear in small and
supporting roles throughout the 1990s.
- He has an acting debut.
- He acted in a film.
- His acting debut was in a film.
- His acting debut was in The Moon is the Sun’s Dream.
- He acted in The Moon is the Sun’s Dream.
- The Moon is the Sun’s Dream is a film.
- The Moon is the Sun’s Dream was released in 1992.
- His acting debut occurred in 1992.
- He appeared in small roles.
- He appeared in supporting roles.
- His small roles occurred throughout the 1990s.
- His supporting roles occurred throughout the 1990s.
- His appearance in small roles occurred after his acting debut.
- His appearance in supporting roles occurred after his acting debut.
He is also a successful producer and engineer, having worked with a wide variety of artists, including Willie Nelson,
Tim McGraw, and Taylor Swift.
- He is a producer.
- He is successful at being a producer.
- He is an engineer.
- He is successful at being an engineer.
- He has worked with a wide variety of artists.
- Willie Nelson is an artist.
- He has worked with Willie Nelson.
- Tim McGraw is an artist.
- He has worked with Tim McGraw.
- Taylor Swift is an artist.
- He has worked with Taylor Swift.
In 1963, Collins became one of the third group of astronauts selected by NASA and he served as the back-up Command
Module Pilot for the Gemini 7 mission.
- NASA selected a third group of astronauts.
- Collins belonged to the third group of astronauts.
- Collins was selected by NASA.
- Collins’s selection by NASA occurred in 1963.
- The Gemini 7 mission has a back-up Command Module Pilot.
- Collins’s role in the Gemini 7 mission was as the back-up Command Module Pilot.
- Collins participated in the Gemini 7 mission.
In addition to his acting roles, Bateman has written and directed two short films and is currently in development
on his feature debut.
- Bateman has acting roles.
- Bateman has written short films.
- The number of short films Bateman has written is two.
- Bateman has directed short films.
- The number of short films Bateman has directed is two.
- Bateman is currently in development on his feature debut.
- The two short films were made before his feature debut.
- His acting roles came before his feature debut.
Michael Collins (born October 31, 1930) is a retired American astronaut and test pilot who was the Command Module
Pilot for the Apollo 11 mission in 1969.
- Michael Collins was born in October.
- Michael Collins was born on the 31st day of a month.
- Michael Collins was born in 1930.
- Michael Collins is retired.
- Michael Collins is American.
- Michael Collins was an astronaut.
- Michael Collins was a test pilot.
- Michael Collins participated in the Apollo 11 mission.
- Michael Collins’s participation in the Apollo 11 mission occurred in 1969.
- The Apollo 11 mission was active in 1969.
- The day of Michael Collins’s birth occurred before his year of participation in the Apollo 11 mission.
- The Apollo 11 mission had a Command Module Pilot.
- Michael Collins’s role in the Apollo 11 mission was as the Command Module Pilot.
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He was an American composer, conductor, and musical director.
- He was American.
- He was a composer.
- He was a conductor.
- He was a musical director.
She currently stars in the romantic comedy series, Love and Destiny, which premiered in 2019.
- She stars in Love and Destiny.
- Love and Destiny is a series.
- Love and Destiny is a romantic comedy.
- Love and Destiny premiered in 2019.
His music has been described as a mix of traditional Mexican and Latin American styles, as well as
jazz, folk, and rock.
- He has music.
- His music has been described.
- His music has been described as a mix of styles.
- His music has been described as containing elements of traditional styles of music.
- His music has been described as containing elements of Mexican style of music.
- His music has been described as containing elements of Latin American style of music.
- His music has been described as containing elements of jazz music.
- His music has been described as containing elements of folk music.
- His music has been described as containing elements of rock music.
He also serves as an ambassador for the charity Leonard Cheshire Disability.
- He has a role in Leonard Cheshire Disability.
- His role in Leonard Cheshire Disability is as an ambassador.
- Leonard Cheshire Disability is a charity.
He began his career in Nashville in the late 1950s and has since released numerous albums, including a greatest hits
collection in 1999.
- He has a career.
- His career began in Nashville.
- His career began in the late 1950s.
- He has released albums.
- His released albums are numerous.
- He released a collection.
- His collection contains greatest hits.
- His collection was released in 1999.
- The release of his albums occurred after he began his career.
He has been performing since the age of 8, when he joined a band in his hometown of Guadalajara and has since
gone on to record six studio albums and several singles of his own original material.
- He has been performing.
- He started performing at the age of 8.
- He joined a band.
- He joined a band at the age of 8.
- His band was in Guadalajara.
- His hometown is Guadalajara.
- He has recorded studio albums.
- The number of studio albums he has recorded is six.
- He has recorded singles.
- He has several singles.
- His studio albums are his own original material.
- His singles are his own original material.
- His recording of studio albums occurred after he joined a band.
- His recording of singles occurred after he joined a band.
She is also the former President of the Malaysian Chinese Association (MCA) from 2010 to 2013.
- She had a role in the Malaysian Chinese Association.
- Her role in the Malaysian Chinese Association was as its President.
- Her tenure as President of the Malaysian Chinese Association started in 2010.
- Her tenure as President of the Malaysian Chinese Association ended in 2013.
- MCA is another name for the Malaysian Chinese Association.
During his professional career, McCoy played for the Broncos, the San Diego Chargers, the Minnesota Vikings,
and the Jacksonville Jaguars.
- McCoy had a professional career.
- McCoy played for the Broncos.
- McCoy played for the San Diego Chargers.
- The Chargers are from San Diego.
- McCoy played for the Minnesota Vikings.
- The Vikings are from Minnesota.
- McCoy played for the Jacksonville Jaguars.
- The Jaguars are from Jacksonville.
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Miller has been described as the architect of Trump’s controversial immigration policies, and has previously worked
for Alabama Senator Jeff Sessions on immigration issues.
- Miller has been described.
- Miller has been described as an architect.
- Miller has been described as an architect of Trump’s controversial immigration policies.
- Trump has immigration policies.
- Trump’s immigration policies are controversial.
- Miller worked for Jeff Sessions.
- Jeff Sessions is a Senator.
- Jeff Sessions represents Alabama.
- Miller worked on immigration issues.
- Miller’s work for Jeff Sessions involved immigration issues.
Her work is often described as whimsical and dreamlike.
- She has work.
- Her work has been described.
- Her work is described as whimsical.
- Her work is described as dreamlike.
- The description of her work as whimsical has occurred often.
- The description of her work as dreamlike has occurred often.
He graduated from the United States Military Academy in 1952, and then went on to serve in the
United States Air Force.
- He graduated from the United States Military Academy.
- His graduation from the United States Military Academy occurred in 1952.
- He served in the United States Air Force.
- His service in the United States Air Force occurred after his graduation from the United States Military Academy.
He is best known for his roles in the films Memories of Murder (2003), The Host (2006), (...) and Parasite (2019).
- He had a role in Memories of Murder.
- Memories of Murder is a film.
- Memories of Murder was released in 2003.
- He had a role in The Host.
- The Host is a film.
- The Host was released in 2006.
- He had a role in Parasite.
- Parasite is a film.
- Parasite was released in 2009.
- His role in Memories of Murder is one of his best known.
- His role in The Host is one of his best known.
- His role in Parasite is one of his best known.
Song Kang-ho was born in Gongju, South Korea in 1967.
- Song Kang-ho was born.
- Song Kang-ho’s birth occurred in Gongju.
- Song Kang-ho’s birth occurred in South Korea.
- Song Kang-ho’s birth occurred in 1967.
- Gongju is in South Korea.
He studied theater at Chung-Ang University in Seoul.
- He studied.
- He studied theater.
- He studied at Chung-Ang University.
- His study of theater occurred at Chung-Ang University.
- Chung-Ang University is located in Seoul.
His breakthrough came with the leading role in the acclaimed crime-drama film Memories of Murder in 2003.
- He had a breakthrough.
- His breakthrough was based on a leading role.
- His breakthrough was based on his role in Memories of Murder.
- His breakthrough occurred in 2003.
- He had a leading role.
- He had a leading role in Memories of Murder.
- Memories of Murder is a film.
- The genre of Memories of Murder is crime-drama.
- Memories of Murder is acclaimed.
- Memories of Murder was released in 2003.
This was followed by the monster movie The Host in 2006, which became the highest-grossing film in
Korean history at the time.
- This was followed by The Host.
- The Host is a movie.
- The Host was released in 2006.
- The genre of The Host is monster movie.
- The Host became the highest-grossing film in Korean history.

Table 10: Manually decomposed examples used for in-context examples by DR-ND.
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Abstract
Large language models (LLM) are now a very
common and successful path to approach lan-
guage and retrieval tasks. While these LLM
achieve surprisingly good results it is a chal-
lenge to use them on more constrained re-
sources. Techniques to compress these LLM
into smaller and faster models have emerged
for English or Multilingual settings, but it is
still a challenge for other languages. In fact,
Spanish is the second language with most na-
tive speakers but lacks of these kind of re-
sources. In this work, we evaluate all the
models publicly available for Spanish on a set
of 6 tasks and then, by leveraging on Knowl-
edge Distillation, we present Speedy Gonza-
les, a collection of inference-efficient task-
specific language models based on the AL-
BERT architecture. All of our models (fine-
tuned and distilled) are publicly available on:
https://huggingface.co/dccuchile.

1 Introduction

The utilization of learned dense representations
of text is nowadays a common and successful ap-
proach for different kind of information retrieval
(IR) tasks (Yates et al., 2021). These learned rep-
resentations are usually obtained by training a lan-
guage model using large collections of texts from
the web. Two key aspects to watch to make the
most of these models are size and speed of them.

The size of these models has grown overtime
and now very large language models (LLM) are
common, with models that range from hundred
of millions to billions of parameters. These pre-
trained models are not only heavy on memory re-
quirements but also on the operations they do on
every inference, which is a bottleneck when trying
to deploy these models for tasks that are expected
to be fast such as question answering or semantic
search.

These LLMs are usually trained on English
by big technology companies using web-scale

datasets and substantial computational resources.
Prominent examples include the well-known GPT-
3 model (Brown et al., 2020). For languages other
than English the available models are typically vari-
ants of BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) or ALBERT (Lan et al., 2020). In
the case of Spanish, which is one of the five most
spoken languages in the world and the second with
most native speakers, the available models range
from 5M to 335M of parameters. In Figure 1 we
showed how different Spanish pre-trained models
compare in terms of model size (number of param-
eters) and inference speed (MACs).

Despite the remarkable performance of these
LLMs across a range of tasks, it remains a chal-
lenge to utilize them effectively in computing envi-
ronments that are constrained by limited resources,
such as web or mobile applications.

New techniques to address this problem have
emerged for English (Tang et al., 2019; Turc et al.,
2019; Sanh et al., 2019; Wang et al., 2020; Jiao
et al., 2020) or Multilingual (Jiao et al., 2021) mod-
els. These typically leverage on different kinds
of Knowledge Distillation (Hinton et al., 2015)
to compress the results of a large and performant
model into another one which is typically lighter
and more inference efficient. For other languages
this is still an open challenge, where we lack from
this kind of resources.

In this work we try to close this gap with new
resources (inference-efficient models) for the Span-
ish language. Our contributions are the following:

• We perform a comprehensive evaluation of all
publicly available Spanish pre-trained models,
which are trained on general-domain corpora,
by fine-tuning them across six different tasks
and eight datasets.

• By selecting the best model on each evaluated
dataset, we distilled its knowledge into lighter
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Figure 1: The size (number of parameters) and speed (MACs) of every Spanish model evaluated on this work.
MACs are measured using a single sequence of length 512, which is the maximum sequence length of all the
evaluated models.

ALBERT models, achieving more lighter and
inference efficient models, while retaining
most of the task performance of the bigger
counterparts.

• We make our newly created resource, Speedy
Gonzales, consisting of over 140 fine-tuned
and distilled models, publicly accessible
on the HuggingFace Hub at: https://
huggingface.co/dccuchile.

2 Related Work

Transformers, introduced by Vaswani et al. (2017)
have become the default architecture for text-
related tasks. Transformer encoders like BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) are some of the most
popular, by its ability to encode complex relations
on texts by training on large collections of texts,
with the training task consisting of corrupt some
parts of a text sequence and train a model to recon-
struct the correct sequence.

While models with billions of parameters have
become common for English language (Brown
et al., 2020), it is not the case for most other lan-
guages, which are typically restricted to hundreds
of millions of parameters. For Spanish language,
which is one of the most spoken languages in the
world, the models available follow the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) architecture and are
described in further detail in Section 4.2.

Several ways to compress these models have
been proposed through the years. The most com-

mon ones are quantization (Gholami et al., 2021),
pruning (Blalock et al., 2020) and knowledge dis-
tillation (Hinton et al., 2015).

Network quantization compresses the original
network by reducing the number of bits required to
represent each weight, resulting in a lighter model.
In the case of BERT, examples of these kinds of
methods are TernaryBERT (Zhang et al., 2020) and
BinaryBERT (Bai et al., 2021) where they were
able to reduce the weight size to 2 and 1 bit re-
spectively, while maintaining most of the original
BERT performance.

The technique of pruning aims to reduce the
number of connections (weights) in a neural net-
work, which results in a reduction of the model
size and also a very sparse pattern of the weights.
Frankle and Carbin (2019) showed that in most
feed-forward neural networks it is possible to find
a subnetwork that achieves similar or better accu-
racy.

In Knowledge Distillation (KD) (Hinton et al.,
2015) the knowledge learned by a big and strong
model, the teacher model, is transferred to a lighter
model, the student model, by forcing this student
to mimic the teacher. Multiples ways of knowledge
distillation have been proposed (Gou et al., 2021).

Tang et al. (2019) uses KD to transfer the knowl-
edge from BERT to lighter RNNs. Turc et al.
(2019) proposes pre-training compact BERT mod-
els and then using task-specific KD to achieve bet-
ter results. Sanh et al. (2019) introduces a task-
agnostic scheme where KD is used on the pre-
training task. Wang et al. (2020) and Jiao et al.
(2020) proposed different methods exclusive for
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Figure 2: The figure provides a visual representation of the Knowledge Distillation framework applied in this work.
In line with common practices, the framework includes both a distillation loss between the teacher and student
models and a cross-entropy loss between the gold labels and the student’s predictions, as indicated by the dashed
line.

Transformers, to directly distill the knowledge from
the self-attention layers of the teacher model to the
student model.

Our work is similar to Turc et al. (2019) by
proposing the use of compact Transformers but we
use the ALBERT architecture instead of the BERT
one. We also use the idea from Sanh et al. (2019)
of reusing the layers of a pre-trained model, instead
of random initializing a new one. Differently from
that work, that has to choose which layers to reuse,
we only adjust the number of layers (and thus, the
inference speed) since all the ALBERT layers are
shared. Another difference with those two works
is that in our work we skip pre-training (or KD on
the pre-training task) and directly apply KD on the
task-specific phase.

3 Methodology

In pursuit of our goal to have efficient models for
Spanish in various tasks, we employ the method
of Knowledge Distillation. This method will be
further elaborated in the subsequent section.

3.1 Knowledge Distillation

The technique of Knowledge Distillation aims to
transfer the knowledge learned from a big and ca-
pable model, usually called the teacher model, say
MT , to a more restricted model, called the student
model, say MS . To achieve this objective, we train
MS to imitate MT . There are multiple ways to imi-
tate MT (Gou et al., 2021), in this work we use the
simple, yet powerful approach, of directly mimic
the output of MT given a input text.

Formally, we define the distillation objective as

LKD:

LKD = LO(MT (x),MS(x))

Where LO is a loss function that works on the
logits of MT and MS . The most common choices
for this loss are the cross entropy loss, the KL-
divergence loss and the mean-squared error loss.
In the case of KL-divergence or cross-entropy loss
is it a common practice to use soft-targets (Hinton
et al., 2015) instead of direct logits, which means to
apply a softmax with temperature T (with T >= 1)
to MT (x) and MS(x) in order to produce a soft
probability distribution over the classes.

Also, typically we use not only the output of MT

but also the gold labels from the training dataset.
The complete loss, accounting these labels can be
seen as:

L = αLCE + (1− α)LKD

Where LCE is the traditional cross-entropy loss
against gold labels and α defines the weight of each
loss.

An overview of the entire framework is shown
in Figure 2.

3.2 Approach
Our approach has two stages, in the first one, we
fine-tune a set of candidate teacher models in a
set of tasks of interest. Then, for each task we
select the best teacher model (which we define as
the model with minimum validation loss among all
candidate models) as the teacher model for that task.
In stage two, we apply KD using these teachers
models and a set of students models.
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The complete set of evaluated tasks and possible
teacher models is described in Section 4.

3.3 Student Models

For the student models, we rely on the ALBERT
(Lan et al., 2020) architecture. This architecture
is lighter in terms of parameters because all layers
are weight-tied. Specifically, we adopt ALBETO
models (Cañete et al., 2022) models, adhering to
the ALBERT architecture and exclusively trained
for the Spanish language. We considered ALBETO
tiny, which is the lightest models of all ALBETO
models and also, inspired by Sanh et al. (2019) we
propose models with less layers (and thus faster)
that match the configuration of ALBETO base, ex-
cept on the number of layers. These lighter AL-
BERTs are then initialized with the weights of AL-
BETO base. These models are noted in the tables
as ALBETO base-n, where n is the number of lay-
ers of the model.

3.4 Implementation Details

All our code uses Python and PyTorch (Paszke
et al., 2019) as machine learning framework and is
publicly available on GitHub1.

The evaluation of the inference speed of the pro-
posed models is performed through the utilization
of the Multiply-Accumulate (MACs) metric, which
provides a hardware-agnostic evaluation and is thus
considered to be a more robust evaluation criterion.
This measurement is conducted using the THOP2

library, which operates on PyTorch models, to ac-
curately measure MACs. In addition, to provide
a more intuitive understanding of the models’ per-
formance, actual inference speeds on commonly
used hardware configurations are also reported in
Section 3.5.

For KD, we first experimented using the three
different losses, with different parameters α and
T using Optuna (Akiba et al., 2019). These exper-
iments showed that the best results where using
α = 0 and T = 1. With that parameters, while the
three different losses works well, KL-divergence
was slightly better, so we conducted the rest of the
experiments using that configuration.

For both stages of our approach, the only pre-
processing applied was tokenization of the input
texts according to the subword vocabulary of every
model.

1https://github.com/dccuchile/speedy-gonzales
2https://github.com/Lyken17/pytorch-OpCounter

For the first stage, which is fine-tuning of the
possible teacher models we rely heavily on the
HuggingFace Transformers (Wolf et al., 2020) li-
brary. For all models and tasks, we run a grid
search over the hyperparameters batch size = {16,
32, 64} and epochs = {2, 3, 4}. We experimented
with learning rate = {1e-5, 2e-5, 3e-5, 5e-5} for all
models except ALBETO large, xlarge, and xxlarge,
where we used learning rate = {1e-6, 2e-6, 3e-6,
5e-6}, which are the same hyperparameters used
on (Cañete et al., 2022).

For the second stage, which is applying KD, the
implementation depended on the task. For text clas-
sification tasks we do the KD between the pooled
output of both models. For sequence tagging and
question answering tasks, we aligned the first to-
ken of every word (because the vocabulary of both
models is not always the same, which implies that
the subword tokenization can result in a different
number of tokens) and then we do the KD using
the sequence of representations of first tokens for
every word in the text between the two models. We
note that this approach is not new and is almost the
same applied on the original BERT (Devlin et al.,
2019) for sequence tagging tasks, that was adapted
to work on KD.

For the experiments on this second stage we did
a grid search using the hyperparameters: learning
rate = {5e-5, 1e-4}, batch sizes = {16, 32, 64} and
epochs = 50, we also use early stopping with a
tolerance of 10 epochs of no improving.

To accelerate experimentation, we employ a
teacher output cache, with its impact on training
times discussed in Appendix C.

In Tables 2 and 3 we report results of the models
on the test set of each dataset. These models were
selected based on the best results on the valida-
tion set among the grid search experiments. These
models are also the ones publicly available on the
HuggingFace Hub.

3.5 Inference Speed on Common Hardware
In our work we measure inference speed in terms
of Multiply-Accumulate (MAC) operations. This
metric is advantageous as it is agnostic to hardware
variations. However, it can be useful to also report
the actual inference speed of models on common
hardware, as this can provide a more intuitive un-
derstanding of their performance.

Table 1 presents the average number of infer-
ences per second that can be achieved on two
different hardware platforms, a CPU with an In-
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Model Inferences per second
CPU GPU

Fine-tuning
BETO uncased 3.96 107.19
BETO cased 4.26 109.02
DistilBETO 9.12 217.40
ALBETO tiny 32.53 539.61
ALBETO base 4.50 108.62
ALBETO large 1.29 33.62
ALBETO xlarge 0.35 11.72
ALBETO xxlarge 0.14 6.60
BERTIN 3.99 109.39
RoBERTa BNE base 3.82 107.77
RoBERTa BNE large 1.18 33.65

Task-specific Knowledge Distillation
ALBETO tiny 32.53 539.61
ALBETO base-2 31.08 625.30
ALBETO base-4 15.16 319.32
ALBETO base-6 10.45 213.53
ALBETO base-8 6.82 160.66
ALBETO base-10 6.01 128.38

Table 1: The number of inferences per second of each
model on two different hardware settings, CPU and
GPU.

tel Core i7-11700K and a GPU with a NVIDIA
GeForce RTX 3090. To account for variance in
the measurements, we first conducted 10 warm-
up inferences followed by 100 real measures for
each model. We then applied an aggressive out-
lier filtering method based on the modified Z-Score
(Iglewicz and Hoaglin, 1993) with a threshold of
0.75, which resulted in the removal of approxi-
mately 40-45% of the measures. The remaining
55-60% of the measures were used to calculate,
with very low variance, the average inference speed
(in milliseconds) and the number of inferences that
could be performed in one second, which serves
as a clearer illustration of the model’s inference
speed.

It is worth noting that the difference in speed
between the larger models and the proposed mod-
els trained using task-specific KD is substantial.
Specifically, on the CPU setting, which is repre-
sentative of popular serverless platforms used in
industry, the best model found in this study in terms
of task performance, ALBETO xxlarge, would take
several seconds for a single inference, making it un-
suitable for real-time user-facing applications. On
the other hand, if we consider our proposed faster

models, we can observe that ALBETO base-6 is
capable of executing more than 10 inferences per
second, which is a much more acceptable latency
for a real-time application.

4 Evaluating Spanish Pre-trained
Language Models

In order to achieve our goal of have efficient mod-
els for Spanish in a variety of tasks we first define
a set of tasks to evaluate those models. These tasks
are the same evaluated by Cañete et al. (2022) and
are described in Section 4.1. We then define a set of
possible teacher models, in particular, we wanted
to try every model that was pre-trained on general
domain Spanish text and is publicly available, there-
fore we exclude RigoBERTa (Serrano et al., 2022),
which is a DeBERTa (He et al., 2021) model for
Spanish that is not public and RoBERTuito (Pérez
et al., 2022) which is a RoBERTa-like model for
Spanish that was trained on Twitter datasets and
should be better suited for social media related
tasks. All considered models are described in Sec-
tion 4.2. After evaluating all models on each task,
we selected the model with lowest validation loss as
the teacher model for the task. The list of selected
models can be found in Appendix A.

4.1 Tasks and Data

4.1.1 Document Classification
The task of document classification consists on
the assignment of an entire document to a cate-
gory according to its semantic meaning. For our
evaluation we are using the Spanish portion of ML-
Doc (Schwenk and Li, 2018) which is a multilin-
gual dataset for document classification in eight
languages. MLDoc is based on the Reuters Cor-
pus (Lewis et al., 2004) and has four different
categories for its documents, which are: Corpo-
rate/Industrial, Economics, Government/Social and
Markets.

4.1.2 Paraphrase Identification
On Paraphrase Identification we aim to assess
whether two sentences share the same semantic
meaning. To evaluate our models in this task we are
using the Spanish subset of PAWS-X (Yang et al.,
2019). This dataset can be seen as a translation to
six different languages of the PAWS (Zhang et al.,
2019) dataset, where the train set is machine trans-
lated and the validation and test sets were translated
professionally by humans.
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Model
Text Classification

(Accuracy)
Sequence Tagging

(F1 Score)
Question Answering

(F1 Score / Exact Match)
MLDoc PAWS-X XNLI POS NER MLQA SQAC TAR / XQuAD

Fine-tuning
BETO uncased 96.38 84.25 77.76 97.81 80.85 64.12 / 40.83 72.22 / 53.45 74.81 / 54.62
BETO cased 96.65 89.80 81.98 98.95 87.14 67.65 / 43.38 78.65 / 60.94 77.81 / 56.97
DistilBETO 96.35 75.80 76.59 97.67 78.13 57.97 / 35.50 64.41 / 45.34 66.97 / 46.55
ALBETO tiny 95.82 80.20 73.43 97.34 75.42 51.84 / 28.28 59.28 / 39.16 66.43 / 45.71
ALBETO base 96.07 87.95 79.88 98.21 82.89 66.12 / 41.10 77.71 / 59.84 77.18 / 57.05
ALBETO large 92.22 86.05 78.94 97.98 82.36 65.56 / 40.98 76.36 / 56.54 76.72 / 56.21
ALBETO xlarge 95.70 89.05 81.68 98.20 81.42 68.26 / 43.76 78.64 / 59.26 80.15 / 59.66
ALBETO xxlarge 96.85 89.85 82.42 98.43 83.06 70.17 / 45.99 81.49 / 62.67 79.13 / 58.40
BERTIN 96.47 88.65 80.50 99.02 85.66 66.06 / 42.16 78.42 / 60.05 77.05 / 57.14
RoBERTa BNE base 96.82 89.90 81.12 99.00 86.80 67.31 / 44.50 80.53 / 62.72 77.16 / 55.46
RoBERTa BNE large 97.00 90.00 51.62 61.83 21.47 67.69 / 44.88 80.41 / 62.14 77.34 / 56.97

Task-specific Knowledge Distillation
ALBETO tiny 96.40 85.05 75.99 97.36 72.51 54.17 / 32.22 63.03 / 43.35 67.47 / 46.13
ALBETO base-2 96.20 76.75 73.65 97.17 69.69 48.62 / 26.17 58.40 / 39.00 63.41 / 42.35
ALBETO base-4 96.35 86.40 78.68 97.60 74.58 62.19 / 38.28 71.41 / 52.87 73.31 / 52.43
ALBETO base-6 96.40 88.45 81.66 97.82 78.41 66.35 / 42.01 76.99 / 59.00 75.59 / 56.72
ALBETO base-8 96.70 89.75 82.55 97.96 80.23 67.39 / 42.94 77.79 / 59.63 77.89 / 56.72
ALBETO base-10 96.88 89.95 82.26 98.00 81.10 68.29 / 44.29 79.89 / 62.04 78.21 / 56.21

Table 2: Results of every evaluated model on the test set of each task. On Text Classification datasets (MLDoc,
PAWS-X, XNLI) we use Accuracy as metric. For POS and NER, which are Sequence Tagging tasks, we report the
F1 Score. On Question Answering, we report two metrics, noted as F1 Score / Exact Match.

Model Parameters Speedup Score
Fine-tuning

BETO uncased 110M 1.00x 81.02
BETO cased 110M 1.00x 84.82
DistilBETO 67M 2.00x 76.73
ALBETO tiny 5M 18.05x 74.97
ALBETO base 12M 0.99x 83.25
ALBETO large 18M 0.28x 82.02
ALBETO xlarge 59M 0.07x 84.13
ALBETO xxlarge 223M 0.03x 85.17
BERTIN 125M 1.00x 83.97
RoBERTa BNE base 125M 1.00x 84.83
RoBERTa BNE large 355M 0.28x 68.42

Task-specific Knowledge Distillation
ALBETO tiny 5M 18.05x 76.49
ALBETO base-2 12M 5.96x 72.98
ALBETO base-4 12M 2.99x 80.06
ALBETO base-6 12M 1.99x 82.70
ALBETO base-8 12M 1.49x 83.78
ALBETO base-10 12M 1.19x 84.32

Table 3: The summary of results of every evaluated
model in terms of parameters, inference speedup and
overall score across tasks. The speedup is relative to
BETO models. The score column shows the average of
the metrics on all tasks.

4.1.3 Natural Language Inference
In the task of Natural Language Inference we
are given two sentences, an "hypothesis" and a
"premise", and our task is to determine if one en-
tails the other one, contradicts it or is neutral to it.
For this task we use the Spanish subset of XNLI
(Conneau et al., 2018), which, very similarly to
PAWS-X, offers a machine translated train set from
MultiNLI (Williams et al., 2018) and professionally
translated validation and test sets to 15 languages.

4.1.4 Part of Speech Tagging
The objective of the task of Part of Speech Tagging
is to label words within a sentence according to
its corresponding syntactic categories. There are
different categories of parts of speech, for example,
nouns, verbs, adjectives, adverbs, pronouns, etc. In
this task the dataset used was AnCora (Taulé et al.,
2008) which is included on the Spanish part of
Universal Dependencies (de Marneffe et al., 2021)
Treebank.

4.1.5 Named Entity Recognition
Named Entity Recognition is a sequence labeling
task in which the goal is to classify entities within
a text with their corresponding type. These types
are usually names of people, places, organizations
or miscellaneous. These entities can be formed by
more than one word, that is why the datasets typi-
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cally adopt the BIO annotation, which means for
a word that it can be the beggining (B) of a entity,
inside (I) a entity or out (O) of it. For this task the
dataset used as evaluation is from the shared task
of CoNLL-2002 (Tjong Kim Sang, 2002), we use
the Spanish subset of it.

4.1.6 Question Answering
There are different types of Question Answering
tasks. In this evaluation our focus is Extractive
Question Answering, that is, given a context text
and question about that context, point out the span
of words that fully answers the question. On this
task we considered four different datasets, which
are, MLQA (Lewis et al., 2020), SQAC (Gutiérrez-
Fandiño et al., 2022), TAR (Carrino et al., 2020)
and XQuAD (Artetxe et al., 2020). MLQA is a
multilingual dataset created by using English QA
instances and then professionally translated them to
six different languages, from these they provide a
validation and a test set, but they also provide a ma-
chine translated version of SQuAD v1.1 (Rajpurkar
et al., 2016) as train set to each of the languages, we
use the Spanish subsets of it. TAR offers a different
machine translated dataset from SQuAD v1.1 to
Spanish. XQuAD provides a test set obtained from
SQuAD v1.1 and professionally translated to 11 dif-
ferent languages. Following the setup by (Cañete
et al., 2020) we pair the train and validation sets
from TAR and the Spanish test set from XQuAD
as a single evaluation dataset. Finally, SQAC is the
only dataset evaluated that was built exclusively for
Spanish.

4.2 Models

4.2.1 BETO
BETO (Cañete et al., 2020) is the first Transformer
encoder pre-trained exclusively on Spanish corpora.
It is BERT-base sized model that has two versions
available, uncased and cased. They have an approx-
imate of 110M parameters and each have a vocabu-
lary of 31K BPE (Sennrich et al., 2016) subwords
which was constructed using SentencePiece (Kudo
and Richardson, 2018). Both models were trained
for 2M optimization steps on the SUC (Cañete,
2019) dataset.

4.2.2 ALBETO
ALBETO (Cañete et al., 2022) is a series of AL-
BERT (Lan et al., 2020) models for Spanish. There
are 5 different sizes, that range from 5M to 223M
parameters, which are tiny, base, large, xlarge and

xxlarge. The tiny model is similar to the one trained
on Chinese 3, the rest follow closely the configura-
tions trained on the original ALBERT work. They
share a vocabulary of 31K lowercase BPE (Sen-
nrich et al., 2016) subwords created using Sentence-
Piece (Kudo and Richardson, 2018). All ALBETO
models were trained on SUC (Cañete, 2019).

4.2.3 DistilBETO
DistilBETO (Cañete et al., 2022) is a lighter Trans-
former encoder based on the weights of BETO and
further pre-trained using the knowledge distillation
technique presented by (Sanh et al., 2019) on Dis-
tilBERT. It has 67M parameters and uses the same
lowercase vocabulary from BETO uncased.

4.2.4 RoBERTa-BNE
RoBERTa-BNE (Gutiérrez-Fandiño et al., 2022)
are two different sized RoBERTa (Liu et al., 2019)
models trained on Spanish using the National Li-
brary of Spain (BNE) (Gutiérrez-Fandiño et al.,
2022) corpus which is also the larger Spanish cor-
pus of this type to this date. The base model has
125M parameters while the large version has 355M.
Both version share a vocabulary of 50K BPE (Sen-
nrich et al., 2016) subwords.

4.2.5 BERTIN
BERTIN (de la Rosa et al., 2022) is a RoBERTa-
base model trained on the Spanish portion of the
mC4 (Raffel et al., 2020) dataset. It has the same
size, configuration and vocabulary of the RoBERTa-
BNE base model.

5 Results

Table 2 presents the results of each model across all
evaluated tasks. A general observation is that there
are two distinct behaviors among the tasks. Firstly,
there is minimal variation in performance between
smaller and larger models in certain tasks, as ev-
idenced by the comparable high scores achieved
by all models in the MLDoc and POS tasks. It
is hypothesized that these tasks are relatively sim-
ple, and as a result, the utilization of larger models
results in overparameterization.

Secondly, there are tasks where there is a no-
table difference in performance between smaller
and bigger models. This is evident in tasks such
as Paraphrase Identification (PAWS-X), Natural
Language Inference (XNLI), Named Entity Recog-
nition (NER) and Question Answering (MLQA,

3https://github.com/ckiplab/ckip-transformers
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SQAC, TAR/XQuAD), where the larger models
tend to outperform the smaller models. This sug-
gests that these tasks are more complex and require
a greater model capacity. Overall, the results of
this evaluation demonstrate the importance of con-
sidering the appropriate model size for a given task,
as overparameterization can lead to suboptimal in-
ference performance.

5.1 Text Classification

In our experiments on text classification tasks, we
observed that models with a depth of 8 or more
layers exhibit performance comparable to the best
larger models, while also demonstrating significant
improvements in inference time. Specifically, for
the XNLI dataset, we found that the ALBETO base-
8 model outperforms all other models evaluated in
our study.

5.2 Sequence Tagging

On NER we observe a significant difference be-
tween our faster models and the cased mod-
els (BETO, BERTIN, RoBERTa-BNE), especially
with BETO cased, which was the best model on
the task. Furthermore, we observe a difference
of almost 4.1 percentual difference (pd) between
ALBETO xxlarge, and BETO cased, even though
ALBETO xxlarge is one of the largest models in
the fine-tuning setting. Additionally, we find a dif-
ference of almost 6.3 pd between the cased and
uncased versions of BETO. Based on these ob-
servations, we posit that the difference in perfor-
mance between cased and uncased models can be
attributed to the additional hints provided by cap-
italization for solving the NER task. Specifically,
the names of persons, organizations, and places
typically begin with a capital letter. Furthermore,
our results from models trained using knowledge
distillation (KD) suggest that this hint is not easily
replicable in an uncased model.

5.3 Question Answering

The performance on Question Answering datasets,
as indicated in the final three columns of the table,
follows a pattern similar to that observed in text
classification tasks. The larger models, specially
ALBETO xxlarge and xlarge, exhibit higher perfor-
mance, while our proposed models featuring 8 or
more layers present results similar to those of the
base-sized models.

5.4 Discussion and Summary

It should be noted that some models performed
significantly worse than the others. Specifically,
the utilization of RoBERTa-BNE large on XNLI,
POS, and NER tasks produced subpar results. This
deviation from the performance of the same model
on other tasks, as well as the results reported
by Gutiérrez-Fandiño et al. (2022), suggests that
RoBERTa-BNE large may be particularly sensitive
to hyperparameter selection and may benefit from
additional hyperparameter tuning.

Our results show a general progression in per-
formance of our proposed models as the number
of layers increases. A clear trade-off between task
performance and inference speed is observed, with
a more pronounced effect in text classification and
question answering tasks, and a weaker effect in
sequence tagging. Additionally, at equal inference
speed, our models trained with task-specific distil-
lation exhibit improved performance compared to
DistilBETO, which was trained with task-agnostic
distillation, despite having significantly fewer pa-
rameters.

A similar effect can be observed when com-
paring ALBETO base-{8-10} to the original 12-
layer ALBETO base fine-tuned using standard tech-
niques, the former exhibits improved performance.
This underscores the vital role of task-specific
knowledge distillation in obtaining improved per-
formance for these faster models. Additional exper-
iments comparing straightforward fine-tuning and
the application of knowledge distillation on these
more compact and faster models are presented in
Appendix B.

Table 3 summarizes our findings. Following
the methodology of GLUE (Wang et al., 2018),
we compute a global score that encompasses all
tasks, which is displayed in the third column. The
score is the simple mean of the individual task
results. In the instance of Question Answering,
which provides two metrics, we opted for the F1
Score as the representative score for the task. The
ALBETO xxlarge model achieved the best overall
performance, although it was also the slowest and
had the second largest number of parameters. With
a mere 0.35 performance drop from the top model,
the RoBERTa BNE base and BETO cased mod-
els exhibited comparable results. The ALBETO
base-10, exhibiting a 19% improvement in speed
compared to BETO models, is our strongest pro-
posed model with a difference of approximately 0.5
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performance drop from the aforementioned models.
Our remaining models display varying degrees of
improved inference speed, at the expense of slight
reductions in task performance.

6 Conclusion and Future Work

In this work, we introduce Speedy Gonzales, a
novel resource for the Spanish NLP and IR com-
munities comprising a collection of computation-
ally efficient language models trained on six tasks
and eight datasets. By applying the Knowledge
Distillation technique, our models achieve compa-
rable performance to state-of-the-art models, while
showing faster inference speeds.

The full collection of models, including our pro-
posed models and all the teacher models fine-tuned
on the tasks considered, are made publicly avail-
able for further research.

We believe that the availability of these mod-
els and the expansion of the Knowledge Distil-
lation method to additional tasks will drive the
widespread utilization of large language models
in the Spanish speaking community, particularly
for individuals and organizations seeking to tackle
crucial information retrieval challenges, such as
question answering, text similarity and semantic
search, in both academic and industrial settings.

Potential directions for future research include
exploring the use of multiple teachers in the distil-
lation process and developing metrics to formally
evaluate the balance between inference speed and
task performance.
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A Selected Teacher Models

Table 4 presents the teacher models selected for
each task. The selection process is based on the
lowest validation loss achieved among the candi-
date teacher models that were fine-tuned for each
task.

Dataset Teacher Model
MLDoc RoBERTa BNE large
PAWS-X ALBETO xxlarge
XNLI ALBETO xxlarge
POS RoBERTa BNE base
NER RoBERTa BNE base
MLQA ALBETO xxlarge
SQAC ALBETO xxlarge
TAR / XQuAD ALBETO xxlarge

Table 4: The teacher models selected for each task.

B Importance of Knowledge Distillation

In addition to other experiments, we conducted
ablation experiments to evaluate the contribution of
Task-Specific Knowledge Distillation to the results
of our faster models based on ALBETO.

Tables 5, 6, and 7 compare the performance of
each of our proposed models under two training
settings: regular fine-tuning (FT) and task-specific
knowledge distillation (KD). For fine-tuning and
KD we followed the settings described in Section
3.4.

Overall, our results indicate that training using
KD generally yields better results than simple fine-
tuning, except for sequence tagging tasks (POS,
NER), where the results are mixed.

Table 5 presents the results of text classification
tasks, where we observe that KD outperforms fine-
tuning. In MLDoc, which is hypothesized as an
easier task, the performance is similar for both
training schemes and different models. However,
in PAWS-X and XNLI, we observe a significant
difference between the fine-tuning and KD training
schemes.

Table 6 presents the results for sequence tagging
tasks, where the performance of models under the

KD and fine-tuning settings are mixed. Unlike
other types of tasks, where the KD training method
is the clear winner, the results here vary. In the case
of NER, faster models perform better under the
fine-tuning setting, while those with larger compute
requirements perform better under the KD setting.

Finally, Table 7 presents the results for question
answering, where we observe that models trained
using KD generally exhibit better performance than
those trained using simple fine-tuning, with a sig-
nificant difference of around 3-4 percentage points,
depending on the model and dataset.

In summary, our results underscore the signifi-
cance of KD, particularly for harder tasks where the
effect is more pronounced, allowing for lighter and
faster models to achieve better task performance.

C Effect of Caching Teacher Outputs
During Training

A significant challenge in our experimental study
is the use of large and costly language models as
teacher models for our faster and lighter models.
Despite this, as discussed in Appendix B, the im-
portance of these teacher models is essential for
achieving better results with our proposed models.

Thus, the use of these teacher models poses chal-
lenges in terms of experimentation, particularly
when working with restricted budgets, as is often
the case in research outside big tech companies. To
mitigate this issue, we implement a cache for the
outputs of the teacher model, which allows us to
train and experiment more efficiently.

The idea behind this approach is straightforward:
since the teacher model is fixed during training,
its outputs on an input x remain unchanged during
different epochs, allowing us to compute them once
and reuse them in subsequent epochs.

Formally, suppose Ft and Fs represent the com-
putational cost of the forward pass for the teacher
and student models, respectively, on an entire
dataset, and E is the number of epochs used to train
our proposed models. By caching the teacher’s out-
put, the total cost of computing the forward pass
reduces from O(E · (Ft + Fs)) to O(Ft +E · Fs).

It is worth noting that typically Ft >> Fs, and
the number of epochs used in knowledge distilla-
tion is often higher than that used in simple fine-
tuning. To illustrate, our fine-tuning experiments
employ between 2 and 4 epochs, while our knowl-
edge distillation experiments use a maximum of 50
epochs.
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Model MLDoc PAWS-X XNLI
FT KD FT KD FT KD

ALBETO tiny 95.82 96.40 80.20 85.05 73.43 75.99
ALBETO base-2 94.67 96.20 73.45 76.75 72.08 73.65
ALBETO base-4 95.88 96.35 82.90 86.40 75.83 78.68
ALBETO base-6 95.88 96.40 85.20 88.45 78.42 81.66
ALBETO base-8 95.82 96.70 87.30 89.75 79.44 82.55
ALBETO base-10 95.65 96.88 88.80 89.95 79.62 82.26

Table 5: Comparison of the performance of our proposed models on text classification tasks on two settings:
fine-tuning and task-specific knowledge distillation.

Model POS NER
FT KD FT KD

ALBETO tiny 97.34 97.36 75.42 72.51
ALBETO base-2 97.46 97.17 71.70 69.69
ALBETO base-4 97.87 97.60 76.18 74.58
ALBETO base-6 98.03 97.82 78.10 78.41
ALBETO base-8 98.18 97.96 79.46 80.23
ALBETO base-10 98.17 98.00 80.46 81.10

Table 6: Comparison of the performance of our pro-
posed models on sequence tagging tasks on two settings:
fine-tuning and task-specific knowledge distillation.

To evaluate the impact of our cache implementa-
tion, we compare the training times of our proposed
models on the XNLI dataset, which is the largest
dataset considered in this study, for only 5 epochs
(1/10 of the epochs used in our primary experi-
ments) when using the cache and when not using
it. Table 8 reports the results of this experiment,
presenting the mean (noted as M) and standard de-
viation (noted as SD) over three runs. As expected,
the use of the cache reduces the training time sig-
nificantly, with results indicating that training time
is approximately 1/4 of the time required to train
without a cache. This reduction in training time
is expected since the forward pass of the teacher
model is the most costly operation and is computed
only in the first epoch and then retrieved in the next
4 epochs. Furthermore, this difference will increase
as the number of epochs increases.

In conclusion, while our cache implementation
is a simple engineering trick, it has a significant
impact on our experimentation phase in terms of
training time and required compute.
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Model MLQA SQAC TAR, XQuAD
FT KD FT KD FT KD

ALBETO tiny 51.84 / 28.28 54.17 / 32.22 59.28 / 39.16 63.03 / 43.35 66.43 / 45.71 67.47 / 46.13
ALBETO base-2 45.97 / 23.60 48.62 / 26.17 53.32 / 34.34 58.40 / 39.00 61.82 / 40.67 63.41 / 42.35
ALBETO base-4 59.99 / 35.69 62.19 / 38.28 65.66 / 45.54 71.41 / 52.87 68.91 / 49.07 73.31 / 52.43
ALBETO base-6 63.75 / 38.58 66.35 / 42.01 72.22 / 53.61 76.99 / 59.00 74.33 / 52.68 75.59 / 54.95
ALBETO base-8 64.99 / 40.58 67.39 / 42.94 75.22 / 56.43 77.79 / 59.63 75.47 / 54.11 77.89 / 56.72
ALBETO base-10 66.29 / 41.69 68.29 / 44.29 77.14 / 59.21 79.89 / 62.04 77.06 / 56.47 78.21 / 56.21

Table 7: Comparison of the performance of our proposed models on question answering on two settings: fine-tuning
and task-specific knowledge distillation.

Model
Training Time (hours)

Cache No Cache
M SD M SD

ALBETO tiny 3.8 3.1× 10−2 16.2 3.1× 10−3

ALBETO base-2 3.8 1.6× 10−3 16.3 3.6× 10−3

ALBETO base-4 4.2 3.3× 10−4 16.6 2.6× 10−3

ALBETO base-6 4.5 1.5× 10−3 17.0 1.5× 10−3

ALBETO base-8 4.8 1.9× 10−4 17.3 5.8× 10−3

ALBETO base-10 5.3 9.6× 10−3 17.6 5.6× 10−3

Table 8: Training times when using teacher cache vs
not using it. Table report the mean (M) and standard
deviation (SD) over three runs.
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Abstract

We explore the relationship between factuality
and Natural Language Inference (NLI) by in-
troducing FactRel – a novel annotation scheme
that models factual rather than textual entail-
ment, and use it to annotate a dataset of nat-
urally occurring sentences from news articles.
Our analysis shows that 84% of factually sup-
porting pairs and 63% of factually undermining
pairs do not amount to NLI entailment or con-
tradiction, respectively, suggesting that factual
relationships are more apt for analyzing media
discourse. We experiment with models for pair-
wise classification on the new dataset, and find
that in some cases, generating synthetic data
with GPT-4 on the basis of the annotated dataset
can improve performance. Surprisingly, few-
shot learning with GPT-4 yields strong results
on par with medium LMs (DeBERTa) trained
on the labelled dataset. We hypothesize that
these results indicate the fundamental depen-
dence of this task on both world knowledge and
advanced reasoning abilities.

1 Introduction

In recent years, the concept of factuality in news
media has garnered increasing attention. Studies
increasingly examine the relation between facts -
as presented in news coverage - and phenomena
such as political polarization, misinformation and
fake news (Roy and Goldwasser, 2020; Levy, 2021;
Bakshy et al., 2015; Garimella et al., 2021). As a
result, the ability to model factual relations between
claims becomes increasingly important. This has
led to a line of work on automated fact-checking,
which involves textual pipelines for detecting and
evaluating factual claims (Zeng et al., 2021).

In automatic fact-checking, fact verification is
predominantly addressed via the Natural Language
Inference (NLI) task, also known as Recognizing
Textual Entailment (RTE) (Zeng et al., 2021; Arana-
Catania et al., 2022; Nie et al., 2018; Sathe et al.,

2020), which has been used for decades for evalu-
ating natural language understanding capabilities
(Poliak, 2020). NLI is traditionally formulated as a
categorical classification task between a premise p
and a hypothesis h, where p can either contradict,
entail or be neutral with respect to h. Large NLI
datasets such as SNLI and MNLI (Bowman et al.,
2015; Williams et al., 2018) have become highly
popular, leading NLI to be adapted to various uses
such as zero-shot classification (Yin et al., 2019)
and semantic similarity (Reimers and Gurevych,
2019). In fact verification, NLI is used to evaluate
the relations between a candidate fact and trusted
pieces of evidence (Zeng et al., 2021).

However, the adequacy of NLI for analyzing
factual relationships in news media is hindered by
two primary reasons, relating to the nature of the
task as well as to the characteristics of commonly
used NLI datasets. First, large NLI datasets such
SNLI and MNLI define the pairwise relationship
in terms of necessity of meaning (Bowman et al.,
2015; Williams et al., 2018). Thus, in MNLI an en-
tailment is defined to be the case whereby a hypoth-
esis “is necessarily true or appropriate whenever
the premise is true”, and similarly a contradiction
is when the hypothesis “is necessarily false or inap-
propriate whenever the premise is true” (Williams
et al., 2018). However, these types of relationships
may be too restrictive for the analysis of media
discourse, where explicit contradictions and entail-
ments are likely to be rare, as such discourse tends
take place in the margins of plausibility.

Secondly, texts in popular NLI datasets consider-
ably differ from news texts. While sentences in NLI
datasets tend to be short, simple, highly generic and
convey a single idea or statement, media sentences
tend to be longer, more complex, more specific and
convey multiple pieces of information.

A common feature of NLI datasets such as RTE,
SNLI and MNLI is that while premises are natu-
rally occurring texts, the hypotheses are specifically
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written to correspond to the categories (Chatzikyr-
iakidis et al., 2017; Williams et al., 2018). While
this method is effective in generating large amounts
of data, constructed hypotheses are likely to ex-
press a simple relationship to the premise and thus
not resemble pairs of naturally occurring sentences.
Additionally, Chatzikyriakidis et al. (2017) notes
that these datasets feature strictly logical relation-
ships and stresses the need for datasets capturing
other sorts of inferential relationships.

In this work, we set out to examine the relation-
ship between NLI and textual factuality. For this
purpose, we have developed a novel annotation
scheme that expresses factual rather than textual
entailment, encoding each pair of sentences with
the relation of factual support, factual undermin-
ing, or neither. We have annotated a new dataset
of naturally occurring sentence pairs from news
media using both our factual entailment scheme
and NLI, enabling a comparison of the schemes
on news media. We also check the ability of re-
cent generative LLMs (GPT-4) to generate such
pairs correctly. We end with a set of experiments
that demonstrate the ability to learn the factual en-
tailment task using fine-tuned models as well as
generative LLMs, and draw conclusions regarding
the task’s relation to real world knowledge in com-
parison to NLI. Overall, we analyze differences
between NLI and factual entailment in their scope,
relevance to news text and dependence on world
knowledge, and show potential for new ways to
model factual relations.

2 Factual Entailment

For the purpose of exploring the relationship be-
tween factual relations and textual entailment, we
have developed FactRel, a novel annotation scheme
encoding the factual entailment between pairs of
sentences. Similarly to NLI, FactRel is a 3-category
pairwise classification task. Given a premise p and
a hypothesis h, p can either factually support h
(SUPPORT), factually undermine h (UNDERMIN-
ING), or be factually neutral w.r.t h (NEUTRAL).
p is said to factually support h when p being true
would make h more plausible or likely to be true,
compared to a situation in which the truth value of
p is unknown. p is said to factually undermine h
when p being true would make h less plausible or
likely to be true, compared to a situation in which
the truth value of p is unknown. Finally, p is said to
be factually neutral w.r.t to p when p’s truth has no

bearing on the plausibility of h, and the likelihood
of h would not change if p was known to be either
true or false.

While both NLI and FactRel encode a ternary
entailment relation between pairs of sentences, the
factual relation encoded by FactRel is quite differ-
ent from the one encoded by NLI. For example,
consider the following pair of sentences:

(1) p. “You can’t run a festival or you can’t run
a nightclub or a live-music gig with social
distancing,” Lord said.

h. Peter Marks, the CEO of Rekom,
Britain’s largest specialist late-night bar
operator, told Insider the company’s
venues were set to open on June 21 “with-
out COVID measures.”

The above example exhibits a relation of factual
SUPPORT while its NLI label is NEUTRAL. The
hypothesis matches the premise and exemplifies it,
but the premise does not necessitate the hypothesis.

A parallel example can be observed in the fol-
lowing pair of sentences:

(2) p. FILE – In this April 12, 2021 file photo,
people queue outside a Hermes store in
Mayfair in London.

h. Sales of luxury apparel, jewelry, leather
goods and beauty products plunged to
217 billion euros in the pandemic year
of 2020, from 281 billion euros in 2019,
shedding six years of growth.

This example exhibits a relation of factual UNDER-
MINING while its NLI label is NEUTRAL. There is
factual tension between the premise and hypothesis,
as the premise can be considered a counter-example
to the hypothesis, but it does not necessitate the hy-
pothesis’ falsity.

There are, however, cases in which the two
schemes converge to the same relation. For ex-
ample,

(3) p. Woman accused of attempted murder af-
ter driving into President Trump support-
ers in Southern California

h. The vast majority of those cases tallied
by Weil involved motorists who ran into
those demonstrating for causes aligned
with the Black Lives Matter movement,
Weil said.
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Item Agreement % Kappa
Factual Entailment 95.2% 0.93
NLI 95.2% 0.85

Table 1: Intercoder reliability for annotations of NLI
and factual entailment, showing raw agreement rate and
Cohen’s Kappa.

This example is factually NEUTRAL, and its NLI
label is NEUTRAL as well.

3 Dataset

3.1 Construction

The core dataset comprises 1,507 sentence pairs
sampled from 211 news articles appearing in di-
verse English-language digital news outlets in the
period 2020-2022. Pairs were sampled from the
same news article in order to increase the likelihood
of the pairs having a non-neutral relationship. The
sentence pairs were independently labelled by two
annotators – one of the authors and a research assis-
tant – with a subset annotated by both for calculat-
ing inter-coder reliability (Table 1). Annotators are
instructed to categorize only non-negligible rela-
tions of support and undermining as such. Conflicts
were resolved by committee consultation.

The core dataset is augmented by two additions.
First, a subset of 500 sentence pairs from the MNLI
dataset was annotated with factual entailment, for
the purpose of examining differences between the
MNLI dataset and the proposed dataset. Secondly,
a synthetic dataset was generated using GPT-4 on
the basis of the training set split from the core
dataset. Each sentence pair in the training set was
sent to GPT-4 accompanied by an explanation of
the factual relationship task, the annotated label for
that pair, and the definition of the label. GPT-4 was
asked to generate 10 diverse examples possessing
the same label, modelled on the sentence pair from
the annotated dataset (see appendix A for prompts).
Thus, the synthesized addendum is 10 times larger
than the core training set and consists of 12,050
pairs. A subset of 500 GPT generated pairs was
randomly sampled for manual validation, showing
that in 98.4% of the pairs the manual labelling is
consistent with GPT.

3.2 Analysis

In the core dataset, 93% of sentence pairs are NLI-
neutral, whereas a smaller share of 70% are fac-
tually neutral (see Table 2). This indicates that

Factual / NLI Contra. Entail. Neutral
Support 0 48 245
Undermining 67 0 113
Neutral 0 0 1130

Table 2: Cross-tabulation between NLI and Factual En-
tailment, core dataset.

Factual / NLI Contra. Entail. Neutral
Support 5 155 67
Undermining 174 1 2
Neutral 17 10 69

Table 3: Cross-tabulation between NLI and Factual En-
tailment, MNLI subset.

non-neutral factual relationships are significantly
more common in news media than non-neutral NLI
relationships. In terms of length, we observe a
significant difference between FactRel and NLI
datasets – the average number of tokens per sen-
tence in FactRel is 20.2, compared to 10.1 and
15.01 in the respective training splits of SNLI and
MNLI.

The dual annotation of the dataset with factual
entailment and NLI labels allows us to examine
the relationship between the two. We examine the
correlation between the labels utilizing Cramér’s V
association measure for discrete variables. While
factual categories are strongly correlated with the
categories in the MNLI subset (ϕc = 0.72), the
correlation is lower in the core dataset of news sen-
tence pairs (ϕc = 0.49). In the core dataset, 84%
of factually supporting pairs and 63% of factually
undermining pairs do not amount to entailment or
contradiction, respectively (Table 2). In the MNLI
subset, the numbers are respectively 32% and 2%
(Table 3). This discrepancy likely indicates how in
real news discourse, factual relations are increas-
ingly untangled from semantic necessity, compared
to datasets such as MNLI which contain sentences
specifically written to form relations of semantic
necessity.

4 Experiments

We tackle the task of factual entailment with several
types and sizes of language models.

Baseline model. As a simple baseline, we em-
bed the premise and hypothesis using the UAE-
Large-V1 encoder (Li and Li, 2023) and calculate
the cosine similarity between them, on which we
train a decision tree with a max depth of 10.
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Model F1MAC ACC
Baseline (Cosine similarity) 0.38 0.61
Stock NLI (no training) 0.54 0.72
GPT-4 zero-shot 0.65 0.80
GPT-4 3-shot 0.70 0.81
Fine-tuned GPT-3.5 0.69 0.78
DeBERTa-NLI / Focal loss 0.68 0.8

Table 4: Top performing models, core training set

Zero shot and Few Shot (no training). We use
two models in a zero-shot setting. First, we uti-
lize a state-of-the-art NLI model trained on many
NLI datasets (Laurer et al., 2022). The NLI model,
based on DeBERTa V3 large (He et al., 2021), was
used as if the NLI categories are equivalent to Fac-
tRel categories (e.g., CONTRADICTION equals
UNDERMINING). Second, we utilize GPT-4 in a
zero-shot setting provided only with a description
of the task and the categories. We additionaly use
GPT-4 in a 3-shot setting, adding three example
pairs, one for each category.

Trained Models. We fine-tune several en-
coder models: RoBERTa-base (Liu et al., 2019),
DeBERTa V3 large (He et al., 2021), and De-
BERTa V3 SOTA NLI checkpoint (Laurer et al.,
2022). Training variants included training with
class weights and utilizing focal loss. We also
fine-tune GPT-3.5 using OpenAI’s API with the
recommended settings. All the models were tested
using two types of training sets – the core training
set, and the augmented set with GPT-4 synthetic
pairs added. Full technical details of the training
setup are laid out in appendix B.

Macro-F1 results on the validation set for the
baseline model, the stock NLI model and the top
performing models are reported in Table 4 (see ap-
pendix C for full results). Table 5 examines the
effect of adding synthetic data to the training set.
Overall, the results show that while the task is learn-
able, it is not easy even for large pre-trained models.
GPT-4 performs surprisingly well in both zero-shot
and 3-shot settings, with GPT-4 3-shot being the
most performant model, matching the Macro-F1
of finetuned DeBERTa with slightly better accu-
racy. The inclusion of synthetic data enhances the
performance of the baseline model and DeBERTa-
NLI, but decreases the performance of fine-tuned
GPT-3.5.

Model F1MAC ACC
Baseline (Cosine similarity) 0.44 0.63
Fine-tuned GPT-3.5 0.63 0.77
DeBERTa-NLI / Focal loss 0.70 0.79

Table 5: Top trained models, augmented training set

5 Conclusion

In this paper we explored the relationship between
NLI and factual relations. For this purpose, we
designed a new annotation scheme for factual en-
tailment, FactRel; examined it in comparison to
NLI on a sample of annotated pairs from news cov-
erage; and examined the performance of various
models on the task. We have shown that factual en-
tailment relations are significantly more common
in news articles in comparison to semantic entail-
ment, thus underlining the shortcomings of NLI
when applied to naturally occurring text.

We have also shown that GPT-4 performs better
in a few-shot setting than smaller models trained
on the entire training set. Moreover, GPT-4’s per-
formance even in a zero-shot setting is competitive
with other models. The success of these LLMs,
even with significantly less data, can give us in-
sight on the challenge involved in the FactRel task
and how it differs from NLI.

NLI is a fundamentally semantic task, as deter-
mining whether p entails or contradicts h hinges
on understanding the meaning of the words and
concepts employed in both. Thus, if p semantically
entails h, then h itself must be included either ex-
plicitly or implicitly in p itself. The relations are
therefore to be found in the meaning of the words.
Modelling factual relationships, on the other hand,
also requires a significant amount of background
knowledge on the referents of the words, a de-
tailed world model, and nuanced reasoning abil-
ities. Thus, in order to identify that the premise
“Twitter has locked Trump’s account for 12 hours,
and required the removal of the tweets” supports
the hypothesis “Facebook locked Trump’s account
for 24 hours following two policy violations”, it
is required to not only understand the words and
concepts, but to also be able to infer why a social
network might lock one’s account, and why such
actions on two social networks are likely to co-
occur. It is thus hypothesized that LLMs that have
broad world knowledge, and especially those that
excel at reasoning such as GPT-4, are well placed
for this task, and their world knowledge and rea-
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soning capabilities can compensate for decreased
exposure to training data.

Finally, the addition of synthesized data im-
proves performance of the top medium size LM,
showing that data synthesis can be successfully em-
ployed on this task. However, this improvement is
not consistent for all configurations.

Limitations

In line with NLI datasets, FactRel uses discrete clas-
sification labels. While the dataset distinguishes
between semantic entailment and contradiction and
(mere) factual support and undermining, it does
not quantify the amount of support or undermining.
However, the modelling of factual relationships can
benefit from a probabilistic framework, which we
leave to future research.
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A Synthetic Dataset

The synthetic component was created by generating
10 synthetic examples for each annotated sample
in the training set, using GPT-4.

The following system prompt was used:

SYSTEM PROMPT

You are an advanced synthetic dataset genera-
tor.

For factual support samples, the following
prompt was used:

FACTUAL SUPPORT PROMPT

’Factual support’ is a relationship between
sentences A and B whereby A being true
increases the likelihood of B being true.

For example:
A: {premise}
B: {hypothesis}

Generate 10 more pairs of sentences
with a factual support relationship. The sen-
tences should be diverse and reflect the type
of real life sentences normally found in news
discourse. The sentences should resemble the
provided example but should also vary. Like
the provided example, the generated samples
should not be overly simple. Each sentence
pair should be separated with two newlines.

Within each pair, the sentences should
be separated with a single newline. Each
sentence should start with ’A: ’ or ’B: ’. Apart
from that do not generate any other output.

For factual undermining samples, the following
prompt was used:

FACTUAL UNDERMINING PROMPT

’Factual undermining’ is a relationship
between sentences A and B whereby A being
true decreases the likelihood of B being true.
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For example:
A: {premise}
B: {hypothesis}

Generate 10 more pairs of sentences
with a factual undermining relationship. The
sentences should be diverse and reflect the
type of real life sentences normally found in
news discourse. The sentences should resem-
ble the provided example but should also vary.
Like the provided example, the generated
samples should not be overly simple. Each
sentence pair should be separated with two
newlines.

Within each pair, the sentences should
be separated with a single newline. Each
sentence should start with ’A: ’ or ’B: ’. Apart
from that do not generate any other output.

For factually neutral samples, the the following
prompt was used:

FACTUAL NEUTRALITY PROMPT

’Factual neutrality’ is a relationship between
sentences A and B whereby has no effect on
the likelihood of B being true.

For example:
A: {premise}
B: {hypothesis}

Generate 10 more pairs of sentences
with a factual neutrality relationship. The sen-
tences should be diverse and reflect the type
of real life sentences normally found in news
discourse. The sentences should resemble the
provided example but should also vary. Like
the provided example, the generated samples
should not be overly simple. Each sentence
pair should be separated with two newlines.

Within each pair, the sentences should
be separated with a single newline. Each
sentence should start with ’A: ’ or ’B: ’. Apart
from that do not generate any other output.

B Training Setup

The core dataset was randomly split to a training set
(80%) and a validation set (20%). The core training
set comprises 1205 samples, and the validation set
comprises 302 samples. With the addition of the
synthetically generated data and 500 pairs from
the MNLI dataset, the training dataset comprises
12,249 sentence pairs.

Training was performed on an Nvidia A100
GPU, using Huggingface Transformers (v4.34.0)
and PyTorch (v2.0.1). Fine-tuning was for 6
epochs, using early stopping on the validation loss.
Best performing checkpoint on the validation set
was kept. Otherwise, training used the default hug-
gingface hyperparameters. GPT-3.5 was finetuned
via the OpenAI API with the recommended default
settings.

C Full Experimental Results
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Table 6: Model results. Each entry indicates a single run.

Gradient
Training

Model Data Method F1MAC ACC

V DeBERTa-large-NLI Core + Synthetic Focal Loss 0.7 0.79
V DeBERTa-large-NLI Core + Synthetic Class Weights 0.65 0.77
V DeBERTa-large-NLI Core + Synthetic Regular 0.61 0.74
V DeBERTa-large-V3 Core + Synthetic Focal Loss 0.37 0.58
V DeBERTa-large-V3 Core + Synthetic Class Weights 0.61 0.75
V DeBERTa-large-V3 Core + Synthetic Regular 0.28 0.71
V RoBERTa-base Core + Synthetic Focal Loss 0.57 0.72
V RoBERTa-base Core + Synthetic Class Weights 0.6 0.73
V RoBERTa-base Core + Synthetic Regular 0.59 0.74
V DeBERTa-large-NLI Core Focal Loss 0.68 0.8
V DeBERTa-large-NLI Core Class Weights 0.66 0.75
V DeBERTa-large-NLI Core Regular 0.67 0.78
V DeBERTa-large-V3 Core Focal Loss 0.61 0.75
V DeBERTa-large-V3 Core Class Weights 0.47 0.56
V DeBERTa-large-V3 Core Regular 0.54 0.71
V RoBERTa-base Core Focal Loss 0.4 0.7
V RoBERTa-base Core Class Weights 0.45 0.61
V RoBERTa-base Core Regular 0.41 0.68
X GPT-4 None Zero-Shot 0.65 0.8
X GPT-4 3-shot Few-shot 0.7 0.81
V GPT-3.5 Core Regular 0.69 0.78
V GPT-3.5 Core + Synthetic Regular 0.63 0.77
X DeBERTa-large-NLI None No training 0.54 0.72
X Baseline Core Cos. Sim. + DecisionTree 0.38 0.61
X Baseline Core + Synthetic Cos. Sim. + DecisionTree 0.44 0.63
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D Zero-Shot and 3-shot Prompts

For zero-shot classification with GPT-4, the follow-
ing system prompt was used:

SYSTEM PROMPT

You are an advanced classifier.

And the following instruction prompt:

ZERO-SHOT CLASSIFICATION
PROMPT

You will classify the factual relationship
between sentences A and B. The factual
relationship can be either ’SUPPORTS’,
’UNDERMINES’, or ’NEUTRAL’. ’SUP-
PORTS’ means that A factually supports B
- if A is true, B is more plausible or likely
to be true. ’UNDERMINES’ means that A
factually undermines B - if A is true, then
B is less plausible or less likely to be true.
’NEUTRAL’ means that the truthness of A
has no implication on the likelihood of B
being true.

Here is a pair of sentences:
A: {premise}
B: {hypothesis}

Classify their factual relation. Respond
with ’SUPPORTS’, ’UNDERMINES’ or
’NEUTRAL’, and nothing else.

For 3-shot classification, the same system
prompt was used, in conjunction with the following
instruction prompt:

3-SHOT CLASSIFICATION PROMPT

You will classify the factual relationship
between sentences A and B. The factual
relationship can be either ’SUPPORTS’,
’UNDERMINES’, or ’NEUTRAL’. ’SUP-
PORTS’ means that A factually supports B
- if A is true, B is more plausible or likely
to be true. ’UNDERMINES’ means that A
factually undermines B - if A is true, then
B is less plausible or less likely to be true.
’NEUTRAL’ means that the truthness of A
has no implication on the likelihood of B
being true.

Here’s an example of two sentences with a
’NEUTRAL’ relationship:
A: And with us having so much money
invested into our honeymoon, we had no other
choice but to board the ship.
B: The memory that will stick with her, she
said, is when the ship stopped in Sri Lanka to
refuel.

Here are two sentences with a ’SUPPORTS’
relationship:
A: Industry experts say the increase in milking
cows has come from expansion of longstand-
ing dairies, the launch of milking operations
at existing farms that have diversified, and
also from the relocation of dairy operations to
South Dakota from states such as California.
B: As in other agricultural industries, dairy
farmers are increasingly using genetics, data
monitoring, technology and robotics to boost
the production of each individual animal
while implementing an economies-of-scale
approach to the size of their farms, raising the
efficiency and profitability of their operations.
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And here are two sentences with an ’UNDER-
MINES’ relationship:
A: Guinea had announced late Wednesday
that it was canceling its participation to
protect the health of its athletes.
B: North Korea is the only country to pull out
of the Tokyo Olympics, also citing concerns
related to COVID-19.

Here is a new pair of sentences:
A: {premise}
B: {hypothesis}

Classify their factual relation. Respond
with ’SUPPORTS’, ’UNDERMINES’ or
’NEUTRAL’, and nothing else.
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Abstract

The symbol grounding problem—how to con-
nect a symbolic system to the outer world—is
a longstanding question in AI that has recently
gained prominence with the progress made in
NLP in general and surrounding large language
models in particular. In this article, we study
the emergence of semantic categories in the
communication protocol developed by neural
agents involved in a well-established type of
signaling game. In its basic form, the game re-
quires one agent to retrieve an image based on
a message produced by a second agent. We first
show that the agents are able to, and do, learn
to communicate high-level semantic concepts
rather than low-level features of the images
even from very indirect training signal to that
end. Second, we demonstrate that the introduc-
tion of an adversarial agent in the game fosters
the emergence of semantics by producing an ap-
propriate training signal when no other method
is available.

1 Introduction

How would it be possible to acquire and represent
the meaning of words, not simply their function
in language but also their connection to the outer
world? A cogent account of this question, known as
the problem of symbol grounding, is that of Harnad
(1990). In the case where all we ever have access to
is pure linguistic data, Harnad likens the question
of attributing meaning representations to a never-
ending chain of dictionary look-ups. Harnad’s ap-
proach to circumvent this problem is to require
agents to deal with iconic and categorical repre-
sentations, in addition to manipulating symbols.
Iconic representations are nonsymbolic representa-
tions of perceptual inputs; categorical representa-
tions are nonsymbolic representations of categories
or concepts. Together, they form the basis of the
interface between the agent’s symbolic system and
the outer world, and it is this interface that gives

meaning to, or grounds, the symbols manipulated
by the agent. Since Harnad’s article, researchers in
AI and NLP have often stressed supplementary re-
quirements beyond perceptual data for the develop-
ment of meaningful and grounded representations,
mentioning embodiment (e.g., Steels, 2008), intent
(e.g., Bender and Koller, 2020) or interactions with
other agents as well as the environment (Chandu
et al., 2021). In effect, there is a growing consensus
that meaningful representations can only emerge in
goal-driven interactive situations.

The study of emergent communication is the
study of how interacting agents (human or other-
wise) can successfully establish effective commu-
nication protocols (Kirby, 2002), and under which
conditions this is possible. Recently, much interest
has been devoted to emergent communication be-
tween neural agents involved in signaling games
(e.g., Lazaridou et al., 2017), in which the agents
have to cooperate through information exchange
in order to retrieve some target. Such setups have
the advantage that they can provide a very tight
control on experimental conditions. In the present
paper, we focus on a two-agents single-round sig-
naling game, in which the two agents, playing the
role of a sender and a receiver, are to cooperate by
exchanging sequences of arbitrary symbols so that
the receiver successfully retrieves an image based
on one that was shown to the sender. We propose
to study what conditions are necessary to the emer-
gence of semantic categories in neural agents in
this setting through two sets of experiments.

It has been shown that under certain circum-
stances, neural agents trained in similar setups
develop “trivial” strategies, describing low-level
features of their input (Bouchacourt and Baroni,
2018). Accordingly, we hypothesize that in the
absence of any form of pressure towards gener-
alization capabilities, the agents will not tend to-
wards conveying high-level information, but will
rather settle on exchanging about low-level image-
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specific information. We test this assumption in
our first set of experiments by contrasting emergent
communication protocols in three different envi-
ronments: in the first, agents have a direct training
signal towards learning to communicate categori-
cal information; in the second, an indirect signal is
given, but categorical information is not necessary
to solve the task at hand; in the third, agents have
no explicit information about categories. To our
surprise, we observe that, given enough (training)
time, the agents in the second type of environments
reliably pick up the indirect signal about the exis-
tence of categories and spontaneously shift from
communicating low-level features to high-level in-
formation (even though they are equally useful to
solve the training task). In the third type of envi-
ronments, semantic categories might be recovered
but to a much lesser extent.

This leads us to our second set of experiments,
where we study whether a category-level training
signal can be synthesized by introducing an adver-
sarial agent. This adversary aims to exploit the
message sent by the sender to fool the receiver,
and thereby implicitly guides the sender away from
communicating information that is too easily falsifi-
able. We observe that introducing such an adversar-
ial agent in the game can significantly bolster the
emergence of high-level semantics in the agents’
communication.

2 Related works

Grounding, viz., how to relate the symbols of a
symbolic system (e.g., a language) to other aspects
of the world, has been a fecund domain of research
over the past decades. In particular, Harnad (1990)
provides an insightful thought experiment, inspired
by Searle’s controversial Chinese Room argument,
and aimed at showing the necessity of grounding:
“Suppose you had to learn Chinese as a first lan-
guage and the only source of information you had
was a Chinese/Chinese dictionary! This is more
like the actual task faced by a purely symbolic
model of the mind” (pp.339–40). He also outlines
a cogent program towards practical implementa-
tions of grounded hybrid systems, involving trained
nonsymbolic input and categorical representations
interfacing a symbolic system with the outer world.

More recent discussions on this concept have
been written by Bender and Koller (2020), who
emphasize the role of speakers’ intent, or Steels
(2008), who stresses the importance of embodied

usages of symbols. Note, however, that it has been
shown that some structures of the outer world can
be found in the topology of the embedding space
of ungrounded language models (e.g., Abdou et al.
2021 with color terms). There is now sustained in-
terest in establishing if and how symbol grounding
can occur within modern large language models,
and to what extent their productions match our
expectations for situated, intentional and semanti-
cally coherent communication (Patel and Pavlick,
2022; Tenney et al., 2019; Hwang et al., 2021;
Ghaffari and Krishnaswamy, 2023). Many works
focus on harnessing the boons that come with sys-
tems handling multiple channels of inputs, be it
to create generalist agents (e.g., Reed et al., 2022;
Ni et al., 2021), to enrich their inputs (e.g., Jia
et al., 2021), or to facilitate human-robot interac-
tions (e.g., Shichman et al., 2023).

However, practitioners of NLP rarely study the
multi-agent aspects of grounding (Chandu et al.,
2021), despite them being outlined as a crucial
component; Steels (2008) goes as far as stating
that standard supervised learning alone, possibly
involving multiple modalities but without proper
agent-agent or agent-environment interaction, can-
not solve the symbol grounding problem. At the
same time, there is also a growing interest in using
multimodal neural networks as models of how per-
ceptual information is used in humans (esp. Khor-
rami and Räsänen, 2021; Nikolaus and Fourtassi,
2021); this line of work could therefore benefit
from developments on multi-agents NLP system.

In that respect, previous works that include sim-
ulations of how language and communication can
emerge (Kirby, 2002) is especially useful in that
they provide data and define a framework to test hy-
potheses related to symbol grounding. These works
generally involve multiple agents negotiating the
use of symbols in order to solve a task through
the interaction with nonlinguistic data. While
prior work has studied multi-turn communication
(a.o., Jorge et al., 2016; Evtimova et al., 2018),
populations and generations of agents (e.g., Kirby
et al., 2014; Foerster et al., 2016; Ren et al., 2020;
Chaabouni et al., 2022) or nonsymbolic communi-
cation channels (e.g., Mihai and Hare, 2021), we
focus on a straightforward signaling game (Lewis,
1969) involving multiple agents communicating
through a symbolic channel (Sukhbaatar et al.,
2016; Havrylov and Titov, 2017; Lazaridou et al.,
2017, 2018). More precisely, our starting point is
the setup of Bernard and Mickus (2023), where
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we introduced a computer-generated image dataset,
studied the impact of many design choices of the
learning process (pertaining to the loss function and
regularization, the selection of training instances,
and pretraining methods) on a two-agent signaling
game, and defined several metrics used to study the
properties of the emergent languages.

The work of Mu and Goodman (2021) is close
to ours in that they study how the choice of train-
ing instances in a signaling game can improve the
systematicity of the emergent languages. How-
ever, they mainly do so by explicitly strengthening
the training signal pertaining to semantic classes
(through the use of sets of images instantiating
these classes), while we try to achieve similar ef-
fects without relying on a priori known semantic
classes.

One novelty of the present work is the introduc-
tion of an adversary agent in the signaling game.
Relevant precedents in the literature include non-
cooperative language games, such as the compet-
itive setup of Noukhovitch et al. (2021). To our
knowledge, the present work is the first to intro-
duce a GAN-like agent (Goodfellow et al., 2014)
in an emergent communication setting.

3 Signaling game definition

We start by presenting the basics of the signaling
game that we study in this section. We document
departures from this base setup where relevant.

Data. Our dataset (see Bernard and Mickus,
2023) consists of images each depicting an object
on a gray background (with varying shade); the ob-
jects varies in shape (cube or sphere), size (large
or small), color (red or blue), and vertical (top or
bottom) and horizontal position (left or right).
Two images are considered to be of the same cate-
gory if and only if they agree on these five object
features.1

We use only 22 of the 32 categories during train-
ing (base categories), the 10 remaining ones are
only used during evaluation (generalization cate-
gories).2 Evaluation involves only images not seen

1Two images from the same category may not only differ
on background color but also on the position of the light source
used to render the scene, and the specific shade of blue/red,
vertical and horizontal position, and 3D orientation, of the
object.

2In Bernard and Mickus (2023), we partitioned the set
of categories in such a way that two distinct base categories
never differ on just a single feature. This makes it possible
for the agents to achieve perfect performance during training
while ignoring entirely one of the five features; a possibility

during training. More precisely, 20% of each base
category is reserved for evaluation; these images
plus all images from generalization categories are
used during evaluation.

Game definition. We study a signaling game in-
volving a sender, who sees one original image Io
and then produces a message mIo ; and a receiver,
that receives this message mIo along with a tar-
get image It and a distractor image ID, and must
decide which of the two is the target through the
production of a probability distribution over these
two images. In such a setting, the relation between
the three images involved can provide more or less
(even no) signal about the categories to the agents.

Both agents are neural networks that contain
a convolutional image encoder; in addition, the
sender contains an LSTM message decoder while
the receiver contains an LSTM message encoder.
We use for these sub-networks the same architec-
tures as Bernard and Mickus (2023). The symbols
of the message are selected from a vocabulary of
size 16.

We train the receiver to assign a higher prob-
ability to the target than to the distractor by
minimizing its negative log-likelihood. Writing
preceiver(Ii | I1, . . . , In,mIo) for the probability as-
signed by the receiver to image Ii based on message
mIo when confronted to images I1, . . . , In, this
loss is:

− log(preceiver(It | It, Id,mIo)). (1)

In contrast, the sender is trained with REINFORCE

(Williams, 1992) by assigning a reward of value +1
to each symbol production action when the receiver
correctly retrieves the target, and a reward of value
−1 when it fails to do so. For each training batch,
the sum of the sender’s REINFORCE loss and of the
receiver’s negative log-likelihood loss is minimized
(with RMSProp; Hinton et al., 2012).

4 Influence of target and distractor choice

The goal of the present work is to establish what
training signal is necessary for categorical infor-
mation to appear in the communication protocols
developed by the agents. This requires modifying

they do take advantage of to some extent. In contrast, we are
here interested in the agents communicating about category-
level information as much as possible, and thus partition the
categories differently: we take as generalization categories
(cube, small, blue, down, left)—chosen arbitrarily—and
all 10 categories differing from it on exactly three features.
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the environment in which the agents interact so that
its categorical structure is more or less obvious.

4.1 Three types of environments
If we provide the sender with an image Io from
some category C, then we can either provide as tar-
get image It for the receiver either this very same
image (Io = It) or a different image of the same
category; the latter option provides a clear signal
that different images should be construed as part
of the same category. When using the former op-
tion (Io = It), selecting the distractor image Id
such that it always belongs to a category C ′ ̸= C
still induces a training signal pertaining to the cate-
gorization of images, albeit a much more indirect
one. These two choices compound to three types of
environments for our agents, which are illustrated
(along with a variant introduced in Section 5.1) in
Figure 1.

Direct signal environments. In direct signal en-
vironments, we provide as the receiver’s target im-
age It an image randomly sampled from the cate-
gory of the original image, and select the distractor
image Id from a different category (Io, It ∈ C,
Id ∈ C ′ and C ̸= C ′). As a result, the message
produced by the sender cannot focus solely on low-
level, image-specific, features of the original image
(e.g., the average brightness of the image), as they
might not match with the target. In other words, the
selection of a target image It that differs from the
original image Io but shares the same category pro-
vides these models with an explicit signal towards
learning high-level semantic information. Hence,
the performance of these models indicates what sort
of communication protocol emerges under optimal
conditions for retrieving categorical information.

While a successful game in this environment
requires that the receiver be able to derive category-
level information in its messages, this does not pre-
vent the sender from describing its input image. In-
deed, the sender could go as far as to purely convey
enough image-specific information and let the re-
ceiver infer the relevant category. This would how-
ever arguably lead to a remarkably complex com-
munication protocol, whereas having the sender
infer and describe the category ought to lead to a
much simpler solution.

Indirect signal environments. Models trained
in indirect signal environments only differ from
those trained in direct signal environments in that
the target is exactly the original image (It = Io).

In this setting, describing low-level, image-specific,
features of the original image, such as the back-
ground color, is a perfectly viable strategy. We
expect this strategy to be favored by the sender as
low-level features are intuitively easier to recognize
than high-level (category-level) ones (e.g., shape
or size of the object depicted).

Remark that in such environment, we still sam-
ple the distractor image Id from a category C ′ dis-
tinct from that of the target image (C ̸= C ′). As
such, this environment does provide some means
by which categorical information can be recovered:
Implicitly, receivers are only ever presented pairs
of images that belong to different categories, and
may very well learn to segregate them along their
categories. This could in turn provide a weak,
indirect training signal for the sender. We how-
ever expect image-specific information to be more
straightforward, although inductive biases in the
agents’ neural architectures could also shape the
emergent communication towards category-level
descriptions.

No signal environments. Our ability to train
models in direct signal and, to a lesser extent, in-
direct signal environments hinges on the existence
of well-defined semantic categories in our dataset.
However, natural pictures of everyday scenes, for
instance, do not readily come with such annota-
tions. We therefore also study models that can be
trained without such information, so as to deter-
mine what are the minimal requirements for non-
trivial semantics to emerge. Accordingly, in no
signal environments, we use the sender’s original
input image as the target image for the receiver
to retrieve (Io = It) and select a distractor image
at random, regardless of which category it comes
from.3

In this last type of environment, no training sig-
nal about the categories in the dataset is given to
the agents. If category-specific information does
emerge in the communication protocol, this would
have to be pinned on inductive biases present in
our architectures.

4.2 Automatic evaluation metrics

To assess whether settings are conducive to the
emergence of semantic categories, we use two au-
tomated metrics as our primary means of evalu-
ation: abstractness and category communication

3As a result, for some training instances, the target and the
distractor belong to the same category.
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Sender Receiver

Io ∈ C

mIo

Id /∈ C

It ∈ C

(a) Direct signal environment

Sender Receiver

Io ∈ C

mIo

Id /∈ C

(b) Indirect signal environment

Sender Receiver

Io ∈ C

mIo

Id
?
∈C

(c) No signal environment

Sender Receiver

Adversary

Io ∈ C

mIo

Id
?
∈C

Ia

(d) No signal environment with an adversary

Figure 1: The four training setups. C is an image category sampled randomly and uniformly. The green frame
indicates which image is the target for the receiver agent. (a)-(c) are introduced in Section 4.1; (d) is introduced in
Section 5.1.

efficiency.4

Abstractness (abs.). We define this measure as

2 · preceiver(It | Io, It,mIo), (2)

where Io and It are two images from the same
category. This measure quantifies the use of image-
specific information by the sender-receiver system:
Abstractness scores near 0 indicate that the mes-
sage mIo contains image-specific information that
the receiver uses to accurately distinguish Io from
It, whereas scores near 1 suggest that the message
does not include such information.

Category communication efficiency (c.c.e.).
We define this measure as

preceiver(It | It, Id,mIo), (3)

where Io and It are two images of the same cate-
gory, and Id is an image of a different category.
This measure corresponds exactly to the objec-
tive maximized in direct signal environment. It
is relevant to make a distinction between cate-
gory communication efficiency and a notion of
image communication efficiency (i.c.e.), defined

4The definitions below are given based on a single evalu-
ation instance; the values reported later are averaged over a
large number of such instances.

as preceiver(Io | Io, Id,mIo), which corresponds to
the objective maximized in indirect signal environ-
ment.

A sender-receiver system with both low abstract-
ness and low c.c.e. only communicates image-level
information (low abstractness) that does not gen-
eralize to other images of the same category (low
c.c.e.). A system with low abstractness but high
c.c.e. communicates at least image-specific in-
formation; nothing, however, can be concluded
a priori about category-level information because,
as two images of the same category tend to be
more similar than two images of different cate-
gories, image-specific information may be enough
to achieve high c.c.e. A system with high abstract-
ness but low c.c.e. does not communicate about
image-specific neither category-level information
(such a system is not properly trained). Only for a
system with both high abstractness and high c.c.e.
can we conclude about the emergence of high-
level semantics: The system does not communicate
image-specific information (high abstractness) but
must then communicate category-level information
(high c.c.e.).

For finer-grained analyses, we consider other
metrics: meaning-form correlation (Brighton and
Kirby, 2006), as well as scrambling resistance and
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semantic probes accuracy (Bernard and Mickus,
2023); see Appendix A for further details.

4.3 Experimental results
Training & evaluation procedure Models are
used with a baseline term in the sender’s loss and
no entropy term; we pretrain all image encoders
and decoders on an auto-encoding task (without
freezing their parameters afterwards).5 For each
of the three environment types, we select the learn-
ing rate through a grid search, ran on 10 runs per
settings (trained for 200 epochs each; 1000 batch
updates per epoch; batches of 128 instances) so as
to maximize c.c.e. We then use these optimal learn-
ing rates to train 40 models in each environment
for 1000 epochs.6 Each run is evaluated once every
1000 batch updates. Unless otherwise stated, we
keep the values of the metrics obtained when the
c.c.e. is maximal so as to focus our observations
on effective communication protocols, and report
medians over the 40 runs for any given setup.

Direct signal environments. We first begin by
looking at models trained in direct signal environ-
ments (first row of Table 1). We observe very high
c.c.e. and abstractness scores; in other words, mes-
sages produced by the senders tend to contain only
category-level information, and no image-specific
information. This is expected, since the receivers
in these models are tasked with retrieving a target
that is not the original image. We can also point out
that these models often develop protocols that ap-
pear compositional, even though they likely remain
simplistic: They achieve a high scrambling resis-
tance of 82.2% (suggesting that the information
carried by a symbol is independent of its position
in the message), as well as a relatively high MFC
score of ρ = 0.39. In line with this analysis, we
observe perfect probing accuracy for all features
except shape (64.2% accuracy): This suggests that
most relevant categorical information is robustly
encoded in senders’ messages. In short, there is
reasonably strong evidence that direct signal envi-
ronments allow models to learn to link symbols to
the values of the five features.

Indirect signal environments. Turning to mod-
els trained in indirect signal environments (second

5Using the notation suggested in (Bernard and
Mickus, 2023), the setups considered here correspond
to ⟨+PAE ,−F,−A,−H,−C,+B⟩.

6For no signal environments, we report results after 200
epochs as preliminary results indicate further training to have
very limited impact.

row of Table 1), we observe both a very high me-
dian c.c.e. score and a high median abstractness
score. As pointed out earlier, a high c.c.e. score
could be due to the presence of category-level infor-
mation in the message, but also to enough image-
specific information—as two images from the same
category resemble each other more than two im-
ages from different categories. As for the high
abstractness score, it shows that the receiver as-
signs a similar probability mass to the image based
on which the sender produces the message, and
to another image of the same category. More pre-
cisely, 0.853 corresponds to assigning a probability
of preceiver(It | Io, It,mIo)) =

0.853
2 = 0.4265 to

the target image, and 1− 0.4265 = 0.5735 to the
original image, i.e., roughly a 4-to-5 odds. Even
if two images of the same category resemble each
other, they are however clearly distinct from a low-
level perspective, and if the sender were sending
enough low-level information, it would not be hard
for the receiver to confidently distinguish between
the original image and another from the same cat-
egory. Furthermore, the high performance of the
semantic probes does confirm that all five high-
level features of the images are reliably encoded
in the sender’s messages. This suggests that the
sender mainly conveys category-level information.
Our hypothesis—that the sender does not commu-
nicate category-level information if other strategies
are available—appears thus to be disproved. Fur-
thermore, the fact that the sender only conveys little
image-specific information on top of the category-
level information it communicates is surprising, as
nothing in this setting seems to prevent the sender
from communicating more image-specific informa-
tion (e.g., background color).7

Figure 2 shows the evolution of abstractness,
c(ategory).c.e and i(mage).c.e. (see Section 4.2)
during training in indirect signal environments. We
observe that i.c.e converges much more rapidly
than c.c.e. and abstractness; the agents learn fairly
quickly to communicate about specific images but
also gradually shift to communicating about image
categories themselves.

Interestingly, even though the messages do con-
tain some image-specific information that ought

7Somewhat paradoxically, models trained in indirect signal
environments obtain a higher median c.c.e. than those trained
in direct signal environments, despite the latter being directly
trained to maximize c.c.e. scores. This is likely due to the little
bit of image-specific information included in the messages
along with category-level information, reinforcing the ability
of the receiver to recognize the target.
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Env. c.c.e. abs. s.r. semantic probes MFCshape size color h. pos. v. pos.
Direct signal 0.986 0.992 0.822 0.642 0.996 0.998 0.999 0.999 0.387

Indirect signal 0.992 0.853 0.949 0.818 0.993 0.993 0.999 0.999 0.439
No signal 0.771 0.511 0.898 0.624 0.869 0.677 0.812 0.754 0.265

No signal + adv. 0.768 0.594 0.859 0.609 0.901 0.601 0.867 0.838 0.243

Table 1: Summary of performances observed at maximal c.c.e., according to the training environment. Di-
rect/Indirect/No signal environments are introduced in Section 4.1; the adversary agent is introduced in Section 5.1.
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Figure 2: Evolution of the abstractness, c.c.e. and i.c.e.
scores over 1000 epochs of training in indirect signal
environments. Median over all runs, interquartile inter-
vals shaded; exponential moving average with α = 0.1.

to deteriorate MFC scores (as evidenced by the
lower than 1 abstractness), the MFC is higher than
what we observe for models in direct signal envi-
ronments (ρ = 0.439). This is probably explained
by communication protocols in this setting hav-
ing very high scrambling resistance (94.9%), sug-
gesting that receivers treat messages as orderless
bags-of-symbols. Indeed, we compute MFC based
on Jaccard indices; therefore, distances between
messages are not sensitive to symbol order.

No signal environments. If we now study mod-
els trained in no signal environments (third row
of Table 1), we can observe a sharp decrease in
abstractness, although performances remain non-
trivial (an abstractness of 0.511 corresponds to as-
signing a fourth of the probability mass on a target
image of the same category).

Likewise, while it remains firmly above a ran-
dom chance threshold of 0.5, c.c.e. drops to 0.771.
This shows that the sender not only communicates
more about image-specific information, but also
communicates less about category-level features.
Looking at semantic probes accuracy, we find more
evidence of the same trend—all probes perform

worse than what we saw thus far; shape and color
appear especially unreliably encoded.

5 Fostering the emergence of high-level
semantics

As we just saw, encoding category-level informa-
tion systematically seems to require the agents to
have access (directly or indirectly) to category-
level information. We now turn to whether we
can dispense from including this explicit informa-
tion while retaining category-level information in
the messages.

Spike (2017, §.5) suggests that noisy inputs can
foster more robust and effective communication
channels: Adding noise to input images would pre-
vent agents from communicating about very low-
level information (e.g., specific pixel brightness),
since this information may not match with what
the receiver would perceive. Such a procedure is
therefore a natural candidate to explore. However,
preliminary experiments involving the addition of
normal noise to the images showed this technique
to only make the training process less reliable, with-
out any observable benefit.

Instead, we focus on a more involved approach:
incorporating an agent playing an adversarial role
to discourage the sender and receiver to exchange
image-specific information.

5.1 An adversary agent

In this section, we introduce a third agent in the
signaling game. This adversary agent is imple-
mented with an LSTM message encoder (like the
receiver) and a convolutional image decoder. In
this setting, the message produced by the sender is
also passed to the adversary, which outputs an ad-
versary image Ia = adversary(mIo) intended to
fool the receiver. Our intuition is that messages that
convey low-level information can easily be coun-
terfeited by this adversary, and therefore should
be disfavored by the receiver, and therefore by the
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sender—thereby creating an implicit training sig-
nal towards communicating high-level semantic
information.8

As in previous settings, the sender is trained with
REINFORCE using rewards determined by the abil-
ity of the receiver to distinguish between the target
and the distractor only. Unlike in previous settings,
however, receivers in adversary settings are trained
to distinguish the target from both the distractor
and the adversary image by minimizing the nega-
tive log-likelihood of the target image considering
the three images:

− log(preceiver(It | It, Id, Ia,mIo)). (4)

We use an adversarial scheme (Goodfellow et al.,
2014) to train the adversary to generate an image
that the receiver cannot distinguish from the tar-
get; i.e., the adversary is trained to minimize the
negative log-likelihood of the adversary image:

− log(preceiver(Ia | Id, Ia,mIo)). (5)

To foster the diversity of adversary images, we
add Gaussian noise to the output of the adversary’s
message encoder before feeding it into the image
decoder.

To perform the optimization, each agent’s loss
is scaled by a factor that depends on the agent’
performance. Let us define

ssender = preceiver(It | It, Id,mIo),

sreceiver = preceiver(It | It, Id, Ia,mIo),

sadversary = preceiver(Ia | It, Ia,mIo).

Over the course of training, we compute moving
averages of these values, noted “ŝa” for “sa”. Now
consider the following values:

wsender = 2 · ŝsender − 1,

wreceiver = 3 · ŝreceiver − 1,

wadversary = 2 · ŝadversary.

Except in pathological situations (that we have
not observed), each of these values is nonnegative.
These weights are normalized using the softmax
function and a “temperature” hyperparameter τ ,
and then used to scale each of the three losses:

exp (−wa/τ)∑
a′∈ agents

exp (−wa′/τ)
· La.

8This adversary agent can also be seen as an auxiliary
module of the receiver: one devoted to formulating plausible
alternative targets that the receiver has yet to learn to discrimi-
nate.

This scaling of the losses (and therefore of the gra-
dients) entails that training focuses on the agents
that perform the worst at their task. Note that to
avoid updating agents with gradients derived from
their adversaries’ loss, the losses are not summed:
Each agent’s loss is minimized by a distinct opti-
mizer that only updates this agent’s parameters.

Finally, because image-generation is a partic-
ularly challenging task, when the adversary is
present, we send the target and distractor images
through a pretrained auto-encoder before showing
them to the receiver. Indeed, convolution image
decoders like the one used to produce the adversary
images are very likely to generate visual artifacts
that a receiver can easily use to distinguish between
neurally generated images and images from the
dataset (which lack such artifacts). If the adversary
images were to be spotted in this trivial manner, the
additional agent would be rendered entirely inef-
fective. Using auto-encoded versions of the target
and distractor images, then exhibiting similar arte-
facts, we make it technically possible (though still
quite challenging) for the adversary to fool the re-
ceiver. We implement this auto-encoder using the
same image encoding architecture as the sender
and receiver agents, and the same image decoding
architecture as the distractor agent. This network
is trained beforehand and its parameters are frozen
during the signaling game.

5.2 Experimental results

Training & evaluation procedure Unless other-
wise specified, we rely on the same implementation
choices as in Section 4.3. As previously (but with
the temperature τ as an additional hyperparameter),
we employ a grid search with 10 runs per settings
over 200 epochs to maximize c.c.e. We then use
these optimal learning rates to train 40 models in
each environment (still on 200 epochs as prelimi-
nary experiments show that further training brings
no improvements).

Adversary agents. In the last (fourth) row of
Table 1, we list the performances of models in
no-signal environments that involve an adversary
agent. Compared with similar environments but
without an adversary, we notice a boost in terms
of abstractness (from 0.511 to 0.594). This boost
is unlikely to be due to random variation only, as
indicated by a Pitman permutation test targeting the
difference of abstractness scores (p-value ≃ 0.02).
C.c.e. scores are comparable (the difference is
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Figure 3: Evolution of the abstractness scores over
200 epochs of training in the four setups studied. For
each setup, median over all runs, interquartile intervals
shaded; exponential moving average with α = 0.1.

not statistically significant, p-value ≃ 0.5), which
demonstrates that the presence of an adversary
agent tends to remove image-specific information
in the sender’s messages with no impact on the re-
ceiver’s ability to retrieve a target selected from the
original image category. The accuracy of the se-
mantic probes suggests that the sender and receiver
rely less on the color and shape of the object when
an adversary is present, and more on its size and its
position (both horizontal and vertical).

Figure 3 shows the evolution of abstractness dur-
ing training in all four setups. The information
about categories provided in indirect signal environ-
ments has a very progressive effect on abstractness,
which starts low and raises gradually. In contrast,
the presence of an adversary immediately limits the
reliance of the sender and receiver agents on image-
specific information. Additional experiments not
presented here in details due to space constraints
show that in indirect signal environments, while
the presence of an adversary agent does not lead to
an increase in abstractness in the long run, it clearly
fosters higher abstractness scores in the early stages
of training.

Adversary images. We include a grid of selected
examples from one model in Figure 4. We can
observe many images with severe defects, but also
that in most images, the background color and even
some higher-level features are properly recreated.
It is important to keep in mind that the rationale be-
hind introducing the adversary was not to produce
high quality images, but to drive the sender and
receiver away from communicating only about low-
level features of the image, such as the background
color. As indicated by the increase in abstract-

Figure 4: Original and adversary images (no signal
environment). Each image in an even column is an
adversary image crafted from the sender’s message for
the original image immediately on its left.

ness, this goal has been achieved. These images
contribute to explain how: The fact that adversary
images often faithfully reproduce the original im-
ages’ background indicates that the sender and the
receiver used to rely on this feature to retrieve the
target; the adversary then prevents them from rely-
ing only on this feature.

6 Conclusions

Do agents learning to identify images through sym-
bolic communication develop a language able to
describe category-level features of these images?
Interestingly, indirect signal environments provide
evidence that models are able to develop high-level
semantics even when the only relevant training sig-
nal is extremely tenuous.

The results of models in no signal environments
suggest, however, that one cannot expect the sender
to encode category-level information systemati-
cally without an appropriate training signal.

Our last experiment shows that even without
relying on the availability of semantic categories—
as is often the case with natural images—, fostering
the emergence of high-level semantics is possible
via the introduction of an adversarial agent.

In the future, we would be interested in studying
whether this technique is effective on other datasets
that the one used here, and in whether improve-
ments of the (delicate) training procedure of the
adversary may lead to a stronger impact on the
emergent languages.
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A Supplementary metrics

To further evaluate the communication protocols
that emerge from our various models, we rely on
abstractness and c.c.e., as well as three metrics
previously proposed in the literature.

Meaning–form correlation (MFC), also known
as topographic similarity (Brighton and Kirby,
2006), consists in evaluating whether changes in
form are commensurate to changes in meaning.
The metric was originally proposed as a means of
quantifying compositionality, but see Mickus et al.
(2020); Chaabouni et al. (2020) for discussions. In
our specific case, we use Jaccard distance (Jaccard,
1912) as a form metric and Hamming distance be-
tween categories as a meaning distance. Noting
|m|x for the number of occurrences of symbol x
in message m, the Jaccard distance between two
messages m and m′ is defined as

1−

∑
x∈Alphabet

min(|m|x, |m′|x)
∑

x∈Alphabet
max(|m|x, |m′|x)

. (6)

For instance, the Jaccard distance between “A A B
A C” and “A B C D” is 1− 1+1+1+0

3+1+1+1 , i.e., 1
2 . The

Hamming distance between two categories c and c′

is simply the number of features (i.e., among color,
size, shape, h. pos., v. pos.) on which c and c′

disagree.
The two other metrics are borrowed from

Bernard and Mickus (2023). Scrambling resistance
(s.r.), quantifies how sensitive to symbol ordering
receivers are: Values close to 1 indicate that each
symbol is interpreted independently of its position
in the message, whereas values close to 0 indicate
that the message is only interpreted as a whole. We
also rely on semantic probes to detect how much
each of the five category-level features is communi-
cated in the sender’s messages. In practice, they are
implemented as a decision tree per feature, trained
to predict the corresponding value for the original
image based on a bag-of-symbol representation of
the sender’s message (i.e., a vector in N16).
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Abstract

Planning in textual environments have been
shown to be a long-standing challenge even for
current models. A recent, promising line of
work uses LLMs to generate a formal represen-
tation of the environment that can be solved by
a symbolic planner. However, existing methods
rely on a fully-observed environment where all
entity states are initially known, so a one-off
representation can be constructed, leading to a
complete plan. In contrast, we tackle partially-
observed environments where there is initially
no sufficient information to plan for the end-
goal. We propose PDDLEGO that iteratively
construct a planning representation that can
lead to a partial plan for a given sub-goal. By
accomplishing the sub-goal, more information
is acquired to augment the representation, even-
tually achieving the end-goal. We show that
plans produced by few-shot PDDLEGO are 43%
more efficient than generating plans end-to-end
on the Coin Collector simulation, with strong
performance (98%) on the more complex Cook-
ing World simulation where end-to-end LLMs
fail to generate coherent plans (4%).1

1 Introduction

Planning with LLMs has witnessed a surge of in-
terest in the NLP community, not only because it
showcases AI systems’ ability to reason about com-
plex events, but also because of the need of many
downstream applications like goal-driven robotics
(Huang et al., 2022a,b) and intelligent planning
assistants (Lyu et al., 2021). The most intuitive
approach of this task is using LLMs as planners to
produce a sequence of actions executed to arrive
at a goal state (Valmeekam et al., 2023a; Stein and
Koller, 2023). While applicable in many domains,
this LLM-based approach is found to underperform
in textual simulated environments (Valmeekam

∗Work done as an intern at AI2.
1Our code can be found at https://anonymous.4open.

science/r/nl-to-pddl-4FBE/.

Figure 1: A fully-observed environment like
BlocksWorld (upper, to rearrange objects from and to
a given configuration) can be tackled by generating a
PDDL problem file, while a partially observed one like
Coin Collector (lower, to look for an object in an un-
known location) cannot until sufficient exploration.

et al., 2023c,b) and to lack interpretability com-
pared to symbolic planning methods that derive
a plan from a formal representation of the envi-
ronment. We join the efforts that combine both
approaches, effectively translating the textual in-
put into a symbolic representation expressed in the
planning domain definition language (PDDL) (see
Appendix A for an introduction), which can then be
solved by a symbolic planner (Collins et al., 2022;
Lyu et al., 2023; Liu et al., 2023; Xie et al., 2023;
Wong et al., 2023). This neurosymbolic approach
has gained popularity as it combines LLMs’ flexi-
bility to understand rich NL and classical planners’
determinism and faithfulness.

All previous work on LLM generating PDDL
has only experimented on fully-observed environ-
ments where all entity states are initially known,
thus requiring no exploration. Take BlocksWorld, a
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common benchmark for such work, as an example
(Figure 1, upper), both the initial and goal states are
initially spelled out, in which case the LLM’s job
is akin to translating the textual descriptions of the
environment into a PDDL problem file which spec-
ifies the initial and goal entity states. Assuming
also a domain file, a one-off plan can be found and
executed to reach the end-goal. In contrast, many
real-world environments are partially-observed
(Figure 1, lower), where the entity states dynami-
cally get uncovered during exploration. Since the
necessary initial and goal states might also be un-
known (e.g., looking for an item without knowing
where it is), the previous approach falls apart due
to the impossibility to specify a complete prob-
lem file. This causes a chicken-and-egg problem
where a plan is required for exploration, while ex-
ploration is required to build PDDL that results in
a plan. Given this challenge, past work on partially-
observed environments has only used LLMs to di-
rectly generate plans (Shinn et al., 2023; Majumder
et al., 2023), but not a planning representation.

To break the above stalemate, we propose
PDDLEGO, a methodology to use LLMs to iter-
atively build a PDDL problem file from textual
observations from the environment. In this prob-
lem file, the initial states (or rather current states)
reflect the current knowledge of the environment,
while the goal states can be dynamically adjusted.
In case the problem file does not contain sufficient
information to plan for the end-goal (e.g., find a
coin), PDDLEGO recursively falls back to a pro-
vided sub-goal (e.g., go to an unvisited room). This
way, a plan can be found to reach the sub-goal,
leading to new observations by exploring the en-
vironment, and iteratively refine the problem file
until a plan can be found for the end-goal.

We evaluate PDDLEGO on benchmarks of textual
interactive virtual environments akin to the robotic
planning simulations where PDDL is known for.
Our PDDL-induced plans are 43% more efficient
than LLMs generating plans directly on the Coin
Collector simulation. On one setting of the more
complex Cooking World simulation PDDLEGO

achieves near-perfect 98% success rate where
LLMs that predict action achieves only 4%, while
on a more challenging setting, 46% over 0%.

2 Methodology

Our approach is illustrated in Figure 2. We operate
in a partially-observed, textual, simulated environ-

Figure 2: The pipeline of PDDLEGO. A PDDL problem
file is iteratively built during exploration.

ment which functions as a multi-turn interaction
between the environment and the agent (e.g., a
game to find an item). Specifically, the environ-
ment provides an observation (objects in a room)
along with a list of permitted actions (move, pick
up). Then, the agent selects on of these actions,
and repeats. The environment can be seen as a fi-
nite state machine where each state consists of the
conjunction of all entity states and determines the
permitted actions. The agent succeeds when a goal
state is reached (the sought item is in hand); it fails
when it cannot possibly reach goal state.

Like most prior work in using LLMs to generate
a planning representation like PDDL, we assume
that a domain file that defines the available actions
is provided; this domain file can solve a problem
file that defines the initial and goal entity states
(where the agent is, where the item is, how are
these two locations connected) when possible to
result in a plan (go west, pick up item). We also
assume a sub-goal structure, namely, an array of
goal states defined in PDDL that a model can fall
back to when the current goal is unattainable.

Formally, we are initially presented with the first
observation o1 with the end-goal G. We use an
LLM to construct an initial problem file PF1 ({cur-
rent states, goal states}) to plan for this end-goal.

PF1 = {LLM(o1), G} (1)

If this problem file can be solved by the provided
domain file with a solver, a plan containing one or
more actions is found.

Plan1 := (a11, a
2
1, . . . ) = solver(DF,PF1) (2)

If a plan cannot be found due to a lack of infor-
mation in the problem file, the goal G is swapped
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out by an immediate sub-goal G′, and the solver
retries. The actions in the plan are then sequentially
executed in the current environment E, resulting in
a list of new observations.

(E, o12, o
2
2, . . . ) = exec(E, a11, a

2
1, . . . ) (3)

Thus begins the second iteration. Using the new ob-
servations, the previous problem file is regenerated
(referred to as PDDL-gen).

PF2 = {LLM(PF1, o2), G} (4)

The process goes on until one observation fulfills
the termination condition.

Unlike prior work that generates the problem file
once, PDDLEGO’s having LLMs iteratively generat-
ing the problem file often result in inconsistencies
and errors (e.g., missing a connectivity relation
between two rooms, using the name a room in
a relation without declaring the room, missing a
parenthesis, etc.). To tackle this, we have the LLMs
only predict the change in the problem file (i.e., the
change of entity states), which we deterministically
applied to the previous problem file (referred to as
PDDL-edit).
∆2 = LLM(PF1, o2), PF2 = PF1 +∆2 (4’)

We will compare our two approaches above with
the baseline where LLMs directly generate an ac-
tion (referred to as Action-gen).

Plani = LLM(oi) (2’)

3 Environments

We experiment with two goal-oriented, partially-
observed simulated environments, or text games,
that span a variety of difficulty and flavor.
Coin Collector (Yuan et al., 2019) focuses on nav-
igation, which is an indispensable element of most
simulations. The agent’s task is to explore rooms,
some connected by locked doors, and find a coin,
similar to the running example above. Just as pre-
viously discussed, the previous approach on gen-
erating a PDDL problem file cannot be applied to
Coin Collector because the location of the coin is
unknown until the agent enters the same room as
the coin. Therefore, the sub-goal structure for this
tasks is defined as:

1. pick up coin (requires the location of the coin)
2. go to a room that has not been visited (reveals

location of the coin)
The sub-goal of “going to an unvisited room”

results in monotonously increasing progress to the
end-goal of “finding the coin”. In similar search-
related tasks, this singular sub-goal or strategy suf-

fices, though it may not work for all situations.
Cooking World (Madotto et al., 2020) subsumes
Coin Collector with more complex tasks. The
agent’ task is to first explore rooms to find ingre-
dients required by a recipe, much like Coin Col-
lector. Next, it should cook the ingredient in some
specified location using some specified appliance.
Finally, when all ingredients are cooked correctly,
a meal can be successfully prepared. Therefore, the
sub-goal structure for this tasks is defined as:

1. prepare meal (requires having obtained each
ingredient and located relevant appliances)

2. pick up each ingredient (requires the location
of each ingredient; obtains ingredients)

3. go to a room that has not been visited (reveals
location of ingredients and appliances)

To better understand these simulations, example
trajectories are shown in Appendix D.

4 Evaluation

For both simulations, we use the implementation
from Jansen and Côté (2022). For Coin Collec-
tor, we use the most complex setting; for Cook-
ing World, we consider an easy and a hard setting
with varying number of locations and ingredients.
See more details in Appendix C. For the choice
of LLM, we consider gpt-3.5-turbo-1106 (GPT
3.5 Turbo) and gpt-4-1106-preview (GPT 4
Turbo) across baseline methods (i.e., Action-gen,
PDDL-gen, and PDDL-edit). For Action-gen, we
prompt the LLM with a full description of the
simulation, and for PDDL methods, with a hand-
annotated domain file containing well-defined ac-
tions. For the PDDL-edit setting, we prompt the
LLM to generate templated edits (add, replace, and
delete lines in the problem file). The prompt of
each method include a 1-shot demonstration of the
output format. See details of prompt design and
domain file annotation in the Appendix B.

Regarding performance, Table 1 shows a dras-
tic performance degradation of Action-gen moving
from Coin Collector (only 2 valid actions: move,
open door each with 4 direction arguments) to
the much more complex Cooking World (with 8
more actions with infinite possible arguments, like
processing an ingredient). Moreover, in Cooking
World, an agent would fail if an ingredient is pro-
cessed incorrectly (e.g., fried instead of grilled,
was not chopped before roasted). Therefore, LLMs
generating actions on the fly are more likely to
make irrevocable mistakes and fail the task. In con-
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random GPT 3.5 Turbo GPT 4 Turbo

Action-gen PDDL-gen† PDDL-edit† Action-gen PDDL-gen† PDDL-edit†

Coin 4% 68% 26% 28% 94% 58% 78%
Cooking (easy) 0% 0% 70% 68% 4% 94% 98%
Cooking (hard) 0% 0% 4% 6% 0% 16% 46%

Table 1: The percentage where the agent succeeds by taking no more than the maximum steps on the test set. The †

sign specifies methods under our proposed PDDLEGO methodology.

trast, our two-stage PDDL generation approaches
ensure the correctness of the plan to process the
ingredients (in the second stage) assuming that the
ingredients are gathered and that the appliances are
identified (in the first stage). Logically, the failures
of PDDLEGO indicates an inconsistency between
the environmental observation and the problem file.
For example, the connectivity of the rooms may
not be updated correctly upon entrance to a new
room, causing no plan or invalid plans to be found.
By lessen the burden on LLMs, PDDL-edit notably
ameliorates but cannot eliminate this issue. On
Coin Collector, issues frequently arise in a loop,
where opening a new door leads to a visited room.
Notably, GPT3.5 is far worse than GPT4 in gen-
erating PDDL, in line with the observations by
Anonymous (2023) and Silver et al. (2023).

Regarding efficiency, Figure 3 shows that on
Coin Collector, PDDL-edit is no less efficient than
Action-gen on 7 out 8 examples (red crosses are
often lower than the blue circles) in the develop-
ment set where PDDL-edit terminates successfully.
Scaling up to the entire test set, with GPT4, PDDL-
edit has an average step to success of 7.8 compared
to Action-gen’s 13.6 among successful attempts,
a 43% improvement on efficiency. Among these
steps, 3.3 of Action-gen are invalid (e.g., moving
through a closed door) compared to merely 0.2 of
PDDLEGO, a significant difference when trials and
errors are expensive. PDDLEGO also shows better
stability. In Figure 3, PDDL-edit exhibits a much
smaller variance across runs than Action-gen. For
example, if the coin happens to be immediately to
the west of the initial room, deciding to go west
initially would result in a prompt success, while
exploring the east portion initially would result in
a notable detour. Our approach of PDDL genera-
tion leaves only the task of parsing environmental
configuration to the LLM, while the planning task
is done deterministically by the solver, leading to
more consistent plans across runs.

Regarding interpretability and correctability,
the black-box nature of LLMs results in no faithful
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Figure 3: On Coin Collector, the mean and standard
deviation of number of steps to success (less is bet-
ter) for each development example, each over 5 trials
with different random seeds of gpt-4-1106-preview,
comparing Action-gen and PDDL-edit. The error bar
represents the sample standard deviation. On example 0
and 6, PDDL-edit fails and thus not shown.

interpretation behind the decisions (c.f., thought-
process). In Coin Collector, for example, if the
coin has not be found at the maximum permitted
steps, a problematic Action-gen trajectory is almost
impossible to manually correct unless a human is
to plot a map and keep track of the exploration. On
the other hand, both PDDL-gen and PDDL-edit
guarantees the correctness of the plan assuming
that the generated or edited problem file is correct.
Hence, upon failure, a human only needs to inspect
and correct the most recent observation and the
PDDL. For PDDL-edit, the job is even easier as
only the change in the problem needs to be con-
sidered. An example learned problem file can be
found in Appendix E.

5 Conclusion

We propose PDDLEGO, the first approach to use
LLMs to iteratively learn a planning representation
while exploring partially-observed environments.
We quantitatively show the improvement of perfor-
mance, efficiency and stability, while qualitatively
argue the benefit of interpretability and correctabil-
ity. Future work might remove the assumption of a
domain file and a sub-goal structure.
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Limitations

Despite the many benefits of PDDLEGO, it also
poses the following shortcomings compared to hav-
ing LLMs directly generating the plan or actions.

The first is speed and cost, as both the input and
output become much longer to include PDDL code.
For the OpenAI model we experiment with, PDDL-
gen and PDDL-edit are on average about 5x slower
than Action-gen. On the other hand, it is difficult
to compare the cost which is highly dependent on
prompt design. In our work, Action-gen keeps
appending the chosen action, new observation and
valid actions to the prompt, resulting in a longer
input and higher cost for every exploration step.
However, our PDDL methods only retain the most
recent observation and problem file, so the input
length, though initially longer, is roughly constant.

The second is flexibility, which is the strong-
suit of methods leveraging LLMs to do most of
the work. For each environment we experiment
with, a certain extent of hard-coding is required
for our methods to work, hindering generalization.
In our case, the domain file and sub-goals of one
or more problem file for each environment must
be manually annotated. Doing so presumes some
prior insight into the environment, and therefore
PDDLEGO is not truly a zero-shot methodology.

While the aim of this work is to show the pre-
liminary gains of generating PDDL while explor-
ing partially-observed environments, there could
be stronger Action-gen baselines, such as using
chain-of-thought to formulate a plan first instead
of selecting actions on the fly, or more advanced
methods in the literature.
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A Formulation of PDDL

As shown in Figure 4, an instance of PDDL (Ghal-
lab et al., 1998) consists of a domain file, describing
the actions, and a problem file, describing the ini-
tial and goal states of entities. A well-formed pair
of domain and problem files can be solved by a
symbolic planner, whose output is a sequence of
actions.

Domain File

types
- person, item,
locale

predicates 
- have, at

actions
- go, get

- parameters
- preconditions
- effects

Problem File

Entities
- you is-a person
- cookie is-a item
- room is-a locale

Initial States
- at(cookie, room) ...

Goal States
- have(you, cookie) ...

Plan

get(you, cookie)

go(you, room)

PDDL
solver

Figure 4: A PDDL solver produces a plan based on a
minimal domain file and problem file. Previous work
assumes the domain file as given, while we predict the
action definitions in the domain file.

B Annotated Domain Files and Prompts

PDDLEGO is a method to iteratively construct prob-
lem files based on a provided domain file. Figure 5
and 6 show the annotated domain files for Coin Col-
lector and Cooking World, respectively. Note that
the actions and their parameter lists in the domain
file strictly maps to the permitted actions in the sim-
ulations, so that a PDDL plan can be mapped onto
executable actions in the environment. Based on
the domain file, our prompts for either generating
(PDDL-gen) or editing (PDDL-edit) the problem
file are simply (for Coin Collector):

You will continue to build a PDDL representation
of an environment while exploring it. We will
be using the following domain file: «domain file»
For example, for the given observation:

You are in the kitchen. To the South you see a
closed wooden door.

Your task is to go to a location you have not been
yet. You will generate the following problem file:
«example domain file»

Now, let’s start afresh.

For PDDL-edit, a few more details are appended.

«the above prompt»

Let’s work with an example. Say you’re given
this observation: You are in the kitchen. To the
South you see a closed wooden door. To the East
you see a closed glass door.

You will modify the above problem file using
add, replace, and delete operations (in a JSON
format). You SHOULD NOT provide a problem
file directly.
{
"objects": {
"add": [
"loc1 - location",
"loc2 - location"

],
"replace": {},
"delete": []

},
"init": {
"add": [
"(connected kitchen loc1 south)",
"(closed_door kitchen loc1)",
"(connected kitchen loc2 east)",
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"(closed_door kitchen loc2)"
],
"replace": {},
"delete": []

}
}

Note a couple of things:

1. When you see a closed door, you would use a
placeholder for the room behind the door.

2. When you enter a room, you learn the name
of the room and will replace the placeholder with
the name. You should also make sure to replace
that name for all relations under "init".

3. When you enter a room, you’re "at" the room
and it becomes "visited". You should also delete
other "at" conditions because you can only be at
one room.

4. You should never delete the "visited" relations,
because once a room is visited, it will remain that
way.

For Cooking World, the prompt is mostly the same
for the first stage (looking for ingredients), with
an additional LLM instance to identify closed con-
tainers, and their contents once opened. As de-
scribed above, all found ingredients are mechani-
cally picked up (hard-coded).

For Action-gen, the prompt is simply a descrip-
tion of the simulation, providing as much informa-
tion as specified in the above domain files. For
Coin Collector, it is:

You will play a game where your goal is to collect
a coin. You need to move through rooms explore
them. Sometimes, two rooms are connected by
closed door that you need to open before you can
go from one to another. You should also keep
track of which room you have visited, and the
direction at which you enter a room.

I will provide you with a description of the en-
vironment, and you will take one of the valid
actions. Ready?

For Cooking World, it is:

You will play a game where your goal is to read
a recipe, find ingredients, cook a meal, and eat
the meal. The recipe includes the ingredients
that you’ll need to collect. The ingredients are
scattered around rooms and may be found in con-
tainers. After you find the ingredients, you need
to process them as required in the recipe. Here
are how the ingredients are processed:

- slice: use a knife to slice the ingredient

- chop: use a knife to chop the ingredient

- dice: use a knife to dice the ingredient

- grill: use a toaster or a barbeque to cook the
ingredient will grill it

- roast: use an oven to cook the ingredient will
roast it

- fry: use a stove to cook the ingredient will fry it

You have to process the ingredients as specified
in the recipe, otherwise you will fail. Once the

(define (domain environment)
(:requirements :strips :typing :negative-preconditions :disjunctive-

preconditions)
(:types
location
direction

)
(:predicates
(at ?loc - location)
(visited ?loc - location)
(connected ?loc1 - location ?loc2 - location ?dir - direction)
(closed_door ?loc1 - location ?loc2 - location)

)

(:action move
:parameters (?loc1 - location ?loc2 - location ?dir - direction)
:precondition (and (at ?loc1) (connected ?loc1 ?loc2 ?dir) (not (

closed_door ?loc1 ?loc2)))
:effect (and (not (at ?loc1)) (at ?loc2))

)

(:action open_door
:parameters (?loc1 - location ?loc2 - location)
:precondition (and (at ?loc1) (closed_door ?loc1 ?loc2))
:effect (not (closed_door ?loc1 ?loc2))

)
)

Figure 5: Annotated domain file for Coin Collector.

ingredients are processed, you can cook the meal
and eat the meal in the kitchen, so make sure you
go back to the kitchen at that point.

Now, I will provide you with a description of the
environment, and you will take one of the valid
actions. Ready?

C Hyperparameters

For both simulations, we use the implementation
from Jansen and Côté (2022). For Coin Collector,
we use the most complex setting supported by the
system of 11 rooms with random connectivity, al-
lowing up to 50 exploration steps. For Cooking
World, we consider an easy setting with 2 rooms
and 2 ingredients up to 20 steps and a hard setting
of 5 rooms and 5 ingredients up to 50 steps. For
both datasets, we vary the random random seed
to generate randomize environment configurations,
and use 0-9 as the development set, and 10-59 as
the test set.

For the choice of LLM, we consider
gpt-3.5-turbo-1106 (GPT 3.5 Turbo) and
gpt-4-1106-preview (GPT 4 Turbo) across
baseline methods (i.e., Action-gen, PDDL-gen,
and PDDL-edit). We set the temperature to 1 to
study stability. For Action-gen, we prompt the
LLM with a full description of the simulation with
the aim that a human player can learn to succeed.
For the PDDL approaches, whenever the generated
or edited problem cannot be solved by the domain
file, indicating an error, the model is allowed to
retry up to 5 times before failing the task. Models
are provided with a hand-annotated domain file for
each task contains permitted actions (e.g., move,
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(define (domain environment)
(:requirements :strips :typing :negative-preconditions :disjunctive-

preconditions)

(:types
ingredient container knife toaster stove oven barbeque - object
location
direction

)

(:predicates
(at ?loc - location)
(obj_at ?obj - object ?loc - location)
(visited ?loc - location)
(connected ?loc1 - location ?loc2 - location ?dir - direction)
(closed_door ?loc1 - location ?loc2 - location)

(grilled ?ing - ingredient)
(roasted ?ing - ingredient)
(fried ?ing - ingredient)
(chopped ?ing - ingredient)
(sliced ?ing - ingredient)
(diced ?ing - ingredient)
(have ?obj - object)

)

(:action move
:parameters (?loc1 - location ?loc2 - location ?dir - direction)
:precondition (and (at ?loc1) (connected ?loc1 ?loc2 ?dir) (not (

closed_door ?loc1 ?loc2)))
:effect (and (not (at ?loc1)) (at ?loc2))

)

(:action open_door
:parameters (?loc1 - location ?loc2 - location)
:precondition (and (at ?loc1) (closed_door ?loc1 ?loc2))
:effect (not (closed_door ?loc1 ?loc2))

)

(:action use_stove
:parameters (?ing - ingredient ?loc - location ?sto - stove)
:precondition (and (at ?loc) (obj_at ?sto ?loc) (have ?ing))
:effect (fried ?ing)

)

(:action use_toaster
:parameters (?ing - ingredient ?loc - location ?toa - toaster)
:precondition (and (at ?loc) (obj_at ?toa ?loc) (have ?ing))
:effect (grilled ?ing)

)

(:action use_oven
:parameters (?ing - ingredient ?loc - location ?ove - oven)
:precondition (and (at ?loc) (obj_at ?ove ?loc) (have ?ing))
:effect (roasted ?ing)

)

(:action use_barbeque
:parameters (?ing - ingredient ?loc - location ?bbq - barbeque)
:precondition (and (at ?loc) (obj_at ?bbq ?loc) (have ?ing))
:effect (grilled ?ing)

)

(:action chop
:parameters (?ing - ingredient ?kni - knife)
:precondition (and (have ?ing) (have ?kni))
:effect (chopped ?ing)

)

(:action slice
:parameters (?ing - ingredient ?kni - knife)
:precondition (and (have ?ing) (have ?kni))
:effect (sliced ?ing)

)

(:action dice
:parameters (?ing - ingredient ?kni - knife)
:precondition (and (have ?ing) (have ?kni))
:effect (diced ?ing)

)
)

Figure 6: Annotated domain file for Cooking World.

open door, pick up) with well-defined types and
predicates, parameters, pre-conditions, and effects.
For the PDDL-edit setting, we prompt the LLM
to generate edits (add, replace, and delete lines in
the problem file) in JSON with the force-JSON
flag set. The prompt of each method include a
1-shot demonstration of the output format (i.e.,
an action, a problem file, or edits to a problem
file). See details of prompt design and domain file
annotation in the Appendix B.

D Example Trajectories

A sample trajectory by GPT 4 Turbo with PDDL-
edit on Cooking World (hard) is shown in Fig-
ure 7. The navigation portion of the interaction
(look around, open door, move) is inherited from
Coin Collector.

E Generated Problem Files

Figure 8 demonstrates a PDDL problem file learned
throughout exploration in Coin Collector that indi-
cates the existence and connectivity of all rooms
the agent has access to before finding the coin.

F Results on the Development Set

Table 2 is the counterpart of Table 1 showcasing
the results on the development set.
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< examine cookbook
> Gather all following ingredients and follow the directions to prepare this tasty meal.
Ingredients:
black pepper, block of cheese, salt, red apple, yellow potato

Directions:
slice the block of cheese, dice the red apple, chop the yellow potato, grill the yellow potato, prepare meal

< look around
> You are in the kitchen. In one part of the room you see a stove. There is also an oven. You also see a fridge that is closed. In another part of the

room you see a counter that has a knife, a red apple, a raw yellow potato, and a cookbook on it. In one part of the room you see a kitchen
cupboard that is closed. There is also a cutlery drawer that is closed. You also see a trash can that is closed. In another part of the room you
see a dishwasher that is closed. In one part of the room you see a dining chair, that has nothing on it.

To the South you see a closed plain door. To the West you see the corridor.
< open fridge
> You open the fridge. The fridge contains a block of cheese.
< take block of cheese
> You take the block of cheese.
< take knife
> You take the knife.
< take red apple
> You take the red apple.
< take yellow potato
> You take the yellow potato.
< open kitchen cupboard
> You open the kitchen cupboard. It's empty inside.
< open cutlery drawer
> You open the cutlery drawer. It's empty inside.
< open trash can
> You open the trash can. It's empty inside.
< open dishwasher
> You open the dishwasher. It's empty inside.
< move west
> You are in the corridor. In one part of the room you see a key holder, that has nothing on it. There is also a shoe cabinet that is closed. You also

see a umbrella stand, that has nothing on it. In another part of the room you see a hat rack, that has nothing on it. In one part of the room you
see a coat hanger, that has nothing on it.

To the North you see a closed wood door. To the East you see the kitchen. To the West you see a closed sliding patio door.
< open shoe cabinet
> You open the shoe cabinet. It's empty inside.
< open door to north
> You open the wood door, revealing the bedroom.
< move north
> You are in the bedroom. In one part of the room you see a dressing table, that has nothing on it. There is also a desk chair, that has nothing on it.

You also see a desk, that has nothing on it. In another part of the room you see a chest of drawers that is closed. In one part of the room you
see a wardrobe that is closed. There is also a night stand, that has nothing on it. You also see a bed, that has nothing on it.

Through an open wood door, to the South you see the corridor.
< open chest of drawers
> You open the chest of drawers. It's empty inside.
< open wardrobe
> You open the wardrobe. It's empty inside.
< move south
> You are in the corridor. (description omitted)
< open door to west
> You open the sliding patio door, revealing the backyard.
< move west
> You are in the backyard. In one part of the room you see a barbeque. There is also a workbench, that has nothing on it. You also see a patio chair,

that has nothing on it. In another part of the room you see a patio table, that has nothing on it. In one part of the room you see a clothes line
, that has nothing on it. There is also a garden, that has nothing on it.

Through an open sliding patio door, to the East you see the corridor.
< move east
> You are in the corridor. (description omitted)
< move east
> You are in the kitchen. (description omitted)
< open door to south
> You open the plain door, revealing the pantry.
< move south
> You are in the pantry. In one part of the room you see a folding chair, that has nothing on it. There is also a shelf that has some black pepper, and

some salt on it.
Through an open plain door, to the North you see the kitchen.
< take black pepper
> You take the black pepper.
< take salt
> You take the salt.
< dice red apple
> You dice the red apple.
< slice block of cheese
> You slice the block of cheese.
< chop yellow potato
> You chop the yellow potato.
< move north
> You are in the kitchen. (description omitted)
Through an open plain door, to the South you see the pantry. To the West you see the corridor.
< move west
> You are in the corridor. (description omitted)
< move west
> You are in the backyard. (description omitted)
< cook yellow potato in barbeque
> You grill the yellow potato with the barbeque.
< move east
> You are in the corridor. (description omitted)
< move east
> You are in the kitchen. (description omitted)
< prepare meal
> Adding the meal to your inventory.
< eat meal
> You eat the meal. It is delicious.

Figure 7: An example trajectory performed by GPT 4 Turbo and PDDL-edit on Cooking World (hard).
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random GPT 3.5 Turbo GPT 4 Turbo

Action-gen PDDL-gen† PDDL-edit† Action-gen PDDL-gen† PDDL-edit†

Coin 20% 80% 30% 70% 90% 50% 80%
Cooking (easy) 0% 0% 100% 70% 10% 90% 100%
Cooking (hard) 0% 0% 0% 0% 0% 0% 50%

Table 2: The percentage where the agent succeeds by taking no more than the maximum steps on the development
set. The † sign specifies methods under our proposed PDDLEGO methodology.

Figure 8: An example PDDL problem file learned
throughout exploration in Coin Collector.
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Abstract

The interplay of cultural and linguistic ele-
ments that characterizes metaphorical language
poses a substantial challenge for both human
comprehension and machine processing. This
challenge goes beyond monolingual settings
and becomes particularly complex in transla-
tion, even more so in automatic translation. We
present VOLIMET, a corpus of 2,916 parallel
sentences containing gold standard alignments
of metaphorical verb-object pairs and their lit-
eral paraphrases, e.g., tackle/address question,
from English to German and French. On the
one hand, the parallel nature of our corpus en-
ables us to explore monolingual patterns for
metaphorical vs. literal uses in English. On
the other hand, we investigate different aspects
of cross-lingual translations into German and
French and the extent to which metaphoricity
and literalness in the source language are trans-
ferred to the target languages. Monolingually,
our findings reveal clear preferences in using
metaphorical or literal uses of verb-object pairs.
Cross-lingually, we observe a rich variability
in translations as well as different behaviors for
our two target languages1.

1 Introduction

Metaphor is a figurative device which allows us to
understand and experience one (typically abstract)
domain in terms of another (typically more con-
crete) domain (Lakoff and Johnson, 1980). For
example, in the sentence I’ll tackle the challenging
problem of metaphors in translation, the abstract
domain of dealing with a problem is expressed in
terms of the more concrete domain of physically
seizing and throwing down something/someone.
Metaphorical language has long been recognized
as a challenge for both human understanding and
machine processing (Tong et al., 2021) and is not
confined to monolingual settings. It extends into

1All data and guidelines are available at https://github.
com/priscapiccirilli/VOLIMET

Figure 1: Example of gold standard alignments for a
source English sentence containing the metaphorical
verb-object tackle challenge to German and French.

cross-lingual territory, particularly in the realm of
translation, where metaphors represent a hard nut
to crack: they are not only very flexible in their
structures and meanings, but also strongly depend
on the involved languages and cultures (Schäffner,
2004; Kövecses, 2010). While the effort to auto-
mate the translation of figurative language using
machine translation (MT) systems is underway, lim-
ited MT research explores the contrast between
metaphorical and literal language in translation
and its potential effect on translatability (van den
Broek, 1981) and variability (Tong et al., 2021) in
language production and generation.

To bridge this gap, we create VOLIMET, a paral-
lel corpus of English–German and English–French
sentences containing gold standard alignments
of paraphrased metaphorical and literal uses of
verb-object (VO) pairs (see example in Fig. 1).
The corpus provides insights on the translation
of metaphorical VO pairs and their correspond-
ing literal paraphrases from the source language
(SL) English, to the target languages (TL) French
and German. For instance, given the metaphori-
cal VO tackle question, is its literal VO counterpart
address question equally frequent in natural lan-
guage? How is it translated into other languages
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and to which extent is the metaphoricity transferred
or preserved in the translation from SL to TL? How
many different translations of this VO do humans
produce, i.e., do we find one-to-one or one-to-many
mappings between source and target languages?

In this paper, we present a comprehensive ac-
count of the corpus construction process and per-
form extensive monolingual and cross-lingual anal-
yses. Monolingually, we seek to uncover patterns
in the use of metaphorical vs. literal VOs. We find
that considering the verb and its object as a unit
provides a more nuanced representation than con-
sidering the verb on its own, crucial for accurate
automatic processing. Cross-lingually, we observe
a rich tapestry of translation variability, indicating
one-to-many mappings between the source VOs and
their target translations, where both metaphorical
and literal uses are prevalent in the TLs. We fur-
ther uncover differences in translations between the
TLs, highlighting the need for flexible MT systems
capable of reproducing this diversity.

Overall, our parallel corpus is meticulously
crafted to encapsulate all these intricacies and rep-
resents a key resource in the endeavor to tackle
the challenges posed by metaphorical language. In
the future, it will also be of great use for machine
translation research on metaphors.

2 Related Work

Translation Studies Metaphorical language rep-
resents an extremely common phenomenon
(Shutova and Teufel, 2010) and has been of interest
in translation studies when prescribing conditions
for translating metaphors (van den Broek, 1981;
Schäffner, 2004). As of today, the three translation
modes from van den Broek (1981) remain the core
choices in TL translations of SL metaphors: (1) a
translation “sensu stricto” as in le jour tombe–der
Tag fällt (lit. the day falls), which might lead to a
semantic anomaly or innovation if the metaphor
vehicles in SL and TL differ, (2) an onomasiological
translation referred to as “substitution” where the
SL and TL vehicles are translation equivalents shar-
ing the same tenor, as in le jour tombe–die Nacht
bricht (her)ein (lit. the night falls in); and (3) a dis-
cursive, non-metaphorical translation “paraphrase”
as in le jour tombe–es wird Abend (lit. it is becom-
ing night).

Machine Translation MT research incorporating
figurative language has mainly been restricted to
studies on the translation of structurally or seman-

tically less flexible expressions, such as idioms
(Huet and Langlais, 2013; Fadaee and Monz, 2018)
and multi-word-expressions (e.g., noun compounds
such as flea market; particle verbs such as give
up; support verb constructions such as play a role)
(Carpuat and Diab, 2010; Gamallo et al., 2019).

Cognitive Linguistics Stefanowitsch (2008) and
Martin (2008) provide evidence for the cognitive
function of metaphors in contrast to their literal
counterparts, by demonstrating that people tend to
use metaphors to explicate things. Metaphorical
language tends to also be more emotionally-loaded
than literal language (Citron and Goldberg, 2014;
Mohammad et al., 2016; Piccirilli and Schulte im
Walde, 2022) and may influence the way people
conceptualize the world (Thibodeau and Borodit-
sky, 2011). Overall, there is empirical evidence
for differences in using metaphorical in contrast to
literal language, which we explore from a cross-
lingual perspective in this work.

NLP Research has mainly focused on metaphor
detection (Mu et al., 2019; Dankers et al., 2020)
and interpretation (Bizzoni and Lappin, 2018; Mao
et al., 2018), with the predominant idea to generate
literal paraphrases for metaphorical expressions.
More recently and more closely related to the cur-
rent interest of this present work, we built a dataset
of verb–object and subject–verb metaphorical vs.
literal expressions used in large context and col-
lected via crowd-sourcing annotations (Piccirilli
and Schulte im Walde, 2021). In further work,
we compared adapted computational models for
discourse metaphor/literal interactions; the results
from the human judgements showed the equal im-
portance of metaphorical and literal usages, a be-
havior that computational models fail at mimicking
(Piccirilli and Schulte im Walde, 2022). This rein-
forces the necessity for a more nuanced approach
and attests limitations of word representations for
metaphorically-used language.

Overall, rich interdisciplinary research offers in-
sights on metaphors in monolingual settings, but
less so in cross-lingual settings. Our work con-
tributes to filling this gap by looking at the contrast
of metaphorical and literal language, both from a
monolingual and cross-lingual perspective.

3 Creating VOLIMET

We create VOLIMET, a comprehensive linguistic
resource comprising various components that are
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necessary to enhance not only our understanding
of metaphorical language use but also its effect on
translated text. VOLIMET encompasses an extensive
collection of English metaphorical and literal VO
pairs, as in tackle vs. address question, thought-
fully curated to provide paraphrases of one another
(§3.1). VOLIMET also significantly enhances its con-
tribution by offering English sentences featuring
these VO pairs, meticulously extracted from par-
allel data (§3.2). The parallel nature of VOLIMET

allows on the one hand monolingual analyses of
metaphorical and literal VO pairs in context. On the
other hand, it also enables a cross-lingual explo-
ration of how these VOs are translated into German
and French, making VOLIMET the first resource of
metaphorical and literal VOs and their respective
translations.

3.1 VO Pairs: Collection
At its core, VOLIMET consists of a set of metaphor-
ical and literal verb-object pairs, which we
(i) obtained from previous work and (ii) semi-
automatically augmented.

Original Pairs As a starting point, we collected
a seed of 47 metaphorical VOs and their literal para-
phrases from previous work (Mohammad et al.,
2016; Shutova, 2010; Piccirilli and Schulte im
Walde, 2021; Stowe et al., 2022), cf. Appendix A.
For example, the basic sense of the verb tackle is
used in the context of “to catch and knock down
someone who is running”,2 which makes the idea
of tackling a question physically impossible. The
VO tackle question was therefore judged as being
metaphorical, and address question was proposed
as its literal paraphrase. Note that because the verb
and its object are considered as a unit, there is
no semantic ambiguity: no matter the context in
which the VO occurs, tackle question is always used
metaphorically, while address question is always
used literally. Each VO pair in our original seed is
composed of (i) a metaphorical verb and its literal
paraphrase (tackle/address) and (ii) a direct-object
noun (question) which makes the pair as a whole
(verb-object) considered synonymous.

Extended Pairs As we expect that our verb pairs
naturally occur with more than one common ob-
ject, we expanded the range of direct objects co-
occurring with each of our 47 seed verb pairs. For
example, the verbs in the pair tackle/address both

2https://dictionary.cambridge.org/dictionary/
english/tackle

subcategorize question as a direct object but may
also occur with issue, challenge, matter, to name
just a few. Each of these nouns is not only a direct
object of both verbs but also does not affect the
paraphrase reading. We minimized human involve-
ment for this task and applied a semi-automatic
approach. Assuming that a direct object (dobj) oc-
curring with both verbs within the same parsed
corpus is likely to be a valid candidate, we automat-
ically extracted all dobjs nouns if occurring with
both verbs of a verb pair within the ENCOW cor-
pus (Schäfer and Bildhauer, 2012; Schäfer, 2015).
We first collected 157,437 additional arguments
across our 47 pairs and then applied restrictions
to reduce potential noise: We defined a frequency
threshold of 15 for each object to occur with each
of the two verbs, and discarded extracted nouns of
less than two characters or labeled as “unknown”
or “proper noun”. Finally, we retained the 50 most
frequent extracted objects for each verb pair. We
automatically obtained 2,325 additional objects,
from which we manually selected up to 10 valid
candidates per verb pair. On average, each verb pair
was augmented with six objects (max=11, min=1)3,
resulting in a total of 297 VO pairs. Note that the
verb pairs remain the same, and the augmentation
only applies to the nominal objects. For example,
the original VO pair drown/forget trouble was aug-
mented with the additional objects {pain, problem,
feeling}. In Appendix A, we provide the original
VO pairs and the sets of extended objects.

3.2 VO Pairs: Parallel Sentence Extraction
and VO Alignments

The second part of the data collection consists of
extracting natural English data containing any of
our VO pairs. Because we aim to explore metaphors
and their literal counterparts from both a mono- and
cross-lingual perspective, we extracted data from
parallel corpora.

Source and Target Languages We chose En-
glish as our SL. As our TLs we chose German and
French, two high-resource languages.

Parallel Corpus Using existing parallel corpora
such as the Europarl Parallel Corpus (Koehn, 2005)
seemed the most straightforward approach, as it
offers large amounts of data for our language
pairs English–German (en2de) and English–French

3No additional valid dobj was found for four of our VO
pairs, namely push/sell drugs, wear/have smile, flood/saturate
market, shipwreck/ruin career.
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(en2fr). However, a major limitation of existing
large parallel corpora is the (lack of) information
regarding the language-pair direction. For exam-
ple, the Europarl en2de corpus does not reliably
ensure that the English text is always the actual
SL nor that the parallel German text is the TL ob-
tained from translating the SL English. This is prob-
lematic within the scope of our work: metaphori-
cal language is a specific cognitive and linguistic
phenomenon that is language- and culture-specific
(Schäffner, 2004; Kövecses, 2010), hence the ne-
cessity to be aware of the original SL and the cor-
responding TLs. This limitation was previously no-
ticed and addressed in Rabinovich et al. (2018),
who publicly released a subset of the Europarl
corpus providing accurate and reliable indications
of translation directions. Their corpus contains
217,344 en2fr and 225,089 en2de parallel sen-
tences, representing about 16% of the respective
original Europarl datasets. We decided to use this
corpus to build VOLIMET.

Extraction and Gold Standard Alignments We
extracted all parallel sentences in which the source
texts contain any of our 297 VO pairs, and per-
formed word alignments using fast-align (Dyer
et al., 2013). We ideally wanted to automatically
obtain translations of the components of the pairs,
but the accuracy of automatic alignments was rather
sub-optimal, and resulted in many partial align-
ments. It also missed some crucial linguistic infor-
mation or provided erroneous alignments; in fact,
as soon as the translator took some creative liberty,
the aligner generally failed to provide an alignment.

We therefore hired three German and two
French speakers to correct potential errors in the
automatically-obtained alignments. We defined
clear guidelines on what and how to align. Note
that we did not correct the word alignments of the
full sentences, but focused only on the alignments
between the SL verb and object of our VO pairs
and their corresponding translations. This was a
necessary and valuable step in creating VOLIMET:
66% and 90% of the en2fr metaphorical and literal
parallel texts, respectively, needed their alignments
to be corrected. For the en2de parallel texts, 92%
and 85% of the metaphorical and literal data, re-
spectively, had their alignments corrected.

Thanks to this human effort, we obtain gold
standard alignments between metaphorical and
literal English VO pairs and all their German and
French human-produced translations. We release

Met. VOs Lit. VOs Total

# instances 730 (12.59) 961 (10.92) 1,691
# VO pairs 58 (27) 88 (32) 31
# inflected VOs 135 (2.33) 203 (2.31) –

Avg. sent. length 30.08 – 34.16 – –

Table 1: Statistics on extracted monolingual English
data: number of instances containing metaphorical and
literal VOs (avg. instances per VO), number of extracted
VOs (verb-specific) and number of inflected variants
(avg. per VO) as well as average sentence length.

the annotation guidelines and the gold standard
en2fr and en2de alignments for our metaphori-
cal vs. literal VO pairs at https://github.com/
priscapiccirilli/VOLIMET.

4 Quantitative Analyses

VOLIMET encompasses close to 3,000 en2fr and
en2de parallel sentences containing a total of 114
metaphorical and literal VO pairs. We first perform
in-depth monolingual (§ 4.1) and cross-lingual
(§ 4.2) quantitative analyses. Monolingually, we
shed light on the frequency of our VOs, their syn-
tactic (non-)fixedness and the contrast in their
metaphorical vs. literal usages. Cross-lingually,
we look at the variability across translations. Then
we explore whether metaphoricity vs. literalness in
English is transferred to French and German during
the translation process, and how the findings differ
between the two TLs.

4.1 Monolingual (English) Analyses
The parallel nature of our corpora enables us to first
perform quantitative analyses regarding the use of
metaphorical and literal VO pairs in a monolingual
setting, namely English. This way, we shed light
on properties of metaphorical vs. literal language
use in natural language. All statistics are reported
in Table 1.

Starting with a set of 297 VOs, we wanted to
see how frequently they occur in natural language,
and whether we observe a clear distinction be-
tween metaphorical VOs and their literal coun-
terparts. We extracted a total of 1,691 English
sentences, 730 of them containing 58 metaphori-
cal VOs (27 verbs-only4), and 961 sentences con-
taining 88 literal VOs (32 verbs-only). We observe
imbalances in the frequencies of VOs, e.g., we re-
trieved only two instances of shape outcome, but

4For example, tackle question and tackle challenge are 2
metaphorical VOs with 1 verb-only.
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169 instances of tackle problem. Independently
of their metaphoricity, each VO occurred with an
average of 2.5 inflections (max=8) regarding both
components (verb and/or object), e.g., follow(ing)
activity(ies), cause(s) death(s). We did not observe
any major differences in sentence length, and the
average sentence length is ≈30 words, both in the
metaphorical and literal data.

The first 10 most frequent metaphorical and lit-
eral VOs represent 84% and 77% of the data, re-
spectively (Table 2). The only pairs that seem to be
equally frequent in their metaphorical and literal
forms all stem from the same verb pair, i.e., tackle
vs. address (problem/question/issue). Paraphrased
pairs are not equally frequent; in other words, ei-
ther the metaphorical use or the literal alternative
occurs in our data, e.g., clause debate is amongst
the 10 most frequent VOs while its counterpart end
debate does not occur once in our data at all. Out
of the 58 metaphorical and 88 literal retrieved VOs,
31 of them are actual paraphrased pairs whose fre-
quencies can be compared. We report in Figure 2
the proportions of frequencies for these 31 pairs.
As we can see, only six of these pairs show equal
frequencies of their metaphorical and literal uses
(e.g., break/end agreement). There are 13 of them
for which the literal use is more frequent than its
metaphorical counterpart (e.g., stimulate/fuel de-
bate) and 12 of them for which the metaphorical
use is more frequent than its literal alternative (e.g.,
boost/improve economy). We will develop this ob-
servation in Section 5.

Quite a few additional verbs also display high
frequencies when they are considered regardless
of their objects. For example, the metaphorical
VO breathe life is not part of the 10 most frequent
metaphorical VOs but the verb breathe is, if we
gather all its instances regardless of its objects (life,
confidence, value, hope, etc.).

4.2 Cross-Lingual Analyses

VOLIMET is a valuable resource to exploit the anno-
tations cross-lingually and analyze metaphorical vs.
literal properties of translations. In this section, we
quantify our findings for each language pair – en2fr
and en2de – containing metaphorical vs. literal VOs.
We provide qualitative analyses of these findings
in Section 5. A detailed summary of the discussed
statistics of VOLIMET can be found in Table 3.

Size and Frequency VOLIMET consists of 1,701
en2de and 1,215 en2fr parallel sentences, contain-

Figure 2: Proportions of VO pairs: metaphorical (blue)
vs. literal (orange).

ing 114 of our source VOs. The obtained data is
overall balanced for en2de regarding the amount
of parallel sentences containing source metaphor-
ical and literal VOs. However, the en2fr parallel
dataset containing source metaphorical VOs is twice
as large as the one containing source literal VOs.
This is due to the fact that we had more German an-
notators; we aim to correct more en2fr alignments,
in order to reach a balanced dataset.

Across the metaphorical and literal parallel
datasets and language pairs, we find an average
of 11 parallel sentences for each VO. This number
however varies greatly across VOs. For instance,
for the metaphorical en2fr dataset, we obtained
only one parallel sentence containing the source
VO break contract but 102 parallel sentences con-
taining the source VO find way.

Met. Lit.

VO verb-only VO verb-only

find way tackle address problem address
tackle problem find make remark make
tackle issue close address question pose
tackle challenge break address issue improve
close debate boost pose question invest
tackle question float make comment reduce
boost economy mount invest money understand
tackle crisis attack improve situation get
break cycle breathe address concern stimulate
close case shape stimulate debate cause

Table 2: The first 10 most frequent metaphorical and
literal VOs in the SL English texts, in descending order.
Underlined are the metaphorical vs. literal VO pairs that
are equally frequent. In italics are the verbs that enter
the top-10 when considered regardless of their objects.
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Met. VOs Lit. VOs Total

en2de en2fr en2de en2fr

# parallel sentences 719 (12.40) 394 (8.76) 982 (11.55) 821 (11.40) 2,916
# VO pairs 58 (27) 45 (25) 85 (32) 72 (28) 114/297
# inflected VO pairs 133 (2.29) 103 (2.29) 198 (2.33) 154 (2.14) –
# total translations 560 (9.66) 296 (6.58) 832 (9.79) 534 (7.42) –
# unique translations 290 (5.67) 176 (4.44) 417 (5.48) 239 (3.82) –

# Fig. translations (%) 109 (37.59) 112 (63.64) 128 (30.70) 88 (36.82) –
# Lit. translations (%) 147 (50.59) 53 (30.11) 245 (58.75) 127 (53.14) –

Table 3: Statistics on parallel datasets containing literal vs. metaphorical VO pairs: number of parallel sentences,
VO pair inflections, all and unique (=type) translations (mean in brackets), the number of VO pairs covered in our
datasets (unique verbs in brackets), and whether the respective VO translations were judged figurative or literal by
humans (% in brackets). For example, the en2de dataset contains 719 parallel sentences with 58 metaphorical
VO pairs (27 verbs-only4). We obtained 560 total translations for these 58 VO pairs (avg. 9.66 translations per
VO), 327 unique translations (avg. 5.67 translations per VO), for which 42.41% of the translations were judged
figurative and 57.59% literal.

Syntactic Variation Across language pairs and
datasets, each VO presents on average two in-
flections (max=7 for en2fr, max=11 for en2de),
from both components (verb and/or object), e.g.,
found/finding excuse(s).

Variability in Translation We obtain a large ar-
ray of translations with an average of eight transla-
tions per source VO, irrespective of the metaphoric-
ity and the TL. These numbers are cut in half when
looking at the number of unique translations. This
still results in large variations in translations as each
VO is aligned on average to four different individ-
ual translations for each language pair. Out of an
average of 280 unique translations across language
pairs, we find only 19 en2fr and 27 en2de transla-
tions that are translations of several metaphorical
VOs, e.g., répondre à question is found as a trans-
lation for both tackle challenge and tackle issue,
and 27 en2fr and 42 en2de translations that are
translations of several literal VOs.

Similarly to the number of instances retrieved
per VO, the number of unique translations varies
across VOs: out of the 302 en2de parallel sentences
containing the VO address problem, we observe up
to 79 different (unique) translations. The number
of instances per VO is highly correlated with the
number of translations (average Spearman’s cor-
relation ρ=0.99 for en2de and ρ=0.88 for en2fr),
i.e., the more a VO appears in natural language,
the more (unique) translations are produced. As
a matter of fact, none of the source metaphorical
VOs for the en2de language pair results in only one

translation, and only three source metaphorical VOs

produce one en2fr translation. A few source literal
VOs obtain only one French/German translation
(see Appendix B).

FRENCH GERMAN

Anno2 Anno3 Anno2 Anno3

Anno1 0.36 0.35 Anno1 0.42 0.36
Anno2 – 0.53 Anno2 – 0.43

Table 4: Cohen’s κ scores across French and German
annotators on judging the figurativeness of French and
German translations, respectively, of metaphorical and
literal English VOs.

Lost in Translation Beyond the variability in
translation we described above, it is crucial to also
quantify the diversity we encounter in translation:
is metaphoricity/literalness transferred to the TLs,
i.e., are metaphorical vs. literal VOs translated as
metaphors vs. literal phrases, respectively?

We presented all unique German and French
translations to three German and French native
speakers and expert linguists, respectively, and
asked them for a binary decision whether they
judged each phrase5 to be figurative6 or literal. We

5We do not use the term “translation” in this annotation
study, as we want to obtain judgements independently of the
corresponding source text.

6We use the more general term “figurative language” for
this annotation study, as the translations represent different
types of figurative language, e.g., a metaphor, metonymy, an
idiom, etc.
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FRENCH GERMAN

Anno1 Anno2 Anno3 Maj. Vote Anno1 Anno2 Anno3 Maj. Vote
Fig. 145 (41.31%) 178 (50.71%) 199 (56.70%) 178 320 (55.65%) 171 (29.74%) 181 (31.48%) 215
Lit. 206 (58.68%) 173 (49.29%) 152 (43.30%) 173 255 (44.35%) 404 (70.26%) 394 (68.52%) 360

Total 351 575

Table 5: Human judgements (three expert French and German native speakers, respectively) regarding figurativeness
for French (left) and German (right) translations, as well as the majority judgements.

report in Appendix C a detailed description of the
annotation instructions.

Table 5 presents the number of translations that
are judged figurative vs. literal, across annotators,
as well as the majority vote. Overall, out of the
351 French translations, the judgements are rather
balanced, i.e., the translations into French do not
seem to be clearly figurative or literal, and this
observation holds across annotators. The picture is
different for translations into German: 2/3 of them
are judged literal.

Judging figurative language is a difficult task
(Zayed et al., 2019; Piccirilli and Schulte im Walde,
2021; Zhou et al., 2021), and we therefore observe
disagreements across annotators on both languages.
For example, the French VOs plonger économie,
jeter doute (lit. dive in economy, throw doubt) and
comprendre signification, investir fond (lit. un-
derstand meaning, invest fund) are unanimously
judged figurative and literal, respectively. How-
ever, the VOs trouver voie/moyen/issue/excuse (lit.
find path/way (out)/excuse) or évoquer idée/ques-
tion (lit. evoke idea/question) were source of dis-
agreement. Despite the difficulty of such a task,
we obtain however fair-to-moderate inter-annotator
agreement (IAA), with an average κ = 0.41 for
both en2fr and en2de. Table 4 reports all κ scores
between all annotators for both languages. We dis-
cuss in Section 5 some aspects on collecting human
judgements regarding figurativeness which might
have consequences for the analysis.

In the bottom part of Table 3, we also report the
judgements regarding figurativeness of the transla-
tions with respect to the metaphoricity of the source
phrases. The assumption that source metaphorical
VOs are more likely to be translated figuratively
and that literal source VOs are more likely to be
translated with literal equivalences is confirmed
for French. In fact, 63% of the translations from
source metaphorical phrases are judged figurative,
e.g., “float idea”: lancer idée (lit. throw idea) rather
than its literal paraphrase suggérer idée (lit. suggest

idea), and more than half of the translations from
source literal phrases are judged literal (53%), e.g.,
“address question”: considérer question (lit. con-
sider question) rather than s’attaquer à question
(lit. attack question), the figurative paraphrase. We
observe different results for German translations.
Even though literal translations from literal source
phrases are largely favored (59%), e.g., “address
crisis”: etw. gegen Krise tun (lit. do sth against cri-
sis), rather than Krise bekämpfen (lit. fight crisis),
this correlation is not noted for source metaphorical
phrases being translated figuratively. As a matter
of fact, half of the translations of metaphorical
source phrases are judged literal, e.g., “find ex-
cuse”: Entschuldigung haben (lit. have excuse),
and not als Entschuldigung nehmen (lit. take ex-
cuse), its figurative alternative.

5 Discussion

VOs Frequency From our original 297 metaphor-
ical vs. literal VO pairs, there were more literal VOs
which were extracted from the source part of our
parallel corpus (75 vs. 58). For some VO pairs
we find clear preferences for one option over the
other, i.e., either the metaphorical or the literal VO

of a pair is clearly more frequent. For instance, the
metaphorical VOs tackle crisis/challenge are nine
times more frequent than their literal paraphrases
address crisis/challenge. One might think that this
phenomenon has to do with the verb only, e.g.,
tackle is always favored over address. This is how-
ever not the case as address is favored over tackle
when combined with other objects (e.g., problem,
concern). For computational tasks such as text gen-
eration or machine translation, this finding gives
support to the necessity to consider a verb along
with its object: when considering paraphrases, one
cannot rely on the frequency of the verb only, as
more nuance might be brought by whichever argu-
ment is used along with that verb.

This finding should be taken with a grain of
salt because we are lacking data points to gener-
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alize across VO pairs. For instance, the verb pair
grasp/understand only occurs with the object point
in our data, and while the metaphorical usage grasp
is favored over its literal counterpart, we do not
know whether we would observe similar behaviors
with other objects (e.g., meaning, concern, etc.) of
that verb pair.

VOs Syntactic Variation Looking at syntactic
variations can shed light on (i) whether there are
some clearly lexicalized VOs, but also (ii) whether
there exist discrepancies between the paraphrase
VO pairs, where one variant is more lexicalized
than its paraphrase. Unlike idioms, metaphors
are considered (syntactically) more flexible expres-
sions that retain their metaphorical meaning if they
undergo syntactic variations (Fazly et al., 2009;
Kövecses, 2010). For example, It’s raining cats
and dogs cannot be replaced by It’s raining a cat
and a dog without losing its idiomatic interpreta-
tion. We however expect to observe a metaphorical
VO such as tackle question in different morpho-
syntactic forms, as in tackling the questions or
the question was tackled, where the (metaphori-
cal) meaning remains intact.

We have observed that both metaphorical and
literal VOs that appear more than once in the data
present up to eight different syntactic variations
(three on average). None of the VOs therefore
presents clear signs of syntactic fixedness, but there
also exists no clear discrepancy in syntactic flex-
ibility between metaphorical and literal VOs. In
other words, this finding suggests that amongst our
paraphrased pairs, there is complete consistency in
terms of (non-)lexicalization.

Variability in Translation As we discussed in
the two previous paragraphs, we observe quite
some diversity in the use of metaphorical vs. literal
VO pairs in the source language, both in terms of
frequency and syntactic variations. Indeed, we saw
that some VOs present a preference for either the
metaphorical or literal variant (see Figure 2), and
that VOs display many inflections. Is this diversity
encountered in the SL also observed in the French
and German translations, respectively? We observe
many syntactic variations in translation for both
en2fr and en2de, indicating that the syntactic struc-
ture of the source VO is therefore not necessarily
respected in the translation process. For example,
the verb-object construction break agreement is
translated as a noun-preposition-noun construction
into French (rupture de accord, lit. breaking of

agreement). Regarding variability, we have seen
that each source VO, regardless of its metaphoricity,
is on average aligned to four translations, in both
language pairs. Only very few VOs occurring more
than once in the parallel corpus correspond to a
one-to-one translation. Not only does this confirm
that there are many ways to transfer one concept
from one language to another, but also that humans
tend to be very creative in the way they produce
language. In other words, we generally find (large)
variability in translation per SL concept (see Sec-
tion 4.2).

We also notice slightly less variability in trans-
lation per literal VO than per metaphorical VO, i.e.,
one-to-many translations are more frequent for
metaphorical VOs than for literal VOs. For example,
the metaphorical concept of boost in boost econ-
omy does not have a sensu stricto metaphorical
translation in French; we observed seven differ-
ent translations for the 15 instances of the source
metaphorical VO. However, we found only one
(sensu stricto) French translation of the literal para-
phrase improve economy. It therefore seems that if
a metaphor in the SL does not have an equivalent
in the TL, translators seem to show more creativ-
ity in their translation process. This perspective
is especially interesting to keep in mind for natu-
ral language processing downstream tasks such as
MT. Unlike the translation of idioms, which is ei-
ther right or wrong (Volk, 1998; Huet and Langlais,
2013; Salton et al., 2014), efforts should be focused
on building MT systems which are able to be more
nuanced with respect to the use of metaphors.

Lost in Translation To which extent is
metaphoricity/literalness transferred from source
to target in the translation process, and does the lan-
guage pair matter? We observe a clear divergence
in behavior between the two TLs, according to ex-
pert judgements. In French, metaphorical vs. literal
uses in the SL tend to be preserved in translation,
i.e., source metaphorical VOs tend to be translated
into figurative phrases, and source literal VOs tend
to be translated into literal phrases. This is however
not the case for translations into German: overall,
they have been judged more literal, even if the
source text contained a metaphorical VO. Further
investigation is needed in order to find the reasons
behind this behavior.

Indeed, judging metaphoricity is a difficult task
(Zayed et al., 2019; Zhou et al., 2021; Piccirilli and
Schulte im Walde, 2021, 2022) for which many
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aspects need to be taken into account and where
the community has yet to find an optimal way to
collect human judgements, e.g., number of annota-
tors, binary vs. scale decision, but also the level of
conventionality of metaphorical vs. literal phrases.

6 Conclusion

We presented VOLIMET, the first parallel corpus of
English–German and English–French paraphrased
metaphorical and literal verb-object pairs. Besides
offering a novel lexicon of 297 metaphorical vs.
literal VO paraphrase pairs, VOLIMET also provides
their cross-lingual contexts at the sentence level.

We conducted substantial human work to pro-
vide gold standard alignments of source VOs to all
their corresponding translations. We performed
quantitative and qualitative analyses from both a
monolingual and cross-lingual perspective. Mono-
lingually, we showed that for some VO pairs, there
exists a clear preference for either the metaphori-
cal or the literal variant. It is however crucial to
consider the verb and its object as a unit, as we
observed apparent differences in behaviors when
the verb is considered with or without its object.
Cross-lingually, our findings revealed substantial
variability in translations, i.e., one-to-many map-
pings between source VOs and their target trans-
lations. Finally, we investigated the extent to
which metaphoricity/literalness gets preserved in
the translation process. We found different be-
haviors between our two target languages, where
French translations show equal use of metaphorical
and literal language, while German tends to favor
literal translations by a large margin.

Ethical Considerations

In the context of our annotation tasks, we collected
judgements from human participants. For this, the
participants were provided an Informed Consent
Letter with the name and the contact of the investi-
gators; the title, purpose and procedure of the study;
risks and benefits for participating in the study; con-
firmation of confidential anonymous data handling;
and confirmation that participation in the study is
paid (12C/hour). The Informed Consent Letter was
signed before the participants took part in the study.

Limitations

The creation of the VOLIMET parallel corpus and the
research conducted represent significant advance-
ments in understanding monolingual and cross-

lingual metaphorical and literal language use and
subsequently handling metaphors in machine trans-
lation. However, some limitations should be ac-
knowledged. First, the corpus focuses on English–
German and English–French translations and there-
fore does not fully capture the diversity of lan-
guages and translation challenges in other language
combinations. Additionally, even though we pro-
vided clear instructions and examples of metaphor-
ical vs. literal language, the human judgments col-
lected for figurativeness and literalness in trans-
lations remain potentially subjective and may not
represent the full spectrum of possible interpreta-
tions. Finally, the corpus’ size and coverage as
well as the number of verb-object pairs we used,
might not encompass all possible metaphorical con-
structs and translation variations, requiring further
expansion and exploration. These limitations high-
light the need for ongoing research and the develop-
ment of more comprehensive resources to enhance
metaphor-aware machine translation systems.
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A Verb-Object Pairs

See Table 6.

B VOs: One-only Translations

See Table 7.
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Original met/lit VO-pairs Extended sets of objects

absorb/assimilate knowledge information, idea, culture, material, lesson, fact, content, experience, concept,
thought

absorb/pay costs fee, bill, tax, debt, interest, expense
abuse/misuse alcohol drug, substance, medication, product
attack/address problem issue, need, question, challenge, point, situation, topic, change, cause, matter
boost/improve economy service, system, situation, process, education, work, business, result, number
break/end agreement cycle, relationship, contract, marriage, process, pattern
breathe/instill life sense, confidence, value, spirit, love, hope, idea, passion
buy/believe story word, lie
cast/cause doubt issue, fear
catch/get disease idea, chance, information, result, message, point, call, problem, opportunity
close/end investigation season, deal, case, debate, operation, story
close/finaliz(s)e deal case, plan, arrangement, agreement, project
cloud/impair memory ability, judgement, judgment, mind, vision, thinking, perception, understanding
colo(u)r/affect judgement decision, choice, perception, experience, interpretation
deflate/reduce economy cost, price, value, supply, wage, market, currency
devour/read book article, story, page, novel, information, chapter, news
digest/comprehend information meaning, material, fact, text, concept, idea, word, content, situation, message
disown/reject past idea, policy, responsibility
drop/reduce price cost, rate, temperature
drown/forget trouble pain, problem, feeling
dull/decrease appetite pain, sense, noise, feeling
find/make excuse way, connection
float/suggest idea theory, concept
flood/saturate market X
follow/practis(c)e profession religion, activity
frame/pose question problem, challenge, issue, debate, concern, argument, idea, hypothesis
fuel/stimulate debate growth, economy, interest, discussion, demand, activity, imagination, creativity,

conversation
grasp/understand meaning concept, issue, point, problem, situation, reason, language, idea, risk, question
juggle/manage job project, work, life, career, school
kill/cancel proposal project, bill, program, process, agreement, deal
leak/disclose report information, document, story
mount/organiz(s)e production event, campaign, conference, exhibition, demonstration, protest
poison/corrupt mind system, process, soul, relationship
pour/invest money fortune
push/sell drug X
recapture/recall feeling memory, moment, experience
shake/damage confidence foundation
shape/determine result life, outcome, success, strategy
shipwreck/ruin career X
sow/cause doubt death, confusion, chaos, conflict, panic, fear, violence, uncertainty, terror, hatred
stir/cause excitement confusion, reaction, feeling, emotion
suck/attract worker talent
tackle/address question issue, problem, concern, challenge, situation, point, crisis, matter, inequality, task
taste/experience freedom pain, life, joy
throw/make remark comment
twist/misinterpret word fact, meaning, comment, situation, information, message
wear/have smile X

Table 6: Original metaphorical/literal VO-pairs and their sets of extended arguments. X means that no further objects
were found according to our criteria (see Section 3.1 for a description of our extended pairs’ selection).
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English → German English → French

M
et

. find excuse trouver excuse
flood market inonder marché
shake confidence ébranler confiance

L
it.

organise production Produktion organisieren address challenge relever défi
read book Buch lesen end agreement mettre terme à accord

organise conference organiser conférence
organise production organiser production
pose problem poser problème
suggest idea suggérer idée
understand problem comprendre problème
understand reason comprendre raison

Table 7: English metaphorical and literal VOs for which only one German/French translation was suggested.
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C Annotation Study: Guidelines

The purpose of this human annotation study was to evaluate the figurativeness of German and French
translations of metaphorical and literal English phrases. We wanted to quantify the diversity we encounter
in translation, for answering the question: are metaphorical vs. literal VOs translated as metaphors vs.
literal phrases, respectively?
Using Google Forms, we compiled the 351 unique French and 575 German translated phrases, and asked
three native French and German speakers and expert linguists, respectively, to judge whether the phrases
were figurative or literal. For each phrase, we also provided one sentence containing that phrase, in case
more context was needed for the binary decision. We estimated the task to take 3–5 hours, and we paid
the annotators the (German) legal minimum wage of 12C/hour.

Description of the research study In this project, we are interested in annotating whether French
phrases are figurative or literal.

Purpose of the research study The gold standard annotations will be used as training data for modeling
the detection of figurative language.

What is figurative language? As opposed to literal language, whose interpretation does not deviate
from the word’s defined and most frequent senses, the meaning of a figurative phrase is not simply
composed of the common meanings of its components: its surface form and its underlying semantics
do not directly correspond to each other. This is for example very clear when a phrase is an idiom:

“It’s raining cats and dogs”. This can be a bit more subtle when dealing with other forms of figurative
language, such as metaphors, when one concept is viewed in terms of the properties of another: “Let’s
kill the process”, where the computational process is viewed as a living being. A figurative word/phrase
can be recognized if it represents a violation of selectional preference in a given context: e.g., the verb
“drink” normally requires a grammatical subject of type ANIMATE and a grammatical object of type LIQUID,
as in (1-a). As a result, “drink” taking a “car” as a subject in (1-b) is an anomaly, indicative a figurative
use of the verb.

(1) a. “She drinks tea”
b. “My car drinks gasoline” (Wilks, 1978)

Your task You will evaluate whether phrases in French/German are figurative or literal.

• You will be given a list of French phrases. For each phrase, you will judge whether it is figurative or
literal. Note that there is no ambiguity, i.e., each phrase has only one interpretation (figurative or
literal).

• The phrases might not be as clear-cut as in the example (1). Do your best to make a judgement, based
on the intuition you get from the explanation given above. There is no "right" or "wrong" answer!

• You can make use of whatever external resource you think might be helpful, e.g., dictionaries, etc.

• The phrase context (minimum two words) should be enough to emit a judgement. However, for each
phrase, we provide one sentence containing the phrase, in case it helps you make a final decision.

• Do not leave any blank: always provide a judgement, i.e., Figurative or Literal

• We provide an example in Figure 3 (Note that this is a random annotation).
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Figure 3: Example of the annotation task set up for judging figurativeness of VO translations.

237



Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), pages 238 - 251
June 20-21, 2024 ©2024 Association for Computational Linguistics

Improving Word Sense Induction through Adversarial Forgetting of
Morphosyntactic Information

Deniz Ekin Yavas∗,1, Timothée Bernard2, Laura Kallmeyer1, Benoît Crabbé2
Heinrich Heine University Düsseldorf1, Université Paris Cité2

{deniz.yavas, laura.kallmeyer}@hhu.de1

{timothee.bernard, benoit.crabbe}@u-paris.fr2

Abstract
This paper addresses the problem of word sense
induction (WSI) via clustering of word embed-
dings. It starts from the hypothesis that con-
textualized word representations obtained from
pre-trained language models (LMs), while be-
ing a valuable source for WSI, encode more
information than what is necessary for the iden-
tification of word senses and some of this in-
formation affect the performance negatively in
unsupervised settings. We investigate whether
using contextualized representations that are in-
variant to these ‘nuisance features’ can increase
WSI performance. For this purpose, we pro-
pose an adaptation of the adversarial training
framework proposed by Jaiswal et al. (2020)
to erase specific information from the repre-
sentations of LMs, thereby creating feature-
invariant representations. We experiment with
erasing (i) morphological and (ii) syntactic fea-
tures. The results of subsequent clustering for
WSI show that these features indeed act like
noise: Using feature-invariant representations,
compared to using the original representations,
increases clustering-based WSI performance.
Furthermore, we provide an in-depth analysis
of how the information about the syntactic and
morphological features of words relate to and
affect WSI performance.

1 Introduction

Words in their different senses occur in different
contexts. Contextualized word representations ob-
tained from transformer based pre-trained language
models (LMs) such as BERT (Devlin et al., 2019)
are especially suitable for Word Sense Disambigua-
tion (WSD) because they capture the sentential
context of a word and thereby oftentimes allow
to distinguish different senses of a word. They
have indeed been successfully used for WSD in re-
cent work (Hadiwinoto et al., 2019; Loureiro et al.,
2021; Vandenbussche et al., 2021).

∗This work was conducted during the author’s visit to
Université Paris Cité.

However, in both unsupervised WSD, where the
goal is to identify the instances of a specific sense,
and word sense induction (WSI), which allows the
discovery of novel senses, using the LM repre-
sentations alone does not yield satisfactory results
(Pilehvar and Camacho-Collados, 2019; Samih and
Kallmeyer, 2023). In both, similarity of the repre-
sentations plays a crucial role, and this similarity is
determined by many features. Indeed, the contex-
tualized representation of a word usually encodes a
wide range of linguistic information about the word
in its context, such as its syntactic function, its mor-
phological properties, its position, its casing, and
the identity of its neighbouring words (Sajjad et al.,
2022). However, most of the encoded information
that determines the similarity of the representations
is not relevant to word senses (Yavas, 2024). Note
that this is not a problem for supervised WSD, as a
supervised model can learn to ignore those features
that are not discriminative for word senses.

Building on these insights, we focus on WSI
and aim at investigating the relationship between
specific types of information encoded in contextual-
ized representations of LMs and WSI performance.
Concretely, we examine whether erasing certain
information from the representations of LMs can
lead to an increase in performance for a simple
clustering-based WSI system. Our investigation
examines two types of information that have been
observed to affect the word sense clustering perfor-
mance negatively. Yavas (2024) have shown that in
word sense clustering with BERT representations
on SemCor (Miller et al., 1993), word instances
are frequently clustered together based on the simi-
larities between their morphological and syntactic
features (more specifically, syntactic role of the
word) rather than their semantic similarities. For
example, past tense instances of a specific verb, or
all instances of a specific noun occurring as direct
objects, are clustered together.

We adapt the adversarial training framework of
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Jaiswal et al. (2020) in order to train a forget-gate
that erases information from the representations
of LMs, resulting in feature-invariant representa-
tions. We experiment with the BERT model and
create feature-invariant representations for both of
the above-mentioned types of features (morpholog-
ical and syntactic). Finally, we evaluate the perfor-
mance of WSI on SemCor with different feature-
invariant representations, comparing them to the
original word representations obtained from BERT.
Furthermore, we conduct an in-depth analysis of
how the information about the syntactic and mor-
phological features of words relate to and affect
WSI performance.1

Our results show that words’ morphological and
syntactic features indeed act like noise that nega-
tively affects clustering performance and syntax-
and morphology-invariant representations are bet-
ter suited to WSI than the original BERT represen-
tations. Furthermore, a more detailed analysis of
the relation between these information types and
WSI performance shows that even though syntactic
features are more correlated to word senses than
morphological features are, they still affect the WSI
performance negatively overall.

This paper makes several contributions. First,
we propose an adaptation of the framework pro-
posed by Jaiswal et al. (2020) to erase unwanted
information from the representations of LMs. Sec-
ondly, we use this method to generate syntax-
and morphology-invariant representations from
the word representations of the BERT model and
achieve better performance in clustering-based
WSI. Lastly, we provide an in-depth analysis of
how the morphological and syntactic features of
words affect WSI performance.

The paper is structured as follows: We review
related work in Section 2, then we introduce our
framework for creating feature-invariant represen-
tations in Section 3 and report the results of the
creation process. Finally in Section 4, we report
the experiments on WSI with an analysis of the
relation between the information types and WSI
performance.

1We also experimented with positional information. In our
experiments, we successfully removed the positional informa-
tion from the representations, however, these representations
exhibited unexpected behaviour in clustering experiments. As
a result, we decided to exclude this feature type. We intend to
investigate the underlying reasons in the future.

2 Related Work

Word Sense and Information Encoded in Con-
textualized Representations. Contextualized rep-
resentations of pre-trained LMs encode more con-
textual information than what is necessary for the
identification of word senses and this information
can affect the similarity of the representations in
an unwanted way. Sajjad et al. (2022) have shown
that semantic, morphological, and syntactic con-
cepts are encoded in contextualized representations.
These concepts include words’ POS tags, CCG
super-tags, ngrams, casings, WordNet concepts,
and so on. Furthermore, clustering of contextual-
ized word representations reveal these similarities
between the words.

In their detailed qualitative analysis, Yavas
(2024) have shown that word sense clustering with
BERT’s representations on SemCor is heavily and
negatively affected by information encoded in the
representations from the sentence context that is
insignificant to WSD, such as some morphologi-
cal features of the words, their syntactic role, the
presence of some punctuation marks and function
words in the sentence (e.g. ‘not’, ‘then’, etc.). In
the present study, we aim to investigate whether the
effects of some of these features can be controlled
and whether doing so can increase performance in
WSI on the same dataset.

Similar effects have been found in lexical seman-
tic change detection. Laicher et al. (2021) have
observed that BERT representations are influenced
by the orthographic form of words. Consequently,
this affects how the representations are clustered.
They have shown that removal of this bias increases
the clustering performance. In order to do so, they
preprocess the input data by lemmatizing the tar-
get word in each sentence before feeding it to the
model.

Adversarial Training for Invariant Represen-
tation Learning. Invariant representation learn-
ing aims to create representations that do not en-
code certain unwanted features of data, such as
nuisances, biases, or domain-specific features. Nui-
sances are features in the data that have no or little
relevance to the task but influence model perfor-
mance, like facial expressions in face recognition
(Bronstein et al., 2003) or orientation in image
recognition (Khotanzad and Hong, 1990). The cre-
ation of representations invariant to nuisances aims
to increase model performance and robustness.

In this study, we consider morphological and
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Figure 1: Framework for training a forget-gate (FG) to create feature-invariant representations from the representa-
tions of a pre-trained model. The FG is trained as a part of an adversarial model. The LM is only used as a feature
extractor and its parameters are frozen.

syntactic features of words as nuisance features for
WSI because they are not directly related to differ-
ent senses of words but affect performance. We
acknowledge that the syntactic features of words
are, to some extent, relevant to WSI, but while
these features may aid in identifying the senses
of some words, we hypothesize that it introduces
noise overall.

Invariant representation learning is widely used
to create representations that are invariant to nui-
sance features in Computer Vision (Louizos et al.,
2017; Xie et al., 2017; Jaiswal et al., 2018, 2020).
However, in NLP, most applications of this tech-
nique center around learning domain-invariant rep-
resentations (Louizos et al., 2017; Jaiswal et al.,
2018; Peng and Zhang, 2020; Xin et al., 2022) . As
for our knowledge, there has been no attempt to
create contextualized representations invariant to
any linguistic information.

Jaiswal et al. (2020) propose a framework for
learning invariant representations through adversar-
ial training in a Computer Vision context. They
train an encoder (and a decoder) to generate rep-
resentations for a set of inputs. At the same time,
a forget-gate is trained to generate masks meant
to be applied to the representations in order to cre-
ate invariant representations. The forget-gate is
trained as part of an adversarial model, in which a
discriminator predicts the unwanted information
from the masked representation while a predictor
predicts some task-related information. Our frame-
work for learning invariant representations is in-
spired by Jaiswal et al. (2020) while showing clear
differences. We do not train an encoder-decoder
model but, instead, we utilize LMs and create in-
variant representations from their representations.
Furthermore, forgetting is not done by masking but
by transforming the LM representations through a
feed-forward network.

3 Creating Feature-Invariant
Representations via Adversarial
Training

In order to obtain contextualized representations
that are invariant to certain features, we propose
to add a forget-gate on top of a pre-trained LM.
The forget-gate applies a nonlinear transformation
and thereby selectively removes the unwanted in-
formation from the original contextualized repre-
sentations. It is trained as a part of an adversarial
model inspired by Jaiswal et al. (2020). Concretely,
we train two forget-gates to create feature-invariant
representations for syntactic and morphological fea-
tures. We will refer to the respective resulting rep-
resentations as syntax-invariant, and morphology-
invariant representations.

3.1 Framework
Our framework is illustrated in Figure 1. We define
a neural network named forget-gate (FG). This
network is implemented as a feedforward neural
network with two hidden layers with ReLU acti-
vation function. It applies a transformation to the
representations obtained from a pre-trained LM to
create representations that are invariant to specific
information. The input of FG (x) is the repre-
sentation we aim to transform, namely the token
embedding from the pre-trained LM. The output of
FG (x′) is the feature-invariant representation.

Given a sentence s, we first tokenize it with the
LM tokenizer and then pass the tokenized sentence
(t1, ..., ti, ..., tn) to the LM in order to extract the to-
ken embeddings (x1, ...,xi, ...,xn), obtained from
the last layer of the LM (i.e., the LM acts as a
feature extractor). Each of these embeddings con-
stitutes one input data point to the FG. We use the
BERT (base-cased) model.2

2The embeddings are extracted using the Transformers
library (Wolf et al., 2020).
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The forget-gate FG is trained as part of an ad-
versarial model with two auxiliary modules; a dis-
criminator (D) and a predictor (P ). During train-
ing, the representation produced by the forget-gate
(x′

i = FG(xi) for token ti) is given to P and D.
D is tasked with probing for unwanted informa-
tion (some label yi for token ti) in the embedding
x′
i, and P is tasked with recovering the identity of

the token (ti) from x′
i. The adversarial model is

trained on the representations of both masked and
unmasked tokens (i.e., we sometimes substitute the
[MASK] token for ti in the input of the LM).

The training of the adversarial model alternates
between three types of batch, each batch containing
training data for only one of the three subnetworks
of the adversarial model. On the first type of batch,
the parameters of D, on the second type of batch,
the parameters of P , and on the third type of batch,
the parameters of FG are updated. There are two
batches of the first type (for D) for one batch of
the second and one batch of the third type. So,
D is trained more than the rest of the network.
The parameters of FG are updated based on the
combined loss LFG of D and P as indicated in (1).
The loss of D is given as negative since we want
to increase it.3

LFG(x, y, t) = −LD(D(x′), y)
+LP (P (x′), t)

(1)

For each feature type (morphological and syn-
tactic), we train an adversarial model with a unique
discriminator to obtain a feature-specific forget-
gate.4 The discriminators, Dm and Ds, are trained
as classification models and towards labelling to-
kens with POS tags (from the Penn Treebank tagset,
Marcus et al., 1993 — these tags are fine-grained
and provide morphological information such as
number for nouns and tense for verbs) and (incom-
ing) dependency labels respectively; the training
labels are predicted, see Section 3.3. For each fea-
ture type, the corresponding discriminator aims to
probe for this specific feature, while the forget-
gate simultaneously aims to erase it. The details
about the architecture of the different modules of

3In Jaiswal et al. (2020)’s framework, forgetting is not
done by using the opposite of D’s loss on the correct labels,
but by using D’s loss on random labels.

4We target morphological and syntactic information in-
dependently, even though theoretically, they are interrelated.
However, this does not affect the relevance of our method, but
only some linguistic interpretations of the results.

the adversarial model and their loss functions can
be found in Appendix A.

We train the adversarial models for 800 epochs
creating checkpoints every 100th epoch and select
the best checkpoint a posteriori based on the evalu-
ation results (see next section). The details about
the hyperparameters and the training of the adver-
sarial model can be found in Appendix B. As a
result of training the two adversarial models, we
obtain two different forget gates, FGm and FGs.
These forget gates, when applied to a BERT word
embedding, yield the respective feature-invariant
representations.

3.2 Evaluation
In order to evaluate this method, we create repre-
sentations using the trained forget-gates for each
type of information and use these representations
to train two models from scratch: one for word
(i.e., token) prediction and the other for unwanted
information probing. The performance of these
models on the test data tells us whether the feature-
invariant representation creation was successful.

We compare the performances of these models
to a lower and an upper bounds. The upper bound
for a task is defined as the performance of a similar
system trained using the original BERT represen-
tations. The lower bound is defined differently
for the two types of information. For syntactic in-
formation, the probing model is trained using the
non-contextualized word representations used by
BERT as input to its first layer. For morphological
information, the lower bound is given by the most
frequent POS baseline. It is calculated for each
grammatical category (i.e. noun, verb, and so on.)
by predicting the most frequent POS tag for that
category and averaged for all categories.

The probing models for morphological and syn-
tactic features are similar to the respective discrim-
inators in the adversarial models: They share the
same architecture, training and test data. The word
predictors are also similar to the respective predic-
tors in the adversarial models, in regard to their
architecture, training and test data.

We compare the performances of different mod-
els on the test data. We use perplexity as the metric
to evaluate the word predictors and accuracy for
the probing models. We select the best forget-gate
for each feature type aiming at a low probing per-
formance (close to the lower bound): We evaluate
all checkpoints and pick the forget-gate with the
lowest probing scores (if not lower than the lower
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bound). Details about the hyperparameters and the
training of the lower bound and upper models, eval-
uation models (probing and word prediction), and
the selected forget-gates are given in Appendix B.5

3.3 Data

For the training and evaluation of the models, we
use the Brown corpus (Kučera et al., 1967). We
extract the token representations by BERT of each
sentence. These token representations are then used
as the input for the forget-gate. Since words are
tokenized into WordPiece subwords by the BERT
tokenizer, we work with these subwords rather than
entire words.

In cases a word is split in multiple parts, we
only take the first subword into account, i.e. we
only erase information from the first subword a
word and we only use this subword for WSI. We
expect the first subwords to encode more relevant
information for WSI because they are more likely
to align with the stems of the words as opposed to
suffixes (e.g. ‘booklets’ is tokenized into ‘booklet’
and ‘s’ by the model tokenizer).

We assign two labels to each token; one for the
discriminator (or probe) and another for the predic-
tor. The predictor’s label corresponds to the token
ID assigned by the BERT’s tokenizer to the token.
The discriminator’s label varies depending on the
feature type: the label is either the label of the in-
coming syntactic dependency or the POS tag (of
the word associated with the token). We get these
labels automatically using spaCy.6

The dataset for morphological information only
contains tokens of words belonging to grammatical
categories that exhibit inflection in English: nouns,
verbs, adjectives, adverbs, and pronouns. No such
restrictions apply to syntactic information. This
process yields datasets containing 2,341,954 tokens
for syntactic information, and 1,315,988 tokens for
morphological information. All datasets are split
to train, development, and test data with the ratio
80:10:10.

3.4 Results

Both feature-invariant representations achieve good
results in word prediction and probing tasks; the
unwanted information is erased from the represen-
tations while their word prediction capabilities are

5The code for this project is available at: https://gith
ub.com/yavasde/Adversarial-Forgetting-of-Morphos
yntactic-Information.

6https://spacy.io/, model: en_core_web_trf.

Word Prediction Probing
Syntactic Information
Upper Bound 3.0 85.0
Lower Bound - 70.2
Invariant Rep. 4.1 72.1
Morphological Information
Upper Bound 3.0 89.1
Lower Bound - 62.1
Invariant Rep. 7.1 75.9

Table 1: Evaluation results for the feature-invariant rep-
resentations with comparison to the upper and lower
bounds of the tasks. Accuracy is given for probing (in
this context, lower is better) and perplexity is given for
word prediction results (lower is better).

intact. The lower bounds and upper bounds for all
tasks and the evaluation results for feature-invariant
representations can be seen in Table 1.

Erasing morphological information impacts the
performance of word prediction more. This is
expected because the morphological features of
words (for instance grammatical number for nouns)
are strongly correlated with their word forms.

4 Word Sense Induction Performance

Our aim is to investigate whether using feature-
invariant contextualized representations can im-
prove WSI performance. For this purpose, we
compare the performance on WSI of three vari-
ants of the same system, respectively using three
different representations; 1) the original contex-
tualized representations of the BERT model, 2)
syntax-invariant, and 3) morphology-invariant con-
textualized representations, where the latter two
are obtained by applying our trained forget-gates
FGm and FGs to the BERT representations. Fur-
thermore, we provide a detailed analysis of the
relation between the morphological and syntactic
features of words and WSI and how the erasure of
this information affects the WSI performance.

4.1 Data

We evaluate our WSI systems on SemCor. SemCor
is based on a subset of the Brown Corpus and it pro-
vides sentences in which a word, the target word,
is labelled with a WordNet sense (Fellbaum, 1998)
as shown in (1). We focus on nouns and verbs and
exclude other grammatical categories. We further
exclude the words that have only one sense, and
the senses that occur in less than 10 sentences.
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(1) officer:
a. “An officer with a squad of men had

been waiting on the bank.”
(officer.n.01)

b. “And the policy officer has the hounds
of time snapping at his heels.”

(officer.n.02)

One of the advantages of using SemCor for WSI
is that it is a subset of a bigger corpus (Brown
Corpus), that we can use to train the forget-gates.
The forget-gates are then trained on the same kind
of texts that the ones used for WSI, which helps
ensuring the quality of the invariant representations
used during clustering. There is no methodological
problem in doing so as the gold clusters are not
used at any time during the training of the forget-
gates. This approach can be applied to any dataset
by training a forget-gate and performing WSI on
the same data. Note that while the training of the
forget-gates requires feature annotation, this does
not limit the applicability of our approach as we
perform it automatically.

4.2 Method

We cluster instances of words using their repre-
sentations (BERT, syntax-invariant or morphology-
invariant) in the sentences. We tokenize each sen-
tence with the BERT tokenizer and give the tok-
enized sentence to the model to extract the repre-
sentations of the target word from the last layer of
the BERT model. In cases where the words are
tokenized into subwords, we only use the first sub-
word token. We create feature-invariant represen-
tations from the original representations of BERT
for each information type using the information-
specific forget-gate (FGs or FGm). We apply nor-
malization to all embeddings before clustering.

We use the K-Means algorithm for clustering.7

K-Means requires the cluster number as a hyper-
parameter. To determine the optimal number of
clusters for each word, we run the algorithm with
different cluster numbers between 2 and 6 and se-
lect the one with the highest silhouette score.8

We evaluate the clustering performance by com-
paring cluster assignments and the WordNet senses
of word instances and average the result over all

7The algorithms are implemented using the Scikit-learn
library (Pedregosa et al., 2011).

8The silhouette score measures how similar a sample is to
its cluster compared to other clusters. It’s calculated for each
sample and then averaged for the entire dataset.

Overall nouns verbs
BERT 0.210 (8x10-4) 0.251 (1x10-3) 0.174 (1x10-3)

Syn-Inv 0.221 (1x10-3) 0.263 (4x10-4) 0.185 (2x10-3)

Morph-Inv 0.232 (1x10-3) 0.267 (1x10-3) 0.201 (2x10-3)

Table 2: WSI performance with different representation
types. The performance is measured using ARI. Results
are presented for all words in the dataset, as well as for
verbs and nouns individually. The mean results over
5 runs are given with standard deviation in brackets.
The scores that surpass the BERT representations are in
bold.

words. The evaluation metric used is the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985). ARI
measures the similarity between two clusterings
by counting the pairs that are assigned to the same
or different clusters in both the gold clusters and
predicted clusters. It is adjusted to account for
chance agreement and gives a score between -1
and 1 where 1 indicates perfect agreement between
the two clusterings, while scores below 0 suggest
that the match is worse than random chance. For
the ARI formula and different clustering evaluation
metrics see Appendix C.

We compare the WSI performance with 3 differ-
ent types of representations. We run the clustering
algorithm 5 times for each type of representation
with different random states. We report the mean
of 5 runs. We apply unpaired t-test to determine if
the performance difference is statistically signifi-
cant. We compare the overall performance and the
performance based on grammatical category (verbs
and nouns).

4.3 Results

Results are shown in Table 2. WSI is performed bet-
ter with feature-invariant representations than with
the original BERT representations for both feature
types, with statistically significant differences ob-
served through unpaired t-tests (p-value: 0.0001).
The best results are obtained with morphology-
invariant representations overall. The largest
gain in the performance happens for verbs with
morphology-invariant representations. For a more
detailed evaluation of the clustering performance
using different metrics see Appendix C. Further
analysis of the specific cases and reasons behind
performance increases and decreases are addressed
in the following section.

243



Syntax Morphology
# TL TU Sense BERT Invariant # TL TU Sense BERT Invariant

MI - 9.4 27.8 14.7 26.4 23.1 - 4.7 40.5 9.4 41.8 25.4
Case 1 59 - - - 0.34 0.33 11 - - - 0.66 065
Case 2 34 - - - 0.07 0.10 80 - - - 0.04 0.09
Case 3 53 - - - 0.19 0.18 55 - - - 0.28 0.29

Table 3: Relation between the feature types and the WSI performance. MI scores for the association between
linguistic features and sense or cluster assignments are given. TL and TU refers to the lower and upper threshold for
MI. For each Case, ARI scores for BERT clusters and the clusters formed by the feature-invariant representations
are given. Performance increases are in bold.

4.4 Analysis of the Relation Between the
Information Types and WSI Performance

Our aim is to determine in which cases the erasure
of these information types helps the WSI process.
More specifically, we aim to investigate whether,
for individual words, word senses are distinguish-
able by the word’s morphological and syntactic
features and therefore, whether the existence or the
erasure of the related information helps the WSI
process. Even though the overall WSI performance
improves with feature-invariant representations, it
is possible that for some words, the information
erased is actually useful for sense identification. In
these cases, the information erasure would nega-
tively affect the WSI process.

In order to investigate this, we identify the three
following cases and assess the performance with
the original BERT representations and feature-
invariant representations for each case:

• Case 1: The senses of a word are distinguish-
able by the word’s morphological, or syntac-
tic features. In this case, we expect the per-
formance with invariant representations to be
lower than with the original BERT representa-
tions.

• Case 2: The senses of a word are not dis-
tinguishable by the word’s morphological, or
syntactic features, but clusters of BERT rep-
resentations are distinguishable by these fea-
tures — which then can be assumed to be
noise for clustering-based WSI. In this case,
we expect the performance with invariant rep-
resentations to be higher than with the original
BERT representations.

• Case 3: The senses of a word are not distin-
guishable by the morphological, or syntactic
features of the word, and clusters of BERT
representations are also not distinguishable

by these features. In this case, we expect the
performance with invariant representations to
be the same as with the original BERT repre-
sentations.

4.4.1 Method
We measure the association between the features
of the word instances and their sense or cluster
assignments using Mutual Information (MI).9 We
use this information to automatically categorize
words into the three cases outlined above.

In order to determine the features of the word in-
stances, we use again the POS tags and dependency
labels obtained from spaCy. 10 We refer to them as
linguistic labels. For each word and for each type
of feature we compute three MI scores. Firstly, we
calculate the MI score between the linguistic la-
bels of the instances and their gold WordNet sense
labels (Sense MI). Secondly, we calculate the MI
score between the linguistic labels of the instances
and their cluster labels, considering the clusters
formed by the BERT representations (BERT MI).
Lastly, we assess the MI score between the linguis-
tic labels of the instances and their cluster labels,
considering this time the clusters formed by the
feature-invariant representations (Invariant MI).

We compare the MI scores to lower (TL) and
upper thresholds (TU ). The lower and upper thresh-
old are calculated for each feature type as the first
quartile and third quartile for all MI scores for this
feature. We interpret scores below the lower thresh-
old as indicating no association, and scores above

9The mutual information between two variables X and Y
is defined as follows:

MI(X;Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2)

10For some instances of words, the target word is not found
in the sentence due to a lemmatization error. We discard these
words and experiment with 540 words in total (out of 567).
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the upper threshold as indicating an association.
We then automatically categorise word types. Case
1 words have high Sense MI scores, Case 2 words
have low Sense MI and high BERT MI scores, and
finally, Case 3 words have low Sense MI and low
BERT MI scores. We compute the average ARI
score for each word within each case and compare
their performances.

4.4.2 Results
The results of the analysis can be seen in Table 3.
MI scores show that the linguistic labels are more
strongly associated with BERT clusters than with
the sense groups. This suggests that these features
are dominant in the BERT clusters more than nec-
essary. This and the fact that ARI performance is
lowest for the Case 2 words indicate that these fea-
tures introduce noise that affects WSI performance
negatively. With the feature-invariant representa-
tions, this effect is limited to some extent.

Regarding different Cases, the results mostly
align with our expectations. Clustering perfor-
mance with Case 1 words is slightly higher with
original BERT representations. Clustering perfor-
mance with Case 2 words is increased with feature-
invariant representations. However, the increase for
Case 2 words is much higher than the decrease for
Case 1 words, showing that the erasure of syntactic
and morphological information benefits the WSI
performance overall. Finally, with Case 3 words,
there is a slight increase or decrease in performance
depending on the different feature types.

Regarding different feature types, we observe
that the morphological features of words introduce
a lot of noise to WSI performance (Sense MI vs.
BERT MI). Only for 11 words (out of 540), mor-
phological features of words are found to be as-
sociated with different senses (Case 1). For 80
words, these features are found to be associated
with different BERT clusters, even though they are
not relevant to different senses (Case 2), therefore
introducing noise. Similarly, the average BERT
MI score for morphological features surpasses the
upper threshold (TU ) of association, showing that
there is a high level of association between mor-
phological features and BERT clusters. Conversely,
syntactic features of words have more relevance to
word senses. For 59 words, these features show
associations with different senses, and both the
Sense MI score is higher, and the difference be-
tween Sense and BERT MI scores is lower for this
feature type. These differences are also evident

BERT Representations Morphology-Invariant Representations

Figure 2: PCA visualizations of BERT representations
(left) and morphology-invariant representations (right)
of different sense instances of ‘area’. Different data
point colors refer to different senses. Different marker
styles refer to instances with different morphological
features, i.e. grammatical number; circles for singular
nouns, squares for plural nouns.

in the WSI performance. Erasing morphological
information benefits WSI performance more than
erasing syntactic information (Table 2).

Let us illustrate these findings with a few exam-
ples. The noun ‘area’ has 3 senses in the data. WSI
performs worse with BERT representations than
with morphology-invariant representations on this
word (BERT ARI: 0.03, INV ARI: 0.49). With
BERT representations, we observe that two clus-
ters are formed and that they are formed mostly
based on the grammatical number of the instances,
although there is no association between grammat-
ical number and the senses of the word (Sense
MI: 0.0, BERT MI: 57.7, Invariant MI: 4.2). With
morphology-invariant representations, we observe
that this pattern is broken. Grammatical number
does not affect the similarity of the representations
and the instances of each sense are closer to each
other. Singular and plural instances of the third
sense are successfully clustered together. Even
though first and second sense instances form only
one cluster, instances of each sense are closer to
each other and the senses are more separable. See
Figure 2 for the PCA visualization of the differ-
ent representations of ‘area’ instances. For a more
detailed plot see Figure 4 in Appendix D.

Let’s consider a contrasting example. The noun
‘field’ has 4 senses in the data. WSI performs better
with BERT representations than syntax-invariant
representations (BERT ARI: 0.62, INV ARI: 0.26)
and senses are associated with the syntactic fea-
tures of the word (Sense MI: 40.3, BERT MI: 43.7,
Invariant MI: 11.0). The 3rd sense of ‘field’ has
the meaning ‘somewhere (away from a studio or
office or library or laboratory) where practical work
is done or data is collected’ and almost all of its
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BERT Representations Syntax-Invariant Representations

Figure 3: PCA visualizations of BERT representations
(left) and syntax-invariant representations (right) of dif-
ferent sense instances of ‘field’. Different data point
colors refer to different senses. Light blue data points
represent the 3rd sense instances of the noun. Different
marker styles refer to instances with different syntactic
roles; squares for compounds heads, circles for others.

instances are heads of a compound as in example
(2).

(2) a. They will give suggestions that can be
worked up into field procedures.

b. Actually, none of these papers says
much directly about field techniques.

The 3rd sense instances are clustered together
when BERT representations are used. After the
erasure of syntactic information, their representa-
tions are closer to the representations of other sense
instances. As a result, they are clustered with other
sense instances when syntax-invariant representa-
tions are used, resulting in poor performance. See
Figure 3 for the PCA visualization of the differ-
ent representations of ‘field’ instances. For a more
detailed plot see Figure 5 in Appendix D.

5 Conclusion

We adapt the framework proposed by Jaiswal et al.
(2020) in order to erase specific information from
the representations of LMs. With this method, we
create two types of representations from BERT
embeddings: invariant to either (i) morphological
features or (ii) syntactic features. Our results show
that the resulting feature-invariant representations
are more suitable for the WSI task. Furthermore,
we show that even though some syntactic features
provide valuable information for WSI, both types
of features introduce noise that, overall, negatively
impacts the performance of clustering-based WSI.
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A Model Architectures

• Discriminator for Synactic Information: 2-
layer nonlinear neural network for classifica-
tion. ReLU is used as the activation function.
Given a token embedding, it predicts the de-
pendency label of the token. Output dimen-
sion is the number of classes. Cross-entropy
loss is used as the loss function and Adam is
used as the optimizer.

• Discriminator for Morphological Informa-
tion: 2-layer nonlinear neural network for
classification. ReLU is used as the activation
function. Given a token embedding, it pre-
dicts the fine-grained POS tag of the token.
Output dimension is the number of classes
found in the dataset. Cross-entropy loss is
used as the loss function and Adam is used as
the optimizer.

• Predictor: 3-layer linear neural network that
maps the token embedding to the vocabulary
of BERT with size 30522. 2nd layer is for
normalization and drop-out (0.1) is applied
before the output layer. Cross-entropy loss is
used as the loss function and Adam is used as
the optimizer.

• Forget-Gate: 3-layer nonliner neural network
that transforms the input embedding. ReLU is
used as the activation function. Cross-entropy
loss is used as the loss function and Adam is
used as the optimizer.

B Model Training Procedures

Adversarial Models. All adversarial models are
trained with batch size 128 and learning rate 10−6

for the predictor, 10−5 for the discriminator, and
10−4 for the forget gate. All the models are trained
for 800 epochs.

Upper Bounds.

• Probing for syntactic information: 74
epochs, batch size 128, learning rate 10−5.

• Probing for morphological information: 66
epochs, batch size 128, learning rate 10−5.

• Word prediction: 132 epochs, batch size 128,
learning rate 10−6.

Lower Bounds.

• Probing for syntactic information: 9 epochs,
batch size 128, learning rate 10−4.

Feature-Invariant Representations Evaluation.

• Morphology-Invariant Representations:
The word predictor is trained for 30 epochs
with batch size 128, learning rate 10−5. The
probing model is trained for 22 epochs with
batch size 128, learning rate 10−4. The best
forget-gate is obtained from the 400th epoch
of the adversarial model’s training.

• Syntax-Invariant Representations: The
word predictor is trained for 20 epochs with
batch size 128, learning rate 10−5. The prob-
ing model is trained for 37 epochs with batch
size 128, learning rate 10−4. The best forget-
gate is obtained from the 500th epoch of the
adversarial model’s training.

C Clustering Performance Details

We evaluate the clustering performance using met-
rics from 4 different categories based on the cate-
gorization in Amigó et al. (2009) because different
categories have different strengths in measuring
clustering quality; metrics based on set match-
ing (Purity, Inverse Purity (Zhao and Karypis,
2001) and their harmonic mean PIF), metrics
based on entropy (V-Measure (Rosenberg and
Hirschberg, 2007)), metrics based on counting
pairs (Adjusted Rand Index (Hubert and Arabie,
1985)), and BCubed metrics (BCubed Precision,
Recall and F-score (Bagga and Baldwin, 1998)).

C being the set of clusters and L being the true
grouping, Purity and Inverse Purity are calculated
as follows:

Purity =
∑

i

|Ci|
N

max
j

Precision(Ci, Lj) (3)

Inverse Purity =
∑

i

|Li|
N

max
j

Precision(Li, Cj)

(4)
V-measure is calculated based on the homogene-

ity and completeness. Homogeneity measures how
much each cluster contains only data points that are
members of a single class. Completeness measures
how much all data points that are members of a
given class are assigned to the same cluster. It is
calculated as follows:
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ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.210 (0.0008) 0.265 (0.0007) 0.732 (0.0007) 0.658 (0.001) 0.670 (0.001) 0.652 (0.0006) 0.575 (0.0008) 0.580 (0.0004)
Syn-Invariant 0.221 (0.001) 0.274 (0.001) 0.732 (0.0006) 0.682 (0.0009) 0.684 (0.0008) 0.653 (0.0007) 0.599 (0.001) 0.594 (0.0008)
Morph-Invariant 0.232 (0.001) 0.283 (0.0006) 0.736 (0.0004) 0.683 (0.001) 0.688 (0.0007) 0.657 (0.0004) 0.598 (0.0008) 0.597 (0.0005)

Table 4: Clustering evaluation results with different representations with different metrics for all words in the data.
The mean results over 5 runs are given with standard deviation in brackets.

ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.251 (0.001) 0.309 (0.001) 0.769 (0.0007) 0.689 (0.002) 0.707 (0.001) 0.699 (0.0004) 0.607 (0.001) 0.623 (0.0008)
Syn-Invariant 0.263 (0.0004) 0.320 (0.0005) 0.772 (0.0006) 0.682 (0.001) 0.706 (0.001) 0.703 (0.0003) 0.600 (0.001) 0.622 (0.0009)
Morph-Invariant 0.267 (0.001) 0.322 (0.001) 0.772 (0.001) 0.682 (0.001) 0.705 (0.001) 0.704 (0.001) 0.598 (0.001) 0.620 (0.001)

Table 5: Clustering evaluation results with different representations with different metrics for nouns. The mean
results over 5 runs are given with standard deviation in brackets.

ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.174 (0.001) 0.227 (0.001) 0.699 (0.001) 0.632 (0.001) 0.638 (0.0008) 0.611 (0.001) 0.547 (0.0006) 0.542 (0.0001)
Syn-Invariant 0.185 (0.002) 0.233 (0.002) 0.698 (0.001) 0.681 (0.002) 0.665 (0.001) 0.608 (0.001) 0.598 (0.001) 0.570 (0.001)
Morph-Invariant 0.201 (0.002) 0.248 (0.002) 0.705 (0.001) 0.684 (0.002) 0.672 (0.002) 0.616 (0.001) 0.599 (0.002) 0.576 (0.002)

Table 6: Clustering evaluation results with different representations with different metrics for verbs. The mean
results over 5 runs are given with standard deviation in brackets.

V = 2× Homogeneity× Completeness
Homogeneity + Completeness

(5)

Adjusted Rand Index (ARI) adjusts the Rand
Index (RI) to account for chance agreement. RI
calculates the similarity between two clusterings
by considering pairs of samples and determining
whether they are assigned to the same cluster or
different clusters in both clusterings. They are cal-
culated as follows:

RI =
correct similar pairs + correct dissimilar pairs

total number of pairs
(6)

ARI =
max(RI)− Expected_RI

RI − Expected_RI
(7)

Correctness is the relation between e and e′ in
the distribution, where C(e) denotes the cluster and
L(e) true grouping of the item. Correctness means
that both items have the same category and belong
to the same cluster. The overall Precision BCubed
and Recall BCubed are obtained by averaging the
precision and recall scores of all items in the dataset
as follows:

Precision BCubed =
Avge[Avg′e.C(e)=C(e′)[Correctness(e, e′)]]

(8)

Recall BCubed =
Avge[Avg′e.L(e)=L(e′)[Correctness(e, e′)]]

(9)

The detailed evaluation of the clustering perfor-
mance with different metrics for all words can be
seen in Table 4, for nouns in Table 5 and verbs in
Table 6. The mean results over 5 runs are given.

D Clustering Visualizations

The PCA visualizations of the BERT representa-
tions and morphology-invariant representations of
‘area’ instances can be seen in Figure 4. Similarly,
the PCA visualizations of the BERT representa-
tions and syntax-invariant representations of ‘field’
instances can be seen in Figure 5.

249



Figure 4: PCA visualizations of BERT representations (top) and morphology-invariant representations (bottom)
of different sense instances of ‘area’. Different data point colors refer to different senses, and different border
colors refer to different clusters. Additionally, different marker styles refer to instances with different morphological
features, i.e. grammatical number; circles for singular nouns, squares for plural nouns.
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Figure 5: PCA visualizations of BERT representations (top) and syntax-invariant representations (bottom) of
different sense instances of ‘field’. Different data point colors refer to different senses, and different border colors
refer to different clusters. Additionally, different marker styles refer to instances with different syntactic roles;
circles for compound heads, stars for prepositional objects, triangles for direct objects, diamonds for subjects,
reversed triangles for passive subjects, and hexagons for attributes.
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Abstract

With the aim of improving the state-of-the-art
(SOTA) on a target task, a standard strategy in
Natural Language Processing (NLP) research is
to design a new model, or modify the existing
SOTA, and then benchmark its performance on
the target task. We argue in favor of enriching
this chain of actions by a preliminary error-
guided analysis: First, explore weaknesses by
analyzing the hard cases where the existing
model fails, and then target the improvement
based on those. Interpretable evaluation has re-
ceived little attention for structured prediction
tasks. Therefore we propose the first in-depth
analysis suite for Relation Classification (RC),
and show its effectiveness through a case study.
We propose a set of potentially influential at-
tributes to focus on (e.g., entity distance, sen-
tence length). Then, we bucket our datasets
based on these attributes, and weight the impor-
tance of them through correlations. This allows
us to identify highly challenging scenarios for
the RC model. By exploiting the findings of our
analysis, with a carefully targeted adjustment
to our architecture, we effectively improve the
performance over the baseline by >3 Micro-F1.

1 Introduction

A major trend in NLP research aims at designing
more sophisticated setups and model architectures
in order to improve the state-of-the-art (SOTA) on
a target task. The improvements are usually based
on intuitions that target limitations of the previous
SOTA on the task. The most common procedure
follows the steps of (1) intuition, (2) modeling, (3)
experiments, (4) results, and (5) analysis of the
results. The latter is occasionally enriched with ab-
lation or case studies with the main aim of proving
the validity of the initial intuition and the effec-
tiveness of the proposed methodology. We claim
that conducting a preliminary in-depth analysis can
help find good intuitions, and therefore guide bet-
ter modeling and reducing the probability of nega-

tive experiments, usually not reported in the paper.
Following previous error-guided analysis (Ribeiro
et al., 2020; Fu et al., 2020a; Das et al., 2022), we
argue in favor of changing the standard chain of
actions listed above: First perform an exhaustive
quantitative analysis of the previous SOTA to iden-
tify failure cases and challenging scenarios, and
then effectively target the baseline improvement in
order to tackle those.

We introduce an in-depth performance analy-
sis suite in the context of Relation Classification
(RC). Within the field of Information Extraction
(IE), which broadly aims at extracting structured
knowledge from unstructured text, the goal of RC
aims at classifying the semantic relation between
two named entities. We pick this task because,
despite its popularity, the task is far from being
solved or reaching high performance, especially
when considering realistic challenging setups—e.g.
cross-domain (Bassignana and Plank, 2022), or
document-level (Popovic and Färber, 2022). We
inspect the research approach of some of the most
cited papers in the field from recent years, on top
of which current SOTA are based: Baldini Soares
et al. (2019) introducing the widely adopted en-
tity markers, Zhong and Chen (2021) introducing
the typed entity markers and proposing a pipeline
approach for end-to-end Relation Extraction (RE),
and Ye et al. (2022) at the time of writing hold-
ing the SOTA on three of the most established
datasets in the field. We also inspect the research
approach of papers published in the last year at
major NLP conferences (ACL, NAACL, EMNLP,
AACL, EACL) that propose new SOTA models
for RC, or for the related tasks of end-to-end RE
and few-shot RC (Tan et al., 2022; Liu et al., 2022;
Zhou and Chen, 2022; Wang et al., 2022b; Zhen-
zhen et al., 2022; Guo et al., 2022; Wang et al.,
2022c; Zhang et al., 2022b; Zhang and Lu, 2022;
Tang et al., 2022; Zhang et al., 2022a; Wang et al.,
2022a; Duan et al., 2022; Guo et al., 2023; Wan

252



et al., 2023). We find that that the common pro-
cedure consists of the five steps earlier mentioned.
Specifically, we found that in most cases, the intu-
ition (step 1) that is used as a starting point and as
a motivation for the model improvement is based
on generic observations of the model architecture,
instead of on a quantitative analysis which could
lead to more effective targeted improvements.

In this work, we propose a systematic quantita-
tive analysis of a SOTA RC model to detect sets of
challenging instances sharing common characteris-
tics (e.g., entity distance). The goal is to identify
hard-to-handle setups for the SOTA architecture.
Importantly, our approach is easily reproducible
in future setups with different models, and/or on
different datasets. The relevance of performing an
in-depth analysis is supported by a demonstration
of how the acquired information can help to effec-
tively address the weaknesses of the baseline and
design a new SOTA. Our contributions are:1

• We provide a tool for comprehensive quantita-
tive analyses of RC model performance.

• We exploit the proposed analysis for investi-
gating the performance of a SOTA RC archi-
tecture across 36 in- and cross-domain setups.

• Based on the findings of the analysis, we
perform a case study improving the previous
SOTA by over 3 points Micro-F1.

2 Related Work

Analysis of NLP Models In this study, we are
inspired by the recent trend targeting the evaluation
of NLP models. Ribeiro et al. (2020) propose a
task-agnostic methodology for testing general lin-
guistic capabilities of NLP models by generating
ad-hoc test instances; they test their approach over
three tasks: sentiment analysis, Quora question
pair, machine comprehension. Liu et al. (2021a)
presents a software package for diagnosing the
strengths and weaknesses of a single system, al-
lowing for interpretation of relationships between
multiple systems, and examining prediction results.
They go a bit deeper into the task specificity, there-
fore their system currently supports the tasks of
text classification (sentiment, topic, intention), as-
pect sentiment classification, Natural Language In-
ference (NLI), Named Entity Recognition (NER),

1Project repository: https://github.com/mainlp/
RC-analysis

Part-of-Speech (POS) tagging, chunking, Chinese
Word Segmentation (CWS), semantic parsing, sum-
marization, and machine translation. Furthermore,
Fu et al. (2020a) and Fu et al. (2020b) introduce
the concept of interpretable task-specific evaluation.
The first target the comparison of a set of NER sys-
tems. The latter, instead, perform a deep evaluation
of CWS systems proving that despite the excellent
performance achieved on some datasets, there is
no perfect system for CWS. This concept has also
been applied by Fu et al. (2021) for interpreting
the results over a set of sequence tagging setups
(NER, CWS, POS, chunking). Within the field of
Information Extraction, previous work explored
error-driven analysis for the automatic categoriza-
tion of model prediction errors (Das et al., 2022).

Analysis of RC Models Error analysis and in-
depth evaluations of NLP systems are tied to spe-
cific tasks because of the peculiarities of each of
them in terms of linguistic challenges, input type,
and expected output. Relation Classification and
related tasks (e.g., end-to-end RE) have received
little attention in the context of systematic quan-
titative evaluation. Pre-Large Language Models,
Katiyar and Cardie (2016) performed a manual
evaluation of bi-directional LSTMs for the extrac-
tion of opinion entities and relations (“is-from”,
“is-about”) by discussing the model output of a cou-
ple of instances. The same authors (Katiyar and
Cardie, 2017) performed an error analysis, also
based on a manual evaluation, comparing their
model with Miwa and Bansal (2016). More re-
cently, instead, some work has inspected the quality
of RC corpora. Alt et al. (2020) analyze the impact
of potentially noisy crowd-based annotations in the
widely adopted TACRED (Zhang et al., 2017). Lee
et al. (2022) target the specific problem of over-
lapping instances between train and test sets in
two popular RC benchmarks, namely NYT (Riedel
et al., 2010) and WebNLG (Gardent et al., 2017).

Driven by the popularity of the task, and the
contrasting lack of in-depth quantitative evaluation
of RC systems, we fill this gap with an evaluation
analysis suite for RC, and a case study including
36 in- and cross-domain setups.

3 Background

3.1 Cross-domain Relation Classification
Given a sentence and two entity spans within it, the
task of RC aims at classifying the semantic relation
between them into a type from a pre-defined label
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Attribute Description Value Type Computation Level

DISCR. CONT. LOCAL AGGR. ENT. REL. SENT.

entity type⋆ the types of e1 and e2 D D D
relation type the type of r D D D
IV entities in-vocabulary entities: the amount of entities

which appear in the train set (values 0, 1, or 2)
D D D

entity length the sum of the number of tokens in e1 and e2 D D D
entity distance the number of tokens separating e1 from e2 D D D
sentence length the number of tokens in s D D D
entity density the total number of entities in s over the

sentence length (in percentage)
D D D

relation density the total number of semantic relations in s over
the sentence length (in percentage)

D D D
OOV token density the amount of out-of-vocabulary tokens in s

with respect to the train set over the sentence
length (in percentage)

D D D

entity type frequency⋆ the frequencies of the types of e1 and e2 in the
train set

D D D
relation type frequency the frequency of the type of r in the train set D D D

Table 1: Relation Classification Attributes. Description of the 11 RC attributes and categorization in DIS-
CRETE/CONTINUOUS value type, LOCAL/AGGREGATE computation, and ENTITY/RELATION/SENTENCE level. (⋆):
We map the original 36 domain-specific entity types defined by Liu et al. (2021b) into five more generic types
shared across domains, see Appendix B for details.

set. The task is currently far from being solved,
in particular when considering realistic challeng-
ing setups, for example document-level RC (Yao
et al., 2019), or few-shot RC (Han et al., 2018; Gao
et al., 2019). In this study, we consider the cross-
domain setup, where the challenge lies in different
text types and label distributions from train to eval-
uation set. The cross-domain setup is important for
testing the robustness of models aginst data shift.
Despite the research in this direction from previ-
ous years, mainly evaluated on ACE (Doddington
et al., 2004) where the domains are not particu-
larly distinctive (Fu et al., 2017; Pouran Ben Vey-
seh et al., 2019), recent work on more challeng-
ing scenarios show very low performance due to
data sparsity across domains. For example, cross-
dataset (Popovic and Färber, 2022), or evaluated
on the recently published CrossRE dataset (Bassig-
nana and Plank, 2022) which consists of data from
six diverse text domains. In this study, we aim at
improving the CrossRE baseline by systematically
identifying challenging scenarios for the model.

3.2 Experimental Setup

CrossRE (Bassignana and Plank, 2022),2 is a
manually-annotated dataset for cross-domain RC
including 17 relation types spanning over six di-
verse text domains: artificial intelligence (Æ), lit-
erature (_), music (Y), news (\), politics (ÿ),

2Released with a GNU General Public License v3.0.

natural science (
). The dataset was annotated
on top of CrossNER (Liu et al., 2021b), a Named
Entity Recognition (NER) dataset. Appendix A
reports the statistics of CrossRE.

We use the baseline model of the original pa-
per.3 Following the architecture proposed by Bal-
dini Soares et al. (2019), the model by Bassignana
and Plank (2022) augments the sentence with four
entity markers estart1 , eend1 , estart2 , eend2 surround-
ing the two entities. The augmented sentence is
then passed through a pre-trained encoder, and the
classification made by a linear layer over the con-
catenation of the start markers [ŝestart1

, ŝestart2
]. We

run our experiments over five random seeds and
report the average performance. See Appendix C
for reproducibility details.

4 Attribute Guided Analysis

We propose a systematic quantitative analysis of
the performance of the CrossRE baseline model’s
performance across the 36 in- and cross-domain
setups derived from training and testing the model
on the six domains included in CrossRE. The anal-
ysis is performed over the development sets of the
dataset. Inspired by the work of Fu et al. (2020a)
on Named Entity Recognition, we introduce the
first evaluation suite for RC, opening the way to
other similar structured prediction tasks. The anal-
ysis evaluates the performance of the model over

3https://github.com/mainlp/CrossRE
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Figure 1: entity distance Distribution. Distribution of the entity distance values across the six development
sets of CrossRE (Bassignana and Plank, 2022).

instances grouped by common values of potentially
influential attributes (e.g., entity distance, sentence
length). In what follows, we will describe the at-
tributes considered and the bucketing strategy em-
ployed for splitting the evaluation instances based
on the attribute values. Last, we go through the
results of our correlation analysis.

4.1 Attributes
In our analysis, we consider 11 different attributes.
These are characteristics of the RC instances that
could challenge the model and influence its perfor-
mance. Given an RC instance defined by a triplet
(e1, e2, r) where e1 is the head entity, e2 is the
tail entity, and r is the relation type connecting e1
with e2; and given a sentence s expressing the rela-
tion r between e1 and e2, we define the attributes
listed in Table 1. We categorize each of them in the
following three divisions:

• Value Type: If the values of the attribute be-
long to a set of pre-defined values the attribute
is DISCRETE (e.g., the entity type), otherwise
it is CONTINUOUS (e.g., the entity distance).

• Computation: If the attribute is computed by
only considering the current instance it is LO-
CAL, if it is computed over aggregated prop-
erties of the train set, it is AGGREGATE; for
example, the frequency of entity and relation
types refers to the training statistics.

• Level: If the attribute value depends on the
entities it is at ENTITY LEVEL, if it depends on
properties of the entity pair it is at RELATION

LEVEL, last if it is related to characteristics of
the sentence s it is at SENTENCE LEVEL.

As an attribute example, Figure 1 shows the
entity distance distribution, measured as num-

ber of tokens separating e1 from e2. The plot re-
veals some domain-specific peculiarities, e.g., mu-
sic and politics have the longest distances. This
is mostly due to the long lists present in these do-
mains, where the head entity is mentioned at the
beginning and linked to all the elements in the list.
For example, a music genre and a list of musical
artists representing it; or the artifacts (i.e., songs
and albums) of a band. We use the attribute val-
ues in order to group the evaluation instances with
similar characteristics. We discuss the bucketing
strategy in the next section.

4.2 Methodology

Once identified the potential influential attributes
for the task of RC, the next step is splitting the eval-
uation sets depending on the attributes values (i.e.,
bucketing). For the attributes with DISCRETE value
types (see Table 1) the bucketing creates one sub-
set for each attribute values—e.g., one subset for
each entity type for the entity type attribute. For
the attributes with CONTINUOUS value types, in-
stead, we set the number of buckets to four in order
to maintain a reasonable size for each bucket. We
then split the instances by equally distributing them
across subsets—except for the two AGGREGATE

attributes, which by definition are computed over
properties of the train set. Note that the entity
type and entity type frequency have each in-
stance placed into two buckets, one considering the
type of e1 and one considering the type of e2.

We measure the performance of the model over
the subsets, and compute the Spearman’s rank cor-
relation coefficient with respect to the average at-
tribute values of the buckets. Since entity type
and relation type have categorical values, we
cannot compute the correlation coefficient and ana-
lyze these two attributes separately in Section 4.3.1.
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Figure 2: Per-domain Correlation Analysis. Spearman’s rank correlation coefficient of the the 36 considered
setups, averaged over the dev sets.
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avg. correl 0.1 0.0 -0.4 0.3 0.1 0.2 0.0 -0.3 0.9
avg. stdev 22.2 7.1 6.1 6.4 7.0 5.9 9.9 14.6 24.9

Table 2: Overall Results. Average correlation and
average standard deviation of the Micro-F1 scores of
the buckets (within attribute), averaged over the 36 train-
test setups.

4.3 Results

In this section we are going to present the results of
our analysis, first looking at the overall correlation
study, and then at the per-domain results.

Overall Table 2 reports the correlations for the
proposed attributes (Section 4.1) averaged across
all 36 setups. We also report the average stan-
dard deviation across the Micro-F1 scores achieved
within attribute and computed separately for each
train-test setup. The relation type frequency
is by far the most influential attribute: It reports the
highest absolute correlation value, and the highest
standard deviation between buckets including low-
and high-frequent relations types in the train sets.
In the current setups with relatively small training
sets (see CrossRE statistics in Appendix A) the
amount of training instances have an high impact
on the final performance of the model. In addi-
tion, this is also influenced by the cross-domain

setup, with diverse relation label distributions over
the six domains (see Figure 3). The second most
relevant attribute is entity distance, with the
second highest absolute value in correlation and
a 6.1 average standard deviation across buckets
containing entity pairs at different distances. The
entity type frequency presents a weaker corre-
lation, confirming the findings that we will discuss
in Section 4.3.1 about the entity type. All the
other attributes report an absolute correlation value
ranging between 0.2 and 0.0 indicating that within
the overall overview of the considered setups they
have a lower impact on the model’s performance.

Domain Level We visualize the average across
the test domains in Figure 2. As previously noted,
the relation type frequency trend confirms
that the amount of training instances is the most in-
fluential attribute within the current setup. The
entity distance and sentence length also
present a similar trend across all six domains. The
negative correlation of the first indicates that, as
we could intuitively expect, it is more challenging
to identify the semantic relation connecting two
entities which are far apart in the sentence, with
respect to entity pairs separated by only a couple
of tokens. The positive trend within the sentence
length attribute, instead, suggests that entity pairs
belonging to long sentences (i.e., where more con-
text is given) are easier to classify than the ones
from short sentences. The entity density, and
relation density attributes present a general
positive trend in correlation, but with some outliers
(literature and AI). High values in these attributes
refer to sentences with many instances, e.g., lists of
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Figure 3: relation type Analysis. Distribution of the relation types in the train sets of CrossRE (Bassignana and
Plank, 2022) (above), and F1 per label (bottom).

entities which are all linked to an head entity with
a similar structure and (most likely) with the same
relation type. For example, in the music domain,
a list of songs authored by a music artist, or by a
band. We speculate these to be easy patterns to
identify and learn by a deep learning model.

News is often an outlier with respect to the other
domains. When training on this domain the perfor-
mance drops with higher values of entity length
(instead of improving as for most of the other do-
mains), and for entity type frequency is ex-
actly the reverse. The latter is probably due to
the entity type hierarchy adopted, which maps the
domain-specific entity types defined by Liu et al.
(2021b) for the other five domains into the types
included in the news domain. However, it should
be noted that news comes from a different data
source and has ∼4 times fewer relations compared
to the other domains, which makes the results more
unstable (Bassignana and Plank, 2022).

4.3.1 Categorical analysis
For the two categorical attributes it is not possible
to compute the correlation coefficients.

relation type The results in Figure 3 reveal
that some of the types are easier to learn across
all domains than others (i.e. have higher scores,
despite their lower frequency). These can be ex-
plained because they occur in very similar linguis-

tic constructions, like “named”, which often con-
nects an entity to the consecutive acronym in brack-
ets. Or because they mostly occur with the same en-
tity types, like “temporal” with “event” and “physi-
cal” with “location”. On the other hand, some rela-
tion labels have different performances across do-
mains. For example “win-defeat” which in the do-
mains of AI, literature, music, and science mostly
links a person winning an award. In the politics
domain, instead, it refers to more complex scenar-
ios where one out of multiple mentioned political
parties wins the election. Or, in a completely differ-
ent semantic context, a country wins a war against
another country. Unsurprisingly the most difficult
are clearly the infrequent ones, like “cause-effect”.

entity type The results in Figure 4 show that
there is not a strong link between the amount of
training instances and the performance achieved,
confirming the findings from Figure 2. This is
because in the CrossRE guidelines there are no
constraints linking the relation types to specific
entity types. The higher scoring types are mostly
the ones that are implicitly associated with specific
relation types, e.g., “location” with the “physical”
relation type, and “event” with “temporal”. On the
other hand, the most varied category “misc” is the
most challenging (see entity mapping in Table 5).
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Figure 4: entity type Analysis. Distribution of the
entity types in the train sets of CrossRE (Bassignana
and Plank, 2022) (above), and Micro-F1 achieved on
each bucket (bottom).

TEST

TRAIN Æ _ Y \ ÿ 
 avg.

B
A

S
E

L
IN

E

Æ 46.4 32.9 27.5 44.6 36.4 35.3 37.2
_ 28.0 63.1 55.5 34.7 49.0 35.4 44.3
Y 25.3 44.2 70.8 38.8 37.2 29.9 41.0
\ 12.6 15.8 16.4 52.6 33.5 21.6 25.4
ÿ 20.1 34.0 40.6 40.5 55.8 31.2 37.0

 35.9 29.0 30.0 41.4 37.8 38.0 35.3

avg. 36.7

FI
R

S
T-

T
W

O

Æ 45.2 33.2 28.4 40.7 35.8 33.7 36.2
_ 25.7 66.4 64.2 37.8 53.6 35.8 47.3
Y 27.5 48.4 71.6 36.9 42.2 30.6 42.8
\ 14.1 17.0 18.9 43.6 35.5 23.2 25.3
ÿ 18.4 33.4 41.3 43.2 56.6 31.1 37.3

 36.8 28.6 30.2 40.7 36.3 38.6 35.2

avg. 37.4

L
A

S
T-

T
W

O

Æ 45.0 35.1 31.7 41.4 39.7 34.6 37.9
_ 25.1 68.9 68.7 38.6 51.5 34.8 47.9
Y 28.6 57.6 73.2 38.2 39.1 32.4 44.8
\ 9.9 14.4 17.7 33.3 29.8 19.4 20.8
ÿ 15.7 28.7 38.6 42.2 55.6 29.9 35.1

 33.2 31.0 35.8 42.0 41.6 40.9 37.4

avg. 37.3

A
L

L
-F

O
U

R

Æ 46.5 36.2 32.2 48.1 42.0 37.5 40.4
_ 25.8 69.4 68.2 40.1 53.9 35.8 48.9
Y 29.6 59.1 74.6 37.7 46.0 33.6 46.8
\ 12.8 16.3 20.5 41.4 32.9 21.4 24.2
ÿ 19.4 32.9 41.9 43.7 58.3 33.1 38.2

 38.0 31.8 34.2 45.8 44.9 41.3 39.3

avg. 39.6

Table 3: Performance Comparison Across Setups.
Micro-F1 scores achieved with the baseline architecture,
and with the three proposed variants. (bold): Scores
beating the baseline; (underline): Highest scores within
the four setups.

5 Application: Model Improvement

As mentioned in the introduction, our final aim
is to guide better modeling by targeting quantita-
tively measured weaknesses of the model. Here
we present a case study which exploits the findings
of our proposed analysis. From the overall results
in Table 2 we can derive that the most influential
attribute is the relation type frequency, with
a correlation of 0.9 and the highest standard devi-
ation of 24.9. Targeting this factor would mean
obtaining additional training data by manual anno-
tation or via some data augmentation techniques.
Within this case study, we aim to focus on improv-
ing the model architecture. Therefore, here we
target the entity distance attribute, which holds
the second highest absolute correlation (0.4), for
improving the model performance.

5.1 Improved Experimental Setting
The fact that the entity distance (i.e., the num-
ber of tokens separating e1 from e2) has a high
influence on the RC model performance, means
that the tokens between e1 and e2 can somehow
mislead the prediction. In order to target this issue,
we aim at moving the two involved entities closer
to each other. We repeat the entities at the end
of the original sentence representation augmented
with the entity markers. Then, similar to the orig-
inal CrossRE baseline (Section 3.2), we pass the
input through a pre-trained encoder and extract a
representation on which we do the classification of
the relation with a linear layer. We test out three
different representations as illustrated in Figure 5:

• FIRST-TWO concatenation of the representa-
tion of the first two entity markers start, as in
the original baseline setup;

• LAST-TWO concatenation of the representa-
tion of the last two entity markers start, the
ones introduced after the [SEP] token;

• ALL-FOUR concatenation of the representa-
tion of all four entity markers start, the origi-
nal ones and the newly introduced.

In what follows, we show the effectiveness of
moving the entities closer to each other, and com-
pare the three classification strategies described
above. The new model architectures are also in-
cluded in our project repository.4

4https://anonymous.4open.science/r/
RC-analysis-sSEM-3B2A
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Figure 5: Proposed Setups. Representation of the baseline architecture (a) and of the three proposed setups (b, c, d)
which include the repetition of e1 and e2 at the end of the sentence.

5.2 New SOTA Results
Table 3 compares the performance of the origi-
nal baseline architecture with our proposed set-
tings. In general, performances are higher with
the repeated entities, except for the news domain,
which achieves the least stable results across all
our analyses. As pointed out by the authors of
the dataset, this is the most challenging domain
because it comes from a different data source and
contains the least amount of instances, making the
scores more unstable with respect to the other do-
mains (Bassignana and Plank, 2022). Furthermore,
ALL-FOUR consistently outperforms FIRST-TWO

and LAST-TWO. The gain of the overall average is
even larger compared to the sum of both individual
gains, suggesting that they provide highly comple-
mentary insights. The obtained improvements are
substantial (> 3 points on average), and come at
negligible costs—e.g., without drastically increas-
ing the training time with pre-training steps. We
perform significance testing in Appendix D.

6 Conclusion

We present a tool for systematic quantitative analy-
sis of the performance of RC models, and conduct

the first in-depth analysis of an RC system, across
36 in- and cross-domain setups. We identify po-
tentially influential attributes, and correlate their
value with model performance. Our findings high-
light the influence of data scarcity of relation types
over the model performance. The second most cor-
related attribute is the distance between the two
entities: The further away, the more challenging it
is to classify the semantic relation between them.

Last, we provide a case study exploiting the find-
ings of the analysis for improving the baseline ar-
chitecture with a simple yet effective method. We
target the entity distance weakness, and by repeat-
ing the entities closer to each other at the end of
the sentence we achieve a new SOTA on CrossRE,
with an average improvement > 3 points Micro-
F1. We provide code for reproducing the proposed
analysis on other RC setups (or related tasks, e.g.,
end-to-end RE). And we also release the code of
the new SOTA architecture.

Our aim is to encourage preliminary quantitative
analysis of models prior to designing new architec-
tures. Future work includes expanding the set of
attributes proposed in this work for RC in order to
comprise other tasks, with different challenges.
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et al. (2021b) and Bassignana and Plank (2022).

Limitations

In this work we report a case study of our proposed
evaluation suite over CrossRE which includes six
datasets covering six text domains. We focused
mainly on the current SOTA model, future work
could consider more models and datasets. The set
of attributes is mostly bound to the RC task, but
other relation-based tasks could employ similar at-
tributes. More aspects could be included in the
analysis in order to inspect specific strengths and
weaknesses of the model, or in order to adapt it to
other related structured prediction tasks. Last, with
respect to the model improvement in Section 5,
we focus on the architecture of the RC model,
but given the high impact of the relation type
frequency attribute, data augmentation techniques
could be explored in order to further improve the
performance of the model.
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A CrossRE Statistics

We report in Table 4 the dataset statistics of
CrossRE (Bassignana and Plank, 2022).

B Entity Type Mapping

The CrossRE dataset adopts the 39 domain-specific
entity types initially proposed by Liu et al. (2021b)
in CrossNER. When dealing with the entity type
and entity type frequency attributes, in order
to perform our cross-domain analysis, we map the
original 39 entity types into five domain-agnostic
meta entity types as illustrated in Table 5.

C Reproducibility

We report in Table 6 the hyperparameter setting of
our RC model (see Section 3.2). All experiments
were ran on an NVIDIA® A100 SXM4 40 GB GPU
and an AMD EPYC™ 7662 64-Core CPU.

D Significance Testing

We compare our setups using the Almost Stochastic
Order test (ASO; Del Barrio et al. (2018); Dror et al.
(2019)) implementation by Ulmer et al. (2022).
The method computes a score (ϵmin) which rep-
resents how far the first is from being significantly
better in respect to the second. The possible sce-
narios are therefore ϵmin = 0.0 (truly stochastic
dominance), and ϵmin < 0.5 (almost stochastic
dominance). Table 7 reports the ASO scores with
a confidence level of α = 0.05 adjusted by using
the Bonferroni correction (Bonferroni, 1936). See
Section 5 for the setup details.

SENTENCES RELATIONS

train dev test tot. train dev test tot.

AI 100 350 431 881 350 1,006 1,127 2,483
literature 100 400 416 916 397 1,539 1,591 3,527

music 100 350 399 849 496 1,861 2,333 4,690
news 164 350 400 914 175 300 396 871

politics 101 350 400 851 502 1,616 1,831 3,949
science 103 351 400 854 355 1,340 1,393 3,088

tot. 668 2,151 2,446 5,265 2,275 7,662 8,671 18,608

Table 4: CrossRE Statistics. Number of sen-
tences and number of relations for each domain of
CrossRE (Bassignana and Plank, 2022).

person location miscellaneous
researcher country field program language
writer task product
musical artist algorithm metrics
politician book literary genre
scientist award poem

organization event magazine music genre
university election song album
band conference musical instrument discipline
political party enzyme chemical element

chemical compound protein
astronomical object theory
academic journal

Table 5: Entity Hierarchy. Mapping of the original 39
domain-specific entity types by Liu et al. (2021b) into
five domain-agnostic meta types.

Parameter Value

Encoder bert-base-cased
Classifier 1-layer FFNN

Loss Cross Entropy
Optimizer Adam optimizer

Learning rate 2e−5

Batch size 32
Seeds 4012, 5096, 8257, 8824, 9908

Table 6: Hyperparameters Setting. Model details for
reproducibility of the experiments.
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BASELINE 1.0 0.8 0.8 0.9

FIRST-TWO 0.0 1.0 0.1 1.0

LAST-TWO 0.0 0.3 1.0 1.0

ALL-FOUR 0.0 0.0 0.0 1.0

Table 7: Significance Testing. ASO scores comparing
the experimental setups described in Section 5. Read as
row→ column.
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Abstract

Understanding emotional nuances in written
content is crucial for effective communication;
however, the context-dependent nature of lan-
guage poses challenges in precisely discern-
ing emotions in text. This study contributes to
the understanding of how the emotional con-
notations of a word are influenced by the sen-
tence context in which it appears. Leverag-
ing the contextual understanding embedded in
contextualized word representations, we con-
duct an empirical investigation to (i) evaluate
the varying abilities of these representations in
distinguishing the diverse emotional connota-
tions evoked by the same word across different
contexts, (ii) explore potential biases in these
representations toward specific emotions of a
word, and (iii) assess the capability of these
representations in estimating the number of
emotional connotations evoked by a word in
diverse contexts. Our experiments, utilizing
four popular models—BERT, RoBERTa, XL-
Net, and GPT-2—and drawing on the GoEmo-
tions and SemEval 2018 datasets, demonstrate
that these models effectively discern emotional
connotations of words. RoBERTa, in partic-
ular, shows superior performance and greater
resilience against biases. Our further analy-
sis reveals that disambiguating the emotional
connotations of words significantly enhances
emotion identification at the sentence level.

1 Introduction

Understanding the emotional nuances conveyed
by words is crucial for effective communication.
This insight enhances the design of conversational
agents that emulate human empathy, enabling re-
sponses that accurately reflect the emotions con-
veyed by word choice (Raji and de Melo, 2021).
Psycholinguistics leverages this understanding to
identify depression and suicidality, where specific
word usage on social media posts may indicate un-
derlying distress (Aragón et al., 2019). Moreover,

comprehending these emotional subtleties along-
side literal meanings of words can deepen second
language comprehension for non-native speakers
(Dewaele, 2010).

In cognitive linguistics, the concept of
emotional connotation refers to the emotion
attributed to a specific word, transcending its
explicit meaning (Stubbs, 1995). Take, for
instance, the word ‘damn’, which is rated by
humans as anger (Mohammad and Kiritchenko,
2018), likely stemming from its frequent use in
expressions of anger. However, a word may take
on various emotional connotations depending on
the context in which it appears. Consider the word
‘damn’ in the following sentences sourced from the
GoEmotions dataset (Demszky et al., 2020):

S1. Wash your damn hands. [Anger]
S2. Damn [NAME] is KILLING it. [Joy]
S3. I damn near broke down! [Sadness]
S4. Damn, that’s dark here! [Fear]

In S1, the word ‘damn’ expresses anger, while
in S2, it is used in a positive context to convey
joy. Both S3 and S4 exemplify its usage in other
negative contexts.

Research on determining the emotional connota-
tions of lexical items has typically utilized crowd-
sourcing methods, leading to the development of
diverse lexicons of words with predefined emotions
(Hofmann et al., 2020). These lexicons, however,
provide static and generalized ratings for words, re-
gardless of the context in which they are used (De
Bruyne et al., 2022). Additionally, despite attempts
to ensure consistency in word ratings through an-
choring, implicit biases may persist in the rating
process (Semeraro et al., 2023). Efforts to ad-
dress these limitations have mainly focused on dis-
tinguishing the polarity of words (Hellrich et al.,
2019). In a domain-specific corpus (soccer), Braun
et al. (2022) relied on human judgments to measure
the differences between the positivity and negativ-
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ity of words with and without a sentence context.
Moreover, adopting automatic methods as an al-
ternative to manual acquisition has been limited
to extending the lexicon’s word coverage (Sedoc
et al., 2017) or developing domain-specific polarity
lexicons (Hamilton et al., 2016).

Recently, contextualized word representations,
exemplified by BERT (Devlin et al., 2019), have
been frequently evaluated on word relatedness
benchmarks, such as word sense disambiguation
(Wiedemann et al., 2019), which is the task of iden-
tifying the correct sense of a word’s usage from
a fixed inventory of sense identifiers (Hadiwinoto
et al., 2019). Studies on textual emotion analysis
have utilized these representations particularly for
sentence-level emotion classification tasks (Chen
et al., 2023; Fan et al., 2022; Huang et al., 2021;
Alhuzali and Ananiadou, 2023).

What is particularly intriguing about contextu-
alized word representations is their ability to gen-
erate unique embeddings for a word based on its
context (Saravia et al., 2018). Our objective is
to leverage this property of contextualized word
representations to disentangle the emotional conno-
tations of words that evoke various emotions within
different sentence contexts. Let W be the set of
all words, where w ∈W represents a target word,
which evokes different emotions depending on its
surrounding context. S is the set of all possible
sentences, and N is the set of natural numbers rep-
resenting the position in a sentence where we aim
to analyze the emotional connotation of the word
w. The function f , f(S, i) = e, categorizes the
dominant emotional connotation of w at position
i in sentence S. The signature of this function is
given by f : S × N→ E , where E is the set of all
possible emotion categories.

We conduct an empirical investigation to:
(i) Evaluate the varying abilities of contextual

word representations in distinguishing the di-
verse emotional connotations evoked by the
same word across different contexts;

(ii) Explore the existence of potential biases in
these representations toward specific emo-
tional connotations of a word; in this context,
bias refers to the likelihood of models incor-
rectly associating a word linked to emotionk

with emotionj ;
(iii) Assess the capability of these representations

in estimating the number of emotions a word
can evoke in various contexts; and

(iv) Investigate the impact of disambiguating the

emotional connotations of words on the accu-
racy of sentence-level emotion classification.

Focusing on emotional words that evoke various
emotions across diverse contexts, we obtain con-
textualized representations of these words within
emotion-annotated sentences in the GoEmotions
and the SemEval 2018 (Mohammad et al., 2018)
datasets. We then cluster these representations and
assess the alignment degree between the resulting
clusters and the emotions of the words in question.
Our analysis of various models—BERT, RoBERTa,
XLNet, and GPT-2—showcases their capability
to capture the emotional connotations of words.
We find that not all models are equally effective
in discerning these emotional nuances. Our find-
ings also reveal biases towards specific emotions
in these representations, with different models ex-
hibiting biases towards different emotions for a
given word. Moreover, our experiments indicate
that disambiguating the emotional connotations of
a small number of words significantly improves the
accuracy of sentence-level emotion classification.

2 Related work

Textual emotion recognition has typically involved
either the utilization of lexicons—lists of words
with pre-assigned emotions—without the need for
extensive labeled data (Semeraro et al., 2023), or
contextualized word representations, known for
their domain-agnostic adaptability, when sufficient
labeled data is available (Öhman et al., 2020).

Methods that rely on lexicons view texts as word
collections and use word ratings from lexicons for
emotion identification (Ma et al., 2018; Hosseini
and Staab, 2023). However, the static nature of
these word ratings limits a comprehensive under-
standing of emotions, as they disregard contextual
nuances (De Bruyne et al., 2022). For instance,
in a domain-specific corpus (soccer), Braun et al.
(2022) demonstrated that pragmatic and semantic
shifts in context can significantly influence word
polarity in lexicons. To address this limitation,
researchers often explore the identification of nega-
tions, diminishers, and intensifiers (Reitan et al.,
2015; Hutto and Gilbert, 2014), or they develop
domain-specific lexicons (Amir et al., 2015), which
have mainly focused on distinguishing polarity of
words in a specific domain (Hellrich et al., 2019).

Recent methods in textual emotion analysis have
increasingly leveraged contextual word represen-
tations like BERT, particularly for sentence-level
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emotion classification (Alhuzali and Ananiadou,
2023; Li et al., 2021; Mao et al., 2023). These
methods enhance model training by fine-tuning
these embeddings with emotion-labeled datasets.
For instance, Batbaatar et al. (2019) applied these
representations in a Convolutional Neural Network
to discern semantic relationships between words,
and Kassner and Schütze (2020) focused on refin-
ing the understanding of contradictory sentiment
words within these representations for binary senti-
ment classification. Some studies have integrated
emotional lexicons into these representations, en-
abling these models to achieve a more nuanced
understanding of emotional words (Aduragba et al.,
2021; Ke et al., 2020; Wang et al., 2020). For ex-
ample, Sosea and Caragea (2021) proposed a pre-
training objective for BERT, which increases mask-
ing probabilities for emotional words in sentences
using emotion lexicons, while Zhou et al. (2020)
developed a BERT model from scratch using Yelp
and Amazon reviews by increasing the masking
probability for positive and negative words. How-
ever, these approaches exhibit high sensitivity to
both the training corpus and the lexical resources
employed (Shah et al., 2023), which suffer from
ambiguity (Wang et al., 2021). Certain studies,
such as Wang and Zong (2021), focused on se-
mantic role labeling for emotions, modeling the
semantics and interrelatedness of emotion labels by
learning representations for emotion classes from
annotated data. However, these representations do
not generalize to other datasets and label formats
(Campagnano et al., 2022).

Previous studies have primarily utilized contex-
tualized representations for sentence-level emotion
classification tasks. In contextualized word repre-
sentations, each input word is represented as a vec-
tor dependent on the context of its occurrence (Sar-
avia et al., 2018). This approach captures both se-
mantic and syntactic nuances within the surround-
ing context of words, rendering these models par-
ticularly intriguing for investigating the emotional
connotations of words across diverse contexts. This
paper exploits these representations to conduct an
empirical study, aiming to scrutinize their efficacy
in distinguishing different emotional connotations
evoked by the same word in various contexts. To
achieve this, we adopt a clustering-based approach,
wherein the representation vectors of the word, ob-
tained from emotion-annotated sentences, are clus-
tered using a Gaussian Mixture Model. Further,
we evaluate potential biases in different representa-

tion models toward certain emotional connotations
of words and assess whether clustering is a viable
method for predicting the number of emotions a
word can evoke in diverse contexts.

3 Methodology

To investigate the effectiveness of contextualized
word representations in discerning the various emo-
tional connotations of words that evoke different
emotions depending on the sentence context, we
propose a method comprising the following steps:
1. Target Word Identification: Identify a subset of
emotional words within an emotion lexicon that
evoke diverse emotions across different contexts.
2. Sample Sentence Extraction: Retrieve sentences
featuring the target words from emotion-annotated
resources to compile a representative set of in-
stances showcasing the words in diverse contexts.
3. Contextualized Representation Generation: Ob-
tain contextualized representation vectors for the
target words in the set of sample sentences.
4. Word Representation Clustering. Apply cluster-
ing to the contextualized representations using a
Gaussian Mixture Model (GMM) and find a map-
ping between the resulting clusters and the emo-
tions of target words that maximizes the overall
number of accurate matches, with the match rate
serving as the evaluation metric.

The next sections detail the target word identifi-
cation phase, the word representations used in our
study, and the clustering of these representations.

3.1 Target Word Identification

The task of identifying emotional words that can
evoke multiple emotions in different contexts relies
on two foundational assumptions:

Assumption 1: The subset of emotional words
eliciting diverse emotions is significantly smaller
than the set of words maintaining consistent emo-
tional connotations across various contexts (Wang
et al., 2021; Gollapalli et al., 2020).

Assumption 2: The emotional connotation of
a word can be inferred by analyzing its frequency
within a corpus of annotated text. If an emotional
word frequently appears in sentences expressing
a specific emotion, it is reasonable to deduce that
it is commonly employed to convey that emotion
(Liu, 2022; Hosseini, 2017).

To identify words that evoke various emotions
based on context, the inherent emotionality of a
word is a prerequisite for our study. We utilized the

266



NRC-Affect lexicon (Mohammad and Kiritchenko,
2018), a well-established resource in emotion anal-
ysis, to extract emotional words from annotated
datasets. This lexicon, annotated manually, com-
prises 4,192 English words and their associations
with four basic emotions (anger, fear, sadness, and
joy) with scores ranging from 0 to 1. It encom-
passes common English terms and terms prevalent
on social media platforms.

The initial step involved extracting words from
the NRC-Affect lexicon that were present in var-
ious emotional classes of the annotated datasets.
We then calculated the proportion of the word’s
frequency in each emotional class to its total fre-
quency across all sentences, as shown in (1):

Proportion(w, e) =
freq(w, e)∑
e freq(w, e)

(1)

Here, freq(w, e) denotes the frequency of candi-
date word w in emotion category e, where e repre-
sents each emotion category in the dataset. Formula
(1) generates values between 0 and 1, with the sum
equal to 1, indicating the normalized frequency of
extracted words in distinct categories, irrespective
of dataset size. For a word w to be considered a
target word, a minimum normalized frequency of
0.2 in each emotion category is required. This crite-
rion reduces noise in the identification process and
strikes a balance between being stringent enough
to filter out less relevant words while remaining
practical for analysis.

We refined the target word selection process fur-
ther by requiring a minimum occurrence in the 25
annotated sentences for each emotion. For exam-
ple, the word ‘crazy’ met this criterion, appearing
in 75 sentences expressing anger and 40 sentences
expressing joy. In contrast, ‘abortion’ did not meet
the criteria, as it appeared in sentences express-
ing various emotions (anger, fear, and sadness) but
lacked the required number of annotated sentences
per emotion. Setting a minimum occurrence cri-
terion ensures the identified words have a robust
presence in the dataset. To ensure a balanced dis-
tribution of sentences across emotions and prevent
bias towards more frequent emotion classes, we
imposed a maximum limit of 100 sentences per
emotion. In line with Assumption 2, we associated
the emotions of the identified target words with the
emotion expressed within sentences.

3.2 Contextual Representation Generation
This section provides an overview of the contex-
tualized word representations used in this paper,
e.g., BERT, RoBERTa, XLNet, and GPT-2. These
models were selected based on their prevalent use
in sentiment analysis and text emotion analysis
(Chen et al., 2023; Fan et al., 2022; Mao et al.,
2023). They embody a broad spectrum of trans-
former architectures, with unique objectives and
pre-training methods. The coverage includes bidi-
rectional models (BERT, RoBERTa, XLNet) and a
unidirectional model (GPT-2), incorporating vari-
ous language modeling approaches such as masked
language modeling and autoregressive language
modeling. Table 1 summarizes their differences
in corpus size, parameters, embedding dimensions,
and layers. We used publicly available pre-trained
versions of these models specified by ‘bert- large-
uncased,’ ‘roberta-large,’ ‘xlnet-base-cased’ and
‘gpt2’ on Hugging Face.
• BERT (Devlin et al., 2019) employs masked lan-
guage modeling and next-sentence prediction to
generate bidirectional text representations, consid-
ering both preceding and succeeding context.
• RoBERTa (Liu et al., 2019), built on BERT’s ar-
chitecture, omits the next-sentence prediction task
and introduces dynamic masking, which generates
unique masking patterns for each sentence during
training rather than using a fixed masked token.
• XLNet (Yang et al., 2019) is an autoregressive
language model that employs permutation-based
training to predict random tokens in both directions,
allowing for bidirectional context capture.
• GPT-2 (Radford et al., 2019) is a unidirectional
autoregressive language model that employs the
Transformer decoder architecture for its genera-
tive pre-training, specializing in predicting the next
word in a sentence by considering preceding words.

Model Params. Corpus Size Tokenization Dims. Layers

BERT 340M 16GB WordPiece

1024 24
RoBERTa 355M 160GB Byte-Pair
XLNet 340M 158GB SentencePiece
GPT-2 345M 40GB Byte-Pair

Table 1: Details of contextualized word representations
used in this study.

3.3 Word Representation Clustering
We utilized the Gaussian Mixture Model (GMM)
from scikit-learn for clustering the generated con-
textualized word vectors, selecting the ‘spherical’
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covariance type, which assumes equal diagonal ele-
ments in a diagonal covariance matrix. The GMM
can adapt to clusters with diverse shapes and sizes
while employing a probabilistic method for clus-
tering (Melnykov and Maitra, 2010). Through an
optimization strategy, we then identified a mapping
between the resulting clusters and the emotions of
the target words that maximize the overall number
of accurate matches. Using the match rate as the
evaluation metric leads to a more refined measure
of clustering quality.

The match rate quantifies the alignment between
the resulting clusters and the emotions of target
words. We determined this rate by constructing
a contingency table with pandas.crosstab (de-
noted as C), where each cell Cij counts the in-
stances in cluster i associated with emotion label
j. Initially, we assigned an emotion label to each
cluster based on the predominant emotion of the
instances within that cluster, following a major-
ity voting principle. Subsequently, we refined this
alignment by employing the Hungarian algorithm
(Kuhn, 1955) to establish an optimal one-to-one
mapping between clusters and target words’ emo-
tions. This optimization seeks a permutation π that
minimizes mismatch costs, thereby maximizing
the alignment between clusters and emotions. The
match rate was then calculated by normalizing the
sum of correctly matched labels, according to the
optimal mapping π, by the total count of instances
n, as follows:

Match Rate =

∑k
i=1Ci,π(i)

n
(2)

Here, k denotes the number of clusters, and π(i)
represents the label matched with cluster i through
the optimal matching.

4 Experiments

In this section, we first investigate the ability of
various contextualized word representations to dis-
tinguish between the different emotional connota-
tions evoked by the same word in different contexts
(Section 4.2). Then, we explore the presence of
emotional biases in these representations (Section
4.3). Finally, we evaluate the accuracy of these rep-
resentations in quantifying the range of emotions
elicited by each word (Section 4.4).

4.1 Datasets
We used the GoEmotions and SemEval 2018
datasets, sourced from Reddit and Twitter, respec-

tively, as emotion-annotated datasets.
• GoEmotions (Demszky et al., 2020) is the
largest manually annotated dataset of 58k English
Reddit comments from popular subreddits. At least
three raters assessed each comment, resulting in
significant inter-rater agreement. Comments range
from 3 to 30 tokens, with a median length of 12
tokens. We utilized the version of the dataset an-
notated for six emotions: joy, anger, fear, sadness,
disgust, and surprise.

• SemEval 2018 (Mohammad et al., 2018) com-
prises 10,983 tweets annotated for 11 emotions:
anger, anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, and trust. At
least seven raters assessed each tweet, ensuring
reliable annotation with strong inter-rater correla-
tion. The tweets range from 1 to 36 tokens, with a
median length of 16 tokens.

We followed the procedure outlined in Section
3.1 for target word identification. In the GoEmo-
tions dataset, we identified 133 words with an av-
erage of 2.5 distinct emotions, and in the SemEval
dataset, 113 words with an average of 2.3 emotions
per word. For evaluation, we selected 90 and 80
words from the GoEmotions and SemEval datasets,
respectively, as the test set, reserving the remain-
ing words for parameter fine-tuning in the devel-
opment set. The emotional labels for these words
were assigned based on the emotions expressed in
the sentences, including anger, fear, sadness, and
joy. Emotions like surprise, although present in the
datasets, did not meet the criteria outlined in Sec-
tion 3.1 and were thus excluded from our analysis.
We then retrieved example sentences associated
with these words from the datasets, with an aver-
age of 58.37 annotated sentences per emotion in
GoEmotions and 32.17 in SemEval.

4.2 Emotional Connotations Distinction

This section investigates the effectiveness of var-
ious contextualized representations in identifying
varied emotional connotations evoked by a single
word in different contexts. To ensure the robustness
of our experiments, we conducted five clustering
trials with different random seeds and selected the
result with the highest likelihood.

Figure 1 presents a comparative analysis of
macro-average match rates across all words for
individual layers within four representation models
on the development set, using the GoEmotions and
SemEval datasets. This empirical evidence reveals
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Figure 1: Layer-wise comparison of macro-average
match rates across models on the development set for
GoEmotions and SemEval datasets. Blue shading high-
lights the best-performing layers, marked with ⋆.

Model
GoEmotions SemEval 2018

Dev Test Dev Test

BERT 0.694 (22) 0.689 (22) 0.631 (20) 0.623 (20)
RoBERTa 0.718 (20) 0.707 (20) 0.665 (19) 0.656 (19)
XLNet 0.662 (13) 0.639 (13) 0.643 (11) 0.631 (11)
GPT-2 0.618 (17) 0.598 (17) 0.595 (16) 0.587 (16)

Table 2: Macro-average match rates of the highest-
scoring development layers (in brackets) and their cor-
responding test set scores across models. Bold values
represent the top scores for each datasets.

significant variation in layer effectiveness across
different models, indicating that selecting an opti-
mal layer is model-specific. The final layer (Layer
24), typically associated with encoding semantic
knowledge, consistently underperforms across all
models. A hierarchical performance pattern is ob-
served in BERT and RoBERTa models, with higher
match rates in the upper layers. In contrast, the
XLNet and GPT-2 models perform best in layers
closer to the middle rather than in the final layer.

Table 2 presents the macro-average match rates
of the top-performing layers during development
and their corresponding scores on the test set.
Given the diverse contextualization approaches,
objectives, and pre-training strategies of the mod-
els in question, significant variations were noted
in their ability to discern the emotional nuances
conveyed by the same words across different con-
texts. RoBERTa emerged as the leading model in
terms of scores on both datasets, underscoring its
superior ability to differentiate emotional conno-
tations of words and position them into distinct
embedding space regions. Following RoBERTa,
XLNet and BERT—both employing bidirectional
architectures—demonstrated strong performance.
Conversely, GPT-2, which operates on a unidirec-
tional autoregressive language model framework,

recorded the lowest scores on both datasets.

4.3 Bias Analysis
This section investigates the presence of biases to-
ward specific emotional connotations of a word in
contextualized representations, aiming to enhance
our understanding of their behavior in distinguish-
ing different emotions of the same word.

We aim to measure Bias(w, j), related to the
j-th emotion (emotionj), for a word w that evokes
multiple emotions (n). This involves assessing
cij , the count of instances where the correct la-
bel is emotioni but is erroneously identified as
emotionj (i ̸= j). First, we determine the extent
of bias from emotion i to emotion j (biasij) by
normalizing cij , dividing it by the total number
of instances gold-labeled as emotioni, denoted as∑

j cij . We then compute the overall bias towards
a specific emotion, Bias(w, j), as follows:

Bias(w, j) =
1

n− 1

n∑

i=1,i ̸=j

(
cij∑
j cij

)
(3)

The value of Bias(w, j) represents the likelihood
of models incorrectly identifying a word associated
with emotionk as emotionj when k ̸= j (Loureiro
et al., 2021). This value ranges from 0 to 1, where
a value close to 1 indicates a stronger bias towards
emotionj . We calculate the maximum bias value
(max(Bias(w, j)) towards different emotions of
a word, with j ranging across the emotions asso-
ciated with the word (j ∈ [1, n]). Table 3 shows
the average of these maximum bias values across
all words for the four models. Consistent with
the findings in Section 4.2, our analysis indicates
RoBERTa is more robust against biases, maintain-
ing a bias value below 0.3 in both datasets.

Table 4 presents the average Bias(w, j) scores
from equation 3 for different emotions across all
words. This breakdown analysis reveals biases
in word representations toward specific emotions,
with variations observed across different models.
Although models generally exhibit similar behav-
ior, they do not uniformly exhibit identical bias
toward the same emotions. For instance, in the
GoEmotions dataset, RoBERTa is biased toward
Anger, whereas XLNet and GPT-2 lean towards Joy.
Moreover, the models consistently show low biases,
below 0.2, towards Fear and Sadness emotions.

The radar charts in Figure 2 illustrate biases to-
wards different emotions in several representative
cases. For instance, the words ‘Freak’, ‘Damn’, and
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Figure 2: Analysis of bias towards different emotions for a few representative cases.

Dataset BERT RoBERTa XLNet GPT-2

GoEmotions 0.310 0.257 0.331 0.396
SemEval 2018 0.380 0.286 0.349 0.422

Table 3: Average bias values across models for the
GoEmotions and SemEval datasets.

Model Anger Fear Sadness Joy

GoEmotions Dataset

BERT 0.283 0.091 0.186 0.251
RoBERTa 0.267 0.116 0.103 0.233
XLNet 0.241 0.118 0.191 0.281
GPT-2 0.287 0.141 0.149 0.322

SemEval 2018 Dataset

BERT 0.387 0.135 0.118 0.285
RoBERTa 0.297 0.054 0.152 0.276
XLNet 0.353 0.114 0.112 0.275
GPT-2 0.390 0.145 0.148 0.415

Table 4: Breakdown analysis of bias values toward vari-
ous emotions across different models and datasets.

‘Creep’ exhibit a bias towards Anger, and ‘Scream’
is skewed toward Fear, showcasing a preference
for the more prevalent emotions of these words.
This reflects biases present during the models’ pre-
training, meaning they encountered the target word
with the prevalent emotion more frequently than
with other emotions. Thus, they may overlook
the word’s emotional nuance in varied contexts.
For example, these models associated the word
‘damn’ with more negative emotions due to its fre-
quent co-occurrence with words like ‘fuck’ and
‘shit’ during pre-training, potentially missing the
word’s positive connotations in different contexts.
Moreover, different models exhibit varying biases
for the same word; for instance, RoBERTa shows
a bias toward Anger for ‘Freak’, whereas GPT-2
leans towards Joy. Similarly, for the word ‘Crazy’,
BERT, RoBERTa, and GPT-2 tend to misclassify

Anger as Joy, whereas XLNet does the opposite.

4.4 Number of Emotions Estimation

In prior experiments, we analyzed words that evoke
diverse emotions and provided the Gaussian Mix-
ture Model with the number of emotions present
in sample sentences. The current experiment aims
to assess the models’ accuracy in estimating the
number of emotional connotations of words. By
including words that elicit only a single emotion
alongside those evoking multiple emotions, we en-
hance the robustness of our evaluation.

For the implementation of this experiment, we
matched the number of additional words to the
quantity used in Section 4.2. This approach re-
sulted in parameter tuning with 86 and 66 words in
the development set for GoEmotions and SemEval
datasets, respectively. For the test set evaluation,
we utilized 180 words for the GoEmotions and 160
words for the SemEval dataset.

We utilized an adjusted version of the Bayesian
Information Criterion (ABIC) (Schwarz, 1978) as
the criterion for model selection to determine the
optimal number of clusters, which align with the
number of emotions elicited by each word. The
ABIC fine-tunes the model for the best fit to the
data by considering both model complexity and
mitigating overfitting, as specified by the formula:

ABIC = c · p · ln(N)− 2 ln(L̂) (4)

Here, L̂ denotes the maximum likelihood of the
model, N is the sample size, p is the number of
model parameters, and c is a constant to adjust the
penalty term, c · p · ln(N). The penalty term penal-
izes model complexity based on the number of pa-
rameters and discourages excessive increases in the
number of clusters. We increment c from 1 in 0.1
steps until the total number of emotions and the es-
timated number of clusters are as close as possible
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Model GoEmotions SemEval 2018

ρ Accuracy RMSE ρ Accuracy RMSE

BERT 0.513 0.572 1.133 0.231 0.503 1.254
RoBERTa 0.648 0.617 1.002 0.437 0.569 1.142
XLNet 0.359 0.521 1.211 0.327 0.519 1.239
GPT-2 0.189 0.465 1.291 0.151 0.434 1.303

Table 5: Comparison of different models in estimating
the number of emotions using Spearman’s (ρ), accuracy,
and Root Mean Square Error (RMSE).

in the development set. For the GoEmotions and
SemEval datasets, the optimal c values were identi-
fied as 3.6 and 3.2, respectively. In the GMM, each
cluster encompasses a mean, a spherical covariance
matrix, and a mixture weight. The parameter count
for the GMM is given by p = [Nc × (D + 2)]− 1,
where Nc is the number of clusters, and D the data
dimensionality. The term (D + 2) accounts for the
mean and covariance parameters, and subtracting
1 corrects for the constraints, ensuring the sum of
parameters equals 1 for mixture weights (Murphy,
2012; Yamada et al., 2021).

Table 5 presents the performance of various mod-
els on estimating the number of emotions and clus-
ters in both datasets, using accuracy, Spearman’s
rank correlation coefficient (ρ), and root mean
square error (RMSE) metrics. RMSE quantifies the
error magnitude between estimated cluster counts
and the actual emotion counts per word. The find-
ings indicate that RoBERTa surpasses other models
in accurately estimating the number of emotions
for over 60% of the words analyzed. RoBERTa
achieved the lowest RMSE and the highest ρ val-
ues—0.648 and 0.437 for the GoEmotions and Se-
mEval datasets, respectively—suggesting a strong
alignment between the actual number of emotions
and model estimates. Figure 3 in the Appendix A
further illustrates RoBERTa’s performance through
confusion matrices, analyzing its emotion count es-
timates for words with a single emotion and those
with context-dependent multiple emotions.

5 Sentence-level Emotion Classification

This section explores the impact of disambiguat-
ing the emotional connotation of words that evoke
different emotions depending on the context, on
the accuracy of sentence-level emotion detection.
We evaluate sentences containing at least one iden-
tified target word, as those without these words
remain unaffected. Sentences are divided into strat-
ified training (80%) and test (20%) splits based on

emotions through random sampling.
Our initial experiments involve comparing the

original NRC-Affect lexicon and its modified ver-
sions in a before-and-after manner. Here, modified
lexicon refers to the disambiguation of emotional
connotations associated with target words in the
original NRC-Affect lexicon, achieved by utiliz-
ing various contextualized word representations.
The probability values from the Gaussian Mixture
Model indicate the extent to which each instance
of a target word belongs to each of the GMM clus-
ters, which have been mapped to specific emotions.
We computed the average probability for all in-
stances of a target word within an emotion’s cluster
to ascertain its disambiguated ratings. For example,
while the original lexicon associated ‘damn’ exclu-
sively with anger, with a score of 0.7, the modified
lexicon provides a nuanced view of the different
emotional connotations—joy, sadness, and fear, in
addition to anger—that ‘damn’ evokes across vari-
ous contexts in the GoEmotions dataset. Building
on the lexicon-based classifier design outlined in
(De Bruyne et al., 2022), we utilized the informa-
tion from both the original NRC-Affect lexicon and
its modified versions as features in a logistic regres-
sion classifier for emotion prediction, detailed in
Appendix B. Table 6 presents the results using F1-
macro scores, demonstrating substantial improve-
ments with the modified lexicons compared to the
original. This underscores the crucial role of ad-
dressing ambiguous emotional words and consider-
ing context in determining their emotional conno-
tations for accurate emotion classification.

Method GoEmotions SemEval 2018

Original NRC-Affect 0.324 0.361
Modified NRC-Affect using

BERT
RoBERTa
XLNet
GPT-2

0.377 0.396
0.382 0.408
0.372 0.406
0.356 0.390

Table 6: The F1-macro scores for sentence-level emo-
tion classification using lexicons.

Method GoEmotions SemEval 2018

BERT 0.593 0.532
RoBERTa 0.621 0.561
XLNet 0.614 0.543
GPT-2 0.461 0.503

RoBERTa + Original NRC-Affect 0.631 0.569
RoBERTa + Modified NRC-Affect (RoBERTa) 0.636 0.573

Table 7: The F1-macro scores for sentence-level emo-
tion classification using pre-trained models.
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In the second series of experiments, we evalu-
ated the ability of pre-trained transformer mod-
els—BERT, RoBERTa, XLNet, and GPT-2—to
classify emotions in sentences with target words.
We applied a uniform set of hyperparameters across
all models, adhering to the settings recommended
by Demszky et al. (2020): four epochs, a batch
size of 16, and a learning rate 5e-5. As expected,
the results in Table 7 demonstrate that these mod-
els significantly outperformed the lexicon-based
approach, which depended solely on lexicon fea-
tures, with RoBERTa achieving the highest F1-
macro scores across both datasets. Building on
prior research that indicates incorporating lexi-
con information into linguistic models further en-
hances the understanding of emotional nuances
in pre-trained models (Baziotis et al., 2018), we
integrated features derived from the original and
top-performing modified lexicons as auxiliary in-
puts into the highest-performing pre-trained model.
Specifically, we concatenated the auxiliary features
with the output vector from the last hidden layer
of the pre-trained model, appending them to the
sequence embedding since the features aggregate
across the entire text. The concatenated vector was
then fed into the final decision-making layer, and
we adjusted the dimensionality of the final layer
to accommodate the additional inputs. Our find-
ings, detailed in the second set of entries in Table 7,
revealed that including modified lexicon features,
in addition to the models, enhances classification
performance beyond what is achieved with original
lexicon information. Appendix C further discusses
the enhanced ability of RoBERTa, compared to
other models in discerning emotions.

Overall performance. Table 8 compares our
method, using the modified NRC-Affect lexicon
and RoBERTa embeddings, with state-of-the-art
approaches across the entire GoEmotions and Se-
mEval datasets, covering sentences both with and
without identified target words. We compare our re-
sults with various models, such as the TCS model,
which uses dual BiLSTM networks for tweet encod-
ing (Meisheri and Dey, 2018); the DATN model,
which employs a dual attention mechanism within
a transfer learning setup (Yu et al., 2018); the
BERT+DK, that integrates domain knowledge into
BERT (Ying et al., 2019); the Seq2Emo, which
leverages a bi-directional decoder in a sequence-
to-emotion framework without relying on external
data(Huang et al., 2021); and the UCCA-GAT and
Dep-GAT models (Ameer et al., 2023) that inte-

Method F1-macro

SemEval 2018 Dataset

TCS Research (Meisheri and Dey, 2018) 0.530
DATN (Yu et al., 2018) 0.544
BERT-Large + DK (Ying et al., 2019) 0.563
Seq2Emo (Huang et al., 2021) 0.519
UCCA-GAT (Ameer et al., 2023) 0.600 (1)
Dep-GAT (Ameer et al., 2023) 0.578 (3)
RoBERTa + Modified NRC-Affect (RoBERTa) 0.583 (2)

GoEmotions Dataset

BERT (Demszky et al., 2020) 0.640 (2)
UCCA-GAT (Ameer et al., 2023) 0.639 (3)
Dep-GAT (Ameer et al., 2023) 0.611
RoBERTa + Modified NRC-Affect (RoBERTa) 0.653 (1)

Table 8: Comparison of our method using modified
NRC-Affect lexicon and RoBERTa embeddings with
state-of-the-art approaches. Rankings (1), (2), and (3)
denote the top three results.

grate semantic and syntactic information into graph
attention networks via Universal Conceptual Cogni-
tive Annotation and dependency trees, respectively.
Our approach surpasses most competing models,
though it falls slightly behind the UCCA-GAT on
the SemEval dataset. These findings highlight the
efficacy of contextualized representations to disam-
biguate emotional connotations of words and adapt
to varying contexts, thereby enhancing emotion
detection at the sentence level.

6 Conclusion

In this study, we have explored disentangling the
emotional connotations of words within diverse
sentence contexts, leveraging contextualized word
representations. We evaluated these representa-
tions’ ability to differentiate the diverse emotions
of words, identify potential biases in predicting
emotional connotations, and accurately estimate
the multiplicity of words’ emotional connotations.
Our methodology involved clustering based on con-
textualized representations of words that evoke dif-
ferent emotions in various contexts and assessing
the alignment between the generated clusters and
the words’ emotions. Our evaluation of BERT,
RoBERTa, XLNet, and GPT-2 models revealed
that contextualized representations can effectively
disambiguate the emotional connotations of words,
with RoBERTa showing superior performance and
greater resilience against biases. Further analysis
indicated that addressing a small subset of ambigu-
ous emotional words and considering the context in
determining their emotional connotations are cru-
cial for accurately determining sentence emotion.
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7 Limitations

The empirical results presented in this paper high-
lighted that many commonly used linguistic mod-
els can significantly improve word emotion induc-
tion methods. However, our experiments were con-
ducted exclusively on English-language datasets.
Consequently, the effectiveness of the proposed
method in diverse corpora and multilingual re-
sources remains to be determined. Additionally, we
employed the NRC-Affect lexicon as a resource to
identify target emotional words that evoke different
emotions depending on the context. However, this
lexicon may not encompass all emotional words,
such as emerging slang terms in social media. The
inclusion of a more comprehensive spectrum of
emotional words should be a priority in future re-
search. These investigations will be essential for
evaluating the applicability of our method across
different languages and are expected to advance us
toward the goal of automatically constructing high-
quality emotional lexical resources with broader
linguistic coverage for under-resourced languages
or specific domains.
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A Appendix

The confusion matrices presented in Figure 3 depict
the analysis of how the RoBERTa model estimates
the number of emotions for words with single emo-
tions versus those with context-dependent multi-
ple emotions. The model reliably identifies single-
emotion words across datasets in most cases. How-
ever, it occasionally overestimates the number of
emotions, suggesting 2 or 3 clusters. For words that
elicit 2 or 3 emotions, the model provides reason-
ably accurate estimates but often underestimates
the actual count, indicating a lower number of emo-
tions. As the number of emotions increases to 4,
the reliability of the model’s estimations decreases,
leading to a wider range of possibilities.

B Appendix

We provide more details on the features utilized
in the design of the lexicon-based classifier out-
lined in (De Bruyne et al., 2022). We employed
statistical features of emotional words and a lo-
gistic regression classifier in the learning model
for emotion prediction experiments. We trained
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Figure 3: Confusion matrices for estimating the number
of emotions using the RoBERTa model.

the classifier with the statistical features derived
from both the original NRC-Affect lexicon and
its modified versions. Given a sequence of words
s = (w1, . . . , wk), statistical features quantify the
proportion of a given emotion ei within the sen-
tence s as P (s, ei), calculated by:

P (s, ei) =
1

k

k∑

j=1

ϕei(wj) (5)

where ϕei(wj) represents the emotion score
of the word wj for the emotion ei, derived
from the lexicons. Here, ei belongs to the set
{eanger, efear, esadness, ejoy}.

The logistic regression classifier uses a liblinear
solver with L2 regularization and a regularization
strength of C = 1.0. The choice of L2 regulariza-
tion helps prevent model overfitting by penalizing
the size of the coefficients, with C = 1.0 providing
an optimal balance between regularization intensity
and model complexity based on either empirical
evidence. We deploy separate binary classifiers
for each of the categories and aggregate the predic-
tions afterward by selecting the highest probability,
thereby identifying the most dominant emotion in
the sentence.

C Appendix

This appendix provides a detailed discussion on the
superior performance of RoBERTa over other mod-
els—BERT, XLNet, and GPT-2—on the task of
disambiguating emotional connotations. Notably,
all models in our experiments were trained under
identical conditions, using the same hyperparam-
eters such as batch size, learning rate, and dataset
sizes. This uniform setup ensures that any observed
performance differences are due to architectural or
training method variations. RoBERTa, the most
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Figure 4: The t-SNE projection of BERT, RoBERTa,
XLNet, and GPT-2 representations of the word damn in
sentences expressing various emotions in GoEmotions
dataset.

advanced transformer among the considered mod-
els, possesses the highest number of parameters
(355M) as detailed in Table 1. Its dynamic mask-
ing technique, which alters mask patterns with each
data pass, provides a training advantage over the
static masking used by BERT. Additionally, the
tokenization approach of models significantly im-
pacts their performance. In our evaluation, tok-
enization was consistent with the method used dur-
ing pre-training. RoBERTa employs Byte-Pair En-
coding (BPE), which effectively captures frequent
subword units compared to BERT’s WordPiece or
XLNet’s SentencePiece. BPE constructs its vocab-
ulary by merging frequently occurring character
pairs or combinations, thus improving the capture
of rare or out-of-vocabulary words (Beinborn and
Pinter, 2023).

Additionally, empirical evidence from the layer-
wise comparison of macro-average match rates in
Section 4.2 revealed that the ability to capture emo-
tional connotations varies significantly across lay-
ers of selected models, indicating that optimal layer
selection is model-specific. RoBERTa consistently
excelled in identifying the varying emotional con-
notations of words, particularly in its upper layers,
which are typically associated with semantic knowl-
edge encoding. Figure 4 showcases t-SNE projec-
tions of contextualized representations from the
most effective layer of each model, using the word
‘damn’ in various sentences sourced from the GoE-

motions dataset. These visualizations highlight
the distinctive distribution of RoBERTa’s represen-
tations, further emphasizing its ability to capture
emotion evoked by ‘damn’ in each example.
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Abstract

Lengthy documents pose a unique challenge
to neural language models due to substantial
memory consumption. While existing state-
of-the-art (SOTA) models segment long texts
into equal-length snippets (e.g., 128 tokens
per snippet) or deploy sparse attention net-
works, these methods have new challenges
of context fragmentation and generalizability
due to sentence boundaries and varying text
lengths. For example, our empirical analy-
sis has shown that SOTA models consistently
overfit one set of lengthy documents (e.g.,
2000 tokens) while performing worse on texts
with other lengths (e.g., 1000 or 4000). In
this study, we propose a Length-Aware Multi-
Kernel Transformer (LAMKIT) to address the
new challenges for the long document clas-
sification. LAMKIT encodes lengthy docu-
ments by diverse transformer-based kernels for
bridging context boundaries and vectorizes text
length by the kernels to promote model robust-
ness over varying document lengths. Experi-
ments on five standard benchmarks from health
and law domains show LAMKIT outperforms
SOTA models up to an absolute 10.9% improve-
ment. We conduct extensive ablation analyses
to examine model robustness and effectiveness
over varying document lengths. 1

1 Introduction

Lengthy documents widely exist in many fields,
while the input limit of transformer models
prevents developing powerful pre-trained lan-
guage models on those long documents, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). For example, a recent study shows that
clinical documents have grown over 60% longer
in a decade (Rule et al., 2021). Truncation is a
common strategy to handle long documents and

* Corresponding author
1Code available at https://github.com/trust-nlp/

LAMKIT

fit the input limit of BERT-based classifiers, how-
ever, the method may lose many critical contexts
beyond the first 512 tokens and hurdle model effec-
tiveness. Auto-regressive large language models
(LLMs), such as ChatGPT (OpenAI, 2022) show
their great ability at processing long documents,
however the training object of these LLMs is to
prediction the next token, which is inconsistent
with the text classification task. In other words,
supervised fine-tuning on these domain specific
data may not improve the performance of LLMs on
these classification task. Therefore, researchers fo-
cus on prompting methods (Wei et al., 2022; Chen
et al., 2023a; Song et al., 2023; Sun et al., 2024;
Zhang et al., 2024) or decoding strategies (Wang
et al., 2023) rather than fine-tuning (Xiong et al.,
2024) to help the LLMs categorize text better. This
reality makes LLMs limited in this scenario. Com-
pare with these methods, developing discriminative
transformer models that can model long documents
is a more direct and effective solution to handle the
long document classification task.

Among existing transformer-based models, long
document modeling has two major directions, hi-
erarchical transformer and sparse attention (Dong
et al., 2023; Qin et al., 2023). The hierarchical
approach (Wu et al., 2021; Chalkidis et al., 2022;
Dai et al., 2022; Li et al., 2023a; Chalkidis et al.,
2023) splits document into small text chunks (e.g.,
128 tokens) so that long document models can
take shorter input per step. As the self-attention
in transformer-style models causes quadratic com-
plexity O(n2), the sparse attention aims to lower
the complexity to linear and reduce context frag-
mentation caused by the segments (Beltagy et al.,
2020; Zaheer et al., 2020; Guo et al., 2022; Zhang
et al., 2023). For example, sparse attention in Long-
former (Beltagy et al., 2020) lifts up the input limit
from 512 tokens to 4096 tokens. Popular eval-
uation benchmarks also switch from social me-
dia data (e.g., IMDb and Amazon reviews (Wu
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Dataset
Length-Quantile

L-mean Size |Label| Splits
25% 50% 75% Train Valid Test

Diabetes 408 608 945 720 1,265 10 885 190 190
MIMIC 1,432 2,022 2,741 2,200 11,368 50 8,066 1,753 1,729

ECtHR A/B 668 1,328 2,627 2,139 11,000 11 9,000 1,000 1,000
SCOTUS 3,723 7,673 12,275 9,840 7,800 14 5,000 1,400 1,400

Table 1: Statistics of average token count per document (L-mean), data size (Size), and unique labels (|Label|).

et al., 2021)) to more complex data in health and
legal domains (Qin et al., 2023; Chalkidis et al.,
2022). For example, the median document length
of IMDb is only 225 tokens (Li et al., 2023a), which
is much smaller than the lengths in Table 1. In-
deed, document lengths vary across datasets, and
model performance can vary across length-varied
corpora (Li et al., 2023a). However, very few stud-
ies have examined if long document models can
handle varying-length texts, ranging from short to
extremely long. A common question is: will a long
document model be capable to maintain robust per-
formance across varying-length data? Our analysis
on SOTA baselines in Figure 1 says “No.”

To understand the length effects and encounter
the long document challenges, we conduct exten-
sive analysis and propose Length-Aware Multi-
Kernel Transformer (LAMKIT) for robust long doc-
ument classification. LAMKIT diversifies learn-
ing processes by a multi-kernel encoding (MK)
so that the model can capture contexts from dif-
ferent perspectives. The MK contains multiple
neural encoders with diverse kernel sizes and can
relieve context fragmentation caused by a unique
segment encoder on short text chunks. LAMKIT
promotes model robustness over varying-length
documents by a length-aware vectorization (LaV)
module. The LaV encodes length information in a
hierarchical way, position embedding on segment
and length vectors on document level. We compare
LAMKIT with 8 domain-specific models on five
datasets (MIMIC-III (Johnson et al., 2016), SCO-
TUS (Chalkidis et al., 2022), ECtHR-A (Chalkidis
et al., 2019) and ECtHR-B (Chalkidis et al., 2021),
Diabetes (Stubbs et al., 2019)) from health and
legal domains evaluated by F1 and AUC metrics.
Additionally, we also conduct a case study on the
performance of ChatGPT in these tasks. Classifi-
cation results demonstrate that our LAMKIT ap-
proach’s outperforms competitive baselines by an
absolute improvement of up to 10.9%. We conduct
further experiments on the length-varying effects

and ablation analysis to examine the effectiveness
of our individual modules.

2 Data

We have retrieved five publicly available dataset,
Diabetes (Stubbs et al., 2019), MIMIC-III (John-
son et al., 2016), ECtHR-A (Chalkidis et al.,
2019), ECtHR-B (Chalkidis et al., 2021)and SCO-
TUS (Chalkidis et al., 2022), which are popular
benchmarks for the long document classification.
We obtained Diabetes (Stubbs et al., 2019) from
the 2018 National NLP Clinical Challenges (n2c2)
shared task with a collection of longitudinal pa-
tient records and 13 selection criteria annotations.
We exclude 3 annotations due to less than 0.5
inter-rater agreements and discard documents with
fewer than 40 tokens. MIMIC-III (Medical Infor-
mation Mart for Intensive Care) (Johnson et al.,
2016) is a relational database that contains pa-
tients admitted to the Intensive Care Unit (ICU)
at the Beth Israel Deaconess Medical Center from
2001 to 2012. We follow previous work (Mullen-
bach et al., 2018; Vu et al., 2021) to select dis-
charge summaries and use the top 50 frequent la-
bels of International Classification of Disease codes
(9th Edition, ICD-9), which are types of proce-
dures and diagnoses during patient stay in the ICU.
ECtHR-A collects facts and articles from law case
descriptions from the European Court of Human
Rights’ public database (Chalkidis et al., 2019).
Each case is mapped to the articles it was found
to have violated in the ECHR, while in ECtHR-
B (Chalkidis et al., 2021), cases are mapped to a
set of allegedly violated articles. SCOTUS is a data
collection of US Supreme Court (the highest US
federal court) opinions and the US Supreme Court
Database (SCDB) (Spaeth et al., 2020) with cases
from 1946 to 2020. SCOTUS has 14 issue areas,
such as Criminal Procedure, Civil Rights, and Eco-
nomic Activity. We summarize data statistics and
splits in Table 1.

Table 1 shows each data has a varying length
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range, a critical yet under-explored question is:
does the varying length effect model performance
or will models be generalizable across all lengths?
For example, the document length in Table 1 is
either less than a few hundred or over ten thou-
sand tokens surpassing input limitations of regular
transformer-style models (e.g., BERT), and there
are significant length variations across the data.
While studies (Dong et al., 2023) have achieved im-
proving performance overall to encode more con-
texts beyond the 512 token limit, there is very few
work examining the effects of varying document
lengths over model robustness. To answer the ques-
tion, we conduct an exploratory analysis of existing
state-of-the-art (SOTA) models and evaluate their
performance.

BERT Longformer Bigbird H-BERT
Model
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Quarter
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Figure 1: Average performance on quarter splits for
four state-of-the-art baselines. The length boundaries
of quarters are shown in Table 1. Detailed performance
scores are presented in Table 3

Our exploratory analysis follows existing stud-
ies (Mullenbach et al., 2018; Dai et al., 2022;
Chalkidis et al., 2022; Qin et al., 2023) to split
data, includes three state-of-the-art transformer
classifiers (BigBird, Longformer, and Hierarchi-
cal BERT (H-BERT)) for long document and a
BERT classifier, and evaluates models performance
by F1-micro (F1-µ) score. We refer to the details
of experimental settings and SOTA baselines un-
der the Experiments section. For each quarter, we
maintain similar data sizes and run the classifier
multiple times to take average performance scores.
Finally, we visualize the relation between model
performance and document lengths in Figure 1.

Figure 1 shows that model performance varies
across document lengths, posing a unique chal-
lenge to build robust models on varying lengthy

data. For example, while the SOTA classifiers
achieve better scores on mid-lengthy texts, the per-
formance drops significantly in either short (e.g.,
400 tokens) or super long (e.g., 10K tokens) doc-
uments. The consistent observations can suggest
that: 1) varying length can be a critical factor to
make models perform better; 2) length-based splits
are important to understand the capacity of clas-
sifiers on long documents. The findings inspire
us to propose the Length-Aware Multi-Kernel
Transformer (LAMKIT) to encounter the length
factor.

2.1 Ethic and Privacy Concern
All data used in this research is publicly accessi-
ble and has been stripped of identifying informa-
tion. Our investigation is centered on computa-
tional techniques, and we do not gather data di-
rectly from individuals. Our institution’s review
board has confirmed that this research does not
mandate an IRB approval.

3 Length-Aware Multi-Kernel
Transformer

This section presents our Length-Aware Multi-
Kernel Transformer (LAMKIT) for robust long doc-
ument classification in Figure 2. LAMKIT consists
of three major modules, 1) multi-kernel encoding,
2) length-aware vectorization, and 3) hierarchical
integration, aiming to solve context fragmentation
and augment model robustness on lengthy docu-
ments. We deploy different encoding kernels to
diversify text segments with various contexts. In-
corporating length as vectors can adapt classifiers
across varying-length documents. Finally, we elab-
orate on how to learn robust document representa-
tions via a hierarchical integration.

3.1 Multi-kernel Encoding
Multi-kernel Encoding (MK) aims to diversify con-
text to segment and encode documents from mul-
tiple perspectives. The mechanism is to solve
the challenge of existing long document model-
ing methods (Beltagy et al., 2020; Wu et al., 2021;
Dai et al., 2022; Dong et al., 2023) –– splitting
and vectorizing each document by a fixed size,
which has been analyzed in our previous data sec-
tion. Our MK mechanism gets inspirations from
TextCNN (Kim, 2014), which uses kernels of dif-
ferent sizes to convolve text representations. In
contrast, our MK mechanism encodes each docu-
ment into various sizes of text segments to obtain
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Figure 2: LAMKIT diagram overview. Our approach consists of three main components: multi-kernel encoding,
length-aware vectorization, and hierarchical integration. We denote one color of segments and vectors per kernel.
The arrows indicate model workflows,

⊕
is a sum operation.

various feature representations. By learning diverse
document features with varying-size text chunks,
we can enrich representations of lengthy documents
with various sizes.

Specifically, we empirically choose a set of
kernel sizes (e.g. m = {128, 256, 512} for the
MIMIC dataset) to split and vectorize the long doc-
uments. Following the CNN, we tried the stride
ranging between (2/3 ∗m,m), but we did not get
significant improvements. Therefore the stride of
all kernels is set to its kernel size such that two
adjacent segments do not overlap. In the later sec-
tion, our ablation analysis shows that the major
performance drops come from the number of ker-
nels. We infer the performance of kernel and stride
sizes as encoding contexts with different kernels
is more critical to augment classifiers on lengthy
documents. For each chunk size of text, we deploy
a pre-trained RoBERTa model (Liu et al., 2019)
so that our MK has enriched representations for
the varied text chunks. While our MK mechanism
allows other Transformer variants, we choose the
RoBERTa to keep consistent with existing SOTA
approaches (Chalkidis et al., 2022; Li et al., 2023c;
Dong et al., 2023) for fair comparisons. We take
the embedding of the “[CLS]” token from each text
chunk to represent its segment vector and feed to
the following operation, combining with the seg-
ment position embedding of length-aware vector-
ization.

3.2 Length-aware Vectorization
We propose the Length-aware Vectorization (LaV)
to incorporate lengthy contexts and augment model

generalizability, as our Figure 1 presents that the
model performance varies across document lengths.
LaV achieves the grand goal by two levels: text
chunk and document. On the text chunk level, we
encode length information by the segment position
embedding, and on the document level, we vector-
ize text length with MK outputs.

Segment Position Embedding vectorizes posi-
tions of text chunks into a learnable embedding by
a Transformer encoder in Equation 1, where |d|
refers to the embedding size, i is the column index
of a vector scalar, and pos is the index of the text
chunk. For example, if we segment a 1024-token
document into 15 chunks (with a stride) by the 128
kernel encoder, the total will be the 15 and the sec-
ond chunk’s index (pos) will be 2. Similarly, we
can obtain segment position embeddings for other
multi-kernel encoders and equip the segment vec-
tors from the MK step with the length information,
segment position. Finally, we sum the segment po-
sition embeddings up with the segment vectors and
feed them to the document encoder.

PE(pos,i) =




sin
(

pos
100002i/|d|

)
, if i is even

cos
(

pos
100002i/|d|

)
, if i is odd

(1)

Note that, our position embedding differs from
previous studies. For example, majority of long
document classifiers (Wu et al., 2021; Li et al.,
2023b; Zhang et al., 2023) deploy position embed-
dings for tokens rather than the segment. There
is one close study (Dai et al., 2022) that utilizes
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segment position embedding in classification mod-
els. In contrast, our position embedding diversifies
segment positions from multiple kernels, aiming to
incorporate text lengths and augment model gener-
alizability over varying text lengths.

Length Vectors encode document length infor-
mation into feature vectors. Instead of directly
encoding a length scalar into a vector, we obtain
the length vectors by applying averaging pooling
over each MK encoder’s outputs and vectorizing
the chunk sizes per document by the position em-
bedding. The length vectors not only encode docu-
ment lengths by chunk sizes but also implicitly in-
corporate lengthy contexts from the MK encoders.
Finally, we feed the length vectors into the length
encoder to obtain learnable length-aware vectors,
which will be integrated with the document en-
coder’s outputs.

3.3 Hierarchical Integration

We obtain length-aware document representations
through the hierarchical integration process from
segment and length vectors. The integration pro-
cess starts with a document encoder to encode seg-
ment vectors and a length encoder to encode length
vectors. Both modules are Transformer (Vaswani
et al., 2017) encoders but serve different purposes
–– while both encoders take length-related vectors,
the document encoder focuses on learning diversi-
fied contexts from the MK encoders and the length
encoder focuses on incorporating varying length
features. We then combine the two encoders’ out-
puts by a sum operation and feed the integration
to a hierarchical pooling process to obtain length-
aware document vectors.

Hierarchical pooling operations has two major
processes in order, max pooling and average pool-
ing. The max pooling aims to squeeze length-aware
multidimensional representations of text chunks
from the length and document encoders. We con-
catenate the pooling outputs and feed them to the
average pooling operation. The average pooling ag-
gregates the length-aware segment features into the
length-aware document vectors. Finally we feed
the document vectors to linear layer for classifica-
tion. Our tasks cover both binary and multi-label
classifications. We deploy a sigmoid function for
binary prediction and a softmax function for the
multi-label task.

4 Experiments

We follow the previous studies (Mullenbach et al.,
2018; Stubbs et al., 2019; Chalkidis et al., 2022)
on lengthy document to preprocess data and split
data into training, validation, and test, as in Table 1.
We follow SOTA baselines to set up our evalua-
tion experiments. Our results include F1 and AUC
metrics, covering both micro (µ) and macro (m)
variations.

Our evaluation presents performance compar-
isons and ablation analysis to understand the length
effects and the models better. More details of
the hyperparameter settings for the baselines and
LAMKIT are in the Appendix A, which allows for
experiment replications.

4.1 Baselines

To demonstrate the effectiveness of LAMKIT, we
compare it against both hierarchical transformer
and sparse attention transformer SOTA baselines
for long-document modeling, as well as with regu-
lar BERT. Although our LAMKIT has no theoreti-
cal length limit, we set the text length to 4096 for
all experiments for a fair comparison, except for
BERT which is 512.

Our experiments utilize baseline hyperparame-
ters that achieved their best results in the previous
studies. For example, we take publicly released
models or source codes to train long document
classifiers. As our data come from health and legal
domains, we choose the pre-trained models on the
domain data. For example, we report the perfor-
mance of Clinical-Longformer (Li et al., 2023c)
and Legal-Longformer (Chalkidis et al., 2023) on
health and legal data, respectively, instead of the
vanilla Longformer (Beltagy et al., 2020).

BERT includes classifiers built on domain-
specific pre-trained BERT models. Specifically,
we include two types of pre-trained BERT model,
Legal-BERT (Chalkidis et al., 2020) for the legal
data and RoBERTa-PM-M3 (Lewis et al., 2020) for
the clinical data, which achieved the best perfor-
mance on broad text classification tasks in legal and
clinical domains. Due to the input limit, the BERT
baselines truncate and only take 512 tokens per en-
try. We experiment two types of truncation, first
and last 512 tokens of each data entry, and name
the two types as BERTFirst and BERTLast.

Hierarchical BERT (H-BERT) splits long doc-
ument into equal-length segments, hierarchically
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Model
Diabetes MIMIC ECtHR-A ECtHR-B SCOTUS

F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m
BERTFirst 72.0 43.2 86.9 72.4 56.8 47.0 87.1 84.0 64.2 52.6 91.6 88.6 73.3 67.6 93.1 91.4 73.9 61.6 95.9 90.0
BERTLast 68.7 39.1 87.2 72.2 51.3 41.5 84.8 81.4 66.1 59.1 93.7 91.3 75.1 65.7 94.5 93.0 66.9 53.1 93.6 87.2
Longformer 71.5 41.2 88.4 71.6 67.2 58.2 92.5 89.8 71.4 59.0 95.4 93.3 79.6 73.1 95.2 94.0 74.3 62.9 95.6 89.9
BigBird 71.9 42.5 88.5 76.4 65.3 56.8 92.3 89.7 70.2 61.8 93.8 91.8 78.9 70.3 95.5 93.8 72.3 60.6 94.3 89.7
H-BERT 70.4 46.0 83.2 69.7 66.9 60.6 92.6 90.2 70.4 57.7 95.7 93.9 79.2 72.0 95.4 94.4 76.6 68.0 95.5 95.0
LAMKIT 73.4 49.9 88.4 74.5 69.5 63.7 93.3 91.2 73.0 65.0 96.0 94.7 80.2 74.4 95.8 94.7 78.5 67.8 97.1 94.9
∆ ↑2.5 ↑6.9 ↑1.6 ↑2.0 ↑8.0 ↑10.9 ↑3.4 ↑4.2 ↑4.5 ↑7.0 ↑2.0 ↑2.9 ↑3.0 ↑4.7 ↑1.1 ↑1.4 ↑5.7 ↑6.6 ↑2.1 ↑4.5

Table 2: Overall performance in percentages of F1 and AUC metrics, both micro (µ) and macro (m). We bolden the
best performance and underline the second best value. ∆ denotes the absolute improvement of LAMKIT over the
baselines average.

integrate segment features into document vectors,
and yield predictions on the document vectors (Dai
et al., 2022; Qin et al., 2023; Dong et al., 2023). We
follow the existing SOTA studies that achieved the
best results using the H-BERT in health (Dai et al.,
2022) and legal (Chalkidis et al., 2022) domains.
The H-BERT models are close to our hierarchical
architecture, while the H-BERT models do not in-
corporate our proposed multi-kernel mechanism
(MK) and length vectors. If LAMKIT achieves
better performance, the improvements over the
H-BERT can prove the effectiveness of adapting
varying-length texts.

Longformer (Beltagy et al., 2020) solves the
512-length limit by replacing self-attention with a
local (sliding window) attention and unidirectional
global attention and thus can process sequences up
to 4096 tokens. We deploy domain-specific Long-
former to keep consistent experimental settings.
Specifically, we utilize Clinical-Longformer (Li
et al., 2023c) and Legal-Longformer (Chalkidis
et al., 2023) to build our document classifiers for
the health and legal data, respectively.

BigBird deploys a block sparse attention to re-
lieve the length limit that reduces the Transformer
quadratic dependency to linear (Zaheer et al., 2020).
BigBird utilizes a fusion of local, global, and ran-
dom attention, extending the maximum process-
able sequence length to 4096 tokens. We utilize
its domain-specific variants, Clinical-BigBird (Li
et al., 2023c) and Legal-Bigbird (Dassi and Kwate,
2021) to conduct experiments.

5 Result Analysis

This section reports the performance of SOTA base-
lines and LAMKIT in terms of F1 and AUC met-
rics, both micro (µ) and macro (m) modes. Be-
sides the overall performance, we examine varying-
length effects and conduct ablation analysis on our
individual modules (e.g., MK and LaV). The re-
sults show that LAMKIT not only surpasses the

baselines by a large margin on long documents
from both health and legal domains but also shows
more stable performance on documents of varying
lengths.

5.1 Overall Performance

We present the results of long document classifi-
cation benchmarks in Table 2 that our LAMKIT
significantly outperforms the other SOTA baselines.
For example, compared to the baselines’ average
performance, LAMKIT shows an improvement of
4.7% in F1-micro and 7.2% in F1-macro. Long
document models do not perform better than reg-
ular BERT models on shorter texts. For example,
BERTfirst outperforms most of the SOTA base-
lines on Diabetes, of which 50% clinical notes are
less than 608 tokens. In contrast, we can observe
our LAMKIT is robust on both shorter and longer
text documents, highlighting the unique contribu-
tion and effectiveness of our approach.

Document characteristics of health and legal data
can impact baselines performance. For example,
we find that H-BERT performs better on the SCO-
TUS compared to models with sparse attention net-
works (e.g., Longformer and BigBird), while its
performance on other datasets is comparable. We
infer this as the SCOTUS dataset has clear segment
boundaries that H-BERT can utilize the boundaries
as segments, however, other data is compressed
and dense, which can cause context fragmenta-
tion (Beltagy et al., 2020) and weaken effectiveness
of H-BERT. However, our LAMKIT demonstrates
superior performance on the issue, and we think
the MK and length-aware vectors play critical roles,
which is shown in our ablation analysis.

5.2 Performance on Varying-length Splits

To assess the model’s robustness and generalizabil-
ity across documents of varying lengths, we follow
the approach described in the Data Section, divid-
ing each dataset into quarters based on the lengths
of the documents, ensuring similar data sizes in
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Model
Diabetes MIMIC ECtHR-A ECtHR-B SCOTUS

Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4
BERTFirst 65.7 74.1 73.4 74.2 57.9 63.0 57.5 52.9 74.9 73.4 62.6 54.4 79.6 77.3 70.7 70.7 75.0 74.3 80.9 70.0
BERTLast 63.4 66.9 71.6 71.8 51.6 57.8 50.3 48.4 72.6 73.0 62.5 61.6 77.8 79.5 73.4 73.0 68.8 64.4 69.4 66.0
Longformer 64.6 72.7 72.2 75.8 63.8 71.0 68.1 66.4 79.0 74.0 72.4 65.7 84.4 81.9 79.4 76.4 69.3 73.4 76.9 74.5
BigBird 61.0 72.1 71.7 79.9 62.9 70.2 66.3 62.6 68.8 65.9 73.9 70.7 77.8 81.4 80.1 77.0 65.3 70.4 77.2 72.1
H-BERT 61.2 67.6 74.2 77.8 62.1 69.6 66.8 66.5 79.1 75.3 69.1 64.1 81.7 80.7 79.4 77.1 64.2 75.8 82.9 76.5
LAMKIT 66.0 71.2 77.0 78.1 66.4 72.6 70.4 68.0 79.7 74.6 74.3 67.5 79.4 80.8 80.3 80.0 72.2 76.4 83.0 78.5
∆ ↑2.8 ↑0.5 ↑4.4 ↑2.2 ↑6.7 ↑6.3 ↑8.6 ↑8.6 ↑4.8 ↑2.3 ↑6.2 ↑4.2 ↓-0.9 ↑0.6 ↑3.7 ↑5.2 ↑3.7 ↑4.7 ↑5.5 ↑6.7

Table 3: F1-micro scores across four quarters following our Figure 1. We bolden the best performance and underline
the second best value. ∆ refers to the absolute improvement of LAMKIT over the average of baselines.

each quarter.
Table 3 presents F1-micro scores across four

quarters of each dataset that LAMKIT outperforms
baselines on most quarters across the datasets. Sur-
prisingly, SOTA baselines tend to favor and overfit
one quarter data with a specific length, which does
not exceed their input limit (e.g., 4096 for Long-
former). In contrast, our LAMKIT shows more gen-
eralizable performance across varying-length doc-
uments. The stable performance of our LAMKIT
highlights the effectiveness of our multi-kernel and
length vectors in adapting classifiers on varying
lengths and promoting classification robustness on
the health and legal domains.

5.3 Ablation Study

We conduct an ablation analysis to assess the effec-
tiveness of individual LAMKIT modules focusing
on the multi-kernel mechanism (MK) and length-
aware vectorization (LaV). Table 4 shows the re-
sults of our anylysis. w/o MK replaces multi-kernel
encoders with a single kernel encoder (RoBERTa)
and shrinks segment vectors accordingly. w/o LaV
removes length-related vectors and encoders from
LAMKIT. And, w/o MK and LaV removes both
MK mechanism and length-related encoding.

We can observe that removing one of the mod-
ules or removing all modules can significantly re-
duce model performance. Replacing the MK mech-
anism can result in a 1.3% and 1.9% drop in F1-
micro and F1-macro on average, respectively. The
performance drop indicates multi-kernel encoding
mechanism can relieve context fragmentation to
promote model performance by diversifying doc-
ument representations. Removing LaV leads to
1.3% and 2.4% drops in F1-micro and F1-macro
on average, respectively. The performance drop
shows that the length information can be critical to
building robust classifiers on the health and legal
data.

We can observe the most significant performance
drop in LAMKIT after removing both MK and

LaV modules, with F1-micro and F1-macro scores
decreasing by 2.8% and 3.5%, and AUC-micro and
AUC-macro scores by 1.5% and 1.8%, respectively,
demonstrating the effectiveness of these modules.

6 Case Study on ChatGPT

Large language models (LLMs) have achieved im-
pressive performance on many generative tasks,
such as long text summarization or long text QA.
However, long text classification is a natural lan-
guage understanding task, which makes fine-tuning
the large model on such a task not a guaranteed
improvement in classification accuracy. Thus the
dominant paradigms for text classification in LLMs
are zero-shot learning and few-shot learning (Lou
et al., 2023). To examine the ability of LLMs on the
long document classification task, we utilize repre-
sentative GPT-3.5-Turbo via ChatCompletion API2

in a zero-shot prompting strategy with multiple
templated instructions summarized by (Lou et al.,
2023; Chalkidis, 2023; Chen et al., 2023b), and
report the best performing template results. Due to
privacy concerns and data usage agreement, we do
not test ChatGPT (OpenAI, 2022) on MIMIC and
Diabetes. The results in Table 5 suggest that com-
pared to our LAMKIT and also the chosen baseline
models, ChatGPT still underperforms on long text
classification tasks. For the prompt template, we
refer more details in the Appendix Figure 3.

7 Related Work

7.1 Transformers for Text Classification
Pretrained language models (PLMs) based on
vanilla self-attention, such as BERT (Devlin et al.,
2019) and its variants (Nerella et al., 2023; He et al.,
2021; Zhou et al., 2022; Ma et al., 2021; Alsentzer
et al., 2019; Jin and Wang, 2023), have achieved
state-of-the-art (SOTA) results in regular text clas-
sification tasks. However, with their input typically

2https://platform.openai.com/docs/guides/gpt/
chat-completions-api
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Model
Diabetes MIMIC ECtHR-A ECtHR-B SCOTUS

F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m
LAMKIT 73.4 49.3 88.4 74.5 69.5 63.7 93.3 91.2 73.0 65.0 96.0 94.7 80.2 74.4 95.8 94.7 78.5 67.8 97.1 94.9
w/o MK 72.1 47.6 88.2 72.3 68.5 61.9 92.8 90.5 72.0 62.7 95.5 93.9 79.0 72.3 95.8 94.2 76.7 66.3 97.0 93.3
w/o LaV 71.5 42.1 87.5 72.7 68.4 62.9 93.0 90.8 71.5 64.2 95.6 94.3 79.2 72.4 95.4 94.6 77.6 66.6 97.1 93.1
w/o MK and LaV 69.9 46.6 85.3 71.1 66.3 60.0 92.3 89.9 70.4 61.3 94.9 93.4 78.0 70.7 94.1 93.4 76.0 63.9 96.4 93.6

Table 4: Ablation performance of LAMKIT modules in F1 and AUC, both micro (µ) and macro (m), shown in
percentages.

Model
ECtHR-A ECtHR-B SCOTUS

F1-µ F1-m F1-µ F1-m F1-µ F1-m
ChatGPT 51.1 47.7 54.0 60.8 49.9 42.0

Table 5: F1 metrics (in %) of ChatGPT on Legal Data.

limited to 512 tokens, truncation becomes neces-
sary when handling long texts (Ding et al., 2020).
Such truncation might cause the text to lose a sig-
nificant amount of valuable information, thereby
affecting the model’s performance. Another op-
tion is to use the generative LLMs to categorize
text, however, their architecture and training meth-
ods make them unsuitable for fine-tuning directly
on text categorization tasks, thus previous studies
have focused more on their zero-shot and few-shot
performance(Han et al., 2024; Pan et al., 2024; Sri-
vastava et al., 2023). Compare with these methods,
long document modeling serves as a more directly
solution to handle the long document classification
task.

7.2 Long Document Modeling

To enable transformers to accept longer sequences,
two primary approaches have been employed in
long document modeling: efficient transformers
(e.g., sparse attention transformers) and hierarchi-
cal transformers (Dong et al., 2023). Hierarchical
transformer models (Li et al., 2023a; Ruan et al.,
2022; Chalkidis et al., 2023) rely on chunking the
text into slices of equal size and obtaining the doc-
ument representation based on the representations
of these slices, ensuring that the model’s input does
not exceed the limit in each instance. For example,
HiPool (Li et al., 2023a) employs Transformers for
sentence modeling and then uses Graph Convolu-
tional Neural Networks for document information
modeling. HiStruct+ (Ruan et al., 2022) encodes
the hierarchical structure information of the docu-
ment and infuses it into the hierarchical attention
model. Due to the full-rank attention mechanism
in transformer models leading to quadratic com-
putational complexity, efficient transformers (Belt-
agy et al., 2020; Zaheer et al., 2020; Choroman-
ski et al., 2021; Zhang et al., 2023) aim to use

sparse attention or low-rank methods to reduce the
complexity and minimize context fragmentation
caused by segmentation. For instance, to reduce
computational complexity from O(n2) to O(n),
Longformer (Beltagy et al., 2020) employs a mix
of local attention (through a sliding window) and
global attention on certain special tokens. Simi-
larly, BigBird (Zaheer et al., 2020) incorporates
both these attention mechanisms and introduces an
additional random attention strategy. Both models
have expanded their input limits to 4096 tokens.
However, they do not perform well on documents
of all lengths.

Prior research (Li et al., 2023a) has noted that
document lengths differ among datasets, and model
performance can be inconsistent across corpora
with varying lengths. Studies (Dai et al., 2022) have
also shown that segmenting documents inevitably
leads to issues of context fragmentation. How-
ever, no previous work has centered on the afore-
mentioned two inherent issues of long document
models: context fragmentation and generalizability
across varying text lengths. In this study, we pro-
pose a novel approach Length-Aware Multi-Kernel
Transformer (LAMKIT). By using multi-kernel en-
coding (MK), LAMKIT obtains multi-perspective
context representations to mitigate the context frag-
mentation issue caused by using a unique chunk
size. LAMKIT also enhances model robustness for
documents of varying lengths through its Length-
Aware Vectorization (LaV) module. This LaV mod-
ule encodes length information hierarchically, us-
ing segment position embedding at the segment
level and length vectors from the MK outputs at
the document level.

8 Conclusion

In this study, we posit that for long document clas-
sification tasks, the length of the text might be a
pivotal determinant for model performance. Our
exploratory experiments demonstrate that the cur-
rent state-of-the-art models display inconsistent
results across samples of differing lengths, sug-
gesting their lack of robustness and affirming our
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hypothesis.
To address this issue and the inherent problem

of context fragmentation in long-text models, we
propose Length-Aware Multi-Kernel Transformer.
Through extensive experiments, LAMKIT consis-
tently outperforms all baseline models across five
standard long document classification benchmarks.
Moreover, we follow our exploratory experiments
to examine model robustness over varying docu-
ment lengths. We also conduct ablation studies
on two modules. The results show that LAMKIT
exhibits better robustness and stability across dif-
ferent lengths.

Additionally, the case study on ChatGPT (Ope-
nAI, 2022) reveals that LLMs still underperform
discriminative models on long document classifi-
cation tasks, suggesting that the paradigm of solv-
ing classification problems through generation still
needs to be enhanced.

Limitations

LAMKIT has a flexibility to be applicable on other
tasks by changing its prediction layer, while we
experiment it on the text classification task. Dong
et al. demonstrated the importance of long docu-
ment modeling in other NLP scenarios. We plan
to explore this direction for a more comprehensive
understanding on long document modeling.
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A Experimental Details

For all baseline models, we maintain the same
model architecture and optimization parameters
as described in their respective papers. For Long-
former (Beltagy et al., 2020), Bigbird (Zaheer et al.,
2020), and BERT(Devlin et al., 2019), we fine-tune
the pre-trained models obtained from huggingface
transformers (Wolf et al., 2020) library based on
their given configurations and produce predictions.
For H-BERT(Dai et al., 2022), we train using the
code released by the authors and obtain our results.

For our proposed LAMKIT model. The kernel
sizes are set to {32, 64, 128} in the ECTHR dataset
and {128, 256, 512} in the other three datasets. The
corresponding segment numbers are set to {128, 64,
32} and {32, 16, 8} to ensure that the input length
of LAMKIT is 4096 tokens, the same as the other
baselines. The kernel stride is set by default to be
equal to the kernel size. To make the results repro-
ducible, we set the random seed in training to 1.
For the MIMIC-III and Diabetes datasets, we em-
ploy pretrained Roberta-PM-M3-base (Lewis et al.,
2020) as our multi-kernel encoder. For SCOTUS
and ECtHR, we opt for pretrained Legal-BERT-
base (Chalkidis et al., 2020). Both encoders have
12 layers, 12 attention heads, and hidden states

of 768 dimensions. Additionally, we set a Trans-
former (Vaswani et al., 2017) encoder with 1 layer,
12 attention heads, and 768-dimensional hidden
states as the length encoder, and another with 2 lay-
ers, 12 attention heads, and 768-dimensional hid-
den states as the document encoder. The dropout
between the two linear layers of the classifier is
set at 0.1. Due to our limited computational re-
sources, we empirically set the learning rate and
tried two batch sizes: 32 and 16. Each experiment
is set with a maximum of 20 training epochs and
an early stopping patience of 3. We utilize the
AdamW (Loshchilov and Hutter, 2019) optimizer,
with a weight decay of 0.01. To expedite model
convergence, we make use of 16-bit float point
numbers (half-precision). Finally, we select the
best-performing model based on F1-micro on the
validation set. The chosen hyperparameters for the
model are presented in table 6.

Dataset Learing Rate Batch Size Kernel Size
MIMIC 3.5e-5 16 128 256 512
ECtHR 1.0e-5 32 32 64 128
SCOTUS 3.5e-5 16 128 256 512
Diabetes 2.5e-5 16 128 256 512

Table 6: Chosen hyperparameters for LAMKIT.

All experiments are conducted on a device
equipped with an NVIDIA 3090 GPU with 24GB
memory, running the Ubuntu system, and utilizing
the PyTorch (Paszke et al., 2019) framework.
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Data Long Document Input [X] Template T + Input[X] Output [Y]

ECtHR

(A/B)

The applicants are former 

members……had in fact been 

fleeing the State forces.

Task Definition:

Given the following facts from a European Court of 

Human Rights (ECtHR) case.

Test Instance: 

Input [X] 

Labels Presentation :

Which article(s) of ECHR (have been violated) / (are 

related) , if any, out of the following options:

Article 2

…..

Article 1

Output: [Y]

[Article 2, Article 3]

SCOTUS

Messrs. Thomas J. Hughes, of 

Detroit…… Charles River Bridge v. 

Proprietors of Warren Bridge

Task Definition:

Given the following opinion from the Supreme Court 

of USA (SCOTUS):

Test Instance: 

Input [X] 

Labels Presentation:

Which topics are relevant out of the following options:

Criminal Procedure

……

Civil Rights

Output: [Y]

[Criminal Procedure]

Figure 3: The best performing zero-shot template of the legal data.

B Prompt Template of Case Study

For ChatGPT (OpenAI, 2022), we set the tempera-
ture to 0, and the Top P sampling value to 1. The
prompt template is shown in Figure 3.
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Abstract
Recent Large Language Models (LLMs) have
shown the ability to generate content that is
difficult or impossible to distinguish from hu-
man writing. We investigate the ability of
differently-sized LLMs to replicate human writ-
ing style in short, creative texts in the domain
of Showerthoughts, thoughts that may occur
during mundane activities. We compare GPT-
2 and GPT-Neo fine-tuned on Reddit data as
well as GPT-3.5 invoked in a zero-shot manner,
against human-authored texts. We measure hu-
man preference on the texts across the specific
dimensions that account for the quality of cre-
ative, witty texts. Additionally, we compare the
ability of humans versus fine-tuned RoBERTa
classifiers to detect AI-generated texts. We
conclude that human evaluators rate the gen-
erated texts slightly worse on average regard-
ing their creative quality, but they are unable
to reliably distinguish between human-written
and AI-generated texts. We further provide a
dataset for creative, witty text generation based
on Reddit Showerthoughts posts.

1 Introduction

As Large Language Models (LLMs) continue to
advance, it becomes increasingly challenging for
humans to distinguish AI-generated and human-
written text. Generated text may appear surpris-
ingly convincing, inciting debates whether new
forms of evaluating models are necessary (Se-
jnowski, 2023). The high quality of LLM outputs
can benefit diverse use cases, while also increasing
the risk of enabling more sophisticated spam, mis-
information, and hate speech bots (Manduchi et al.,
2024). LLMs are known to master various aspects
of grammar and basic semantics. Yet, one goal that
still has proven non-trivial using LLMs is that of
generating creative text (Chakrabarty et al., 2023a),
especially in the realm of humour (Jentzsch and
Kersting, 2023).

*Equal contribution

We seek to understand the ability of differently-
sized LLMs to replicate human writing style in
short and creative texts as shared in the Show-
erthoughts community on Reddit, which exhibits
humour, cleverness, and creativity – often in a
single sentence. The Showerthoughts community
(Reddit’s 11th largest) provides a unique dataset
of short texts with a characteristic writing style
drawing from general creative qualities. To un-
derstand how well models of different sizes can
replicate such witty Reddit posts, we fine-tuned
two LLMs, GPT-2 (Medium) and GPT-Neo, on
posts from this online community. Additionally,
we used GPT-3.5-turbo as a zero-shot model, i.e.,
without additional fine-tuning for our specific task.
We evaluated how well the AI-generated texts em-
ulate the style of Showerthoughts. To this end,
we employed a mixed-method approach: We com-
pare genuine, human-authored posts with generated
Showerthoughts based on various lexical charac-
teristics as well as in their similarity in sentence
embeddings. Furthermore, we conducted a human
evaluation study to assess the human evaluators’
perception of the creative quality (specifically, logi-
cal validity, creativity, humour, and cleverness) and
to measure how easily AI-generated texts can be
detected.

We find that participants cannot reliably detect
AI-generated texts, as the LLMs come close to
human-level quality. Generating humour remains a
challenging task, but shows a promising future for
the generation of short, witty, and creative state-
ments. We find that a machine learning (ML)
classifier, trained on Showerthoughts, succeeds at
robustly distinguishing human-authored from AI-
written text. Thus, there remains potential for cur-
rent AI-generated content to be identified, even in
the ambiguous realm of humour and creative text.

We summarize our contributions in this paper
as follows: (1) A new dataset for creative, witty
text generation based on Reddit Showerthoughts
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posts.1 (2) Experiments with three different models
for the generation of creative, witty text. (3) Eval-
uation of human perception of creative language
generation through a survey. (4) Experiments on
automated authorship identification of the text as
human-written or AI-generated.

2 Background and Related Work

Reddit and Showerthoughts Reddit is a social
media platform that is organized in communities
called subreddits, which exist for a plethora of top-
ics – all written, curated, voted, and commented
on by the community. This provides a diverse and
valuable research subject; each subreddit is char-
acterized by a distinct writing style and type of
content (Agrawal et al., 2022; Buz et al., 2024).

Our work is centered on the r/Showerthoughts
subreddit2, which defines Showerthought as “a
loose term that applies to the types of thoughts
you might have while carrying out a routine task
like showering, driving, or daydreaming. At their
best, Showerthoughts are universally relatable and
find the amusing/interesting within the mundane.”
In general, popular Showerthoughts exhibit wit
(or cleverness), creativity, and sometimes humour,
which come from the realization of matters that lie
in everyday life’s banality, which are well thought
out but tend to go unnoticed. They condense vari-
ous intellectual qualities into short texts that often
allude to a deeper context – these qualities can
be facilitators of a text’s success in various other
settings, including posting on social media or copy-
writing for marketing purposes. One of the commu-
nity’s most successful post goes as follows: “When
you’re a kid, you don’t realize you’re also watching
your mom and dad grow up.”3

To the best of our knowledge, there is only one
related paper focused on Showerthoughts, which
covers a neuro-scientific perspective (Crawford,
2020). Limited research exists that uses Show-
erthoughts data among other subreddits, but on
completely different topics, e.g., detection of suici-
dal thoughts (Aladağ et al., 2018), predicting con-
versations (Kim et al., 2023), or changes of the
community (Lin et al., 2017). Our work is the first
to analyse the texts that are shared in this commu-
nity from a perspective of computational linguistics
and the first to publish a Showerthoughts dataset.

1Dataset accessible via our GitHub repository.
2www.reddit.com/r/Showerthoughts
3Accessible via https://www.reddit.com/awd10u/

Creative Quality in Natural Language Gener-
ation Early work on computational creativity
found that while computers can aid in the cre-
ative process, it has long remained difficult to
achieve novelty and quality with such systems
(Gervás, 2009). More recent LLMs possess a re-
markable ability to produce entirely novel content,
but Chakrabarty et al. (2022a) find that they have
limited capabilities w.r.t. figurative language, and
that full stories generated by LLMs seem to be of
far inferior quality compared to those written by
professional authors (Chakrabarty et al., 2023a).
Further, popular LLMs such as ChatGPT have
been found to be subpar at writing creative and
humourous content such as jokes (Jentzsch and
Kersting, 2023). For many creative tasks, such as
writing convincing poems, human intervention may
be needed to create high-quality text (Chakrabarty
et al., 2022b), and the temperature hyperparame-
ter may have a significant impact on the creativ-
ity of LLM-generated texts (Davis et al., 2024).
AI-assisted writing may lead to improved results
(Roemmele, 2021) and LLMs have been perceived
as writing collaborators by professional writers
(Chakrabarty et al., 2023b). However, it is yet
to be seen how the generation of creative, witty
text without human intervention can be improved
to agree with human preferences.

Authorship Identification There have been sig-
nificant advancements in LLMs generating gram-
matically correct sentences adhering to seman-
tic rules, even purportedly attaining human lev-
els (Köbis and Mossink, 2021; Clark et al., 2021).
This presents opportunities in areas such as accessi-
bility of information and education, and enhanced
productivity (Dwivedi et al., 2023; Noy and Zhang,
2023). However, it also poses a threat to the cred-
ibility of information (Kreps et al., 2022; Kumar
and Shah, 2018), especially as social media users
often fail to detect bots (Kenny et al., 2022), while
such bots continue to evolve and spread misin-
formation (Abokhodair et al., 2015; Shao et al.,
2018). Indeed, Ippolito et al. (2020) found that
even trained participants struggle to identify AI-
generated texts. Köbis and Mossink (2021) further
found that while completely random texts could be
detected, cherry-picked texts could not be distin-
guished by humans. The model size used to gener-
ate texts affects participants’ performance – both
studies used smaller models (GPT-2 with 355M,
774M, and 1.5B parameters, respectively), whereas
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participants confronted with never models such
as GPT-3 performed significantly worse in a sim-
ilar study (Clark et al., 2021; Brown et al., 2020).
With larger model sizes, humans require more
time to decide, and their accuracy declines (Brown
et al., 2020). In very recent work, Chen and Shu
(2024) find that LLM-generated misinformation
can be more deceptive than when written by hu-
man authors, and Muñoz-Ortiz et al. (2023) identify
measurable differences between AI-generated and
human-written texts.

As LLMs advance rapidly, it becomes crucial to
understand what type of generated content humans
can detect and how to detect generated content
automatically. For automatic authorship identifi-
cation, Wani and Jabin (2017) use ML classifiers
to detect bots. Ippolito et al. (2020) use a fine-
tuned BERT-based binary classifier to label texts
as human-written or AI-generated. However, their
model lacks generalizability – when trained on top-
k samples and evaluated on non-truncated random
samples, the model only achieves 43.8% accuracy.
The sharp increase in discussions about misuse and
plagiarism using tools such as ChatGPT has shifted
researchers’ focus on this area, e.g., Mitchell et al.
(2023) proposed DetectGPT, a zero-shot model for
detecting AI-generated text, and Deng et al. (2023)
proposed a Bayesian Surrogate Model, claiming to
outperform DetectGPT. Tang et al. (2024) provide
an overview of further detection techniques.

3 Data Compilation

To create the Showerthoughts dataset, we used the
publicly available Pushshift API (Clark et al., 2021;
Brown et al., 2020) to extract submissions from
the Showerthoughts subreddit from April 2020 to
November 2022, resulting in an initial collection
of 1.3 million posts.4 We discard posts that have
been deleted or removed (often due to rule viola-
tion) as well as those that contain images or addi-
tional explanations in their body text (as the com-
munity’s rules require the full Showerthought to be
contained in the title). Accordingly, we only use
each post’s title for our experiments, resulting in
a dataset of 411,189 Showerthoughts. An analysis
of the most frequent choices of words reveals that
they are often about people, life, common objects,
and the world in general. A frequent word analysis

4In mid 2023, Reddit changed their API guidelines, forcing
Pushshift to restrict its access to Reddit moderators only. Our
datasets were collected before this change occurred.

indicates that they often compare things using, e.g.,
“more”, “other”, “old”, “good”.

In order to obtain a ground truth about the lexi-
cal characteristics of the dataset and later compare
them with the generated texts, we conducted sev-
eral tests on 5,000 randomly selected examples,
focusing on sentence complexity, length, grammar,
and vocabulary, the results of which are summa-
rized in Table 1 (in the first row ‘Genuine’). The
complexity score is based on the Flesch-Kincaid
grade level, which quantifies a text’s complexity
based on the number of words per sentence and
syllables per word (Kincaid et al., 1975). For exam-
ple, a score of 7.0 indicates that a 7th-grade student
(or a person with at least seven years of education)
would typically be able to read and understand the
respective text.5

4 Experimental Setup

In the following, we detail our experimental
setup for addressing our three research questions.
We explain our process for generating Reddit
Showerthoughts-like texts with differently sized
selected LLMs. These texts are subsequently eval-
uated through a survey, assessing several textual
aspects. Additionally, we compare the ability of
humans and fine-tuned BERT-based classifiers in
detecting originality. An overview of this experi-
mental setup is given in Figure 1.

Figure 1: Overview of our experimental setup

5Tests are conducted with the textstat,
language_tool_python, and nltk libraries.
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4.1 LLM Fine-Tuning and Prompting

We consider two setups for the generation of Show-
erthoughts; (1) two models of different sizes are
fine-tuned; (2) ChatGPT (based on GPT-3.5-turbo)
is invoked to generate Showerthoughts in a zero-
shot setting.

Fine-tuning GPT-2 and GPT-Neo For the fine-
tuned models, we select GPT-2 Medium (355M pa-
rameters) and GPT-Neo (2.7B parameters) and fine-
tune them on the aforementioned Showerthoughts
dataset. To later be able to induce the mod-
els to generate Showerthoughts, each instance is
wrapped around two previously unseen tokens,
<|showerthought|> and <|endoftext|>. These
serve as prompt and end-of-text markers, respec-
tively, during generation. We use the standard pa-
rameters for text generation for both models, in-
cluding a temperature value of 0.9.

GPT-2 Medium6 is a unidirectional causal lan-
guage model that generates text sequences, using
355 million parameters. This was the smallest
LLM still able to generate sensible results in our
initial evaluation during LLM selection. We use
AdamW for optimization, the GPT2Tokenizer, a
maximum learning rate of 3 × 10−5 with 5,000
warm-up steps, a batch size of 16, and train the
model for five epochs on the task of next token
prediction.

GPT-Neo is an architecturally upgraded model
compared to GPT-2 that closely resembles GPT-
3, with 2.7 billion parameters and trained on the
Pile dataset (Gao et al., 2020). We selected the
same hyperparameters as for GPT-2 besides using
Adafactor optimization, which provides manual
control over the learning rate and has better mem-
ory efficiency (Shazeer and Stern, 2018). We used
a learning rate of 2 × 10−5, which is reduced to
7× 10−6 over five epochs, and a batch size of 32.

Zero-shot Text Generation with ChatGPT In
initial experiments, we found that a basic prompt
(“Please generate 10 Showerthoughts") results
in repetition of content and structure in gener-
ated texts, in accordance with the findings of
Jentzsch and Kersting (2023). We therefore ex-
tended the prompt by including a definition of
Showerthoughts, alongside instructions for enhanc-
ing wit, creativity, and humour, and varying sen-
tence structure. This resulted in the following

6Accessible via https://huggingface.co/
gpt2-medium

prompt:
"Please generate 100 Showerthoughts,

which are inspired by the Reddit community
r/Showerthoughts. Vary the sentence structure
between the different sentences, and try to be
clever, creative, and funny. The Showerthoughts
should be relatable and connected to things that
people might encounter during mundane tasks."

This process was repeated 50 times to sample a
total of 5,000 Showerthoughts. We use the standard
settings for text generation, including a temperature
value of 0.7.

4.2 Survey of Human Preferences
We evaluated the results of the text generation mod-
els by means of a survey. The participants were
randomly split into two groups to evaluate a larger
number of Showerthoughts while ensuring an ade-
quate number of responses per Showerthought and
a reasonable completion time (around 25 minutes).
Each group evaluated 15 human-written and ten AI-
generated Showerthoughts, each from GPT-2, GPT-
Neo, and ChatGPT. Participants were not informed
about the distribution of the sources and received
the texts in a random order to prevent evaluation
bias. The Showerthoughts were selected randomly
and manually filtered to exclude posts harboring
vulgarity or a “not safe for work” (NSFW) topic.

The survey starts with a briefing on Reddit and
r/Showerthoughts, and we informed participants
that they will evaluate 45 Showerthoughts, some of
which are written by humans and some generated
by LLMs. We further ask demographic questions,
including age group and the level of experience
with Reddit, Showerthoughts, and Machine Learn-
ing on a five-point scale. Then, participants were
asked to evaluate a series of 45 Showerthoughts by
rating along six dimensions (each on a six-point
Likert scale): (1) “I like this Showerthought”, (2)
“It makes a true/valid/logical statement”, (3) “It is
creative”, (4) “It is funny”, (5) “It is clever”, and
(6) “I believe this Showerthought has been writ-
ten by a real person”. These criteria were selected
to capture the quality of a Showerthought from
diverse angles, and are also applicable to compa-
rable short texts such as social media posts and
marketing texts. For evaluation, we consider the
average scores of the selected Likert scale from 1
(lowest) to 6 (highest). This method is widely used,
e.g., in Tang et al. (2021). Finally, the participants
could optionally provide a free-text explanation or
reasoning on how they decided.
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4.3 Authorship Identification
As a counterpart to the human evaluators on the
task of authorship identification, we fine-tuned a
total of four RoBERTa-based models7 (Liu et al.,
2019) for binary classification of each input Show-
erthought as either human-written or AI-generated.
For the training and testing of the three LLM-
specific RoBERTa classifiers, we used 10,000 ran-
domly selected Showerthoughts per class (i.e., gen-
uine, generated) for GPT-2 and GPT-Neo, and
5,000 examples for the ChatGPT version (due to
the smaller generated dataset size). In addition,
we trained and tested another RoBERTa classifier
on a combined set of 15,000 examples per class
(i.e., 5,000 per LLM source). All datasets were
randomly split at a 80–20 ratio for training and test-
ing. We assessed the classifiers in three setups; (1)
evaluating the three LLMs’ outputs compared to
human-written (genuine) text separately; (2) evalu-
ating all three LLMs’ outputs combined compared
to human-written text; (3) training the classifier on
one LLM’s outputs (GPT-Neo) and evaluating it on
another LLM’s outputs (GPT-2, ChatGPT, and all
combined).

All versions of the classifier were trained with
the tokenizer of RoBERTa-Base, AdamW opti-
mization, a learning rate of 2 × 10−5, batch size
of 32, and a linear scheduler with 300 warm-up
steps. To compute the loss for a given prediction,
the model receives the tokenized Showerthought
and the corresponding label indicating whether the
Showerthought was genuine or generated.

5 Results

This section presents our experimental results. Sec-
tion 5.1 compares lexical characteristics, showing
that the LLMs come close to human quality. Next,
Section 5.2 explores the survey results, providing
insights into crucial Showerthought attributes such
as logical validity and creativity. Lastly, Section 5.3
reports on our authorship identification, including
patterns to distinguish between human-written and
AI-generated Showerthoughts.

5.1 Characteristics of Generated
Showerthoughts

To assess the quality and similarity of generated to
original Showerthoughts, we apply the linguistic
metrics described in Section 3 to the AI-generated
Showerthoughts utilizing 5,000 random samples

7Specifically: RoBERTaForSequenceClassification.

per source (for ChatGPT we use all 5,000 texts
generated). Table 1 shows that human-written (gen-
uine) Showerthoughts have a larger vocabulary, are
slightly more complex, and contain more difficult
words and grammar mistakes. Based on these met-
rics, GPT-Neo’s generated texts are closer to gen-
uine texts compared to the significantly smaller
GPT-2. ChatGPT ranks closest to the human ref-
erence regarding average complexity and length,
slightly behind GPT-Neo regarding vocabulary size,
but farthest away from the reference in terms of
difficult words and grammar mistakes. We find
that the models produce a negligible amount of
duplicate Showerthoughts (GPT-2: 13 of 10,000,
GPT-Neo: 162 of 10,000, ChatGPT: 6 of 5,000).

Source Genuine GPT-Neo GPT-2 ChatGPT
Compl.1 7.4 ± 3.4 6.8 ± 3.0 6.3 ± 2.7 6.9 ± 2.4

Length1 81 ± 38 88 ± 39 87 ± 33 81 ± 21

Vocab.2 13,000 8,700 4,900 7,200
Diffic.3 1.2 0.7 0.4 0.36
Errors3 0.3 0.2 0.1 0.05

1 Mean linguistic complexity (Flesch-Kincaid grade
level) and length with standard deviation.

2 Vocabulary size in number of unique words.
3 Number of difficult words and grammatical errors per

sentence.

Table 1: Comparison of common lexical characteristics
(based on 5,000 random samples per source)

Comparison of Sentence Embeddings How se-
mantically diverse are Showerthoughts and are our
LLMs able to match this diversity? To answer
this, we employ sentence embeddings8 for com-
paring the similarity between human-written and
AI-generated content, and to measure the linguistic
distance to texts from other subreddits. We have
reviewed the embeddings of 1,000 randomly sam-
pled Showerthoughts per source visualized with
the t-SNE algorithm (Van der Maaten and Hin-
ton, 2008); GPT-2 and GPT-Neo produce more di-
verse texts than zero-shot ChatGPT, which matches
human-written Showerthoughts based on their out-
put distributing across the same semantic clusters
as the human-written texts (Figure 2, in Appendix).
When comparing these embeddings to 1,000 ran-
domly selected titles from different, similarly large
and popular subreddits, we find that every subreddit
has a distinct focus, and the generated and genuine
Showerthoughts being in the same cluster indicates

8SBERT embeddings in their default, pre-trained configu-
ration (all-MiniLM-L6-v2)
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that the models are successful in replicating the
distinct writing of each subreddit (Figure 3, in Ap-
pendix).

5.2 Survey Results
A total of 56 human evaluators took our survey (25
participants in Group A and 31 in Group B), re-
sulting in an accumulated 2,520 ratings for the full
set of 90 Showerthoughts and an average of 28 rat-
ings per item, as each group reviewed a completely
different set of 45 texts.

Demographics of Survey Participants The par-
ticipants’ demographics are influenced by the chan-
nels the survey was shared in: The majority of the
participants are younger than 30 years old, with
8.5% above 30 years. 89.4% of respondents have
some degree of machine learning (ML) experience,
42.6% have trained an ML model at least once, and
some of these even work with ML models daily.
Only 10.6% indicated little to no experience with
ML. 53.1% of participants rarely or never visit
Reddit, while the rest visit monthly (8.5%), weekly
(38.3%), or daily (27.7%). 31.2% had never heard
of r/Showerthoughts before, while 68.7% visited
the community at least once in the past – 16.6%
are subscribed and follow it regularly, with 6.2%
even occasionally engaging in the community.

It is clear that this demographic distribution is
not representative for the broader population, but
a result of the distribution channels used for the
survey: the professional and university networks
of the authors. From a statistical perspective, this
is likely to introduce a bias – however, we find it
highly interesting to study this group of individu-
als nonetheless, as many are experienced with ML
and approximately half are familiar with Reddit,
which we hypothesize to potentially improve their
abilities.

Source Genuine GPT-2 GPT-Neo ChatGPT

Score 3.71 2.42 3.40 3.23
Log. Val. 4.20 3.10 3.96 3.55
Creativity 3.63 2.42 3.23 3.45
Humour 3.18 2.10 2.74 2.85
Cleverness 3.41 2.19 3.15 3.07

Table 2: Mean score (on a six-point scale) for the Show-
erthought quality criteria (Log. Val. = Logical Validity);
best score bold, best model underlined

Overview of Showerthought Ratings Table 2
displays the average response scores for the first

five evaluation criteria. None of the LLMs is able
to beat or match the scores of human-written Show-
erthoughts, but some of them get remarkably close.

Among the models, GPT-Neo achieves the best
ratings for general score, logical validity, and clev-
erness, while ChatGPT (based on GPT-3.5-turbo)
performs better on creativity and humour. It ap-
pears that the general ability to write a convincing,
logical, and clever Showerthought can be learned
in fine-tuning, but more abstract abilities like cre-
ativity and humour improve with model size.

The smallest model, GPT-2, performs the
worst, consistently short of human-written Show-
erthoughts, exhibiting an approximately 30%
worse performance. GPT-Neo and ChatGPT
achieve a much smaller margin with an overall
average disparity of 6% and 7%, respectively. The
evaluators consistently prefer human-written texts
– however, the margins are small and this does not
necessarily have implications for the task of author-
ship identification, as we show below.

Manual Authorship Identification From the
survey responses regarding authorship of a text,
we consider answers between 1 and 3 as a vote
for AI-generated, and answers between 4 and 6 as
a vote for human-written text. Table 3 displays
the average accuracy of the survey’s participants in
correctly identifying each Showerthought’s source.
For a more granular evaluation, we additionally
display the responses by the participants’ experi-
ence in Reddit, machine learning (ML), and Show-
erthoughts.9

We find that the survey participants were not able
to consistently identify whether a Showerthought
was human-written or AI-generated; Between all
human-written (genuine) and GPT-2, GPT-Neo,
and ChatGPT generated Showerthoughts the sur-
vey participants were only able to correctly identify
63.8%, 73.1%, 48.1%, and 46.2%, respectively.
For GPT-Neo and ChatGPT, this is worse than
(balanced) random guessing, i.e., a strategy that
would choose one of the two classes in 50% of
cases. This indicates that GPT-Neo and ChatGPT
already generate Showerthoughts sufficiently con-
vincing to mislead human evaluators. Experience
with Reddit and Showerthoughts improves the par-
ticipants’ ability to identify human-written Show-

9The participants were considered ‘experienced’ in one of
the given categories if they chose one of the top two answers
(e.g., visiting Reddit ‘Weekly’ or ‘Daily’) and ‘unexperienced’
if they chose one of the bottom two answers (e.g., visiting
Reddit ‘Never’ or ‘Rarely’).
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Overall Reddit Experience ML Experience Showerthoughts Experience

Model Yes No Yes No Yes No

Genuine 63.8 % 71.3 % 60.2 % 63.2 % 62.3 % 81.6 % 62.0 %
GPT-2 73.1 % 71.3 % 72.2 % 74.0 % 74.0 % 60.0 % 72.4 %
GPT-Neo 48.1 % 49.0 % 46.6 % 48.0 % 53.5 % 55.0 % 45.7 %
ChatGPT 46.2 % 43.9 % 45.1 % 46.8 % 44.0 % 42.5 % 44.3 %

No. Participants 56 21 30 25 7 5 45

Table 3: Survey participants’ accuracy in correctly identifying the Showerthought’s source

Prec. Rec. F1 Support

G
PT

-2

Generated 0.91 1.00 0.95 2,000
Genuine 1.00 0.90 0.95 2,000
Accuracy 0.95 4,000
Average 0.96 0.95 0.95 4,000

G
PT

-N
eo

Generated 0.84 0.99 0.91 2,000
Genuine 0.99 0.82 0.90 2,000
Accuracy 0.90 4,000
Average 0.92 0.90 0.90 4,000

C
ha

tG
PT

Generated 0.91 0.99 0.95 400
Genuine 0.99 0.91 0.94 400
Accuracy 0.95 800
Average 0.95 0.95 0.95 800

C
om

bi
ne

d Generated 0.82 0.95 0.88 3,000
Genuine 0.94 0.79 0.86 3,000
Accuracy 0.87 6,000
Average 0.88 0.87 0.87 6,000

Table 4: Precision, Recall, F1, and Support of the
RoBERTa models trained for Showerthoughts author-
ship identification (LLM-specific models and one com-
bined model for all LLMs)

erthoughts, but does not improve their ability to
detect AI-generated texts consistently.

To investigate whether evaluators are more ac-
curate with higher confidence, we evaluated high-
confidence answers only (i.e., 1 – 2 and 4 – 6). How-
ever, detection accuracy did not improve. In these
cases GPT-2 was detected with an accuracy of
79.6%, while there were only small improvements
in detecting the other sources. The detection accu-
racy regarding GPT-Neo and ChatGPT remained
below the random-guess baseline. Similar to the
overall results, experience with Reddit or Show-
erthoughts only helped in identifying genuine texts.
This shows that independent of their size GPT-Neo
and ChatGPT are able to mislead evaluators with
the quality of their generated texts.

Participants’ Reasoning for Detecting AI-
Generated Texts At the end of the survey, partic-
ipants could add explanations for their evaluation.
Within the 42 responses, the primary factors were:
illogical statements, common sense, good grammar,
lack of humour / depth / creativity, and repetitive
word or syntax usage. Endowing machines with
commonsense knowledge has been a long-standing
goal in AI (Tandon et al., 2017), which LLMs ad-
dress to a significant degree. The finding that ‘good
grammar’ was frequently mentioned is noteworthy,
as many participants believed that machines excel
at grammar while errors indicate human authorship.
These findings are consistent with prior research
by Dugan et al. (2022), who identified similar fac-
tors as the most commonly cited indicators of AI-
generated content.

5.3 Automated Authorship Identification

This section presents the evaluation results of the
four different RoBERTa classifiers introduced in
Section 4.3 – three LLM-specific classifiers and
one trained on the combined texts of all three mod-
els. The classification reports presented in Table 4
show that the classifiers trained per model achieve
an overall accuracy ranging from 90% to 95%, with
the single model trained for all LLMs scoring an
accuracy of 87% (Table 4). Across all classifiers, re-
call for LLM-generated instances approaches 100%
with lower precision, while precision for the gen-
uine human-authored class is nearly perfect but
with lower recall. These findings indicate the fol-
lowing: (1) These classifiers outperform human
evaluators on authorship identification.10, (2) The

10Note: While human evaluators receive a more general
instruction at the beginning of the survey, the classification
models are fine-tuned for the task. Nonetheless, we consider
this a realistic setup, as almost 70% of the evaluators have
responded to have prior experience with the Showerthoughts
community. For future work, human evaluators could be
presented with human-written and AI-generated examples at
the beginning of the survey.
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classifiers consistently misclassify a portion of gen-
uine Showerthoughts as generated, which are ei-
ther lower-quality examples or similar to generated
texts in some regard. (3) The models perform well
in detecting the AI-generated texts, with the com-
bined RoBERTa model achieving an average F1
score of 0.87. (4) Current (GPT-based) language
models, independent of their size, appear to utilize
similarly transparent techniques for language gen-
eration and are therefore similarly easy to detect for
an ML classifier, even when trained on a different
GPT-based model.

In an additional experiment, we trained a classi-
fier to distinguish texts of GPT-Neo from genuine
ones but evaluate its performance on texts of the
other LLMs. The results in Table 5 show that the
classifier’s average performance on the texts of
other models can achieve a relatively high value of
0.86 when a single model’s texts are utilized for
evaluation. However, the results are significantly
worse when texts of various models, of which most
were not part of the training, are included for eval-
uation, suggesting fine-tuning with texts from mul-
tiple LLMs for better detection performance.

Our evaluation of the fine-tuned RoBERTa mod-
els shows that none of the classifiers attain 100%
accuracy, emphasizing caution when using detec-
tion tools, particularly in cases with serious conse-
quences such as academic failure or job loss. In
a real-world setting, the specific LLM invoked to
generate and spread texts will likely be unknown,
and, therefore, cannot provide training samples,
which requires robust generalizable classifiers and
non-GPT-based LLMs – important questions re-
quiring investigation in future work. Nonetheless,
our results suggest that the models have learned pat-
terns that strongly indicate whether a given Show-
erthought is AI-generated, which proves valuable
for evaluating the tokens and patterns that con-
tribute the most to the classification results, which
we do in the following section.

Tokens with Greatest Contribution towards
Class Prediction We use the LLM explainabil-
ity library transformers-interpret to identify
the most influential tokens per RoBERTa model.
For evaluating correctly and falsely classified texts,
we select the top four contributing tokens to each
Showerthought’s predicted class, then aggregate
and normalize each token’s significance relative to
the dataset.

The results for the three LLMs are similar – sig-

Prec. Rec. F1 Support

G
PT

-2

Generated 0.83 0.90 0.86 2,000
Genuine 0.89 0.82 0.85 2,000
Accuracy 0.86 4,000
Average 0.86 0.86 0.86 4,000

C
ha

tG
PT

Generated 0.99 0.74 0.85 400
Genuine 0.79 0.99 0.88 400
Accuracy 0.86 800
Average 0.89 0.86 0.86 800

A
ll

m
od

el
s Generated 0.75 0.54 0.62 3,000

Genuine 0.64 0.82 0.72 3,000
Accuracy 0.68 6,000
Average 0.69 0.68 0.67 6,000

Table 5: Evaluation of the RoBERTa model trained on
on GPT-Neo’s generated texts when evaluated on texts
from other sources

nificant contributors are (1) tokens at the beginning
of a sentence, as they start with a capitalized first
letter (‘If’, ‘The’, ‘You’ and ‘We’ seem to be fre-
quent in generated texts) and (2) punctuation (‘.’
and ‘,’ specifically). Punctuation and specific stop
words (e.g., ‘you’, ‘the’) seem to be tokens with
high attribution scores for the genuine class, indi-
cating that a critical difference between the two
classes is the placement of these tokens. ChatGPT
shows slightly different top contributors, especially
‘Why’ and ‘?’ – this model seems to generate ques-
tions more frequently and seems to have a unique
usage of the word ‘is’. Differences between Chat-
GPT and the other models may result from Chat-
GPT’s pre-training data including a different subset
of Reddit data and the model’s much larger size.

Furthermore, our results indicate that those
human-written Showerthoughts falsely classified
as AI-generated by GPT-2 and GPT-Neo share the
characteristics identified of generated texts, e.g.,
starting sentences with ‘You’, ‘The’, and ‘We’.
ChatGPT shows fewer distinct patterns in contribu-
tor variety and overlap between correct and incor-
rect human classifications. Showerthoughts mis-
taken as human-written ones use punctuation and
blank spaces in a similar way as the genuine texts,
while the misclassified human-written texts use
words that may occur rarely, or seem to originate
from another language. We provide more detailed
results in the Appendix. In summary, RoBERTa
classifiers have difficulties in cases where the char-
acteristic writing styles of the classes overlap (es-
pecially for GPT-2 and GPT-Neo) or the misclassi-
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fied Showerthought contains rarely-used or foreign
words.

6 Conclusion

In this study, we demonstrate that relatively small,
GPT-based LLMs can be fine-tuned to replicate the
writing style of short texts of high creative quality,
using the Showerthoughts subreddit as an exam-
ple. While it remains to be investigated to what
extent the creativity stems from observations en-
countered in the pretraining corpus as opposed to
novel creations, we find that large numbers of di-
verse texts can be produced with great ease. Human
raters confirm that the generated texts exhibit wit,
creativity, and humour. This paves the way for di-
verse applications in productivity, creative work,
and entertainment, and is relevant for practitioners
deploying small LLMs to be cost-efficient.

We find that human evaluators rate the generated
texts on average slightly lower regarding creativ-
ity, humour, cleverness. This does not seem to
aid in authorship detection (“I believe this Show-
erthought has been written by a real person”), as
we find that evaluators could not reliably distin-
guish AI-generated texts from human-written ones.
Additionally, the quality of human-written Show-
erthoughts varies, with bad ones often being misla-
beled as AI-generated.

Nonetheless, the possibility to abuse these mod-
els to produce spam, misinformation, or other harm-
ful content is a growing concern. Our RoBERTa-
based authorship identification classifiers performs
well after fine-tuning, revealing interesting hidden
patterns that help in detecting the texts generated
by specific LLMs. While ML classifiers can cur-
rently detect AI-generated texts (when fine-tuned
for the task), we can assume that the text genera-
tion quality of LLMs will further improve, making
this task more difficult. Additionally, differently
designed models may pursue other strategies for
generating texts, necessitating their inclusion when
training general-purpose classifiers.

Our work extends existing work that LLMs can
learn to generate specific types of texts (when
fine-tuned on high-quality data) to the domain of
creative and witty texts, as exhibited by Show-
erthoughts, but not limited to those. For exam-
ple, practitioners who would like to utilize such
a LLM for marketing or copy-writing, could not
only prompt it for general Showerthoughts about
a random topic, but also add the start of a text

or topic to their prompt for the LLM to complete.
Alternatively, generated texts can be clustered by
topic to identify the right topics for a specific use
case. Simultaneously, we strongly recommend fur-
ther research on detection mechanisms – while
training detection models using generated texts
of known LLMs and those fine-tuned on known
datasets seems feasible, the task becomes more dif-
ficult when there is an exceedingly high number of
LLMs to consider and even more so if the author-
LLM’s architecture or the training dataset is not
known.

Ethics Statement

As the dataset proposed in this paper (see Section 3)
is based on real user-submitted data from the Red-
dit Showerthoughts community, it is important to
handle it with care. It should not be used to iden-
tify individuals and might contain offensive text
or wrong information. This should be considered
in future use of the dataset. For the survey (see
Section 4.2), we manually removed inappropriate
content to make it appropriate for the context of
where the survey was distributed, e.g., university
mailing lists. The type of survey conducted here
is exempt from an ethics board review at our in-
stitution, as we have carefully designed it to be
transparently described and to avoid collection of
personal data.
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A Appendix

A.1 Simulation of Human Preference with
GPT-4

We conducted an additional experiment using
OpenAI’s GPT-4 API investigating its ability to
learn from the survey results to simulate the pref-
erences of the human evaluators on a larger set
of Showerthoughts. For this purpose, we defined
a system prompt that includes a set of survey-
evaluated examples and their average scores for
all six categories to provide guidance for the model.
To measure whether the few-shot prompting has
a genuine effect and how the number of few-shot
examples affects the results, we experimented with
different amounts of examples, starting with three
(3% of all survey items), 45 (50%), and 72 (80%),
while using the rest of the survey items for testing.

We measured the coherence of GPT-4’s test out-
puts with the Pearson Correlation metric, which
shows a significant increase in correlation when in-
creasing the number of examples shown to GPT-4
in the system prompt: after three examples (train),
GPT-4’s ratings obtain a Pearson correlation of
0.28 with the remaining human evaluations (test),
whereas the correlation is 0.49 after 45 examples
(50%), and 0.70 after 72 examples (which is a 80–
20 train–test split). In order to further validate these
results, we perform tenfold cross-validation using
all 90 evaluated Showerthoughts, i.e., by splitting
up the evaluated examples into groups of nine and
using each group as a test set in a separate iteration,
while all other groups are shown to the model as
few-shot examples.

The system prompt is defined as follows:

Act like a frequent visitor of Reddit, and
its r/Showerthoughts community in par-
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ticular. You participate in a scientific
survey and utilize your experience to rate
Showerthoughts across five dimensions:
general score, validity, creativity, fun-
niness, cleverness - with scores from 1
(low) to 6 (high). Additionally, you make
a guess on a range from 1 to 6 whether
the Showerthought was written by a hu-
man author (6) or generated by a lan-
guage model (1). In order to learn how
to score the Showerthoughts, you will re-
ceive examples, which have been rated
by a team of human annotators. Your
task is to rate Showerthoughts as similar
to the human annotators as possible.

Here are the examples:
1 Most drivers of the Honda Fit are in
fact not fit 3,8 3,4 4 4,28 3,2 4,28
. . .

For the evaluation of a larger set of 2,000 Show-
erthoughts per source, we provide all human-
labelled items as examples within the system
prompt to maximize the model’s ability to simulate
human preference.

A.2 Visualization of Sentence Embeddings

Figures 2 and 3 show the distribution of the SBERT
embeddings for the different Showerthoughts com-
pared to each other and compared to different sub-
reddits selected for their similarity, respectively.
These indicate that the fine-tuned LLMs in fact re-
produce all topics that the original Showerthoughts
cover, while ChatGPT is limited to a subset of the
topics.

A.3 Further Survey Details

This section provides additional information on the
conducted survey.

A.3.1 Participant Briefing
All survey participants were briefed with the fol-
lowing text:

“We are a group of students from the Hasso Plat-
tner Institute in Potsdam who are taking part in the
research seminar ‘Recent Trends in AI and Deep
Learning’. As part of the project, we have trained
a Machine Learning model that is able to generate
short texts in the style of the Reddit community
‘Showerthoughts’. This survey aims to evaluate
the quality of the generated texts compared to the
original examples.”

Figure 2: Semantic diversity of the different
Showerthoughts datasets (t-SNE visualization of

SBERT embeddings)

Figure 3: Comparison of genuine and generated
Showerthoughts embeddings to other relevant

subreddits

302



Definition

• Reddit is a social media platform that is or-
ganized in sub-communities called “subred-
dits”. Any user can create a subreddit that
revolves around any specific topic, e.g., world
news, formula 1, a specific computer game,
or the newest Apple iPhone. Users interested
in a community can subscribe and interact
within the community by posting content (self-
written texts, images, videos, or links to ex-
ternal websites), commenting on posts, or up-
/downvoting other posts and comments. Each
subreddit usually has a self-defined set of rules
and guidelines and is managed by a group of
moderators.

• The community of r/showerthoughts de-
scribes itself as a “subreddit for sharing those
miniature epiphanies you have that highlight
the oddities within the familiar.” They define
a “Showerthought” as “a loose term that ap-
plies to the type of thoughts you might have
while carrying out a routine task like shower-
ing, driving, or daydreaming. At their best,
showerthoughts are universally relatable and
find the amusing/interesting within the mun-
dane.”

Survey Setup After a few demographic ques-
tions, you will be presented with Showerthoughts,
of which some are real examples from the com-
munity, and some are generated by one of three
Machine Learning models (GPT-2, GPT Neo, and
ChatGPT). The survey results will be anonymised
and utilised only in this research project and
the resulting paper. This survey consists of 5
demographics-related questions, followed by the
45 Showerthoughts, which have to be rated regard-
ing a set of criteria each. Finally, you can option-
ally describe what your thinking process was like /
what criteria you used to distinguish genuine from
generated Showerthoughts. We estimate that the
survey will take you between 20 and 30 minutes to
complete.

A.3.2 Survey Questions
After the demographic questions shown in Table 6,
the participants were presented a list of 45 Show-
erthoughts, each with six questions to answer on a
six-step Likert scale (from 1= Strongly disagree to
6 = Strongly agree):

1. I like this Showerthought.

2. It makes a true/valid/logical statement.

3. It is creative.

4. It is funny.

5. It is clever.

6. I believe this Showerthought has been written
by a real person.

At the end of the survey, we asked the partic-
ipants a final optional question that could be an-
swered with a free text: “When you tried to dis-
tinguish genuine from generated Showerthoughts,
was there anything specific (e.g., bad grammar, or
logical errors) that unveiled the generated ones?”

A.3.3 Retrieving Random Genuine
Showerthoughts

In order to retrieve random genuine Show-
erthoughts we used an endpoint Reddit provides
with its API11. To retrieve Showerthoughts specifi-
cally we used GET /r/Showerthoughts/random.

A.3.4 Statistics of Demographic Question
Results

Figures 4 – 7 illustrate the survey participants’ de-
mographics and levels of familiarity with machine
learning, Reddit, and the Showerthoughts subred-
dit.

<20

17%
20–25

55.3%

26–30

19.1%
31–40

6.4% 41–55
2.1%

Figure 4: Age

A.3.5 Statistics on Showerthought Ratings
The box plots in Figures 8 – 13 illustrate the evalu-
ations provided by the survey participants regard-
ing the Showerthoughts, grouped by statement and
model.

A.4 RoBERTa Interpretability Results

Figures 14 – 19 depict which tokens had the highest
influence towards the predicted class.

11www.reddit.com/dev/api/#GET_random
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Question Answer Options

How old are you? <20 / 20–25 / 26–30 / 31–40/ 41–55/ >55
How often do you visit Reddit? Never / Rarely / Monthly / Weekly / Daily
Are you familiar with the r/Showerthoughts commu-
nity?

No never heard of it / Visited sometime in the past /
Subscribed and regularly following / Interact (post,
up/downvote, or comment) rarely / Interact (post,
up/downvote, or comment) regularly

How experienced are you in using Machine Learning
models?

No experience / Using a product with AI or Ma-
chine Learning-based features / Played around with
AI tools (e.g., ChatGPT) / Trained a ML model at
least once / Working with ML models regularly

Table 6: Demographic Survey Questions and Answer Options

No experience

8.5%

Played around with AI Tools

46.8%

Using AI or ML products
2.1%

Trained a ML model

27.7% Working in the ML field

14.9%

Figure 5: Experience in ML

Never

19.1%

Rarely

34%

Monthly

8.5%

Weekly

10.6%

Daily

27.7%

Figure 6: Reddit usage

For instance, Figures 14a, 15a, and 16a depict
the most significant contributors for predicting the
generated class in the training data for each of the
model-specific RoBERTa classifiers.

For an additional perspective, Figures 17, 18,
and 19 show the most relevant contributors for mis-
classified Showerthoughts, i.e., the features that
influenced the respective RoBERTa classifier to
predict the wrong class.

Never heard of it

31.2%

Visited in the past

52.1%

Interacting rarely

6.2%
Regularly following

10.4%

Figure 7: Familarity with Showerthoughts
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Figure 9: Logical Validity
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Figure 10: Creativity
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Figure 12: Cleverness
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Figure 13: “I believe this Showerthought has been
written by a real person”
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Figure 14: Tokens with highest attribution scores towards the predicted class (GPT-2)
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Figure 15: Tokens with highest attribution scores towards the predicted class (GPT-Neo)
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Figure 16: Tokens with highest attribution scores towards the predicted class (ChatGPT)
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Figure 18: Tokens with highest attribution scores towards the predicted class when misclassified (GPT-Neo)
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Abstract

Sentence Ordering (SO) is a linguistic task
which requires re-ordering of shuffled sen-
tences into a coherent paragraph. SO has down-
stream applications, but also serves as a se-
mantic probe for computational models as this
capability is essential for understanding narra-
tive structures, causal and temporal relations
within texts. Despite its importance, prior re-
search has been limited to predictable English
language structures and has not thoroughly ad-
dressed the complexities of multilingual and
varied narrative contexts. To fill this gap, we
introduce a novel and comprehensive Multilin-
gual Sentence Ordering task that extends SO
to diverse narratives across 12 languages, in-
cluding challenging code-switched texts. We
have developed MULTISO, a new benchmark
dataset that represents these challenges. Our
findings reveal that both specialized sentence
ordering models and advanced Large Language
Models like GPT-4 face significant challenges
with this task.

1 Introduction

Advances in Language Models (LMs) have in-
creased focus on general language understanding
through increasingly sophisticated tasks requiring
a deeper understanding of meaning in text. These
advances are underpinned by improved representa-
tion learning of core linguistic units (morphemes,
words, sentences) via methods like subword tok-
enization, masked LMs, and next sentence predic-
tion - combined with significant increases in model
size. At the sentence level, the self-supervised task
of re-ordering shuffled tokens and sentences to re-
cover the original sequence has been used, e.g., in
BART (Lewis et al., 2020).

Sentence Ordering (SO)1 is a task that extends
the permutation recovery approach to the paragraph

1Sometimes called sentence arrangement or re-ordering.

level by shuffling sentence order. Originally stud-
ied outside of computational linguistics, SO has
been used in studies of understanding human cog-
nition (Delis et al., 1983), as well as language
learning assessment and testing (Alderson, 2000).
Along the same lines, understanding longer texts
has always been an overarching goal in NLP, and
SO serves as a semantic probe for assessing model
understanding of causal and temporal relations, and
ability to reason over longer texts.

Numerous computational approaches to SO have
been explored (Lapata, 2003; Logeswaran et al.,
2018). However, there are several shortcomings.
To our knowledge, all SO research has been on
English. Further, most work uses sentences from
paper abstracts or text describing entities, and re-
cent work has shown that these texts have similar
and highly regular structures, allowing models to
learn simple shallow cues that result in shortcut
learning (Basu Roy Chowdhury et al., 2021).

To address these gaps, we propose a comprehen-
sive multilingual SO task using varied narratives
spanning several domains and 12 languages, in-
cluding challenging code-switched passages. Our
proposed multilingual SO task is depicted in Fig-
ure 1. Experiments on MULTISO, a new bench-
mark dataset that we have created, show that both
models trained specifically for SO, as well as state-
of-art LLMs (GPT-4), struggle on this task.

In sum, our contributions include:

• Proposing a novel comprehensive Multilin-
gual Sentence Ordering task;

• Releasing MULTISO, a new public dataset to
advance SO research;2

• Evaluating MULTISO with LMs and LLMs to
establish benchmarks.

2https://github.com/alexandres/mso
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ند بلیط‌ها را می‌برد و هومر را به عنوان مهمان خود دعوت می‌کند.

Homer unsuccessfully tries to win tickets for a
football game on a radio contest.


ネッドの寛大さに圧倒され、ホーマーはネッドと彼の

家族と友達になる。

Хоча він не любить Неда, Гомер приймає, тому
що він відчайдушно хоче бути присутнім на грі.

Ned paie toute la nourriture et persuade le quart-
arrière gagnant de donner la balle à Homère.

1

2

3

4

5

O
rd

er
in

g 



M
od

el

Homer unsuccessfully tries to win tickets for a
football game on a radio contest.

ند بلیط‌ها را می‌برد و هومر را به عنوان مهمان خود دعوت می‌کند.

Хоча він не любить Неда, Гомер приймає, тому
що він відчайдушно хоче бути присутнім на грі.

Ned paie toute la nourriture et persuade le quart-
arrière gagnant de donner la balle à Homère.

ネッドの寛大さに圧倒され、ホーマーはネッドと彼の

家族と友達になる。
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Figure 1: An example of the Code-Switched Sentence Ordering task spanning 5 languages (FA,EN,JA,UK, and FR). English
versions of sentences: (2) Ned wins the tickets and invites Homer as his guest. (3) Although he dislikes Ned, Homer accepts
because he desperately wants to attend the game. (4) Ned pays for all of the food and persuades the winning quarterback to give
the game ball to Homer. (5) Overwhelmed by Ned’s generosity, Homer becomes friends with Ned and his family.

2 Related Work

Sentence Ordering is a longstanding task within
Natural Language Processing research (Lapata,
2003). SO also has more direct downstream ap-
plications in text summarization (Nallapati et al.,
2017), retrieval-dependent QA (Yu et al., 2018),
and concept-to-text generation (Schwartz et al.,
2017). More recently, the task has gained atten-
tion with the rise of neural language models (Chen
et al., 2016; Cui et al., 2018). For a comprehen-
sive overview of the work in the area, we refer the
reader to the recent survey by Shi et al. (2024).

Research on SO is nascent, and there is a paucity
of benchmark tasks and datasets. Datasets such
as ROC Stories (Mostafazadeh et al., 2016) pro-
vide well-structured, simple narratives composed
of five sentences, purposely crafted to model co-
herent story progression in a strictly monolingual
(English) context. Similarly, datasets based on ab-
stracts from NIPS, ACL, and arXiv papers (Chen
et al., 2016; Logeswaran et al., 2018) focus on the
logical sequence of scientific ideas, yet are con-
fined to English language scholarly texts. These
datasets predominantly support tasks that require
understanding simple, linear narrative structures
in solely English contexts. Contrasting this, our
work extends beyond the monolingual framework
by introducing a novel, multilingual dataset that in-
cludes code-switching, addressing the complexities
of interlaced linguistic elements. Additionally, our
dataset encompasses a broader spectrum of intri-
cate narration styles, thereby challenging models to
grasp and generate more sophisticated narratives.

While SO is intrinsically interesting, it is also
relevant to research on using LMs to generate se-
mantic representations of text: Lewis et al. (2020)

find that SO is an important pretraining task for
downstream task performance in a monolingual
setting. We hypothesize that Multilingual SO, par-
ticularly a Code-Switched variant, may help align
semantic representations across languages.

Our work tries to address some of the above
shortcomings by proposing a new multilingual SO
task, and developing a new corresponding dataset
(MULTISO) to further research in this area.

3 Multilingual Sentence Ordering

To address current gaps in the literature, we design
a new SO task which is more challenging. We
focus on the following areas:

• Multilinguality: while all previous work is on
English, we expand SO to 11 new languages.

• Challenging Data: we work with diversely-
structured narratives covering many themes.

• Cross-lingual transfer and Code-Switching:
we define settings for zero-shot transfer, and are
the first to propose mixed-language SO.

3.1 MULTISO Dataset
We have created MULTISO, a new Multilingual
Sentence Ordering benchmark dataset3 that in-
cludes the following monolingual, multilingual,
and code-switched subtasks:

(A) Monolingual Task: given a shuffled narra-
tive, the original sentence ordering must be
recovered. Eight languages are included.

(B) Cross-lingual Transfer Task: similar to (A),
but using data from 4 languages where we
provide no training data (zero-shot).

3Available at https://github.com/alexandres/mso
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(C) Code-Switching Task: this challenging sub-
task requires ordering code-switched narra-
tives where sentences are in different lan-
guages, with up to 5 languages per story.

Examples of each task are shown in Table 1.

• The story concerns King Charlemagne, who has gotten lost and de-
tached from his retinue in a storm.
• He is forced to take refuge in the home of a collier named “Rauf”.
• While Rauf is more or less hospitable, he does not realize his guest is
the king, and so treats him somewhat roughly.

• Rodina Terner�v vir�xila pereselitis� do xtatu
V�rd�in��.
• Dorogo� voni p�dbira�t~ be�atn~ogo sobaku - kol�
Less�.
• RLess� sta
 qlenom rodini, � osoblivo dopomaga

p�dl�tkov� Metu, r�tu�qi �ogo v skrutnih situac��h.

• Romantiqni� f�l~m obertavs� navkolo rokera � gluhogo
hlopqika.
• 一人は沈黙の中で暮らし、もう一方は騒音と恐怖の中で生き
ている。
• The two met in a Baguio camp where hearing kids were mixed with
non-hearing kids to find their common ground, which is their love for
music.

Table 1: Example narratives from our data: The Tale of Ralph
the Collier (EN), Lassie (UK), and If I Knew What You Said
(Code-Switched UK+JA+EN).

Languages Our task is multilingual, spanning
12 languages: DE, EN, ES, FA, FR, IT, PT, UK, JA, SV, TR,
and ZH. Detailed statistics are shown in Table 2.

Language Train Valid Test Sents/Story Tokens/Sent

German (DE) 20k 4.6k 4.6k 5.5 ± 3.0 17.7 ± 8.2

English (EN) 20k 12.3k 12.3k 4.7 ± 2.8 20.3 ± 8.9

Spanish (ES) 20k 2.7k 2.7k 3.9 ± 2.2 22.9 ± 9.8

Farsi (FA) 5.6k 0.7k 0.7k 4.0 ± 2.5 20.9 ± 9.6

French (FR) 20k 4.7k 4.7k 3.9 ± 2.2 19.4 ± 9.1

Italian (IT) 20k 4.2k 4.2k 4.1 ± 2.4 22.2 ± 9.8

Portuguese (PT) 14.9k 1.9k 1.9k 4.0 ± 2.2 21.7 ± 9.3

Ukrainian (UK) 16.9k 2.1k 2.1k 4.8 ± 2.8 14.9 ± 7.4

Japanese (JA) 0 0.9k 7.5k 3.2 ± 1.5 55.5 ± 31.9

Swedish (SV) 0 1.3k 11.7k 4.0 ± 2.2 17.5 ± 8.1

Turkish (TR) 0 0.5k 4.7k 5.0 ± 3.0 14.5 ± 7.5

Chinese (ZH) 0 0.8k 7.2k 3.8 ± 2.1 48.0 ± 27.9

Code-Switched (CS) 20k 2.5k 2.5k 4.7 ± 2.8 16.6 ± 11.4

CS English Control (CS-EN) 20k 2.5k 2.5k 4.7 ± 2.8 20.4 ± 8.9

English Books (EN-Books) 0 0 240 6.5 ± 4.3 16.9 ± 11.1

Books Code-Switched (CSB) 0 0 240 6.5 ± 4.3 15.9 ± 10.8

Translated Books (CSB-MT) 0 0 240 6.5 ± 4.3 16.0 ± 10.7

Table 2: Per-split data statistics, with mean±std number
of sentences per story (Sents/Story) and mean±std tokens
(characters for JA, ZH) per sentence (Tokens/Sent). We are
collecting more languages and narrative types.

Our data focuses on narratives describing sto-
ries from creative works (e.g., movies, books, TV
shows). Unlike existing data used for SO (text from
paper abstracts, descriptions of persons and enti-
ties), these narratives have a less regular structure,
and can include any subject matter (e.g., sci-fi).
Our data generation process is described below.

Monolingual Narratives (Task A) Parsing
Wikipedia dumps for 12 languages, we extract nar-
rative sections from pages of creative works. We
take the first paragraph, which is often a short sum-
mary of the story with a clear start and end. We
filter paragraphs that are too short (< 2 sents) or
long (> 20 sents). We perform monolingual evalu-
ation on DE, EN, ES, FA, FR, IT, PT, UK.

Cross-lingual Transfer (Task B) For JA, SV, TR,
& ZH, we provide no training data and evaluate
cross-lingual, zero-shot transfer.

Code-Switched Data (Task C) These are nar-
ratives where the sentences can be from up to 5
languages: EN, FR, FA, UK, & JA. As aligning the
monolingual stories is noisy and challenging, we
apply Machine Translation (MT) to monolingual
data to create code-switched narratives.

Books Data To assess the impact of MT used in
constructing Task C, we use aligned human trans-
lations of out-of-copyright books4 in EN, DE, ES, HU,
& IT to a create a Code-Switched Books (CSB) cor-
pus. We apply MT on the English-only version of
this corpus – Books (EN) – to create a MT Code-
switched Books corpus (CSB-MT) for comparison
to Code-Switched Books (CSB). Although this cor-
pus is two orders of magnitude smaller than the
Wikipedia-based data, its sole use here is to assess
the impact of MT on the task.

Data Validation We randomly sampled 80 EN, DE,
and FR monolingual narratives; 97% were found to
be valid stories by native speakers.

4 Experiments and Results

Models We use the SO model from Shen and
Baldwin (2021) and employ both BERT and Mul-
tilingual BERT as the underlying encoder. We
also test ChatGPT models (gpt-3.5-turbo, gpt-4)
in a zero-shot setting, with a prompt instruct-
ing it to order the input story. We align the
output to the original story by matching gener-
ated sentences to the original input using Longest
Common Subsequence (LCS), where a match
between a pair of sentences (s, t) occurs when
|LCS(s, t)|/max(|s|, |t|)) ≥ 0.7. When we fail
to match each sentence in the original story to a one
in the generated story, we consider this a parse er-
ror and penalize the model by randomly permuting
the original story to compute the metrics.

4
https://opus.nlpl.eu/Books.php
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Monolingual (Task A) Cross-lingual (Task B) Code-Switched (Task C)
EN DE IT FA UK EN→DE ES→IT EN→FA CS CS-EN

τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR

BERT 0.80 21.08 0.59 11.94 0.61 12.51 0.48 11.27 0.46 8.57 - - - - - - 0.47 9.47 0.78 19.33
mBERT 0.78 20.26 0.80 21.03 0.79 21.03 0.72 20.38 0.77 19.80 0.77 18.64 0.74 19.13 0.76 22.28 0.72 16.16 0.81 23.04
GPT-3.5 0.39 13.88 0.30 10.45 0.37 15.61 0.25 12.60 0.25 10.53 - - - - - - 0.16 8.96 0.39 16.30
GPT-4 0.68 24.35 0.68 23.60 0.72 24.71 0.66 20.95 0.67 23.21 - - - - - - 0.58 16.41 0.69 24.59

Table 3: Pilot results for our three subtasks, using models based on BERT, Multilingual BERT, and ChatGPT (zero-shot).

EN-Books CSB CSB-MT

τ PMR τ PMR τ PMR
mBERT 0.56 8.05 0.43 6.77 0.43 6.69
GPT-3.5 0.06 5.64 0.04 4.50 -0.01 4.35
GPT-4 0.16 7.04 0.09 6.54 0.07 6.16

Table 4: Results on English Books, Code-switched Books
(CSB), and Translated Code-Switched Books (CSB-MT).

Metrics We utilize two standard metrics from
the SO literature: (1) Kendall’s Tau (τ ) (Kendall,
1938) which measures the correlation between the
correct and predicted orderings in terms of inver-
sions; and (2) Perfect Match Ratio (PMR) which
is the proportion of predicted orderings which are
absolutely correct (equal to the correct ordering).
As evidenced in Table 2, sentence counts per story
vary greatly with language. To control for this and
allow for direct comparison between language re-
sults, rather than averaging τ and PMR across all
stories, we stratify narratives by length and com-
pute mean τ and PMR across strata, and finally
compute an unweighted mean over strata means.

4.1 Main Results

Pilot results from all models on a subset of lan-
guages are shown in Table 3. We leave evaluation
on all languages for future work.

Monolingual Performance (Task A) We trained
BERT and mBERT models for 5 languages.
mBERT has reasonable results for all languages,
with higher resource languages performing better.
The monolingual BERT model performs poorly on
non-EN languages, demonstrating the need for mul-
tilingual (or monolingual in the target language)
encoders. Overall performance on our data is
much lower than existing work leveraging narra-
tive text such as ROCStories (Mostafazadeh et al.,
2016), where reported PMRs can exceed 80%
(Basu Roy Chowdhury et al., 2021). This high-
lights the relative difficulty of our dataset.

Cross-lingual Transfer (Task B) We apply zero-
shot transfer between typologically similar and di-
verse languages. Transfer between similar source-

target pairs (EN→DE, ES→IT) achieves similar re-
sults as monolingual models: the drop in met-
rics is under 10%. Interestingly, training on high-
resource EN data and testing on low-resource FA

data increases performance over the monolingual
FA model, which has a much smaller training set.
This finding demonstrates that cross-lingual trans-
fer works well for SO.

Code-switched Performance (Task C) We cre-
ate a code-switched corpus (CS) where each nar-
rative can have up to 5 languages. This data is
translated from EN, and we retain the original mono-
lingual data as a control set (CS-EN). The Code-
Switched results show that it is indeed the most
challenging setting, with a 30% drop in PMR and
an 11% drop in τ compared to the equivalent non-
code-switched corpus (CS-EN). This result is not sur-
prising as code-mixed tasks are usually much more
difficult (Fetahu et al., 2021; Malmasi et al., 2022),
but it highlights that using a pretrained multilin-
gual Transformer model is a weak baseline, and
possible efforts to address this create interesting
new research directions in semantic, multilingual
sentence and document representation.

ChatGPT To control for costs, we sampled 500
stories from each dataset using stratified sampling
by number of sentences (to better match our metrics
which are macro averaged by number of sentences).
Surprisingly, despite significant prompt engineer-
ing effort, GPT-3.5 struggles on all data. In con-
trast, GPT-4 has the highest PMR on all datasets.
Interestingly, its τ is lower than both BERT and
mBERT, indicating an all or nothing approach to
the task: its high PMR shows that it tends to get the
ordering correct more frequently than other mod-
els, but when it fails, it is a complete failure (this
all-or-nothing effect is even more pronounced for
GPT-3.5; in Task A IT, it has a higher PMR than
BERT, but a τ nearly 40% lower). Given its diffi-
culty, we hope further experiments with our dataset
will shed some light on the degree to which SO is
emergent in LLMs (Wei et al., 2022).
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4.2 Impact of Translation (Books)

Table 4 shows translation does not impact SO per-
formance; this matches our observations in validat-
ing the translated narratives. Results on Books are
lower than all results in Wikipedia: this is due to
different and much more varied narrative structure,
domain shift, and longer sentences.

4.3 LLM Memory Test

It is reasonable to expect LLMs such as GPT-
3.5/4 to be able to recall from memory plots from
Wikipedia and out-of-copyright books which are
used in our dataset. We test this by randomly sam-
pling 50 EN-plot and 50 EN-books containing at
least 10 sentences. We then prompt both models
with the first 5 sentences of each plot in order, and
check whether they are able to recall the next 5 sen-
tences in the correct order. Generated sentences are
matched to the original sentences using the same
LCS technique described in section 4. Surpris-
ingly, GPT4 is only able to recall 14/100 instances
(all correctly recalled stories are from Books), and
GPT3.5 even fewer, only 3/100 (also from Books).

Focusing on GPT-4, we tested whether it could
perform the SO task on the 14 stories it can recall
perfectly from memory. It fails to do so, with a
PMR of 0.0 and a Kendall’s Tau close to 0. Recent
work shows that LLMs suffer from the Reversal
Curse (Berglund et al., 2023): GPT-4 is able to
answer “Who is Tom Cruise’s mother? [A: Mary
Lee Pfeiffer]” but fails to answer the reverse “Who
is Mary Lee Pfeiffer’s son?”. This might be con-
nected to the failure in the memory test: GPT4 can
recall the stories if prompted in the original order,
but runs into a failure when prompted out of order.
Further investigation is needed to understand the
cause of this failure.

5 Conclusion and Future Work

We proposed a multilingual SO task and dataset,
and showed that it is challenging, particularly for
code-switched data. Although based on a well
explored monolingual SO task, our research is the
first to address the gap in research covering non-
English and code-switched languages.

Our MULTISO dataset uses narratives describing
stories from creative works, making it varied and
providing a challenge for language models. This
dataset is the first to explore the multilingual and
mixed-language directions. We expect this task and
data will facilitate research in several areas. The

task enables evaluation of LM representations and
model reasoning over longer language units and se-
quences. Each task also covers multiple languages,
making it possible to study cross-lingual transfer
using MULTISO.

In future work, we plan to: (1) expand the dataset
with more languages and narrative types to further
provide researchers with valuable resources for en-
hancing multilingual language models (2) perform
a deeper investigation on using models to solve the
task, in particular LLMs.

Ethics Statement

In accordance with the ACM Code of Ethics and
Professional Conduct, our work adheres to the prin-
ciples of respecting privacy and honoring confiden-
tiality by ensuring that the data used complies with
the licenses of the original sources (CC-BY-SA for
Wikipedia and out-of-copyright for Books) (§1.6
and 1.7). Furthermore, our study confirms that the
data does not contain any personal information or
harmful content (§1.2), thereby avoiding potential
harm and minimizing negative consequences. We
strive to maintain high standards of professional
competence, conduct, and ethical practice (§2.2)
throughout our research. Our commitment to ethi-
cal conduct also involves transparency and full dis-
closure of our data sources and limitations (§1.3).
By following these ethical guidelines, we aim to
contribute to the public good and uphold the prin-
ciples of responsible computing (§1.1).
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Abstract

Large Language Models (LLMs) have been ex-
hibiting outstanding abilities to reason around
cognitive states, intentions, and reactions of
all people involved, letting humans guide and
comprehend day-to-day social interactions ef-
fectively. In fact, several multiple-choice ques-
tions (MCQ) benchmarks have been proposed
to construct solid assessments of the models’
abilities. However, earlier works demonstrate
the presence of inherent "order bias" in LLMs,
posing challenges to the appropriate evaluation.

In this paper, we investigate LLMs’ resilience
abilities through a series of probing tests us-
ing four MCQ benchmarks. Introducing adver-
sarial examples, we show a significant perfor-
mance gap, mainly when varying the order of
the choices, which reveals a selection bias and
brings into discussion reasoning abilities. Fol-
lowing a correlation between first positions and
model choices due to positional bias, we hy-
pothesized the presence of structural heuristics
in the decision-making process of the LLMs,
strengthened by including significant examples
in few-shot scenarios. Finally, by using the
Chain-of-Thought (CoT) technique, we elicit
the model to reason and mitigate the bias by
obtaining more robust models.

1 Introduction

The intensifying dispute on AI abilities has led to
the evolution of robust evaluation methods to as-
sess the actual limits of LLMs. Recently, many
anecdotal examples have been used to suggest that
LLMs such as GPTs (OpenAI, 2023), Llamas (Tou-
vron et al., 2023a), and other well-known models
are proficient at understanding that people have
ideas, thoughts, emotions, and preferences, which
is referred to the Neural Theory of Mind (N-ToM)
(Sap et al., 2022).

Although these abilities have been observed, ear-
lier works advance conflicting conclusions show-
ing that many solved tasks rely on memorization

(Ranaldi et al., 2024a) and superficial heuristics
(Shapira et al., 2024), as well-known as Clever
Hans Effect.

In fact, it seems that LLMs are very sensitive to
the arrangement of components in prompts (Zhu
et al., 2023), as it directly affects the evaluation of
their ability to understand and reason about specific
tasks (Ranaldi et al., 2023a,d; Wang et al., 2023a;
Lu et al., 2023). Given these findings, our research
question arises: Do LLMs have N-ToM abilities,
or is it a Clever Hans Effect?

In this paper, we propose a systematic evaluation
using several benchmarks with the multiple-choice
questions (MCQ) format to investigate the interplay
between N-ToM and Clever Hans Effect. In order
to probe the real abilities of LLMs, we introduce
different adversarial strategies by varying the order
and altering the content of choices in zero- and
few-shot scenarios.

We conduct different experiments using two ver-
sions of Llama (Touvron et al., 2023a,b), Vicuna
(Chiang et al., 2023), and Falcon (Almazrouei et al.,
2023) on four different MCQ benchmarks. Hence,
by using PIQA (Bisk et al., 2019), OpenBookQA
(Mihaylov et al., 2018), CommonsenseQA (Tal-
mor et al., 2019), Social IQA (Sap et al., 2019)
we demonstrate that LLMs have particular N-ToM
abilities, but they are not robust.

More specifically, behind in-depth analyses in a
zero-shot scenario, we discover a substantial sen-
sitivity gap between the original and adversarial
benchmarks. Following, we tested different set-
tings in a few-shot scenario, where we observed
that introducing examples in the input prompt led
to marginal improvements in the robustness of the
LLMs. These results led us to hypothesize that
considerable sensitivity in prompting emerges from
LLMs’ positional bias in that they tend to favor spe-
cific structures. Therefore, Clever Hans’ heuristics
emerge as the choice is not made through reasoning
ability.
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Figure 1: We proposed three different prompts: the original prompt consisting of the Question and the Choices
and two adversarial prompts consisting of the Question and different Choices order (the example is taken from the
OpenBookQA).

Nevertheless, the integration of demonstrations
within the input prompts has manifested as a salient
mechanism, markedly enhancing the predictive
accuracy of LLMs. The impact of the Chain-
of-Thought paradigm elucidates bifurcated advan-
tages: it fortifies both the robustness and interpre-
tative stability inherent to the models while con-
currently attenuating the positional bias. These
methodological augmentations suggest emergent
N-ToM abilities, indicating a more profound and
contextually attuned linguistic grasp.

Our findings can be summarized as follows:

• LLMs, while lacking robust N-ToM abilities,
often resort to structural heuristics;

• When instructed appropriately via few-shot
demonstrations, the stability of LLMs im-
proves considerably;

• Hiring a step-by-step methodology boosts en-
riched reasoning abilities within LLMs, result-
ing in more consistent results.

Via these studies, we have contributed to a
deeper understanding of how the order of options
influences the decision-making process of LLMs in
multiple-choice questions and offer practical solu-
tions to increase robustness and reliability in such
tasks.

2 Empirical Investigation & Analysis

Intending to empirically assess the incline between
the Neural Theory of Mind abilities and Clever
Hans traps into which Large Language Models
(LLMs) could fall, we propose a series of ex-
periments where we use four question-answering
benchmarks presented in Section 2.1 and several
adversarial experiments introduced in Section 2.2).

2.1 Speculative Benchmark

An essential component of the Theory of Mind
(ToM) is the ability to reason about the intentions
and reactions of participants to social interactions.
To measure it in LLMs, i.e., Neural-ToM (N-ToM)
with empirical methods, Sap et al. (2022) was used
Social IQa (Sap et al., 2019).

In our work, we extend the study by also con-
sidering: PIQA (Bisk et al., 2019), OpenBookQA
(Mihaylov et al., 2018), CommonsenseQA (Tal-
mor et al., 2019). Table 1 shows one example for
each dataset. The common factor in these datasets
is the type of question-answering format, as they
are multiple-choice questions (MCQ). This format
makes it easier to edit the prompt and observe the
output. In particular, the selected datasets deal with
the following topics:

OpenBookQA is a resource that contains ques-
tions requiring multi-step reasoning, common
knowledge, and rich text comprehension. It is mod-
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Dataset Example
When birds migrate south for the winter, they do it because

OpenBookQA (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.
C) it is important to their happiness. D) they decide to each.
Taylor gave help to a friend who was having trouble keeping up with
their bills.

Social IQa (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher
paying job. B) Thank Taylor for the generosity. C) pay some of their
late employees.
How do you attach toilet paper to a glass jar? A) Press a piece of
double-sided

PIQA (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.
B) Spread mayonnaise all over the jar with your palms and then roll
the jar in toilet paper.
Aside from water and nourishment what does your dog need?

CommonsenseQA (Talmor et al., 2019) A) bone. B) charm. C) petted.
D) lots of attention. E) walked.

Table 1: Examples of the datasets used in this paper.

Model Backbone
Alpaca-13b (Taori et al., 2023) Llama
Vicuna-13b (Chiang et al., 2023) Llama
Instruct-Falcon 7b (Almazrouei et al., 2023) Falcon
Llama2-chat 13b (Touvron et al., 2023b) Llama2

Table 2: Models used in our work, found on hugging-
face.co. We used all the default configurations proposed
in the repositories for each model.

eled behind open-book exams for evaluating human
understanding of a topic.

CommonsenseQA is one of the best-known
datasets of answers to multiple-choice questions
dealing with different types of general common-
sense knowledge.

Physical Interaction Question Answering
(PIQA) is a resource consisting of a series
of everyday situations with a pair of typical
or atypical solutions. The choice of the most
appropriate solution is binary.

Social Interaction Question Answering (Social
IQa) is a benchmark focusing on reasoning about
people’s actions and social implications. The ac-
tions in Social IQa cover various social situations
and candidates for plausible and not plausible an-
swers.

Hence, we select benchmarks with the same
structure, MCQ, by the number of different choices,
which range from the five choices of Common-
senseQA to the four of OpenBookQA, three of So-
cial IQa, and finally, the two of PIQA. This choice
allows us to conduct different types of analysis.

Model Available Hugging Face

Alpaca-13b (Taori et al., 2023) tolen/alpaca-lora-13b
Vicuna-13b (Chiang et al., 2023) lmsys/vicuna-13b
Instruct-Falcon 7b (Almazrouei et al., 2023) tiiuae/falcon-7b-instruct
Llama2-chat 13b (Touvron et al., 2023b) meta-llama/Llama-2-13b-chat

Table 3: In this table, we list the versions of the models
proposed in this work, which can be found on hugging-
face.co. We used all the default configurations proposed
in the repositories for each model.

2.2 Adversarial Shuffling
The LLMs’ impressive knowledge and desirable N-
ToMs abilities can be empirically assessed through
a series of benchmarks. However, these abilities
should persist in the presence of alterations such as
the order of choices in MCQ. To probe robustness,
we introduce probing experiments by changing the
order of the target choices. In particular, we pro-
pose two different versions wherein, in the first, we
insert the target choice as first, and in the second,
we insert the target choice as last, which we defined
as "First Target" and "Last Target", as showed in
the blue and red block in Figure 1.

3 Experiments

To investigate the open question of social intelli-
gence and Theory of Mind in modern NLP models
from an empirical viewpoint, we extended the eval-
uations of Sap et al. (2022) to a series of Specula-
tive Benchmarks (Section 2.1) altered with appro-
priately constructed Adversarial Shuffling (Section
2.2) prompts. Then, to assess the factual abilities
of the Large Language Models (LLMs), we set
up several baseline models (Section 3.1), which
we probed with different approaches (Section 3.2).
Hence, we performed a series of systematic evalua-
tions to observe the impact of the proposed meth-

316



ods.

3.1 Instruction-tuned LLMs
In this paper, we use four instruction-tuned meth-
ods to produce an empirical analysis of the ob-
jective ability of different Large Language Mod-
els (LLMs). Their power seems to be in the
form of a novel tuning called instruction-tuning.
These LLMs are fine-tuned LLMs on Instruction-
following demonstrations (Ouyang et al., 2022) and
how an important part of the currently in-vogue
LLMs have at their base a decoder-only architec-
ture. Therefore, we experiment with models of
different families of LLMs with similar sizes to
avoid creating critical differences. In particular,
Alpaca-Lora, fine-tuned on Standford Intruction-
following demonstrations (Taori et al., 2023) that
has at its backbone Llama-13b (Touvron et al.,
2023a), Llama-2-chat-13b fine-tuned on custom
data (Touvron et al., 2023b), Vicuna-13b (Chi-
ang et al., 2023) fine-tuned on ShareGPT data and
Falcon-7b-instruct (Almazrouei et al., 2023) fine-
tuned on Refinedweb data (Penedo et al., 2023).
For simplicity of notation in the following exper-
iments, the models will be named as follows: Al-
paca (Alpaca-Lora), Falcon (Falcon-7b-instruct),
Vicuna (Vicuna-13b), Llama2 (Llama-2-chat-13b).
These selected models, summarized in Table 2, are
all accessible open-source on the Hugging Face
platform (Table 3).

3.2 Experimental Setup & Evaluation
LLMs seem to have interesting abilities as well as
introduced in Section 5. However, LLMs seem to
be sensitive to the input required. They produce
satisfactory answers if they are rightly prompted.
To investigate whether their abilities are attributable
to Coincidental correlations or inherited N-ToM
abilities, we standardized the probing techniques
to conduct systematic analyses that yield robust
empirical results.

Multiple-Choice Prompting We set the prompts
by structuring them as follows: "Choose the
answer to the question only from
options [A, B, C, and D]. Question:
{question}. and after the line character the
"Choices: {options}." also appropriately
separated by the return character and finally
"Answer:".

Zero- & Few-shot Prompting Furthermore, we
conducted the experiments in a zero-shot and one-

shot scenario. In the first case, the prompt consists
of the introduction of the task, the question, and the
possible choices (see Figure 1). In the second case,
a prompt like the previous one was constructed in
which an example with the corresponding target
was inserted (see Figure 6).

Chain-of-Thought Prompting Finally, to elicit
the reasoning abilities of the proposed models,
we adopted the Chain-of-Thought (CoT) approach
(Wei et al., 2023) by prompting the input query
after "Answer:" the formula "Let’s think step
by step" (see Figure 6). Although we are aware
of the limitations of this method on models with a
few billion parameters (with more than 60B param-
eters as stated by Wei et al. (2023)), we decided
to test it anyway because, as we will see later in
the experiments, it delivered more stability to the
models used.

Evaluation The most commonly used evaluation
methods for MCQ tasks are language-model prob-
ing, where the option with the highest probability
is chosen (Brown et al., 2020), and multiple-choice
probing, where models are asked to respond. The
evaluation in the former case is done with a func-
tion that takes the max value, while in the latter
case, a string matching. The second method is
widely used in recent evaluations because it applies
to models such as GPT-x (GPT-3.5 and GPT-4)
(OpenAI, 2023) that do not produce probabilities.

We could use both methods in our experiments,
but we selected the second method for a compara-
ble and scalable pipeline. We performed a string
matching of the generated outputs and the target
choice.

4 Results

Looking for evidence that Theory of Mind (ToM)
has been inherited from Neural Minds is like look-
ing for a drop in the ocean. The results in Table 4
show the fluctuations in the performances obtained
from Instruction-tuned Large Language Models
(LLMs) on more straightforward patterns (Section
4.1). However, although the evident gaps seem
to be order-dependent, the performances obtained
from the few-shot scenario are encouraging (Sec-
tion 4.2). These data presaged a strong inclination
toward Clever Hans’s effects. Therefore, we ana-
lyzed the impact of elicitation on the reasoning of
LLMs using promting techniques (Section 4.3) that
showed strong improvements.
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Models OpenBookQA Social IQa CommonsenseQA PIQA

Origin First Last Origin First Last Origin First Last Origin First Last

Alpaca 36.2 +11.7 -9.2 48.2 +8.5 -18.6 55.2 +8.4 -11.7 62.7 +2.3 -1.8
Falcon 54.8 +3.2 -13.6 57.5 +3.6 -14.5 60.2 +5.3 -7.8 68.6 +1.7 -0.9
Vicuna 58.1 +3.9 -8.6 60.3 +3.1 -6.4 66.4 +6.3 -6.4 74.2 +1.9 -1.2
Llama2 61.2 +3.6 -5.8 65.6 +4.3 -5.2 80.5 +2.3 -4.6 82.5 +1.6 -1.2

Table 4: Accuracy on the benchmarks introduced in Section 2.1 performs on the original order of the choices
’Origin’, shifting the target choice respectively as first ’First’ last ’Last’. The specific position of the target choice
causes drastic fluctuations in performance.

Figure 2: Evaluation results on proposed benchmarks. First means that the target is the first choice. Last means that
the target is the last choice.

Choose the answer to the question
only from options A, B, C, D.

Question: Which of these would stop a car
quicker?

A) a wheel with wet brake pads
B) a wheel without brake pads
C) a wheel with worn brake pads
D) a wheel with dry brake pads
Answer: Let’s think step by step

Table 5: This is an example of our Chain-of-Thought
prompting approach.

Fine-grained analysis revealed critical issues
about the robustness of LLMs and their tendency to
Clever Hans effects; however, elicitation to reason-
ing produced thrilling results that opened the way
for new hypotheses about the Neural-ToM abilities
inherited by LLMs.

4.1 Does the Order Matter?
The order of the input parameters seems to have a
considerable impact on the choices of the LLMs.
In fact, as shown in Table 4, there are significant
imbalances in accuracy as the target options change
(see the differences in the Firsts and Lasts columns).
This positional bias manifests more in zero-shot
scenarios, as also showed in (Robinson et al., 2023;
Zheng et al., 2023a). Furthermore, the gaps differ
between the benchmarks; e.g., in PIQA, there are
no significant differences as there are only two
possible choices.

In addition to highlighting the presence of a bias
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Choose the answer to the question
only from options A, B, C, D.

Question: Which of these would stop a car
quicker?

A) a wheel with wet brake pads
B) a wheel without brake pads
C) a wheel with worn brake pads
D) a wheel with dry brake pads
Answer: D) a wheel with dry brake pads

Choose the answer to the question
only from options A, B, C, D.

Question: What animal eats plants?
A) eagles
B) robins
C) owls
D) leopards
Answer:

Table 6: This is an example of our one-shot prompting
approach.

toward order, this phenomenon presages factual
evidence that models are prone to adopt shallow
heuristics when faced with several choices. For
this reason, we analyzed in Section 4.4 whether the
performances on the original benchmarks are partly
supported by the instances with the first choice, i.e.,
option ’A)’, as the original target.

4.2 Could Few-shot Prompting be a solution?
Although the LLMs are affected by order bias,
they should also be sensitive to the structure of
the prompt. Hence, we conduct experiments in a
few-shot scenario, particularly one-shot. As intro-
duced in Section 3.2, we constructed the prompt
by providing a random pair instance-target of the
benchmark under evaluation, for example, as Fig-
ure 6.

As shown in Figure 2, constructing prompts with
question-answer demonstrations helped reduce the
order bias predominantly for the adversarial ver-
sions of the benchmarks considered (see the red
columns in Figure 2). However, although the re-
sults were encouraging, providing examples in a
few-shot scenario is not an optimal strategy for two
reasons: firstly, it is not possible to analyze the

proper knowledge and abilities of the LLMs; sec-
ondly, providing examples very close to the ques-
tion the model is supposed to answer could cause
the model to fall into Clever Hans effects (Shapira
et al., 2023).

4.3 N-ToM Abilities or Prompting
Techniques?

Stimulating the generative abilities of LLMs could
be the key. Figure 2 shows that the performance
of models where Chain-of-Thought prompting has
been done is more stable and significantly better.
In particular, Llama2 and Vicuna have benefitted
best from this technique.

Hence, constructing prompts with strategically
placed choices facilitates shallow heuristics, and
providing examples produces Clever Hans Effects
elicitation to step-by-step reasoning prompts the
LLMs to consider the whole question with choices.
Moreover, the production of the choice between the
various seems more robust as the model seems less
uncertain. However, this strategy does not always
seem to have positive effects. Alpaca-Alpaca-Lora
and Falcon do not have the same sound effects as
the other two models.

4.4 Ablation Study

Downstreaming our analysis, we observed the pres-
ence of a bias in the order of choices. Indeed, as dis-
cussed in Section 4.1, there is a strong bias towards
the first choice, i.e., ’A)’. Therefore, we examined
whether this bias supports the performances of the
original benchmarks. We then reproduced all the
experiments by eliminating the instances that target
the first choice. In this experiment, we did not con-
sider PIQA as it only has two choices; therefore,
the results are irrelevant for this experiment.

Our experiment in Figure 3 reveals a gap be-
tween the performances obtained without the ’sim-
ple’ instances. This result shows that, indeed, the
performance of the evaluation benchmarks is af-
fected by positional bias. However, these are more
dramatic than denying all experiments but must be
considered as they could distort many evaluations.

5 Related Work

5.1 Evaluation of Large Language Models

Increasing confidence in LLMs requires a funda-
mental empirical assessment part. Traditional eval-
uation methods assess the ability to respond to in-
structions by calculating metrics such as BLEU,
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Figure 3: Accuracy on original benchmarks vs. corrupted benchmarks. They stem from the original ones without
instances where the target choice is the first among the multiples.

ROUGE, or BERTScore to compare the generated
response with a reference response. However, these
metrics need to adequately measure the alignment
of the generated response with human intent (He
et al., 2023). Although human evaluation is con-
sidered the most accurate measure of model per-
formance, it is expensive and time-consuming to
perform at scale. Therefore, researchers have be-
gun using LLMs to evaluate generative models’
ability to follow human instructions (Zheng et al.,
2023b; Lu et al., 2023). Zheng et al. (2023b) used
GPT-4 (OpenAI, 2023) as an arbiter to compare the
answers of the two models. However, Wang et al.
(2023c,b) demonstrated several weaknesses in this
method, giving rise to a proliferation of skepticism
that has been reinforced by a series of works high-
lighting sensitivity to prompting (Lu et al., 2023)
and instability to response generation (Wang et al.,
2023b; Zhu et al., 2023).

5.2 Question-answering Benchmark
In parallel with the multiple validation techniques,
numerous Question-answering benchmarks have
arisen consisting of multiple subtasks characterized
by multiple-choice questions. These benchmarks
have been introduced as a method to assess reason-
ing skills and (Artetxe et al., 2019; Lewis et al.,
2020; Hendrycks et al., 2021; Suzgun et al., 2022)
factual abilities (Elsahar et al., 2018; Petroni et al.,
2019). Despite the difficulties present in these tasks,

great strides have been made with language mod-
els achieving human-like performance in various
benchmarks (OpenAI, 2023; Savelka et al., 2023;
Liévin et al., 2023). However, the effective use
of these tasks to effectively probe reasoning and
other knowledge presents substantial challenges
that deserve further investigation.

5.3 Clever Hans Effect & Neural Theory of
Mind

Large Language Models psychotherapy seems to
be an emerging field (Hewitt et al., 2023; Meng
et al., 2023; Lamparth and Reuel, 2023) Recent
studies on the emerging abilities of Large Language
Models have proposed numerous theories (Wei
et al., 2022; Kasneci et al., 2023). Some of these
have been empirically proven, while others have
remained only hypotheses and conjectures that are
difficult to prove. Numerous studies have shown
that LLMs can inherit certain Theories of Mind
(ToM) from learning, defining this as Neural-ToM
abilities (Le et al., 2019; Sap et al., 2019). How-
ever, numerous works have refuted these theories
by scapegoating the Clever Hans Effect (Shapira
et al., 2023). The latter phenomenon has mani-
fested in multiple forms on numerous well-known
benchmarks (Webson and Pavlick, 2022; Carlini
et al., 2023).

In our contribution, we analyzed whether several
open-source LLMs can defend themselves against
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the traps of the Clever Hans Effect by proposing a
series of experiments. Behind extensive analysis,
we discovered that LLMs are prone to adopt super-
ficial heuristics when they are facilitated in their
decisions.

On the other side of the coin, they can ap-
ply robust mechanisms when prompted to reason.
This opens up different attractive scenarios on the
promising approaches of Chain-of-Thought tech-
niques (Wei et al., 2023).

6 Future Works

In future work, we plan to extend our experimenta-
tion to different models and observe whether this
phenomenon can be mitigated through downstream
model distillation techniques. Hence, we will ex-
tend our work to different models, including GPT-
3.5 and GPT-4. On the other hand, we study the
impact and robustness of the variation of backbone
model parameters (as done in (Ranaldi and Pucci,
2024)) and how it affects further trained mod-
els through refinement techniques using teacher-
student approaches (Ranaldi and Freitas, 2024) and
multi- and cross-lingual techniques (Ranaldi and
Pucci, 2023a; Ruzzetti et al., 2023; Ranaldi et al.,
2023b, 2022a). At the same time, it will be of
interest to us to analyze whether prompt engineer-
ing techniques are affected by this phenomenon,
such as Chain-of-Thought in contexts with few-
shots and Tree-of-Thought in cross-lingual contexts
(Ranaldi et al., 2024b). Addressing these studies
will allow us to look at the problem from multiple
perspectives and investigate the consequences of
shallow heuristics.

Finally, we will analyze the impact of a further
injection of bias into the best-known benchmarks
to observe whether the capabilities of LLMs can
overcome challenging scenarios in order to under-
stand whether these phenomena are indeed related
to structural representations (Zanzotto et al., 2020;
Ranaldi and Pucci, 2023b; Ranaldi et al., 2023c)
handed down by the models or are merely the result
of structural features of Large Language Models
(Onorati et al., 2023; Ranaldi et al., 2022b).

7 Conclusion

The Large Language Models (LLMs) have been
demonstrating interesting abilities in real-world
understanding. Empirically assessing these abil-
ities is a challenging task. In our contribution, we
propose systematic evaluations through multiple-

choice questions (MCQ) benchmarks. However,
our study revealed an inherent order-bias in these
models. Through adversarial testing, we observed
a significant discrepancy in performance, particu-
larly when altering the sequence of options, under-
lining a prevailing selection bias that challenges
the reasoning abilities of the LLMs. We identified
a link between positional preferences and model
selections, which led us to theorize the existence of
structural heuristics guiding the decision-making
process. By incorporating relevant examples in
few-shot contexts, this notion was further strength-
ened. Using Chain-of-Thought approaches allowed
us to make the model introspect its decisions, thus
reducing observed bias and resulting in more reli-
able and robust LLMs.

Our results revealed some limitations regarding
robustness in zero-shot scenarios but simultane-
ously showed that the CoT approach enhances sta-
bility. Our future research will focus on proposing
definitely unseen benchmarks to evaluate real abili-
ties without the presence of distorted glass.

Limitations

In our study, we conducted extensive analyses to
evaluate order bias in open-source Large Language
Models (LLMs) using multiple-choice questions
(MCQ) benchmarks. Following the performed anal-
yses and the results obtained, we observed the
presence of order bias and proposed methods to
mitigate this phenomenon. However, our analysis
needs to be completed, as more robust models were
not tested, as the primary purpose was to analyze
these phenomena in smaller, countable contexts.
We plan to scale our approach to more extensive
and robust LLMs in future developments. In addi-
tion, we plan to include further benchmarks in our
analyses to observe whether the effect also mani-
fests itself with different task types.

Ethical Statement

We have observed the highest ethical standards in
our research and development. We want to empha-
size the following points regarding the sources and
methods used:

• Use of open-source benchmarks: All bench-
marks and datasets used in our work come
from open-access public repositories. We
have ensured the transparency of our meth-
ods by relying on commonly accepted and
widely recognized resources.

321



• Content sensitivity: We have consciously re-
frained from using datasets or benchmarks
that could be associated with controversial,
derogatory, or potentially harmful content. We
aim to ensure that our work is inclusive and
respects the diverse perspectives of all stake-
holders.

• Avoiding harmful contexts: In selecting
benchmarks and datasets, we have prioritized
those not linked to contexts where someone
could be offended or harmed. We strive to con-
tribute positively to the community without
causing unintended harm or inconvenience.
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Abstract

Abstract Meaning Representations (AMRs) en-
code the semantics of sentences in the form of
graphs. Vertices represent instances of con-
cepts, and labeled edges represent semantic
relations between those instances. Language
models (LMs) operate by computing weights
of edges of per layer complete graphs whose
vertices are words in a sentence or a whole para-
graph. In this work, we investigate the ability
of the attention heads of two LMs, RoBERTa
and GPT-2, to detect the semantic relations en-
coded in an AMR. This is an attempt to show
semantic capabilities of those models without
finetuning. To do so, we apply both unsuper-
vised and supervised learning techniques.

1 Introduction

An AMR graph, as specified by Banarescu et al.
(2013), is a representation of the meaning of a sen-
tence in the form of a directed acyclic graph, in-
volving concepts from neo-Davidsonian semantics
(Davidson, 1969). A number of datasets of sen-
tences and their corresponding hand-crafted AMRs
have been published, and various techniques have
been developed to automatically build AMR graphs
from sentences in natural language. These include
graph based approaches, which directly predict
nodes and edges from the sentences, (Flanigan
et al., 2014, Zhang et al., 2019), and algorithms
based on transition systems (Nivre, 2008), inspired
by dependency parsing algorithms (CAMR: Wang
et al., 2015, AMR-Eager: Damonte et al., 2017).
The most recent solutions combine an encoder-
decoder pair of a transformer network (Vaswani
et al., 2017) to adapt it to the task of transition-
based AMR parsing, as StructBART does (Zhou
et al., 2021).

AMR graphs abstract away meaning from syn-
tactic representations. This is evidenced by the
fact that one AMR graph can encode several dif-

ferently worded sentences, even with different syn-
taxes. (Banarescu et al., 2013)

Transformer-based language models, introduced
by Vaswani et al. (2017), have shown remarkable
performance in solving many problems related to
automatic natural language processing, but the in-
terpretability of their computations is still subject to
active research: Clark et al. (2019) studied the abil-
ity of certain attention heads in the BERT network
(Devlin et al., 2019) to classify several syntactic
relations between words and to resolve coreference,
without finetuning BERT for any specific task. Luo
(2021) studied how constituency grammar is cap-
tured by different attention heads in BERT. We
complement their work and explore the ability of
attention heads to classify semantic relations be-
tween two words as described by the edge type
between two vertices of an AMR.

We study a representative bidirectional pre-
trained language model, without finetuning:
RoBERTa (Liu et al., 2019), and compare it to GPT-
2 (Radford et al., 2019), a pretrained conditional
model, using both unsupervised and supervised
techniques. Our study reveals a striking correlation
of these networks’ attention heads with semantics.
We observed that RoBERTa showed conspicuously
better results than GPT-2, probably because of the
bidirectional nature of the former. To reproduce
our experiments, we made our code publicly avail-
able.1

2 Dataset Design and Experimental Setup

In a nutshell, an AMR encodes in a rooted directed
acyclic graph who is doing what to whom, where,
when and how, in a manner that abstracts away
semantics from syntax. In particular, a single AMR
graph can encode several syntactically different
sentences, like "the bears invaded Sicily" (a whole
clause), "the bears’ invasion of Sicily" (a noun

1https://anonymous.4open.science/r/sem_LM_att-322F/
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invade-01

bear
ARG0

place
ARG1

name
name

"Sicily"
op1

Figure 1: AMR for several wordings: "The bears in-
vaded Sicily", "The bears’ invasion of Sicily", "The
invasion of Sicily by the bears" and "The invasion of the
bears in Sicily".

phrase), "the invasion of Sicily by the bears", or
"the invasion of the bears in Sicily". See Figure 1.
In so doing, an AMR encodes instances of concepts
as vertices in the graph, using PropBank framesets
(Palmer et al., 2005) wherever possible2. Relations
between instances of concepts are encoded as di-
rected labeled edges in the graph. Those relations
can be the frame arguments, following PropBank
conventions (ARG0, ARG1,...), or other general se-
mantic relations (time, cause, location, etc.).

Blodgett and Schneider (2021) published a
dataset of automatic alignments between AMRs
and the corresponding English sentences in the
LDC2020T02 dataset (Knight et al., 2020), which
comprises 59,255 sentences. We took advantage
of those alignments and built a dataset of edges to
test the capability of an LM’s attention mechanism
to retrieve the semantic relation encoded in a edge
from the two connected vertices.

In their work, Blodgett and Schneider labeled
their alignments across several categories: • sub-
graph alignments, a mutually exclusive alignment
between consecutive spans of words and subgraphs
of the AMR, • duplicate subgraph alignments,
to account for elliptical construction, where sev-
eral identical subgraphs in the AMR are mapped to
the same word span, • relation alignments, pro-
viding alignments between a span and a single re-
lation, (an arc in the AMR), such as "when" →
:time, and • reentrancy alignments, accounting
for reentrancy, (the fact that an AMR node may
have multiple incoming edge). Reentrancy align-
ments provide alignments between reentrant arcs
and a word span that triggers the reentrancy. (Pro-
nouns, control verb, etc.) We selected the "sub-
graph alignments", sorting them to keep only those
alignments involving a single word in the sentence
and a single-vertex subgraph. Next, we had the
sentences processed by the tokenizers of two pre-
trained language models with 12 layers and 12
heads per layer : • RoBERTa, a bidirectional en-

2For example, the noun "invasion" and the verb "invaded"
are both encoded using the PropBank frame invade-01.

Figure 2: Distributions of six relations on the RoBERTa
encoder, projected on PC2.

coder (Liu et al., 2019), and • GPT-2, a condi-
tional decoder (Radford et al., 2019). To deal with
the case of words split across several tokens, we
aligned the sequences of words with the sequences
of tokens, keeping only alignments involving a sin-
gle word aligned with a single token.

We thus created a dataset of pairs of tokens
aligned with vertices of AMR graphs, linked by
a semantic relation. To assess the ability to detect
the absence of a semantic relation, we included
random pairs of tokens corresponding to vertices
in the AMRs with no edge between them, to create
a category "<no_rel>". We then ran the transform-
ers with all sentences as input and computed their
representations. For each pair of words, there are
possibly two attention directions to be computed:
attention from one word to the other, or conversely.
We call them ST and TS, as they represent atten-
tion from the source to the target or from the target
to the source, where "target" and "source" denote
the direction of the edge in the AMR graph. Each of
those two attentions is represented by 144 scalars,
as there are 12 layers, and 12 attention heads per
layer.

In a transformer, the attention weight from a
source token Q to a target token K is obtained by
taking two affine transformations of the embed-
dings of Q and K, computing the inner product of
those, and taking the softmax of that product with
respect to all other target tokens. The features we
use throughout this study are actually those inner
products, before application of the softmax.

2.1 Illustration
As an example, let us consider the sentence "Es-
tablishing Models in Industrial Innovation". Its
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AMR displays an edge ":ARG1" between the node
"innovate-01" and the node "Industry". The align-
ments indicate a subgraph-alignment between the
node "innovate-01" and the word "innovation", and
another alignment between the node "industry" and
the word "industrial". Both words "industrial" and
"innovation" correspond to a token in the trans-
former model, therefore the edge labeled ":ARG1"
could be kept in the dataset. The corresponding en-
try consists of the 144 features of attention from the
token "industrial" to the token "innovation", and
the 144 features from the token "innovation" to the
token "innovation". The label is ARG1.

3 Unsupervised Analysis: PCA

The first step of our study was to apply a simple
dimension reduction technique to the dataset. We
chose to compute a principal component analysis
on the inner product dataset. For the dataset com-
puted with RoBERTa, we found that keeping 4
principal components enabled us to explain about
52% of the total variance.

We filtered the dataset by relation, and computed
kernel density estimations of the distribution of
different relations, and looked for dissimilarities
between those. To do so, we selected a few re-
lations to be plotted overlaid : (<no_rel>, ARG0,
ARG1, condition, location, time, ARG2, quant,
polarity, mod, and poss). We found that the first
six relations could easily be distinguished by exam-
ining only the projection on the second principal
component, as their distributions seem very differ-
ent, although somewhat overlapped (See Figure
2).

The most conspicuous separation is between
ARG0 and ARG1. However, no pair of relations pre-
sented completely distinct distributions. The sepa-
ration of the relations quant, mod and poss is less
obvious, and can best be seen on the projection on
the fourth principal component. As for the pair of
relations (ARG1, ARG2), they can hardly be distin-
guished. (Plots can be seen on appendix A.1)

For the dataset computed with the decoder
GPT-2, we found that keeping 4 principal com-
ponents enabled us to explain 70% of the total vari-
ance. (18% more than with RoBERTa). In spite of
this difference, we found that GPT-2 was less effec-
tive than RoBERTa in distinguishing relations. As
an illustration, in Figure 3, we plotted the distribu-
tions of the three easiest to distinguish relations for
RoBERTa and GPT-2 on the most distinctive axis

Figure 3: Distributions of relations <no_rel>, ARG0
and ARG1 on RoBERTa and GPT-2, showing the better
separation of RoBERTa.

PC2. (See appendix A.2 for more GPT-2 plots.)
This first step tends to show that it is possible to

use the attention heads of a transformer network
to observe different distributions for pairs of dif-
ferent semantic relations. This behavior of a trans-
former is more prevalent for a bidirectional encoder
(like RoBERTa) than for a conditional decoder (like
GPT-2).

4 Supervised Analysis: Logistic Classifier

On the strength of these results, we trained a logis-
tic model to classify the semantic relations of our
datasets. To do so, we modified the datasets in the
following way :

1. For RoBERTa, we included both ST and TS
attention features, thus amounting to 288 fea-
tures per sample.

2. We left out from the dataset some relations
which we deemed irrelevant for semantics :
snt-n, used to point to numbered independent
clauses in a sentence, op-n, used for coordi-
nation with conjunctions like "and", "or", or
commas, or for numbering the parts of a com-
posite named entity, and polarity, whose tar-
get is almost always the constant "negative",
and not an instance of a concept.3

3. Since the dataset is highly unbalanced, we
grouped every relation with fewer than 1000
samples under the general category <other>,
gathering 2.1% of our data.

3polarity is used to signal that a sentence is negative.
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4.1 RoBERTa Language Model

Eventually, we obtained for the RoBERTa dataset
375,335 samples divided into 18 semantic relations
to be classified. We then trained a Logistic classi-
fier, using class weighting to compensate for the
imbalance. The global balanced accuracy on test
data is 0.62.4 Detailed results are shown in the left
column of Table 1.

Classes ARG0, ARG1, time, mod, quant exhibit
the best F1 scores, with respectively 0.74, 0.63,
0.63, 0.63 and 0.60. Besides <other>, ARG3,
ARG4 and topic are the classes showing the worst
F1 scores (0.09, 0.13 and 0.17). This is prob-
ably because ARG3 and ARG4 are used in some
PropBank frames to describe a role where other
AMR relations could arguably have been used.
(price, instrument, reason, location). Rela-
tions topic and condition also exhibit a poor F1
score of 0.17 and 0.20. Interestingly enough, a
careful scrutiny of the confusion matrix shows that
many false positives for topic are confusions with
ARG1, mod and <no_rel>, entailing a poor preci-
sion for this relation. The recall is otherwise good.
This is also the case for condition. (See Appendix
C.1 for the confusion matrix.)

4.2 GPT-2 Language Model

For the case of GPT-2, the very nature of a decoder
does not allow attention to be computed in both
directions, but only from a subsequent token to its
predecessors. Therefore, we could only take advan-
tage of 144 features. The global balanced accuracy
is 0.44, and individual F1 scores are reported in
Table 1. They are much poorer than the results ob-
tained with RoBERTa, with which we used the full
number of 288 features. We made the hypothesis
that the reduced number of features due to causal
self-attention is detrimental to a good detection of
the semantics. To confirm this idea, we modified
the implementation5 to output the full inner prod-
ucts tensors used in computing attention before
masking, without altering the network’s operation.
We trained another logistic classifier on this new
dataset, and reported the results in the right column
of Table 1. Every single F1 score is better than the
scores obtained on the plain GPT-2, and the global
balanced accuracy amounts to 0.56, a gain of more

4In comparison, random forests and MLP classifiers have
slightly poorer precision.

5We used minGPT, (https://github.com/karpathy/
minGPT), which we deemed the easiest to modify, while pro-
viding a complete implementation.

Relation Freq RoBERTa GPT2 GPT2 aug.

ARG0 16% 0.74 0.60 0.69
ARG1 33% 0.63 0.34 0.55
time 3% 0.63 0.29 0.54
mod 12% 0.63 0.44 0.57
quant 1% 0.60 0.40 0.56
<no_rel> 17% 0.59 0.44 0.49
degree 1% 0.54 0.35 0.52
poss 1% 0.47 0.20 0.32
location 1% 0.45 0.22 0.37
part 0.4% 0.37 0.11 0.24
manner 1% 0.36 0.16 0.28
ARG2 8% 0.33 0.20 0.29
purpose 1% 0.31 0.18 0.23
condition 1% 0.20 0.14 0.16
<other> 2% 0.18 0.08 0.15
topic 1% 0.17 0.11 0.14
ARG4 0.5% 0.13 0.07 0.10
ARG3 1% 0.09 0.08 0.11

Table 1: F1 scores per class of the Logistic classifier
trained on the three datasets: RoBERTa, GPT2 and
GPT2 augmented.

than 11 points.

4.3 Influence of the Heads on the Results

The nature of a Logistic classifier allows us to in-
terpret the contribution of the different heads to the
detection of a relation by analyzing the coefficients
of the classifier. Specifically, we can determine if
an increment in the response of a particular head
increases or decreases the ratio of probabilities of
two relations.The following study was conducted
on RoBERTa, we left GPT-2 aside. First, we an-
alyzed the ratio of all probabilities with respect
to the probability of <no_rel>. For that purpose,
we computed the differences between the coeffi-
cients of all linear predictors and the coefficients
of the linear predictor for <no_rel>. We noticed
that for head 3 in layer 4, (head H3L4), as well as
heads H1L6 and H2L3 of the TS product, all those
differences were negative. This means that any
positive shift in the inner product computed by one
of those heads induces an increase of every ratio
P[y=<no_rel>]

P[y=yk]
, for all yk ̸= <no_rel>. Conversely,

we noticed that a positive shift in heads H5L8 or
H3L9 (both for ST attention) induced an increase
of the inverse ratio. We can conclude that those
heads are specialized in determining a semantic
relation, or absence thereof.

We further analyzed the contribution of every
head to the probability ratio of any pair of relations:
for each possible pair of relations, we recorded the
k most contributional heads to the direct probability
ratio, as well as the top k heads for the inverse

329



Figure 4: Distribution against layer index of the loca-
tion of the top k = 3 most contributional heads to the
distinction of pairs of relations.

probability ratio, and grouped them by layer index.
For different values of k, we found that the most
distinctive heads were predominantly located in
layers of average depth. It appears for example
that heads in Layer 6 of the TS attention often
contribute the most to determining between two
relations. This is also the case for layers 5 to 9 in
the ST attention. For k = 3, for example, 13% of
the top three heads are located in layer 6 of the TS
attention. See Figure 4. We could also notice the
imbalance in favor of TS attention for holding the
top k heads for low values of k. This imbalance
decreases as k increases. (See appendix B.)

5 Conclusion

Pre-trained LMs can, to some extent, code seman-
tic relations in their attention mechanism without
need of specialization. Bidirectional networks, as
RoBERTa, show better ability to distinguish be-
tween different semantic roles than conditional net-
works, as GPT-2. Linear methods used in this work
unveils an important fact. Pre-trained LMs encode
not only the syntactic structure, but also the seman-
tic structure of the text so that it can be exploited
in a linear fashion.
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A Plots of the densities of different
relations

The following figures are plots of the densities (esti-
mated through kernel density estimation) of differ-
ent relations, projected onto the first four principal
components.

A.1 RoBERTa Language Model
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A.2 GPT-2 Language Model B Evolution of the distribution of the top
k heads

The following figures present the evolution of the
distribution against layer index of the location of
the top k most contributional heads to the distinc-
tion of pairs of relations. As k increases from 1
to 5, the imbalance in favor of the TS attention
decreases.

C Confusion Matrices of the Logistic
Classsifiers

C.1 Confusion Matrix for RoBERTa LM
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C.2 Confusion Matrix for GPT-2 LM

C.3 Confusion Matrix for Augmented GPT-2
LM
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Abstract

In recent years, pre-trained language models
have demonstrated exceptional performance
across various natural language processing
(NLP) tasks. One fundamental component of
these models is the self-attention mechanism,
which has played a vital role in capturing mean-
ingful relationships between tokens. However,
a question still remains as to whether injecting
lexical features into the self-attention mecha-
nism can further enhance the understanding
and performance of language models. This
paper presents a novel approach for injecting
semantic-polarity knowledge, referred to as
Sentiment Lexical Attention, directly into the
self-attention mechanism of Transformer-based
models. The primary goal is to improve per-
formance on sentiment classification task. Our
approach involves consistently injecting Senti-
ment Lexical Attention derived from the lexi-
con corpus into the attention scores throughout
the training process. We have conducted empir-
ical analysis on our approach using the NSMC,
a benchmark for Korean sentiment classifica-
tion, where it demonstrated substantial perfor-
mance enhancements and secured state-of-the-
art achievements. Furthermore, our approach
demonstrates robustness and effectiveness in
out-of-domain tasks, indicating its potential for
broad applicability. Additionally, we analyze
the impact of Sentiment Lexical Attention on
the view of the CLS token’s attention distri-
bution. Our method offers a fresh perspective
on synergizing lexical features and attention
scores, thereby encouraging further investiga-
tions in the realm of knowledge injection utiliz-
ing the lexical features.

1 Introduction

In recent years, pre-trained language models such
as BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019b), BART (Lewis et al., 2019), and GPT-3
(Brown et al., 2020) have demonstrated remarkable
performance across various downstream tasks in

Figure 1: The Sentiment-Fused Attention, induced by
forming a linear combination of the Sentiment Lexical
Attention and the Original Attention Scores.

NLP. These language models (LMs) are charac-
terized by a vast number of trainable parameters,
which many researchers believe encode valuable
knowledge during the processing of contextualized
token embeddings (Wang et al., 2020; Incitti et al.,
2023). Among these parameters, self-attention
mechanisms play a crucial role and are widely con-
sidered as the foundation of nearly all language
models. Many studies have led to performance im-
provements by attempting to inject knowledge into
self-attention, based on the understanding that it
learns based on relationships between tokens (Hu
et al., 2023; Kaddari and Bouchentouf, 2023; Xie
et al., 2023; Zhao et al., 2024). However, an impor-
tant question remains: Can we leverage the senti-
ment lexical features to enhance the self-attention
mechanism and gain a deeper understanding of the
relationships between semantically meaningful to-
kens?

Many studies have investigated the methods of
knowledge fusion on LMs to enhance performance
in natural language understanding tasks (Sun et al.,
2019; Liu et al., 2020; Wang et al., 2023). Knowl-
edge injection techniques can be applied to any part
of the LMs (Colon-Hernandez et al., 2021; Wei
et al., 2021). Among the many methods, we intro-
duce a method to convert lexical sentiment features
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into a computable matrix (Sentiment Lexical Atten-
tion), which is then induced into a linear combina-
tion with the Self-Attention. We denote this fused
attention mechanism as Sentiment-Fused Attention
(Figure 1). For injecting Sentiment-Fused Atten-
tion well on attention score, we partially follow Xia
et al. (2021)’s way, which proposes a method of
guiding the attention output by injecting similarity
knowledge into the attention score.

In Section 3, we suggest our novel approach of
injection, pointing out Xia et al. (2021)’s injection
methods might have the potential to distort the re-
lationships of tokens. Furthermore, the process
of extracting Sentiment Lexical Features from the
Polarity Score of the Lexicon Corpus and deriv-
ing them into a fusible matrix is elaborately de-
scribed in Section 3. We believe our method of
injection is meticulously formulated to augment
the weights between tokens with similar sentiment
features. In Section 4, we substantiate the effec-
tiveness of our injection method through experi-
ments, simultaneously empirically demonstrating
that it yields stable performance improvements,
unlike Xia et al. (2021)’s approach. To the best
of our knowledge, our results represent the state-
of-the-art on the Naver Sentiment Movie Corpus
(NSMC)1, which is widely regarded as the leading
benchmark for sentiment analysis in the Korean
language. Additionally, experimental observations
reveal the effectiveness of sentiment lexical fea-
tures in out-of-domain tasks. In Section 6, we in-
vestigate the impact of Sentiment-Fused Attention
on attention by statistically examining the attention
dynamics of the CLS token (serving as the classi-
fier) and demonstrate through analysis that it exerts
significant influence.

The main contribution of our work are as fol-
lows:

• We propose the way of inducing Sentiment
Lexical Attention from the semantic-polarity
score, which means that any corpus contain-
ing the polarity information could follow our
work for the enhancement on downstream
tasks.

• We establish a mathematical formula that com-
bines two different attention matrix. The theo-
retical underpinnings and empirical evidence
supporting this approach are demonstrated
through experiments.

1https://github.com/e9t/nsmc

• We achieve a state-of-the-art performance on
NSMC benchmark.

2 Related Work

Previous research has extensively investigated the
injection of knowledge into self-attention based
language models to augment its language represen-
tation prowess (Wang et al., 2023). In this chapter,
we introduce prior research on knowledge graph-
based approaches, which are most commonly uti-
lized for Knowledge Injection, and discuss how
knowledge integration has been approached from
the perspective of Lexical Semantics. Finally, we
justify the validity of our research by introducing
prior studies related to self-attention distributions.

Infusing Knowledge Graph into the Self-
Attention Mechanism Zhang et al. (2019) pio-
neered the development of the ERNIE model, an in-
novative approach that employs knowledge integra-
tion to enhance language representation. Liu et al.
(2020) propose K-BERT with knowledge graphs,
in which triples are injected into the sentences as
domain knowledge. Peters et al. (2019) present
KnowBERT, a model that integrates knowledge
bases (KBs) into the pre-trained BERT model. Xu
et al. (2020) utilize external entity descriptions to
provide contextual information for knowledge un-
derstanding task. Yu et al. (2022) propose JAKET,
the framework to model both the knowledge graph
and language model. Ostendorff et al. (2019) com-
bine text representations with metadata and knowl-
edge graph embeddings to enhance BERT perfor-
mance for document classification tasks.

Lexical Semantics Approach Xia et al. (2021)
induce Word Similarity Matrix based on the sim-
ilarity of lexical pair from the semantics role in
WordNet. They inject Word Similarity Matrix di-
rectly into BERT’s attention. Zhang et al. (2020)
propose SemBERT, which integrates explicit con-
textual semantics from pre-trained semantic role
labeling. Wu et al. (2021) also introduce SIFT,
which incorporate explicit semantic structures into
the training paradigm. Yin et al. (2020) propose
SentiBERT, which incorporates contextualized rep-
resentation with binary constituency parse tree to
capture semantic composition.

Distribution of Self-Attention Several stud-
ies explore the characteristics of self-attention
distribution and their implications for enhanc-
ing transformer-based Pre-trained Language Mod-
els (PLMs). Gong et al. (2019) investigate the
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self-attention distribution within BERT models,
demonstrating that the distribution tends to be fo-
cused around the token’s position and the start-of-
sentence token. They also find striking similari-
ties in the attention distributions across the lower
and upper layers. Kovaleva et al. (2019) propose
that selectively disabling attention in certain heads
can actually enhance the performance of fine-tuned
BERT models. This discovery suggests the po-
tential redundancy and over-complexity in the cur-
rent attention mechanism. Additionally, Shi et al.
(2021) present empirical evidence that the diagonal
elements of the self-attention matrix, representing
the attention of each token to itself, can be removed
without compromising model performance. This
finding further emphasizes the importance of inter-
token attention over self-attention in PLMs.

3 Direct Injection of Sentiment Lexical
Attention into Self-Attention

In this investigation, we enhance the existing
Self-Attention mechanism by embedding Senti-
ment Lexical Attention within its attention matrix,
thereby integrating sentiment-related connections
among tokens. Sentiment Lexical Attention is con-
ceptualized through the quantification of semantic-
polarity similarity among token pairs, established
via the dot product computation of their context po-
larity vectors. This process engenders a semantic-
polarity similarity matrix that meticulously delin-
eates the sentiment linkages inherent in tokens
within a specific input sequence, ensuring a nu-
anced comprehension of these interrelations. No-
tably, a pronounced amplification of polarity sim-
ilarities is observed among tokens sharing analo-
gous sentiment properties, with the similarity val-
ues delineated within a spectrum ranging from 0 to
1.

By leveraging this semantic-polarity similar-
ity as Sentiment Lexical Attention, we could di-
rectly inject this information into attention scores.
This methodology enables us to potentially refine
the attention mechanism by injecting sentiment-
associated values between tokens. Consequently,
this process facilitates the generation of a more
informed representation of the sentiment relation-
ships within sentences.

3.1 Knowledge-Guided Attention Approach
Proposed by Xia et al. (2021)

Xia et al. (2021) proposed a methodology for

directly incorporating knowledge into the self-
attention mechanism by utilizing a Word Similarity
Matrix. Their main objective is to enhance the fo-
cus of BERT on word pairs that demonstrate seman-
tic similarity. To calculate the Attention Weight,
they utilize the Similarity Matrix, which allows
the model to assign higher weights to tokens with
high similarity. The conventional definition of Self
Attention can be described as follows:

Self Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V,

where Q represents the query matrix, K represents
the key matrix, V represents the value matrix, and
dk represents the dimensionality of the key matrix.
Xia (2021)’s Knowledge-Guided Attention calcu-
lates the Hadamard product of the QKT using the
similarity matrix S:

score = QKT ⊙ S

SelfAttention(Q,K, V ) = softmax
(
score√

dk

)
V.

However, the Hadamard product of S and QKT

in the self-attention mechanism can potentially lead
to issues, particularly when negative values are
present in the attention score output. The nature
of the Hadamard product can cause the loss of
significance of certain elements if negative atten-
tion scores exist. This can dampen the importance
of positive similarity values and result in an un-
intentional representation of token relationships.
To address this, non-linear transformations or the
addition of bias terms to the attention scores is nec-
essary to ensure more reliable and stable attention
distributions.

3.2 Sentiment-Fused Attention
We propose a novel concept called Sentiment-
Fused Attention, which presents an advanced for-
mulation for incorporating sentiment knowledge
into the self-attention mechanism. Building upon
the work of Xia et al. (2021), we modify the injec-
tion of knowledge to mitigate the risks associated
with the Hadamard product. Instead of using the
Hadamard product, we employ a summation oper-
ation to combine the Sentiment Lexical Attention
with the attention scores. This alteration effectively
integrates the knowledge without distorting token
relationships. By using summation, we retain the
positive characteristics of the original model while
addressing the issues related to negative attention
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Figure 2: Pictorial Illustration of Sentiment Lexical Attention Induction from Input Variables Using Sentiment
Information Sourced from the Lexicon Dataset

Figure 3: Visualizing the Linear Combination of Sen-
timent Lexical Attention and Original Attention Score
Matrix

scores. This approach ensures a more accurate and
stable representation of token relationships, result-
ing in more reliable attention distributions.

3.2.1 Leveraging Semantic-Polarity Similarity
Score as Sentiment Lexical Attention

To leverage semantic-polarity similarity, we intro-
duce the notion of Total Sentiment, denoted as
λ(x) ∈ R3

(0,1), for each token x in an input sen-
tence. The context polarity λ(x) is defined as a
combination of aspect polarity vectors θAP , aspect-
agnostic polarity vectors θP , and intensity values
θI of words or phrases containing x. We compute
Total Sentiment by Laplace smoothing the aggre-
gate of aspect polarity vectors θAP and taking the
product of aspect-agnostic polarity vectors θP and
intensity values θI . We denote VL,x(⊂ VL) as a set
of words or phrases containing token x, then Total
Sentiment of the token is represented as follows,

λ(x) = LS(
∑

v∈SL

(θP (v)+θI(v)θAP (v))IVL,x
(v))

These modifications allow us to incorporate Sen-

timent Lexical Attention effectively, leading to im-
proved attention mechanisms that provide a more
accurate and stable representation of token relation-
ships.

If there is no word or phrase containing a token
x in SL, we set λ(x) to a neutral sentiment vector,
(13 ,

1
3 ,

1
3). This can be expressed as follows:



LS(

∑
v∈VL,x

λ(v)) if VL,x ̸= ∅,

(13 ,
1
3 ,

1
3) if otherwise.

Additionally, we define the semantic-polarity
similarity σij (represented as σ(xi, xj)) as the prod-
uct of the context polarities λ(xi) and λ(xj) for
tokens xi and xj , respectively (Figure 2).

σij = σ(xi, xj) = λ(xi) · λ(xj)
3.2.2 Injection of Sentiment Lexical Attention

into Attention Scores for
Sentiment-Fused Attention

The formulation of Sentiment-Fused Attention in-
volves a linear combination of Sentiment Lexical
Attention, denoted as σij , and the initial atten-
tion score, represented by QKT

√
dk

. This combina-
tion takes place during the forward propagation of
QKT
√
dk

, prior to its non-linear activation through the
softmax function (Figure 3). The formula for the
attention distribution is as follows:

softmax

(
QKT

√
dk

+ σij

)
· V.

To stabilize the range of σij , we include a scaling
factor,

√
dk, in the denominator. This architectural

design ensures that the distribution of the original
attention score outputs is preserved while mitigat-
ing the impact of Sentiment Lexical Attention.

softmax

(
QKT

√
dk

+
σij√
dk

)
· V
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Throughout the training process, σij consistently
promotes similar tokens to have higher values. To
ensure this consistency, we set σij as a constant,
thereby providing the model with a unidirectional
stream of information. By doing so, σij contin-
ues to provide consistent information about the
relationships among similar tokens to the model.
During the training procedure, σij consistently in-
duces high values for similar tokens, maintaining a
reliable signal throughout the training process.

3.3 CARBD-ko dataset

CARBD-ko (A Korean Contextually Annotated
Review Benchmark) dataset (Jang et al., 2024)
is a comprehensive dataset (SL = {Xi, θi}) that
includes reviews (Xi) paired with corresponding
sets of sentiment factors (θi) for words or phrases
(vj) in the reviews. These sets consist of aspect-
agnostic polarity attribute vectors (θP (vj)), aspect
polarity attribute vectors (θAP (vj)), and associated
intensity information of polarity values (θI(vj)) for
each word or phrase (vj) within the reviews. Both
the aspect-agnostic and aspect polarity vectors are
represented as three-dimensional one-hot vectors,
which correspond to the polarity values of -1, 0,
or 1. For example, a polarity value of 1 is repre-
sented by the vector (1, 0, 0). The set of all words
or phrases having sentiment factors is denoted as
VL. Leveraging the CARBD-ko dataset, our ap-
proach focuses on the extraction of context polarity
vectors.

4 Experiments

4.1 Sentiment Classification Task

Our study focuses on conducting experiments in
the domain of Sentiment Analysis, which pro-
vides a natural application for leveraging pre-
existing knowledge in the field of natural lan-
guage understanding. Sentiment classification
tasks typically involve binary classification, distin-
guishing between positive and negative sentiments.
Transformer-based models have shown high per-
formance on such tasks. In our case, we evalu-
ate the language model’s performance on Senti-
ment Classification using the NSMC (Naver Sen-
timent Movie Corpus) benchmark dataset, which
is widely used in Korean sentiment analysis work.
The dataset consists of 200K reviews, with 150K
reviews for the training set and 50K reviews for
the test set. To assess the broader implications
of our approach, we examine the effectiveness of

Sentiment-Fused Attention in tasks that extend be-
yond sentiment classification.

4.2 Out-of-Domain Tasks

In addition to sentiment classification, we conduct
experiments on diverse out-of-domain downstream
tasks, including KorNLI (Ham et al., 2020), PAWS-
ko (Yang et al., 2019a), Hate Speech Detection
(Moon et al., 2020), and Question-Pair benchmark2.
These tasks are commonly used to evaluate the
overall performance of Korean language models.
By evaluating our approach on these tasks, we aim
to determine the generalizability and applicability
of the Sentiment Lexical Attention and understand
its impact on performance across various out-of-
domain tasks.

4.3 Scaling Factor and Attention Head
Configuration

We design a suite of experiments consisting of four
distinct scenarios on NSMC benchmark. These
scenarios involve different configurations of the
scaling factor

√
dk and the injection scope of the

Sentiment Lexical Attention. The objective is to
quantify the influence of the Sentiment Lexical
Attention on attention mechanisms.

The first setting involves the direct injection of
values from the Sentiment Lexical Attention into
all attention heads across all layers without nor-
malization by

√
dk. The second setting modifies

the approach by normalizing the Sentiment Lexical
Attention values σij with

√
dk to constrain their

range. The third and fourth scenarios exclusively
inject the Sentiment Lexical Attention σij into the
final attention head (Attlast) across all layers. The
fourth scenario further reduces the range of the ex-
ternal knowledge values through the application of√
dk.
Our working hypothesis suggests that if the use

of
√
dk leads to superior results compared to alter-

native approaches, there may be a positive correla-
tion between the efficacy of σij and overall model
performance. On the other hand, if enhanced per-
formance is observed when solely activating the
last attention head, it could indicate that a more
targeted application of σij yields outputs that are
more representative of the context, contributing to
more effective convergence of the model’s objec-
tive loss.

2https://github.com/songys/Question_
pair
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NSMC ko-electra kr-electra kc-electra xlm-roberta-base kr-bert

Baseline 90.63 91.17 91.97 89.49 90.1
Xia et al. (2021) 90.06(-0.57) 91.11(-0.06) 92.10(+0.13) 89.17(-0.32) 89.35(-0.75)∑

Att +
√
dk 91.18(+0.55) 91.73(+0.56) 92.6(+0.63) 90.42(+0.93) 90.19(+0.09)∑

Att 91.32(+0.69) 91.82(+0.65) 92.56(+0.59) 90.47(+0.98) 90.17(+0.07)
Attlast +

√
dk 91.17(+0.54) 91.78(+0.61) 92.56(+0.59) 90.55(+1.06) 90.3(+0.2)

Attlast 91.24(+0.61) 91.82(+0.65) 92.65(+0.68) 90.33(+0.84) 90.23(+0.13)

Table 1: Accuracy of Performance on NSMC dataset

Model µ σ σ2

∑
Att +

√
dk 0.596 0.109 0.33∑

Att 0.552 0.091 0.301
Attlast +

√
dk 0.582 0.071 0.267

Attlast 0.600 0.094 0.306

Table 2: Analysis of Performance Variations via Statis-
tical Configuration

We will employ statistical analysis to identify
the scenarios that yield acceptable performance.
Subsequently, we intend to assess the performance
of these optimized scenarios in other out-of-domain
contexts.

4.4 Models and Hyper-Parameters

To conduct our experiments, we utilize four
prominent Korean Transformer Encoder-based pre-
trained language models (ko-electra (Park, 2020),
kr-electra (Lee and Shin, 2022), kc-electra (Lee,
2021), kr-bert (Lee et al., 2020)), as well as a multi-
lingual model (Conneau et al., 2019). The baseline
performance of each model on the NSMC task is
shown in Table 1, which serves as our initial refer-
ence point for comparison. To further improve the
performance of our models, we engage in hyper-
parameter tuning. This involves adjusting the learn-
ing rate within a range of 1e-5 to 5e-5 and extend-
ing the number of training epochs from 3 to 10. By
employing this rigorous setup, we aim to ensure
that our experimental results accurately capture the
potential benefits of our proposed approach.

4.5 λ(x) Initialization

In our experimental setup, we extract the context
polarity λ(v) from the CARBD-ko dataset to ini-
tialize the context polarity λ(x) for individual to-
kens xi, aligned with the appropriate tokenizer
for each language model. However, in real-world
datasets, it is possible for previously unseen tokens
xi to appear. For such cases, we initialize all λ(xi)
to 1

3 , as described in Section 3.3.1.
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Figure 4: Appearance Rates of Initialized Tokens across
5 Downstream Tasks

When a significant number of tokens are initial-
ized with 1

3 , it becomes challenging to establish
a clear correlation between improved model per-
formance and the use of σij . Figure 4 provides
insights into the appearance rates of tokens that
have been initialized by σij across five different
tasks. As depicted in Figure 4, there are minimal
variations observed between tasks and models, with
most of the rates centered around 50%. Notably,
the results on the NSMC dataset exhibit consistent
stability. This finding underscores the significance
of Sentiment Lexical Attention on attention, em-
phasizing that its impact cannot be disregarded.

5 Result

5.1 NSMC

The evidence in Table 1 emphatically underscores
the advantage of injecting Sentiment Lexical At-
tention during fine-tuning, leading to a consistent
improvement in performance across all four scenar-
ios enumerated in Section 4.3, as compared to the
baseline models and Xia et al. (2021)’s way. An
intriguing observation lies in the fact that Xia et al.
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Downstream
Tasks

ko-electra kr-electra kc-electra xlm-roberta-base kr-bert

KorNLI baseline 82.24 82.51 82.12 79.92 77.13
+injection +83.25(+1.01) 82.48(-0.03) 82.07(-0.05) 80.07(+0.15) 79.3(+2.17)

PAWS baseline 84.45 82.05 76.5 82.95 80.35
+injection 85.35(+0.9) 81.3(-0.75) 76.9(+0.4) 83.1(+0.15) 80.65( +0.3)

Hate-Speech baseline 67.45 73.2 73.67 64.06 66.45
+injection 67.73(+0.28) 73.04(-0.16) 73.46(-0.21) 66.02(+1.96) 66.67(+0.22)

Question-Pair baseline 95.25 95.51 95.12 93.8 94.591
+injection 95.51(+0.26) 95.51(0) 96.04(+0.92) 94.06(+0.26) 94.591(0)

Table 3: Accuracy of Performance Evaluation of Models on Four Out-of-Domain Tasks. We inject σij exclusively
into the last attention head of each layer with scaling factor

√
dk

(2021)’s injection method and our approach yield
entirely distinct outcomes. As previously noted
in Section 3.2, we pointed out the potential for
distortion in the mathematical derivations of Xia
et al. (2021)’s method, and this has manifested in
empirical results (Table 1).

Among the models, the xlm-roberta-base model
illustrates the most substantial performance en-
hancement, whereas the kr-bert model exhibits a
modest performance gain. The remaining three
models demonstrate performance amplifications
exceeding 0.5% across all investigated scenarios.
When considering the magnitude of the NSMC
benchmark’s test dataset (50K), these improve-
ments are of considerable significance, indicating
a potential escalation in the number of correct pre-
dictions varying from an average of 250 to almost
500 sentences.

Notably, the kc-electra model, upon the injection
of Sentiment Lexical Attention into ATTlast with-
out the utilization of

√
dk, achieves an accuracy

metric of 92.65%. To the best of our knowledge,
this represents a state-of-the-art (SoTA) result for
the NSMC benchmark. These findings highlight
the effectiveness of directly injecting sentiment
knowledge into the attention mechanism during
the training phase, leading to improved model per-
formance.

5.2 Other Downstream Task

Table 2 indicates that, on average, the Attlast sce-
nario results in the most significant performance
improvements. The configuration of Attlast+

√
dk

demonstrates the smallest standard deviation and
variance, indicating its stability across a diverse
range of models. Therefore, we adopt the
Attlast+

√
dk configuration to inject knowledge

into out-of-domain tasks.
In Table 3, out of the 20 cases examined, 13 show

an increase in performance, 5 show a decrease,
and 2 maintain their performance. Interestingly,
these performance increases in different domains
occur despite the absence of a direct correlation be-
tween the domain and the σij values established in
our experiments. This suggests that the similarity
between tokens can facilitate a model’s decision-
making processes. However, the lack of consis-
tent performance gains across all models, as seen
in the NSMC benchmark, highlights the need for
task-specific knowledge development. One notable
aspect of our results is the variability and model-
dependency observed in the injection of the senti-
ment knowledge. Performance decreases are ex-
clusively observed in the kr-electra and kc-electra
models, while other models either maintain or im-
prove their performance. It is worth mentioning
that both the kr-electra and kc-electra models con-
sistently exhibit stable performance enhancements
on the NSMC task.

Based on these findings, we conclude that di-
rectly injecting sentiment knowledge into the train-
ing process may lead to varying performance out-
comes depending upon the specific model. If the
knowledge, however, is logically structured and has
a direct causal link with the task, it has the potential
to yield stable performance improvements.

6 Dissecting the Impact of σij on
Attention Dynamics: An In-depth
Analysis Centered on the CLS Token

In this section, we investigate the differences in
standard deviation between the baseline model and
the Attlast +

√
dk model concerning the CLS to-

ken at each layer. Our approach involves the direct
injection of Sentiment Lexical Attention into the
attention scores. We hypothesize that this injection
of knowledge will lead to alterations in the relation-
ship centered on the CLS token, which serves as
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Figure 5: Layer-wise Distributional Differences in Five Baseline Models and the Attlast+
√
dk Models, Centered on

CLS Tokens. The dashed line represents the baseline models, while the solid line corresponds to the Attlast +
√
dk

model.

the representative vector for the subsequent classi-
fier. To test this hypothesis, we conduct an analysis
of the standard deviation of attention scores sur-
rounding the CLS token at each layer, aiming to
understand the impact of σij .

For statistical analysis, we examine the standard
deviation of attention scores between the CLS to-
ken and other tokens in both the baseline model
and the Attlast +

√
dk model. We conduct this

analysis layer-by-layer while processing the 50K
test dataset from the NSMC dataset. By compar-
ing the standard deviation of attention scores, we
aim to understand how the attention patterns of the
CLS token change when Sentiment Lexical Atten-
tion is incorporated into the model. This analysis
provides insights into the impact of knowledge in-
jection on the attention mechanism and its effect on
the relationship between the CLS token and other
tokens.

Figure 5 demonstrates that the deviation between
the baseline models and the Attlast +

√
dk model,

specifically regarding the CLS tokens, primarily
manifests in the alterations in the distribution of
attention scores between the CLS token and other
tokens. The presence of such disparities between
models that differ solely based on the injection of
σij in their training processes strongly suggests
a significant influence of σij on the dispersion of
attention scores. Interestingly, the distribution of at-
tention scores from other tokens towards the CLS
token remains mostly unchanged.

These findings can be attributed to the fact that
the CLS token does not derive its context polarity
λ(x) from λ(v), resulting in minimal differences
in the attention weights towards the CLS token

compared to the baseline models. On the other
hand, tokens other than the CLS token, influenced
by λ(v), consistently induce modifications in the
attention score distribution throughout the training
process, which likely affects the final attention dis-
tribution of the model. Through this analysis, we
propose that these shifts in attention distribution
serve as the primary catalyst for the performance
alterations depicted in Tables 1 and 2.

7 Discussion

In this paper, we have introduced a novel ap-
proach for enhancing the self-attention mechanism
of Transformer-based models through the injec-
tion of Sentiment Lexical Attention, derived from
semantic-polarity scores. Our results demonstrate
significant improvements in sentiment classifica-
tion, particularly in the Korean language context.
However, the applicability and challenges of this
method across different tasks and languages, as
well as its technical novelty, warrant further discus-
sion.

7.1 Applicability to Other Languages

Our approach’s effectiveness in the Korean lan-
guage context opens up intriguing prospects for its
applicability to other languages. Firstly, the fun-
damental principle of leveraging semantic-polarity
scores for Sentiment Lexical Attention is language-
agnostic and can be adapted to any language with
available sentiment lexicons. However, the adapta-
tion process requires careful consideration of lin-
guistic nuances and sentiment expression in tar-
get languages. It involves meticulous curation of
sentiment lexicons that accurately reflect the senti-

341



ment polarity in diverse linguistic contexts. Future
work will explore the cross-linguistic applicability
of our method, focusing on curating high-quality
sentiment lexicons and adjusting the model to ac-
count for language-specific sentiment expression
patterns.

7.2 Addressing Tasks Beyond Sentiment
Analysis

The current study focuses on sentiment classifica-
tion, leveraging semantic-polarity scores. While
this is a direct application of Sentiment Lexical
Attention, extending our approach to tasks with-
out a clear relevance to sentiment poses challenges.
To enhance the versatility and scalability of our
approach, we are exploring strategies to general-
ize the concept of lexical feature-based attention.
Future research could investigate domain-specific
knowledge injection, where domain-related lexical
features are derived and injected similarly to sen-
timent features. Additionally, integrating multiple
types of lexical knowledge simultaneously could
lead to a more robust and versatile model applica-
ble across a wider range of tasks.

7.3 Technical Novelty and Contribution

While our approach builds upon existing work by
Xia et al. (2021), it introduces significant innova-
tions that extend beyond their framework. Specifi-
cally, the method of deriving Sentiment Lexical At-
tention from semantic-polarity scores and integrat-
ing it into the self-attention mechanism represents
a novel contribution to the field. Our approach also
presents a comprehensive empirical analysis across
multiple architectures and tasks, establishing the
effectiveness and robustness of our method. The
novelty of our work lies in the specific application
of lexical sentiment knowledge in enhancing the
attention mechanism.

8 Conclusion

In our study, we introduced a new approach to in-
ject sentiment knowledge into the self-attention
mechanism of Transformer-based models. This ap-
proach yielded significant improvements, particu-
larly in Korean sentiment classification benchmark,
where we achieved a new state-of-the-art perfor-
mance. Moreover, the promising results obtained
across various out-of-domain tasks highlighted the
general applicability of our method. Although the
observed performance variations were task- and

model-dependent, they underscored the substantial
potential of incorporating human-derived knowl-
edge into Transformer-based language models. Fur-
thermore, in our examination of the CLS token, we
could ascertain the direct impact of knowledge in-
jection on the layer-wise attention distribution. The
approach presented in this study opens the door
for further exploration of effective techniques for
injecting human knowledge into language models.

Limitations

Despite the promising results obtained in our study,
it is important to acknowledge several limitations
that should be addressed. Firstly, the application
of the Sentiment Lexical Attention in our method
assumes a direct relevance of the semantic-polarity
scores to the specific task being addressed. This as-
sumption limits the versatility and scalability of our
approach, as the selection and application of rele-
vant knowledge may require careful consideration
and may not be readily available for all tasks. Sec-
ondly, the variation in performance observed across
different models indicates that the efficacy of our
approach may not be uniform across all types of
Transformer-based models. It is necessary to con-
duct preliminary tests to assess the compatibility
and effectiveness of our method with a given model
before deploying it in real-world scenarios.

Thirdly, the success of our approach relies heav-
ily on the quality and accuracy of the Sentiment
Lexical Attention being employed. Tasks that re-
quire high-precision or complex human knowledge
can be challenging, as even small inaccuracies in
the knowledge may lead to significant deviations in
performance. Careful attention should be given to
the selection and curation of the Sentiment Lexical
Attention to ensure its reliability and relevance to
the task at hand.

Lastly, while we have made progress in under-
standing how to integrate pre-annotated sentiment
values into Transformer models, there is still much
to explore and understand about the precise influ-
ence of this knowledge on the model’s training and
decision-making processes. Further research and
analysis are needed to gain a comprehensive under-
standing of these dynamics, particularly in complex
real-world applications. Future work could focus
on addressing these limitations by developing more
adaptable knowledge injection mechanisms or con-
ducting a more comprehensive analysis of how sen-
timent information influences model behavior.
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By addressing these limitations, we can fur-
ther enhance the effectiveness and applicability
of integrating Sentiment Lexical Attention into
Transformer-based models, opening up new av-
enues for advancements in NLP and related fields.

Ethics Statement

This research study follows ethical guidelines for
conducting experiments following ACL rules. It
utilizes publicly available datasets and sentiment
lexicons, ensuring user privacy and avoiding any
ethical concerns. The focus is on enhancing lan-
guage models through the injection of the semantic-
polarity scores, without manipulation or decep-
tion. The research does not involve human sub-
jects or human-generated data. The study acknowl-
edges potential biases and takes steps to mitigate
them. Transparency and ethical considerations are
paramount in the research process.
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Abstract

The majority of Neural Semantic Parsing
(NSP) models are developed with the assump-
tion that there are no concepts outside the
ones such models can represent with their
target symbols (closed-world assumption).
This assumption leads to generate hallucinated
outputs rather than admitting their lack of
knowledge. Hallucinations can lead to wrong
or potentially offensive responses to users.
Hence, a mechanism to prevent this behavior is
crucial to build trusted NSP-based Question
Answering agents. To that end, we propose
the Hallucination Simulation Framework
(HSF), a general setting for stimulating and
analyzing NSP model hallucinations. The
framework can be applied to any NSP task
with a closed-ontology. Using the proposed
framework and KQA Pro as the benchmark
dataset, we assess state-of-the-art techniques
for hallucination detection. We then present
a novel hallucination detection strategy that
exploits the computational graph of the NSP
model to detect the NSP hallucinations in the
presence of ontology gaps, out-of-domain
utterances, and to recognize NSP errors,
improving the F1-Score respectively by ∼21%,
∼24% and ∼1%. This is the first work
in closed-ontology NSP that addresses the
problem of recognizing ontology gaps.
We release our code and checkpoints
at https://github.com/amazon-science/

handling-ontology-gaps-in-semantic-parsing.

1 Introduction

Semantic Parsing (SP) is one of the long-standing
tasks in Natural Language Understanding, aiming
at mapping complex natural language to machine-
readable languages (e.g., SQL, SPARQL, KoPL
(Cao et al., 2022), and so on). These languages,
which we will refer to as Meaning Representa-
tion Languages (MRLs), are designed to be pre-
cise representations of the natural language’s in-
tent, enabling efficient querying of a Knowledge

Base (KB) to retrieve pertinent answers in a Ques-
tion Answering (QA) agent. Despite the advent of
the Transformer architecture (Vaswani et al., 2017),
which has enabled semantic parsers to achieve ex-
traordinary performance (Cao et al., 2022; Bai
et al., 2022; Conia et al., 2021), Semantic Pars-
ing’s crux remains the handling of out-of-ontology
queries; in other words, since SP models and tasks
(such as KQA-PRO (Cao et al., 2022), LC-QUAD
2.0 (Dubey et al., 2019), and QALD-9 (Cui et al.,
2022)) hold a closed-world assumption, they will
always try to map an utterance to a MRL even if
there is no valid representation for that utterance
in the target ontology, leading to wrong answers to
be delivered to the model’s users, called hallucina-
tions.

In fact, the closed-ontology task formulation en-
forces NSP models to always produce interpreta-
tions without an option to admit their lack of knowl-
edge, inducing the models to hallucinate. There-
fore, the resulting models produce hallucinated out-
puts when they receive an utterance that requires
symbols outside of their ontology, resulting in a
wrong and potentially offensive answer. It is then
of paramount importance to develop a system able
to detect and prevent these hallucinations, so that
users are not exposed to such mistakes. Hallucina-
tions in NSP differs with the notion of hallucina-
tions in Natural Language Generation, we report
the differences in Appendix A.

To better understand different types of halluci-
nations in NSP, we classify errors into four macro
categories. Given a semantic Q&A parsing task T ,
a dataset D, and an ontology O, hallucinations of a
model trained over D are classified as:

• in-ontology NSP errors: utterances within
the scope of T and where O contains all
the symbols required to produce the correct
MRLs, but for which the NSP model produces
an incorrect MRL. For example, the utterance

“What is the capital of France?" is in-ontology
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Figure 1: The proposed pipeline: (1) the NSP model (KQA-PRO Bart model) receives the question from the user
and produces the corresponding MRL; (2) the Hallucination Detection Model extracts features from the NSP model
and decides whether to deliver the MRL to the user or not.

if O contains the symbols for “France” and
“capital of ”. However, if the NSP model er-
roneously translates the utterance to an MRL
referencing e.g. a symbol for “weather of”
instead of “capital of”, this type of hallucina-
tion is categorized as in-ontology NSP error.
We will refer to this kind of errors as NSP
errors for brevity.

• out-of-ontology: utterances that are within T
but for which O does not contain all the sym-
bols required to produce the correct MRLs
(ontology gap). For example, “What is the
crime rate of France?", is out-of-ontology if
O does not contain a symbol for the predicate
“crime-rate-of ”. In this case, the NSP model
will hallucinate another symbol, e.g. it could
generate the MRL for “what is the population
of France” instead.

• out-of-domain (OOD): utterances outside the
scope of T . For example, if T = factual QA,

“Switch on the lights!” is OOD because it is
not a factual question. We expect an empty
MRL because O does not have the necessary
symbols to satisfy the out-of-ontology user
utterance and the NSP model is trained to per-
form the task T .

• non-executable output: in this case, the NSP
model will output a MRL that cannot be exe-
cuted and it thus cannot lead to an answer.

We show actual closed ontology Semantic Pars-
ing hallucination examples in Figure 2 and we re-
port more in Appendix H. High performance in
detecting OOD utterances in NSP can be achieved
(Lukovnikov et al., 2021; Lang et al., 2023), and
non-executable outputs are trivially detectable as
they fail to parse; but identifying both in-ontology
and out-of-ontology errors can be hard even for ex-

perienced annotators, since the sheer size of most
popular ontologies makes it impractical for a hu-
man to have a complete view of all the ontology
symbols1. Moreover, to the best of our knowledge,
there are no works addressing this specific NSP
issue.

The research question that we want to address is:
what is the most effective strategy to prevent a NSP-
based QA agent to deliver wrong, and potentially
offensive, answers to its users? To this end, we
develop the Hallucination Simulation Framework
depicted in Figure 1; in detail, our main contribu-
tions are:

• We propose a framework to stimulate, analyze
and detect hallucinations in closed ontology
NSP;

• We propose the Hallucination Detection
Model (HDM), an architecture that analyzes
an NSP model to determine whether it is hal-
lucinating or not using several hallucination
detection signals;

• We introduce a model’s Activations as hal-
lucination detection signals; when combined
with other signals, they improve the Macro
F1-Score by up to 21% in ontology gaps, 1%
in NSP error, and 24% in OOD detection.

To the best of our knowledge, this is the first work
that addresses the ontology gaps problem in a
closed-ontology NSP task.

2 Related Work

When we do not allow models to admit their lack
of knowledge, forcing them to produce an output
even when they do not have the instruments to do
it, they will inevitably hallucinate. In other words,

1e.g., Wikidata has 10k+ properties.
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in generative NLP, when the generated output dis-
plays a misunderstanding of the input utterance by
the model, we say that the model is “hallucinating”.
Typically, models hallucinate in two ways: (1) in-
venting additional information not included in or
related to the input utterance, or (2) confusing a
symbol/word with another one.

One of the biggest assumptions in existing Se-
mantic Parsing tasks is that every input always has
a valid target logical form. In such a setup, mod-
els are always forced to generate a MRL or, in
other words, to hallucinate a wrong understanding,
instead of admitting a lack of knowledge. How-
ever, recently the NLP community has begun to
investigate this closed-world assumption for other
tasks. For example, the Extractive Question An-
swering dataset SQuAD v1 (Rajpurkar et al., 2016)
was built with the assumption that, given each
question-paragraph pair, it is always possible to
find an answer to the question in the paragraph.
This assumption was removed in the second version
of the dataset (Rajpurkar et al., 2018), which in-
cludes questions without an answer. Another field
in which this problem was addressed is entity link-
ing, where models can produce a NIL entity when
they cannot find a suitable entity for a certain men-
tion (Ruas and Couto, 2022). On the other hand,
most of the hallucination detection in NSP works
rely on two confidence estimation techniques: (1)
the Sequence log-probability (also called Confi-
dence Score) (Guerreiro et al., 2022; Dong et al.,
2018), or (2) Monte Carlo Dropout (or Dropout Per-
turbation) (Gal and Ghahramani, 2016; Guerreiro
et al., 2022; Dong et al., 2018).

3 Closed World Assumption in NSP: A
Logical Theory Perspective

The Closed World Assumption (CWA) originates
from logic theory, and it is the assumption that
only the known facts are correct, and what is not
known is false (Reiter, 1981; Keet, 2013). In other
words, the CWA assumes total knowledge over
a domain, implying that all the possible symbols
(e.g., entities and predicates) are known, and that
only the known facts represented using the known
symbols are true. On the other hand, the Open
World Assumption (OWA) makes no assumption
over what is not known; in other words, the OWA
allows “gaps” in the knowledge, e.g. the existence
of unknown symbols or of unknown, but true, facts.

For some tasks, using the CWA is safe. For ex-

Figure 2: We show the output our NSP model trained
without a symbol for the concept of “cause of death".
Given a question that requires this symbol, the model
produces a wrong but executable MRL leading to a
wrong answer served to its user.

ample, Reiter (1981) notes that: “in an airline data
base, all flights and the cities which they connect
will be explicitly represented. If I fail to find an en-
try indicating that Air Canada flight 103 connects
Vancouver with Toulouse I will conclude that it
does not”. For SP models, however, the CWA can
be dangerous. Let’s take the following scenario:
a CWA NSP model’s input is “what is the crime
rate of France”, but the target ontology does not
have a representation for the predicate “crime rate
of”. Since the model is trained under the CWA it
assumes that there cannot be other predicates other
the ones it can access, hence it will (a) ground

“crime rate of” to a different predicate and then (a)
produce a necessarily incorrect representation of
the input. If this incorrect representation happens
to be syntactically correct, it will then be exectuted,
serving a wrong answer to the customer.

This issue is exemplified in Figure 2, where
we take a NSP model trained on the KQA-Pro
dataset (Cao et al., 2022) and we ask it to generate
a MRL for the question “did Chistopher Colum-
bus die from Covid before 2020?”. The absence
of the "cause of death" symbol in the set of the
model’s known symbols leads to an MRL which er-
roneously uses the "date of death" symbol instead.
Even if this MRL is syntactically correct, it mis-
represents the input due to the limitations of the
training set. Since the MRL is executable, it will
lead to the generation of an incorrect answer.

4 Detecting NSP Hallucinations

4.1 Hallucination Simulation Framework
Building on the CWA and OWA assumptions, we
introduce the Hallucination Simulation Framework
(HSF), a dataset-agnostic approach tailored for
closed-ontology NSP tasks. This framework lever-
ages the closed and open world assumptions to
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force a model to hallucinate at inference time. The
model is trained using a “normal” SP dataset hold-
ing the CWA. However, the validation and test sets
will contain MRLs needing symbols not known
to the model at training time, hence forcing it to
hallucinate. This allows to analyse how the model
behaves when unable to produce ontology symbols,
and to develop a number of hallucination detection
strategies to mitigate the issue.

In practical terms, the HSF operates by con-
sidering the ontology used for a CWA SP
dataset Odataset, and decomposing it into two
disjoint sub-ontologies, called Oknown_symbols and
Ounknown_symbols. Oknown_symbols contains the on-
tology symbols that are used to train the model,
while Ounknown_symbols contains the symbols that
are used to stimulate hallucinations; we have that
Oknown_symbols ∪ Ounknown_symbols = Odataset and
Oknown_symbols ∩ Ounknown_symbols = ∅.

These sub-ontologies are used to construct two
datasets, a NSP dataset and an Hallucination De-
tection Dataset (HDD), whose construction is de-
tailed in Section 4.1. The NSP dataset, contain-
ing only Oknown_symbols, is used to train the model,
while the HDD, containing bothOknown_symbols and
Ounknown_symbols, is used to stimulate the model to
hallucinate wrong ontology symbols and develop
hallucination detection strategies (Section 5) .

Thanks to this framework, we can now program-
matically induce hallucinations in a NSP model
at inference time. Thus, we can train, tune, and
test hallucination detection strategies to recognize
unwanted signals from the model.

4.2 Hallucination Detection Dataset

The HDD comprises two types of samples: each
natural language sentence is paired either with
(1) MRLs that require only symbols from the
Oknown_symbols set, or (2) MRLs that require at least
one symbol from the Ounknown_symbols set. To build
the HDD, we first define Ounknown_symbols; then, we
split Ounknown_symbols in three sets, that are used
to build the HDD train, development, and test set.
We report the complete Ounknown_symbols set in Ap-
pendix E.

In the following, we describe the methodology
we followed to we ensure that the out-of-ontology
symbols are sufficiently diverse and challenging,
providing a rigorous test of the hallucination detec-
tion strategies.

Disjoint HDD train, validation and test sets
To ensure that Ounknown_symbols cannot be shared
across train, dev and test set, we create three dis-
joint set one for each data split, as shown in Ap-
pendix E. Furthermore, we eliminate any sentences
that require symbols from multiple out-of-ontology
splits. This allows the development of robust hallu-
cination detection strategies that are able to gener-
alise over unseen ontology symbols.

Diversification of unknown symbols To im-
prove the generalization of our methods, we also
aim to maximize the number of out-of-ontology
symbols across all splits. This is essential, as hav-
ing few unknown symbols might lead hallucination
detection strategies to recognize them throw their
sentence context than isolating the underlying hal-
lucination signal. For this purpose, we place sym-
bols in Ounknown_symbols based on their frequency
of occurrence within the original dataset; we prior-
itize symbols with lower frequency (symbols with
maximum 2 occurrences), as this approach maxi-
mizes the number of unique symbols in the HDD
while maintaining a robust volume of samples for
the NSP training set.

Ensuring Independent Feature Extraction by
Dataset Segregation As detailed above, the
framework employs two datasets: the NSP dataset
and the HDD, each divided into training, dev, and
test splits.

To construct the known symbol portion of the
HDD we used utterances from the NSP dataset. It
is crucial not to include utterances from the NSP
train split, otherwise the hallucination detection
strategies could simply learn to recognize as non-
hallucinated only the utterances that were used to
train the NSP model.

To circumvent this issue, the training and vali-
dation sets of the HDD are built by splitting NSP
validation set. The HDD test set is instead simply
built by appending samples containing the test sym-
bols from Ounknown_symbols to the existing NSP test
set. We depict this process in Figure 3.

Out-Of-Domain sentences Besides out-of-
ontology sentences, also out-of-domain (OOD)
sentences are a common cause of hallucinations
for NSP models. For example, consider a system
trained to answer questions like “In what state
does the Pope live?". Given an input sentence
such as “Set an alarm at 8 am for Monday!"
from a distinct domain (i.e., not a question), the
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Figure 3: Construction of the Hallucination Detection Dataset (HDD). The first row represents the dataset used to
train and test the NSP model, containing only Oknown_symbols. To construct the Oknown_symbols portion of the HDD
while avoiding overfitting of the hallucination detection strategies, we sourced sentences only from the validation
and test splits of the NSP dataset as explained in Section 4.2.

question answering system will always produce
wrong MRLs, because its ontology is not suitable
for this type of utterances. We include OOD
only in the validation and test sets for two main
reasons: 1) to evaluate the zero-shot capabilities in
recognizing OOD utterances as a different source
of out-of-ontology; 2) to avoid the need for specific
training for OOD detection, as addressing the wide
range of potential OOD instances is beyond the
scope of this study. We report the OOD dataset
statistics in Appendix D.

5 Hallucination Detection Strategies

In this Section, we introduce the Hallucination De-
tection Strategies that we use in our experiments.

Autodetect Hallucinations A baseline approach
to detect hallucinations is to enable the NSP model
itself to decide whether to reject the MRL or not,
in a similar fashion to the NIL entity in Ruas and
Couto (2022). Therefore, we add a new ontology
symbol called <Reject-MRL> in the NSP model,
as a label for all the out-of-ontology sentences, i.e.
moving from a CWA approach to a OWA one. In-
stead of using the NSP and HDD datasets, as we
don’t rely on external hallucination detection strate-
gies, we train the NSP model using the fullOdataset,
marking MRLs containing Ounknown_symbols sam-
ples as utterances to reject. In preliminary experi-
ments, this approach resulted in zero true positives.
This happens because the model memorized the ut-
terances marked as out-of-ontology, hence failing
to generalize on the “unseen” unknown symbols in
the development and test set (see Section 4.2 for
how the disjoint train, validation and test sets are
constructed).

Confidence Score Confidence Score (CS) is a
standard method to detect hallucinations (Dong
et al., 2018) that measures the confidence level of a

statistical model about the output it generates. How-
ever, this method relies on the strong assumption
that the model will not be confident when gener-
ating hallucinations, and vice versa. This is not
always guaranteed in practice: as we can see in the
CS distribution in Figure 4, the confidence distribu-
tions of correct and wrong model predictions over-
lap. For this reason, rejecting model predictions
below a certain threshold would not be sufficient to
remove all the wrong MRLs.

To compute the CS, we calculate the Posterior
Probability (PP) of a generated MRL wn, ..., w1

from the beam search tree, and then we normalize it
by the length n of the generated output, by applying
the nth-root.

CS = n
√
PP (wn, wn−1, ..., w1) (1)

We test CS in two ways: (1) by setting a threshold
to the best CS value found in a sample from the
HDD train set that maximizes the hallucination
detection in the HDD dev set; (2) and by using it
as a feature in the Hallucination Detection Model
(HDM) that we will define in Section 6.

Monte Carlo Dropout The Monte Carlo
Dropout (MCD) strategy was introduced by Gal
and Ghahramani (2016): the idea is to use the
dropout technique as a Bayesian approximation
to represent the model uncertainty. Dropout is a
well-known regularization technique that randomly
disables a subset of the neurons in a neural network
layer in order to prevent overfitting. MCD involves
enabling dropout at inference time and running
inference multiple times to create a random pertur-
bation in the model; a small perturbation indicates
that the model is confident with the input, while a
large perturbation suggests a likely mistake from
the model. We follow the formulation by Dong
et al. (2018), using 30 trials, beam size of 2, and
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Figure 4: Overlap between the distributions of correct
predictions, out-of-ontology, NSP errors, and OOD w.r.t.
Confidence Score (CS). The model is overconfident
over wrong predictions, hence the CS is not sufficient
to separate good and Hallucinated MRLs. Specifically,
the CS struggles to distinguish between NSP Errors
and correct predictions (i.e., both types of MRLs that
contains only Oknown_symbols).

taking the variance of the CS value. Similar to CS,
we use the MCD in two ways: (1) identifying a
threshold value that maximizes hallucination de-
tection between out-of-ontology/NSP Errors and
in-ontology, and (2) using it as a feature for the
HDM.

Model Activations Looking at the activations of
the model’s computational graph is a powerful way
to debug neural networks and is usually used for
explainability, such as in the Grad-Cam algorithm
(Selvaraju et al., 2017). For this reason, we propose
for the first time to use the forward activations of
the NSP model encoder at inference time to detect
whether there is a hallucination or not. To encode
the activation features for all layers, we pool the
sequence length and compute the variance. Then,
we use the encoding of the model’s activations as a
feature to recognize the hallucinations in the HDM.
Although it can be argued that both the Autodetect
and Activations strategies use the encoder’s hidden
states, these approaches are different. The first
approach uses only the last hidden states of the
encoder as input to the decoder, which has then the
duty of producing an MRL or the rejection symbol.
On the other hand, in the HDM all the encoder’s
activations are used as input, allowing the HDM to
have a complete view of the hidden states of the
NSP model during the generation.

Hallucination Detection Model The Halluci-
nation Detection Model (HDM) is a neural net-
work trained on the HDD that learns to classify
whether an NSP model is hallucinating or not us-
ing as features the signals extracted from the NSP
models, such as CS, activations, and MCD. The
HDM consists of a MultiHead-Attention and two
feed-forward layers with RELU function, batch
normalization, dropout, and a binary classification
head.We report a Figure of the architecture in Ap-
pendix G, the complete list of hyper-parameters
in Appendix I and hardware infrastructure in Ap-
pendix L.

6 Experimental Setup

Dataset While the HSF is dataset-agnostic, in
our experiments, we use the KQA-PRO dataset
(Cao et al., 2022), based on the KoPL (Knowledge-
oriented Programming Language) MRL; this
dataset is built on top of a large ontology, which
is a subset of Wikidata. We instead sourced OOD
sentences from the TOP v2 Dataset (Chen et al.,
2020), that contains task oriented utterances, such
as “Turn on the lights!".

To create a test set, we merged the train and
the validation set, and we split the data as follows:
60%, 20%, and 20%, respectively, for the train,
validation and test set. The statistics of the HSF
framework applied to the KQA-PRO dataset are
reported in Appendix B.

NSP model Following the KQA-PRO paper, we
train the BART-base model (Lewis et al., 2019),
using the NSP training dataset. We report the hyper-
parameters that we use to train the NSP model in
Appendix M. Note that as the original KQA-PRO
test set is not publicly available, we cannot compare
our results with the original dataset paper.

Evaluation To measure the hallucination detec-
tion capabilities, we use the Macro F1-Score due to
the imbalance of the dataset, as shown in Appendix
D and, E. We compute the individual F1-Score
for each type of hallucination defined in Section
1: in-ontology NSP errors caused by the model
hallucinating wrong symbols from Oknown_symbols,
out-of-ontology errors caused by the need of sym-
bols in Ounknown_symbols to correctly represent the
input, and zero-shot OOD detection. As mentioned
in Section 7, we excluded non-Executable MRLs
from our evaluation protocol because they are triv-
ially detected by simply trying, and failing, to ex-
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Split Answer Accuracy MRL EM

NSP model (baseline) 93% 85%
NSP model + Threshold CS 96% 94%
NSP model + Act. + CS 97% 95%

Table 1: Performance of baseline KQA-PRO BART
model and of the best hallucination detection models
on the NSP task; the NSP model is trained as in (Cao
et al., 2022), and on top of it we apply our hallucination
detection strategies. We compute metrics only on the
executable outputs that lead to an answer to be delivered
to a user; for more details, see Appendix F.

ecute them on the KB. To increase the robustness
of our results, we repeat the training of the HDM
model in all the configurations using 10 different
random seeds, and then we report the mean and the
standard deviation of the F1-Scores.

7 Discussion

We report the performance of our NSP model using
Execution Accuracy and the MRL Exact Match
metric in Table 1. In this work, we focused on
four major causes for hallucinations: in-ontology
NSP errors, out-of-ontology utterances and out-of-
domain utterances. Specifically, we propose the
first work that addresses the problem of ontology
gaps, i.e., exposing an NSP model to utterances
that require unknown ontology symbols to be rep-
resented in the output vocabulary. As mentioned
in Section 1, recognizing ontology gaps is a chal-
lenging task even for experienced annotators due
to the large size of the most popular ontologies.
Our methodology induces ontology gaps and forces
the model to hallucinate programmatically through
a Hallucination Simulation Framework (§4). We
developed a number of hallucination prevention
strategies (§5) to detect and prevent the delivery
of hallucinated answers to users. In Table 2, we
report the individual Macro F1-Score of the tested
systems on the three scenarios: out-of-ontology,
NSP Errors, and zero-shot out-of-domain.

From a baseline where only non-executable
MRLs are not delivered to the user, the HDM with
Activations + CS is our best-performing model, im-
proving answer accuracy by 4% and MRL exact
match by 10%, effectively reducing a user’s exposi-
tion to wrong answers. The HDM with Activations
+ CS’s performance is achieved by increasing the
Macro F1-Score by approximately 21% and 24%
for out-of-ontology and out-of-domain detection
w.r.t. baseline, respectively. On the other hand, the

NSP Errors detection performance is comparable
to that of Threshold CS, with only the HDM with
the Activations + CS + MCD combination showing
a 1% improvement over the baseline in NSP Error
detection. This marginal gain can be attributed to
the limited number of errors produced by our NSP
model over utterances with known symbols only,
which constitutes about 11% of the in-ontology
utterances (see statistics in Appendix J).

However, we can notice that both CS and MCD,
if optimized through the HDM, obtain large gains
in terms of Macro F1-Score. In fact, CS improves
by 17% and 10% in out-of-ontology and out-of-
domain detection, and MCD by 4%, 3%, and 10%
in out-of-ontology, NSP Errors, and out-of-domain
detection. In addition, the HDM can combine mul-
tiple hallucination signals to obtain higher perfor-
mance, as in the case of our most-performing sys-
tem. For further insight, we report the Precision
and Recall over each error category in Appendix
N.

Executable vs Non-Executable MRLs To high-
light the scale of the issue we are tackling, it is
important to measure how many times wrong an-
swers would be served to users without a proper
hallucination detection pipeline. As shown in Ap-
pendix K, in 46.3% of the utterances requiring
Ounknown_symbols the NSP model generates a syntac-
tically valid MRL, which would then be executed,
causing a wrong answer to be delivered to the user.
This happens because NSP models tend to replicate
executable patterns using known symbols from the
training set, even when receiving utterances that
cannot be represented with the known vocabulary.

Effect of the number of changed ontology sym-
bols To further analyze the results, we analyze
the behavior of the NSP model on the halluci-
nated MRLs in Figure 5. Specifically, this analysis
highlights the MRLs where the NSP model added
wrong ontology symbols (left plot), or omitted re-
quired symbols (right plot) from the ground truth
sequence. In the Figure, we show a comparison
between two systems: (1) Threshold CS (the best
non-model based strategy) and (2) HDM with Ac-
tivations and CS (our best model-based strategy),
expressed as a percentage of errors in relation to
the number of modified symbols. The plots sug-
gest that (a) when the model adds symbols, the
hardest errors to detect happen when the model
adds up to 2 unnecessary symbols, leaving ≥ 50%
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Figure 5: In this plot on the y-axis the percentage of remaining error (↓ is better) and on the x-axis we distinguish
between the various hallucinated MRLs that omit (right plot) or add (left plot) incorrect ontology symbols with
respect to the ground truth. Residual error compares two systems: Threshold CS and HDM with Activations and CS.

EXP NAME - END2END out-of-ontology NSP error out-of-domain average

Autodetect (Baseline) 0.490 0.471 0.466 0.476
Threshold CS 98.5% (Baseline) 0.480 0.653 0.456 0.530
Threshold MCD (Baseline) 0.452 0.439 0.428 0.440
ActivationsHDM 0.498 ± 0.013 0.474 ± 0.003 0.466 ± 0.003 0.479
CSHDM 0.648 ± 0.040 0.591 ± 0.023 0.552 ± 0.089 0.597
MCDHDM 0.490 ± 0.001 0.471 ± 0.003 0.541 ± 0.163 0.501
CS + MCDHDM 0.654 ± 0.021 0.617 ± 0.018 0.537 ± 0.030 0.603
Activations + CSHDM 0.701 ± 0.030 0.643 ± 0.027 0.703 ± 0.086 0.682
Activations + MCDHDM 0.496 ± 0.012 0.474 ± 0.004 0.466 ± 0.002 0.479
Activations + CS+ MCDHDM 0.659 ± 0.026 0.660 ± 0.025 0.618 ± 0.077 0.646

Table 2: We report the Macro F1-Score (↑ is better) in the three scenarios: out-of-ontology detection, NSP Error
detection and zero-shot OOD detection. These features are combined (+) concatenating their vector representations.
The superscript HDM indicates the system optimized with the HDM.

of the errors undetected for CS and ≥ 30% for
the HDM; (b) when the model removes symbols,
there seems to be no discernible pattern based on
the amount of removed symbols; and (c) in both
cases, the HDM model performs considerably bet-
ter than the Threshold CS strategy, with a relative
error reduction of ∼50%.

Latency While adding a second neural network
in the QA pipeline might be considered penalising
in terms of latency, it’s worth noting that the HDM
is very small model compared to the main NSP
model. In detail, the HDM requires only 184k
Floating Point Operations (FLOPs), which amounts
to less than 1% of the FLOPs required by the BART-
base architecture of the NSP model, which is 2.49
Billion FLOPs.

8 Conclusions

Current studies of Neural Semantic Parsing (NSP)
models revolve around improving performance on
academic benchmarks, but they do not take into

account the trustworthiness of the model in a real
world scenario where the model is used to serve
answers to users of a QA system. In such scenario,
NSP models can hallucinate syntactically correct,
but semantically wrong MRLs, that can be used
to serve incorrect answers to users. This is partic-
ularly true when users ask questions that require
knowledge beyond the one used by the model’s
target ontology, as in these cases the model simply
cannot generate a correct MRL.

To test NSP models under this more realistic
scenario, we propose the Hallucination Simulation
Framework (HSF), where we programmatically in-
duce NSP models to hallucinate, and then, using the
Hallucination Detection Model, we detect model
errors at inference time using several different sig-
nals, including the model’s activations or Confi-
dence Score, or by using Monte Carlo Dropout.

We find that the best way to prevent detect hal-
lucinations is using the HDM model with Activa-
tions and CS as features, which leads to an average
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improvement of more than 20% w.r.t. a baseline
where the only non-served MRLs are just the syn-
tactically incorrect ones.

Limitations

There are some limitations in this work that do
not concern the framework construction. First of
all, the framework imposes the construction of two
datasets leading to a strong reduction of the train-
ing data. Hence, the framework to work properly
requires a larger dataset. We are eager to expand
our work in the future by taking advantage of the
proposed framework in the following directions:
(1) We pooled the activation sequences and did
not take full advantage of the information in the
sequences. (2) We have not tested the individual
probability of each token in the generated MRL.
(3) We have not tested the HDM with a multi-class
output differentiating between in-ontology, out-of-
ontology, NSP Errors, and OOD. (4) We did not
test with other datasets, ontologies, or MRLs. (5)
Our work has not been tested with other seq2seq
architectures (e.g., mT5, Bart-large) and provides
no multilingual tests.
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A Differences between Hallucinations in
Natural Language Generation and
Neural Semantic Parsing

Hallucinations manifest differently in Neural Se-
mantic Parsing (NSP) versus Natural Language
Generation (NLG) systems. In NSP, hallucinations
occur when the predicted logical form or query dif-
fers substantively from the gold reference form,
despite appearing to be a valid query. This in-
dicates the model fails to accurately capture the
full semantic meaning conveyed in the input utter-
ance. However, in NLG, hallucinations arise when
the generated text contains false or ungrounded
information not directly inferable from the input
meaning representation. Whereas NSP hallucina-
tions demonstrate misunderstanding of utterance
semantics, NLG hallucinations reflect the model
losing contextual grounding to fabricate or halluci-
nate statements not reasonably justified by reason-
ing through the implications of the input symbols
provided. This suggests brittleness in establish-
ing contextual coherence to match input constraint
meanings.

B Hallucination Detection Dataset Stats

We report the dataset statistics of the Hallucination
Simulation Framework in Table 3.

Split in-ontology out-of-ontology

NSP Train 59,120
NSP Dev 19,700
NSP Test 19,679

HDD Train 19,154 3,893
HDD Dev 546 546
HDD Test 19,679 1,467

Table 3: Count of sentences for the NSP dataset and for
the Hallucination Detection Dataset (HDD) applied to
KQA-PRO dataset. We use the term in-ontology and out-
of-ontology sentences to refers to the sentences that uses
only Oknown_symbols and Ounknown_symbols respectively.

C Selection of Unknown symbols

As mentioned above, we select the symbols for the
Ounknown_symbols starting from less frequent sym-
bols. We took all the symbols with at maximum 2
occurrences, this is done b

This is done in order to maintain a good trade
off in maximizing the number of

D Out-Of-Domain Dataset Stats

Split NSP Dataset Test TOP OOD

OOD Test 17,524 35,420

Table 4: Size of the TOP v2 out-of-domain dataset used
for zero-shot evaluation. The NSP Dataset Test does not
include the NSP Errors.

E Out-of-ontology symbols list

Train =[’award rationale’, ’of’, ’separated from’,
’quote’, ’performer’, ’latest date’, ’author’, ’cap-
tain’, ’military branch’, ’reason for deprecation’,
’location’, ’has effect’, ’doctoral thesis’, ’DOI’,
’relative to’, ’discontinued date’, ’applies to part’,
’mother’, ’quantity’, ’conscription number’, ’iden-
tity of subject in context’, ’end cause’, ’central
bank/issuer’, ’dissolved, abolished or demolished’,
’employer’, ’earliest date’, ’located at street ad-
dress’, ’member of political party’, ’direction’,
’valid in place’, ’inventory number’, ’series ordi-
nal’, ’religious order’, ’manufacturer’, ’nominee’,
’place of marriage’, ’creator’, ’organizer’, ’number
of points/goals/set scored’, ’nickname’, ’number
of matches played/races/starts’, ’killed by’, ’lo-
cated on street’, ’nature of statement’, ’position
held’, ’statement supported by’, ’together with’,
’street number’, ’position played on team / special-
ity’, ’located in or next to body of water’, ’instru-
ment’, ’doctoral advisor’, ’statement disputed by’,
’located at street address (DEPRECATED)’, ’mem-
ber of’, ’married name’, ’stated age at event’, ’field
of work’]

Dev = [’academic degree’, ’platform’, ’type of
kinship’, ’present in work’, ’appointed by’, ’sex or
gender’, ’image’, ’proportion’, ’significant event’,
’cause of death’]

Test = [’catalog code’, ’direction relative to lo-
cation’, ’valid in period’, ’sourcing circumstances’,
’academic major’, ’approved by’, ’item oper-
ated’, ’length’, ’has cause’, ’instance of’, ’sRGB
color hex triplet’, ’operating area’, ’conferred by’,
’name’, ’subject has role’, ’applies to jurisdiction’,
’prize money’, ’conflict’, ’head of state’, ’affilia-
tion’, ’proxy’, ’use’, ’replaces’, ’replaced by’, ’writ-
ing system’, ’located on terrain feature’, ’distribu-
tion’, ’diplomatic mission sent’, ’acquisition trans-
action’, ’lyrics by’, ’medical condition’, ’number
of speakers’, ’has quality’, ’sport number’, ’cri-
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terion used’, ’object has role’, ’retrieved’, ’basic
form of government’, ’military rank’, ’drafted by’,
’timezone offset’, ’named as’]

F Metrics

We report two metrics to measure the accuracy of
our NSP model within the HSF framework. The
MRL Exact Match (EM) consinsts in the ratio be-
tween the number of MRL predicted that exactly
match with the ground truth MRL over the number
of MRLs.

EM =
1

|MRLs|

|MRLs|∑

k=1

MRLpred
i == MRLgt

i

(2)
The Answer Accuracy (AA) instead takes in con-

sideration the retrieved answered from the Knowl-
edge Base and compare it between the ground truth
and the predicted one.

AA =
1

|MRLs|

|MRLs|∑

k=1

anspred == ansgt (3)

These two metrics differs because sometimes an
MRL that does not match with the ground truth
can lead to the right answer. For both metrics,
we consider only MRLs that are well-formed and
executable, and thus will lead to an answer to be
delivered to the customer, as our main concern is
preventing the model’s users to wrong answers; if
an MRL is not executable, it will not lead to answer
to be delivered to the user, which in our vision
it’s better than delivering a wrong (and potentially
offensive) answer.

G Model Architecture design

In Figure 6, we report an high level overview of
the Hallucination Detection Model architecture, the
hyper-parameters used are specified in Section I.

H Hallucinations in NSP

In Figure 2, we show how the model hallucinate by
omitting portion of the MRL when it encounters
the needs of a unknown ontology symbols. How-
ever, often, as highlighted in the the discussion, the
model replaces the unknown symbols with other
known but leading to a complete wrong understand-
ing, thus producing an MRL that is completely hal-
lucinated, we show that behaviour in Figure 7. A
similar behaviour is observable for NSP Errors. In
NSP error the NSP model is under trained on some

Figure 6: Hallucination detection model architecture

symbols and then it shows this hallucination be-
haviour. Instead, in out-of-domain we expect an
empty MRL because the model does not have any
symbols and syntax to support the out-of-domain
user request.

Figure 7: We show the output our NSP model trained
without a symbol for the concept of “killed by". Given a
question that requires this symbol, the model produces a
wrong but executable MRL. In that case is it possible to
notice that the model avoid to produce the unknown on-
tology symbol (killed by) and then starts to hallucinate
the remaining MRL with wrong known symbols (i.e.,
place of birth) leading to a complete wrong understand-
ing of the user question. Retrieving a wrong answer.
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I Hallucination Detection Model
configuration

We train the HDM using both executable and non-
executable MRLs; its training objective is to maxi-
mize the number of correctly delivered MRLs and
maximize the number of correctly rejected MRLs,
regardless of the type of MRLs (e.g., NSP Errors,
ontology gap). The HDM in our Hardware Infras-
tructure L takes less than a minute to complete each
epoch. In Table 5 we report the Hyper-paramters
of the best Hallucination Detection Model with
Activations + CS. For sake of brevity, we report
the other hyper-parameters configurations in the
Github repository.

HParams Value

Max Epochs 100
Optimizer AdamW

Learning Rate 1e−3

Weight Decay 1e−3

Checkpointing Max Dev Macro F1-Score
Early Stopping Max Dev Macro F1-Score

Early Stopping Patient 50
Batch Size 32

Non linear activation function RELU
Loss Function Cross Entropy
1st layer dim 1024
2nd layer dim 128

classification head dim 2
Precision fp16

Table 5: Hyper-paramters used to train the Hallucination
Detection Model.
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J HDD statistics on NSP Errors

In Table 6 we report the statistics of the NSP Errors
in the Hallucination Detection Dataset.

Split NSP Errors percentage

NSP Dataset - Train 11.01%
NSP Dataset - Dev 13.66%
NSP Dataset - Test 10.95%

Table 6: Percentage of NSP Errors over the executable
NSP Dataset. Computed using the NSP model at infer-
ence time by comparing the predictions with the ground
truth.

K HDD statistics on Executable MRLs

In Table 7 we report the percentage of executable
MRLs in the Hallucination Detection Dataset w.r.t
the KQA-PRO BART inference trained on the NSP
in-ontology dataset.

L Hardware Infrastructure

We performed all the experiments on a x86-64 ar-
chitecture with 748GB of RAM, 4x 24-core CPU
Intel Xeon Platinum 8175M, and a single NVIDIA
V100 with 32GB of VRAM.

M KQA-PRO Bart hyper-parameters

To fine-tune the BART model on the KQA-PRO
dataset, we stick with the same hyper-parameters
used by the Cao et al. (2022). Below are the only
changes in hyper-parameters we have made. We re-
duce the number of epochs from 25 to 3, which we
found to be sufficient to achieve high performance
while vastly reducing the training time. We also en-
able beam search with a beam size of 4, to compute
the aforementioned Confidence Score feature.

N Precision and Recall

We report the Macro Precision and Macro Recall
performance in Tables 8 9, 10 for out-of-ontology,
NSP Errors, and OOD.

Split Executable

HDD Train

in-ontology 92.69%
out-of-ontology 42.97%

HDD Dev

in-ontology 92.49%
out-of-ontology 30.04%

HDD Test

in-ontology 92.63%
out-of-ontology 46.27%

Table 7: Percentage of executable MRLs in HDD,
after KQA-PRO BART inference. We use the term
in-ontology and out-of-ontology sentences to refers
to the sentences that uses only Oknown_symbols and
Ounknown_symbols respectively.
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EXP NAME - OUT-OF-ONTOLOGY Precision Recall

No-Filter (Baseline) 0.480 0.5
Threshold CS 98.5% (Baseline) 0.479 0.482
Threshold MCD (Baseline) 0.477 0.430
ActivationsHDM 0.557 ± 0.110 0.504 ± 0.007
CSHDM 0.671 ± 0.056 0.663 ± 0.034
MCDHDM 0.591 ± 0.208 0.500 ± 0.001
CS + MCDHDM 0.654 ± 0.027 0.657 ± 0.019
Activations + CSHDM 0.682 ± 0.041 0.717 ± 0.019
Activations + MCDHDM 0.593 ± 0.159 0.502 ± 0.007
Activations + CS + MCDHDM 0.642 ± 0.033 0.691 ± 0.018

Table 8: We report the Macro F1-Score (↑ is better) in out-of-ontology detection. We have repeated the train of the
HDM using 10 random seeds, we report the mean of the scores along with their standard deviation. These features
are combined (+) concatenating their vector representations.

EXP NAME - NSP ERRORS Precision Recall

No-Filter (Baseline) 0.444 0.500
Threshold CS 98.5% (Baseline) 0.706 0.627
Threshold MCD (Baseline) 0.442 0.436
ActivationsHDM 0.547 ± 0.060 0.501 ± 0.002
CSHDM 0.698 ± 0.009 0.571 ± 0.018
MCDHDM 0.444 ± 0.002 0.500 ± 0.004
CS + MCDHDM 0.695 ± 0.006 0.594 ± 0.016
Activations + CSHDM 0.712 ± 0.007 0.619 ± 0.029
Activations + MCDHDM 0.515 ± 0.044 0.501 ± 0.001
Activations + CS+ MCDHDM 0.705 ± 0.008 0.641 ± 0.034

Table 9: We report the Macro Precision and Recall (↑ is better) in NSP Errors detection, NSP Error detection. We
have repeated the train of the HDM using 10 random seeds, we report the mean of the scores along with their
standard deviation. These features are combined (+) concatenating their vector representations.

EXP NAME - OUT-OF-DOMAIN Precision Recall

No-Filter (Baseline) 0.436 0.500
Threshold CS 98.5% (Baseline) 0.434 0.482
Threshold MCD (Baseline) 0.427 0.429
ActivationsHDM 0.479 ± 0.116 0.499 ± 0.002
CSHDM 0.614 ± 0.039 0.632 ± 0.052
MCDHDM 0.644 ± 0.019 0.563 ± 0.151
CS + MCDHDM 0.595 ± 0.061 0.534 ± 0.021
Activations + CSHDM 0.760 ± 0.108 0.662 ± 0.071
Activations + MCDHDM 0.447 ± 0.018 0.498 ± 0.002
Activations + CS+ MCDHDM 0.671 ± 0.101 0.599 ± 0.063

Table 10: We report the Macro Precision and Recall (↑ is better) in zero-shot out-of-domain detection. We have
repeated the train of the HDM using 10 random seeds, we report the mean of the scores along with their standard
deviation. These features are combined (+) concatenating their vector representations.
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Abstract

It is well acknowledged that incorporating ex-
plicit knowledge graphs (KGs) can benefit ques-
tion answering. Existing approaches typically
follow a grounding-reasoning pipeline in which
entity nodes are first grounded for the query
(question and candidate answers), and then a
reasoning module reasons over the matched
multi-hop subgraph for answer prediction. Al-
though the pipeline largely alleviates the is-
sue of extracting essential information from
giant KGs, efficiency is still an open challenge
when scaling up hops in grounding the sub-
graphs. In this paper, we target at finding se-
mantically related entity nodes in the subgraph
to improve the efficiency of graph reasoning
with KG. We propose a grounding-pruning-
reasoning pipeline to prune noisy nodes, re-
markably reducing the computation cost and
memory usage while also obtaining decent sub-
graph representation. In detail, the pruning
module first scores concept nodes based on the
dependency distance between matched spans
and then prunes the nodes according to score
ranks. To facilitate the evaluation of pruned
subgraphs, we also propose a graph attention
network (GAT) based module to reason with
the subgraph data. Experimental results on
CommonsenseQA and OpenBookQA demon-
strate the effectiveness of our method.

1 Introduction

Question answering requires related background
knowledge. A line of research resorts to combining
pre-trained language models (LMs) and knowledge
graphs (KG) to utilize both the implicit knowledge
in LMs and explicit knowledge in structured KGs
(Schlichtkrull et al., 2018; Lin et al., 2019; Feng
et al., 2020; Yasunaga et al., 2021).

The researches towards utilizing knowledge
from KGs typically follow a grounding-and-
reasoning pipeline, namely schema graph ground-
ing and schema graph reasoning (Lin et al., 2019).

The fox walked from the city into the forest, what was it 
looking for?
A.  pretty flowers    B. hen house        C. natural habitat        
D.  storybook          E. dense forest 
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Figure 1: An example of a query and grounded knowl-
edge graph for two candidate answers. The external KG
nodes are more diverse around the answer concepts than
question concepts.

In the grounding module, multi-hop neighbors of
matched concept nodes in the query from KG form
a subgraph. Recent works focus on improving rea-
soning ability by enhancing the representation of
multi-hop nodes in grounded subgraphs with graph
neural networks (GNNs) (Feng et al., 2020; Ya-
sunaga et al., 2021) or interaction between repre-
sentations of query context and subgraphs (Zhang
et al., 2022b; Sun et al., 2022). While pre-trained
LMs are powerful at extracting plain text features
for the query context, the quality of subgraph fea-
ture extracted from GNNs is still prone to noisy
nodes in grounded subgraphs. Specifically, there
are two challenges in fusing KGs with GNNs. First,
the computation and memory cost would increase
with the hops increase. Second, the noisy nodes in-
duced with increasing hops deteriorate the quality
of the subgraph feature, and further decrease the
performance of the reasoning module.
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In this paper, we tackle the problems brought by
noisy nodes with a grounding-pruning-reasoning
pipeline framework, PipeNet. Previous researches
show that the improvement of graph-based reason-
ing systems is minor, though with the number of
grounded hops increasing, many more new nodes
are induced (Santoro et al., 2017; Wang et al.,
2019a; Feng et al., 2020). As shown in Figure
1, many of them are the same for different candi-
date answers, especially near the question concepts.
Diverse nodes are mainly brought in due to the dif-
ference in answer concepts. This diversity is crit-
ical to the subgraph representation learning with
GNNs.

Our pruning module prunes noisy nodes before
the reasoning module, reducing the computation
cost and memory usage while keeping the diversity
of subgraphs in the meantime. Specifically, we pro-
pose a dependency structure based pruning method
to prune the nodes with dependency parsing (DP)
tools. The DP-pruning strategy is inspired by rela-
tion extraction in automatic ontology building, in
which the dependency tree is applied to find pos-
sible relations between concepts according to the
distance on the tree (Fellbaum and Miller, 1998;
Sombatsrisomboon et al., 2003; Ciaramita et al.,
2005; Kang et al., 2015). Similarly, we assume
the dependency tree provides reasonable linguistic
links between grounded concepts in a natural lan-
guage context. We further convert the dependency
distances between grounded concepts into concept
node scores and propagate the node scores onto
the grounded multi-hop subgraph to prune external
noisy nodes.

To facilitate the evaluation of pruned subgraph,
we also propose a simplified version of GAT
(Veličković et al., 2018) for graph representation
learning. We redesign the message passing mecha-
nism in (Yasunaga et al., 2021). Our contributions
are as follows:

• We propose a grounding-pruning-reasoning
pipeline PipeNet for question answering with
KG, in which a DP-pruning module improves
efficiency by pruning the noisy nodes.

• We propose a simplified GAT module for fus-
ing KG with GNNs. The module simplifies
the message flow while achieving comparable
or higher performance in the meantime;

Experiments on two standard benchmarks, Com-
monsenseQA (Talmor et al., 2019) and Open-

bookQA (Mihaylov et al., 2018), demonstrate the
effectiveness of our proposed method. The code is
open-sourced1.

2 Related Work

2.1 QA with LM+KG

With the development of benchmarking question
answering, more and more hard question answering
datasets are developed, which require background
knowledge to solve (Mihaylov et al., 2018; Talmor
et al., 2019, 2021). Pretrained LMs and KGs are
commonly used knowledge sources, research typi-
cally adopts an LM+KG framework as to acquire
relevent knowledge for commonsense QA (Feng
et al., 2020; Yasunaga et al., 2021; Zhang et al.,
2022b; Su et al., 2022; Park et al., 2023; Huang
et al., 2023; Ye et al., 2023; Wang et al., 2023;
Taunk et al., 2023; Zhao et al., 2023; Dong et al.,
2023; Mazumder and Liu; Kang et al., 2024; Zhao
et al., 2024)

Schlichtkrull et al. (2018) first adopts RGCN
to model relational data in KG, which specifically
models the node representation as the aggregation
from neighboring nodes. GconAttn (Wang et al.,
2019a) adds inter-attention between the concepts in
premise and hypothesis to find the best-aligned con-
cepts between the respective graphs. KagNet (Lin
et al., 2019) further proposes an LSTM-based path
encoder to model knowledge paths in the schema
graph on top of GCNs. RN (Santoro et al., 2017)
uses MLPs to encode the one-hop paths and pool-
ing over the path embedding to get the schema
graph representation. MHGRN (Feng et al., 2020)
stresses modeling multi-hop paths and utilized an
attention mechanism to weigh the importance of
multi-hop paths. QAGNN (Yasunaga et al., 2021)
adopts GAT for type and relation-aware messages
to update the node representations. GreaseLM
(Zhang et al., 2022b) further improves the knowl-
edge fusion quality between context and subgraph
representation by adding an information fusion
module.

Unlike these works, we focus on effectively find-
ing informative subgraph nodes from the raw out-
put of the grounding module. We adopt a pruning
module to find such nodes, which benefits the sub-
graph representation learning from GNNs.

1https://github.com/HKUST-KnowComp/
PipeNet
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Figure 2: The overall framework of grounding-pruning-reasoning pipeline PipeNet. Concept nodes are first grounded
in the KG to form a subgraph Gsub related to question and answer context s. A pruning module prunes noisy nodes
according to node score before the reasoning module. The final answer score is calculated based on the context
representation zLM and subgraph representation zGNN .

2.2 Efficient Computation for GNN

Though the application of GNN has become popu-
lar in many graph-based scenarios, it is still chal-
lenging to apply GNN to large-scale graphs with
massive numbers of nodes and edges (Hamilton
et al., 2017; Yu et al., 2022; Zhang et al., 2022a) due
to expensive computation cost and high memory
usage. Categories of research towards tackling this
problem are mainly sampling-based (Chen et al.,
2018; Zeng et al., 2019; Chiang et al., 2019; Zeng
et al., 2021; Fey et al., 2021) and precomputing-
based (Wu et al., 2019; Rossi et al., 2020; Liu and
Ji, 2022).

Previous pruning method JointLK (Sun et al.,
2022) dynamically prunes noisy nodes during train-
ing, which still takes the raw output of the ground-
ing module as inputs and does not decrease memory
or computation cost. GSC (Wang et al., 2022) re-
duces parameters in the GNN layer by separately
viewing the reasoning process as counting, which
reduces model size while ignoring the semantic
interaction between context and subgraph. Unlike
them, we focus on extracting informative subgraph
nodes of much smaller size from the grounded sub-
graph in a precomputing stage.

3 Methodology

Our grounding-pruning-reasoning framework,
PipeNet, consists of three stages: subgraph
grounding, subgraph pruning, and reasoning. The
overall framework is shown in Figure 2.

3.1 Problem Formulation

Given a context query q and a set of candidate
answers {a1, a2, ..., ak}, the task is to choose the
most plausible answer from the set. Related back-
ground knowledge can be retrieved from a relevant
KG G = (V, E) given the query and answer set. V
represents the set of entity nodes and E represents
the set of relational edges in the KG.

Following the definition in Yasunaga et al.
(2021), specifically for a question q and a candidate
answer a, we define the grounded concept nodes
from G as Vq and Va respectively. The question
and each answer are further composed as a QA
context s. External concept nodes from G during
the multi-hop expansion are defined as Ve. The
grounded nodes and edges between them form the
grounded subgraph Gsub.

As we aim to explore the impacts of the external
nodes on the learning efficiency of GNNs with KG,
we define the one-hop and two-hop settings as:
One-hop. The grounded subgraph consists of en-
tity nodes from Vq and Va, and the linked edges
between the nodes.
Two-hop. The grounded subgraph consists of en-
tity nodes from Vq, Va and Ve, and the linked edges
between the nodes. Ve is the set of one-hop neigh-
bors from Vq and Va.

3.2 DP-pruning

Our DP-pruning strategy on grounded subgraphs
is based on dependency links between matched
spans in the QA context s. Dependency analysis
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Figure 3: Dependency tree of a QA context example.
Words in bold are matched spans of concepts in Con-
ceptNet.

helps find relations between terms using depen-
dency information present in parsing trees. Ex-
plicit syntax-aware knowledge has shown effective
usages in downstream tasks, such as machine trans-
lation (Bastings et al., 2017; Marcheggiani et al.,
2018), information extraction (Sahu et al., 2019),
and semantic role labeling (Zhang et al., 2020).

DP tree and span distance. We adopt the
widely used open-source tool stanza2 for depen-
dency analysis on the QA context. The dependency
parsing (DP) tree T is then converted into an undi-
rected graph G. On the graph, we can calculate the
shortest path lengths as the span distance between
span words. An example is shown in Figure 3. We
align the results of concept matching and depen-
dency parsing on the word level. If the matched
span covers more than one word, the distance is cal-
culated as the minimum distance of covered words
to other spans.

Span distance to node score. As we focus on
refining the matched subgraph Gsub, we calculate
the node score of matched concepts in q and a
based on the corresponding span distance. For
each concept cq in Vq, the node score is:

Dq[cq] = −
∑|Va|

i=1 Dist(cq, ca)

|Va|
, (1)

where Dist is the corresponding span distance of
matched concepts. For each concept ca in Va, the
node score is calculated in the same way.

Propogate node score. Our algorithm aims to

2https://stanfordnlp.github.io/stanza/corenlp_client.html

Algorithm 1 Grounding and Pruning

Require: q, a
Require: Hop n
Require: KG G
Require: Prune rate p
Vq,Va, s← q, a,G
T ← s
G← T
Dq,Da ← G
i← 1,Vt ← Vq

⋃Va,Dt ← Dq
⋃Da

while i ≤ n do
Ve ← Neighbor(Vt)
De ← Avg(Dt)
Vt ← Vt

⋃Ve
Dt ← Dt

⋃De

end while
threshold← Dt, p
for v ∈ Vt \ {Vq,Va} do

if Dt[v] ≤ threshold then
Delete v

end if
end for
return Vt

prune the external nodes Ve in the subgraph for
two-hop or above because noisy nodes are mainly
induced with the hops growing. The pseudo-code
for pruning the external nodes is listed in Algorithm
1. In initialization, grounded concept sets Vt =
Vq
⋃Va, and score set for grounded concept sets

Dt = Dq
⋃Da. External nodes having neighbors

in the grounded concept sets are added to expand
the grounded subgraph Gsub. The node score of
external nodes is assigned as the average of their
neighbor node scores during expansion. Until the
expansion hops end, the nodes except Vq and Va are
pruned according to their score ranks. The nodes
with smaller node scores are pruned.

Our algorithm propagates the dependency struc-
ture information from QA context s onto the re-
trieved static subgraph Gsub. We keep concept
nodes with higher scores because they generally
have closer distances to the concept nodes in Va,
which increases the diversity of pruned subgraph.
Finally, the (|Vt| − |Vq| − |Va|) ∗ p will be pruned
with pruning rate p.

3.3 Reasoning

We design a reasoning module fusing the QA con-
text feature and subgraph feature. The dimension
of subgraph feature generated from L-layer GNN
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Model Time Space

G is a dense graph

L-h KagNet O(|R|L|V|L+1L) O(|R|L|V|L+1L ·D)
L-h MHGRN O(|R|2|V|2L) O(|R||V|L ·D)
L-l QAGNN O(|V|2L) O(|R||V|L ·D)
L-l GreaseLM O(|V|2L) O(|R||V|L ·D)
L-l JointLK O(|V|2L) O(|R||V|L ·D)
L-l GSC O(|V|L) O(|R||V|L)
L-l PipeNet O(( |V|

k
)2L) O(|R| |V|

k
L ·D)

G is a sparse graph with maximum node degree ∆≪ |V|
L-h KagNet O(|R|L|V|L∆L) O(|R|L||V|L∆L ·D)
L-h MHGRN O(|R|2|V|L∆) O(|R||V|L ·D)
L-l QAGNN O(|V|L∆) O(|R||V|L ·D)
L-l GreaseLM O(|V|L∆) O(|R||V|L ·D)
L-l JointLK O(|V|L∆) O(|R||V|L ·D)
L-l GSC O(|V|L) O(|R||V|L)
L-l PipeNet O( |V|

k
L∆) O(|R| |V|

k
L ·D)

Table 1: L-h means L-hop and L-l means L-layer. G is
a graph with relation set R. k is the reduction rate in
the PipeNet pruning stage.

is D. Theoretically, the efficiency analysis in time
and space for the GNN is shown in Table 1. Note
the definition of reduction rate k in the table is
slightly different from the pruning rate p:

1

k
= 1− (|Vt| − |Vq| − |Va|)

|Vt|
∗ p. (2)

For the QA context feature, the input is QA con-
text s. A pre-trained language model first encodes
the context into the vector representation z as:

zLM = fenc(s), (3)

where z is the hidden state of [CLS] token in the
last hidden layer.

Following (Yasunaga et al., 2021), the QA
context is induced as an additional node to the
grounded subgraph Gsub and assigned to connect
the nodes in Vq and Va. The representation of this
additional context node in the subgraph is initial-
ized as zLM .

For the subgraph feature, the embeddings of en-
tity nodes in the subgraph are initialized as D-dim
vectors. Similar to (Yasunaga et al., 2021; Sun
et al., 2022; Zhang et al., 2022b), a standard GNN
structure is applied to learn entity node representa-
tions via iterative message passing between neigh-
bors on the subgraph. Specifically, in the (l + 1)-
layer, the hidden state of the node on the subgraph
is updated by:

h
(l+1)
t = fn(

∑

s∈Nt
⋃{t}

αstmst), (4)

where Nt represents the neighborhood of target
node t and mst ∈ RD denotes the message from
each neighbor node s to t. fn : RD → RD is a
2-layer multilayer perceptron (MLP) function.

Specifically, for the message on the edge, we
encode the connected node types and the edge type
into embedding forms. As shown in (Wang et al.,
2022), these two types of information in the sub-
graph are important.

rst = f([est, us, ut]), (5)

where us, ut are one-hot vectors of node type and
est is one-hot vector of edge type. f is a 2-layer
MLP converting the concatenated feature into a D
dimension edge representation. The message on
the relational edges propagated from source node s
to target node t is:

mst = fm(hl
s, rst), (6)

where fm : R2D → RD is a linear transformation.
We adopt an attention-based message passing

module based on GAT (Veličković et al., 2018).
Different from (Yasunaga et al., 2021), the attention
is calculated based on the node types and relation
type. First, the query and key vectors are computed
as:

qs = fq(h
l
s), (7)

kt = fk(h
l
t, rst), (8)

where fq : RD → RD and fk : R2D → RD are
linear transformations. Finally, the attention weight
αst:

αst =
exp(γst)∑

t∈Ns
exp(γst)

, γst =
qTs kt√

D
. (9)

At the final layer of the GNN network, we get
the representation of the additional context node
and pooled representation of KG nodes in the
subgraph as zGNN and g.

Answer Prediction. Given question q and a candi-
date answer a, the plausibility score p(a|q):

p(a|q) ∝ exp(MLP (zLM , zGNN , g)), (10)

where an MLP layer encodes the context feature
and graph feature into the final score. The answer
among candidate answers with the highest plausi-
bility score is the predicted answer.
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4 Experiments

Our experiments are conducted on two stan-
dard question answering benchmarks, Common-
senseQA (CSQA) and OpenBookQA (OBQA). We
also introduce details of baselines and implementa-
tions in this section.

4.1 Datasets
CommonsenseQA. CommonsenseQA (Talmor
et al., 2019) is a 5-way multiple choice QA
task that requires reasoning with commonsense
knowledge, containing 12,102 questions which
are created with entities from ConceptNet (Speer
et al., 2017). Following (Lin et al., 2019), we
conducts experiments on the in-house (IH) data
split (8,500/1,221/1,241 for IHtrain/IHdev/IHtest
respectively).

OpenBookQA. OpenBookQA (Mihaylov et al.,
2018) is a 4-way multiple choice QA task,
containing 5,957 questions (4,957/500/500 for
train/dev/test respectively). It is an elementary sci-
ence question together with an open book of sci-
ence facts. Answering OpenBookQA requires com-
monsense knowledge beyond the provided facts.

4.2 Baselines
We use baselines for two experiments: baselines
for the PipeNet framework with our designed rea-
soning module, and baselines for the DP-pruning.

4.2.1 Framework
We compare with other grounding-reasoning-based
frameworks: (1) Relation Network (RN) (Santoro
et al., 2017), (2) RGCN (Schlichtkrull et al., 2018),
(3) GconAttn (Wang et al., 2019b), (4) KagNet (Lin
et al., 2019), (5) MHGRN (Feng et al., 2020), (6)
QA-GNN (Yasunaga et al., 2021), (7) GreaseLM
(Zhang et al., 2022b).

4.2.2 Pruning
JointLK (Sun et al., 2022). JointLK automati-
cally selects relevant nodes from noisy KGs by
designing a dense bidirectional attention module
to attend to the question tokens and KG nodes.
A dynamic pruning module recursively prunes
irrelevant KG nodes based on the attention weights.

GSC (Wang et al., 2022). GSC designs a simple
graph neural model which regards the reasoning
over knowledge graph as a counting process. It
reduces the hidden dimension of GNN layers and

Methods IHdev-Acc.(%) IHtest-Acc.(%)

RoBERTa-Large 73.07 (±0.45) 68.69 (±0.56)

Framework
RGCN 72.69 (±0.19) 68.41 (±0.66)
GconAttn 72.61 (±0.39) 68.59 (±0.96)
KagNet 73.47 (±0.22) 69.01 (±0.76)
RN 74.57 (±0.91) 69.08 (±0.21)
MHGRN 74.45 (±0.10) 71.11 (±0.81)
QA-GNN 76.54 (±0.21) 73.41 (±0.92)
GreaseLM 78.5 (±0.5) 74.2 (±0.4)
PipeNet 78.95 (±0.55) 74.49 (±0.26)

Pruning
JointLK 77.88 (±0.25) 74.43 (±0.83)
GSC 79.11 (±0.22) 74.48 (±0.41)
PipeNet(DP) 78.13 (±0.13) 74.75 (±0.47)

Table 2: Results on the CSQA in-house split dataset.
The mean and standard deviation value of three runs on
the in-house Dev (IHdev) and Test (IHtest) datasets are
reported. Pruning rate p is 90% in PipeNet(DP).

results in a reasoning module with a much smaller
size.

For the experiments on the framework, we use
the grounded two-hop knowledge subgraph. For
the experiments on pruning, we conduct experi-
ments on PipeNet with a DP-pruning strategy over
two-hop subgraphs.

4.3 Implementation Details
For all the experiments on PipeNet, we set the
dimension (D = 200) and the number of layers
(L = 5) in the reasoning module. The parameters
of the reasoning module (LM+GNN) are optimized
by RAdam (Liu et al., 2019a) by cross-entropy loss.
The learning rate for the LM encoder is set as 1e-
5. For the decoder with GNN, the learning rate
is 1e-3. For both benchmarks, we use ConceptNet
(Speer et al., 2017) as the knowledge graph. For the
pruning experiments on PipeNet, the DP-pruning
strategy prunes the nodes by the ranks of node
scores. Specifically, the threshold value is deter-
mined by the score of top (1− p) percent ranked
node is Vt \ {Vq,Va}. In each experiment, we use
two RTX 3090 GPUs, and the average running time
is about 4 hours on CSQA and 24 hours on OBQA.

5 Results

In this section, we first present of main results of
PipeNet as well as PipeNet with DP pruning strat-
egy on standard benchmarks. Then we analyze the
time and memory efficiency improvement brought
by DP-pruning strategy. Finally, we conduct an
ablation study over pruning strategy.
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Methods RoBERTa-large AristoRoBERTa

w/o KG 64.80 (±2.37) 78.40 (±1.64)

Framework
+RGCN 62.45 (±1.57) 74.60 (±2.53)
+GconAtten 64.75 (±1.48) 71.80 (±1.21)
+RN 65.20 (±1.18) 75.35 (±1.39)
+MHGRN 66.85 (±1.19) 80.6
+QAGNN 67.80 (±2.75) 82.77 (±1.56)
+GreaseLM - 84.8
+PipeNet 69.33 (±1.60) 87.33 (±0.19)

Pruning
+JointLK 70.34 (±0.75) 84.92 (±1.07)
+GSC 70.33 (±0.81) 86.67 (±0.46)
+PipeNet(DP) 69.60 (±0.47) 87.80 (±0.43)

Table 3: Test accuracy comparison on OBQA. Methods
with AristoRoBERTa (Clark et al., 2020) use the textual
evidence as an additional input to the QA context. Prun-
ing rate p is 90% in PipeNet(DP).

5.1 Accuracy of PipeNet and DP-pruning

The results on CSQA and OBQA are shown in Ta-
ble 2 and 3 separately. From the results on both
benchmarks, we can find PipeNet is an effective
framework for combining the context feature learn-
ing and subgraph feature learning. Besides node
type and edge type features, QAGNN (Yasunaga
et al., 2021) also employs node embedding and
relevance-score as external features. GreaseLM
(Zhang et al., 2022b) stresses the modality interac-
tion between context feature and subgraph feature.
Unlike them, we adopt a simplified message flow
for subgraph feature and merge the two kinds of
features with an MLP layer. The final performance
is comparable with previous methods on CSQA and
better on OBQA. This is because that node embed-
ding and relevance score gradually loses benefits to
the reasoning module with training continuing as
analyzed in GSC (Wang et al., 2022). Decreasing
redundant subgraph features and modality interac-
tion at the same time makes the reasoning module
focus more on the subgraph learning, which further
benefits the reasoning performance.

DP-pruning strategy can further improve the sub-
graph representation learning based on the PipeNet
framework. Since the best answer is chosen from
multiple candidate choices, DP-pruning strategy
can help maintain the uniqueness of grounded sub-
graphs by pruning nodes which are far from the
concept nodes in candidate answers. Comparing
results of PipeNet and PipeNet with DP-pruning,
DP-pruning can help PipeNet achieve better perfor-
mances on both benchmarks under most circum-
stances, with a high pruning rate as 90%.

Methods Test

RoBERTa (Liu et al., 2019b) 72.1
AristoRoBERTa (Clark et al., 2020) 77.8
AristoRoBERTa + MHGRN (Feng et al., 2020) 80.6
ALBERT (Lan et al., 2020) + KB 81.0

AristoRoBERTa + QA-GNN (Yasunaga et al., 2021) 82.8
T5 (Raffel et al., 2020) 83.2
AristoRoBERTa + GreaseLM (Zhang et al., 2022b) 84.8
AristoRoBERTa + JointLK (Sun et al., 2022) 85.6
UnifiedQA (Khashabi et al., 2020) 87.2
AristoRoBERTa + GSC (Wang et al., 2022) 87.4
GenMC (Huang et al., 2022) 89.8

AristoRoBERTa + PipeNet(DP) 88.2

Table 4: Test accuracy comparison on OBQA leader-
board. The parameter size is about 3B for T5, and
11B for UnifiedQA and GenMC. The parameter size of
PipeNet is about 358M.

DP-pruning strategy also has strengths over other
pruning methods like JointLK and GSC. Compared
to JointLK, PipeNet significantly reduces memory
and computation costs during training as shown
in Table 1. Moreover, on the OBQA benchmark
where additional factual texts are induced to the
QA context (with AristoRoBERTa (Clark et al.,
2020)3), our PipeNet outperforms GSC by 1.13%
on the accuracy score. AristoRoBERTa applies sev-
eral methods to encode science-related knowledge
into RoBERTa. PipeNet captures the semantic fea-
ture interaction between context and subgraph with
an MLP layer while GSC separately models the
subgraph representation as a counting process.

Furthermore, we also compare the performance
of PipeNet with other methods on the OBQA test
leaderboard, and the result is listed in Table 4.
Compared to the pre-trained LM T5 (Raffel et al.,
2020), PipeNet achieves 5% higher accuracy with
much fewer parameters. It indicates that the knowl-
edge in external KG is complementary to the im-
plicit knowledge in LMs. Compared to UnifiedQA
(Khashabi et al., 2020) which injects the com-
monsense knowledge from multiple QA sources
into pre-trained LMs, PipeNet achieves 1% perfor-
mance gain. It shows that knowledge graph is still
an important and useful knowledge source for QA.
The recent method GenMC outperforms PipeNet
by inducing clues for generation based on T5-large.
It may be worth exploring how to employ the clues
to guide the subgraph selection for better represen-
tation.

3https://huggingface.co/LIAMF-USP/aristo-roberta
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Figure 4: Distribution of grounded nodes and edges
with pruning rate on external nodes from one-hop to
two-hop on CSQA training dataset.

p(%) k M (G) ↑(%) t(s) ↑(%) IHtest (%)

0 1.0 5.02 - 1.16 - 74.38

10 1.1 4.95 1 1.02 13 74.21
20 1.2 4.92 2 1.01 13 74.29
30 1.3 4.75 5 0.96 17 74.29
40 1.4 4.67 7 0.87 25 74.21
50 1.6 4.57 9 0.83 28 74.13
60 2.0 4.49 11 0.78 33 74.70
70 2.4 4.22 16 0.75 35 74.85
80 3.2 3.83 24 0.72 38 74.70
90 4.8 3.51 30 0.67 42 74.86

Table 5: Results on CSQA in-house split with PipeNet.
GPU memory usage and time efficiency improvement
are shown for pruning rate p on two-hop subgraph for
GNN during training. The training batch size is 64.

5.2 Efficiency of PipeNet and DP-pruning

In this section, we conduct empirical studies to
analyze the time and memory cost of our method.
Besides, a corresponding theoretical analysis of
the efficiency is presented in Section 3.3. Specifi-
cally, we implemented GAT using the tool Pytorch
Geometric (Fey and Lenssen, 2019). Figure 4 illus-
trates that the average number of edges is linearly
decreased with the number of nodes pruned.

Our method has demonstrated better time and
memory efficiency. The result of running cost and
performance on CSQA is presented in Table 5. The
reduction rate k is calculated based on the number
of nodes and edges in Figure 4. M is the GPU mem-
ory usage (max allocation memory) of GAT module
and t is average batch time of the module during
training. With pruning rate p growing, k is growing
non-linearly, as well as memory usage M and time
t efficiency. The memory and time efficiency ex-
hibit different growing trends. Memory efficiency
becomes evident when p is greater than 60 and time
efficiency becomes evident when p is greater than
40%. Performance improvement becomes evident

h-
hop

Prune
method

Prune
rate

IHtest-Acc(%)

One - 0 73.27 (±0.93)
Two - 0 74.49 (±0.26)

Two Random 90% 73.51 (±0.61)
Two DP 90% 74.75 (±0.47)

Table 6: Results on CSQA in-house split with PipeNet.

when p is greater than 60%. Specifically, when
p=90%, the memory and time efficiency achieve
30% and 42% improvement separately.

We also present the performance of CSQA test
split with the pruning rate changes. It turns out that
the pruning strategy leads to small variance in the
performance change. Generally, larger p leads to
better performances. The performance improve-
ment keeps steady when p is greater than 60%.
p=90% achieves the best efficiency by only increas-
ing the number of nodes from 12 to 23 and the
number of edges from 190 to 377 for each QA con-
text, and also better than original two-hop subgraph.
Overall, the performance demonstrates that the DP-
pruning strategy can find informative nodes ben-
efiting the subgraph representation learning with
a great reduction in the memory and computation
cost.

5.3 Ablation Study
We conduct experiments on pruning strategy over
CSQA as the ablation study. For a fair comparison,
we design a random pruning strategy with the same
pruning rate of 90% to DP-pruning. The pruning is
also applied to the additional KG nodes Ve except
for one-hop KG nodes.

The result is shown in Table 6. PipeNet with
one-hop is the result of the grounded subgraph
constructed by the matched concepts in question
and answers. As shown in Figure 4, pruning rate
90% brings in almost same quantity of edges and
nodes to one-hop subgraphs, while much less than
original two-hop subgraph.

Random sampling can also bring performance
gain because the induced nodes are relevant to the
QA context. However, the gain is not as much
as the DP-pruning method. This shows that find-
ing semantically related nodes can benefit more in
subgraph representation learning.

6 Conclusion

In this work, we propose PipeNet, a grounding-
pruning-reasoning pipeline for question answering
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with knowledge graph. The pruning strategy uti-
lizes the dependency structure of query context
to prune noisy entity nodes in the grounded sub-
graph, benefiting the subgraph representation learn-
ing with GNNs. We further design a GAT-based
module for the subgraph representation learning
with simplified message flow. Experiment results
on two standard benchmarks demonstrate the effec-
tiveness of semantic dependency of concept items
benefits the subgraph representation learning.

7 Acknowledgement

The authors of this paper were supported by the
NSFC Fund (U20B2053) from the NSFC of China,
the RIF (R6020-19 and R6021-20) and the GRF
(16211520 and 16205322) from RGC of Hong
Kong. We also thank the UGC Research Match-
ing Grants (RMGS20EG01-D, RMGS20CR11,
RMGS20CR12, RMGS20EG19, RMGS20EG21,
RMGS23CR05, RMGS23EG08). We would like to
thank the Turing AI Computing Cloud (TACC) (Xu
et al., 2021) and HKUST iSING Lab for providing
us computation resources on their platform.

References
Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego

Marcheggiani, and Khalil Sima’an. 2017. Graph con-
volutional encoders for syntax-aware neural machine
translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017, pages 1957–1967. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn:
Fast learning with graph convolutional networks via
importance sampling. In International Conference
on Learning Representations.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. 2019. Cluster-gcn: An
efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 257–266.

M. Ciaramita, A. Gangemi, E. Ratsch, J. Saric, and
I. Rojas. 2005. Unsupervised learning of semantic
relations between concepts of a molecular biology
ontology. In International Joint Conference on Artifi-
cial Intelligence.

Peter Clark, Oren Etzioni, Tushar Khot, Daniel
Khashabi, Bhavana Mishra, Kyle Richardson, Ashish
Sabharwal, Carissa Schoenick, Oyvind Tafjord, Niket
Tandon, et al. 2020. From ‘f’to ‘a’on the ny regents
science exams: An overview of the aristo project. AI
Magazine, 41(4):39–53.

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu
Duan, Qiaoyu Tan, and Zhimeng Jiang. 2023.
Hierarchy-aware multi-hop question answering over
knowledge graphs. In Proceedings of the ACM Web
Conference 2023, pages 2519–2527.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

C. Fellbaum and G. Miller. 1998. Automated discovery
of wordnet relations. Wordnet An Electronic Lexical
Database, 5:131–151.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable multi-
hop relational reasoning for knowledge-aware ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1295–1309.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure
Leskovec. 2021. Gnnautoscale: Scalable and expres-
sive graph neural networks via historical embeddings.
In International Conference on Machine Learning,
pages 3294–3304. PMLR.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Yongfeng Huang, Yanyang Li, Yichong Xu, Lin Zhang,
Ruyi Gan, Jiaxing Zhang, and Liwei Wang. 2023.
Mvp-tuning: Multi-view knowledge retrieval with
prompt tuning for commonsense reasoning. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13417–13432.

Zixian Huang, Ao Wu, Jiaying Zhou, Yu Gu, Yue
Zhao, and Gong Cheng. 2022. Clues before answers:
Generation-enhanced multiple-choice qa. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Long Kang, Xiaoge Li, and Xiaochun An. 2024.
Knowledge-aware adaptive graph network for com-
monsense question answering. Journal of Intelligent
Information Systems, pages 1–20.

S. K. Kang, L. Patil, A. Rangarajan, A. Moitra, and
D. Dutta. 2015. Extraction of manufacturing rules
from unstructured text using a semantic framework.

368

https://doi.org/10.18653/v1/d17-1209
https://doi.org/10.18653/v1/d17-1209
https://doi.org/10.18653/v1/d17-1209


In ASME 2015 International Design Engineering
Technical Conferences and Computers and Informa-
tion in Engineering Conference.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single qa system. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1896–1907.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2829–2839.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019a. On the variance of the adaptive learning rate
and beyond. In International Conference on Learn-
ing Representations.

Meng Liu and Shuiwang Ji. 2022. Neighbor2seq: Deep
learning on massive graphs by transforming neigh-
bors to sequences. In Proceedings of the 2022 SIAM
International Conference on Data Mining (SDM),
pages 55–63. SIAM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT, New Orleans, Louisiana, USA, June 1-6, 2018,
Volume 2 (Short Papers), pages 486–492. Association
for Computational Linguistics.

Sahisnu Mazumder and Bing Liu. Context-aware path
ranking for knowledge base completion.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

Jinyoung Park, Hyeong Kyu Choi, Juyeon Ko, Hyeon-
jin Park, Ji-Hoon Kim, Jisu Jeong, Kyungmin Kim,

and Hyunwoo Kim. 2023. Relation-aware language-
graph transformer for question answering. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 13457–13464.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Da-
vide Eynard, Michael Bronstein, and Federico Monti.
2020. Sign: Scalable inception graph neural net-
works. arXiv preprint arXiv:2004.11198, 7:15.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto Miwa,
and Sophia Ananiadou. 2019. Inter-sentence rela-
tion extraction with document-level graph convolu-
tional neural network. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 4309–4316.
Association for Computational Linguistics.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. 2017. A simple neural net-
work module for relational reasoning. Advances in
neural information processing systems, 30.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

R. Sombatsrisomboon, Y. Matsuo, and M. Ishizuka.
2003. Acquisition of hypernyms and hyponyms from
the www.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence.

Ying Su, Zihao Wang, Tianqing Fang, Hongming Zhang,
Yangqiu Song, and Tong Zhang. 2022. Mico: A
multi-alternative contrastive learning framework for
commonsense knowledge representation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 1339–1351.

Yueqing Sun, Qi Shi, Le Qi, and Yu Zhang. 2022.
JointLK: Joint reasoning with language models and
knowledge graphs for commonsense question answer-
ing. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 5049–5060. Association for Computa-
tional Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of

369

https://doi.org/10.18653/v1/n18-2078
https://doi.org/10.18653/v1/n18-2078
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/p19-1423
https://doi.org/10.18653/v1/2022.naacl-main.372
https://doi.org/10.18653/v1/2022.naacl-main.372
https://doi.org/10.18653/v1/2022.naacl-main.372


the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2021. Commonsenseqa 2.0: Exposing the
limits of ai through gamification. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Dhaval Taunk, Lakshya Khanna, Siri Venkata Pavan Ku-
mar Kandru, Vasudeva Varma, Charu Sharma, and
Makarand Tapaswi. 2023. Grapeqa: graph augmenta-
tion and pruning to enhance question-answering. In
Companion Proceedings of the ACM Web Conference
2023, pages 1138–1144.
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Method CSQA(IHdev) OBQA(test)

w/o KG 73.07 78.40

GPT3.5-turbo 72.29 83.20
PipeNet(DP) 78.13 87.80

Table 7: Accuracy comparison between GPT3.5-turbo
and PipeNet(DP) on CSQA(IHdev) and OBQA(test)

A Appendix

A.1 Comparison with LLM
Large language models such as GPT3 (Brown et al.,
2020) and ChatGPT have recently received inter-
est and achieved remarkable success over various
question-answering tasks. We further adopt a 3-
shot in-context learning (Dong et al., 2022) to
prompt GPT3.5-turbo and present the results in
Table 7. For OBQA, we add additional textual evi-
dence in the prompt template for a fair comparison.
It shows that GPT3.5-turbo achieves decent per-
formances on both of the benchmarks, with com-
parable or better performances to the supervised
fintuning method without KG (w/o KG). Nerverthe-
less, PipeNet(DP) outperforms GPT3.5-turbo by a
large margin though though with a much smaller
language model Roberta-large. This demonstrates
that knowledge graph is still a meaningful knowl-
edge source for question-answering tasks and our
pruning method benefits such QA tasks with knowl-
edge graph.
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Abstract
Cheap-to-Build Very Large-Language Mod-
els (CtB-LLMs) with affordable training are
emerging as the next big revolution in natural
language processing and understanding. These
CtB-LLMs are democratizing access to train-
able Very Large-Language Models (VLLMs)
and, thus, may represent the building blocks of
many NLP systems solving downstream tasks.
Hence, a little or a large bias in CtB-LLMs may
cause significant harm. In this paper, we per-
formed a large investigation of the bias of three
families of CtB-LLMs, and we showed that
debiasing techniques are effective and usable.
Indeed, according to current tests, the LLaMA
and the OPT families have an important bias
in gender, race, religion, and profession. In
contrast to the analysis for other LLMs, we dis-
covered that bias depends not on the number
of parameters but on the perplexity. Finally,
the debiasing of OPT using LoRA reduces bias
up to 4.12 points in the normalized stereotype
score.

1 Introduction

Very Large Language Models (VLLMs) like Chat-
GPT have become a standard building block in
Artificial Intelligence applications since they can
be adapted to various downstream tasks (OpenAI,
2023; Touvron et al., 2023b). Transformer-based
language models, which have disrupted classical
NLP pipeline, have grown in size and capabili-
ties in recent years. The pre-training step from
large text corpora, with different language mod-
eling strategies, appeared to be the key to getting
remarkable results on various tasks both before
(Ranaldi et al., 2023c) and after fine-tuning on
smaller datasets (Ranaldi et al., 2023a). VLLMs
that represent the new version of transformer-based
models are based on corpora and are not so far from
their forerunners. While the performance is unmis-
takable, the resources needed are prohibitive for
non-company research (Ranaldi and Freitas, 2024).

*These authors contributed equally to this work

Recently, Touvron et al. (2023a) proposed a
Large Language Model Meta AI (LLaMA). This
solution aims to democratize training and do-
main adaptation of VLLM by opening the door
to Cheap-to-Build Very Large-Language models
(CtB-LLMs). LLaMA was made available in dif-
ferent sizes to provide smaller, high-performance
models that allow all researchers to use these mod-
els. The LLaMA’s success seems to be the trade-off
between lowering parameters and enriching pre-
training corpora compared to other VLLMs (see
Table 2).

However, the considerable increase in pre-
training corpora makes it challenging to assess
the characteristics and check the reliability of
these data. Therefore, learned representations may
inherit the biases and stereotypical associations
present in the large text corpora in the language
and, thus, in the pre-training corpora taken from
the web (Liang et al., 2021; Onorati et al., 2023).
Bias is the presence of systematic prejudices in
models (Mastromattei et al., 2022), that tendency
to generate responses that reflect the biases present
in the data it was trained on, potentially leading
to skewed or unfair outputs that perpetuate stereo-
types and inequalities. Although the spread of the
phenomenon is widely recognized, the causes that
emphasize this phenomenon remain largely unex-
plored. It has been observed that as the size of a
model increases, its linguistic modeling capabili-
ties and biases increase (Nadeem et al., 2021). On
the other hand, distilled versions of target models
tend to show more bias (Silva et al., 2021; Tal et al.,
2022). These mixed results demonstrate that bias
does not depend on the number of parameters but,
more likely, on the data on which they were trained.

In this paper, we performed a deep investigation
of the bias of three families of CtB-LLMs, and
we showed that debiasing techniques are effective
and usable. By investigating the analogies between
model size growth concerning pre-training param-
eters or corpora and bias memorization. Thus, we
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Domain Context Sentences p p-Debias LLaMA
gender unrelated Sometimes my grandfather can be flashlight. 0.04 0.00281
gender stereotype Sometimes my grandfather can be sexist. 0.013 0.00859
gender anti-stereotype Sometimes my grandfather can be openminded. 0.012 0.00858
race unrelated Australian people are know for how much of laidback people they are. 0.015 0.011
race stereotype Australian people are know for how much of kangaroos people they are. 0.013 0.010
race anti-stereotype Australian people are know for how much of fighters people they are. 0.014 0.012

Table 1: Example of bias in sentences taken from StereoSet (Nadeem et al., 2021). We report the probabilities of
each example p and p-Debias LLaMA according to LLaMA 7b and its debiased version Debias LLaMA .

hypothesize that the CtB-LLMs performance de-
pends on the quality of the training data and that,
between different models, there are no significant
differences in terms of bias. Finally, we also study
the effect of fine-tuning with anti-stereotypical sen-
tences by proposing a lightweight approach to build
fairer models. By testing the 7-billion-parameter
LLaMA model and Open Pre-trained Transformer
Language Models (OPT) (Zhang et al., 2022), we
show that although the model shows less biased be-
havior after fine-tuning, the method also achieves
a reasonable overall performance of the language
model. Therefore, our approach produces fairer lan-
guage models using limited resources and achieves
sustainable performance on downstream bench-
mark tasks.

The major contributions of this paper are:

• a first comprehensive analysis of the bias for
three families of affordable, Cheap-to-Build
Large-Language Models (CtB-LLMs);

• establishing the anti-correlation between per-
plexity and bias in CtB-LLMs;

• demonstrating that simple de-biasing tech-
niques can be positively used to reduce bias
in these three classes of CtB-LLMs while not
reducing performance on downstream tasks;

2 Background and related work

Bias problems in Machine Learning are the
Achilles heel of many applications, including rec-
ommendation systems (Schnabel et al., 2016), fa-
cial recognition (Wang and Deng, 2019), and
speech recognition (Koenecke et al., 2020). One
of the main sources of bias comes from training
datasets, as noted by Shankar et al. (2017) Ima-
geNet and the Open Images dataset disproportion-
ately represented people from North America and
Europe. To mitigate biased behaviors in Machine
Learning models, researchers have proposed meth-
ods targeting different tasks and domains, such as

classification (Roh et al., 2021), adversarial learn-
ing (Xu et al., 2018) and regression (Agarwal et al.,
2019).

On the other side of the coin, traditional static
word embedding models are no exception to this
trend. Bolukbasi et al. (2016) and Caliskan et al.
(2017) showed that word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) contain stereo-
typed associations found in classic human psychol-
ogy studies (Greenwald et al., 1998). These works
measured word-level bias using cosine similarity
between embedding vectors, as in Bolukbasi et al.
(2016) and Word Embedding Association Tests
(WEAT) (Caliskan et al., 2017).

Later, May et al. (2019) extended WEAT to the
Sentence Encoder Association Test (SEAT) and re-
vealed harmful stereotypes in Pre-trained Language
Models and their contextual word embeddings such
as GPT-2 (Radford et al.), ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019). Sheng et al.
(2019) defined and measured a concept of regard
and sentiment for GPT-2 output. Finally, Nadeem
et al. (2021) proposed StereoSet to measure the
bias on gender, race, profession, and religion do-
mains. These benchmarks help quantify the extent
of bias present in language models.

Due to the extent of this phenomenon, different
analyses have been performed to try to understand
its causes and mitigate its presence. Conflicting
results were observed in the attempt to understand
how the same training strategies and data affect
different models. A positive correlation has been
observed between model size and bias presence in
(Nadeem et al., 2021), studying GPT-2, BERT, and
RoBERTa. The same was also noticed on the larger
versions of DeBERTa, RoBERTa, and T5 while in-
vestigating their performances on Winogender (Tal
et al., 2022). However, Silva et al. (2021) showed
that bias is often much stronger on the distilled
version of BERT and RoBERTa, DistilBERT, and
DistilRoBERTa. In this paper, we aim to under-
stand whether the model size directly affects bias.
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To mitigate the bias in models, Bolukbasi et al.
(2016) proposed a mechanism to de-emphasize the
gender direction projected by words that are sup-
posed to be neutral, maintaining the same distance
between non-gender words and gender word pairs.
Later, Zhao et al. (2018) reserved some dimen-
sions of embedding vectors for specific informa-
tion content, such as gender information, where
gender-neutral words were made orthogonal to the
direction of gender. Peng et al. (2020), using GPT-
2, proposed a weighty reward mechanism to reduce
the frequency of non-normative output. Multiple
debiasing modules have been used to mitigate bi-
ases in the BERT model, training those modules
to make the model representation for classifica-
tion tasks invariant to protected attributes (such as
gender) (Kumar et al., 2023); in some cases, those
debiasing effects can also be controlled at inference
time (Masoudian et al., 2024). Zhao et al. (2019)
used data augmentation to replace gendered words
with their opposites in the original training corpus
and have a new model on the union of both corpora.
Finally, Joniak and Aizawa (2022) used movement
pruning, weight freezing, and a debiasing technique
based on a projection of gender-related words along
(Kaneko and Bollegala, 2021).

In this paper, we propose a comprehensive anal-
ysis of the stereotypes present in three Large Lan-
guage Models: Large Language Model Meta AI
(LLaMA) (Touvron et al., 2023a), Open Pre-trained
Transformer Language Models (OPT) (Zhang et al.,
2022) and BLOOM (BigScience-Workshop et al.,
2023). We chose these open models because of the
trade-off between the number of parameters, which
is accessible to our resources, and the size of the
pre-training corpora (see Table 2). Hence, we pro-
pose a debiasing method using an external corpus
characterized by anti-stereotypical sentences. We
stem from the observation that not all model pa-
rameters need to be updated to perform debiasing
(Gira et al., 2022; Joniak and Aizawa, 2022) and
that perturbation mitigated biases in smaller models
(Zhao et al., 2019; Qian et al., 2022). Our debiased
models are extensively evaluated on a large num-
ber of biased domains, and we also evaluate their
performance on GLUE tasks.

3 Method and Data

This section briefly describes the datasets and met-
rics used (Section 3.1) and our debiasing technique
and fine-tuning data (Section 3.2).

3.1 Evaluation Datasets

An ideal language model excels at language mod-
eling while not exhibiting stereotypical biases. To
determine the success of both goals, we evaluate a
given model’s stereotypical bias and language mod-
eling abilities. For evaluating the bias of the lan-
guage models, we used StereoSet (Nadeem et al.,
2021) described in Section 3.1.1. To assess that
the language models are not significantly losing
performance after debiasing, we used the GLUE
benchmark (Wang et al., 2018) described in Section
3.1.2

3.1.1 StereoSet

StereoSet (Nadeem et al., 2021) is a benchmark
used to assess the presence of bias in four domains:
gender, profession, race, and religion. It is com-
posed of triples of correlated English sentences.
The triples of sentences are organized around a
target term. Each triple then consists of a stereotyp-
ical, an anti-stereotypical, or an unrelated, neutral
context for the target term. For example, grand-
father is associated respectively with sexist, open-
minded, and flashlight whereas Australian people
are associated respectively with kangaroos, fight-
ers, and laidback. Then, simple and similar sen-
tences are built around target terms and context
words to reduce the impact of the sentence struc-
ture in the computed probability (see Table 1).

Ideally, tests in StereoSet aim to observe whether
or not the analyzed language model leans toward
stereotypical contexts. Language models are tested
by observing which contexts they prefer for each
target among stereotyped and anti-stereotyped con-
texts: they are biased if they systematically choose
the stereotyped context.

StereoSet defines two classes of tests: intra-
sentence (8,498 triples) and inter-sentence (16,995
triples). In our experiments (Section 4.1), we
tested LLaMA, OPT, and BLOOM models with
the intra-sentence test excluding the inter-sentence
test since, in order to perform the Next Sentence
Prediction, the models should be fine-tuned, possi-
bly introducing biases also in this phase. Indeed,
in the inter-sentence test, language models are first
fed a context sentence and asked to perform the
Next Sentence Prediction over the stereotyped, anti-
stereotyped, and neutral attribute sentence.

The StereoSet intra-sentence test used in our
study is based on four measures: the Stereotype
Score (ss), the Normalized Stereotype Score (nss),
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Model parameters pre-training
size

BERT (Devlin et al., 2019) 110b, 324b ∼ 16GB
GPT-2 (Radford et al.) 117m, 345m ∼ 80GB
GPT-3 (Brown et al., 2020) 125b, 234b ∼ 570GB
OPT (Zhang et al., 2022) 0.12b, 17b, 66b ∼ 0.85TB
BLOOM (BigScience-Workshop et al., 2023) 560m, 1b7, 3b, 7b ∼ 0.80TB
LLaMA (Touvron et al., 2023a) 7b, 13b, 33b, 65b ∼ 1TB

Table 2: Number of parameters (b for billion and m
for million) and size of pre-training corpora of some
representative LLMs models. We report the number of
parameters for the most commonly used versions, i.e.,
medium and large, except for LLaMA.

the Language Modelling Score (lms), and the Ide-
alized CAT Score (icat).

Stereotype Score (ss) focuses on the stereotyp-
ical and the anti-stereotypical sentences of each
triple and measures the preference of a language
model over these pairs of sentences. Comparing
the probability of the stereotypical and the anti-
stereotypical sentences, it is defined as the percent-
age of times the stereotypical sentence is assigned
a higher probability than the anti-stereotypical sen-
tence. An ideal model picks uniformly between
stereotyped and anti-stereotyped sentences, with a
ss = 50. Because understanding the Stereotype
Score can be challenging, we introduced the Nor-
malized Stereotype Score (nss), which is defined
as follows:

nss =
min(ss, 100− ss)

0.50

Hence, nss is a measure that stays between 0 and
100 where 100 is the non-biased or non-anti-biased
value. For comparison purposes, we report both ss
and nss.

The Language Modeling Score (lms) assesses
the ability of a model to rank a meaningful associa-
tion over a meaningless one when presented with
a target term, a contextual framework, and two po-
tential associations. The meaningful association
can either correspond to the stereotype or the anti-
stereotype option. In this case, a perfect model has
lms = 100.

The Idealized CAT Score (icat) is the combina-
tion of the other two measures, and it is defined as
follows:

icat = lms ∗ nss/100
An ideal model, unbiased and with high language
modeling abilities, has a icat = 100.

3.1.2 GLUE
The GLUE benchmark (Wang et al., 2018) is
largely used to assess the capabilities of NLP mod-

els mainly based on large language models. Us-
ing NLP tasks in combination with debiasing tech-
niques is extremely important as it has been previ-
ously noted that debiasing methods tend to degrade
model performance in downstream tasks (Joniak
and Aizawa, 2022). We use GLUE to demonstrate
that the debiasing technique we introduce does not
negatively affect downstream performance.

Hence, we choose a subset of GLUE tasks and
show how the proposed model, Debias LLaMA
(see Table 4), performs well but at the same time
has higher fairness. The selected tasks cover three
classes of problems: Natural Language Inference,
Similarity&Paraphrase, and Single Sentence. For
Natural Language Inference, we used Multigenre
NLI (MNLI) (Williams et al., 2018), Question NLI
(QNLI) (Wang et al., 2018), Recognizing Textual
Entailment (RTE) (Bentivogli et al., 2009), and
Winograd NLI (WNLI) (Levesque et al., 2012).
For Similarity&Paraphrase, we used the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005), the Semantic Textual Similarity
Benchmark (STS-B) (Cer et al., 2017), and Quora
Question Pairs (QQP) (Sharma et al., 2019); senti-
ment classification - Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013). Finally, for Single
Sentence, we used the corpus of linguistic accept-
ability (CoLA) (Warstadt et al., 2019).

3.2 Debiasing via efficient Domain Adaption
and Perturbation

The cheap-to-build families of LLMs – LLaMA,
OPT, and BLOOM – allow debiasing. The debias-
ing procedure is performed via domain adaptation
and causal language modeling, such as finetuning,
to speed up all the processes.

We also froze a large number of parameters and
trained only the attention matrices of the exam-
ined models. While a similar approach of freezing
weights has been performed (Gira et al., 2022),
to the best of our knowledge, it is the first time
that the debiasing is performed via domain adap-
tion on these LLMs with the perturbed dataset de-
scribed in the following. Moreover, while Gira et al.
(2022) focuses on debiasing GPT-2 with different
techniques, we adopt a single, flexible approach to
many different models. Since it has been observed
that the attention matrices are, in fact, low-rank
matrices on a large number of models, we train
each model using LoRA (Hu et al., 2021) on the
attention matrices at each layer.
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Bias is prevalent in written texts, as models
often mirror the content they are exposed to.
Thus, we have contemplated introducing counter-
stereotypical sentences to mitigate this bias. We
opted for LoRA primarily due to its adapter-based
approach, as it appeared to be the most viable so-
lution given the large models at hand, addressing
the memory constraints efficiently. The resulting
training procedure is easier since we do not memo-
rize the gradient for each weight, scalable because
it requires fewer training data than training from
scratch, and the resulting adapter weights are more
accessible to share instead of a large model ob-
tained by standard fine-tuning. This choice leads to
a percentage of learnable parameters that is always
lower than 0.5%. Despite its simplicity, this tech-
nique allows us to obtain models that are less biased
(Section 4.2) and to maintain them with compara-
ble performances on language understanding tasks
(Section 4.3).

To perform the debiasing procedure, we relied
on the perturbed sentences of the PANDA dataset
(Qian et al., 2022). PANDA consists of 98k pairs
of sentences. Each one is composed of an origi-
nal sentence and a human-annotated one, with the
latter being a rewriting of the former by chang-
ing the demographic references in the text. For
example, “women like shopping” is perturbated
in “men like shopping”. The resulting sentence
is, hence, anti-stereotypical. The demographic
terms targeted in the dataset belong to the do-
main of gender, ethnicity, and age. Qian et al.
(2022) used this human-annotated dataset to re-
train RoBERTa entirely. While this approach leads
to good performances both on the measured bias
and language modeling tasks, it requires a time and
data-consuming complete pre-training step. For
these reasons, we performed instead the domain
adaptation with LoRA (Hu et al., 2021) applied
only to attention matrices of LLaMA, OPT, and
BLOOM. The proposed debiasing technique will
be public and available to all.

4 Experiments

In this section, we first analyze the presence of bias
in pre-trained LLMs. We use StereoSet to assess
the presence of bias (Section 4.1). Furthermore,
in Section 4.2, we focus on the analysis of the
models after we apply the debiasing technique pre-
viously described, and we assess it causes no harm
to the language modeling performance abilities of

the model considered, testing on downstream tasks
(Section 4.3). Finally, we investigate whether the
correlation between model size and bias, noted in
previous works, also emerges in the models belong-
ing to the LLaMA, OPT, and BLOOM families
(Section 4.4).

4.1 Bias in Pre-trained models

In the following analysis, we investigate the pres-
ence of bias in LLMs. In particular, we focused
on LLaMA, OPT, and BLOOM pre-trained mod-
els. Our choices are justified by the characteristics
of the models and the hardware resources avail-
able (see Table 2). In this section, we also aim to
understand whether the model size has a positive
correlation with the bias. If the answer is negative,
we can find another measure of the model’s com-
plexity that can give us a better explanation. We
observe that when the bias is higher, the perplexity
of the models tends to be higher.

Using the StereoSet benchmark, bias seems to
affect all models across both LLaMA, OPT, and
BLOOM families, despite the number of parame-
ters of each model (as can be observed in Table 3,
columns plain). All models achieve a lms higher
than 0.9, meaning they exclude the meaningless op-
tion a large percentage of the time. Yet, they are far
from the ideal score of 0.5 for ss, which can be ob-
served in all different domains, and, consequently,
the nss is far from 100.

Considering all the domains together, BLOOM
seems fairer (less biased) than LLaMA and OPT.
BLOOM consistently outperforms both models for
any configuration of the number of parameters. The
model’s size does not affect the fairness of LLaMA
even if it remains unsatisfactory since nss is around
68. BLOOM and OPT instead decrease their fair-
ness when augmenting the model size. In fact, their
best nss are obtained with 560m and 350m pa-
rameters for BLOOM and OPT, respectively. The
fairness of BLOOM 560m is definitely interesting
as its nss is around 83, and its icat is 73.72 com-
pared with 63.17 and 68.28 of LLaMA and OPT,
respectively.

It is not a surprise that BLOOM is fairer than the
other two models. Indeed, this family of models
has been trained over a polished and controlled cor-
pus (BigScience-Workshop et al., 2023). More than
100 workshop participants have contributed to the
dataset curation phase. These participants selected
sources trying to minimize the effect of specific
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plain debiased
domain model lms ss nss icat perplexity lms ss nss icat perplexity

all

LLaMA 7b 91.98 65.66 68.68 63.17 152.56 91.16 65.1 69.80 63.63 244.41
LLaMA 13b 91.96 65.82 68.36 62.87 154.33 - - - - -
LLaMA 30b 91.93 65.97 68.06 62.57 152.25 - - - - -
OPT 350m 91.72 62.78 74.44 68.28 333.77 91.76 61.9 76.2 69.92 352.39
OPT 1.3b 93.29 66.03 67.94 63.38 278.89 92.96 64.58 70.84 65.85 315.62
OPT 2.7b 93.26 66.75 66.5 62.03 266.25 93.04 64.26 71.48 66.5 305.36
OPT 6.7b 93.61 66.83 66.34 62.11 264.1 93.41 64.5 71. 66.33 308.72
BLOOM 560m 89.26 58.71 82.58 73.72 684.54 90.01 58.92 82.16 73.95 574.38
BLOOM 1b1 90.23 60.04 79.92 72.11 666.84 90.42 60.38 79.24 71.65 542.42
BLOOM 1b7 91.09 60.28 79.44 72.35 622.18 91.1 61.08 77.84 70.9 476.41
BLOOM 3b 91.65 61.4 77.2 70.75 397.91 91.63 62.01 75.98 69.61 338.8
BLOOM 7b1 92.03 62.79 74.42 68.48 412.72 91.89 62.23 75.54 69.42 428.9

gender

LLaMA 7b 92.64 69.3 61.4 56.89 141.34 91.91 68.62 62.76 57.69 241.6
LLaMA 13b 92.74 69.59 60.82 56.4 140.65 - - - - -
LLaMA 30b 92.69 68.71 62.58 58 141.49 - - - - -
OPT 350m 92.74 66.86 66.28 61.46 286.38 91.96 65.98 68.04 62.56 266.74
OPT 1.3b 94.05 70.18 59.64 56.1 237.49 92.98 69.3 61.4 57.09 239.34
OPT 2.7b 93.52 69.59 60.82 56.88 237.8 92.54 68.13 63.74 58.99 238.88
OPT 6.7b 94.05 69.1 61.8 58.12 231.7 93.03 68.62 6276 58.39 245.33
BLOOM 560m 90.69 63.74 72.52 65.76 546.51 91.47 63.65 72.70 66.51 422.03
BLOOM 1b1 91.86 65.79 68.42 62.85 562.54 91.76 65.5 69.00 63.32 396.52
BLOOM 1b7 91.86 65.4 69.2 63.57 549.21 92.01 65.98 68.04 62.59 381.49
BLOOM 3b 92.11 67.74 64.52 59.43 336.33 92.25 68.32 63.36 58.44 275.92
BLOOM 7b1 92.25 67.64 64.72 59.7 380.93 93.37 65.89 68.22 63.7 382.03

profession

LLaMA 7b 91.3 63.31 73.38 67 132.84 90.38 62.62 74.76 67.56 218.53
LLaMA 13b 91.57 63.5 73.00 66.85 136.13 - - - - -
LLaMA 30b 91.33 64.06 71.88 65.65 131.49 - - - - -
OPT 350m 91.26 62.81 74.38 67.87 330.95 91.38 63.12 73.76 67.4 352.08
OPT 1.3b 92.36 64.74 70.52 65.13 300.4 92.8 64.56 70.88 65.78 341.09
OPT 2.7b 92.24 65.37 69.26 63.89 283.76 92.44 64.93 70.14 64.84 331.77
OPT 6.7b 92.77 65.18 69.64 64.6 286.29 93.08 64.4 71.2 66.27 328.16
BLOOM 560m 88.82 59.38 81.24 72.16 567.71 89.76 58.67 82.66 74.2 477.65
BLOOM 1b1 90.04 59.85 80.30 72.3 588.91 90.06 60.16 79.68 71.75 423.06
BLOOM 1b7 90.82 60.79 78.42 71.23 568.4 90.73 59.6 80.8 73.31 422.9
BLOOM 3b 91.4 61.22 77.56 70.88 357.58 91.12 60.88 78.24 71.29 291.64
BLOOM 7b1 91.72 62.19 75.62 69.36 344.08 91.88 61.97 76.06 69.88 340.47

race

LLaMA 7b 92.27 67.01 65.98 60.87 172.2 91.44 66.63 66.74 61.02 268.52
LLaMA 13b 91.94 67.12 65.76 60.47 173.21 - - - - -
LLaMA 30b 92.05 67.29 65.42 60.21 172.6 - - - - -
OPT 350m 91.72 61.71 76.58 70.25 346.09 91.9 59.73 80.54 74.02 370.71
OPT 1.3b 93.78 66.02 67.96 63.73 269.25 93 63.56 72.88 67.78 308.5
OPT 2.7b 93.91 66.99 66.02 62 255.92 93.54 62.44 75.12 70.26 296.64
OPT 6.7b 94.08 67.37 65.26 61.4 252.31 93.72 63.28 73.44 68.82 306.01
BLOOM 560m 89.07 56.91 86.18 76.76 817.62 89.69 58 84. 75.34 696.01
BLOOM 1b1 89.79 58.89 82.22 73.83 761.3 90.19 59.27 81.46 73.47 679.47
BLOOM 1b7 91.1 58.99 82.02 74.72 680.7 91.09 61.25 77.5 70.59 543.18
BLOOM 3b 91.63 60.31 79.38 72.74 446.44 91.76 61.55 76.9 70.56 394.36
BLOOM 7b1 92.01 62.29 75.42 69.4 473.47 91.44 61.86 76.28 69.75 505.53

religion

LLaMA 7b 93.1 61.04 77.92 72.54 144.57 92.94 59.82 80.36 74.7 216.62
LLaMA 13b 93.56 61.04 77.92 72.9 148.39 - - - - -
LLaMA 30b 93.87 60.12 79.76 74.86 144.69 - - - - -
OPT 350m 93.1 62.58 74.84 69.68 361.86 93.1 63.19 73.62 68.54 403.71
OPT 1.3b 94.02 65.64 68.72 64.6 313.98 93.87 62.27 75.46 70.83 391.13
OPT 2.7b 94.63 68.4 63.20 59.8 308.21 94.48 67.48 65.04 61.44 360.07
OPT 6.7b 94.79 69.33 61.34 58.15 290.05 94.17 67.18 65.64 61.82 349.51
BLOOM 560m 91.41 57.98 84.04 76.83 660.96 91.72 57.67 84.66 77.65 536.44
BLOOM 1b1 92.18 57.67 84.66 78.04 620.79 92.64 59.82 80.36 74.45 520.65
BLOOM 1b7 91.1 54.91 90.18 82.16 674.18 92.02 58.28 83.44 76.78 495.14
BLOOM 3b 92.79 56.44 87.12 80.84 402.36 93.25 58.9 82.2 76.66 329.56
BLOOM 7b1 94.48 59.51 80.98 76.51 454.26 92.79 57.67 84.66 78.56 520.91

Table 3: StereoSet scores in each domain. The proposed debiasing method reduces bias across all the different
domains.

biases and revised the procedures for automatically
filtering corpora.

All families of models show a bias higher than
the mean for the gender domain, are on par with
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Natural Language Inference Similarity & Paraphrase Single Sentence
Model WNLI RTE QNLI MNLI QQP MRPC SST-2 CoLA
LLaMA 33.8 76.53 62.43 55.63 68.41 68.37 82.45 66.15
LLaMA-Debias 32.98 75.95 62.54 58.43 67.95 69.45 82.22 69.23

OPT-350m 52.47 66.42 50.23 81.16 54.44 86.44 50.91 52.43
OPT-Debias-350m 54.43 66.96 51.12 86.55 55.35 86.97 51.16 54.06
OPT-1b3 54.56 68.33 52.44 85.19 54.83 87.96 52.78 54.67
OPT-Debias-1b3 54.79 68.98 53.06 87.16 55.83 88.05 53.21 54.97
OPT-2b7 55.27 69.12 52.98 85.78 55.93 88.14 54.07 55.22
OPT-Debias-2b7 55.98 70.16 53.24 86.15 56.18 88.64 55.71 55.69
OPT-6b7 57.38 70.11 54.41 87.13 57.23 89.32 56.27 56.72
OPT-Debias-6b7 57.13 69.97 54.92 86.97 57.78 90.17 57.03 56.94

BLOOM-560m 52.23 54.43 80.03 38.55 53.32 82.57 83.21 36.27
BLOOM-Debias-560m 39.41 51.44 78.91 39.77 51.43 80.16 82.83 34.22
BLOOM-1b7 52.82 59.20 81.01 39.86 56.42 85.81 85.21 46.55
BLOOM-Debias-1b7 46.77 58.19 80.21 37.16 54.71 84.91 80.55 43.30
BLOOM-3b 54.37 62.64 82.39 40.11 57.14 85.97 86.04 46.93
BLOOM-Debias-3b 49.83 57.93 80.16 37.89 55.49 82.19 82.31 45.05
BLOOM-7b 55.16 65.19 84.13 42.23 60.46 87.18 86.94 51.16
BLOOM-Debias-7b 54.26 63.98 83.52 40.28 59.67 85.33 85.37 50.81

Table 4: Performance on the GLUE tasks. For MRPC and QQP, we report F1. For STS-B, we report Pearson and
Spearman correlation. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. Results
are the median of 5 seeded runs. We have reported the settings and metrics proposed in (Wang et al., 2018).

the mean for the profession domain, and are fairer
for the race and religion domains. Gender and pro-
fession seem to be less balanced in the pre-training
phase. The extremely poor result in the gender do-
main suggests that this bias is cast into texts. Even
BLOOM has a performance drop of 10 points with
respect to its mean for the nss value (72.52 for
gender vs. 82.52 for all). The corpus curation was
ineffective for this domain but extremely effective
for the two most divisive domains, that is, race and
religion. BLOOM 1.7b has the impressive result of
nss = 90.18 for religion paired with icat = 82.16.
Hence, religion has been particularly curated in its
training dataset.

4.2 Debiasing results

Given the results of the previous section, data cura-
tion seems to be the best cure for bias in CtB-LLMs.
Yet, this strategy is not always possible, as train-
ing CtB-LLMs from scratch may be prohibitive.
Debiasing may be the other solution.

When the fairness is low, debiasing plays a major
role in reducing the bias of CtB-LLMs (see Table
3). For the family OPT, the decrease in bias on the
overall corpus is neat, even if not impressive. The
average nss value increases by 4.12 points, and
the average icat by 3.66 points. This decrease in
bias is mainly due to the decrease in the domain of
race where the increase of nss reaches 7.26 points
on average, and the increase in icat is on average
of 6.44 points. In the case of gender and profes-

sion, the bias is not greatly reduced. Apparently,
the PANDA corpus is not extremely powerful for
reducing bias in these two important categories.

Debiasing has no effect on BLOOM, which is
already fairer than the other two families of models.
Moreover, debiasing does not help the OPT and
the LLaMA family to reduce these models’ bias
to the BLOOM levels. This seems to suggest that
investing in carefully selecting corpora is better
than debiasing techniques. However, results on
downstream tasks shed another light on this last
statement (see Section 4.3).

4.3 Performance on downstream tasks
Finally, we tested the families of CtB-LLMs and
their debiased counterparts on downstream tasks.
In fact, it has been noted that debiasing LLMs
may affect the quality of their representations and,
consequently, a degradation of the performances.
Hence, the aim of this section is twofold:

• to understand whether or not performances of
CtB-LLMs degrade after debiasing;

• to determine the relationship between bias and
performance on final downstream tasks.

We then tested the proposed models on many down-
stream tasks commonly used for benchmarking,
that is, GLUE (Wang et al., 2019). What we expect
from these further experiments is that the capabili-
ties of the language model will be maintained by
the fine-tuning proposed in Section 4.2.
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(a) (b)

Figure 1: Model bias (ss) against model size (1a) and perplexity (1b). All measures have been standardized across
the two different families of models. Our experiments suggest a lack of correlation between model size and bias
(1a). A negative correlation can be observed (1b) across the different domains between perplexity and ss score
while it is not possible to establish its statistical significance due to the limited number of models.

Debiasing does not introduce a drop in perfor-
mance on downstream tasks for LLaMA and for
OPT (see Table 4). In these two families, debiasing
plays an important role as it is really reducing the
bias. Nevertheless, it does not significantly reduce
performance in any GLUE downstream tasks. For
specific cases, debiasing increases performance in
the final downstream task for LLaMA and OPT.

However, fairness and performance are not cor-
related. Indeed, OPT performs better with larger
models (see Table 4). Yet, larger models have a
stronger bias (see Table 3). Performance is directly
correlated with the size of the OPT model. More-
over, BLOOM, the fairer CtB-LLM, performs very
poorly on many tasks compared with the OPT and
LLaMA.

4.4 On language modeling abilities and bias

Since all models are biased, we aim to investigate
why models belonging to the same family perform
differently. First, we notice the absence of correla-
tion between model size and bias presence (Figure
1a). Hence, we investigate a property usually re-
lated to model size, such as the perplexity of a
model. The perplexity is related to model confu-
sion, and large models generally have higher lan-
guage modeling performances and lower perplexity.
Figure 1b shows strong, negative correlations be-
tween average perplexity and ss in LLaMA and

OPT families on the StereoSet benchmark. Despite
the trend appearing to be clear, due to the still lim-
ited number of models analyzed, it is impossible to
assess the statistical significance of the results. This
observed correlation requires further exploration.

5 Conclusions

The outbreak of Large Language Models (LLMs)
based has shocked traditional NLP pipelines. These
models achieve remarkable performance but are
not accessible to everyone, given the prohibitive
number of parameters they work on. Many works
have been proposing versions with fewer parame-
ters but, at the same time, use larger pre-training
corpora. These Cheap-to-Build LLMs (CtB-LLMs)
may soon become the de-facto standard for build-
ing downstream tasks. Controlling their bias is then
a compelling need.

In this paper, we proposed an extensive analysis
of CtB-LLMs, and we showed that debiasing is a
viable solution for mitigating the bias of these mod-
els. However, we have mixed findings. Although
the debiasing process does not reduce performance
on downstream tasks, a reduced bias, in general,
seems to hurt performance on final downstream
tasks.

In the future, we will continue exploring ways
to reduce bias in CtB-LLMs by ensuring their eth-
ical and unbiased use in various applications. By
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addressing the problems, we can spread the full
potential of these models and harness their power
for society’s progress.

Limitations & Future Works

We outline some limitations and possible directions
for future research in mitigating bias in Large Lan-
guage Models (LLMs):

• Our approach could be better, as we have
found compromises between performance and
correctness. Thus, we have obtained refined
LLMs with a certain amount of attenuated
bias, which should not be considered a guar-
antee for safety in the real world. Therefore,
it is necessary to integrate explainable mech-
anisms (Zanzotto et al., 2020; Ranaldi and
Zanzotto, 2020) that facilitate interpretation
in order to deliver the use and evaluation of
these models clearer in different real-world
contexts as deeply investigated by Ranaldi
and Pucci (2023b).

• One of the risks associated with our stereotype
identification technique is the potential failure
to recognize stereotypes, ultimately hindering
effective debiasing. Conversely, an overly ag-
gressive approach to debiasing may create an
excessively anti-stereotypical model, inadver-
tently introducing bias.

• Languages different from English should
be further explored. In particular, our de-
biasing technique should be applied in a
cross-lingual scenario, since those models are
mainly trained on English resources but still
able to perform tasks proficiently on other lan-
guages in cross-lingual scenarios (Ranaldi and
Pucci, 2023a) and build comparable represen-
tations for more similar languages (Ruzzetti
et al., 2023).

• Our approach is linked to carefully crafted
stereotype bias definitions. These definitions
largely reflect only a perception of bias that
may not be generalized to other cultures, re-
gions, and periods. Bias may also embrace
social, moral, and ethical dimensions essential
for future work.

• Finally, the last point that partially repre-
sents a limitation is related to our resources
(NVIDIA RTX A6000 with 48 GB of VRAM),

which did not allow us to test larger LLMs and
run more than once. Future work will also
address this by proposing optimization mech-
anisms based on the data structure (Ranaldi
et al., 2023b).

These points will be the cornerstone of our future
developments and help us better show the underly-
ing problems and possible mitigation strategies.
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Abstract

In this work, we propose a new task, com-
positional structured explanation generation
(CSEG), to facilitate research on compositional
generalization in reasoning. Despite the suc-
cess of language models in solving reasoning
tasks, their compositional generalization capa-
bilities are under-researched. Our new CSEG
task tests a model’s ability to generalize from
generating entailment trees with a limited num-
ber of inference steps – to more steps, focusing
on the length and shapes of entailment trees.
CSEG is challenging in requiring both reason-
ing and compositional generalization abilities,
and by being framed as a generation task. Be-
sides the CSEG task, we propose a new dy-
namic modularized reasoning model, MORSE,
that factorizes the inference process into mod-
ules, where each module represents a functional
unit. We adopt modularized self-attention to dy-
namically select and route inputs to dedicated
heads, which specializes them to specific func-
tions. Using CSEG, we compare MORSE to
models from prior work. Our analyses show
that the task is challenging, but that the dy-
namic reasoning modules of MORSE are effec-
tive, showing competitive compositional gener-
alization abilities in a generation setting.1

1 Introduction

Large-scale language models (Raffel et al., 2019;
Chung et al., 2022; Touvron et al., 2023) have
shown remarkable performance on reasoning tasks,
such as reading comprehension (Rajpurkar et al.,
2018), natural language inference (Williams et al.,
2018), story generation (Mostafazadeh et al., 2016),
etc. However, Russin et al. (2020); Mitchell (2021);
Yuan et al. (2023) argued that these models lack
human-like reasoning capabilities.

Humans excel in compositional generalization
(Hupkes et al., 2020), a capacity to combine an
inventory of known constituents to predict larger

1https://github.com/xiyan524/MORSE

sent1: puddles of water will receive sunlight
sent2: temperature is a measure of heat energy 
sent3: if something receives sunlight, it will increase in temperature 
hypothesis: the puddles of water will increase in heat energy

hypothesis: the puddles of water 
will increase in heat energy

int1: the puddles of water will 
increase in temperature

sent2: temperature is a 
measure of heat energy

sent3: if something receives sunlight, it 
will increase in temperature

sent1: puddles of water 
will receive sunlight

rt: if-then 

rt: substitution

entailment tree

candidate sentences & a hypothesis

Figure 1: Structured explanation generation: generate
an entailment tree including intermediate nodes (grey)
for a hypothesis (green) and given candidate sentences.
Each reasoning step (sent1 & sent3→ int1) is indepen-
dent and belongs to one of six reasoning types (rt).

compounds, during reasoning. For example, hu-
mans who understand calculation constituents,
e.g., subtraction sub(X,Y) and mixed addition-
subtraction operations sub(X, add(Y, Z)), can solve
larger compounds, e.g., sub(W, sub(X, add(Y, Z))).

Various studies (Hudson and Manning, 2019;
Goodwin et al., 2020; Yanaka et al., 2020; Liu et al.,
2022) have explored compositional generalization
abilities in reasoning tasks. But, these works focus
on compositionality units manifesting on the word
level and involving specific linguistic phenomena,
and neglect inferential processes holding between
sentences. But sentence-level composition can en-
hance the capacity of models to execute complex
contextual reasoning.

To fill this gap, we propose a new task, compo-
sitional structured explanation generation, CSEG.
CSEG is a new setting built on SEG (Dalvi et al.,
2021), a task for models to generate a multi-step
entailment tree – given a hypothesis and candidate
sentences. The tree indicates how the hypothe-
sis follows from the text. Fig. 1 shows an exam-
ple. Each step (e.g., sent1 & sent3→ int1) repre-
sents a multi-premise textual inference (Lai et al.,
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2017), belonging to one of six reasoning types,
such as if-then (it) and substitution (subs) (see Ap-
pendix A.1 and A.3 for examples). We consider
each reasoning type as a constituent unit. To test
compositional generalization in reasoning, our new
task CSEG requires models to generalize from en-
tailment trees with a limited number of reasoning
steps to trees involving more steps. For example, a
model is expected to generate a larger compound
(entailment tree) with more reasoning steps, e.g.,
c3: subs(subs(it(p1, p2)→ h1, p3)→ h2, p4)→ h3,
by combining known constituents c1: subs(it(p1,
p2) → h1, p3) → h2 and c2: subs(p1, p2) → h,
where c1 replaces p1 in c2). Here, compositionality
units, i.e., reasoning types, operate on the sentence
level and involve reasoning components.

Our new CSEG task requires: i) reasoning ca-
pabilities, to infer new conclusions from existing
information; and ii) compositional generalization
capability, to generalize to unseen compounds us-
ing previously learned constituents. Recent ef-
forts (Dalvi et al., 2021; Saha et al., 2020; Tafjord
et al., 2021) aimed to improve reasoning abili-
ties, while ignoring the compositional generaliza-
tion capacity. Existing symbolic-based approaches
(Martínez-Gómez et al., 2017; Gupta et al., 2019;
Le et al., 2022) used multiple modules that each
perform unique types of reasoning, endowing mod-
els with strong compositionality. But they rely
on pre-defined reasoning rules and need training
data for each pre-defined module. Inspired by this,
we propose a dynamically modularized reasoning
model MORSE. Our model simulates the symbolic
process by specializing Transformer self-attention
heads to what we call dynamic modules. We de-
sign a modularized self-attention mechanism that
dynamically selects and routes inputs to dedicated
modularized heads, specializing them to specific
functions. The dynamics embodied in MORSE
through its self-assembling modules makes it ap-
plicable to multiple datasets without pre-defined
knowledge and extend to novel inference types.

Our main contributions are:

i) We propose a new compositional structured
explanation generation task, which aims to
explore compositional generalization capabil-
ities in reasoning. It requires models to gen-
eralize from entailment trees with a limited
number of inference steps to more steps.

ii) We design a novel dynamically modularized
reasoning model that specializes transformer

heads to specific functions, by dynamically
selecting related inputs to dedicated heads.

iii) Experiments on two benchmarks targeting
generalization over proof lengths and shapes
demonstrate MORSE’s advanced composi-
tional generalization abilities.

2 Related Work

Generalization in Reasoning Despite the suc-
cess of language models in solving reasoning tasks,
their generalization abilities have attracted atten-
tion, e.g., length generalization (Clark et al., 2020;
Wu et al., 2021; Anil et al., 2022), compositional
generalization (Liu et al., 2022), domain general-
ization (Niu et al., 2023), etc. In this work, we
explore compositional generalization in reasoning.

Compositional generalization has been resear-
ched for decades (Fodor and Pylyshyn, 1988; Mar-
cus, 2003; Lake and Baroni, 2018), including two
significant properties: productivity and systematic-
ity (Hupkes et al., 2020). Among these, produc-
tivity is similar to length generalization, in that
both evaluate generalization to deeper reasoning
chains. But for evaluating productivity, primitive
units needed for solving deeper samples must have
been learned during training. In contrast to the
related length-generalization work of Clark et al.
(2020), our CSEG task aims to evaluate produc-
tivity in a structured compositional generalization
reasoning task. We therefore guarantee that prim-
itive units (rule types) needed for solving deeper
samples have been learned in training. Importantly,
we frame CSEG as a generation task, which un-
like classification settings as in Clark et al. (2020),
makes it harder for models to exploit shortcuts.

Recently, there has been renewed interest in ex-
ploring compositional generalization in reasoning
tasks. Johnson et al. (2017); Hudson and Manning
(2019); Bogin et al. (2021); Gao et al. (2022) pro-
posed challenging compositional tasks in visual
QA. Liu et al. (2022) designed compositional ques-
tions for QA and found even the strongest model
struggled with these challenging questions. Other
works probed the compositional abilities of models
in natural language inference (Geiger et al., 2020;
Goodwin et al., 2020; Yanaka et al., 2020, 2021;
Fu and Frank, 2023, 2024), focusing on specific lin-
guistic phenomena, such as quantifiers, negation, or
predicate replacements. I.e., they investigate com-
positionality in phenomena manifesting at the word
level, in contrast to inferential processes holding
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between sentences.
To fill this gap, we examine compositional gener-

alization in a multi-step entailment tree generation
task, where different inference rules need to be
composed. Concurrent work (Saparov et al., 2023)
also concentrates on sentence-level compositional-
ity in reasoning, but is limited in using a synthetic
dataset. In comparison, we employ both natural
language and synthetic data, and introduce a new
model, with potential for further improvement, that
can serve as a strong baseline for the task.

Neural-Symbolic and Neural Methods Prior
works show that symbolic approaches (Angeli and
Manning, 2014; Mineshima et al., 2015; Martínez-
Gómez et al., 2017) that adopt pre-defined infer-
ence rules to establish derivations through iterative
reasoning, endow models with strong composition-
ality. But being dependent on pre-defined rules, the
models are limited to well-defined tasks. Recently,
Yi et al. (2018); Yin et al. (2018); Li et al. (2020);
Jiang et al. (2021) used neural networks to map
raw signals to symbolic representations and sub-
sequently performed symbolic reasoning to make
predictions. As symbolic reasoning is brittle, novel
works based on Neural Modular Networks (NMN)
(Andreas et al., 2016; Hu et al., 2017) combine
individual neural modules endowed with special-
ized reasoning capabilities. E.g., Jiang and Bansal
(2019); Gupta et al. (2019) designed various mod-
ules in an NMN to perform unique types of rea-
soning in end-to-end manner. Similarly, Khot et al.
(2021, 2023) proposed a Text Module Network for
complex reasoning tasks, where each module is an
existing QA system. However, all these approaches
require prior knowledge and rely on brittle sym-
bolic transfer, to subsequently deploy pre-defined
modules for each sub-task, and well-designed mod-
ules require substantial extra training data. Finally,
symbolic reasoning methods are typically driven
by weak supervision, given the lack of intermediate
labels. This can result in error accumulation and
time-consuming learning. To address these chal-
lenges, we propose a model with dynamic modules
that make specific module functions more indepen-
dent from prior knowledge, to endow models with
greater flexibility when handling new tasks.

Our work may seem related to Mixture-of-
Expert (MoE) models (Jacobs et al., 1991; Lepikhin
et al., 2021; Li et al., 2023) that aim to decompose
tasks by composing separate networks, each of
which is trained to handle a subset of a complete

shape - A1 shape - A2

shape - B1 = A1 + A2 shape - B2 = A3 + A2 shape - B3 = A1 + A2

shape - A3length 2length 1 length 3

hypothesis

intermediate 
conclusions
candidate
sentences

productivity

systematicity

systematicity

Figure 2: Entailment trees including different lengths
and shapes for compositional generalization testing.

set of training cases. By contrast, MORSE focuses
on decomposition and combining primitive units
in individual samples. In addition, it uses multi-
ple heads of the existing Transformer cell, without
inducing extra training parameters (such as FNN
layers of MoE) – which has higher efficiency.

3 Task Setup

Background The Structured Explanation Gen-
eration (SEG) task (Dalvi et al., 2021) requires
a system to generate a multi-step entailment tree
given a hypothesis and candidate sentences. The
tree serves as a structured explanation of how pre-
sented evidences leads to a conclusion.

Input to the task are i) a hypothesis H , a declara-
tive statement and ii) a set S of candidate sentences
that express relevant knowledge needed to infer H .
Outputs are valid entailment trees with intermedi-
ate conclusions not contained in S (Fig. 1). The
entailment trees are encoded as linear sequences
that can be generated by a generative model. The
tree depicted in Fig. 1 would be represented as:
sent1 & sent2→ int1: the puddles of water will increase in

temperature; sent2 & int1→ hypot

Leaves senti are sentences from the candidate set
S, and hypot is the tree’s root, given by the hypoth-
esis H . intj are inferred intermediate conclusions
that provide the basis for further reasoning steps.

Compositional Generalization Testing To ex-
amine compositional reasoning capabilities, we par-
tition our benchmark datasets along two general-
ization properties: productivity and systematicity.

Productivity–Length evaluates systems on lon-
ger proof lengths than they have been trained on,
where both train and test sequences are composed
of identical primitives. Hence, we rearrange the
data by proof length, i.e., number of intermediate
nodes in each tree (including hypothesis node). We
partition the data into: i) primitive entailment trees
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of length one or two; ii) compositional entailment
trees of length three.2 Fig. 2 shows examples.

Systematicity–Shape examines the capability
of (re)combining known constituents to a larger
compound. Hence, we rearrange the dataset by tree
shapes. To select appropriate data, we proceed as
follows: we i) limit the inference steps of each tree
to four – given that larger steps present an unsolved
challenge for existing neural models (Table A.3,
Dalvi et al. (2021)); ii) extract the tree shapes from
candidate data; iii) find there exist only six different
shapes, depicted as shape-* in Fig. 2 (details in Ap-
pendix A.2); iv) select, among six possible shapes,
simple structures (Shape-A*) as primitives, and
more complex (compositional) ones (Shape-B*) as
compositions for generalization testing. We guaran-
tee that compositional shapes are built from primi-
tive shapes: B1=A1+A2, B2=A3+A2, B3=A1+A2.
In Figure 2, we use dashed squares to single out
one primitive shape for each compositional shape.

4 MORSE: Dynamic Modularized
Reasoning Model

We introduce our Dynamic Modularized Reason-
ing Model MORSE that generates compositional
structured explanations. MORSE contains: i) an en-
coder consisting of original and modularized trans-
former blocks to perform reasoning; ii) a decoder
using original transformer blocks to generate the en-
tailment tree structure. See the overview in Fig. 3.

4.1 Module-enhanced encoder
We concatenate candidate sentences S and the hy-
pothesis H into an input sequence. For each sen-
tence in S, we add a prefix sent∗ following Dalvi
et al. (2021). Thus the example in Fig.1 is repre-
sented as a sequence of length n: ‘sent1: puddles
of water will receive sunlight; sent2: temperature
is a ...; ...; hypothesis: the puddles of water will in-
crease in heat energy’. For each token xi, we adopt
an embedding layer to generate its representation
ei, i.e., a summation of token embedding, position
embedding and segment embedding. An encoder
subsequently encodes input representations.

Fig. 3.A shows that MORSE’s encoder consists
of Transformer blocks for lower layers and Mod-
ularized Transformer blocks for higher layers: i)
Transformer blocks allow the model to focus on the

2We only test length three here, given the significant perfor-
mance challenge shown by experiments. However, our setting
is a living benchmark, which can be easily extended by future
research.

representation of words themselves (Raganato and
Tiedemann, 2018; Jawahar et al., 2019); ii) Mod-
ularized Transformer blocks perform modularized
reasoning, where each module is encouraged to
learn a different inference function.

Transformer All Transformer blocks consist of
two sub-layers: a multi-head attention layer and a
fully connected feed-forward network. Each sub-
layer is followed by layer normalization (Ba et al.,
2016) and a residual connection (He et al., 2016).
In the multi-head attention sub-layer, sequential
inputs are projected to different representation sub-
spaces (different heads) in parallel; the layer then
performs self-attention (Vaswani et al., 2017) in
each head. The heads’ output values are concate-
nated and again projected, resulting in final values.

In MORSE, we adopt p Transformer blocks in
lower layers, aiming to capture the representation
of words in their syntactic context. Given token em-
beddings e1, ..., en of a sequential input of length n,
we use p Transformer blocks to encode them and
generate corresponding hidden states sp1, ..., spn.

Modularized Transformer We construct a Mo-
dularized Transformer block based on the Trans-
former. The difference is that we factorize the en-
coding process, by modularizing the Transformer
so that each module can be tailored to a specific
function. We implement this design by using
Transformer ‘heads’. The process of modulariza-
tion is illustrated in Fig. 3 B.1: the modularized
Transformer block contains a modularized atten-
tion layer, which consists of multiple specialized
heads hi. E.g., h0 to h5 are modularized heads
that may express different inference functions. The
remaining heads h6,7 work as usual, offering space
to model general knowledge not covered by the
modularized heads. With such modularization, we
expect that each module will specialize for specific
responsibilities, further endowing MORSE with
more flexibility to perform different inference func-
tions during reasoning.

To allow a modularized head hi to specialize
for specific functions, we construct dynamic masks
mi ∈ [0, 1]n to select sequential inputs of similar
kinds to pass through hi. Specifically, we define
several vectors of trainable parameters for each
module as a latent representation of the module’s
function, e.g., rephi

∈ Rd for hi. Simultaneously,
we adopt a linear projection on candidate input
hidden states s1, ..., sn to derive their functional
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Figure 3: (A) MORSE for entailment tree generation. (B) A series of detailed illustrations of the Modularized
Transformer layer. (B.1) Our novel modularized multi-head self-attention block. Each head may serve as a module,
executing a specific function. (B.2) Computations for a single attention head with dynamic mask mhi

. Self-attention
is extended with a dynamic mask to filter out irrelevant input for a module. (B.3) Constructing dynamic mask mhi

using head function representation rephi and input hidden states.

representations f1, ..., fn ∈ Rd. Then, we use
cosine similarity cos over the input’s functional
representations fj and the head’s representation
rephi

to calculate a matching coefficient. If it ex-
ceeds a threshold τ , MORSE is able to decide if
an input word xj is allowed to join the module hi.
The mask calculation is shown below:

mj
i =

{
e1−cos(rephi ,fj), cos(rephi

, fj) > τ
0, else

(1)
where the threshold τ is a fixed hyper-parameter.
To avoid the vanishing gradient problem, we use
e1−cos(∗) to represent the mask for a selected word.
For unselected words, we ignore their gradient. In
this way, we can generate masks mi for each mod-
ule hi dynamically, given sequential inputs and
different module objectives.

We further adopt the generated mask mi for a
module hi in Modularized Self-Attention to filter
out unrelated inputs. Fig. 3 B.2 shows the process:
we multiply the mask mi with input hidden states
from the previous layer sl−1, where hidden states of
unrelated words are set to zero. Then, we generate
the query Qhi

, key Khi
, and value Vhi

matrices for
self-attention by different linear projections based
on filtered inputs:

Qi,Ki, Vi = s̃l−1WQ
i , s̃l−1WK

i , s̃l−1W V
i

s̃l−1 = mhi
× sl−1

(2)

where WQ
i ,WK

i ,W V
i ∈ R d×d/k are training pa-

rameters, d is the hidden state dimension and k is
the number of heads. We then adopt scaled dot-

product attention to perform self-attention:

ai = softmax(
QiK

T
i√

dk
)Vi (3)

We adopt t Modularized Transformer blocks in
deep layers, aiming to perform modularized rea-
soning. Given input hidden states sp1, ..., s

p
n from

lower Transformer blocks, the Modularized blocks
generate modularized hidden states st1, ..., s

t
n.

4.2 Decoder and training

We use a decoder consisting of Transformer blocks
to generate the entailment tree structure and inter-
mediate conclusions. The entailment tree is lin-
earized from leaves to the root. For example, the
tree in Fig. 1 is represented as “sent1 & sent2→
int1: the puddles of water will increase in tempera-
ture; sent3 & int1→ hypo.” The output sequence
generation process is defined as:

sl = block(sl−1, enc_state), lϵ[1, q]

p(yk|y<k) = softmax(sNk W T )
(4)

where sl is the lth layer computed through Trans-
former blocks, W T is the training parameter and
k is the decoding step number. We deploy super-
vised learning with ground truth by minimizing the
objective in (5), where M is the maximum length
of the generated entailment tree, and H and S are
hypothesis and candidate sentences, respectively.

L = −
M∑

k=1

logp(yk|y<k, H, S) (5)
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5 Experiments Setup

5.1 Datasets

In this section, we prepare the compositional data
from EntailmentBank (EntB) and DBpedia (DBP)
for the CSEG task.

EntailmentBank (EntB) by Dalvi et al. (2021)
contains multiple-choice questions and candidate
sentences from the grad-school level science
datasets ARC (Clark et al., 2018) and WorldTree
(Jansen et al., 2018; Xie et al., 2020). 1,840 entail-
ment trees each show how a hypothesis is entailed
by a small number of relevant sentences. Each step
in the tree represents an entailment, i.e., the conclu-
sion expressed in each intermediate node follows
from the content of its immediate children. The
individual entailment steps instantiate six common
reasoning types (details in A.1) 3. EntB contains
three tasks. We focus on Task1, with only correct
inputs in S, as we focus on generalization testing.

DBpedia by Saeed et al. (2021) is a synthetic
dataset that was re-generated from the RuleBert
(Saeed et al., 2021) dataset4. We extracted six dis-
tinct logic rules mined from the DBpedia knowl-
edge graph and instantiated examples with a vary-
ing number of variables following ‘Chaining of
Rule Execution’ in RuleBert (cf. A.3). The reason-
ing chain provides a structured explanation: each
intermediate node is a conclusion inferred from
immediate children using a logic inference rule.

Compositional Generalization Testing Data To
construct the dataset for systematicity and produc-
tivity testing in reasoning explanation generation,
we rearrange the partitions of the above bench-
marks to focus on length and shape of entailment
trees following §3 (see A.4 for details). We con-
struct i) EntB(ank)-L(ength) and DBP-L(ength)
based on entailment tree length; and ii) EntB-
Sh(ape) based on entailment tree shape. Since DB-
pedia does not contain more complex tree shapes,
it is ignored in the shape test. For data statistics of
the created splits for length and shape testing, see
Appendix A.5.

5.2 Experiment Details

Settings Zero-shot compositional generalization is
highly non-trivial due to the long generated texts

3The number of reasoning types is a flexible parameter
depending on the dataset.

4https://github.com/MhmdSaiid/RuleBert

of the compositional samples.5. We therefore con-
sider a flexible learning scenario following Bogin
et al. (2021); Yin et al. (2021). Specifically, we
trained a model (both baselines and MORSE) with
primitives, and further fine-tuned the model with a
handful of compositional examples to familiarize
itself with a complicated space. For data statistics
details see Appendix A.5. To provide a comprehen-
sive analysis for future work, we also conducted
conventional zero-shot tests, where we trained a
model with primitives and tested on compositions
directly.

Model MORSE is built on T5-Small/-Large with
six/ twelve layers (cf. Dalvi et al. (2021)). For each
version, we use, for the lower 30% of layers (i.e.,
two/four layers), the original Transformer blocks,
to derive hidden representations of the input words.
The threshold τ for dynamic mask construction we
set to 0.1. All models were evaluated on three runs.
For further details see Appendix B.

5.3 Baselines

We choose three prior systems for structural expla-
nation generation as baselines, and report compara-
tive results for our new system MORSE.6

EntailmentWriter (Dalvi et al., 2021) is a T5-
based seq-to-seq model that generates a structured
explanation (tree) directly. It provides baseline
results on EntailmentBank for generating entail-
ment trees for answers to science questions.

PROVER (Saha et al., 2020) jointly answers
binary questions over rule-bases and generates the
corresponding proofs. The model learns to predict
edges corresponding to proof graphs using multiple
global constraints. Since PROVER focuses on edge
prediction, we only evaluate the tree structure.

ProofWriter-Iterative (Tafjord et al., 2021) it-
eratively generates 1-step conclusions and proofs,
adds intermediate conclusions to the context and as-
sembles a final proof chain from 1-step fragments.

5.4 Automatic Evaluation Metrics

We adopt the evaluation metrics proposed by Dalvi
et al. (2021) for the structured explanation genera-
tion task. Evaluation is addressed in two steps:

5The difficulty is primarily due to the decoder trained by
maximum likelihood, which relies heavily on the distributional
characteristics of the dataset and assigns low probabilities to
unseen combinations in test (Holtzman et al., 2020)

6For reference, the results obtained by MORSE on the orig-
inal structured explanation generation task SEG are reported
in Appendix D.
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EntailmentBank-Length (EntB-L) DBpedia-Length (DBP-L)

Models
Leaves Steps Intermediates Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect

ProofWriter-It. 91.86(0.08) 84.55(0.78) 35.97(2.37) 18.81(2.76) 42.93(1.23) 11.88(2.14) 90.66(0.18) 93.09(0.72) 76.49(0.86) 75.44(1.04) 85.92(1.92) 76.73(2.24)
PROVER - - 39.27(2.65) 24.75(3.24) - - - - 79.88(0.98) 76.98(1.37) - -
EntWriter (T5-Small) 99.78(0.12) 98.02(1.06) 40.59(2.97) 29.70(2.92) 48.24(1.12) 22.77(2.25) 99.92(0.15) 99.49(0.67) 82.01(1.21) 79.28(1.52) 87.05(2.23) 78.26(2.37)
MORSE (T5-Small) 99.89(0.08) 99.01(0.62) 44.22(2.14) 32.67(2.32) 50.66(0.68) 25.74(1.92) 99.96(0.27) 99.74(0.84) 82.27(0.16) 80.31(0.18) 87.72(1.82) 79.80(1.87)

EntWriter (T5-Large) 99.78(0.11) 98.02(0.99) 52.80(3.35) 40.92(3.18) 56.62(1.06) 36.63(2.40) 99.36(0.13) 95.52(0.91) 82.49(1.09) 80.11(1.43) 88.98(2.16) 83.89(2.15)
MORSE (T5-Large) 99.82(0.06) 98.68(0.57) 53.31(2.26) 42.57(2.62) 57.78(0.81) 37.29(2.06) 99.53(0.11) 96.68(0.73) 86.79(0.12) 83.76(0.18) 92.62(1.70) 86.70(1.97)

EntWriter-0-shot (T5-L) 97.06(0.66) 85.73(1.61) 18.44(1.18) - 24.21(2.22) - 90.09(0.42) 29.27(0.2) 16.94(1.68) - 32.43(0.50) -
MORSE-0-shot (T5-L) 97.89(0.74) 86.83(1.52) 19.14(0.89) - 25.42(1.49) - 89.82(0.32) 30.05(0.90) 18.41(1.09) - 33.45(0.22) -

Table 1: Results on EntailmentBank-L(ength) and DBpedia-L(ength) for compositional generalization evaluation.
All modules are evaluated with 3 rounds, we show mean accuracy (std).

1) Alignment Exact matching between a pre-
dicted (Tpred) and a human-labeled (Tgold) entail-
ment tree ignores the different organizations among
tree nodes and leads to an inaccurate evaluation
score. To admit semantic variation, all Tpred nodes
are (greedily) aligned to nodes in Tgold using the
sent* labels of leaf nodes, followed by Jaccard sim-
ilarity calculation for intermediate nodes.

2) Score Once aligned, three metrics measure the
degree of similarity of Tpred and Tgold: (a) Leaves
evaluates if the generated tree selects the correct
leaf sentences from the candidate set S. (b) Steps
assesses if the individual entailment steps in the tree
are structurally correct. This is the case if for a pair
of aligned intermediate nodes, both children have
identical labels (sent* or int*) in Tpred and Tgold.
(c) Intermediates judges if all generated interme-
diate conclusions are correct. BLEURT (Sellam
et al., 2020) with the threshold 0.28 7 is applied for
intermediate conclusion evaluation. For each met-
ric, we compute an F1 score, and an ‘AllCorrect’
score for exact tree matching (F1=1).

6 Results

6.1 Overall Results
Results on Length Composition Table 1 displays
the results of MORSE using the small vs. large
T5 model as backbone, on the EntB-L and DBP-L
datasets. Note that PROVER (Saha et al., 2020),
EntailmentWriter (EntWriter) (Dalvi et al., 2021)
and MORSE generate the complete proof chain
from the input candidate set in one go, while
ProofWriter-Iterative (PW-Iterative) (Tafjord et al.,
2021) generates one-step implications iteratively.
We find that on both datasets, and for both T5
model sizes, MORSE achieves superior results
compared to all baselines, especially on ‘Steps’
(structural correctness) and ‘Intermediates’ (inter-
mediate conclusions). ‘Leaves’ is not a challenge

7The threshold is determined following (Dalvi et al., 2021).
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Figure 4: Results on EntB-Sh, testing for compositional
generalization, i.e., systematicity.

in our Task1 setup, but even here, MORSE out-
performs, being able to integrate almost all inputs.
The comparison with the most competitive system
EntWriter, in equivalent T5 model sizes, still shows
superior performance of MORSE with both model
sizes. We conclude that the advance of MORSE
is not restricted to small models, but persists with
models hosting richer knowledge. Compared to
DBP-L, the advance of MORSE over the other
baselines is stronger on EntB-L (e.g., +2.97 vs.
+1.03 for ‘Steps Acc’). This is explained by the
synthetic (template-based) nature of the DBP-L
dataset, which shows little linguistic variety.

To provide a comprehensive evaluation of the
proposed new setting for future research, we further
challenge MORSE by exposing it to a zero-shot test
for length composition. Here, models trained only
for trees up to depth two will directly receive inputs
for proof trees of length three. We mainly compare
with the most competitive system, EntWriter. In
this evaluation, we ignore the ‘AllCorrect’ scores
for ‘Steps’ and ‘Intermediate’ outputs, given the
difficulty of these generation tasks in low training
regimes. The last two lines in Table 1 show the
results. MORSE achieves superior performance (at
least +1 point improvement for zero-shot) for most
evaluation categories, or else comparable results
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Models Steps Intermediates

F1 Acc F1 Acc
MORSE (T5-Small) 44.22 32.67 50.66 25.74
freeze rep_embed 43.57 31.68 (-0.99) 50.66 25.74 (-0)
+ module 41.58 29.70 (-2.97) 49.13 23.76 (-1.98)
+ masking 38.28 25.74 (-6.93) 46.62 20.79 (-4.95)

Table 2: Ablation of MORSE components, freeze:
rep_embed: the representation of module repi; mod-
ule: parameters in specialized module; masking: dy-
namic mask in Fig. 3. d. Brackets: decrease in accuracy.

(F1 for ‘Leaves’). We conclude that our model
MORSE 8 outperforms other baselines in both zero-
shot and fine-tuning scenarios.

Results on Shape Composition Fig. 4 displays
the results for generalization testing on shapes.9

MORSE clearly surpasses the step accuracy of all
other baselines for all tested shape configurations.
Note that shape B1 is most difficult for all systems.
Entailment trees are linearized in bottom-up order.
While compositions in shape B2 and B3 happen at
the lowest tree level, composition in B1 happens
at a higher tree level, combining trees of unequal
depths. We hypothesize that combining trees of
unequal lengths at higher levels makes the task
more challenging compared to lower levels, given
that composition at higher levels requires a more
precise representation of previous reasoning steps
(see Appendix C for more details).

6.2 Analysis of Modularization

Ablation Study To gain more insight into the im-
pact of specific components of MORSE on gen-
eralization, we run an ablation study on EntB-L
during fine-tuning. We first freeze all module rep-
resentations rephi

(rep_embed). Further, we freeze
parameters in each specialized module (+module)
(cf. Fig. 3.B.2). By freezing these parameters,
we aim to preserve the function of different mod-
ules and expect a comparative performance by re-
using learned functions. In the third ablation, we
freeze the parameters of the dynamic mask process
+masking (cf. Fig. 3.B.3), which affects the dy-
namic mask of inputs to different modules. Results
in Table 2 indicate that the first two settings do not
affect results much, which suggests that each mod-
ule has roughly learned its specialized functions.
But +mask incurs large drops, which indicates that

8Experiments on more powerful backbones are provided
in Appendix F.

9Having seen linear behaviour of different model sizes in
Table 1, we further on use T5-Small versions of MORSE and
EntWriter, unless we explicitly say otherwise.

Figure 5: Correlations between reasoning rules R1-6
and module heads H1-6.

masking is significant for the model to adapt to
novel configurations. We hypothesize that for gen-
eralizing to longer proofs, mask generation helps
to connect existing modules.

Correlation Analysis To further explore the ef-
fects of modularization in MORSE, we conduct an
experiment on DBP-L by masking individual heads
only in testing. We select samples that: i) contain
three reasoning steps, ii) made correct predictions
for the first two reasoning steps, but iii) predict
the 3rd step incorrectly in case a certain head is
removed (see A.6 for details). This ensures that
the reasoning rule for the 3rd step is affected by
a specific removed head. We count samples that
are affected by removing head j for each rule Ri,
denoted as nRi

j . In case a model has T heads, we
normalize affected sample counts of Ri across all
heads, i.e., nRi

j /
∑T

j=1 n
Ri
j . This allows us to align

heads and rules as shown in Fig. 5.
The heatmap shows the correlations between

rules and heads, where R2-H1, R3-H3, R4-H2/H3,
R5-H1/H4/H6 and R6-H2/H3 stand out. In the
upper part of Fig. 5 we list all inference rules from
DBP-L, aligned with the heads they are strongly
correlated with, according to the heatmap. We find
that heads are correlated with some rules roughly:
1) H4 and H6 are quite similar, and both prefer R5.
2) H1 prefers R2, but is distracted by R5. This is
likely because R2 and R5 are similar by changing
‘parent’ to ‘child’ between A and C. 3) H2 prefers
R4 and R6, which both use the predicate ‘relative’
and share the same relation by changing ‘parent’ to
‘child’ between B and C. 4) H3 prefers R3, but is
distracted by R4 and R6. A plausible reason could
be configurations of R3, R4 and R6 are similar
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as they share similar predicates (‘spouse’ in R3,
‘relative’ in R4 and ‘parent’ in R6).

7 Conclusion

We present a new setup for explanation genera-
tion to facilitate compositional generalization in
reasoning research. Inspired by highly composi-
tional symbolic systems, we propose a novel mod-
ularized reasoning model MORSE that factorizes
reasoning processes into a combination of dynam-
ically specializing modules. Our results establish
MORSE as a strong baseline for the task, using two
benchmarks. A future direction is to learn how to
initialize more modules on demand.

8 Limitations

The dynamic modularized reasoning model
MORSE in its current state is limited by assum-
ing a pre-defined number of modules, for reason-
ing in various scenarios. The number of modules
in MORSE interacts with the ability of the model
when modularizing a given number of potential
logic rules in a dataset or task. A given available
number of functional units can simplify the rea-
soning process, enabling the model to focus on
module re-use similar to how a symbolic system
does, instead of distracting from confirming mod-
ule function granularity.
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A Data

A.1 Reasoning Types in EntailmentBank
We list six different reasoning types in Entailment-
Bank dataset in Table 5.

A.2 Data Shapes in EntailmentBank
People normally assume that trees can take var-
ious shapes, even when their depth is limited to
four. However, this assumption does not hold in
our CSEG task. We extract every potential shape
from the dataset (Dalvi et al., 2021) and find only
six different shapes (shape-* in Fig. 2) exist. This
is because trees do not reflect or distinguish the
different orders of siblings. That is, for a single
multi-premise step of an entailment tree, the order
of multiple premises (siblings) is underspecified.

A.3 Data Construction for DBpedia
We constructed the DBpedia dataset to evaluate
the compositional generalization of MORSE and
other baselines. Hence, DBpedia needs to contain
several rules, and instances using one of these rules
to process each step in multi-step reasoning. We
extracted six reasoning rules as shown in Table 3
from a rules pool. Following RuleBert (Saeed et al.,
2021) (Section 4.4 Chaining of Rule Executions),
we generate hypotheses given existing rules over
different relations and a depth D. Subsequently,
we instantiate variables in rules and hypotheses
from a name pool to generate instances. Rules and
hypotheses are eventually transferred to natural
language by pre-defined templates.

A.4 Data Construction for EntB-L and
EntB-Sh

EntailmentBank contains 1,840 entailment trees
showing how a hypothesis is entailed from a
small number of relevant sentences. We con-
structed the EntailmentBank-Length (EntB-L) and
EntailmentBank-Shape (EntB-Sh) for composi-
tional generalization evaluation. In terms of EntB-
L, we extracted data from the original dataset by
the ‘length_of_proof’ label. As for EntB-Sh, we
extracted data from the original dataset by the
‘lisp_proof’ label. An example of the shape of
extracted trees is shown in Fig. 2.

A.5 Data Statistics for EntailmentBank and
DBPedia

Table 6 provides detailed data statistics of Entail-
mentBank and DBPedia. It contains the general

Rules
R1: child(B,A)→ parent(A,B)
R2: child(A,C) ∧ parent(C,B)→ spouse(A,B)
R3: spouse(A,C) ∧ parent(B,C)→ negspouse(A,B)
R4: relative(A,C) ∧ child(C,B)→ relative(A,B)
R5: parent(A,C) ∧ spouse(B,C)→ parent(A,B)
R6: parent(A,C) ∧ parent(B,C)→ relative(A,B)

Table 3: Rules applied in DBpedia datasets.

data information for each dataset, and the data parti-
tions we created and used in generalization evalua-
tion. We use 20% of the training data for validation.

A.6 Data Statistic for Correlation Analysis
To visualize the correlations between modules and
rules, we constructed a new group of samples con-
taining three reasoning steps. We select samples:
i) that contain three reasoning steps, ii) that have
correct predictions for the first two reasoning steps,
but iii) where the third step is incorrectly predicted
in case a certain head is removed. The number of
selected samples for each head is given in Table 4.
We then count samples in each head over different
rules and show the correlations in Fig. 5.

H1 H2 H3 H4 H5 H6
cases 126 104 137 118 104 126

Table 4: Rules applied in DBpedia datasets.

A.7 Real Examples
We provide real examples of the productivity
(length) test in Fig. 6.

B Experimental Details

B.1 Hyperparameter
We use the T5 checkpoints from Huggingface
(Wolf et al., 2020). For initialization, we treat all
layers as plain transformer layers. We optimize
our model using Adam Optimizer (Kingma and Ba,
2014) with learning rate 1e-4 and batch size 4. In
inference, we adopt beam search decoding with
beam size 3 for all models and baselines. We set
the threshold τ for dynamic mask construction to
0.1 (details in Appendix B). We use 20% of training
or fine-tuning datasets for validation. All models
are evaluated with 3 rounds.

B.2 Training Details
MORSE We conduct out-of-distribution experi-
ments for increasing lengths and shapes of reason-
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Reasonoing Types Example

Substitution
s1: when a light wave hits a reflective object, the light wave will be reflected
s2: a mirror is a kind of reflective object
int: when a light wave hits a mirror, the light wave will be reflected

Inference from Rule
s1: puddles of water are outside during the day
s2: if something is outside during the day then that something will receive sunlight
int: puddles of water will receive sunlight

Further Specification or Conjuction
s1: an animal requires warmth for survival as the season changes to winter
s2: thick fur can be used for keeping warm
int: thick fur can be used for keeping warm as the season changes to winter

Infer Class from Properties
s1: A compound is made of two or more elements chemically combined
s2: sodium chloride is made of two elements chemically combined
int: sodium chloride is a kind of compound

Property Inheritance
s1: an animal’s shell is usually hard
s2: something hard can be used for protection
int: an animal’s shell is usually hard for protection

Sequential Inference

s1: In molecular biology, translation follows transcription
s2: transcription is when genetic information flows from DNA to RNA
s3: translation is when genetic information flows from RNA to proteins
int: In molecular biology, genetic information flows from DNA to RNA to proteins

Table 5: Six different reasoning types in EntailmentBank (Dalvi et al., 2021)

Dataset EntB DBP EntB-L(ength) DBP-L(ength) EntB-Sh(apes)
partitions tr ft te tr ft te tr ft te
#avg.nodes 7.6 4 L1 430 / / 1800 / / A1 390 / /
#avg.steps 3.2 1.7 L2 450 / / 1800 / / A2 391 / /
#reas.types 6 6 L3 / 300 101 / 160 391 A3 219 / /
#examples 1840 4560 B1 / 79 36

B2 / 63 26
B3 / 64 39

all 880 3600 all 1000 206 101

Table 6: Data statistics of Ent(ailment)B(ank) and DBP(edia). We split data into different partitions, including
tr(ain), f(ine-)t(une) and te(st). Ln denotes different lengths, and A*, B* means various shapes.

ing trees on two benchmarks, to test MORSE’s
generalization abilities. Our experiments are run
on Nvidia GTX 1080 Ti. As for length composi-
tional test, MORSE (T5-Small and T5-Large) is
trained for 33k steps and fine-tuning 4.5k steps
on EntailmentBank-Length; trained for 8.1k steps
and fine-tuning 0.6k steps on DBpedia-Length. In
shape compositional test, MORSE is trained 25k
steps and fine-tuning 5k steps.

Baselines Since ProofWriter-It and Entailment
Writer are all T5-based baselines, we keep their
settings as same as MORSE. In terms of Prover, we
choose to use BERT-base-uncased version, given
its parameters approach T5-small. We use the grid
search technology for generation and select the
best result. Its learning rate is 3e-5, trained for 36k
steps and fine-tuning 4.5k steps on EntailmentBank-
Length. In shape compositional test, Prover is
trained 27k step and fine-tuning 5.5k steps.

C Analysis for Different Shapes

In Fig. 4 we note that shape B1 is the most difficult
for all systems, and provide an empirical analysis:
we hypothesize that combining trees of unequal
lengths at higher levels makes the task more chal-
lenging compared to lower levels. Here, we further
conduct a statistical Spearman’s rank correlation
coefficient analysis of systematicity difficulty from
the complexity of tree properties to verify our hy-
potheses.

For each test shape, we aim to determine how
much the presence of specific tree properties in-
fluences the task accuracy of models (including
baselines and our model MORSE) when perform-
ing systematicity generalization from primitive to
compositional shapes. Specifically, we quantified
the increase of accuracy in view of the following as-
pects: i) increased number of the ‘Leaf’ (∆#Leaf)
nodes from (seen) primitive units to (predicted)
compositional structures. I.e., how much the leaf
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Figure 6: Three real examples for the productivity-length test of CSEG. For each example, an entailment tree
is generated based on candidate sentences and a hypothesis. Each tree is composed of several reasoning steps,
and each step belongs to one specific reasoning type, here, either [substitution] or [if-then]. The length of each
sample is determined by how many reasoning steps are required for the entailment tree generation. To evaluate the
compositional generalization ability, we design CSEG to generalize from limited reasoning steps (e.g., length 1 or
length 2) to more steps (e.g., length 3). Here, the sample of length three is compositional, and since its required
reasoning types have been learned before, it is expected to be solvable.

ComplexityDim ProofW PROVER EntailW Morse avg
∆#Leaf 0.5 0.86 0.5 0.5 0.59

∆#InterNode -0.86 -0.5 -0.86 -0.86 -0.77
∆#InterNode-L2 0.86 1.0 0.86 0.86 0.895
∆#InterNode-L3 -1 -0.86 -1 -1 -0.965

Table 7: Spearman’s rank correlation coefficient between the increase of training–test arithmetic complexity and the
compositional generalization performance (accuracy) across the three shapes. avg is the average value.

number increased from primitive samples (e.g., A1,
A2) to compositional samples (e.g., B1) and how
this influences accuracy; ii) increased number of
‘Intermediate Nodes’ (∆#InterNode) (again from
primitive to compositional structures) and how this
influences generalization accuracy.

Table 7 shows the results of our Spearman’s rank
correlation coefficient analysis between these two
complexity dimensions of trees and the composi-
tional generalization accuracy. Compared to the
‘Leaf’ dimension, ‘Intermediate Nodes’ shows a
more notable average coefficient value.10 That is,
the more intermediate nodes in the compositional
samples, the more difficult it is for the neural model
to perform compositional generalization.

Based on this result, we further explore whether

10The permutation of a small set (here, 3 dimensions) is
limited, thus limiting the range of variation of the correlation
coefficient. Hence, 0.59 is an irrelevant value.

the location of intermediate nodes will affect com-
positional generalization ability. We evaluate: i)
increased number of the ‘Intermediate Node’ at
layer 2 (∆#InterNode-L2). Layer 2 indicates the
second layer of a tree from the bottom up, e.g., B1
has one intermediate node in the second layer, and
B3 has two. ii) increased number of ‘Intermediate
Nodes’ at layer 3 (∆#InterNode-L3). Table 7 indi-
cates that more intermediate nodes in layer three
incur a notable negative value, i.e., intermediate
nodes at a higher layer result in lower accuracy,
meaning that compositional generalization is more
difficult.

In conclusion, Table 4 indicates that the system-
aticity test in CSEG is challenging for existing neu-
ral models. And further exploration verifies com-
bining trees at higher levels makes it even more
difficult compared to lower levels.
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Original EntailmentBank Dataset (EntB-Orig)

Models
Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect

Task 1 (no-distractor) - EntailmentWriter - T511b 99.0 89.4 51.5 38.2 71.2 38.5
Task 1 (no-distractor) - EntailmentWriter - T5Large 98.7 86.2 50.5 37.7 67.6 36.2
Task 1 (no-distractor) - MORSE (ours) - T5Large 98.09(0.24) 86.37(0.11) 51.11(0.84) 39.70(0.77) 69.79(0.09) 40.97(0.34)

Task 1 (no-distractor) - EntailmentWriter - T5Small 98.40(0.41) 86.18(0.25) 41.72(0.96) 34.11(0.38) 56.95(0.21) 40.41(0.49)
Task 1 (no-distractor) - MORSE (ours) - T5Small 98.30(0.37) 86.47(0.21) 42.35(0.66) 35.00(0.32) 57.76(0.11) 40.88(0.51)

Task 2 (distractor) - EntailmentWriter - T511b 89.1 48.8 41.4 27.7 66.2 31.5
Task 2 (distractor) - EntailmentWriter - T5Large 84.3 35.6 35.5 22.9 61.8 28.5
Task 2 (distractor) - MORSE (ours) - T5Large 83.17(0.95) 34.41(0.59) 34.46(0.62) 21.96(0.60) 60.50(0.19) 28.24(0.37)

Table 8: Comparative results for Entailment Writer vs. MORSE on original EntailmentBank dataset for Task 1 and
Task 2 with different T5 model sizes

D Comparative results on original
EntailmentBank dataset

We conduct experiments of Task 1 and Task 2 from
Dalvi et al. (2021) on the original EntailmentBank
dataset and splits. The train, dev and test sets con-
tain 1,313, 187 and 340 instances. Task 2 includes
non-fitting distractor sentences in the input. We
compare differently scaled T5 models to assess
differences relating from T5 model sizes: T511b,
T5large. EntailmentWriter (EW) is equivalent to
MORSE modulo its modulated reasoning cell. For
EW we show published results from Dalvi et al.
(2021); for MORSE we report averaged results
over three runs w/ standard deviation in brackets,
for T5large. We observe comparable or superior
results of MORSE w/T5large over EW w/t5large,
especially for the difficult Steps (entailment tree
structure) and Intermediates (inferred intermediate
node label) evaluation criteria for Task 1. For Task
2, which poses a challenge by including noisy dis-
tractors, MORSE is still competitive, with ca. 1
percentage point distance. Comparing results of
EW w/T511b vs. MORSE w/T5large shows that
can MORSE rival and even outperform EW using
T511b, for Steps and Intermediats Accuracies in
Task 1, but not for the more difficult Task 2. The
experiment shows that despite using a variation of
the dataset in our main experiments to focus on
MORSE’s generalization abilities, it is still compet-
itive on the original dataset and data distributions.

E Analysis of Dynamic Masking
Mechanism

Mask Sparsity MORSE deploys masks to mod-
ularize a network dynamically. This allows each
module to specialize for a specific function while
selecting corresponding inputs. To gain more in-

sight into the role of dynamic masking, we anal-
yse masks used in length generalization testing on
EntB-L. We count the number of masks with non-
zero values for each module. Table 9 shows that
the percentage of non-zero values for heads H1-6
is relatively low, indicating that dynamic masks
are effective for filtering out potentially irrelevant
inputs. We also note higher percentages for some
modules (e.g., H4, H5). Different reasoning types
require disparate inputs that may account for this.

Head H1 H2 H3 H4 H5 H6
non-zero (%) 21.46 22.14 21.11 33.13 41.31 21.18

Table 9: Non-zero values in masks for each module (%).

Mask Effects We apply different masking strate-
gies to test if the observed performance improve-
ments arise from modularized masks – as opposed
to naïve ones. We construct a random_mask model
variant with 20 and 50% non-zero values, respec-
tively. These proportions are similar to what we
find in MORSE (Tab. 9). We apply random masks
in length composition testing on the EntB-L dataset.
Table 10 shows that compared to dynamic rout-
ing in MORSE, random masking incurs a severe
performance drop. We conclude that i) unselec-
tive masking risks shielding important information
from heads, and that ii) dynamic routing cannot be
considered as a simple dropout mechanism.

Models Steps Intermediates

F1 Acc F1 Acc
w modularized_mask 44.22 32.67 50.66 25.74
w random_mask (20%) 30.36 15.84 42.62 13.86
w random_mask (50%) 36.63 20.79 45.45 18.81

Table 10: Effects of different mask strategies. (*%)
indicates *% percentage of non-zero value in a mask.
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EntailmentBank-Length (EntB-L) DBpedia-Length (DBP-L)

Models
Leaves Steps Intermediates Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect

EntWriter
(T5-Large) 99.78 98.02 52.80 40.92 56.62 36.63 99.36 95.52 82.49 80.11 88.98 83.89
MORSE
(T5-Large) 99.82(+0.04) 98.68(+0.66) 53.31(+0.51) 42.57(+1.65) 57.78(+1.16) 37.29(+0.66) 99.53(+0.17) 96.68(+1.16) 86.79(+4.30) 83.76(+3.65) 92.62(+3.64) 86.70(+2.81)
EntWriter
(Flan-T5-
Large)

99.78 98.02 53.18 41.58 57.93 39.13 99.53 95.52 84.98 83.12 91.27 84.14

MORSE
(Flan-T5-
Large)

100.00(+0.22) 100.00(+1.98) 55.51(+2.33) 43.56(+1.98) 58.67(+0.74) 39.60(+0.47) 99.53(-0) 96.68(+1.16) 87.21(+2.23) 83.76(+0.64) 93.41(+2.14) 86.70(+2.56)

EntWriter-0-
shot
(T5-Large) 97.06 85.73 18.44 - 24.21 - 90.09 29.27 16.94 - 32.43 -
MORSE-0-shot
(T5-Large) 97.89(+0.83) 86.83(+1.10) 19.14(+0.70) - 25.42(+1.21) - 89.82(-0.17) 30.05(+0.78) 18.41(+1.47) - 33.45(+1.02) -

EntWriter-0-
shot
(Flan-T5-
Large)

98.79 91.09 20.59 - 31.68 - 90.05 30.69 18.46 - 33.30 -

MORSE-0-shot
(Flan-T5-
Large)

99.82(+1.03) 92.31(+1.22) 21.22(+0.63) - 32.07(+0.39) - 91.96(+1.91) 31.28(+0.59) 21.99(+3.53) - 33.92(+0.62) -

Table 11: Results on EntailmentBank-L(ength) and DBpedia-L(ength) for compositional generalization evaluation
based on Flan-T5. (+num) indicates the improvement of MORSE compared to the strong baseline EntWriter.

F Morse on powerful backbones

To further investigate the effectiveness of MORSE,
we conduct experiments for MORSE and the most
competitive baseline EntWriter on a more powerful
backbone, e.g., Flan-T5 (Chung et al., 2022). Ta-
ble 11 shows results. We find that: i) compared to
T5, FLAN-T5 has generally better results for both
models in both settings (fine-tuning and zero-shot).
With FLAN-T5, our extension with MORSE still
has superior results compared to the original T5
model. That is, our conclusions remain the same
with this new backbone. ii) for both EntWriter
and MORSE, FLAN-T5 shows increased perfor-
mance in the zero-shot setting. This indicates that
FLAN-T5 may serve as a better model variant to
address zero-shot setting – which is expected for
an instruction-tuned model.
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Abstract

In this study, we investigate soundness of cur-
rent Abstract Meaning Representation (AMR)
similarity metrics in terms of equivalence and
inequivalence. Specifically, AMR guidelines
provide several equivalence and inequivalence
conditions to reflect the meaning aspect of the
semantics. Thus, it is important to examine
an AMR metric’s soundness, i.e., whether the
metric correctly reflects the guidelines. How-
ever, the existing metrics have less investigated
their soundness. In this work, we propose
a new experimental method using simulated
data and a series of statistical tests to verify
the metric’s soundness. Our experimental
result revealed that all existing metrics such as
SMATCH, SEMBLEU, S2MATCH, SMATCH++,
WWLKθ, WWLKe2n, and SEMA did not
fully meet the AMR guidelines in terms of
equivalence and inequivalence aspects. Also, to
alleviate this soundness problem, we propose a
revised metric called SMATCH♯, which adopts
simple graph standardization technique that can
improve the soundness of an existing metric.

1 Introduction

In this paper, we propose a new experimental
method to evaluate soundness of Abstract Meaning
Representation (AMR) similarity metrics and try to
address the soundness of AMR similarity metrics
by proposing a revised metric, SMATCH♯. AMR
is a widely used formalism that expresses the
semantic aspect of natural language sentences.
The formalism is based on neo-Davidsonian se-
mantics (Banarescu et al., 2013; Davidson, 1967;
Higginbotham, 1985; Parsons, 1990). Therefore,
when comparing two AMR graphs, a metric needs
to yield results that adhere to such theoretical
background, which is implemented in the AMR
guidelines (Banarescu et al., 2019). We refer to
this criterion as the soundness of an AMR metric.
Here, we define soundness as a metric’s quality

*These authors contributed equally to this work.

to yield well-founded results that adhere to the
theoretical background of AMR during the metric’s
computation process. For example, soundness of a
metric can be operationally checked by whether the
metric correctly follows AMR guidelines, as AMR
guidelines define many special equivalence rela-
tionships between two AMRs with different forms
along with its theoretical background. Thus, an
AMR metric should treat such AMRs as equivalent
to meet the soundness criterion.

However, the existing metrics’ design has been
less focused on evaluating their soundness. Several
metrics have been proposed to measure the similar-
ity between two AMRs, including SMATCH (Cai
and Knight, 2013), SEMBLEU (Song and Gildea,
2019), S2MATCH (Opitz et al., 2020), WWLKθ-
variants (Opitz et al., 2021; Opitz and Frank, 2022),
SEMA (Anchiêta et al., 2019), and SMATCH++
(Opitz, 2023). Although these existing metrics
have helped evaluating the quality of various AMR
parsers, they do not sufficiently consider soundness.
The only exception is SMATCH++, which attempts
to address soundness partially by managing some
equivalent cases, like reification. Nonetheless, even
SMATCH++ has not reported whether their metric
adheres to other equivalent cases specified in the
AMR guideline.

Therefore, we designed an experiment that
investigates the soundness of AMR metrics, using
systematically simulated data. We implement
both 6 equivalent cases and 7 inequivalent cases
according to AMR guideline, to make a systematic
data for evaluating the soundness of metrics. We
also propose a simple statistical method to verify
soundness and a graph standardization method for
handling equivalence and inequivalence cases. As a
result, we propose SMATCH♯, an enhanced version
of SMATCH++, as an alternative to prior AMR
metrics that better addresses soundness.

Our paper is structured as follows: Section 2 pro-
vides theoretical background on AMR and assesses

402



the designs of existing metrics from the perspective
of equivalence and inequivalence. Next, Sections 3
details our experimental design. Specifically, Sec-
tion 3 outlines the simulated dataset generation, the
proposed statistical test for soundness verification,
the SMATCH♯ metric, and implementation details.
Finally, Section 4 presents the results, and discuss
their implications. We analyzes the results from
applying our experiment to various AMR metrics
and examines their soundness issues.

2 Inspecting AMR Similarity Metrics

Here, we discuss seven existing AMR similarity
metrics in terms of the way that they handle
equivalent and/or inequivalent cases. As widely
used similarity metrics adopt a method of giving
partial credits to non-exact matching cases, existing
metrics differ in how they establish the range of
partial credit regarding equivalence and inequiva-
lence of AMR components. Thus, we categorize
the existing metrics into two types: (1) allowing
credits only to exact equivalent components, and
(2) allowing credits also to some inequivalent cases.

First, there are metrics that only give credit for
exactly matching/overlapping components when
measuring the similarity between two AMRs.
SMATCH (Cai and Knight, 2013), SEMBLEU (Song
and Gildea, 2019), SEMA (Anchiêta et al., 2019),
and SMATCH++ (Opitz, 2023) belong to this
category. These metrics approximately compute
the maximum overlap between two AMRs, by
constructing a mapping between substructures of
two AMRs. For example, SMATCH computes over-
lap as the maximum F1 score of common triples
between two AMRs. Similarly, in SEMBLEU,
the metric computes overlap as the BLEU score
using n-grams of triples commonly appearing in
the two given AMRs. However, these overlap-
based metrics can mistakenly identify equivalent
AMRs as inequivalent, since they primarily focus
on matching exactly the same components without
fully considering the AMR guidelines. As the
guidelines define some cases where AMRs are syn-
tactically inequivalent but semantically equivalent,
the soundness of the evaluation may decrease in
some cases.

Second, for the metrics allowing credits also
to some inequivalent cases, they try to measure
similarity by relaxing the constraint of exact
match. Metrics such as S2MATCH, WWLKθ, and
WWLKe2n (Opitz et al., 2020, 2021; Opitz and

Frank, 2022) belong to this category. These metrics
attempt to give partial credit for inequivalent AMRs
by incorporating the concept of pragmatic sense,
acquired by a language model. With a language
model, these metrics are able to construct intuitive
sense of similarity between some predicates or
between some instances. However, the use of
language models makes it difficult to verify that
these metrics fairly assess the meaning of AMRs
independently of any context, which contradicts
one of the key assumptions behind AMR - that
meaning should be context-independent. More
specifically, the AMR guideline tries to ensure
context-independency of semantics by using pre-
defined ontology of predicate senses, semantic
roles, and frame arguments from OntoNotes (Prad-
han et al., 2007) and PropBank (Kingsbury and
Palmer, 2003). Using a language model may
compromise such context-independency when com-
paring two AMRs, since a language model tries
to treat different pre-defined senses, roles, and
arguments as similar ones. Moreover, such intuitive
sense of similarity may weaken the transparency of
the evaluation process.

We suspect that all the metrics in the above two
categories may insufficiently handle equivalent and
inequivalent cases according to the AMR guide-
lines. For example, the case illustrated in Appendix
A shows that some prior metrics do not correctly
evaluate inequivalent AMRs which have different
meanings. Note that Goodman (2019) have already
shown that not handling these conditions results in
an unfair evaluation in SMATCH. We suspect that
other metrics have also insufficiently considered
the issues raised by Goodman (2019), because
other metrics were not designed to properly handle
equivalent and inequivalent cases according to the
AMR guidelines. Moreover, existing metrics have
not systematically verified whether they conform
to the equivalence/inequivalence conditions based
on the AMR guidelines. Systematic verification
of these conditions would therefore be helpful to
identify strengths and weaknesses of the existing
AMR metrics.

3 Experiment

To verify the soundness of existing metrics, we
designed an experiment based on the observations
on equivalence and inequivalence aspects. We
tested seven existing metrics and one new metric:
SMATCH, S2MATCH, SEMBLEU, SMATCH++,
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Equivalent cases (6 operations)

(When writing PENMAN notation,)
Lift Up Lift another node as a root.
Reorder Randomly re-order edges.
Relabel Randomly re-labeled variables.
Reify Apply the reification process.
De-reify Apply the de-reification process.
Duplicate Duplicate all edge twice.

(Semantically equivalent due to tautology)

Inequivalent cases (7 operations)

Insert N Insert a dummy node.
Insert E Insert a dummy edge between nodes.
Change N Change a node’s name with a dummy.
Change E Change an edge’s label with a dummy.
Delete N Delete a node.
Delete E Delete an edge.
Swap Swap heads of two edges.

Table 1: List of 13 operations for our simulated dataset

WWLKθ, WWLKe2n, SEMA, and SMATCH♯.
Note that SMATCH♯ is our revised version of
SMATCH++ which tries to handle equivalence and
inequivalence cases. Using our simulated data and
statistical methods, we tested whether these eight
metrics follow the AMR guideline.

SMATCH♯ To consider the AMR guidelines
while upholding the approximation method of
the existing metrics, we developed SMATCH♯.
The new metric is a variant of SMATCH++
which standardizes AMR graphs considering both
equivalence and inequivalence conditions. As
SMATCH++ is the only metric that attempts to han-
dle some of the equivalence conditions, we chose
to make SMATCH♯ based on SMATCH++. Thus,
SMATCH♯ retains the same evaluation process as
Smatch++. However, SMATCH♯ is additionally
designed to pass through a single graph standardiza-
tion pipeline before the evaluation stage. This ad-
ditional pipeline is a normalization technique that
converts any given AMR into a single, standardized
form. This normalization is necessary because
we want to ensure that semantically equivalent
AMRs are treated correctly during evaluation. For
example, some cases such as inversion, different
variable names, etc. should be treated as equiva-
lent according to AMR’s definition, and can be
converted into the exact same notation through
normalization.

Simulated Dataset with 13 Operations We have
designed a novel test method to verify how well
existing metrics conform to the AMR guidelines.
Our test employs the gold standard dataset, AMR

3.01, which is commonly used in the development
of existing AMR parsers. First, we extracted
20,000 AMRs by randomly sampling the AMR
3.0 train set. For each AMR in this gold stan-
dard dataset, we applied 13 perturbations, shown
in Table 1, following the guidelines to create
a simulated dataset. This perturbing procedure
generated 260,000 simulated pairs. This simulated
dataset helps us verify whether an AMR metric
can evaluate the original and perturbed cases as
equivalent. For six of the perturbations, we applied
one of the six equivalent cases described in Part III
(Phenomena) of the AMR guidelines, making the
original and perturbed pair equivalent. For seven of
the pairs, we randomly manipulated the structure of
the given AMRs, making the original and perturbed
pair inequivalent. Refer to the Appendix B for the
detailed illustration and example for each operation.
To the best of our knowledge, this is the first
attempt to verify the soundness of an AMR metric,
which concerns how well the metric adheres to the
rules of the representation being evaluated.

Statistical Test for Hypothesis A sound metric
should differentiate equivalent pairs and inequiva-
lent pairs. To verify this, we conducted a binomial
test to statistically examine the difference between
the average score ζ of equivalent pairs and the
theoretical maximum score ζmax for each metric.
The test process involves three steps. As the first
step, we compute each metric score ζ for each
graph pairs. In the second step, we compute
P (ζ = ζmax), i.e., the proportion of examples
where the score reaches ζmax. Lastly, in the
third step, we tested P (ζ = ζmax) > 0.999 for
equivalent cases and P (ζ = ζmax) < 0.001 for
inequivalent cases2. So, a sound metric should
pass all of the above tests by definition. Corollary,
such a metric should prevent overlap between the
score ranges of equivalent pairs and ranges of
inequivalent pairs.

Implementation Detail Here, we implemented
the eight metric as follows. For SMATCH,
S2MATCH, SMATCH++, and WWLKe2n, we ran
the exact official code. For SEMBLEU and SEMA,
we additionally added an outputting code into the
original source code to obtain a score for each

1https://catalog.ldc.upenn.edu/LDC2020T02
2We set P (ζ) > 0.999 for equivalent cases and P (ζ) <

0.001 for inequivalent cases, since the statistical power is
greater than 0.999 even with the significance level of 0.001.
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AMR pair3. Lastly, for WWLKθ, we used the
reified version of STS for zeroth-order learning4.
For SMATCH♯, we used Penman (Goodman, 2020)
library for graph standardization. The experiment
is conducted in a single-run on a PC with the
Ubuntu 20.04, an AMD Ryzen 5900X 16-core
CPU, and 64GB RAM. Our code5 used Python
3.11.9 and statsmodels (Seabold and Perktold,
2010) for the binomial tests. We provide additional
details in Appendix C.

4 Results and Discussion

Table 2 shows the results of soundness and bi-
nomial tests on 6 equivalent and 7 inequivalent
cases. We present average values for each per-
turbation cases. In addition, overall min(ζ) and
max(ζ) rows show the minimum/maximum score
in equivalent/inequivalent cases, respectively. And,
P (ζ = 1) rows refer to the proportion of items
evaluated as equivalent in total. Note that a sound
metric should yield statistically significant result on
all the tests, without making the overlap between
equivalent and inequivalent cases.

First, for the six equivalent cases, prior metrics
failed to fully handle equivalent but altered graph
structures. They only give ζmax for 48-78%
of graph pairs, as seen in the P (ζ = 1) row
for equivalent cases. Specifically, metrics such
as SEMBLEU, WWLKθ, WWLKe2n, SEMA,
SMATCH++ successfully gave the ζmax to some
equivalent cases (lift up, reordering, relabeling,
duplicate). However, SMATCH and S2MATCH

failed to give ζmax for above 4 cases. For example,
SMATCH assigned an average score of 1.212 in
duplicate cases, exceeding ζmax. So, it suggests
that SMATCH may overestimate similarity when a
graph has multiple tautological edges. Additionally,
following the soundness test, we attempted to
verify whether the metric accurately assigns ζmax

to the completely identical case by using the
original AMR as both the reference and hypothesis
simultaneously. Surprisingly, SMATCH and SEMA
failed to produce the maximum score ζmax even
for non-perturbed original cases, yielding scores
as low as 0.902 (SMATCH) and 0.833 (SEMA).
This result is likely due to the approximation

3We provide the modified code at our GitHub repository.
4As the WWLKθ and WWLKe2n are defined based on a

different score range of [−1, 1] compared to other metrics’
range of [0, 1], we normalized the range to [0, 1].

5Code for the experiment will be uploaded in https:
//github.com/snucclab/ssharp.

methods employed by these metrics. Note that
as SMATCH++ attempts to handle equivalent cases
in their design, it shows a better evaluation for the
de/reification case compared to other metrics.

Second, for the seven inequivalent cases, some
metrics showed incorrect evaluation results by
assigning ζmax to certain graph pairs, as seen
in the P (ζ = 1) row for the inequivalent cases.
Specifically, SEMA produced a score of 1.103,
exceeding the theoretical ζmax. Moreover, among
all the metrics, SEMA was the only one that
achieved statistical significance in only 3 cases for
the inequivalent cases. We suspect these results
from SEMA appear to be numerical errors caused
by its approximation algorithm. Furthermore,
S2MATCH assigned ζmax to some edge deletion
pairs (thus, p > 0.05), and SEMBLEU did the same
for some edge insertion pairs (p > 0.05), while
SMATCH, WWLKe2n, and SMATCH++ passed
all the tests, correctly identifying those cases as
inequivalent.

Third, for the overlap between equivalent and
inequivalent cases, all existing metrics showed
overlap. For example, as SMATCH made overlap
between equivalent and inequivalent cases on the
interval [0.371, 1], the score positioned in this
range cannot be determined either equivalent or
inequivalent. Similar overlap happens for SEMA
(range of [0.083, 1.103]), WWLKθ (range of
[0.656, 1]), SMATCH++ (range of [0.5, 0.998]), and
so on. Thus, we need to be careful in interpreting
a score fall within the overlap range because there
may exists incorrect evaluation in terms of AMR’s
theoretical background. Even the chance of falling
in the overlap range is low, the existence of these
overlapping sections is sufficient to pose a question
about the soundness of existing metrics.

On the other hand, SMATCH♯ has proven to be
effective in dealing with all the 13 cases. SMATCH♯

correctly assigned ζmax in 100% of equivalence
cases, achieving the highest possible score, which
no other metric accomplished. Furthermore,
SMATCH♯ did not assign ζmax for any inequiva-
lence cases, as confirmed statistically. Specifically,
for the six equivalent cases, SMATCH♯ successfully
provide ζmax. For the seven inequivalent cases,
SMATCH♯ showed slight decrease in score com-
pared to SMATCH++, the backbone of SMATCH♯.
For example, SMATCH++ had an average score
of 0.927 for edge deletion case, while SMATCH♯

scored an average of 0.907. Moreover, SMATCH♯
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SMATCH♯ SMATCH S2 MATCH SEMBLEU WWLKθ WWLKe2n SEMA SMATCH++

6 Equivalent Cases * Alternative hypothesis HA : P (ζ = 1) > 99.9%

Lift Up 1.000*** .964 .964 .999 1.000 1.000 .990 .949
Reorder 1.000*** .999 .998 1.000*** 1.000*** 1.000*** 1.000 1.000*

Relabel 1.000*** .999 .999 1.000** 1.000*** 1.000*** 1.000 1.000***

Reify 1.000*** .748 .748 .613 .866 .864 .660 .990
Dereify 1.000*** .988 .988 .975 .994 .994 .990 .990
Duplicate 1.000*** 1.212 .986 .470 .910 .937 .780 1.000***

Overall min(ζ) 1.000 .371 .371 .025 .610 .628 .083 .500
Overall P (ζ = 1)% 100 48.11 55.77 64.74 64.75 64.75 61.47 78.25

7 Inequivalent Cases * Alternative hypothesis HA : P (ζ = 1) < 0.1%

Insert Node .955*** .975*** .973*** .935*** .952*** .944*** .970*** .966***

Insert Edge .964*** .983*** .980** .931 .996*** .970*** .980*** .977***

Change Node .944*** .966*** .961*** .871*** .940*** .951*** .890 .946***

Change Edge .949*** .966*** .965 .935*** .982 .968*** .950 .952***

Delete Node .906*** .945* .946*** .908*** .936*** .933*** .940 .918***

Delete Edge .907*** .948*** .949 .930*** .959*** .946*** .930*** .927***

Swap .873*** .918*** .918*** .853 .949*** .954*** .880 .884***

Overall max(ζ) .998 1.000 1.000 1.000 1.000 0.999 1.103 .998
Overall P (ζ = 1)% .00 .01 .05 .65 5.09 .00 .63 .00

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table 2: Result of soundness and binomial test on 13 simulated equivalent/inequivalent cases.

reduced the overlap range into zero, resolving the
overlap issue that appeared in all existing metrics.
This results suggest that SMATCH♯ provides a better
demarcation than existing metrics.

5 Conclusion

In this study, we proposed a novel experiment
for verifying soundness of an AMR metric using
simulated dataset and statistical tests. Through
the experiment, our work demonstrated that the
soundness problem exists in the previous metrics.
Also, we suggest an AMR metric SMATCH♯, which
is an improved version of SMATCH++ in terms of
soundness, using a graph standardization method
that follows AMR guidelines. By testing SMATCH♯

with the same experiment, we demonstrated that
we can alleviate the issue by slightly enhancing
the design of metrics. For future work, designing
a new AMR similarity metric by considering our
experimental results would be an interesting topic
to pursue.

Limitations

In this section, we discuss the study’s limitations
that stem from our adoption of the AMR graph
structure and experimental assumptions.

First, adopting the AMR graph structure, which
is a standard meaning representation, provides

a solid foundation for generating a score metric.
However, because we adopted AMR, two lim-
itations that affect our proposed approach also
exist: the application of the metric on a single
language, i.e. English, and the assumption of a
single interpretation of the text.

Second, though we designed equivalence and
inequivalence cases based on AMR specification,
confirming whether we tested all theoretical varia-
tions of equivalence/inequivalence cases would be
difficult. Therefore, it may be possible to present
additional perturbations of AMR in future work.

Ethics Statement

In accordance with the guidelines of the ACL
Ethics Policy, we will release all artifacts, including
code, experiment results, and statistics used in this
study on our GitHub repository. Also, because this
study is an algorithmic consideration of model eval-
uation, we did not need a hyperparameter optimiza-
tion process; thus, no such procedure is described.
Moreover, due to the characteristics of AMR, a
simulated dataset could be constructed without
human annotation for equivalence/inequivalence
conditions. Thus, we did not perform a human
annotation process.

In addition, this study only concerns the evalua-
tion of the output already generated by the model.
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Therefore, as our study has no direct relationship
to any sociocultural impacts or implications of
machine learning models, such as social bias, we
have not discussed these concerns.

Lastly, the AMR 2.0 (LDC2017T10) and 3.0
(LDC2020T02) datasets used in this study were
purchased according to the license under the LDC
User Agreement. Therefore, to create a simulated
dataset according to our experimental procedure, a
license would need to be purchased for the AMR
3.0 dataset. Furthermore, the LDC User Agreement
prohibits the re-distribution of their datasets. For
this reason, we can only provide the simulated
dataset used in the experiment to parties with a
valid license.

Acknowledgements

This work was supported by the National Re-
search Foundation of Korea (NRF) grant (No.
2020R1C1C1010162) and the Institute for Infor-
mation & communications Technology Promotion
(IITP) grant (No. 2021-0-02146), both funded by
the Korean government (MSIT).

References
Rafael Torres Anchiêta, Marco Antonio Sobrevilla

Cabezudo, and Thiago Alexandre Salgueiro Pardo.
2019. Sema: an extended semantic evaluation for
amr. In Proceedings of the 20th Computational
Linguistics and Intelligent Text Processing. Springer
International Publishing.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2019. Abstract Meaning Representation
(AMR) 1.2.6 Specification.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Donald Davidson. 1967. The logical form of action
sentences. In Nicholas Rescher, editor, The Logic
of Decision and Action, pages 81–95. University of
Pittsburgh Press.

Michael Wayne Goodman. 2019. AMR normalization
for fairer evaluation. In Proceedings of the 33rd
Pacific Asia Conference on Language, Information,
and Computation, pages 47–56, Hakodate.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 312–319, Online. Association
for Computational Linguistics.

James Higginbotham. 1985. On semantics. Linguistic
Inquiry, 16(4):547–593.

Paul Kingsbury and Martha Palmer. 2003. Propbank:
the next level of treebank. In Proceedings of
Treebanks and lexical Theories, volume 3. Citeseer.

Juri Opitz. 2023. SMATCH++: Standardized and
extended evaluation of semantic graphs. In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 1595–1607, Dubrovnik, Croatia.
Association for Computational Linguistics.

Juri Opitz, Angel Daza, and Anette Frank. 2021.
Weisfeiler-leman in the bamboo: Novel AMR graph
metrics and a benchmark for AMR graph similarity.
Transactions of the Association for Computational
Linguistics, 9:1425–1441.

Juri Opitz and Anette Frank. 2022. Better Smatch
= better parser? AMR evaluation is not so simple
anymore. In Proceedings of the 3rd Workshop
on Evaluation and Comparison of NLP Systems,
pages 32–43, Online. Association for Computational
Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank.
2020. AMR Similarity Metrics from Principles.
Transactions of the Association for Computational
Linguistics, 8:522–538.

Terence Parsons. 1990. Events in the Semantics of
English: A Study in Subatomic Semantics. MIT
Press.

Sameer S Pradhan, Eduard Hovy, Mitch Marcus, Martha
Palmer, Lance Ramshaw, and Ralph Weischedel.
2007. Ontonotes: A unified relational semantic
representation. In International Conference on
Semantic Computing (ICSC 2007), pages 517–526.
IEEE.

Skipper Seabold and Josef Perktold. 2010. statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Linfeng Song and Daniel Gildea. 2019. SemBleu:
A robust metric for AMR parsing evaluation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552, Florence, Italy. Association for Computational
Linguistics.

407

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://www.aclweb.org/anthology/2020.acl-demos.35
https://www.aclweb.org/anthology/2020.acl-demos.35
http://www.jstor.org/stable/4178457
https://aclanthology.org/2023.findings-eacl.118
https://aclanthology.org/2023.findings-eacl.118
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.1162/tacl_a_00329
https://doi.org/10.18653/v1/P19-1446
https://doi.org/10.18653/v1/P19-1446


Figure 1: An example case that related to soundness

A Sample Case

Figure 1 illustrates two AMR graphs with different
meanings; persons in two different ‘love’ relations
are swapped. The reference AMR graph means
a sentence “Alice loves Carol, and Bob loves
Daniel.” But, the hypothesis AMR graph means a
sentence “Alice loves Bob, and Carol loves Daniel.”
Thus, these two graphs do not have the same truth
condition since Bob and Carol are different people
in general. Therefore, its expected value should not
be the theoretical maximum score that corresponds
to equivalence. Furthermore, since the subject of
’love’ is set differently in both AMRs, it also should
not be receive a score that is nearly identical to the
theoretical maximum.

So, we computed the similarity between these
two graphs using existing metrics. All existing
metrics produced a score close to 1: SEMBLEU

and WWLKe2n assigned 1.0 and SMATCH and
S2MATCH assigned 0.9231. Specifically for SEM-
BLEU, we suspect that the maximum length of n-
grams used in SEMBLEU is not sufficient to handle
this case; official SEMBLEU use 3-grams, which is
shorter than the distance between ‘love-01’ and a
person’s name, e.g., ‘Carol.’ In contrast, SMATCH♯

assigned a value of 0.8889 for this case, which is
lowest score among the metrics.

B Graph Transformation

• Original AMR:

ID: DF-199-192794-660_6610.5

Sentence: I never missed a day of school.

(m / miss-02
:ARG0 (i / i)
:ARG1 (t / temporal-quantity

:unit (d / day)
:quant 1
:duration-of (s / school-01))

:polarity -
:time (e / ever))

• Equivalence Cases:

Lift Up randomly set other node as a root.
According to AMR guidelines, AMR can
also be viewed as conjunction of logical
triples, omitting root information. Thus,
changing root does not harm AMR’s
truth condition.
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(t / temporal-quantity
:ARG1-of (m / miss-02

:polarity -
:time (e / ever)
:ARG0 (i / I))

:duration-of (s / school-01)
:quant 1
:unit (d / day))

Reorder randomly changes the displaying
order of a graph.

(m / miss-02
:time (e / ever)
:polarity -
:ARG0 (i / i)
:ARG1 (t / temporal-quantity

:quant 1
:unit (d / day)
:duration-of (s / school-01)))

Relabel change the head of each node.

(r0 / miss-02
:ARG0 (r1 / i)
:ARG1 (r2 / temporal-quantity

:duration-of (r3 / school-01))
:quant 1
:unit (r4 / day)

:polarity -
:time (r5 / ever))

Reify / Dereify According to AMR guide-
lines, apply Reification/Dereification us-
ing PENMAN library.

(m / miss-02
:ARG0 (i / I)
:ARG1 (t / temporal-quantity

:ARG2-of (_ / last-01
:ARG1 (s / school-01))

:ARG1-of (_2 / have-quant-91
:ARG2 1)
:unit (d / day))

:ARG1-of (_3 / have-polarity-91
:ARG2 -)

:ARG1-of (_4 / be-temporally-at-91
:ARG2 (e / ever)))

Duplicate Randomly duplicate the graph
component.

(m / miss-02
:ARG0 (i / i)
:ARG0 i
:ARG1 (t / temporal-quantity

:duration-of (s / school-01)
:duration-of s
:quant 1
:quant 1
:unit (d / day)
:unit d)

:ARG1 t
:polarity -
:polarity -
:time (e / ever)
:time e)

Note that the motivation for duplicating edges is
that we suspected that score inflation may have

occurred in existing metrics when duplication
occurred in existing parsers. Indeed, the experi-
ment was useful in that it revealed problems with
SMATCH. As a result of the experiment, SMATCH

showed a tendency to evaluate higher than the score
limit (0-1) when such cases were introduced. This
implies the possibility that score inflation may have
occurred when using SMATCH to evaluate when
duplicates occurred in existing parsers.

C Implementation Detail

• Hardware:

CPU: AMD Ryzen 5900X
Memory: 64GB

• Software:

OS: Ubuntu 20.04.6 LTS (kernel 5.4.0-169)
Python: 3.11.9 (with virtualenv)

• Python libraries:

Penman 1.3.0
networkx 3.3
numpy 1.26.4
statsmodels 0.13.5
pandas 2.2.1
SciPy 1.12.0
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Abstract

We present an information retrieval based re-
verse dictionary system using modern pre-
trained language models and approximate near-
est neighbors search algorithms. The proposed
approach is applied to an existing Estonian lan-
guage lexicon resource, Sõnaveeb (word web),
with the purpose of enhancing and enriching
it by introducing cross-lingual reverse dictio-
nary functionality powered by semantic search.
The performance of the system is evaluated
using both an existing labeled English dataset
of words and definitions that is extended to
contain also Estonian and Russian translations,
and a novel unlabeled evaluation approach that
extracts the evaluation data from the lexicon
resource itself using synonymy relations. Eval-
uation results indicate that the information re-
trieval based semantic search approach without
any model training is feasible, producing me-
dian rank of 1 in the monolingual setting and
median rank of 2 in the cross-lingual setting
using the unlabeled evaluation approach, with
models trained for cross-lingual retrieval and
including Estonian in their training data show-
ing superior performance in our particular task.

1 Introduction

A reverse dictionary (see examples in Table 1) is a
system that takes user descriptions or definitions as
input and returns words or expressions correspond-
ing to the provided input (Hill et al., 2016; Bilac
et al., 2004). The usefulness of a reverse dictio-
nary is multi-faceted. It can help resolve the tip of
the tongue problem—a common cognitive experi-
ence where a person is unable to recall a familiar
word, despite feeling that they know it and that it
is just on the verge of being remembered (Brown
and McNeill, 1966). For writers, it can be helpful,
similarly to a thesaurus, in making the vocabulary
in their work richer and more expressive. Finally,
in a cross-lingual setting, the reverse dictionary al-
lows language learners to look up words simply by

describing them in their native language. Consider,
for example, the accidental gap in semantics—a
situation when a certain concept expressed by a
word in one language does not have such an ex-
pression in another language, thus making a direct
translation impossible. In this case, describing the
concept represented by the word might be sufficient
to find related concepts in the other language.

Early approaches to building reverse dictionary
systems were based on information retrieval (IR)
techniques reliant on exact term matching: both
user inputs and candidate collections were repre-
sented using sets of keywords or sparse term-based
vector representations (Bilac et al., 2004; Shaw
et al., 2011). Such representations are very limited
in their ability to represent the compositional mean-
ing of sentences due to texts being represented as
simple collections of discrete terms. More recent
works on reverse dictionary focused on training
models to reconstruct word embeddings (Hill et al.,
2016; Zhang et al., 2020) or on fine-tuning pre-
trained transformers (Yan et al., 2020; Tsukagoshi
et al., 2021; Mane et al., 2022). The main limita-
tion of these approaches is that they require labeled
data to train predictive models and, as such, are not
easily generalizable to new settings or languages.

While the earlier IR-based approaches were lim-
ited by the expressive power of sparse text vectors
and term-based text representations, dense sentence
representations of modern pre-trained transformer-
based language models make these problems ob-
solete and provide suitable representations for im-
plementing semantic search functionality (Muen-
nighoff, 2022). When applied to lexicographical
data, semantic search may be leveraged to create
a reverse dictionary system. Word definitions en-
coded by a pre-trained language model represent
the search index, which is then queried with the en-
coded representation of the user’s input (definition
or description of a concept).

In this work, we develop an IR-based reverse
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Query: “tugev emotsionaalne füüsiline või
vaimne külgetõmme kellegi suhtes”

Translation: “a strong emotional feeling of
physical or mental attraction towards some-
body”

Rank Word Translation
1 armastama to love
3 armastaja lover
4 armastus love
6 armupalang love fervour
9 armunud in love

Query: “Группа людей, таких как мать-
отец и дети, которые все родственники”

Translation: “a group of people like a mother,
father and children who are all related”

Rank Word Translation
1 abielu marriage
2 asurkond population

27 kollektiiv group
46 noorpere young family
51 pere family

Query: “when you tell other people that some-
thing is very good and the right choice”

Rank Word Translation
1 austama to respect

13 jaatama to agree
44 meelitama to convince
76 soovitama to recommend
98 ülistama to praise

Table 1: Examples of the reverse dictionary search. The
target words are in Estonian, while the query can be in
different languages. The target word is marked in bold.

dictionary system implementing semantic search
via pre-trained transformer language model repre-
sentations. We apply and evaluate the system on
an existing Estonian linguistic resource Sõnaveeb,1

calling the extended reverse dictionary functional-
ity Sõnajaht (word hunt). Sõnaveeb is the Estonian
language portal of the Institute of the Estonian Lan-
guage (EKI), giving public access to several lexi-
cons.2 A user can query the Sõnaveeb with words
in several languages, such as Estonian or English.
The words used for querying may also be in an

1https://sonaveeb.ee/?lang=en
2In this work we experiment specifically with the “Ühend-

sõnastik 2023” lexicon—the combined dictionary.

inflected form. However, the current system does
not support approximate search—the user has to
spell the words precisely. Search over definitions
is not currently supported in any capacity.

The system we propose is based on word defi-
nitions: every word in the Sõnaveeb has at least
one distinct sense, and each sense has at least one
definition. Any given definition in the Sõnaveeb
can be linked back to its corresponding word and to
a specific sense of that word. We encode the defini-
tions using a pre-trained language model and then
store these definitions in a vector database. Then,
when a user inputs their description of a desired
meaning, it is encoded with the same language
model to be used as a query. The approximate
nearest neighbor search is then used to query the
vector database to return definitions linked to corre-
sponding words. Although all components of this
system—dense sentence representations, similarity-
based search, and approximate nearest neighbors—
are well-known, their combination to build a re-
verse dictionary functionality has, according to our
knowledge, not been studied previously.

For evaluating our reverse dictionary system, we
introduce a novel unlabeled evaluation approach
that relies on the word relation structure present in
the Sõnaveeb dictionary itself. Additionally, we uti-
lize and extend the labeled English dataset of words
and definitions introduced by Hill et al. (2016) by
translating the target words to Estonian, as well as
introducing definitions in Estonian and Russian in
addition to English.

To summarize, our contributions in this work are
as follows:

1. A novel approach to build reverse dictionary
systems combining information retrieval tech-
niques, modern pre-trained language models,
and approximate nearest neighbor search al-
gorithms;

2. A novel unlabeled evaluation approach in-
tended to gauge the performance of a given
language model in the context of a reverse dic-
tionary that does not require annotated data;

3. An extension of an existing English reverse
dictionary evaluation dataset to a cross-lingual
setting by adding words and definitions in Es-
tonian and Russian;

4. Evaluation of a number of different pre-
trained language models for their suitability
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for both monolingual and cross-lingual IR-
based reverse dictionary task in a non-English
language (Estonian);

5. Demonstrating the utility of building an IR-
based reverse dictionary system by applying
it to an existing Estonian language resource.

We make the code and data available on GitHub3

and HuggingFace Hub4, respectively.

2 Related Work

The approaches used to address the reverse dictio-
nary problem can be divided into two—prediction-
based methods and information retrieval (IR) based
methods. Both approaches assume a dictionary
dataset but use it differently—while prediction-
based methods use the data for training a predictive
model, IR-based methods require access to a dic-
tionary during inference.

2.1 Prediction-based approaches

Prediction-based approaches have mostly framed
the reverse dictionary problem as word embedding
reconstruction where the model is trained to pre-
dict target word embeddings from their definition
embeddings (Hill et al., 2016). The search is per-
formed in two steps: first, the definition is em-
bedded into a Word2Vec (Mikolov et al., 2013)
space, and the trained model is used to predict the
target word vector. Then, the produced vector is
used to search for similar vectors in the Word2Vec
model’s vocabulary, and the most similar entries
corresponding to these vectors are returned.

Zhang et al. (2020) expanded on Hill et al. (2016)
by introducing additional objectives to the model,
namely part-of-speech, morpheme, word category,
and sememe predictors that are then used to re-
score the final output. WantWords (Qi et al., 2020)
adds a web interface on top of Zhang et al. (2020)
and introduces the Chinese language to the sys-
tem, making both monolingual and cross-lingual
searches possible.

More recent approaches have leveraged pre-
trained transformer models. Yan et al. (2020) used
BERT (Devlin et al., 2018) to predict the target
word as a masked sequence in the context of its def-
inition. Tsukagoshi et al. (2021) fine-tuned a BERT-
based classifier to predict the target word from

3https://github.com/slowwavesleep/sonajaht
4https://huggingface.co/datasets/adorkin/

sonajaht

its definition representation. Mane et al. (2022)
adopted the encoder-decoder T5 model (Raffel
et al., 2020) to generate the word given the def-
inition. Tsukagoshi et al. (2021) proposed a type
of sentence embedding model that is trained to pre-
dict a word out of a predefined vocabulary given
the definition of that word. Meanwhile, Jo (2023)
aimed to improve the ability of BERT to represent
the semantics of short or single-word sentences
by means of minimizing the distance between iso-
lated words and their human-written definitions, as
well as definitions and the words appearing in the
relevant context.

2.2 IR-based approaches

IR-based solutions to the reverse dictionary prob-
lem assume the presence of a dictionary that con-
tains words with their definitions. Both the user
input and target word definitions are represented
as vectors that are compared with some similarity
measure, and the words with the most similar defi-
nition representations to the user input are returned.

Previous IR-based works fall into the pre-neural
times, using count-based representations such as
keyword sets and tf-idf (Bilac et al., 2004). Be-
cause the count-based representations rely on term
overlap between the user input and target defini-
tions, other works explored various heuristics to
augment the representations to increase the term
overlap. For instance, Shaw et al. (2011) expanded
user queries with WordNet relations and reranked
outputs by assigning differential weights to words
according to their syntactic function in the sentence.
We are unaware of any previous work using dense
vector representations for IR-based reverse dictio-
nary search.

3 Methodology

Our approach to the reverse dictionary problem
is, similarly to Bilac et al. (2004) and Shaw et al.
(2011), based on information retrieval techniques.
We assume the presence of a lexicon of words with
their definitions. The system treats individual defi-
nitions as candidates in the search database, com-
pares the user input to all candidates, and outputs
the most relevant results based on cosine similarity.
When a search database has a significant number of
entries, a brute-force all-to-all comparison becomes
computationally infeasible. Thus, we adopt the ap-
proximate nearest neighbors algorithm that reduces
the computational complexity of vector search. We
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chose the Qdrant vector database5 that implements
the Hierarchical Navigable Small World (HNSW)
approximate nearest neighbors algorithm (Malkov
and Yashunin, 2018). In our experiments, we es-
timate the nearest neighbors search to be approxi-
mately 60 times faster than the brute-force search.
The vectors are stored in the database together with
some additional metadata, such as the language of
the definition and both word and definition iden-
tifiers for the ease of later filtering. To store sup-
plementary information, such as definitions them-
selves and synonymy relations, we opted to use
SQLite for our simple implementation.

3.1 Database

The source of the data is the public API of the Es-
tonian language portal Sõnaveeb. Due to the lack
of filtering options in the API, we had to request
all available information for every word entry for
further processing. Out of that data, we extracted
words and word definitions (represented as both sur-
face forms and identifiers), as well as the language
of words and definitions and synonymy relations
for each word. We filtered the data based on the
language of the words to keep only the words in
Estonian. We kept the definitions in all available
languages to evaluate the cross-lingual function-
ality. Synonymy relations came in several types:
word-to-word, sense-to-word, and sense-to-sense
relations. However only the coarse-grained word-
to-word synonymy links were reliably present; thus
we opted to keep only that type. Additionally, we
discovered that a significant number of synonyms
in the database had only a single direction from
word A to word B, but not from word B to word
A. We understand synonymy as a symmetrical re-
lation; thus, for the purposes of evaluation, we
mirrored every single direction synonymy. The
statistics of the final dataset are shown in Table 2.

3.2 Ground Truth

One of the challenges in estimating the quality of
a reverse dictionary without user feedback lies in
the requirement of annotated evaluation data. Com-
monly, annotated data for this purpose comprises
definition/target word pairs (Hill et al., 2016). This
approach is quite limiting because one can often
find several suitable words fitting a given definition,
all of which can be considered correct answers. To
alleviate these issues, we propose a novel approach

5https://qdrant.tech/

Number of

Words 124K
Definitions in Estonian 213K
Definitions in other languages 16K
Synonyms 295K
Mirrored synonyms 590K
Synonyms per word on average 3.85

Table 2: Statistics of the dataset extracted from the
Estonian lexicon Sõnaveeb.

to defining the ground truth for reverse dictionary
evaluation based on the synonymy relations of the
underlying lexicon.

In our approach, we consider both the target
word and its synonyms as the ground truth based
on the assumption that synonymous words relate
to approximately the same concepts. Thus, from
the user’s point of view, synonyms should be ex-
pected in the system’s output in addition to the tar-
get word itself. This way, we resolve the problem
of the single target word limitedness. While this
approach allows us to sidestep the need for anno-
tated data, it introduces the requirement of knowing
synonymy relations between words. However, we
do not consider this requirement too limiting be-
cause dictionaries generally contain information on
synonymy relations between words. Alternatively,
the synonymy relations can be extracted from other
sources, such as WordNet. This approach makes it
possible to use the dictionary as the source of both
queries, candidates, and the ground truth.

3.3 Evaluation settings

We evaluate our reverse dictionary system in two
settings, called unlabeled and labeled evaluation,
respectively. In both cases, the ground truth is as
described in Section 3.2. In the unlabeled case,
the queries are also extracted from the Sõnaveeb
dictionary, while in the labeled case, they are taken
from an existing annotated dataset.

Unlabeled evaluation In this setup, we have no
predefined query/target word pairs. However, we
have dictionary entries that map words to defini-
tions and definitions to words. We also have infor-
mation on synonymy relations from the dictionary.
Thus, in unlabeled evaluation we consider every
individual definition entry as a query and perform
vector search over all definition vectors. When
computing evaluation metrics, we only consider
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the queried definitions of words that have multiple
definitions or synonyms, i.e., they have an associ-
ated ground truth definition other than the queried
definition itself.

Unlabeled evaluation aims to compare different
embedding models without requiring labeled eval-
uation data, which is very relevant for non-English
and multilingual dictionaries. In addition, it allows
the measurement of cross-lingual search capabil-
ities of the embedding models. The algorithm is
described in the pseudocode block below.

Algorithm 1 Candidate Quality Estimation

Require: Database of definition vectors
Require: N (number of candidates to retrieve)
1: Initialize an empty mapping candidates
2: for each definition ID D and definition vector V in the

database do
3: Extract the word ID W corresponding to V
4: if W has associated ground truth then
5: Use V as a query to the database
6: Retrieve the top N candidates and store them in

candidates under key D
7: end if
8: end for
9: Assess the quality of candidates using the ground truth

Labeled evaluation We also adopt labeled eval-
uation using an annotated dataset to verify the va-
lidity of the unlabeled approach described above.
For this, we adapted and extended the dataset com-
prised of human-crafted definitions from Hill et al.
(2016). The original dataset contains 200 words
together with their definitions.

Labeled evaluation aims to model the experi-
ence of a language learner who would attempt to
search for words using descriptions in their native
language or an intermediary language. The Es-
tonian language is most commonly studied either
in Russian (by Russian native speakers) or in En-
glish (either by native speakers or people with some
other native language). We manually translated the
words from English to Estonian and adapted the En-
glish definitions when necessary. Then, we linked
the Estonian words to their respective word senses
in our database. Finally, we translated English def-
initions to Estonian and Russian using machine
translation.6 The evaluation approach is also modi-
fied compared to Hill et al. (2016). Similarly to the
unlabeled approach, we use the definitions from the
dataset as queries. However, we consider only the
relevant word sense as the target and not all senses
of that word. Overall, the ground truth and evalu-

6https://translate.ut.ee/

ation principles are similar to the unlabeled case,
making the metrics of both approaches comparable.

3.4 Embedding Models

We evaluated several pre-trained transformer-based
models to understand their suitability for producing
representations for reverse dictionary search.

E5 EmbEddings from bidirEctional Encoder
rEpresentations (Wang et al., 2022) was the high-
est scoring open-source multilingual embedding
model in the Overall ranking on the MTEB leader-
board (Muennighoff et al., 2023) at the time of
writing. E5 is a BERT-based bi-encoder asym-
metrical retrieval model: training examples were
prepended with query and passage prefixes. Thus,
in our experiments, we tested E5 in two distinct
environments: we encoded candidate definitions
with query or passage prefixes, and in both cases,
we used query-prefixed queries.

LaBSE Language-agnostic BERT Sentence Em-
bedding (Feng et al., 2022) is a multilingual sen-
tence embedding model. It is an extension of
the BERT architecture designed to generate high-
quality fixed-size representations for sentences or
short texts. LaBSE supports over 100 languages,
including Estonian. At the time of writing, LaBSE
takes the top position in Bi-Text Mining category on
the MTEB leaderboard (Muennighoff et al., 2023).

OpenAI In addition to open-source models, we
used the proprietary OpenAI’s text-embedding-ada-
002 embedding model for comparison. According
to our knowledge, OpenAI has not disclosed much
information on the configuration and properties of
this model.

DistilUSE V1 and V2 are DistilBERT models
trained on 15 languages (but no Estonian) and 50
languages (with Estonian), respectively, and dis-
tilled from the mUSE model (Multilingual Uni-
versal Sentence Encoder) (Yang et al., 2020), pro-
vided as part of the Sentence Transformers library
(Reimers and Gurevych, 2019, 2020).

BGE (Xiao et al., 2023) was the highest-scoring
open-source English-only retrieval embedding
model on the MTEB leaderboard (Muennighoff
et al., 2023) at the time of writing. The reason
for adding this model is to understand how well
a monolingual retrieval model can generalize in a
cross-lingual retrieval task.
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MPNet Masked and Permuted Pre-training for
Language Understanding (Song et al., 2020) is a
version of the BERT (Devlin et al., 2018) model
with a different training objective. The specific
model we used was additionally fine-tuned on the
sentence similarity task. Similarly to BGE, the
intent is to test cross-lingual generalization capa-
bilities.

XLM-RoBERTa is a state-of-the-art pre-trained
language model (Conneau et al., 2020) that com-
bines the RoBERTa (Zhuang et al., 2021) ar-
chitecture with cross-lingual learning techniques.
RoBERTa is an extension of the BERT (Devlin
et al., 2018) architecture and is designed for vari-
ous natural language understanding tasks. XLM-
RoBERTa was trained on data with some Estonian
texts in it. We used the large version in our experi-
ments. The aim of including XLM-RoBERTa is to
understand how well a multilingual non-retrieval
model would perform in our task.

Word2Vec Finally, a Word2Vec (Mikolov et al.,
2013) model trained on Estonian data was used
as a baseline.7 We employed a very simple ap-
proach to extract definition embeddings with the
Word2Vec: definitions were tokenized based on
the whitespace character, then we simply ignored
tokens not present in the model’s vocabulary and
averaged the rest.

3.5 Metrics

To assess the quality of each model, we employed
metrics traditionally used in information retrieval
works (Buttcher et al., 2016), as well as some met-
rics from the related works (Hill et al., 2016). We
limit the number of items the search system outputs
to 100 items. In the following, let Res be the collec-
tion of retrieved items, and Rel the set of relevant
items. Res[1..k] consists of the top k items returned
by the system.

Precision@k Precision at k is meant to model a
user’s satisfaction when presented with a ranked
list of results given the query. The expectation
is that the user examines every item out of k in
an arbitrary order (Buttcher et al., 2016). In the
case of a reverse dictionary system, this is a very
reasonable expectation because the items comprise
words and their usually short definitions. The P@k
for a single query is:

7https://github.com/estnltk/word2vec-models

P@k =
|Res[1..k] ∩ Rel|

k

We report the mean P@k over all queries and de-
note it as MP@k.

MP@k =
1

|Q|

|Q|∑

j=1

P@kj

Mean Average Precision Choosing a specific k
to measure the Precision at k can be considered
quite arbitrary. Average Precision addresses this by
measuring precision at every possible threshold—
for every relevant item, precision is measured up
to and including the position of the item. Average
Precision also has an implicit recall component be-
cause it accounts for relevant items (Buttcher et al.,
2016). If the user interface with a specific number
of items shown is being tested, then Average Preci-
sion is a more comprehensive measure compared
to Precision at k.

AP =
1

|Rel|

|Res|∑

i=1

relevant(i) · P@i,

where relevant(i) is 1 if the i-th item in Res is rel-
evant; 0 otherwise. Similarly to P@k, AP refers
to the result of a single query. We are, however,
interested in the value of AP aggregated over all
queries, which is the Mean Average Precision de-
noted as MAP .

MAP =
1

|Q|

|Q|∑

j=1

APj

Mean Reciprocal Rank The user may be inter-
ested in one specific relevant item given their query.
Reciprocal rank models that situation by favoring
the rankings where the relevant document is as
close to the top as possible (Buttcher et al., 2016).

RR =
1

min{k|Res[k] ∈ Rel}
Accordingly, the Mean Reciprocal Rank (MRR) is
computed as the average of the reciprocal ranks of
the first relevant answers across all queries.

MRR =
1

|Q|

|Q|∑

j=1

RRj
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Median Rank Median Rank is calculated as the
median of the ranks of the first relevant answers
across all queries. In the presence of MRR, Me-
dian Rank may be considered redundant because,
similarly to MRR, it favors rankings with relevant
items near the top. We report this primarily for
consistency with previous works (Hill et al., 2016;
Qi et al., 2020; Zhang et al., 2020). Also, when
the number of possible results returned is capped,
and there are no relevant items among the returned
results, it is impossible to accurately estimate the
rank of the first relevant item. Thus, an arbitrary
value (1000 in this case) is chosen as exemplified
by Qi et al. (2020) in their project’s GitHub reposi-
tory.8

Accuracy@k Top-k accuracy represents the pro-
portion of responses to queries where at least one
returned item is relevant regardless of its position.
The expectation behind this metric is that the user
will be satisfied if they see at least one relevant re-
sult in the output. Note that Accuracy@1 is equiva-
lent to Mean Precision@1.

4 Results

We expect that the output of a good reverse dictio-
nary system would contain as many relevant items
as possible and they would be as close to the top as
possible. Meanwhile, the user’s interest seems un-
likely to be strictly limited to a single item. There-
fore, although we show all measures described in
Section 3.5, we consider Mean Average Precision
(MAP) as the main measure because it rewards
situations where relevant items are grouped at the
top.

Unlabeled evaluation The main purpose of this
evaluation was to measure the quality of different
embedding models and rank them to select the best
one when applied to creating a reverse dictionary
system. We can single out three main aspects that
can affect the position of the model on the table:
1) whether the target language was in the model’s
training data, 2) whether the model was trained for
retrieval, and 3) whether the model was trained for
cross-lingual retrieval specifically.

Table 3 demonstrates the performance of all
tested models. We observe that the models pos-
sessing all three aspects mentioned above (trained
on the target language, trained for retrieval, and
trained for cross-lingual retrieval) dominate the

8https://github.com/thunlp/WantWords

table: E5 and LaBSE were both trained for cross-
lingual retrieval and contained Estonian in their
training data. Meanwhile, we have no information
on how OpenAI’s embedding model was trained.
We can infer that it is also a retrieval model that has
seen Estonian; however it was possibly not trained
for cross-lingual retrieval specifically. DistilUSE
V2, which also included Estonian in the training
data, performs better than V1, as expected. The
English-only retrieval models (BGE and MPNet)
perform similarly to the Estonian Word2Vec base-
line. Surprisingly, the very simple Word2Vec em-
bedding model outperforms the much larger mul-
tilingual XLM-RoBERTa, even though the latter
also includes Estonian.

Cross-lingual unlabeled evaluation The Esto-
nian language heavily dominates the data used
for the unlabeled evaluation since it comes from
the Estonian language resource. However, it also
contains about 14K definitions in other languages.
The results in Table 4 focus specifically on the
cross-lingual capabilities of the models: only defi-
nitions in languages other than Estonian were used
as queries, while the candidates remained the Es-
tonian words with definitions in all available lan-
guages. All measures are slightly worse in this
setting, showing that the cross-lingual search is
harder than the monolingual retrieval. The overall
ranking of the models remains roughly the same,
with LaBSE being the best while the DistilUSE
models are in second place. Interestingly, the V1
model that did not include Estonian in the training
data is slightly better than the V2 model. The Ope-
nAI model performs considerably worse on MAP
than the other multi-lingual retrieval models.

Labeled evaluation To ensure the results out-
put by the unlabeled environment are reliable, we
tested the models on a smaller labeled dataset fo-
cusing on modeling cross-lingual retrieval. Table 5
shows the labeled evaluation results of the best
models from the unlabeled evaluation setting. We
can see that the order of the models based on the
metrics is approximately the same, which confirms
the reliability of the unlabeled evaluation. We also
note the relatively poor performance of OpenAI’s
embedding model, which further points towards a
lack of focus on cross-linguality during its training.
The labeled evaluation measures are lower com-
pared to the unlabeled evaluation setting. It might
be because the definitions from the small labeled
dataset are very out of distribution compared to the

416

https://github.com/thunlp/WantWords


Model MAP MP@1 MP@10 MRR Acc@1 Acc@10 Median Rank
E5 query-passage 0.4282 0.4952 0.1591 0.5470 0.4952 0.6438 1
E5 query-query 0.4202 0.4940 0.1571 0.5448 0.4940 0.6397 1
LaBSE 0.4081 0.4894 0.1502 0.5345 0.4894 0.6178 1
OpenAI 0.3746 0.4934 0.1376 0.5347 0.4934 0.6114 1
DistilUSE V2 0.3381 0.4544 0.1241 0.4894 0.4544 0.5526 2
BGE 0.2660 0.4323 0.1038 0.4607 0.4323 0.5090 7
Word2Vec 0.2573 0.4203 0.1040 0.4518 0.4203 0.5072 8
MPNet 0.2552 0.4255 0.0997 0.4516 0.4255 0.4954 11
DistilUSE V1 0.2389 0.4048 0.0897 0.4247 0.4048 0.4569 74
XLM-RoBERTa 0.2306 0.4065 0.0901 0.4281 0.4065 0.4637 51

Table 3: Reverse dictionary performance in unlabeled evaluation on the full Sõnaveeb dataset, with both Estonian
and non-Estonian queries. The E5 model is evaluated in two settings: by using passage prefix for candidate
definitions (E5 query-passage) and by using query prefix for candidate definitions (E5 query-query).

Model MAP MP@1 MP@10 MRR Acc@1 Acc@10 Median Rank
LaBSE 0.3913 0.4546 0.1449 0.4738 0.4546 0.5122 6
DistilUSE V1 0.3873 0.4635 0.1451 0.4827 0.4635 0.5215 4
DistilUSE V2 0.3775 0.4367 0.1411 0.4561 0.4367 0.4951 12
E5 query-passage 0.3746 0.4732 0.1515 0.5005 0.4732 0.5540 2
E5 query-query 0.3627 0.4448 0.1458 0.4720 0.4448 0.5269 4
OpenAI 0.3335 0.4624 0.1447 0.4901 0.4624 0.5464 2
BGE 0.2404 0.4356 0.1173 0.4569 0.4356 0.4992 10
MPNet 0.2204 0.4053 0.1126 0.4259 0.4053 0.4675 32
XLM-RoBERTa 0.1525 0.3955 0.0822 0.4048 0.3955 0.4229 1000
Word2Vec 0.1326 0.3617 0.0732 0.3775 0.3617 0.4087 1000

Table 4: Reverse dictionary performance in unlabeled evaluation using only non-Estonian queries. The E5 model is
evaluated in two settings: by using passage prefix for candidate definitions (E5 query-passage) and by using query
prefix for candidate definitions (E5 query-query).

dictionary definitions, so it makes sense that there
would be some discrepancy.

Qualitative evaluation We manually examined
some outputs of the best-performing E5 model us-
ing the definitions from our unlabeled evaluation
dataset with few examples shown in Table 1. We
note that while the expected target words do not
always appear in top-10 results, the output is sen-
sible, and the other words in the output very often
fit the queried definitions (which are sometimes
quite vague) quite well. The same observation also
applies to the cross-lingual search environment.

5 Conclusion

We proposed an IR-based reverse dictionary sys-
tem leveraging pre-trained transformer-based lan-
guage models for semantic search and evaluated it
thoroughly on an Estonian language dictionary re-
source, the Sõnaveeb. Unlike the prediction-based
approaches that have been mainly focused on in re-

cent works, the IR-based approach does not require
training any specialized models. Furthermore, it
can be easily adapted to work in the cross-lingual
setting. The evaluations using the unlabeled eval-
uation procedure based on the synonym relations
of the target dictionary and a small multilingual
dataset showed that language models trained for
cross-lingual retrieval are optimal for our use case.
We expect that the proposed approach to build-
ing and validating reverse dictionary systems is
reusable, approachable, and generalizable due to
its simplicity, thus facilitating the development
and improvement of language resources for less-
represented languages with a focus on language
learning, documentation, and preservation.

In future work, we would like to develop a user
interface to perform human evaluation of our pro-
posed system. The ultimate goal is to integrate the
best-performing model into the existing Sõnaveeb
language portal to enrich this resource by making
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Model MAP MP@1 MP@10 MRR Acc@1 Acc@10 Median Rank
Definitions in Estonian

E5 query-query 0.2135 0.2600 0.1435 0.3635 0.2600 0.5700 6
E5 query-passage 0.2024 0.2400 0.1350 0.3425 0.2400 0.5350 6
LaBSE 0.1432 0.2150 0.1055 0.2885 0.2150 0.4500 14
OpenAI 0.1031 0.1750 0.0835 0.2390 0.1750 0.3850 27
DistilUSE V2 0.0983 0.1400 0.0590 0.1979 0.1400 0.3000 49

Definitions in English
E5 query-query 0.1948 0.2050 0.1250 0.3013 0.2050 0.5250 8
E5 query-passage 0.1717 0.2150 0.1135 0.2952 0.2150 0.4750 13
LaBSE 0.1478 0.2300 0.1185 0.3074 0.2300 0.4850 12
DistilUSE V2 0.1262 0.1700 0.0885 0.2328 0.1700 0.3550 29
OpenAI 0.0996 0.1150 0.0870 0.1981 0.1150 0.4000 17

Definitions in Russian
E5 query-query 0.1954 0.2150 0.1385 0.3149 0.2150 0.5500 7
LaBSE 0.1446 0.2050 0.1140 0.2922 0.2050 0.4750 14
E5 query-passage 0.1166 0.1500 0.0945 0.2236 0.1500 0.3950 23
DistilUSE V2 0.1023 0.1150 0.0800 0.1874 0.1150 0.3350 39
OpenAI 0.0093 0.0050 0.0055 0.0231 0.0050 0.0500 1000

Table 5: Reverse dictionary performance on a labeled dataset in both monolingual and cross-lingual setting.

the search and navigation more accessible and to
support language learners via cross-lingual search.

Limitations

The main limitation of our work is the lack of hu-
man evaluation. Although both the unlabeled and
labeled evaluation approach attempt to model user
satisfaction, we do not know the correlation be-
tween automatic measures and human judgments
at this point. Although we assumed that MAP is the
most suitable measure, its correlation with human
judgments for our task still needs to be established.

Another limitation is that we have not assessed
the level of noise in the dictionary resource Sõ-
naveeb used in this work. It is possible that filtering
out non-informative definitions or possibly erro-
neous synonymy relations could result in a more
precise evaluation. However, the main point of our
unlabeled validation approach was to facilitate the
performance of the different embedding models
for building an IR-based reverse dictionary and to
make it require as little additional effort as possible.
We expect that any additional data filtering does
not result in any significant change to the model
rankings. This assumption is also supported by the
results we obtained using the labeled evaluation.

Finally, when we consider the fact that the ul-
timate purpose of our work is to enable reverse
dictionary search functionality in an existing lan-

guage resource that real users could utilize via a
graphical user interface, the way the reverse dictio-
nary output would be represented visually would
also play a significant role in user satisfaction. Con-
sequently, the effect the visual presentation has on
the performance of a reverse dictionary system also
needs to be evaluated to get the full picture. We
leave that particular aspect for future work.
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Abstract

Recently, large pre-trained language models
(LLMs) have demonstrated superior language
understanding abilities, including zero-shot
causal reasoning. However, it is unclear to
what extent their capabilities are similar to hu-
man ones. We here study the processing of an
event B in a script-based story, which causally
depends on a previous event A. In our manipu-
lation, event A is stated, negated, or omitted in
an earlier section of the text. We first conducted
a self-paced reading experiment, which showed
that humans exhibit significantly longer reading
times when causal conflicts exist (¬A → B)
than under logical conditions (A→ B). How-
ever, reading times remain similar when cause
A is not explicitly mentioned, indicating that
humans can easily infer event B from their
script knowledge. We then tested a variety of
LLMs on the same data to check to what ex-
tent the models replicate human behavior. Our
experiments show that 1) only recent LLMs,
like GPT-3 or Vicuna, correlate with human
behavior in the ¬A → B condition. 2) De-
spite this correlation, all models still fail to
predict that nil → B is less surprising than
¬A→ B, indicating that LLMs still have dif-
ficulties integrating script knowledge. Code
and data are available at https://github.
com/tony-hong/causal-script.

1 Introduction

Causal reasoning is fundamental for both human
and machine intelligence (Pearl, 2009) and plays an
important role in language comprehension (Keenan
and Kintsch, 1974; Graesser et al., 1994, 1997;
Van den Broek, 1990). Large pre-trained language
models (LLMs) such as GPT-3.5 (Neelakantan
et al., 2022) have demonstrated excellent zero-shot
capabilities in causal reasoning tasks and human-
like behaviors (Wang et al., 2019). The capabil-

∗ These authors contributed equally to this work.

ity of causal reasoning is essential to new prompt-
ing techniques like the chain-of-thought prompting
(Wei et al., 2022; Kojima et al., 2022). On the
other hand, some early pieces of evidence show
that LLMs lack global planning of different events
in stories (Bubeck et al., 2023). So it is unclear to
what extent LLMs can conduct causal reasoning
about events.

In turn, humans have been shown to be ex-
tremely good at building causal connections in
long discourse comprehension (Radvansky et al.,
2014; Graesser et al., 1994). In doing so, they
rely not only on explicit causal links (signaled in
the text – see Trabasso and Sperry, 1985; Keenan
and Kintsch, 1974) but also on implicit ones that
are inferable based on commonsense knowledge
(Keenan and Kintsch, 1974; Singer and Halldorson,
1996). In particular, subjects were found to be sen-
sitive to causal conflicts arising from contradictions
to earlier text segments or conflicts with subjects’
commonsense knowledge (Radvansky et al., 2014;
Singer and Halldorson, 1996). An example of a
causal conflict is presented in Figure 1, Part II, con-
dition ¬A → B, where decorating a cake with
star-shaped sprinkles is inconsistent with the previ-
ously mentioned information that cake decorations
are not available.

In this paper, we investigate language process-
ing in humans and compare it to a large variety
of LLMs, following the “psycholinguistic assess-
ment of language models paradigm” (Futrell et al.,
2019). In our analyses, we compare human read-
ing times to LLM surprisal estimates. Surprisal is
the negative log probability of a word in context
and has been previously related to human read-
ing times (Hale, 2001; Levy, 2008; Demberg and
Keller, 2008; Smith and Levy, 2013) as well as neu-
ropsychological effects such as the N400 (Frank
et al., 2015; Kutas and Hillyard, 1989), which rep-
resent human processing difficulty. We collect a
new dataset, Causality in Script Knowledge (CSK),
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0. Script initiation
1. Choose a recipe     
2. Turn on the oven    
3. Get ingredients       
4. Get utensils
5. [Event A] Prepare cake
decorations
6. Add ingredients       
7. Prepare ingredients 
8. Put the cake in the oven
9. Wait                      
10. Take the cake out of the oven 
11. [Event B] Decorate the cake
12. Clean the kitchen
13. Closing sentence

I. Event sequence: II. Resulting narrative that was presented to
humans (by story condition):

III. Questions about
target events:

How sure are you that
Anne grabbed some cake
decorations?

Not sure at all vs. Very
sure (0-7)

Question about event A:

Question about event B:

How sure are you that
Anne added star sprinkles
to the cake?

Not sure at all vs. Very
sure (0-7)

A→B condition ¬A→B condition nil →B condition

Yesterday Anne had a party at her house, so she decided to bake a cake. First, she
chose a recipe from a cookbook and set out all the ingredients.

Next, she gathered her
utensils and got out the
cake decorations.​

Next, she gathered her
utensils and realised she
didn't have any cake
decorations.​

Next, she gathered her
utensils and turned on the
oven.​

Then she turned on the oven and started measuring the
ingredients. 

Then she started
measuring the ingredients. 

She added them one by one into a bowl and mixed them carefully with her new
mixer until she got a homogenous batter. Afterwards, she poured the mixture into a
pan, placed it in the oven, and set a timer.

When the timer went off, she removed the cake from the oven and let it cool. In the
meantime, she prepared some vanilla frosting. When the cake had cooled, she
frosted it thoroughly.

Then, she added star-shaped sprinkles and cleaned up the kitchen.

After that, she looked at the cake. It was a real piece of art!

Figure 1: Example of a script structure (I), the resulting narrative in three conditions (II) and questions that subjects
were asked (III), for "baking a cake" story.

consisting of short stories about daily activities
which are typically part of the script knowledge of
humans, see Figure 1 for an example. The term
“script knowledge” refers to commonsense knowl-
edge about everyday activities, where “scripts” are
defined as prototypical sequences of events in these
activities. The stories are constructed such that
they contain a pair of events, A and B which are
causally contingent on one another. We manipu-
late event A to be stated, negated or omitted, and
subsequently measure reading times on event B.

Our first research question (RQ1) relates to the
effect of the incoherence in the ¬A→ B condition,
compared to the coherent A → B condition. For
humans, a large body of previous literature (Bloom
et al., 1990; Radvansky et al., 2014; Singer and
Ritchot, 1996) leads us to expect that human read-
ers will notice the inconsistency and that this can be
measured in terms of slower reading times on event
B. For language models, we want to test whether
and which models also exhibit a similar effect, by
comparing the surprisal values for the words of
event B following the A vs. ¬A mentioned in the
previous context. In order for a language model
to handle this case, it needs to (a) understand the
contingency between events A and B (even though
they often don’t use overlapping lexical items) and
(b) be able to represent event A or ¬A effectively
across the intervening sentences so it is still rep-
resented when encountering B. We find that the
large models (GPT-3 and Vicuna) do well on this
task, but smaller models mostly fail.

Our second research question (RQ2) aims to tap
into how script knowledge facilitates language com-
prehension. To this end, we compare the processing
of event B in a setting where neither event A nor
event ¬A are mentioned in the previous context.
If comprehenders integrate their script knowledge
with the text, they should have an easy time pro-
cessing event B even without the prior mention of
event A (Bower et al., 1979). The previous litera-
ture on human sentence processing has no direct
evidence about the processing difficulty of event B
in this case, so here our experiment makes a new
contribution: we find that humans are significantly
faster in reading segment B in the nil→ B condi-
tion compared to ¬A→ B, and that reading times
between conditions nil → B and A → B do not
differ significantly from one another. Our subse-
quent evaluation of LLMs on the same contrast
however shows that all LLMs fail to show human-
like processing: they do not have lower surprisal on
the nil → B condition than on ¬A → B – some
models even assign higher surprisal estimates to the
nil → B condition, indicating that even the most
recent large LLMs in our evaluation cannot effec-
tively integrate script knowledge for estimating the
probability of upcoming words.

2 Background

2.1 Causal inference and script knowledge

When humans read text, they connect events men-
tioned in the text into a locally and globally coher-
ent causal network, thereby not only integrating
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information from the text but also based on con-
text and commonsense knowledge (Van den Broek,
1990; Graesser et al., 1997). It has been shown
that when the causal network does not support new
events or the new event contradicts the previous
text, readers experience processing difficulties, re-
sulting in longer reading times (Bloom et al., 1990;
Radvansky et al., 2014). The comprehension of a
new event also relies on commonsense knowledge
(Hare et al., 2009). In fact, Singer and Ritchot
(1996) showed that when commonsense knowl-
edge does not support an event described in the
text, comprehenders take more time processing it.

A special type of commonsense knowledge that
was shown to also modulate reading comprehen-
sion is script knowledge (Abbott et al., 1985;
Bower et al., 1979; Schank, 1975). Scripts rep-
resent knowledge structures consistent with sets of
beliefs built on past experiences about everyday,
routine, and conventional activities like baking a
cake. Importantly, the events constituting a script
can be highly causally inter-connected and are crys-
tallized in memory – one can expect script-related
events to be activated once the script is invoked.
In a series of experiments, Bower et al. (1979)
showed that after subjects read an everyday story
that constituted a script, they also recalled script-
related events that were not explicitly mentioned in
the story (see Gibbs and Tenney, 1980, for similar
findings showing that script knowledge is an in-
distinguishable part of the memory representation).
In turn, it is expected that when reading a story,
script-related events can be primed by the script
itself rather than by some single events mentioned
in the text, without processing time loss (Keenan
and Kintsch, 1974).

2.2 Experiments with language models

Causal Reasoning. Recent LLMs such as GPT-3.5
(Neelakantan et al., 2022) have achieved strong per-
formance in many reasoning tasks under zero-shot
settings, such as symbolic reasoning, logical rea-
soning, mathematical reasoning and commonsense
inference (Kojima et al., 2022). The common prac-
tice to conduct zero-shot reasoning is prompting,
i.e. to append a task-specific text to the input to
LLMs and then sample the output (Radford et al.,
2019). Although the cause is usually provided in
the prompt (like condition A → B), LLMs can
reason without relying only on surface cues like
word overlap (Lampinen et al., 2022). Moreover,

LLMs can be prompted to produce explicit reason-
ing steps with chain-of-thought prompting (Wei
et al., 2022).

Script knowledge. Early works regarding script
knowledge also apply language models (LMs). We-
ber et al. (2020) apply LMs for script induction
from causal effects. Ciosici et al. (2021) build a
human-LM collaborative system for script author-
ing.

Recent studies have suggested that LLMs may
learn script knowledge as part of their training (Sak-
aguchi et al., 2021; Sancheti and Rudinger, 2022).
Ravi et al. (2023) fine-tune GPT-3 to automatically
generate plausible events that happen before and
after a given event, and Yuan et al. (2023) report
promising results on prompting an InstructGPT
model (Ouyang et al., 2022) to automatically gen-
erate scripts and then filtering results in the second
step. Similarly, Brahman et al. (2023) use a dis-
tilled small LM as script planner and fine-tuned
RoBERTa as verifiers.

There are however also reports that indicate that
script knowledge in LLMs may not yet be suffi-
cient: zero-shot probing on GPT-2 has been found
to generate poor event sequences (Sancheti and
Rudinger, 2022), and GPT-3 was found to be only
marginally better than chance on predicting event
likelihoods (Zhang et al., 2023) and exhibit poor
performance on event temporal ordering (Suzgun
et al., 2023).

Several ways of specifically integrating common-
sense knowledge into LLMs have been proposed:
some LLMs are trained from scratch on structural
data with commonsense knowledge like knowledge
graphs (ERNIE; Zhang et al., 2019) and semantic
frames (SpanBERT; Joshi et al., 2020). Bosselut
et al. (2019); Hwang et al. (2021) further equips
LLMs with structural input and output to model
commonsense knowledge. In the present contribu-
tion, we explore previous models that have been
reported to be successful in inference tasks. More
details of the choice of LLMs are in Section 4.1.

2.3 The TRIP dataset

A dataset that is particularly relevant to the present
study is the TRIP dataset, which contains 1472
pairs of two similar stories, which differ by one
sentence at a “breakpoint” position (Storks et al.,
2021). One of the stories is plausible, and the
other one is implausible, due to a causal conflict
between the sentence at the breakpoint position
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and an earlier part of the text. The plausible sto-
ries correspond to the A → B condition in our
dataset, while the implausible stories correspond to
our ¬A→ B condition. The breakpoint sentence
corresponds to our critical sequence B.

Richardson et al. (2022) fine-tune a T5 model
augmented with logical states of each event to de-
tect the causal conflicts and outperform a RoBERTa
baseline by a large margin. Ma et al. (2022) fine-
tune a framework to integrate global and local in-
formation. Our aim is not to finetune the LLMs on
TRIP but to test them in a zero-shot fashion.

3 Experiments with Humans

3.1 Dataset

The Causality in Script Knowledge (CSK) dataset
consists of 21 English stories describing everyday
activities like baking a cake or taking a bath.1

To construct the stories, we initially composed
sequences of script-related events that were built
on top of Wanzare et al. (2016) – see Figure 1, part
I. Subsequently, we transformed these sequences
into narrative form (Figure 1, part II; for example,
an event “prepare cake decorations” is realised in
the narrative as “she got out the cake decorations”).
Further, each story was divided into chunks of text
(as rows of the table in Figure 1, part II) such that
participants do not see the whole text at once, but
chunk after chunk.

Each story starts with script initiation – a sen-
tence in the first chunk that introduces the topic to
the reader, e.g., “Yesterday Anne had a party at her
house, so she decided to bake a cake.” from Figure
1, part II. Thus, readers can already activate script
knowledge about the event at that point.

A pair of events A and B represent our main in-
terest. They were chosen in such a way that event
A (“get the cake decorations”) enabled the happen-
ing of event B (“add star-shaped sprinkles”). More
specifically, since scripts are typically character-
ized by event sequences in which specific script
participants appear repeatedly (like cake decora-
tions), we are interested in a pair of events that
define an action done to this specific participant.

In some stories, participants related to the tar-
get manipulation have different lexical realization
between events A and B. For example in the cake
story presented in Figure 1, a participant in event A
is referred to as “cake decorations” and in event B

1Available at https://github.com/tony-hong/
causal-script

parameter mean sd
# of words in story:
A→ B 158.2 12
¬A→ B 159.1 14
nil→ B 150.1 11.7
# of text chunks in story 6.8 0.77
# of words in chunk with A 27.6 11.3
# of words in chunk with ¬A 29.3 13.1
# of words in chunk with B 12.9 1.7
# of words in chunk after B 12.9 1.8
# of words b/w A and B:
A→ B 73.6 10.3
¬A→ B 71.8 12.9
# of words in A 7.3 3.8
# of words in ¬A 11.2 5.3
# of words in B 5.4 1.6

Table 1: Decriptive statistics for stories.

it is specified as “star-shaped sprinkles” (as a type
of cake decorations). Some stories also necessitate
an inference e.g. from referring to “bubble bath”
in event A and “foam” in event B. In other stories,
identical referring expressions were used in events
A and B (e.g., in a grocery story, event A: “he took
a shopping cart” vs. event B: “he put everything in
his shopping cart”).

Importantly, no other events in the story draw a
direct causal link to event B, except event A and
the script itself. Events A and B are always sepa-
rated by descriptions of other script events (73.6
words on average; sd = 10.3; min: 59; max: 91).
The chunk with event B always consists of one
sentence with the following structure: “ADVERB
PERSON X did action B and then did a subsequent
action from the script sequence.” (except the laun-
dry story, where the sentence started with “She”).
When constructing the experimental materials, we
controlled for the following parameters: the num-
ber of words and text chunks in a story, the number
of text chunks and words between events A and B,
the number of words in the text chunks that con-
tained event B, and number of words in the chunk
after the chunk with event B. The full list of de-
scriptive statistics for our materials is presented in
Table 1.

3.2 Experimental conditions

Our target manipulation relates to the appearance
of events A and B in the story thus producing three
different story conditions:
Condition A → B. Event B logically follows
event A within the story context. In this way, event
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A draws a direct causal link to event B, and thus
event B is anticipated to happen on the basis of
event A.
Condition ¬A → B. Event A is negated, mak-
ing the occurrence of event B implausible or even
impossible. The mention of event B thus is unex-
pected and stands in a causal conflict with the ear-
lier information. While creating negation of events
A, we had the following strategy. Since events A
and B in our materials typically share at least one
common event participant, in the ¬A condition,
this participant was made unavailable for event B.
In this way, the causal link between A and B (pre-
pare cake decorations→ add star-shaped sprinkles;
put a pillow in the backpack → take it from the
backpack) is broken because event ¬A changes the
state of the participant so that it is not available in
B (when one doesn’t have a travelling pillow, this
script participant is not going to be available in B
to take it from the backpack).

The ¬A condition did not always consist of lit-
eral negation with the word “not” but as in the ex-
ample shown in Figure 1 (A: “she got out the cake
decorations” vs. ¬A: “she realised she didn’t
have any cake decorations”), but while in other
stories, participant in event A was disabled in a
more subtle way, via verbs of implicit negation or
particles like “only”, e.g., (events A vs. ¬A):

• (sunscreen): she grabbed her sunscreen VS.
she forgot her sunscreen

• (pocorn buckets): she bought three buckets of
popcorn for everyone VS. since nobody was
hungry, she just bought drinks for everyone

Condition nil → B. Event A is omitted. Even
though event A is not explicitly stated, it is ex-
pected that humans will easily infer its occurrence
from the context, making the mention of event B
plausible and easy to integrate (Bower et al., 1979).

3.3 Experimental procedure
For data collection, each story was divided into
paragraphs or text chunks (as shown, for exam-
ple, in Figure 1, part II). During the experiment,
subjects saw only one paragraph at a time (chunk-
by-chunk presentation). After reading each story,
subjects had to rate how sure they were about the
events A and B to have occurred, on a Likert scale
ranging from 0 (Not sure at all) to 7 (Very sure)
– see Figure 1, part III. To measure the process-
ing difficulties of humans, we compare the reading

Figure 2: Human results. Mean by-character reading
times at event B, by story condition; p-values are taken
from the corresponding LMER models, see Section 3.5.

times for event B across the experimental condi-
tions. More details about subjects’ belief ratings
are presented in Appendix A.

251 native English speakers were hired via the
crowdsourcing platform Prolific2 to participate in
the study. Each participant read three stories. Each
story had a different topic and was presented in a
different condition.

3.4 Analysis

To investigate the effects of processing difficulty
that event B causes in subjects depending on story
condition, we analyse mean per character reading
times associated with the chunks that contain event
B. The log-transformed reading times were anal-
ysed using linear mixed-effects regression models
(LMER; Bates et al., 2015). The maximal random
effects structure included by-subject and by-item
random intercepts and by-item random slopes for
story condition and was simplified for convergence
when needed.

Prior to the analysis, we removed all trials related
to the bowling story item, due to a typo. Further, we
removed trials where the reading times in the chunk
containing event B were shorter than 100ms or
larger than 50s. 704 trials from 251 subjects (73%
female; mean age = 40, sd = 14.6, [18;80] range)
were available for analysis (1.81% data loss).

3.5 Results

To answer to what extent causal inconsistencies
are reflected in human language processing (RQ1),
we compared reading times on segment B in the
A → B vs. ¬A → B conditions. The random ef-
fects structure included by-subject and by-item ran-
dom intercepts and by-item random slopes for story

2https://www.prolific.co/
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conditions. We found that subjects read chunks
with event B significantly more slowly when event
A was explicitly negated in the story (b = 0.21,
se = 0.04, t = 4.77, p < .01), see also Figure 2.

To analyse subjects’ ability to infer causal links
from script knowledge (RQ2), we compared the
reading times in nil → B vs. A → B condi-
tions. The random effects structure included by-
item random intercepts. We observed no significant
difference between these conditions (b = −0.04,
se = 0.05, t = −0.7, p = .48). Thus, the absence
of event A, which serves as a direct causal link
to event B, does not slow event’s B processing in
terms of reading times. Note that the reading time
of condition ¬A→ B is significantly slower than
the reading time in condition nil → B (b = 0.17,
se = 0.05, t = 3.23, p < .01).

4 Can LLMs Detect Causal Conflicts
(RQ1)?

In this section, we measure the ability of differ-
ent LLMs to track event contingency. We feed the
script stories into the language models and record
the LM’s surprisal scores on a word-by-word basis.
We then test whether the mean surprisal scores for
the critical region (event B) differ between con-
ditions. As the script stories corpus is relatively
small, we additionally test the models on the TRIP
dataset (Storks et al., 2021) to assess their recog-
nition of causal incongruencies on a wider set of
materials (see Section 4.5).

4.1 Choices of LLMs

We select a set of 20 causal language models
(CLMs).3 We chose the GPT-1/2/3 and Instruct
GPT models (Radford et al., 2018, 2019; Brown
et al., 2020; Ouyang et al., 2022) because of their
good performance on many NLP tasks (Chang and
Bergen, 2023). We also selected GPT-3.5 (Nee-
lakantan et al., 2022) because it was trained with
both programming code and text and as a result
demonstrated strong performance on entity track-
ing (Kim and Schuster, 2023), a prerequisite for
causal reasoning. Notably, ChatGPT (OpenAI,
2022) and GPT-4 (OpenAI, 2023) can not be used
in our study, because the API does not allow ac-
cess to the probabilities. Additionally, we used Vi-
cuna models (Chiang et al., 2023), a LLaMa-based
model (Touvron et al., 2023) fine-tuned on 70K

3We also experiment with masked language models. Please
refer to Appendix C.1.

user-shared ChatGPT conversations. Open models
like Vicuna have the advantage of results being re-
producible. Similarly, we chose OPT (Zhang et al.,
2022) and GPT-Neo (Black et al., 2021) as open
models similar to GPT-3.

We also selected task-specific models that could
potentially capture script knowledge via exposure
to more diverse datasets like summarization mod-
els, Pegasus (Zhang et al., 2020), Bigbird-pegasus,
and a multilingual model XGLM (Lin et al., 2022).
Lastly, we chose XLNet because it has been previ-
ously shown to be effective for zero-shot script pars-
ing (Zhai et al., 2021, 2022) wrt. handling causal
inferences in commonsense stories in a zero-shot
setting.

All models used here were available through ei-
ther HuggingFace or the OpenAI API. More details
are in Appendix B, where we briefly describe all
the models.

4.2 Method
We perform word-by-word next-word prediction
for event B, recording the next token probabilities
for each token in segment B. Based on the prob-
ability of the target words w given the story con-
text, we then calculate the target tokens’ surprisal
as their negative log probability: surprisal(w) =
− logP (w|story_context). We then calculate the
average per-word surprisal by averaging the sur-
prisal of each word into an estimate of the surprisal
of the critical region for each item.

4.3 Data Analysis
To identify the PLM(s) that show comparable ef-
fects to humans, we run an equivalent analysis to
how the reading time data were analysed: we esti-
mate linear mixed effects models with surprisal
as a response variable and condition (A → B
vs. ¬A → B) as a predictor. The model also in-
cludes by-item random intercepts. The formula is:
log(surprisal) ∼ story_condition + (1|story)4.

4.4 Results
Table 2 (column CSK) presents the results for
all language models on whether model surprisals
were significantly higher for the ¬A → B con-
dition than in the A → B condition, indicating
that the model’s surprisal scores reflect the inco-
herence (RQ1). High positive b values indicate
that surprisal values are higher on segment B in

4Log surprisals were chosen because of the skewed distri-
bution of surprisal values.
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Model Name # para. CSK TRIP
(M) b t sign b t sign

GPT-3.5: text-davinci-003 175K 0.59 5.87 *** 0.30 10.82 ***
GPT-3.5: text-davinci-002 175K 0.51 2.75 * 0.26 7.41 ***
InstructGPT: text-davinci-001 175K 0.26 2.03 · 0.29 5.81 ***
InstructGPT: davinci-instruct-beta 175K 0.21 2.76 * 0.20 8.68 ***
GPT-3: davinci-002 175K 0.28 4.36 *** 0.35 8.11 ***
GPT-3: davinci 175K 0.21 2.76 * 0.20 8.25 ***
Vicuna-13B 13016 0.22 2.25 * 0.26 7.56 ***
Vicuna-7B 6738 0.28 2.56 * 0.22 6.35 ***
InstructGPT: text-curie-001 6700 0.03 0.31 n.s. 0.19 5.78 ***
GPT-3: curie 6700 0.23 3.43 ** 0.12 5.92 ***
GPT-2: XL 1638 0.05 0.96 n.s. 0.06 3.15 **
GPT-2: L 838 0.04 0.77 n.s. 0.05 2.77 **
XGLM 827 -0.03 -0.79 n.s. 0.02 1.38 n.s.
Bigbird-pegasus-large-arxiv 470 0.06 1.20 n.s. 0.00 -0.02 n.s.
Pegasus-large 467 0.02 0.85 n.s. 0.00 -0.48 n.s.
XLNet-large-cased 393 -0.03 -1.99 · 0.00 0.66 n.s.
OPT 357 0.01 0.12 n.s. 0.03 1.78 ·
GPT-Neo 164 0.03 0.67 n.s. 0.01 0.90 n.s.
GPT-2 163 0.00 -0.10 n.s. 0.01 0.53 n.s.
GPT: openai-gpt 148 0.00 -0.01 n.s. 0.05 3.18 **

Table 2: Results for RQ1 (A → B versus ¬A → B) on CSK (original and intervention removal) and TRIP
dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that the results are not
statistically significant. The ·, *, **, and *** in the sign column represent p-values < .1, .05, .01, and .001.

the ¬A → B condition compared to the A → B
condition. Significance stars indicate whether the
differences were statistically reliable. Our results
show that only some of the largest models showed
a reliable increase in surprisal estimates for the in-
coherent (¬A→ B) condition.

GPT-3.5: text-davinci-003 shows the largest ef-
fect with high statistical reliability. Further models
that show the expected behaviour include other
versions of GPT-3/GPT-3.5 and the Vicuna model.
GPT-3: davinci-002 has the largest effect amoug
the GPT-3 models. Surprisingly, InstructGPT mod-
els that are trained with human-selected samples
don’t show significant effects. This result implies
additional training on high-quality samples harms
the models’ ability to identify causal conflicts.

4.5 Experiments on TRIP dataset

As the CSK dataset, for which we collected read-
ing times, is relatively small, we also compared the
surprisals of the same set of models on the substan-
tially larger TRIP dataset (cf. Section 2.3), which
also contains causal inconsistencies. Their dataset
has multiple splits. We only use the “ClozeDev”
split. (We do not use the "Order" splits, in which
the order of the sentences is switched, because that
setting is too different to our dataset.)

nil vs. ¬A nil vs. A
Model Name (CLMs only) b t sign b t sign
GPT-3.5: text-davinci-003 0.08 0.77 n.s. -0.52 -5.10 ***
GPT-3.5: text-davinci-002 -0.06 -0.38 n.s. -0.57 -3.65 ***
InstructGPT: davinci-instr-beta -0.17 -1.96 . -0.39 -4.36 ***
GPT-3: davinci-002 -0.15 -1.94 . -0.43 -5.60 ***
GPT-3: davinci -0.15 -1.79 . -0.36 -4.34 ***
Vicuna-13B -0.15 -1.52 n.s. -0.37 -3.73 ***
Vicuna-7B -0.07 -0.58 n.s. -0.36 -2.91 **
GPT-3: curie -0.23 -2.74 ** -0.46 -5.54 ***
Human 0.17 3.23 ** -0.04 -0.7 n.s.

Table 3: Results for RQ2 (nil → B versus ¬A → B
and A → B) on CSK dataset. Note that coefficient
estimates for human data refer to log reading times, and
are hence not directly comparable to the numbers in the
CLMs, which estimate the surprisal effect.

We again estimated surprisal values for each lan-
guage model, in the same way as described in sec-
tion 4.2. The critical segment B for this dataset
corresponds to the breakpoint sentence. The anal-
ysis was analogous to the analysis for the CSK
dataset.

Column “TRIP” in Table 2 presents the results
of our method on the TRIP dataset. Significant
positive effects indicate a significant difference be-
tween the model surprisals in the implausible condi-
tion compared to the plausible one, indicating that
the model recognized the inconsistency correctly.
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Figure 3: Performance of GPT-3: curie in both research
questions. Mean surprisal presented by story condition;
p-values are taken from Tables 2 and 3.

GPT-3.5 performs notably well, again displaying
the largest effect size and p-value < .001.

4.6 Discussion

Given the analysis of the CSK and TRIP datasets,
we conclude that only some of the GPT models
were able to consistently assign higher surprisal to
event B (or the breakpoint sentence in TRIP) in
the case that causally related event A was negated
earlier in the story5. Among the GPT models, we
find that GPT-3.5: text-davinci-003 shows the most
consistent performance. It differs from the others
in that it was trained using reinforcement learn-
ing from human feedback, which has been found
to be correlated with better performance on many
reasoning tasks (Chang and Bergen, 2023).6

5 Do LLMs incorporate script knowledge
(RQ2)?

In this section, we are interested in whether the
models that can capture the causal link between
A and B are also able to integrate script knowl-
edge to a similar extent as humans, i.e. whether
they show a relatively low surprisal even if event A
was not explicitly mentioned in the story context.
We continue with those models showing a signifi-
cant effect of the ¬A→ B condition compared to
A→ B consistently across the CSK and the TRIP
datasets, as these are the only models that seem to
reliably deal with negation and capture the causal
link.

5One possible reason for this can be models’ inability
to handle long dependencies between events A and B. We
investigate it in Appendix C.2

6We did not apply a correction for multiple testing in the
analysis. If we were to more conservatively account for multi-
ple testing, then the results of most models except for GPT-3.5:
text-davinci-003 would not be judged as statistically reliable.

5.1 Analysis and Results

Analysis was performed using linear mixed-effects
models (LMER), similar to Section 4.3. This
time, we compare surprisal estimates of condi-
tions nil → B to ¬A → B to show firstly
whether the model correctly captures the incon-
gruency of ¬A → B. Next, we compare con-
dition nil → B to condition A → B in order
to determine whether the models are consistent
with human readers in terms of NOT showing a
large effect. The formula of each LMER model is:
log(surprisal) ∼ story_condition + (1|story).

Table 3 shows the results for research question 2.
While humans read sequence B significantly faster
in the nil → B condition than in the condition
with the causal conflict (¬A → B), none of the
language models show this effect: most models
do not show a significant difference between these
conditions, and one model (GPT-3: curie) in fact
shows significant effects in the wrong direction (B
has higher surprisal in the nil condition than in the
¬A condition), see also Figure 3. This might indi-
cate that the lexically related material in condition
¬A (e.g., “cake decorations”) leads to a relatively
low surprisal at region B even if it stands in causal
conflict with it.

The significantly lower surprisal in condition
A → B compared to condition nil → B, which
is observed in all of the models, furthermore indi-
cates that models fail to include script knowledge
effectively in their next word predictions – current
models hence differ from humans in their ability
to use script knowledge for predicting (or easily
integrating) script-inferable event participants.

5.2 Can models capture negation?

As pointed out by an anonymous reviewer, mod-
els’ inability to show human-like behavior in RQ2
might be due to models failing to process negation
properly, even though these models show signifi-
cantly lower surprisal in A → B condition com-
pared to ¬A → B condition. Previous literature
indeed shows that transformers have trouble with
(explicit) negation (Nguyen et al., 2023). Consider-
ing that our materials contain various formulations
of event ¬A (including in some cases explicit and
in other cases implicit negation), which could pose
difficulty to LLMs, we conduct a follow-up study
to see whether the best models from the RQ2 exper-
iment could properly identify a participant’s state
in ¬A, i.e., its unavailability. There are actually
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two other possibilities as to why models might fail
in negation processing. First, considering that not
all of our stories contain exact lexical realizations
of target participants between events A and B, the
models can fail to match the negated participant in
¬A (“she realized she didn’t have any cake deco-
rations”) to its realization in event B (“she added
star-shaped sprinkles”). Secondly, since there is
still some context between events A and B (see Ta-
ble 1), the models can ‘forget’ the state of the target
participant by the time they reach event B. Previ-
ous literature shows that participant state tracking
can be a difficult task for LLMs (Kim and Schuster,
2023).

We construct questions about the availability of
the target participant from event B, e.g., “Are cake
decorations available to Anne?” (the correct an-
swer is ‘yes’ in A → B condition and ’no’ in
¬A → B). For each story and model, we assess
this question twice: directly after event A and just
before event B, to capture a potential problem of
‘forgetting’ about a participant’s state. If the par-
ticipant’s lexical realization was different between
events A and B, we also assess the same question
but about the target participant as it was instantiated
in event B: “Are star-shaped sprinkles available
to Anne?”).

We then test the best available models from RQ2,
namely GPT-3.5: gpt-3.5-turbo-instruct and GPT-
3: davinci-0027. Since GPT-3 models were not
specifically trained to follow user instructions, we
utilized the approach of Brown et al. (2020) for
the GPT-3: davinci-002 model: we compared the
probabilities of “Yes” and “No” as input tokens
following the question and chose the answer with
the higher output probability to compare with a
correct answer. In the case of the GPT-3.5: gpt-
3.5-turbo-instruct model, we prompt the model to
generate “Yes” or “No” answers with an instruction
Please answer with “Yes” or “No” and compare
the output with a correct answer (as this model only
allows text output).

The results show that the gpt-3.5-turbo-instruct
model reaches an accuracy of more than 90%
in this task on each question formulation, which
shows that it is well capable of processing nega-

7Because this additional experiment is conducted as a re-
action to reviews, some OpenAI models in RQ1 and RQ2
have become deprecated in the meantime. Here we re-
port the performance of the official replacement gpt-3.5-
turbo-instruct for all GPT-3.5 and InstructGPT models; see
the OpenAI documents: https://platform.openai.
com/docs/deprecations/instructgpt-models.

tion and tracking participant state. On the other
hand, the GPT-3: davinci-002 model succeeds in
tracking participant state but exhibits very low ac-
curacy in capturing negations, which indicates that
older GPT-3 models can not capture negation. We
conclude that these experiments confirm the inter-
pretation that older models fail to represent nega-
tion properly and hence fail on RQ1. In the mean-
time, larger models have no problem understand-
ing negations. They fail on RQ2 due to a failure
in activating script knowledge to a similar extent
as humans wrt. anticipating or easily integrating a
script-predictable participant.

6 Conclusions

In this paper, we inspect the behaviors of both large
language models and humans in zero-shot causal
inference. We conducted a self-paced reading ex-
periment on common sense stories to inspect hu-
man processing difficulty when reading the stories.
Reading time results indicate that humans stumble
across causally incoherent text segments, exhibit-
ing longer reading times in these cases. On the
other hand, they easily integrate script-predictable
information, even if the explicit causal component
(event A) is missing from the story.

When we apply the same study to LLMs, only
the newest LLMs show similar behavior to humans
on encountering casual conflicts. All models fail to
replicate human behaviors when the cause is omit-
ted. Even models trained with programming code
and instructions fail to make use of script knowl-
edge, which indicates that script knowledge may
not be represented sufficiently well in the LLMs
tested in this study.

7 Limitations

One limitation from the NLP perspective of our
study is that the size of the CSK dataset is small
and only in English (only 21 stories). This is a very
common limitation of psycholinguistic studies due
to the costs of human experiments. We here ad-
dressed this shortcoming by also evaluating on the
larger dataset TRIP, but a dataset with more stories
or more readers would further improve the reliabil-
ity of the results. Another limitation is that we don’t
experiment with few-shot examples in prompts,
which could have been used to remind the LLMs to
make use of script knowledge. We chose the zero-
shot setting because humans use script knowledge
for casual inference without any “examples” and
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we believe that the LLMs should have the same
behaviors as humans. However, this means that
our results do not necessarily generalize to other
ways of prompting models. Additionally, we didn’t
experiment with the most recent OpenAI models
like GPT-4 because their official API doesn’t sup-
port generating the probability output for given text
input. Lastly, we didn’t test models with more than
20B parameters on our own server due to limited
hardware resources.

Another limitation of our experiment is that we
cannot comment on the generalizability of our
script materials to more general script-based stories
for scripts that may be less well-known to human
readers. For our materials, we asked participants
after each experimental trial whether they were fa-
miliar with the script (“Please tick this box if you
have never baked a cake or you have very little ex-
perience with it)”. Participants answered in 11.2%
of trials that they were not familiar with the script.
We observed an effect of familiarity on reading
times, showing that subjects read the story faster
when they were not familiar with the topic. We
note that findings also remained stable when we
removed such trials from our analysis.

8 Ethics Statement

We release our CSK dataset under the CC BY-
NC-SA license. We anonymize the dataset to
protect participants’ identities. The human study
was approved by the ethics committee of Deutsche
Gesellschaft für Sprachwissenschaft (DGfS). All
participants were paid fairly according to the local
standard.

The TRIP dataset was released under an un-
known license but the paper described this dataset
was published in an ACL proceeding. We use it for
academic purposes only.

The potential risk of this work is that the find-
ings can be used to design attacks on LLMs to
harm their capability of conducting casual infer-
ence given script knowledge (Alzantot et al., 2018).
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A Analysis of Human Beliefs about events
A and B

In addition to measuring the reading times that
reflect online processing, we also collected the an-
swers to the questions about occurrences of events
A and B that were presented after each story (“How
sure are you that event A/B happened? – see Figure
1, part III”).

The motivation for this was to gain insights into
a) how exactly subjects accommodate a causal con-
flict (the ¬A→ B condition) and b) whether sub-
jects indeed infer event A when it is omitted from
the story (the nil → B condition). The A → B
condition serves as a baseline. We analyse the
collected ratings using ordinal regression models
(Christensen, 2018).

A→ B nil→ B ¬A→ B

Event A 6.41 (1.45) 4.85 (2.89) 3.67 (3.19)
Event B 6.13 (1.84) 4.91 (2.80) 3.79 (3.13)

Table 4: Mean subjects’ belief ratings (and SD in paren-
theses) that the event actually happened in the story,
by event type (A or B) and story condition (A → B,
nil→ B, and ¬A→ B).

In the A → B condition, both events A and B
were given on average high ratings (6.41 and 6.13,
respectively – see Table 4), meaning that subjects
were sure that the events happened when they both
were explicitly mentioned in the story. Further, for
both events, the ratings in the ¬A→ B (event A:
b = −2.03, se = 0.24, z = −8.67, p < .001;
event B: b = −1.6, se = 0.2, z = −8.22, p <
.001) and nil → B (event A: b = −1.46, se =
0.22, z = −6.6, p < .001; event B: b = −0.99,
se = 0.2, z = −4.97, p < .001) were significantly
lower compared to the A→ B condition.

The analysis of subjects’ ratings showed that
the causal conflict (the ¬A → B condition) re-

sulted in lowered beliefs about both events A and
B (3.67 and 3.79, respectively). One potential ex-
planation for this is that subjects might have used
different strategies to resolve the conflict. For ex-
ample, some subjects could assume that event B in
fact did not happen, (however, contrary to the narra-
tive) because the premise is not met. While others
could resolve the conflict by assuming that event A
in fact happened thus making event B also possible
to happen. Both strategies would explain relatively
lower strength of beliefs about both events B and A
to happen. Any explanations, however, necessitate
a follow-up study with more elaborative questions
that potentially require subjects to provide explana-
tions of the given ratings.

Interestingly, we also observe lower ratings for
both events in the nil→ B condition, compared to
the A→ B condition, which is contrary to our ex-
pectations. In the nil→ B condition, event B was
overtly mentioned in the story, which should lead
to comparable strength in subjects’ beliefs with the
A → B condition. Subsequently, event A, even
though not mentioned explicitly, should be inferred
on the basis of the causal link between them and
script knowledge: if she added star-shaped sprin-
kles (event B), then she should have prepared cake
decorations beforehand (event A) – see Figure 1,
part II.

A probable rationale for the discrepancy between
our expectation and the actual ratings is that, when
faced with the questions, subjects may have retro-
spectively re-evaluated the story, relying more on
their memory representations. Compared to condi-
tion A→ B, event B might have been perceptually
less salient in the nil → B condition. Event B
is easy to integrate due to its relation to the corre-
sponding script (which we observe in the reading
time analysis – see Section 3.5, RQ2) and may not
receive a lot of attention from the reader, hence
reducing its memorization and subsequent retrieval
of event B. In the A→ B condition, on the other
hand, attention to event B is strengthened by the
causal link coming from an explicitly mentioned
event A that might facilitate its retrieval from mem-
ory at the question answering stage (see Bower
et al., 1979, for similar results in reading every-
day stories where subjects were asked to evaluate
which events were mentioned in the text).

434

https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139


Model Name # para. b t sign b t sign b t sign
(M) CSK CSK (short dist) TRIP

Bigbird-roberta-large 412 0.18 1.64 n.s. 0.33 1.72 n.s. 0.04 2.90 **
BERT: large-uncased 366 0.30 2.14 * 0.21 1.43 n.s. 0.07 1.67 .
ALBERT-xxlarge-v2 210 0.20 1.78 . 0.47 3.50 ** 0.09 5.25 ***
Perceiver 201 -0.02 -0.51 n.s. 0.04 0.79 n.s. 0.01 1.29 n.s.
Bigbird-roberta-base 167 0.05 0.34 n.s. -0.03 -0.13 n.s. 0.03 2.62 **
BERT: base-uncased 133 0.14 1.71 n.s. 0.21 2.00 . -0.00 -0.00 n.s.
Nystromformer-512 132 0.06 1.50 n.s. 0.04 0.80 n.s. -0.01 -0.46 n.s.
ConvBERT: base 130 0.01 1.66 n.s. -0.00 -0.72 n.s. -0.00 -0.33 n.s.
FNet-base 108 0.01 0.14 n.s. 0.02 0.41 n.s. -0.01 -0.80 n.s.
DistilBERT: base-uncased 90 0.12 2.08 . 0.16 2.43 * -0.00 -0.01 n.s.
Electra-large-generator 83 0.12 1.15 n.s. 0.01 0.13 n.s. -0.01 -0.16 n.s.
SqueezeBERT: uncased 75 0.13 1.63 n.s. 0.21 2.40 * -0.04 -1.09 n.s.
Electra-base-generator 57 0.12 2.69 * 0.08 1.25 n.s. -0.04 -1.15 n.s.
Electra-small-generator 17 0.18 2.66 * 0.09 1.33 n.s. -0.03 -0.82 n.s.
ALBERT-base-v2 15 0.27 2.90 ** 0.16 2.25 * 0.01 0.49 n.s.

Table 5: Results for MLMs on RQ1 (A → B versus ¬A → B) on CSK (original and intervention removal) and
TRIP dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that the results are
not statistically significant. The ., *, **, and *** in the sign column represent p-values < 0.1, 0.05, 0.01, and 0.001.

B Details of LLMs

We use one Nvidia A100 GPU card to run all of
our experiments. Thanks to our zero-shot setting,
the experiment of each model takes less than 10
minutes.

B.1 GPT models

GPT-2. GPT-2 (Radford et al., 2019) is one of the
most influential language models by OpenAI. As a
decoder-only causal PLM, GPT-2 is often used as
a baseline.
GPT-3 models. GPT-3 (Brown et al., 2020) is
the upgraded version of GPT-2 which uses almost
the same model and architecture but with a signif-
icantly larger amount of parameters, which was
ten times more than any previous non-sparse lan-
guage model. GPT-3 and GPT-3.5 were chosen
to be evaluated as they were expected to perform
the best, based on their strong performance on
a range of NLP tasks. We experiment with dif-
ferent versions of GPT-3 and GPT-3.5.8 GPT-3
models (Brown et al., 2020): curie is a GPT-3
with 6B parameters. davinci is a GPT-3 with
175B parameters. InstructGPT models (Ouyang
et al., 2022): davinci-instruct-beta is a
model trained with supervised fine-tuning on hu-
man demonstrations; text-davinci-001 and
text-curie-001 further includes top-rated

8More details are on https://platform.openai.
com/docs/model-index-for-researchers

model samples from quality assessment by human
labellers. GPT 3.5 models (Neelakantan et al.,
2022): text-davinci-002 is an InstructGPT
model based on a model trained with a blend of
code and text; text-davinci-003 was further
trained using reinforcement learning with human
feedback.

Newer models from OpenAI like GPT-
4: gpt-4-turbo, gpt-4 or GPT-3.5:
gpt-3.5-turbo don’t support the "Com-
pletions" API and can’t return probabilities given
input tokens so we don’t include them (OpenAI,
2023).

B.2 Chatbots

As the two current state-of-the-art LLMs, GPT-4
and ChatGPT, are both designed to function as
chatbots, our aim is to harness the potential of the
most capable open-source chatbot available to us.
Chatbots, by design, need to comprehend and re-
spond contextually to inputs, often requiring them
to make connections between disparate pieces of
information in a conversation. Vicuna is an open-
source chatbot created by fine-tuning an LLaMA
base model with approximately 70K user-shared
conversations collected from ShareGPT.com. Pre-
liminary evaluation in their paper (Chiang et al.,
2023) suggests that Vicuna reaches 90% of the
quality of chatbots such as ChatGPT and Google’s
Bard.
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B.3 Efficient Models

There are models that need less memory or less
time. Methods that reduce space could have a better
performance here, because, for most of this experi-
ment, we had limited space. Efficient models are
interesting for long-range dependencies because
they employ innovative techniques or optimizations
to handle dependencies more effectively. Efficient
models might be better or worse at capturing the
relationships between distant parts of the text due
to their unique approaches.

Nyströmformer and language perceiver are ex-
amples of models with efficient self-attention.

C Additional Experiment Results

C.1 Masked Language Models (MLMs)

MLMs are another group of language models that
obtained state-of-the-art performances across many
NLP tasks. We note that the way they work is not
similar to human language processing, and the sur-
prisal estimates obtained from them are not directly
comparable to surprisals obtained from left-to-right
models. However, we decided to include some
MLMs that have been specifically designed to han-
dle long-distance dependencies (via their efficient
self-attention mechanisms) into our evaluation, to
observe how these models perform regarding the
causal inferences given long commonsense stories.
We first picked a set of models from the BERT
family including BERT (Devlin et al., 2019) and
Bigbird-roberta (Michalopoulos et al., 2022) as rep-
resentatives for MLMs because they used to be the
state-of-the-art in many NLP benchmarks concern-
ing commonsense inference (Wang et al., 2018,
2019). We opted to incorporate models that use
efficient self-attention mechanisms like We also
test FNet (Lee-Thorp et al., 2022), Nystromformer
(Xiong et al., 2021) and Perceiver (Jaegle et al.,
2022).

We follow Salazar et al. (2020) to provide mod-
els with the context before and after the target to-
ken in segment B. The pertinent token itself is
masked, forcing the masked language models to
infer it based on the surrounding context. For in-
stance, in the example story in Figure 1, the words
“added star-shaped sprinkles” constitute the target
region describing event B. Each token in this se-
quence was masked one at a time. We then calcu-
lated the probabilities of the masked tokens given
the surrounding story context. MLM models thus
have more information than CLM models due to

the additional information from other tokens in
the event B and the context after event B. We
therefore would like to point out that this method
is not cognitively plausible, and that the surprisal
scores obtained from them hence will also reflect
this “privileged” knowledge. We also note that the
surprisal estimation from MLMs can in principle
be adapted to simulate left-to-right processing bet-
ter, but think that this is only worthwhile to explore
in more detail if MLMs prove to be successful at
modelling the long-distance dependencies relevant
to our texts.

Our results in Table 5 show that only some MLM
models showed a significant difference in surprisal
estimates between the coherent and the incoher-
ent (¬A → B) condition on either CSK or TRIP
datasets. Since their behaviors are not consistent
across these two datasets, we consider all MLMs
fail to distinguish between coherent and incoherent
conditions.

C.2 Effect of dependency length (distance
between events A and B)

Next, we wanted to check whether the failure of
the models that don’t show a significant difference
between conditions is due to problems with encod-
ing the text effectively and “remembering” event A
or ¬A when processing event B, or whether it is re-
lated to failure to detect the mismatch between the
events. We therefore modified the original exper-
iment’s design by reducing the distance between
events A and B in the story by removing all in-
tervening sentences. (Note that we did not ensure
that the removed sentences did not contain crucial
information that would compromise the coherence
of the story.)

If model failure on the previous task is due to
difficulty in handling a long intervening context,
we expect that models would show a significant
difference between surprisal estimates in this short-
distance condition.

As shown in Table 6 column named “CSK (short
dist)”, we find that most models show the same
behavior in the short-distance condition and the
long-distance condition. Interestingly, the results
of both GPT-3.5 and Vicuna are non-significant in
this condition. This could be due to the removal
of intermediary materials, thereby potentially inter-
rupting the causal chains and adversely affecting
the activation of event B. Other models that are
still not showing a significant difference between
surprisal estimates in the different conditions might
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Model Name # para. b t sign b t sign
(M) CSK CSK (short dist)

GPT-3.5: text-davinci-003 175K 0.59 5.87 *** 0.20 1.59 n.s.
GPT-3.5: text-davinci-002 175K 0.51 2.75 * 0.10 0.70 n.s.
InstructGPT: text-davinci-001 175K 0.26 2.03 . -0.02 -0.18 n.s.
InstructGPT: davinci-instruct-beta 175K 0.21 2.76 * 0.12 1.78 .
GPT-3: davinci 175K 0.21 2.76 * 0.19 2.69 *
Vicuna-13B 13016 0.22 2.25 * -0.01 -0.07 n.s.
Vicuna-7B 6738 0.28 2.56 * 0.12 1.08 n.s.
InstructGPT: text-curie-001 6700 0.03 0.31 n.s.
GPT-3: curie 6700 0.23 3.43 ** 0.21 3.75 **
GPT-2: XL 1638 0.05 0.96 n.s. 0.08 1.54 n.s.
GPT-2: L 838 0.04 0.77 n.s. 0.04 0.64 n.s.
XGLM 827 -0.03 -0.79 n.s. 0.02 0.38 n.s.
Bigbird-pegasus-large-arxiv 470 0.06 1.20 n.s. 0.00 -0.04 n.s.
Pegasus-large 467 0.02 0.85 n.s. 0.00 0.00 n.s.
XLNet-large-cased 393 -0.03 -1.99 . -0.04 -2.42 *
OPT 357 0.01 0.12 n.s. 0.02 0.32 n.s.
GPT-Neo 164 0.03 0.67 n.s. 0.05 1.11 n.s.
GPT-2 163 0.00 -0.10 n.s. 0.03 0.74 n.s.
GPT: openai-gpt 148 0.00 -0.01 n.s. 0.06 1.35 n.s.

Table 6: Results of CLMs with shorten context on RQ1 (A→ B versus ¬A→ B) on CSK (original and intervention
removal) and TRIP dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that
the results are not statistically significant. The ., *, **, and *** in the sign column represent p-values < 0.1, 0.05,
0.01, and 0.001.

be failing due to not recognizing the semantic in-
consistency between ¬A and B.

Each of our narratives represents a sequence of
events that the main character is involved in step
by step in order to achieve their goal (e.g., to bake
a cake or to take a flight). For example, for taking
a flight story, the events are:

Reach the airport, get the boarding pass,
[EVENT A] check in the luggage, go through the
security, wait at the gate, board the plane, find
one’s seat, fasten the seatbelt, turn off the elec-
tronic devices, wait on the plane, land, leave the
plane, [EVENT B] pick the bags at the baggage
claim, leave the airport

In turn, removing the context between A and B
typically results in very low story coherence, see
the following example:

After several months away from home, Julia was
finally able to visit her family for a few days. How-
ever she had a long way to go, so she decided to
travel by air. First, she went to the main airport

on a public bus. Once at the airport, she got her
boarding pass and [EVENT A] checked in her lug-
gage. < ... > Afterwards, she [EVENT B] picked
up her bags at the baggage claim and left the air-
port. Finally, she arrived home and met her family.
It had been so long!

This expectedly leads to higher surprisal in all
conditions. However, we reasoned that conditions
A→ B and ¬A→ B are affected by this change
to a similar extent, and hence a difference in sur-
prisal (which would reflect the stronger logical
clash between ¬A and B) would be reflected in
lower surprisal values in this condition compared
to A → B. The strong drop in plausibility might
however be a reason for the difference between
A→ B and ¬A→ B lacking significance.
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Abstract

We present EDM3, a novel approach for Event
Detection (ED) based on decomposing and re-
formulating ED, and fine-tuning over its atomic
subtasks. EDM3 enhances knowledge transfer
while mitigating the error propagation inherent
in pipelined approaches. EDM3 infers dataset-
specific knowledge required for the complex
primary task from its atomic tasks, making it
adaptable to any set of event types. We evalu-
ate EDM3 on multiple ED datasets, achieving
state-of-the-art results on RAMS (71.3% vs.
65.1% F1), and competitive performance on
WikiEvents, MAVEN (∆ = 0.2%), and MLEE
(∆ = 1.8%). We present an ablation study over
rare event types (<15 instances in training data)
in MAVEN, where EDM3 achieves ∼ 90%
F1. To the best of the authors’ knowledge, we
are the first to analyze ED performance over
non-standard event configurations (i.e., multi-
word and multi-class triggers). Experimental
results show that EDM3 achieves ∼ 90% ex-
act match accuracy on multi-word triggers and
∼ 61% prediction accuracy on multi-class trig-
gers 1. This work establishes the effectiveness
of EDM3 in enhancing performance on a com-
plex information extraction task.

1 Introduction

Event Detection (ED) involves characterizing
events occurring in unstructured text, by recog-
nizing their event triggers and classifying their
event types. ED is used extensively for downstream
tasks such as information retrieval (Kanhabua and
Anand, 2016), event prediction (Souza Costa et al.,
2020), and argument detection (Cheng and Erk,
2018). Existing methods for ED (Liu et al., 2018;
Nguyen and Grishman, 2018) cannot easily lever-
age pre-trained semantic knowledge (Lai et al.,

∗Now at Microsoft Corporation
1Data and source code are available at https://github.

com/ujjwalaananth/EDM3_EventDetection
†Currently in Amazon (The work was done prior to joining
Amazon)

Figure 1: Comparing label formulation for ED output
in traditional discriminative approaches vs. EDM3. In
EDM3, EI (Event Identification) and EC (Event Classi-
fication) labels are analogous strings with event triggers
and types respectively, while ED output is a string with
all triggers and their types.

2020; Paolini et al., 2021), failing to identify com-
plex events or function in low-resource scenarios
(Chen et al., 2015; Nguyen et al., 2016). Addi-
tionally, they lack the ability to generalize across
domains such as biomedicine or cybersecurity. (He
et al., 2022; Satyapanich et al., 2020). As a result,
they may handicap comprehensive event extraction
(Liu et al., 2020; Huang et al., 2020).2

To overcome these challenges, we propose
EDM3 (Event Detection by Multi-task Text Gener-
ation over three subtasks), a novel approach based
on decomposing an intricate primary task (ED)
into its constituent atomic subtasks. We hypoth-
esize that these subtasks (EI, EC) are less reliant
on domain-specific knowledge than on semantic
similarities (Pustejovsky, 1991), and hence simpler
to learn. EDM3 involves training on these subtasks
simultaneously in a non-pipelined, multi-task fash-
ion. This diverges from the traditional discrimina-
tive token classification paradigm (Fig. 1). Unlike
concurrent works such as InstructUIE (Wang et al.,
2023) and UIE (Lu et al., 2022), which propose
a unified model over multiple disparate language
tasks, EDM3 focuses on a single complex task.
This approach thus provides a framework adapt-

2Extended related work is discussed in Appendix §A
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Approaches Datasets Tasks Covered Domain
Generalization

Comparative
PerformanceIdentification Classification Detection

Liu et al. (2022) ACE, MAVEN ✗ ✗ ✓ ✗ SOTA on MAVEN

Veyseh et al. (2021) ACE, RAMS, CysecED ✓ ✗ ✓ ✓
SOTA on ACE and CysecED

Competitive on RAMS

He et al. (2022) MLEE ✗ ✗ ✓ ✗ SOTA on MLEE

EDM3 (Ours)
MAVEN, MLEE

WikiEvents, RAMS
✓ ✓ ✓ ✓

SOTA on RAMS
Competitive on MLEE & MAVEN

Benchmark on WikiEvents

Table 1: Comparison of EDM3 with other SOTA approaches highlighting the advantages of our approach. Columns
‘Identification’, ‘Classification’, and ‘Detection’ denote which tasks can be performed independently and end-to-end
with the same model. We provide additional information to contextualize the performance metrics.

able to any independent complex task that can be
decomposed into subtasks.

To evaluate EDM3, we conduct extensive ex-
periments on RAMS, WikiEvents, MAVEN, and
MLEE datasets. EDM3 achieves an F1 score of
71.3% on RAMS, surpassing the SOTA score by
6.2% points. EDM3 also achieves a competitive
macro F1 score of 60.1% on MAVEN, compared to
60.3% (SOTA). We benchmark ED performance on
WikiEvents with 60.7% F1 score. Finally, EDM3
achieves a competitive result of 78.1% F1 against
79.9% (SOTA) on the biomedical MLEE dataset.
While other approaches use domain-specific em-
beddings and hand-crafted features, EDM3 uses a
vanilla T5 model to obtain these results, supporting
our hypothesis. Table 1 highlights the advantages
of EDM3 over previous SOTA approaches.

We conduct investigations along multiple lines
of inquiry to explore the efficacy of EDM3. We ob-
serve that our multi-tasking approach improves ED
performance by 3-6%. We explore the efficacy of
EDM3 in low-resource scenarios (evaluating rare
event types). Experimental results reveal scores of
∼ 90% F1 achieved over rare event types. We also
evaluate its performance over multi-word and multi-
class triggers, which while lacking in benchmark
datasets, are common in real-world data. EDM3
achieves ∼ 90% exact match accuracy on multi-
word triggers and ∼ 61% prediction accuracy on
multi-class triggers. Finally, we discuss the impor-
tance of multi-sentence context. In summary, our
contributions are as follows:
1. We propose EDM3, a novel training paradigm

that generatively reformulates ED and its sub-
tasks, and trains a single multi-task model that
can perform them concurrently.

2. We obtain SOTA or competitive performances
over various datasets across multiple domains.

3. Our analysis shows that EDM3 performs well
for low-resource scenarios as well as non-
standard event configurations.

2 Proposed Method

Given an input instance containing diversely-typed
event triggers, we aim to capture all triggers present.
We reformulate ED and its subtasks as sequence
generation tasks. We use instructional prompts to
train a model on all 3 generative tasks jointly to
create a single multi-task model.

Task Decomposition ED is a multi-level task re-
quiring both event identification and classification,
which sequence labeling approaches conduct in a
single step. We manually decompose ED into inde-
pendent tasks to be carried out in parallel with the
primary task, to augment the training process.

Generative reformulation The task labels are
converted to delimited strings following a consis-
tent pattern. The number of unique event types and
triggers for an instance may differ, making all tasks
notably distinct from one another, as opposed to
ED being a linear combination of EI and EC.

Event Identification/Classification We repre-
sent the task output as a singly-delimited sequence
of labels. An instance with x unique triggers and y
unique event types would have the following label
representations for the EI and EC tasks respectively:

T1 | T2 | T3 ... Tx

E1 | E2 | E3 ... Ey

Where Ti is the ith event trigger occurring in an
input instance and Ei is the ith type of event occur-
ring in the instance.

Event Detection Each label for ED contains 2
components: event trigger and type. The task out-
put can be represented as a doubly-delimited se-
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quence of events. We use -> as a delimiter between
trigger and type. For an instance with x events:

T1->E1 | T2->E2 | T3->E3 ... Tx->Ex

Where Tx is the xth event trigger and is of type
Ex. For an example of an instance showing the
reformulated outputs for all tasks, see Fig. 1.

Multi-Task Learning We posit that when trained
over ED alongside its atomic tasks, a multi-task
model gains significant transferable knowledge. In
the case of rarer event types, modeling Event Clas-
sification (EC) separately improves the model’s
recognition of instances containing these events -
leading to improved identification and detection.
We use task-specific instructional prompts (natural
language descriptions of how to perform each task
with examples) to improve multi-tasking. To craft
these instructional prompts, we follow the approach
detailed by Wang et al. (2022b). The task-specific
prompts and examples can be found in §B. For an
example, see Fig. 2 in §C.

3 Results and Analysis

3.1 Results

We use EDM3 to train T5-base (220M). For exper-
imental details, see §C. To compare our method
fairly with established baselines, we evaluate our
predictions by converting them to token-level la-
bels. We report the average performance over 5
experimental runs.

RAMS We achieve 71.33% F1 score, which sur-
passes GPTEDOT by 6.2% (Table 2). Furthermore,
the difference between precision and recall is much
lower, indicating greater robustness.

WikiEvents We establish the benchmark perfor-
mance of 60.7% F1 score (Table 3) on this dataset.
We use single-task ED performance as a baseline
to contextualize the benefits of EDM3. Over sen-
tences with at least one event, we observe that the
performance increases from 58.71% to 64.31% (Ta-
ble 6) We show an example of improved ED using
EDM3 in §C.1.

MAVEN We obtain a maximum F1 score of
62.66% (Table 4) which is influenced by severe
class imbalance in the dataset. The competitive
macro F1 score (60.1% vs. 60.3%) indicates better
performance on rare classes. EDM3 also shows
significant advantages in performing ED on multi-
word triggers (Table 7 in §C).

Model P R F1

DMBERT (Wang et al., 2019) 62.6 44.0 51.7
GatedGCN (Lai et al., 2020) 66.5 59.0 62.5
GPTEDOT (Veyseh et al., 2021) 55.5 78.6 65.1

EDM3 71.6 71.0 71.3

Table 2: Results on RAMS. All previous models are
sentence-level BERT-based models.

Model P R F1 W1

Single-task 60.0 49.6 54.3 52.1
EDM3 60.8 60.6 60.7 59.4

Table 3: Results on WikiEvents. W1: Weighted F1 %

Model P R F1 F1*

SaliencyED (Liu et al., 2022) 64.9 69.4 67.1 60.3

EDM3 60.1 65.5 62.7 60.1

Table 4: Results on MAVEN. All results are on the
publicly-available dev split. F1*: Macro F1 %

Model P R F1

SVM2 (Zhou and Zhong, 2015) * 72.2 82.3 76.9
Two-stage (He et al., 2018) * 79.2 80.3 79.8

EANNP (Nie et al., 2015) 71.0 84.6 77.2
LSTM + CRF (Chen, 2019) 81.6 74.3 77.8
LSTM + CRF (Chen, 2019) ** 81.8 77.7 79.7
BiLSTM + Att (He et al., 2022) 82.0 78.0 79.9

EDM3 75.9 80.4 78.1

Table 5: Results on MLEE dataset. * models using
handcrafted features. All neural network-based models
here use domain-specific embeddings. ** results when
4 biomedical datasets are used for transfer learning.

MLEE We compare with 1) labour-intensive ap-
proaches requiring creation of handcrafted fea-
tures and 2) neural network-based models that
use domain-specific embeddings obtained by pars-
ing Pubmed or Medline abstracts. Our domain-
agnostic approach achieves 78.1% F1 score, com-
petitive with more sophisticated, domain-specific
approaches (See Table 5). Our model also has
higher recall (80.4%) than most approaches.

3.2 Analysis
In this work, we conduct various experiments to
assess our approach in different scenarios.

Multi-tasking over EI and EC improves perfor-
mance over ED Without instructional prompts,
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Dataset Single-task EDM3 (tags) EDM3 (instr)
All Pos All Pos All Pos

MLEE 71.07 72.20 74.57 75.82 77.09 78.45
RAMS 63.21 63.21 67.66 67.66 69.53 69.53
MAVEN 58.10 59.18 62.29 63.56 62.40 63.66
WikiEvents 54.31 58.47 56.77 61.35 58.71 64.31

Table 6: Results on all datasets. Single-task: results us-
ing ED for training. EDM3 (tags): results from training
with EI, EC, and ED. EDM3 (instr): using instructional
prompts. All: performance on all input instances. Pos:
performance on only event-containing instances.

EDM3 improves performance by at least 3% over
single-tasking for all datasets. This can be at-
tributed to the success of the subtask-level multi-
tasking paradigm, with the improved performance
and fewer false negatives due to training the model
over EI and EC. Table 6 documents the metrics for
single-task and multi-task models over all datasets.

EDM3 is well-suited to low-resource scenarios
Despite its scope of 168 event types, Zhang et al.
(2022) show that 18% of all event types in MAVEN
have less than 100 annotated instances (Fig. 7 in
§D). Breathing and Extradition, have less than 15
annotated event instances in more than 8K training
sentences. Despite this, we see our model accu-
rately identify all triggers of these event types in
the testing split (see Fig. 3 in §C), achieving 100%
testing precision on both, and 100% and 80% micro
F1 score respectively.

Successful identification of multi-word triggers
Multi-word event triggers, common in real-word
data, comprise 3.42% and 3.38% of all triggers in
MAVEN and RAMS respectively (see Table 10 in
§D) Evaluating multi-word triggers as token classi-
fication yields misleading results as they represent
the event type only when the entire phrase is anno-
tated. For example, for the trigger "took place", the
individual words are distinct from the event type
denoted by the phrase. To evaluate performance
on multi-word trigger phrases, we calculate exact
match accuracy over them. We achieve nearly 91%
and 89% on MAVEN and RAMS, respectively (Ta-
ble 7 in §C), with incomplete predictions being
similar to the ground truth ("assault vs the assault",
"in touch" vs "been in touch").

Successful classification of multi-class triggers
In a real-world ED scenario, event triggers may
trigger multiple event classes in one context. 4%
of all event triggers in RAMS can be classified as

multi-class. (Table 10 in §C). See Fig. 4, where
purchasing denotes both transferownership (argu-
ments: previous and current owner) and transfer-
money (arguments: amount). To accurately extract
this event, it is necessary to capture all the senses
of the trigger purchasing. Existing token classifi-
cation methods perform event detection as multi-
class, not multi-label classification. Generating
sequences, as well as training over EC, enables our
model to identify multi-class triggers. We achieve
average prediction accuracy (% of types captured
for a multi-class trigger) of 61% on RAMS, indi-
cating the model can capture most of the senses in
which each multi-class trigger functions.

Case Study: Multi-sentence context is vital to
ED Consider these examples from WikiEvents:
Example 1: The whole building has collapsed.

Example 2: He chose destruction.

In Example 1, EDM3 extracts the token in bold as a
relevant event trigger of the type artifact existence.
However, this example is taken from a document
primarily focused on conflict events, with the trig-
gers bombing and explosion. Therefore, collapsed
becomes an auxiliary event that should not be pre-
dicted. Conversely, in Example 2, our model finds
no salient event; however, the following sentences
in the same document demonstrate that destruc-
tion is a salient event of type artifact existence.
It is difficult for a sentence-level model to judge
the saliency of an event without the context of its
document or surrounding events, making it vital to
include multi-sentence or document-level context.

4 Conclusion

In this paper, we propose EDM3, a domain-
agnostic generative approach to the Event Detec-
tion task. EDM3 leverages a multi-tasking strat-
egy that incorporates instructional prompts to im-
prove model performance on imbalanced data and
complex event instances. Our analysis shows an
improvement in F1 score over single-task perfor-
mance, supporting our main hypothesis viz. the
effectiveness of breaking down complex generation
tasks into subtasks that can support model learn-
ing on the primary task. Furthermore, our results
highlight the potential for generative models in tra-
ditionally discriminative tasks like ED, paving the
way for future advancements in the field.
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Limitations

Our work demonstrates a prompted and generative
approach on a single task, Event Detection, which
can be easily adapted to other information retrieval
tasks. Due to access issues, we were unable to
use the ACE05 dataset. In lieu of this, we uti-
lize 3 publicly-available general-domain datasets
(RAMS, MAVEN, WikiEvent). Furthermore, there
is a possibility of improving prompt quality further
by analyzing the number and scope of examples
required to achieve the best prompted performance.
Finally, integrating domain knowledge could im-
prove event-type classification, and we encourage
future researchers to explore this area. Despite
these limitations, our work provides a strong foun-
dation for generative, instructional prompt-based
frameworks for end-to-end Event Extraction and
opens up exciting avenues for future research.
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Appendix

A Related Work

Transformer-based models (Vaswani et al., 2017)
have been at the forefront of many language tasks
due to the wealth of pretrained knowledge. Mod-
els using BERT (Yang et al., 2019; Wang et al.,
2019) treat ED as word classification, in graph-
based architectures (Wadden et al., 2019; Lin et al.,
2020). Models that improve ED performance for
low resource settings include Lu et al. (2019); Deng
et al. (2021). Other works (Tong et al., 2020; Vey-
seh et al., 2021) generate ED and EI samples re-
spectively to augment training data. Many mod-
els frame ED as a question-answering task (Du
and Cardie, 2020; Boros et al., 2021; Wang et al.,
2021; Liu et al., 2020). APEX (Wang et al., 2022a)
augments input with type-specific prompts. With
the advent of more powerful sequence-to-sequence
models such as T5, there has been an increased
interest in formulating event detection and event
extraction as sequence generation tasks (Paolini
et al., 2021; Lu et al., 2021; Si et al., 2022)

Multi-Task Learning is a training paradigm in
which a single machine learning model is trained on
multiple separate tasks (Caruana, 1997; Crawshaw,
2020). Across domains, models trained on multiple
disparate tasks are better performing due to shared
learning. Multi-Task learning has been leveraged to
great effect in Xie et al. (2022); Lourie et al. (2021),
and in specific domains as well (Chen, 2019; Par-
mar et al., 2022). This paradigm is also the basis
of the generative T5 model. Paolini et al. (2021)
carried out multi-task learning experiments over a
number of information retrieval tasks. Specifically
for Event Detection, multi-tasking over ED sub-
tasks is implemented in GPTEDOT (Veyseh et al.,
2021), where EI is used to augment ED perfor-
mance. This is because the simplicity of EI makes
it easier to evaluate the quality of generated data.
However, there is a risk of introducing noise or
generating low-quality samples due to the charac-
teristics of the source data.

Prompt engineering Prompt-based models have
been used for Event Detection and Event Extrac-
tion as well. Prompt Engineering has been lever-
aged to great effect to generate data (Gupta et al.,
2023; Anantheswaran et al., 2024) to improve ex-
isting data quality or dearth. More recently, Si
et al. (2022) used predicted labels from earlier in

the pipeline as prompts for later stages of trigger
identification and argument extraction, while Wang
et al. (2022a), following the example of other works
that use prototype event triggers (Wang and Cohen,
2009; Bronstein et al., 2015; Lai and Nguyen, 2019;
Lyu et al., 2021; Liu et al., 2020; Zhang et al., 2021)
from the dataset, used triggers as part of tailored
prompts for each event type in the schema. In
proposing EDM3, we are the first to explore the
efficacy of instructional prompts for ED.

B Natural Language Prompts

For each task, we provide a natural language in-
struction followed by a general domain example
in conjunction with a biomedical domain example
as part of the instructional prompt. We choose in-
stances that are complex, i.e. have multiple labels,
or multi-word or multi-class labels.

B.1 Event Identification
Instruction You are given a text as input. The
text gives information about ongoing events. An
event trigger is a word or phrase that most clearly
expresses the event occurrence. Your task is to
identify the words or phrases that are event triggers
for events in the text, where event type is not given.
If there are no events, print NONE.

General example INPUT: The information min-
ister alleged that oil smuggled into Turkey was
bought by the Turkish president’s son , who owns
an oil company . Mr al - Zoubi said in an in-
terview , All of the oil was delivered to a com-
pany that belongs to the son of Recep (Tayyip)
Erdogan . This is why Turkey became anxious
when Russia began delivering airstrikes against
the IS infrastructure and destroyed more than
500 trucks with oil already.</s>OUTPUT: smug-
gled</s>EXPLANATION: The event describes
goods being moved. The exact trigger from the
text that describes this event is "smuggled".

Biomedical example INPUT: Left ven-
tricular weight, body weight, and their
ratio were not significantly altered by alin-
idine treatment.</s>OUTPUT: treatment |
altered</s>EXPLANATION: the words "treat-
ment" and "altered" are salient words describing
important events.

B.2 Event Classification
Instruction This input text gives information
about specific types of ongoing events. The output
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should be the types of events occurring in the text.
If there are no events, print NONE.

General example INPUT: The leaflets carried
several messages to the citizens attempting to re-
assure them that the advancing army " would not
target civilians , " but warned them to avoid the
known locations of Isis militants . The military
operation is the most complex carried out in Iraq
since US forces withdrew from the country in 2011
. Last week , the UN said it was bracing itself for
the world’s biggest and most complex humanitar-
ian effort following the battle , which it expects
will displace up to one million people and see
civilians used as human shields.</s>OUTPUT: con-
flict.</s>EXPLANATION: The event triggered by
"battle" refers to an event of the type "conflict"
which refers to a serious disagreement between
two or more entities.

Biomedical example INPUT: Left ventricu-
lar weight, body weight, and their ratio were
not significantly altered by alinidine treat-
ment.</s>OUTPUT: planned_process | regula-
tion</s>EXPLANATION: The input contains mul-
tiple events of planned_process and regulation type.

B.3 Event Detection

Instruction The text given as input discusses on-
going events. An event trigger is a word or phrase
that most clearly expresses the event occurrence.
Generate output in the format [event trigger->event
type] for all events in the text. If there are no events,
print NONE.

General example INPUT: The Organization
for Security and Cooperation In Europe ’s (
OSCE ) Office for Democratic Institutions and
Human Rights and the OSCE High Commis-
sioner on National Minorities issued a report
in September saying that since Russia ’s land
grab , fundamental freedoms had " deteriorated
radically " for many in Crimea , especially for pro -
Ukrainian activists , journalists , and the Crimean
Tatar community.</s>OUTPUT: land grab-
>transaction.exchangebuysell</s>EXPLANATION:
In this text, the event being discussed is the "land
grab", which functions as the event trigger. The
type of event it describes is a transaction, in which
ownership of entities is transferred.

Biomedical example INPUT: Left ventricu-
lar weight, body weight, and their ratio were

Figure 2: An example of an input instance for reformu-
lated generative ED. The input comprises a task defini-
tion followed by diverse domain examples before the
input sentence containing the events to be detected.

not significantly altered by alinidine treat-
ment.</s>OUTPUT: treatment->planned_process
| altered->regulation</s>EXPLANATION: The
word "treatment" in the input denotes a planned
process, while the "altered" indicates the sentence
talks about regulation.

C Extended Analysis

Hyperparameters GPU: 2x NVIDIA GTX1080
GPUs. We train for 50 epochs with a batch size
of 1. We use beam search decoding (Tillmann
and Ney, 2003) during inference to generate output
sequences. For beam search decoding, we use 50
beams.
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Figure 3: Result on event type extradition , which has
only 11 annotated instances.

Figure 4: EDM3 improving prediction on multi-class
triggers.

C.1 EDM3 improves single-task ED
performance on WikiEvents

Input:
Police in Calais have dispersed a rowdy anti-
migrant protest with tear gas after clashes with
protesters and detained several far-right demonstra-
tors.

Single-task:
detained->movement.transportperson

EDM3:
detained->movement.transportperson | clashes
->conflict.attack

Gold:
detained->movement.transportperson | clashes
->conflict.attack

C.2 Negative instances hamper ED
performance

From the dataset statistics in Table 9, we see that
the WikiEvents dataset has close to 54% instances
that have no annotated events, i.e. negative in-
stances. We hypothesize that this detracts from
the model’s ability to discern relevant events and
their types, and instead emphasizes the binary clas-
sification task of identifying event presence. We
analyze the effect of negative examples further ex-
perimentally (Table 6). The consistent trend of
higher Pos scores indicates that, given a sentence,

Dataset
#mwt

EM acc %

Train Test

MAVEN 2442 633 90.84
RAMS 228 20 88.89

Table 7: Results on multi-word triggers. #mwt: number
of multi-word triggers in training and testing data. EM
acc %: exact match accuracy, i.e. percentage of multi-
word triggers in test data predicted by our model.

our approach is better at extracting its events accu-
rately as opposed to identifying whether it contains
an event.

The difference between both metrics is stark in
the case of WikiEvents. We observe increased per-
formance (60.71% to 65.67% after beam search
decoding) over WikiEvents, which is significantly
higher than what we observe on other datasets.
From further analysis, we find that training on only
positive examples improves the ED performance
on event sentences by nearly 5%. Furthermore,
despite the fact that MAVEN has 168 event types
and WikiEvents has only 49 (Table 8), the ED per-
formance on MAVEN (62.4%) is higher than on
WikiEvents (58.7%). This indicates that rather than
the complexity of the ED task, the distribution of
positive and negative instances may hamper the
model’s ability to perform the task.

We attribute this to the much higher share of
negative instances in this dataset. The performance
drops over non-event sentences as the model may
predict event occurrence based on salient events in
the sentence, that are important in the context of
the sentence alone but are divorced from the sub-
ject of the document, and therefore annotated as
non-events. We explore this further in our discus-
sion of the need for multi-sentence context, which
may be a way to counter the negative impact of a
high proportion of non-event sentences on our ED
model.

C.3 Annotation issues

We present an approach that accurately extracts text
terms for event annotations while preserving case
sensitivity, a crucial factor in distinguishing differ-
ent event triggers. Improper extraction or human
error can lead to errors in existing annotations. Our
approach can identify such errors by highlighting
discrepancies in the case of event triggers. Addi-
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Figure 5: Example of an event with multi-word trigger (2 words)

Figure 6: Example of an event with multi-word trigger (4 words)

tionally, we observe an ambiguity in some anno-
tation schema, particularly in MAVEN, where the
extensive coverage of event types results in overlap-
ping event type definitions. For instance, the event
types motion, self_motion, and motion_direction
exhibit minor differences, leading to inconsistent
annotations. This ambiguity introduces noise into
the classification and ED subtasks. Our proposed
model resolves this issue and accurately extracts
all events in the corpus. We provide examples
that demonstrate the improved ED performance
achieved through multi-tasking.

D Data

The datasets we choose to demonstrate our ap-
proach on span a range of characteristics, from
sentence-level to multi-sentence level, with vary-
ing proportions of non-event instances. We also in-
clude a biomedical domain dataset to illustrate the
adaptability of our approach. In Table 8, we note
the document and event instance statistics across
datasets. Table 9 delineates the dataset statistics
post-data processing. We note the average and max-
imum number of events and distinct event types
that occur per data instance for each dataset. We
evaluate on two-level event type labels for RAMS
and WikiEvents.

MAVEN Wang et al. (2020) proposed this dataset
with the idea of combating data scarcity and low
coverage problem in prevailing general domain
event detection datasets. The high event coverage
provided by MAVEN results in more events per
sentence on average, including multi-word triggers,
as compared to other general domain ED datasets
(more details in App. C.3). The dataset, reflective

of real-world data, has a long tail distribution (see
Fig. 7).

We follow the example of SaliencyED (Liu et al.,
2022) and evaluate our model performance on the
development split of the original MAVEN dataset.

WikiEvents Existing work on this dataset pro-
posed by Li et al. (2021) focuses exclusively on
document-level argument extraction and event ex-
traction.

Sentences without any event occurrences make
up nearly half of the entire dataset (see Table 9). In
the absence of existing baselines, we establish the
benchmark performances on sentence-level ED on
this dataset for future researchers.

RAMS This dataset, created by Ebner et al.
(2020), is primarily geared towards the task of
multi-sentence argument linking. The annotated
argument roles are in a 5-sentence window around
the related event trigger.

In its native form, the dataset is geared towards
multi-sentence argument role linking. Using the
original configuration allows us to test the efficacy
of our model on the multi-sentence level. Further-
more, on the sentence level, the dataset is imbal-
anced: 77% of the sentences contain no events.
Training a model on this incentivizes event occur-
rence detection over ED.

MLEE This biomedical ED corpus by Pyysalo
et al. (2012) is taken from PubMed abstracts cen-
tered around tissue-level and organ-level processes.

The majority of the datasets used in this work
are Event Extraction (EE) datasets, maintaining
the scope of possible extensions of the proposed
reformulation and multi-tasking approach to EE.
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Figure 7: Distribution of event types in MAVEN. The distribution is a long-tail distribution, indicating strong class
imbalance.

Dataset Docs #triggers #typesTrain Dev Test
MLEE 131 44 87 8014 30
RAMS 3194 399 400 9124 38
MAVEN 2913 710 857 118732 168
WikiEvents 206 20 20 3951 49

Table 8: Dataset statistics, including number of docu-
ments per data split, as well as number of event triggers
and unique event types across the dataset.

Dataset Neg (%) Events per row Types per row #zsAvg Max Avg Max
MLEE 18.22 2.867 16 2.369 9 3
RAMS 0 1.066 6 1.061 4 0
MAVEN 8.64 2.433 15 2.314 15 0
WikiEvents 54.11 1.671 7 1.429 6 1

Table 9: Dataset statistics (post-processing) for training.
Neg%: Proportion of input instances with no event oc-
currences. Events per row: Number of event triggers
per input instance. Types per row: Number of unique
event types per input instance. #zs: Number of event
types in test split not seen during training.

Dataset Multi-word triggers Multi-class triggers

%instances %rows %instances %rows

RAMS 3.38 2.89 3.97 3.72
MAVEN 3.42 7.39 0.06 0.13

Table 10: Statistics on multi-word and multi-class trig-
gers in all datasets. %instances: the % of total triggers
present. %rows: the % of all input instances that contain
at least 1 multi-word or multi-class trigger.

Category Event type Example triggers

Anatomical

cell_proliferation proliferation, proliferate, growing
development formation, progression, morphogenesis
blood_vessel_development angiogenic, angiogenesis
death death, apoptosis, survival
breakdown dysfunction, disrupting, detachment
remodeling remodeling, reconstituted
growth proliferation, growth, regrowth

Molecular

synthesis production, formation, synthesized
gene_expression expression, expressed, formation
transcription expression, transcription, mRNA
catabolism disruption, degradation, depleted
phosphorylation phosphorylation
dephosphorylation dephosphorylation

General

localization migration, metastasis, infiltrating
binding interactions, bind, aggregation
regulation altered, targeting, contribute
positive_regulation up-regulation, enhancement, triggered
negative_regulation inhibition, decrease, arrests

Planned planned_process treatment, therapy, administration

Table 11: Event types in MLEE, along with example
triggers.

Event type Frequency Example triggers
process_start 2468 began, debut, took place
causation 2465 resulted in, caused, prompted
attack 2255 bombing, attacked, struck
hostile_encounter 1987 fought, conflict, battle
motion 1944 fell, pushed, moved
catastrophe 1785 explosion, hurricane, flooded
competition 1534 event, championships, match
killing 1380 killed, murder, massacre
process_end 1323 closing, complete, ended
statement 1269 asserted, proclaimed, said

Table 12: Top 10 event types in MAVEN, along with
example triggers.
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Event type Frequency Example triggers
conflict.attack 721 massacre, battle, bombing
movement.transportperson 491 smuggling, walked, incarcerate
transaction.transfermoney 482 reimbursed, paid, purchasing
life.die 442 die, murder, assassinating
life.injure 422 surgery, injured, brutalized
movement.transportartifact 367 imported, trafficking, smuggling
transaction.transferownership 327 auction, donated, acquire
contact.requestadvise 250 advocating, recommending, urged
contact.discussion 249 discuss, meet, negotiated
transaction.transaction 211 funded, donated, seized

Table 13: Top 10 event types in RAMS, along with
example triggers.

Event type Frequency Example triggers
conflict.attack 1188 explosion, shot, attack
contact.contact 530 met, said, been in touch
life.die 501 killed, died, shot
life.injure 273 injuring, wounded, maimed
movement.transportation 212 transferred, brought, arrived
justice.arrestjaildetain 176 arrested, capture, caught
artifactexistence.damagedestroydisabledismantle 103 damaged, destruction, removed
justice.investigatecrime 102 analysis, discovered, investigation
justice.chargeindict 96 charged, accused, alleged
artifactexistence.manufactureassemble 82 construct, make, build

Table 14: Top 10 event types in WikiEvents, along with
example triggers.
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