
ACL 2022

The 7th Workshop on Representation Learning for NLP
(RepL4NLP 2022)

Proceedings of the Workshop

May 26, 2022

The ACL organizers gratefully acknowledge the support from the following
sponsors.

Gold

Silver

ii

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-48-3

iii

Introduction

The 7th Workshop on Representation Learning for NLP (RepL4NLP 2022) will be hosted by ACL 2022
and held on 26 May 2022. The workshop is being organised by Spandana Gella, He He, Burcu Can,
Maximilian Mozes, Eleonora Giunchiglia, Sewon Min, Samuel Cahyawijaya, Xiang Lorraine Li and
Bodhisattwa Prasad Majumder; and advised by Isabelle Augenstein, Anna Rogers, Kyunghyun Cho,
Edward Grefenstette, Chris Dyer and Laura Rimell. The workshop is organised by the ACL Special
Interest Group on Representation Learning (SIGREP).

The 7th Workshop on Representation Learning for NLP aims to continue the success of the Repl4NLP
workshop series, with the 1st Workshop on Representation Learning for NLP having received about 50
submissions and over 250 attendees – the second most attended collocated event at ACL’16 after WMT.
The workshop was introduced as a synthesis of several years of independent *CL workshops focusing on
vector space models of meaning, compositionality, and the application of deep neural networks and spec-
tral methods to NLP. It provides a forum for discussing recent advances on these topics, as well as future
research directions in linguistically motivated vector-based models in NLP. The workshop will take pla-
ce in a hybrid setting, and, as in previous years, feature interdisciplinary keynotes, paper presentations,
posters, as well as a panel discussion.

iv

Organizing Committee

Workshop Organizers

Spandana Gella, Amazon AI
He He, New York University
Bodhisattwa Prasad Majumder, University of California San Diego
Burcu Can, University of Wolverhampton
Eleonora Giunchiglia, University of Oxford
Samuel Cahyawijaya, Hong Kong University of Science and Technology
Sewon Min, University of Washington
Maximilian Mozes, University College London
Xiang Lorraine Li, University of Massachusetts Amherst

Senior Advisors

Isabelle Augenstein, University of Copenhagen
Anna Rogers, University of Copenhagen
Kyunghyun Cho, New York University
Edward Grefenstette, Facebook AI Research
Laura Rimell, DeepMind
Chris Dyer, DeepMind

v

Program Committee

Program Committee

Aleksandr Drozd, RIKEN
Ankur Padia, University of Maryland, Baltimore County
Anna Tigunova, Saarland Informatics Campus, Max-Planck Institute
Ashutosh Modi, IIT Kanpur
Daichi Mochihashi, The Institute of Statistical Mathematics
Dong Zhou, Hunan University of Science and Technology
Eraldo Rezende Fernandes, Leuphana Universität Lüneburg
Federico Bianchi, Bocconi University
Frank Rudzicz, University of Toronto
Hai Wang, JD Finance America Corp
Haiqin Yang, International Digital Economy Academy
Hong Yu, Apple
Hongyu Gong, Facebook
Imed Zitouni, Google
Izzeddin Gur, Google
Jey Han Lau, The University of Melbourne
Jingjing Xu, Peking University
John P. Lalor, University of Notre Dame
Kang Min Yoo, NAVER
Kimberly Mai, University College London, University of London
Lijun Wu, Microsoft Research
Lili Mou, University of Alberta
Lin Chen, University of Illinois at Chicago
Mareike Hartmann, German Research Center for AI
Matthieu Labeau, Télécom ParisTech
Menno van Zaanen, North-West University
Minhao Cheng, Hong Kong University of Science and Technology
Mladen Karan, Queen Mary University London
Muhammad Abdul-Mageed, University of British Columbia
Nadi Tomeh, Université Sorbonne Paris Nord
Nicholas Andrews, Johns Hopkins University
Peng Qi, JD AI Research
Pranava Madhyastha, City, University of London
Qinliang Su, SUN YAT-SEN UNIVERSITY
Robin Jia, University of Southern California
Rodrigo Wilkens, UCL
Sergey Feldman, Allen Institute for Artificial Intelligence
Shankar Kumar, Google
Shuai Tang, Amazon Web Services
Sneha Mehta, Virginia Tech
Sung Ju Hwang, Korea Advanced Institute of Science and Technology
Surangika Ranathunga, University of Moratuwa
Tao Li, School of Computing, University of Utah
Tingting Mu, University of Manchester
Tsuyoshi Okita, Kyushu Institute of Technology
Tsvetomila Mihaylova, Instituto de Telecomunicações, Portugal

vi

Vipul Raheja, Grammarly
Vladimir Eidelman, FiscalNote, Inc.
Xia Cui, University of Manchester
Yitong Li, Huawei Technologies Co., Ltd.
Yue Chen, Microsoft

Invited Speakers

Been Kim, Google Brain
Emma Strubell, Carnegie Mellon University
Monojit Choudhury, Microsoft Research, India
Percy Liang, Stanford University
Sebastian Riedel, University College London and Facebook AI Research

vii

Table of Contents

Distributionally Robust Recurrent Decoders with Random Network Distillation
Antonio Valerio Miceli Barone, Alexandra Birch and Rico Sennrich . 1

Q-Learning Scheduler for Multi Task Learning Through the use of Histogram of Task Uncertainty
Kourosh Meshgi, Maryam Sadat Mirzaei and Satoshi Sekine. .9

PARADISE: Exploiting Parallel Data for Multilingual Sequence-to-Sequence Pretraining
Machel Reid and Mikel Artetxe . 20

When does CLIP generalize better than unimodal models? When judging human-centric concepts
Romain Bielawski, Benjamin Devillers, Tim Van De Cruys and Rufin Vanrullen 29

From Hyperbolic Geometry Back to Word Embeddings
Zhenisbek Assylbekov, Sultan Nurmukhamedov, Arsen Sheverdin and Thomas Mach 39

A Comparative Study of Pre-trained Encoders for Low-Resource Named Entity Recognition
Yuxuan Chen, Jonas Mikkelsen, Arne Binder, Christoph Alt and Leonhard Hennig.46

Clozer: Adaptable Data Augmentation for Cloze-style Reading Comprehension
Holy Lovenia, Bryan Wilie, Willy Chung, Zeng Min, Samuel Cahyawijaya, Dan Su and Pascale

Fung . 60

Analyzing Gender Representation in Multilingual Models
Hila Gonen, Shauli Ravfogel and Yoav Goldberg . 67

Detecting Textual Adversarial Examples Based on Distributional Characteristics of Data Representa-
tions

Na Liu, Mark Dras and Wei Emma Zhang . 78

A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning
Md Mofijul Islam, Gustavo Aguilar, Pragaash Ponnusamy, Clint Solomon Mathialagan, Chen-

gyuan Ma and Chenlei Guo . 91

Identifying the Limits of Cross-Domain Knowledge Transfer for Pretrained Models
Zhengxuan Wu, Nelson F. Liu and Christopher Potts . 100

Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic Representations
Ioannis Dikeoulias, Saadullah Amin and Günter Neumann . 111

ANNA: Enhanced Language Representation for Question Answering
Changwook Jun, Hansol Jang, Myoseop Sim, Hyun Kim, Jooyoung Choi, Kyungkoo Min and

Kyunghoon Bae . 121

Isomorphic Cross-lingual Embeddings for Low-Resource Languages
Sonal Sannigrahi and Jesse Read . 133

Video Language Co-Attention with Multimodal Fast-Learning Feature Fusion for VideoQA
Adnen Abdessaied, Ekta Sood and Andreas Bulling . 143

Detecting Word-Level Adversarial Text Attacks via SHapley Additive exPlanations
Edoardo Mosca, Lukas Huber, Marc Alexander Kühn and Georg Groh . 156

Binary Encoded Word Mover’s Distance
Christian Johnson . 167

viii

Unsupervised Geometric and Topological Approaches for Cross-Lingual Sentence Representation and
Comparison

Shaked Haim Meirom and Omer Bobrowski . 173

A Study on Entity Linking Across Domains: Which Data is Best for Fine-Tuning?
Hassan Soliman, Heike Adel, Mohamed H. Gad-Elrab, Dragan Milchevski and Jannik Strötgen

184

TRAttack: Text Rewriting Attack Against Text Retrieval
Junshuai Song, Jiangshan Zhang, Jifeng Zhu, Mengyun Tang and Yong Yang 191

On the Geometry of Concreteness
Christian Wartena . 204

PALBERT: Teaching ALBERT to Ponder
Daniil Gavrilov and Nikita Balagansky . 213

Towards Improving Selective Prediction Ability of NLP Systems
Neeraj Varshney, Swaroop Mishra and Chitta Baral . 221

On Target Representation in Continuous-output Neural Machine Translation
Evgeniia Tokarchuk and Vlad Niculae .227

Zero-shot Cross-lingual Transfer is Under-specified Optimization
Shijie Wu, Benjamin Van Durme and Mark Dredze . 236

Same Author or Just Same Topic? Towards Content-Independent Style Representations
Anna Wegmann, Marijn Schraagen and Dong Nguyen . 249

WeaNF: Weak Supervision with Normalizing Flows
Andreas Stephan and Benjamin Roth . 269

ix

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 1 - 8
May 26, 2022 ©2022 Association for Computational Linguistics

Distributionally Robust Recurrent Decoders
with Random Network Distillation

Antonio Valerio Miceli Barone
University of Edinburgh
amiceli@ed.ac.uk

Alexandra Birch
University of Edinburgh
a.birch@ed.ac.uk

Rico Sennrich
Universität Zürich

sennrich@cl.uzh.ch

Abstract

Neural machine learning models can success-
fully model language that is similar to their
training distribution, but they are highly sus-
ceptible to degradation under distribution shift,
which occurs in many practical applications
when processing out-of-domain (OOD) text.
This has been attributed to "shortcut learning":
relying on weak correlations over arbitrary
large contexts. We propose a method based
on OOD detection with Random Network Dis-
tillation to allow an autoregressive language
model to automatically disregard OOD con-
text during inference, smoothly transitioning to-
wards a less expressive but more robust model
as the data becomes more OOD, while retain-
ing its full context capability when operating
in-distribution. We apply our method to a GRU
architecture, demonstrating improvements on
multiple language modeling (LM) datasets.

1 Introduction

Neural language models have become the main
component of modern natural language processing
systems, with larger and larger models being used
as feature extractors for downstream tasks (Devlin
et al., 2019), as probability estimators for ranking
and ensembling (Gulcehre et al., 2015) or as lan-
guage generators (Bahdanau et al., 2015; Vaswani
et al., 2017; Brown et al., 2020).

Despite their success, neural machine learning
models can suffer large performance degradation
when they are applied to out-of-domain data which
is substantially different than their training data
(Lapuschkin et al., 2019; Hupkes et al., 2019; Recht
et al., 2019).

Unlike the older statistical language models, Re-
current LMs (RNNLMs) (Mikolov et al., 2010) and
their successors Transformers LMs (Vaswani et al.,
2017) can consider the entire prefix of a sentence
when predicting or generating the next token. By
being able to relate a very high-dimensional input

to the output, these models can learn many sub-
tle correlations which are highly useful as long
as the input is in-distribution, unfortunately these
correlations tend to be brittle to distribution shift,
causing a model that depends on them to go astray.
This phenomenon is known as "shortcut learning"
(Geirhos et al., 2020) and it has been found to
also occur in humans and animals, but it is espe-
cially prevalent in artificial neural networks. Re-
search on this problem has explored models invari-
ant or equivariant w.r.t. certain transformations by
means of compositional representations (Sabour
et al., 2017; Soulos et al., 2019; Liu et al., 2020),
causal modeling (Schölkopf et al., 2021), or both
(Arjovsky et al., 2019; Krueger et al., 2020), but
these works focus on classification tasks often on
synthetic datasets and can’t be straightforwardly
applied to black-box language models. Approaches
specific to LMs have focused on robustness where
the data domains are known and represented in
the training data (Oren et al., 2019; Gerstenberger
et al., 2020).

In this work we propose a method that uses Ran-
dom Network Distillation (RND) (Burda et al.,
2018) to dynamically adapt the amount of con-
text that the model relies upon during inference
based on an estimate of how much this context
is out-of-distribution (OOD). This way the model
can still make use of all available context when
operating within a familiar context space, exploit-
ing long-distance weak correlations, but it reduces
to a less expressive and more robust model when
operating OOD, relying only on the strongest cor-
relations. As a proof of concept we implement
our approach on a GRU recurrent language model
(Cho et al., 2014). While Transformer decoders
outperform RNNs when trained on large training
sets, RNNs remain competitive on smaller datasets
(< 107 tokens) where OOD phenomena are easier
to measure, furthermore they are easier to opti-
mize, simplifying architecture and hyperparameter

1

search. We evaluate our method on language mod-
eling tasks on English datasets, obtaining improve-
ments when evaluating on eight OOD domains.We
report additional preliminary sequence-to-sequence
results on Transformer-RNN models (Zhang et al.,
2018) in appendix A. We leave extensions of our
method to full Transformers as future research.

2 Background

Recurrent Language Model Given a sequence
x(t) of tokens encoded as one-hot vectors, an au-
toregressive causal recurrent language model es-
timates at each step t a probability distribution
Pr(x(t + 1)|x(0), . . . , x(t)) = y(t + 1) over
the next token conditional on the observed pre-
fix which is summarized as a fixed-dimensional
state h(t + 1) ∈ Rd computed according to the
recurrence relation:

u(t) = Emb(x(t), θ) (1)

h(0) = 0⊗d (2)
h(t+ 1) = RNN(h(t), u(t), θ) (3)
y(t+ 1) = Proj(h(t+ 1), θ) (4)

where Emb is an embedding layer, RNN is a re-
current cell (in our case, a GRU), Proj is a readout
layer (we use a mixture-of-softmaxes layer (Yang
et al., 2018)) and θ represents all the trainable pa-
rameters. The initial state h(0) is fixed at zero.

An interesting property of this model is that close
to the beginning of the sequence the state vector
h(t) has a small norm, and the entropy of the pre-
dicted token distribution is usually high because
many tokens are plausible, while as more and more
tokens are observed the state norm grows (token
embeddings are approximately "added" to the state
(Levy et al., 2018)) up to a point, and at the same
time the entropy of the predicted token distribution
decreases as the model becomes more confident
of its prediction due to the larger observed context
(Figure 1). Indeed, in a softmax readout layer:

Proj(h) = softmax(W · h+ b)

where W is the output projection matrix and b is
the output bias vector, increasing the norm of the
state vector h will usually cause the probability
distribution to become sharper unless W · h hap-
pens to approximately cancel out the bias vector b,
which in high dimensions requires a rather specific
alignment. A mixture-of-softmaxes readout also

0 10 20 30 40 50 60 70
token position

1.70

1.75

1.80

1.85

1.90

1.95

2.00

st
at

e
no

rm

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

ou
tp

ut
 e

nt
ro

py

state norm
output entropy

Figure 1: L2-norm of top GRU state (blue dots) and
output softmax entropy (red crosses) over BPE token
position, averaged over in-domain test set (Penn Tree-
bank). Sentences are evaluated independently starting
from the zero state. Norm and entropy correlate at
−0.58. Model trained on Penn Treebank (sec. 4).

exhibits this property. Furthermore, it has been ob-
served that the state of a RNN is usually dominated
by the most recently observed inputs as the contri-
bution of past inputs decreases exponentially over
time (Jaeger, 2001; Pascanu et al., 2013; Levy et al.,
2018; Zhang and Sennrich, 2019). Therefore, we
hypothesize that the norm of the state vector cor-
responds to the amount of context that the model
is considering for its future predictions, and this
in turn controls the confidence of the model in its
predictions.

Random Network Distillation In order to es-
timate how much the state of our RNNLM has
deviated from the training distribution we choose
the Random Network Distillation (RND) approach
(Burda et al., 2018; Ciosek et al., 2020). Given a
representation h, we define an OOD detector as

OOD(h) = |T (h)− S(h, ϕ)|2 (5)

where T (h) is a randomly initialized and
frozen feed-forward teacher network that pseudo-
randomly maps the state h to a high-dimensional
output and S(h, ϕ) is a feed-forward student net-
work with parameters ϕ trained to copy the teacher
by minimizing eq. 5 on the training set. At infer-
ence time the distillation error of eq. 5 provides
an OOD estimate of h. This works by deliberately
exploiting the fragility of neural networks w.r.t. dis-
tribution shift: while in principle the student could
learn to copy the teacher for all possible inputs, in
practice it only learns to do so on the training set
(in-domain by definition) and becomes increasingly
uncorrelated to it as the input becomes more OOD.

2

See Ciosek et al. (2020) for an extensive analysis.
We chose this method because it can be applied
to internal representations, is completely unsuper-
vised and does not require any OOD tuning data.
RND has been proposed initially in the context of
reinforcement learning where the OOD signal can
be used as a “curiosity” reward to stimulate explo-
ration, and it has been subsequently studied in the
context of OOD estimation for image classifica-
tion. To our knowledge, we are the first to apply
it to NLP, and to use it to actively compensate for
distribution shift rather than just measure it.

3 Proposed approach

Our approach consists of estimating how much out-
of-distribution the state of the model is and scaling
it towards the all-zero initial state accordingly, ef-
fectively purging the OOD context out of the mem-
ory of the model and forcing it to rely only on the
strongest, usually short-distance, correlations that
survive the purge. As the state is pushed towards
zero, the model also becomes more conservative in
its predictions, avoiding the typical overconfidence
of neural networks in OOD conditions. Specifically,
for our language modeling experiments, we train a
GRU RNNLM as usual, then we freeze it and train
a RND OOD estimator on the RNNLM states on
the same training set. Then during inference we
modify the recurrence relation (eq. 3) to

h̃ = RNN(h(t), u(t), θ) (6)

h(t+ 1) = h̃ · α exp(−β · OOD(h̃)) (7)

where we use a simple exponential scaling with α
and β hyperparameters1 which we set to 1. When
the OOD signal is zero the model behaves like
the baseline RNNLM, when it is high instead it
behaves more like a unigram language model. This
way, we can retain the expressivity of "shortcut
learning" when it is beneficial, and hopefully avoid
its influence when it is detrimental.

4 Experiments

Setup For all our language modelling experi-
ments we use two-layer stacked GRUs, with a Py-
Torch implementation based on code by Zhang and
Sennrich (2019)2. We train separate models on the
Penn Treebank and Wikitext-2 corpora using the

1α can also be tuned by SGD on the training set, but we
found this to be unnecessary.

2https://github.com/bzhangGo/lrn

default hyperparameters provided by the codebase.
We also train models on BPE subtokenized (Sen-
nrich et al., 2016) versions of the corpora using
SentencePiece3. These models are used both as
baselines and to provide the initial models for our
approach. For our approach we train one RND
OOD model for each layer of the RNNLM, the
teachers are 2-layer LeakyReLU MLPs (Maas et al.,
2013) with layer normalization (Ba et al., 2016)
and the students are like the teachers followed by 4
Resnet blocks (He et al., 2016) with 2 LeakyReLU
MLP layers each. All hidden dimensions are set
to match the RNNLM state dimension. For consis-
tency with the original codebase, we use SGD with
decaying learning rate and early stopping to train
the baseline RNNLMs, while we switch to Adam
(Kingma and Ba, 2015), with constant learning rate
and early stopping when training the RND OOD es-
timator. GRU hyperparameters are the default ones
from the reported Penn Treebank and Wikitext-2
models of the baseline implementation. The code
to run the experiments is available.4

Perplexity estimation We investigate OOD per-
formance with two standard corpora, Penn Tree-
bank and Wikitext2. We evaluate each of the mod-
els both in-distribution, on the default test set of
its training corpus, and out-of-distribution, on the
test set of the other corpus. We also use additional
test sets adapted from machine translation robust-
ness evaluations, specifically the English sides of
the De-En test sets of Müller et al. (2020), which
is a collection of corpora from diffent domains
(I.T., Koran, law, medical and movie subtitles) and
the English sides of the MTNT Ja-En and Fr-En
test sets of Michel and Neubig (2018), which are
corpora scraped from Reddit and have been used
for the WMT-19 robustness shared task (Li et al.,
2019).

We report the results in tables 1 and 2. We find
that for the word-level models trained on Penn Tree-
bank our approach improves the perplexity consis-
tently both in-distribution and out-of-distribution
for all the test sets we considered. For the word-
level models trained on Wikitext-2 our approach
preserves perplexity in-distribution and improves
it on most OOD test sets, namely the Penn Tree-
bank test set, the Ja-En test set of the MTNT corpus
and all the tests sets of Müller et al. (2020) except

3https://github.com/google/
sentencepiece

4https://github.com/Avmb/lm-robustness

3

in-domain (Müller et al., 2020) MTNT

Penn WT-2 IT Koran Law Med Sub fr-en.en ja-en.en

word-level
Baseline 68.04 55.73 59.37 50.12 64.12 35.10 47.81 76.75 66.08
RND 67.86 55.00 58.18 49.12 62.94 34.67 47.01 75.33 64.73
RND (abl.) 67.84 55.41 59.02 49.76 63.67 34.99 47.55 76.25 65.64

BPE-level
Baseline 27.85 1371.16 5657.39 5493.64 4123.78 5657.54 4048.14 2837.97 4051.66
RND 28.16 1197.07 4828.55 4774.78 3552.22 4520.38 3558.99 2519.75 3551.63
RND (abl.) 27.93 1287.26 5178.40 5159.36 3815.87 4898.91 3792.19 2675.51 3794.22

Table 1: Perplexity of language models trained on the Penn Treebank dataset.

in-domain (Müller et al., 2020) MTNT

WT-2 Penn IT Koran Law Med Sub fr-en.en ja-en.en

word-level
Baseline 64.69 361.84 162.01 159.02 178.92 103.87 96.65 177.73 184.69
RND 64.69 333.52 156.73 156.59 171.42 102.33 100.46 175.34 180.54
RND (abl.) 64.69 338.33 157.96 155.75 172.94 102.74 98.82 174.20 180.91

BPE-level
Baseline 29.39 190.91 648.84 694.86 339.46 355.74 563.92 495.39 497.27
RND 29.73 183.23 637.63 712.93 335.86 348.16 656.86 530.45 526.30
RND (abl.) 29.46 185.48 632.52 695.54 334.37 347.75 624.27 515.16 512.96

Table 2: Perplexity of language models trained on the Wikitext-2 dataset.

(Müller et al., 2020) MTNT

Training WT-2 Penn IT Koran Law Med Sub fr-en.en ja-en.en

WT-2 0.0240* 0.1137 0.0735 0.1155 0.0767 0.0485 0.0936 0.1070 0.0896

Penn 0.0237 0.0252* 0.0244 0.0233 0.0244 0.0234 0.0236 0.0240 0.0238

WT-2 (BPE) 0.0220* 0.0534 0.1054 0.1824 0.0697 0.0657 0.1472 0.1328 0.1196

Penn (BPE) 0.0256 0.0257* 0.0321 0.0279 0.0313 0.0359 0.0300 0.0308 0.0302

Table 3: OOD estimates, averaged over GRU layers and tokens in each test set. * denotes the in-domain test sets.

the subtitles test set. The Penn Treebank results
are somewhat anomalous in that the perplexity of
some OOD test sets is lower than the perplexity
of the in-distribution test sets (and in fact the per-
plexity of the Wikitext-2 test set is even lower that
the perplexity of the same test set evaluated by its
own in-domain model). This effect is caused by
the limited vocabulary of the Penn Treebank train-
ing set which causes many of the tokens of the
OOD test sets to be replaced by UNKs, which are
easy to predict. To avoid this artifact, we evaluate
BPE-level models, which are open vocabulary and
hence do not introduce any UNKs. For the BPE-
level models we find that for both the baselines and
the RND approach the perplexities on the OOD
datasets are much higher than the perplexities on
the in-domain test sets. Comparing our approach to

the baselines, we observe a minimal degradation of
perplexity in-distribution and substantial improve-
ments on all OOD test sets when training on Penn
Treebank, while when training on Wikitext-2 we
observe more mixed results.

In order to analyse if the model is learning sensi-
ble values for scaling the out-of-distribution states,
we compute the OOD scores estimated by the RND
OOD detectors, averaged over the two GRU layers
and over all the tokens in each test set. We re-
port these scores in table 3. The models trained on
Wikitext-2 (both the word-level and BPE-level ver-
sions) always estimate the lowest OOD scores on
the in-domain test set, as expected. The Penn Tree-
bank word-level model performs poorly, estimating
similar scores for all the test sets, consistent with
the aforementioned vocabulary collapse to UNKs,

4

the BPE-level model instead is generally able to
distinguish in-domain and out-of-domain test sets,
albeit by a small margin and fails on one test set
(Wikitext-2).

Ablation One could hypothesize that the im-
provements obtained by our model are due to just
increasing the entropy of the output distribution
rather than dropping unnecessary context from the
RNN state. We evaluate a variant of our model
where we apply the OOD scaling only on the out-
put of the top-layer RNN but not to the internal
states. This increases the output entropy without
affecting the context remembered by the model be-
tween time steps. This ablation generally improves
over the baseline but performs worse than our full
model except for the model trained on Wikitext-2
BPE where the results are mixed.

5 Conclusions and future work

We proposed a method to improve the robustness
of language models to distribution shift caused
by train/test domain mismatch. Our model con-
tracts the RNN state based on an unsupervised
out-of-distribution estimator in order to reduce the
model dependency on weak long-distance correla-
tions, which are useful in-distribution but tend to
be spurious in out-of-distribution conditions. We
obtain perplexity improvements on multiple out-of-
domain test sets without substantial degradation on
in-domain test sets.

While our approach is based on Recurrent de-
coders, its general principles may be applicable to
other neural architectures. For instance, the self-
attention heads of a Transformer might modulated
by an OOD detector in order to avoid attending to
out-of-distribution parts of a sentence. We antic-
ipate that extending our method to these kind of
models will be a promising research direction.

Broader impact and ethical concerns

This work provides improvements for language
model technology on application domains not well
represented in the training data.

We expect that our approach might promote an
increased deployment and usage of such technol-
ogy. We do not expect our approach to introduce
any bias against any specific group of users. Our
approach adds only small computational costs over
baseline language models and therefore is unlikely
to prevent users with limited computational budgets
from benefiting from the technology.

Acknowledgments

This project received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreement 825299
(GoURMET), the European Research Council
(ERC StG BroadSem 678254; ERC CoG Trans-
Modal 681760) and funding by the UK Engineering
and Physical Sciences Research Council (EPSRC)
fellowship grant EP/S001271/1 (MTStretch).

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and

David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. 2018. Exploration by random network dis-
tillation. arXiv preprint arXiv:1810.12894.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In
Proceedings of the International Workshop on Spoken
Language Translation, Hanoi, Vietnam, volume 57.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin John-
son, Wolfgang Macherey, George F. Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent advances in neural
machine translation. CoRR, abs/1804.09849.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in

5

Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja
Hofmann, and Richard Turner. 2020. Conservative
uncertainty estimation by fitting prior networks. In
International Conference on Learning Representa-
tions.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. arXiv
preprint arXiv:2004.07780.

Alexander Gerstenberger, Kazuki Irie, Pavel Golik, Eu-
gen Beck, and Hermann Ney. 2020. Domain ro-
bust, fast, and compact neural language models. In
ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7954–7958.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On Us-
ing Monolingual Corpora in Neural Machine Trans-
lation. arXiv e-prints, page arXiv:1503.03535.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep
residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2019. The compositionality of neural
networks: integrating symbolism and connectionism.
CoRR, abs/1908.08351.

Herbert Jaeger. 2001. The “echo state” approach to
analysing and training recurrent neural networks-with
an erratum note. Bonn, Germany: German National
Research Center for Information Technology GMD
Technical Report, 148(34):13.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

David Krueger, Ethan Caballero, Jörn-Henrik Jacob-
sen, Amy Zhang, Jonathan Binas, Rémi Le Priol,
and Aaron C. Courville. 2020. Out-of-distribution
generalization via risk extrapolation (rex). CoRR,
abs/2003.00688.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander
Binder, Grégoire Montavon, Wojciech Samek, and
Klaus-Robert Müller. 2019. Unmasking clever hans
predictors and assessing what machines really learn.
CoRR, abs/1902.10178.

Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke
Zettlemoyer. 2018. Long short-term memory as a
dynamically computed element-wise weighted sum.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 732–739, Melbourne, Australia.
Association for Computational Linguistics.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and Has-
san Sajjad. 2019. Findings of the first shared task
on machine translation robustness. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 91–
102, Florence, Italy. Association for Computational
Linguistics.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng,
and Dongmei Zhang. 2020. Compositional gener-
alization by learning analytical expressions. arXiv
preprint arXiv:2006.10627.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In in ICML Workshop on
Deep Learning for Audio, Speech and Language Pro-
cessing.

Paul Michel and Graham Neubig. 2018. Mtnt: A testbed
for machine translation of noisy text. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164, Virtual. Associa-
tion for Machine Translation in the Americas.

Yonatan Oren, Shiori Sagawa, Tatsunori B. Hashimoto,
and Percy Liang. 2019. Distributionally robust lan-
guage modeling. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference

6

on Natural Language Processing (EMNLP-IJCNLP),
pages 4227–4237, Hong Kong, China. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th In-
ternational Conference on International Conference
on Machine Learning - Volume 28, ICML’13, page
III–1310–III–1318. JMLR.org.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? CoRR, abs/1902.10811.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton.
2017. Dynamic routing between capsules. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
3859–3869, Red Hook, NY, USA. Curran Associates
Inc.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer,
Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. 2021. Toward causal
representation learning. Proceedings of the IEEE,
109(5):612–634.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Paul Soulos, Tom McCoy, Tal Linzen, and Paul Smolen-
sky. 2019. Discovering the compositional structure
of vector representations with role learning networks.
CoRR, abs/1910.09113.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Inter-
national Conference on Learning Representations.

Biao Zhang and Rico Sennrich. 2019. A lightweight
recurrent network for sequence modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1538–
1548, Florence, Italy. Association for Computational
Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1789–1798, Melbourne,
Australia. Association for Computational Linguistics.

7

Appendices
A Sequence-to-sequence experiments

We performed additional experiments on sequence-
to-sequence (seq2seq) tasks. We obtained negative
results, which we report here.

Architecture Our models use a Transformer-
GRU architecture. The encoder is a standard bidi-
rectional Transformer while the decoder is a two-
layer stacked GRU (sec. 2). The recurrent cell
also accesses contextual embeddings of a source
sentence tokens via an attention mechanism im-
plemented as in Luong et al. (2015), except that
instead of a single attention head we use a Trans-
former multihead attention layer, similar to Chen
et al. (2018). The RND OOD model has the same
architecture as in the LM experiments, although
for simplicity we train it jointly with the MT mod-
els rather than in a separate stage, we make sure
not to propagate gradients between the RND OOD
model and the translation model hence there is no
tradeoff between their training objectives. The im-
plementation is based on the Fairseq (Ott et al.,
2019) Transformer and LSTM architectures, us-
ing the hyperparameters for their default IWSLT14
configuration.

Machine translation We trained De→En trans-
lation models on the IWSLT14 training set (Cettolo
et al., 2014) with the standard Fairseq preprocess-
ing pipeline5. We used on the standard test set pro-
duced by the preprocessing script as our in-domain
test set and the Müller et al. (2020) test sets as our
OOD test sets. We report BLEU scores in table
4. The baseline and the RND model have nearly
identical scores on the in-domain test set, while
they deviate up to about 1 BLEU point on the OOD
test sets, although in a non-systematic way.

in-domain (Müller et al., 2020)

IWSLT14 IT Koran Law Med Sub

Base 32.95 11.03 5.72 11.35 13.76 19.19
RND 32.97 12.07 5.13 12.02 13.93 18.71

Table 4: Machine translation results

Sentence reversal We considered a synthetic
task intended to elicit the RND OOD activity. The

5prepare-iwslt14.sh

source segments consist each of a number of con-
catenated sentences separated by a separator token,
the target segments are made of the same sentences,
where each sentence is reversed at token level, but
the sentences are concatenated in the same order as
the source. Since reversing a sentence does not de-
pend on the previous sentences in the segment, the
previous sentences become distractors that pollute
the decoder GRU state with irrelevant information.
The model can learn to compensate in in-domain
conditions where the test set is sampled from the
same distribution of the training set, but we hypoth-
esize that in OOD scenarios with longer segments
composed by a higher number of sentences this
spurious information will greatly decrease accu-
racy. We test whether the RND OOD mechanism
is effective at discarding this spurious information.

We consider two versions of the task, in one
we sample the source segments from a synthetic
vocabulary of 256 tokens, with uniform probabil-
ity per token, 32 tokens per sentence, 8 sentences
per training segment. We test in-domain at 8 sen-
tences and OOD at 10 and 12 sentences per seg-
ment. In the second version, we train on concatena-
tions of 4 consecutive sentences of the English side
of the IWSLT14 De-En training set, and we test at
4, 6, 8, 10 and 12 sentences per segment. We use
the same hyperparameters of our translation exper-
iments, during inference we constrain the decoder
to match the source length.

All the models achieve near perfect (> 99.9)
BLEU scores in-domain, while OOD the scores
quickly decrease as the number of sentences per
segment increases, as expected. Unfortunately we
find no systematic difference between baseline and
RND OOD models.

Discussion Unlike our language modeling exper-
iments, we did not observe systematic improve-
ments from using the RND out-of-distribution de-
tector to contract the state of the GRU decoder in
our sequence-to-sequence results. There are multi-
ple possible hypotheses for this discrepancy, such
as encoder effects, generating outputs by beam
search rather than scoring natural text, or the target
distribution being more peaked around the mode.
We plan to investigate this effect in the future.

8

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 9 - 19
May 26, 2022 ©2022 Association for Computational Linguistics

Q-Learning Scheduler for Multi Task Learning
Through the use of Histogram of Task Uncertainty

Kourosh Meshgi, Maryam Sadat Mirzaei & Satoshi Sekine
RIKEN Center for Advanced Intelligence Project (AIP)

Tokyo, Japan
{kourosh.meshgi, maryam.mirzaei, satoshi.sekine}@riken.jp

Abstract

Simultaneous training of a multi-task learning
(MTL) network on different domains or tasks is
not always straightforward. It could lead to in-
ferior performance or generalization compared
to the corresponding single-task networks. An
effective training scheduling method is deemed
necessary to maximize the benefits of multi-
task learning. Traditional schedulers follow a
heuristic or prefixed strategy, ignoring the rela-
tion of the tasks, their sample complexities, and
the state of the emergent shared features. We
proposed a deep Q-Learning Scheduler (QLS)
that monitors the state of the tasks and the
shared features using a novel histogram of task
uncertainty, and through trial-and-error, learns
an optimal policy for task scheduling. Exten-
sive experiments on multi-domain and multi-
task settings with various task difficulty profiles
have been conducted, the proposed method is
benchmarked against other schedulers, its supe-
rior performance has been demonstrated, and
results are discussed.

1 Introduction

Multi-task learning aims to jointly improve the gen-
eralization of several classification and regression
tasks. It does so by sharing the domain-centric
information of each task, reducing trainable pa-
rameters, focusing attention on relevant features
amid noisy or high dimensional data, regulariz-
ing other tasks, and exploiting the relations among
tasks (Ruder, 2017; Zamir et al., 2018). The tasks
can be defined as applying the same model on dif-
ferent data (also known as multi-domain learning)
(Nam and Han, 2016; Liu et al., 2017a), or on var-
ious problems in a linear (Zamir et al., 2020) or
hierarchical manner (e.g., named entity recognition,
entity mention detection, and relation extraction in
hierarchical MTL-HMTL (Sanh et al., 2019). Typi-
cal MTL is trained with mini-batches of every task
intermittently, while the order of the training is
usually uniform or related to the tasks’ database

(a) Single Task
Scheduler

(b) All Tasks
Scheduler

(c) Proposed
Scheduler

Figure 1: Different schedulers for multi-task learning
(a) Single scheduler that adjusts the training priority
of one task compared to others, (b) All scheduler that
dynamically adjusts the relative importance of each task
compared to others using key performance indicators
(e.g., validation loss) of tasks, (c) Proposed scheduler
that learns an optimal scheduling policy by employing
deep Q-learning on task uncertainties. Similar schedul-
ing effect can be achieved via adjusting learning rate and
gradient manipulation, and training queue is depicted as
an example of scheduling methods. In this figure, TL
denotes task layer, π denotes the (trained) policy, and
Li
task indicates the loss of the specific task i.

size (Kiperwasser and Ballesteros, 2018). This
simplistic approach leads to unnecessary compu-
tations, due to redundancy in tasks and samples
(Lin et al., 2017), or due to the fact that some tasks
are prerequisites for learning others (Ruder et al.,
2017). Additionally, task imbalances deteriorate
appropriate training because they lead to imbal-
ances between back-propagated gradients (Chen
et al., 2018b). Therefore, researchers have pro-
posed methods to train the tasks and samples in a
certain order, a process called “MTL Scheduling”.

Effective scheduling increases accuracy, reduces
overfitting across multiple tasks, avoids catas-
trophic forgetting, improves the low-resource task
accuracy. Meanwhile, it keeps the high resource
task accuracy intact, provides extensive control
over the training dynamics of MTL, and exploits
task relations to learn required features for up-
steam tasks. Early scheduling approaches include
non-adaptive heuristics and fixed strategies to order

9

the training. Such scheduling was applied to one
target task (single scheduling, Figure 1(a)) or was
used by scaling per-task learning rates (Jean et al.,
2019). As these methods were not adequate to
handle more complicated MTL systems (e.g., Uber-
Net (Kokkinos, 2017)), more flexible and adap-
tive scheduling methods started to emerge. They
use learning progress signals such as training loss
(Kiperwasser and Ballesteros, 2018), validation
loss (Jean et al., 2019), and uncertainty (Kendall
et al., 2018) to tailor the schedule accordingly (Fig-
ure 1(b)). Advanced schedulers are expected to
monitor task learning progress, emergent shared
feature representation, and sample complexity of
each task to be able to provide a suitable strategy
for task orders. Additionally, when the underly-
ing multi-task models learn to improve the perfor-
mance of harder tasks, they may hit a plateau; as
a result, simpler (or data-poor) tasks can be over-
trained (overfitted). Needless to say that some tasks
may be forgotten if the schedule is improper (catas-
trophic forgetting). Using a prefixed model to han-
dle all these factors (model bias problem) without
considering instantaneous feedback from the net-
work (lack of temporal monitoring) is the main
challenge for many of the current schedulers.

To address the challenges, we propose using re-
inforcement learning (RL) method to learn a poten-
tially complex strategy. This allows for handling
different states of the MTL training and avoids
catastrophic forgetting. It also enables learning
long-term temporal effects of task selection on the
network’s performance using the intrinsic delayed
reward handling mechanism of RL. Moreover, it
uncovers task relations with no explicit modeling
(model-free), merely based on trial-and-error and
receiving (delayed) feedback from the MTL train-
ing (Figure 1(c)). We use deep Q-Net (DQN)
(Mnih et al., 2013) to map the state of the MTL
to the desired actions (i.e., which task to train on
next?), and propose the histogram of task uncer-
tainty to describe the MTL state for the algorithm.
Our contributions are:

• Introducing histogram of task uncertainty for
the descriptive signal of the MTL;

• Proposing the use of deep Q-learning to learn
the MTL scheduling to (i) handle temporal
progress in MTL, (ii) provide sufficiently com-
plex strategy for marginal cases, (iii) avoid
catastrophic forgetting actively, and (iv) con-
sider sample and task complexity;

• Extensive tests to investigate the performance
and generalization of MTL’s learned features;

• Experiments on multi-task and multi-domain
learning problems with homo- or heteroge-
neous tasks, with various inter-task relations.

Note that in our experiments we focus on the per-
formance of our Q-learning scheduler compared
with other scheduling methods. We used LSTM
instead of variations of transformers to make a fair
comparison with other methods that used LSTM. In
the future, we will incorporate QLS with transform-
ers to benchmark the addition of such scheduling.

2 Related Works

Multi-Task Learning: To leverage from correla-
tions of different tasks, MTL could be performed
on tasks such as: those derived from different sub-
sets of a shared data pool (Meyerson and Miikku-
lainen, 2018), adversarial tasks (Ganin and Lem-
pitsky, 2015), auxiliary tasks which provide hints
or attention for the main task (Yu and Jiang, 2016;
Caruana, 1997), tasks arranged in an easy-to-hard
hierarchy (Sanh et al., 2019), those which explicitly
perform representation learning for a more complex
application (Rei, 2017; Subramanian et al., 2018),
or those which facilitate training for a quickly-
plateauing main task (Bingel and Søgaard, 2017).
Also, it can be helpful to learn the inter-task rela-
tions to enable efficient transfer learning or task
grouping (Ruder et al., 2017; Bingel and Søgaard,
2017; Zamir et al., 2018; Standley et al., 2019).

In the hard parameter sharing architectures,
shared parameters provide a global feature repre-
sentation, while task-specific layers further process
these features or provide a complimentary feature
set for a specific task. MTL methods assume that
learning easy tasks is the prerequisite for learning
complex ones (Ruder, 2017), hence put tasks in
hierarchies (Hashimoto et al., 2017; Sanh et al.,
2019) or group similar tasks to form group-specific
shared layers (Liu et al., 2017b).
Scheduling MTL: To train a deep neural network
on a battery of tasks simultaneously, the tasks are
sampled uniformly or in proportion to their dataset
size (Jean et al., 2019). Since this may offer lim-
ited control over the performance trade-offs (e.g.,
accuracy vs. overfitting), task scheduling methods
were proposed to improve the MTL’s performance
compared to single-task networks, static heuristics,
and grid search methods. Thus, non-adaptive (fixed
strategy) and adaptive methods were used, and var-

10

ious classes of scheduling emerged, such as:
Sample schedulers try to over-sample tasks with

worse results compared to the baseline (Kiper-
wasser and Ballesteros, 2018) or down-weight eas-
ier samples to focus on harder ones for training
(Lin et al., 2017). Yet, such strategies fail if a task
is highly over-sampled or datasets are imbalanced.

Task difficulty schedulers are usually built upon
the notion of curriculum learning that favors
smaller and easier tasks to learn first (Pentina et al.,
2015), aligned with the training of natural intelli-
gence in human babies. This idea falls into two
forms, task hierarchies (e.g., (Sanh et al., 2019))
and task prioritization (Pentina et al., 2015; Graves
et al., 2017; Zaremba and Sutskever, 2014). In the
latter case, if the data of the tasks are coming from
significantly different distributions (e.g., domain
adaptation (Luo et al., 2017; Glorot et al., 2011;
Tzeng et al., 2015)), the assumptions of curricu-
lum learning do not hold (Bengio et al., 2009), and
prefixed schedulers might not be effective.

Task weighting is another approach for schedul-
ing problem. MTL is sensitive to the task weights
(Kendall et al., 2018). These weights scale the
loss term of each task in the total loss of the net-
work. Static task weights can be selected by hyper-
parameter tuning (Kokkinos, 2017; Sermanet et al.,
2013), yet this approach is suboptimal in the pres-
ence of less important or redundant tasks/samples
(Lin et al., 2017). Non-adaptive weighting schemes
fetch tasks intermittently early in training and grad-
ually weigh more on a specific task (Jean et al.,
2019). Adaptive schedulers dynamically prioritize
different tasks by monitoring measures such as per-
formance (Jean et al., 2019) and homoscedastic un-
certainty (Kendall et al., 2018). Another method is
to dynamically tune the gradient magnitudes (Chen
et al., 2018b). Here, we use Q-learning scheduler
which can dynamically schedule the learning of
long-term temporal effects of task selection. As a
result of scheduling, QLS selects the task to draw
samples for the next training episodes.

3 Multi-task Classification

We selected text classification, in which a docu-
ment needs to be assigned to a set of classes. The
solutions range from hand-crafting good features
to be used in convolutional neural networks (NNs)
for word-level (Kim, 2014) and character-level en-
coding (Zhang et al., 2015), recurrent NNs (Liu
et al., 2016) and convolutional recurrent NNs (Lai

et al., 2015). Here, we address the problem of
text classification using long-short term memory
networks (LSTM) with a variant explored in (Joze-
fowicz et al., 2015) to facilitate further analysis
of the effects of the proposed method in the repre-
sentation. Generally, this method can be applied
to any encoder-decoder-based NLP task that uses
LSTM as the encoder. The text sequence of words
w = {w1, w2, . . . , wT } is converted to a sequence
of word embeddings xi and is given to an LSTM
layer. Each cell of LSTM layer at time t, includes
input, forget and output gates, a memory and a hid-
den state ht. The LSTM memory chain updates as

ht = LSTM (ht−1,xt, θp) (1)

where the output of the last unit hT represents the
whole sequence, and θp encapsulates the weights
and biases of the LSTM. This is then fed to the task-
specific output layers. The network is then trained
on a training corpus with N samples (wi, yi) using
cross-entropy loss function

L(ŷ, y) = −
N∑

i=1

C∑

j=1

yji log
(
ŷji

)
(2)

where yji is the groundtruth in {1..C} and ŷji is
the predicted probability of label j for document
i. By exploiting commonalities and differences
among tasks, multi-task learning aims to improve
the learning efficiency and prediction accuracy for
all tasks by learning from them in parallel. To this
end, a learner shares some of its parameters be-
tween tasks while keeping some of them specific to
each task. Considering our baseline classifier, the
shared features are the hidden states of the LSTM
at the end of the input sequence. There are several
ways to implement the MTL using this baseline for
classification. The most popular idea is to use a
fully-shared model, in which all tasks are using the
extracted features of the shared LSTM layer, and
then differentiate using a final task layer.

We denote different datasets Dk as datasets with

Nk examples for task k, Dk =
{(
w

⟨k⟩
i , y

⟨k⟩
i

)}Nk

i=1
.

Given task k, the final task-specific softmax layer
for classification, converts the shared feature h

(k)
T

into probability distribution ŷ(k). The parameters
of the network are trained by minimizing the cross-
entropy of true distribution of the task y(k) and the
predicted distribution ŷ(k), using the loss

Ltask =
K∑

k=1

αkL
(
ŷ⟨k⟩, y⟨k⟩

)
. (3)

11

Here, αk is the importance of each task k and
L(ŷ, y) is defined in eq(2). A scheduler, when
applied to this MTL frameworks, adopts one of the
following modifications: change the task weight
(αk), modify its gradient in the back-propagation,
re-weight the samples (xt), or select a task to draw
samples for the next training episodes. Here, for
simplicity, we select the latter case to focus more
on the idea. Yet, the extension of the proposed idea
to all different approaches is straightforward.

4 Proposed Method

4.1 Progress Signal for Learning Strategy

Graves et al. (Graves et al., 2017) employ accuracy
as a learning progress signal to find a policy for
task curriculum learning (Oudeyer et al., 2007). A
syllabus of curriculum learning is selected using
this learning progress signal to maximize the over-
all training progress. Progress signals are typically
used in RL problems as reward signals to encour-
age exploration (Schmidhuber, 1991; Itti and Baldi,
2006; Houthooft et al., 2016). Similarly, Routing
Networks (Rosenbaum et al., 2017) select different
network submodules, based on the task and rewards
via a multi-agent formulation. An ambitious idea
is to train an agent that is capable of designing the
entire network architecture in neural architecture
search (Zoph and Le, 2016) using accuracy as the
signal. DTP (Guo et al., 2018) scheduler uses pre-
diction gain (Bellemare et al., 2016) to dynamically
compute task weights/priority during training.

Here, we use overall task uncertainty and vali-
dation loss as the progress signal of the network.
Together, these metrics give a comprehensive view
of the state of the MTL.

4.2 Proposed Histogram of Task Uncertainty

Task uncertainty measures what the model does
not know or what cannot be inferred from the data
(Kendall and Gal, 2017). In MTL, we need to
learn multiple tasks simultaneously, while the un-
certainty of each task varies. In a fully-shared MTL
setting, each task contributes to the loss function
based on the errors it make, and since one task is
being trained at a time, minimizing this error may
negatively change the shared parameters for other
tasks. Using uncertainty instead of task accuracy
provides an additional signal to train the model.The
classifiers suffer from uncertainty when choosing
the label. However, adding model uncertainty to
the loss helps classifiers to make more determined

decisions.This helps by reflecting the internal state
of the classifiers. The model uncertainty can be ob-
tained via Monte Carlo dropout sampling (Kendall
et al., 2015), as a function of the samples’ variance
to be used as an estimation of the error (Kendall
and Cipolla, 2016). Another way is to compute
the standard deviation over the softmax outputs
and average them over all classes to obtain a sin-
gle value (Kampffmeyer et al., 2016). Moreover,
Kendall et al. (2018) calculated homoscedastic un-
certainty (the uncertainty of the entire task itself not
dependent on input data) and used this to learn a
weighting for each loss term in a multi-task setting.

To calculate the uncertainty of a multi-class clas-
sifier, uncertainty sampling methods could be ap-
plied. Thus, we proposed the uncertainty loss term
as using margin uncertainty (Scheffer et al., 2001)

ζM = 1− Pk
(
ŷ(1)|x

)
+ Pk

(
ŷ(2)|x

)
, (4)

where ŷ(j) (j = 1, 2) is the label with jth largest
predicted probability. For each task k all valida-
tion data are given to the MTL, and their label
uncertainty is calculated using margin uncertainty.
The final histogram of task uncertainties,H(k)

t , is
formed by concatenating all histograms.

4.3 Q-Learning Scheduler

In our method, QLS monitors the state of the
tasks to measure the task uncertainty, generates
the task uncertainty histogram, and then uses Q
learning to schedule tasks. We formulate a Q-
learning agent to adjust the histogram of task un-
certainty for the proposed MTL scheduler. At time
t, the agent takes an action at based on the state
St of the MTL environment, and the environment
gives the reward r(St, at) and updates its state to
St+1. The agent chooses its action w.r.t its pol-
icy π(at|St) to maximize the cumulative reward
Rt =

∑T
i=t γ

i−tr(Si, ai). Here, 0 < γ ≤ 1 is the
discount factor to weigh more on earlier rewards.
Q-learning calculates Q-values, which is the ex-
pected max scores for each action at in state St, as

Q(St, at) = r(St, at) + γQ(St+1, at+1) (5)

State: The state St ∈ St of the environment is
explained using the concatenation of nb-bin his-
togram of uncertainty measurements of the main
classifier for all samples xt, for all tasks. To elim-
inate the effect of the stochastic sampling on the
uncertainty histogram, a deterministic sampling
approach is used, which obtains the batch hard
samples (Hermans et al., 2017) from the validation

12

set of each task. The histogram of task uncertainty,
H(k)
t , forms the input of the DQN network.

Action: Actions at ∈ At are K one-hot vectors,
each indicating the task that is to be trained next.
Reward: During training time, the reward is de-
fined as the−Ltask on all of the validation samples
which includes the summation of losses of all tasks
(eq(3)).If the average accuracy of the MTL drops
under 95% of the single-task network, a big pun-
ishment (manually set to -10) is fed back to the
scheduling learner agent to punish the use of cho-
sen policy.
Policy: During the training time, we use
Boltzmann-Gumbel exploration (Cesa-Bianchi
et al., 2017) to exploit all the information present in
the estimated Q-values with an additional tempera-
ture parameter, which is annealed over time. This
parameter controls the spread of the softmax distri-
bution so that at the start of the training, the equal
chance is assigned to each action while actions are
sparsely distributed by the end of the training.

4.4 Implementation Details

Our proposed method, QSL-MTL, used LSTM of
length 128, GloVe (Pennington et al., 2014) word
embedding (300d version on 840B Common Crawl
data), and Xavier initialization for the parameters.
The mini-batch size is set to 16, including samples
of the same task. Other than these, we follow the
training procedure and hyper-parameter settingin
(Søgaard and Goldberg, 2016). The Q-learning
parameters are then set to fixed values of nb =
20 and γ = 0.99, and the Q-values are randomly
initialized.

We used different uncertainty measures such as
using least confidence (Settles and Craven, 2008),
margin (Scheffer et al., 2001), and Shanon’s en-
tropy to calculate the histogram of uncertainty. We
also experimented with accuracy for the initial
phase to find the best performance according to
the preliminary results. We used 10K iterations for
our initial testing to explore the best practice and
found the margin loss has the best performance.

The proposed scheduler is trained on the train-
ing data of all tasks. The rest ofhyper-parameters
are tuned over the validation sets. For each of
the 1M training episodes, we randomly sample a
minibatch from one of K tasks, and reset the MTL
modelevery 10K training episode to enable explor-
ing other cases in the MTL. We used GeForce GTX
1080 GPU. During run-time, the scheduler greed-

ily selects the action a∗t which yields the highest
expected reward, a∗t = argmaxa′t∈At

Q(St, a
′
t). In

experiments, we run our system three times and
report the average. Note that unlike other meth-
ods that randomly fill minibatches with samples,
our proposed method learns the policy for sam-
ple selection. Although training time takes longer,
our method saves a lot of time by finding the best
learning policy by itself using q-learning hence
eliminates human feature selection procedure and
is able to discover surprisingly good features which
may not be straightforward for human.

5 Experiment

Our proposed scheduling method is benchmarked
under three different scenarios: (i) A multi-domain
setting, in which a similar task is performed on
different datasets, (ii) a simple multi-task setting,
where the network does three different but slightly
related tasks, and (iii) a complex multi-task set-
ting in which task relations are complex (e.g., one
task can be a prerequisite for another, improving
one may hamper the performance of another, etc.).
We have conducted an extensive analysis of the
first task to clarify our proposed method’s internal
mechanism and advantages.

5.1 Multiple Domains

In this experiment, we consider text classification
as the learning task and 16 different datasets as do-
mains of the task. Each domain consists of around
2000 comments about a class of products labeled
as positive or negative reviews and 2000 unlabeled
comments. We have applied various MTL schedul-
ing methods on the fully-shared MTL (hereafter,
the baseline) and compared the performance of our
proposed method to the competitors and their per-
formance on unseen data.
Dataset: Fourteen product review datasets for dif-
ferent products from (Blitzer et al., 2007) have been
obtained as domains, with their labels as positive
(4+ stars) or negative (2- stars), omitting the border-
line 3-star comments. IMDB and MR movie review
datasets from (Maas et al., 2011) and (Pang and
Lee, 2005) with binary labels (subjective/objective
and positive/negative) are also used as two addi-
tional domains. Table 1 shows domain statistics.
Competitor Models: We compared our algorithm
with several scheduling strategies that are imple-
mented on top of Fully-Shared MTL with a pre-
trained word embedding and shared LSTM layers

13

D
om

ai
n

B
oo

ks

E
le

cs

D
V

D

K
itc

he
n

A
pp

ar
el

C
am

er
a

H
ea

lth

M
us

ic

To
ys

V
id

eo

B
ab

y

M
ag

s

So
ft

Sp
or

ts

IM
D

B

M
R

Train ⋆ 1398 ⋆ ⋆ ⋆ 1397 ⋆ ⋆ ⋆ ⋆ 130013701315 ⋆ ⋆ ⋆
Dev — All 200 — 200 200
Test — All 400 — 400 400
Len 159 101 173 89 57 130 81 136 90 156 104 117 129 94 269 21
Vocab 62K 30K 69K28K21K 26K 26K60K28K57K 26K 30K 26K 30K44K12K

Table 1: Datasets’ statistics (i.e., domains) for multi-
domain text classification experiment. (⋆ = 1400)

(baseline). Uniform: All tasks have the same im-
portance from beginning to the end of training;
Hand Crafted: Tasks received a fixed importance
coefficient for all training obtained by grid search;
Random: A random task is selected for the next
training episode; Greedy: The task with the highest
loss is selected for the next training episode; Loss
Exponentiation: Loss outputs are magnified by the
power of 1.15 (found by a grid search). In this way,
larger losses (for the tasks needing more changes
in the shared space) are magnified; Homoscedastic
Uncertainty (Kendall et al., 2018): Calculates the
task uncertainty using loss magnitude and use it to
weigh different tasks; Self Paced (Li et al., 2017):
Introduces task weights as learnable parameters
and employs a regularization that favors training
on easy tasks earlier in the training process; Focal
Loss (Lin et al., 2017): Sample-level scheduler that
down-weights easier samples and focuses on hard
samples during training; DTP (Guo et al., 2018):
Uses learning progress signals to automatically
compute a priority level at both a task-level and
example-level.; Grad Norm (Chen et al., 2018b):
Scales task gradients based on the magnitude of
the gradients and training losses; Adaptive (Jean
et al., 2019): Oversamples tasks with poorer results
compared to their baseline; QLS: Our proposed
fully-trained Q-learning-based scheduling method.
Task-Specific Output Layer: The obtained shared
representation is fed to the task-specific output clas-
sifiers composed of a fully connected layer fol-
lowed by a softmax layer to predict the labels.
Performance Evaluation and Discussion: We per-
form the multi-domain learning on all 16 tasks to
compare the task-specific and overall performance
of the proposed method. All schedulers are added
on top of untrained FS-MTL (baseline), and the
training is governed by the scheduling strategy.
Based on Table 2, in most of the cases, our learned
strategy outperforms other strategies. An in-depth
analysis revealed that in the early stages of the train-
ing, for instance, the performance of the Kitchen
domain was higher, while other domains were still

trying to improve their performances. Additionally,
hand-crafted domain weights are working well for
most of the domains. Yet, these weights are fixed,
resulting in the suboptimal performance of this
strategy. The uncertainty weighting by (Kendall
et al., 2018) also ignores some categories since
the early emergent features in the shared space are
suboptimal for the task. Although these measures
keep the tasks’ homoscedastic uncertainty low, they
fail to guarantee high performance. This finding
calls for better uncertainty measures in such an ap-
proach. One of the shortcomings of the GradNorm
algorithm was observed in cases that a very noisy
minibatch from a task was selected. By largely
redirecting the gradients to the corresponding task,
GradNorm magnifies the label noise in the training
of the task, causing some confusion in updating the
feature space. Moreover, we observed that by using
Q-Learning, our method (i) enables the discovery
of more latent features (especially when two or
more tasks have a mutual tacit feature that assists
those tasks to have better overall performance), (ii)
easily switches between hard and easy tasks peri-
odically to learn the policies and (iii) finds longer
sequences as features that work well in the run
phase. We also found two groups of mistakes by
our model: (i) sentences with complicated struc-
tures such as when two negative words are sepa-
rated by two or more words and (ii) sentences that
require reasoning or external references (e.g., to
pop culture) that conveys a particular sentiment,
analogies (e.g., “The actors really are made of card-
board”) or other types of inferences, out of the
dataset’s scope.

Shared Knowledge Transfer: One of the reasons
for using MTL methods is to obtain a better-shared
representation between tasks that cancels out the
systematic noise of each individual task and pro-
vides a generalizable feature set that performs well
out-of-the-box on unseen data. We hypothesize
that by properly scheduling the MTL, more gen-
eralizable and useful features emerge early in the
feature space. Therefore, the training procedure fo-
cuses more on improving such features rather than
using some inefficient or suboptimal features and
discarding them later. To test this hypothesis, we
perform a leave-one-out experiment in which the
proposed classifier is trained on 15 tasks and tested
on one task which was excluded from training (e.g.,
we train on all tasks/categories except ϕ(Book)
then we test on ϕ(Book) category, we then do the

14

Uniform Hand Loss Homos. Self Focal Grad QLS
Domain (baseline) Crafted Random Greedy Exponen. Unc. Paced Loss DTP Norm Adaptive (ours)

Books 82.5 89.1 83.3 83.0 83.4 87.8 88.1 87.0 90.3 89.3 89.1 90.4
Electronics 85.7 91.1 87.2 86.0 86.6 90.7 90.7 90.6 92.8 92.4 92.3 92.8
DVD 83.5 89.8 84.4 83.8 84.4 88.6 88.4 88.8 90.9 90.2 90.0 90.9
Kitchen 86.0 93.1 86.8 86.0 86.9 90.1 91.6 93.1 87.2 92.7 92.6 93.2
Apparel 84.5 88.8 85.8 85.0 85.3 89.1 89.0 88.4 90.9 91.2 90.9 91.3
Camera 86.5 91.3 89.4 86.8 87.3 91.4 91.3 90.8 93.3 93.2 92.9 93.2
Health 88.0 91.9 88.4 88.1 88.9 91.6 91.6 91.7 90.3 92.6 92.5 92.6
Music 81.2 87.8 81.9 81.4 82.0 86.6 86.5 86.9 89.0 87.9 87.6 89.1
Toys 84.5 90.4 85.0 84.7 85.4 89.6 89.1 88.8 91.8 91.4 91.2 92.2
Video 83.7 89.9 84.6 83.7 84.6 88.9 88.6 89.4 91.3 90.5 90.2 91.9
Baby 88.0 90.0 89.1 88.2 88.9 92.0 91.9 89.4 93.1 94.7 94.7 94.6
Magazines 92.5 92.6 93.1 92.5 93.4 92.2 91.9 90.7 93.0 94.0 93.6 94.2
Software 86.2 90.1 87.3 86.3 87.1 90.8 90.3 88.2 92.6 92.9 92.6 93.1
Sports 85.5 88.6 86.7 85.8 86.3 89.8 89.9 86.8 91.3 92.2 91.9 92.2
IMDB 82.5 89.7 83.5 82.8 83.4 87.9 87.9 89.0 90.5 89.2 89.1 91.3
MR 74.7 78.8 78.7 74.7 75.6 79.3 79.6 76.9 81.0 81.3 81.3 81.4

AVG 84.7 89.6 86.0 84.9 85.6 89.2 89.2 88.5 90.6 91.0 90.8 91.5

Table 2: Accuracy of different scheduling methods on 16 domains, compared to its Fully-Shared-MTL baseline
(First, second, and third ranks). Our QLS method outperforms others in almost all of tasks.

same for the next category). We freeze the weights
of the trained shared model, perform 5-fold cross-
validation on the left-out task, and report the result
in Table 3. For each unseen domain, new task lay-
ers are made on top of the shared feature space.
The task layer israndomly initialized, and trained
on a new domain.

5.2 Multiple Tasks with Simple Relations

This experiment considers a heterogeneous multi-
task learning scenario in which three different tasks
(part-of-speech tagging, chunking, and named en-
tity recognition) on various datasets are considered.
Despite their differences, these tasks are related,
but none of them could benefit from the output of
others. We trained FS-MTL with different strate-

Hand Loss Homos Self Focal Grad QLS
Domain Craft Exp. Unc. Paced Loss DTP Norm Adapt. (ours)

ϕ (Books) 86.3 81.8 85.9 82.2 81.7 86.5 86.3 86.4 86.6
ϕ (Elec.) 86.2 83.6 86.1 85.0 84.1 86.4 86.1 86.1 86.3
ϕ (DVD) 86.8 84.5 86.7 85.6 85.0 86.6 87.0 86.8 86.9
ϕ (Kitchen) 86.5 84.1 86.4 84.7 84.8 86.7 86.7 86.5 86.6
ϕ (Apparel) 86.3 84.7 86.2 85.1 84.7 86.2 86.3 86.2 86.3
ϕ (Camera) 87.3 86.2 87.3 86.9 86.2 87.3 87.1 87.1 87.3
ϕ (Health) 89.0 84.4 88.7 85.3 85.1 89.0 89.1 89.0 89.3
ϕ (Music) 85.6 79.7 85.0 80.2 80.2 85.9 85.9 85.9 86.1
ϕ (Toys) 86.3 83.7 86.1 84.1 84.1 85.6 86.3 86.0 86.4
ϕ (Video) 86.0 85.0 86.0 86.1 85.7 85.7 85.9 85.8 85.9
ϕ (Baby) 86.1 82.9 85.9 83.8 83.1 86.3 86.2 86.2 86.3
ϕ (Mags) 90.5 88.8 90.5 89.9 89.4 90.5 90.3 90.4 90.6
ϕ (Soft) 87.3 84.0 87.0 84.0 84.0 86.6 87.5 87.2 87.6
ϕ (Sports) 85.9 83.2 85.7 84.2 83.8 86.1 86.0 85.9 86.0
ϕ (IMDB) 87.7 86.8 87.7 87.5 87.1 87.5 87.6 87.5 87.6
ϕ (MR) 75.7 73.7 75.6 74.3 74.0 75.7 75.4 75.4 75.8

ϕ (AVG) 86.2 83.5 86.0 84.3 83.9 86.2 86.2 86.2 86.4

Table 3: Accuracy of fully shared representation learned
with different strategies on all-but-one domains tested
on the remaining unseen domain. ϕ(DOMAIN) means we
transfer the knowledge of other 15 tasks to the target
DOMAIN. Using the proposed scheduling of all tasks
while training, we improved overall accuracy of MTL
classifier on unseen data by 2.2% compared to baseline.

gies and compared their performance on these dif-
ferent tasks (Table 5). We excluded pre-training
from our model to provide a fair comparison (as in
the modern Transformer sense).
Task-Specific Output Layer: Inspired by (Ma and
Hovy, 2016), obtained shared representation is fed
to a conditional random field (Lafferty et al., 2001)
for sequence tagging. Baseline has a pre-trained
embedding, fully-shared LSTM(s), and a CRF.
Dataset: For sequence tagging task, we use Wall
Street Journal (WSJ) subset of Penn Treebank (Mar-
cus et al., 1993), CoNLL 2000 chunking, and
CoNLL 2003 English NER dataset as in Table 4.

Datasets Task Train Dev Test

WSJ POS Tagging 912,344 131,768 129,654
CoNLL 2000 Chunking 211,727 - 47,377
CoNLL 2003 NER 204,567 51,578 46,666

Table 4: Statistics of datasets for multi-task sequence
tagging experiment.

Competitor Models: We compare our method
with Huang et al. (2015) that uses a BiLSTM en-
coding and CRF output layer, text classifier of (Col-
lobert et al., 2011), and multi-task text classifier
with Meta-LSTM (Chen et al., 2018a). We trained
the baseline MTL with different strategies such as
DTP (Guo et al., 2018), Grad Norm (Chen et al.,
2018b), and Adaptive scheduler (Jean et al., 2019)
that performed best in the previous task. We also
used Hand Crafted (worked well by finding fixed
task weights) and uncertainty-based loss weighting
(Kendall et al., 2018) to compare with our QLS.
Results and Discussion: Table 5 shows that our
model consistently outperforms others. It is robust
and has good generalization among related tasks.
However, the task prioritization of Homoscedastic

15

uncertainty and Grad Norm works well for some
tasks but not others. One reason lies in the differ-
ences in task complexities: the emergent features
are not always successful in handling the complex-
ity of all tasks. Grad Norm aggressively decreases
the relative weight of Chunking loss leading to a
higher error rate in this task, and Homoscedastic
uncertainty favors NER that made fewer mistakes
early in training. While DTP works well, adaptive
scheduling shows a mediocre performance.

5.3 Multiple Tasks with Complex Relations

In this experiment, we use different tasks (two easy
and one complex [translation]) to investigate the
effect of scheduling on the target task. We selected
neural machine translation (NMT) as the target
task and chose POS tagging and Parsing as the
other tasks in MTL. As Table 6 shows, our method
outperforms other static and dynamic scheduling
methods. Compared to the baseline single-task
NMT (with 19.30 BLEU score), our scheduled ML
gains +2.6 points improvement in BLEU points.
Task-Specific Output Layer: NMT has an LSTM
encoder and a seq2seq decoder (Sutskever et al.,
2014; Bahdanau et al., 2014). Here, to be consis-
tent with the literature, we perform POS tagging
as a translation between source language and se-
quence of POS tags, similar to (Niehues and Cho,
2017). We also used the decoder in (Kiperwasser
and Ballesteros, 2018) for dependency parsing.
Dataset: For translation setting, we use WMT’14
parallel corpus (Buck et al., 2014) including 4.5M
training sentence pairs, 3000 sentences of new-
stest2013 as the development set, and newstest2014
for test set. English POS tagging, dependency
heads and labels are from the Penn tree-bank with
Stanford Dependencies (Training:02-21, Dev:22,
Test:23) and German ones from TIGER tree-bank

Chunking NER POS Tagging
(CoNLL2000) (CoNLL2003) (WSJ)

BiLSTM+CRF 93.67 89.91 97.25
Meta-BiLSTM+CRF 93.71 90.08 97.30
(Collobert et al., 2011) 94.32 89.59 97.29
Meta-MTL + CRF 95.11 90.72 97.45

FS-MTL + CRF⋆ 94.18 89.99 97.14
+ Hand Crafted 94.16 89.42 97.33
+ Homos. Unc. 95.05 90.24 97.42
+ DTP 95.46 90.73 97.38
+ Grad Norm 95.07 90.30 97.38
+ Adaptive 94.97 90.18 97.46
+ QLS (ours) 95.91 91.02 97.46

Table 5: Accuracy rates of the models for chunking
and NER tasks using F1-score (%) and for POS tagging
using Accuracy (%). Our QLS method outperforms
others in most of the tasks. (⋆: baseline)

Prior. Prior. Hand Sig- Expo- Homo. Grad QLS
Easy HardCrafted moid nential Unc. DTP Norm Ada. (ours)

MT+POS 18.9 19.1 20.9 19.2 20.0 19.2 21.3 20.5 20.9 21.7
MT+Par. 18.7 18.6 20.5 19.1 18.9 18.9 18.9 20.4 21.1 21.4
MT+POS+Par. 19.0 18.3 20.9 19.3 18.0 19.0 20.8 20.7 21.5 21.9

Table 6: BLEU score of target machine translation with
POS tagging and parsing (written as par.) as auxiliary
tasks in multi-task framework trained with different
scheduling strategies. The BLEU score of baseline Neu-
ral MT system (without auxiliary tasks) is 19.30. QLS
shows superior performance among schedulers.

(Hajič et al., 2009). Translation quality is measured
with case-sensitive BLEU (Papineni et al., 2002).

Competitor Models: We have included three types
of schedulers: (i) all-task schedulers such as DTP
(Guo et al., 2018), Grad Norm (Chen et al., 2018b),
Adaptive (Jean et al., 2019), Homoscedastic Uncer-
tainty (Kendall et al., 2018), and ours; (ii) one-task
scheduler which tunes the weight of the target task
over training episodes while keeping the rest of
the weights intact; and (iii) constant schedules that
assign each task a fixed weight for the entire train-
ing. Second category contains exponential sched-
ule and sigmoid schedule (Kiperwasser and Balles-
teros, 2018), and third category includes prioritize
hard/easy strategies that assign the weight of 0.98
to the hardest/easiest task and 0.01 to others.

Results and Discussion: We selected NMT that
is significantly harder than other tasks. Thus, the
syntax representations learned by POS and Pars-
ing tasks are required to process the input better
and generate more meaningful sentences. As the
table shows, merely plugging different tasks in the
MTL framework does not guarantee better results
as (i) some task combinations are not compatible
(e.g., NMT and Parsing), which is aligned with
the findings of (Zamir et al., 2020), and (ii) uni-
fied task weights can be damaging to the overall
performance of a target model, while it might in-
crease the overall performance of all tasks. It can be
seen that even a carefully selected task’s weighting
(although static) could significantly improve this
situation. Another observation is that single task
schedulers are not always successful (only NMT +
POS + Exponential scheduler improves the results
in Table 6). DTP, Grad Norm, and homoscedastic
uncertainty weighting suppress the performance
of the NMT task, either because of its high ini-
tial error rate or due to favoring easier tasks that
show better improvement during training. Among
these, DTP sometimes covers difficult tasks better
in the cost of performance of the overall tasks, de-

16

pending on its KPI. On the other hand, adaptive
scheduling handles catastrophic forgetting better
and improves overall performance. However, we
see that a tailored strategy (that our RL scheduler
achieved through numerous trial-and-errors) works
a lot better in handling such task difficulty imbal-
ance. Yet, our method may not perform the best in
handling balanced tasks or complex tasks that can
benefit from sufficient amount of related easy ones.

6 Conclusion

We augment the fully-shared MTL framework with
a reinforcement-learning-based scheduling scheme
that obtains an optimal scheduling policy for tasks
through trial and error. The scheduler detects the
task states through a novel state definition: his-
togram of task uncertainty. It adjusts the schedul-
ing policy to improve the training and validation
accuracy of the MTL, enhances generalization of
the emergent shared features, and handles different
relationships among tasks. The proposed method
is also capable of leveraging unlabeled data, ob-
taining highly-nonlinear strategies, and tackling
different sources of task uncertainty.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski,
Tom Schaul, David Saxton, and Remi Munos. 2016.
Unifying count-based exploration and intrinsic moti-
vation. In Advances in neural information processing
systems, pages 1471–1479.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Joachim Bingel and Anders Søgaard. 2017. Identifying
beneficial task relations for multi-task learning in
deep neural networks. In ACL’15, pages 164–169.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th annual meeting of the asso-
ciation of computational linguistics, pages 440–447.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen.
2014. N-gram counts and language models from the
common crawl. In LREC, volume 2, page 4. Citeseer.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi,
and Gergely Neu. 2017. Boltzmann exploration done
right. In NIPS’17, pages 6284–6293.

Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing
Huang. 2018a. Meta multi-task learning for sequence
modeling. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018b. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International Conference on
Machine Learning, pages 794–803.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of machine learning research, 12(Aug):2493–
2537.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
ICML’15, pages 1180–1189.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. arXiv
preprint arXiv:1704.03003.

Michelle Guo, Albert Haque, De-An Huang, Serena
Yeung, and Li Fei-Fei. 2018. Dynamic task prioriti-
zation for multitask learning. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 270–287.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martí, Lluís
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štepánek, et al. 2009. The conll-2009
shared task: Syntactic and semantic dependencies in
multiple languages.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In
EMNLP’17, pages 1923–1933.

Alexander Hermans, Lucas Beyer, and Bastian Leibe.
2017. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. 2016. Vime: Vari-
ational information maximizing exploration. In Ad-
vances in Neural Information Processing Systems,
pages 1109–1117.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

17

Laurent Itti and Pierre F Baldi. 2006. Bayesian sur-
prise attracts human attention. In Advances in neural
information processing systems, pages 547–554.

Sébastien Jean, Orhan Firat, and Melvin Johnson. 2019.
Adaptive scheduling for multi-task learning. arXiv
preprint arXiv:1909.06434.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of re-
current network architectures. In ICML’15, pages
2342–2350.

Michael Kampffmeyer, Arnt-Borre Salberg, and Robert
Jenssen. 2016. Semantic segmentation of small ob-
jects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops,
pages 1–9.

Alex Kendall, Vijay Badrinarayanan, and Roberto
Cipolla. 2015. Bayesian segnet: Model uncer-
tainty in deep convolutional encoder-decoder archi-
tectures for scene understanding. arXiv preprint
arXiv:1511.02680.

Alex Kendall and Roberto Cipolla. 2016. Modelling
uncertainty in deep learning for camera relocalization.
In 2016 IEEE international conference on Robotics
and Automation (ICRA), pages 4762–4769. IEEE.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer vi-
sion? In Advances in neural information processing
systems, pages 5574–5584.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR’18,
pages 7482–7491.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP’14, pages 1746–
1751.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225–240.

Iasonas Kokkinos. 2017. Ubernet: Training a universal
convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited
memory. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6129–6138.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In AAAI’15.

Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong,
Qingshan Liu, and Hongyuan Zha. 2017. Self-paced
multi-task learning. In Thirty-First AAAI Conference
on Artificial Intelligence.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017a.
Adversarial multi-task learning for text classification.
In ACL’17, pages 1–10.

Sulin Liu, Sinno Jialin Pan, and Qirong Ho. 2017b.
Distributed multi-task relationship learning. In ACM
SIGKDD’17, pages 937–946. ACM.

Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-
Fei. 2017. Label efficient learning of transferable
representations acrosss domains and tasks. In Ad-
vances in Neural Information Processing Systems,
pages 165–177.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
arXiv preprint arXiv:1603.01354.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies-volume 1, pages 142–150. Association
for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Elliot Meyerson and Risto Miikkulainen. 2018. Pseudo-
task augmentation: From deep multitask learning to
intratask sharing—and back. ICML’18.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Hyeonseob Nam and Bohyung Han. 2016. Learning
multi-domain convolutional neural networks for vi-
sual tracking. In ICPR’16, pages 4293–4302.

Jan Niehues and Eunah Cho. 2017. Exploiting linguistic
resources for neural machine translation using multi-
task learning. arXiv preprint arXiv:1708.00993.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V
Hafner. 2007. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions
on evolutionary computation, 11(2):265–286.

18

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115–124. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP’14, pages 1532–1543.

Anastasia Pentina, Viktoriia Sharmanska, and
Christoph H Lampert. 2015. Curriculum learning of
multiple tasks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 5492–5500.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In ACL’17, pages 2121–2130.

Clemens Rosenbaum, Tim Klinger, and Matthew
Riemer. 2017. Routing networks: Adaptive selec-
tion of non-linear functions for multi-task learning.
arXiv preprint arXiv:1711.01239.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks. stat,
1050:23.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In AAAI’19, vol-
ume 33, pages 6949–6956.

Tobias Scheffer, Christian Decomain, and Stefan Wro-
bel. 2001. Active hidden markov models for informa-
tion extraction. In Advances in Intelligent Data Anal-
ysis, pages 309–318, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Jürgen Schmidhuber. 1991. A possibility for implement-
ing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference
on simulation of adaptive behavior: From animals to
animats, pages 222–227.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël
Mathieu, Rob Fergus, and Yann LeCun. 2013. Over-
feat: Integrated recognition, localization and detec-
tion using convolutional networks. arXiv preprint
arXiv:1312.6229.

Burr Settles and Mark Craven. 2008. An analysis of
active learning strategies for sequence labeling tasks.
In EMNLP’08, pages 1070–1079. Association for
Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In ACL’16, pages 231–235.

Trevor Standley, Amir R Zamir, Dawn Chen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. 2019.
Which tasks should be learned together in multi-task
learning? arXiv preprint arXiv:1905.07553.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher Pal. 2018. Learning gen-
eral purpose distributed sentence representations
via large scale multi-task learning. arXiv preprint
arXiv:1804.00079.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate
Saenko. 2015. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
4068–4076.

Jianfei Yu and Jing Jiang. 2016. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. In EMNLP’16, pages 236–
246.

Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan
Suri, Zhangjie Cao, Jitendra Malik, and Leonidas J
Guibas. 2020. Robust learning through cross-task
consistency. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 11197–11206.

Amir R. Zamir, Alexander Sax, William Shen,
Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. 2018. Taskonomy: Disentangling task
transfer learning. In CVPR’18, pages 3712–3722.

Wojciech Zaremba and Ilya Sutskever. 2014. Learning
to execute. arXiv preprint arXiv:1410.4615.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS’15, pages 649–657.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

19

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 20 - 28
May 26, 2022 ©2022 Association for Computational Linguistics

PARADISE: Exploiting Parallel Data for
Multilingual Sequence-to-Sequence Pretraining

Machel Reid
The University of Tokyo

machelreid@weblab.t.u-tokyo.ac.jp

Mikel Artetxe
Facebook AI Research
artetxe@fb.com

Abstract

Despite the success of multilingual sequence-
to-sequence pretraining, most existing ap-
proaches rely on monolingual corpora, and do
not make use of the strong cross-lingual sig-
nal contained in parallel data. In this paper,
we present PARADISE (PARAllel & Denoising
Integration in SEquence-to-sequence mod-
els), which extends the conventional denoising
objective used to train these models by (i) re-
placing words in the noised sequence accord-
ing to a multilingual dictionary, and (ii) pre-
dicting the reference translation according to a
parallel corpus instead of recovering the orig-
inal sequence. Our experiments on machine
translation and cross-lingual natural language
inference show an average improvement of 2.0
BLEU points and 6.7 accuracy points from in-
tegrating parallel data into pretraining, respec-
tively, obtaining results that are competitive
with several popular models at a fraction of
their computational cost.

1 Introduction

Multilingual sequence-to-sequence pretraining has
achieved strong results both in cross-lingual clas-
sification (Xue et al., 2021) and machine transla-
tion (Liu et al., 2020). These models are usually
pretrained on combined monolingual corpora in
multiple languages using some form of denoising
objective. More concretely, they noise each se-
quence x with a noising function gφ, and maximize
the probability of recovering x given gφ(x):

`mono(x) = − logP
(
x|gφ(x)

)
(1)

Common noising functions include sentence-
permutation and span masking (Lewis et al., 2020;
Liu et al., 2020).

While these methods obtain strong cross-lingual
performance without parallel data, they are usually
trained at a scale that is prohibitive for most NLP
practitioners. At the same time, it has been argued

that the strict unsupervised scenario is not realis-
tic (Artetxe et al., 2020), and parallel data could
provide a stronger signal and make training more
efficient.

Motivated by this, we propose PARADISE, a pre-
training method for sequence-to-sequence models
that exploits both word-level and sentence-level
parallel data. The core idea of our approach is to
augment the conventional denoising objective intro-
duced above by (i) replacing words in the noised se-
quence according to a bilingual dictionary, and (ii)
predicting the reference translation rather than the
input sequence. Despite their simplicity, we find
that both techniques bring substantial gains over
conventional pretraining on monolingual data, as
evaluated both in machine translation and zero-shot
cross-lingual transfer. Our results are competitive
with several popular models, despite using only a
fraction of the compute providing strong support
for the importance of the inclusion of parallel infor-
mation in smaller-scale multilingual pre-training
methods.

2 Proposed method

As illustrated in Figure 1, we propose two meth-
ods for introducing parallel data into pretraining:
dictionary denoising and bitext denoising.

Dictionary denoising. Our first method encour-
ages learning similar representations at the word-
level by introducing anchor words through multi-
lingual dictionaries (Conneau et al., 2020b). Let
Dl(w) denote the translation of word w into lan-
guage l ∈ L according to the dictionary D. Given
the source sentence x = (x1, x2, . . . , xn), we de-
fine its noised version gψ (x) = (x̃1, x̃2, . . . , x̃n),
where x̃i = Dl(xi) with probability pr

|L| and x̃i =
xi otherwise (i.e. we replace each word with its
translation into a random language with probability
pr). We set pr = 0.4. Given the dictionary-noised
sentence, we train our model using the denoising

20

Their 仕事

Encoder Decoder

est <mask> حیرت انگیز Their absolutelywork is amazing<s>

Their absolutelywork is amazing </s>

(a) Dictionary Denoising

<mask>

Encoder
仕事 <mask> 素晴らしい

Decoder

Their absolutelywork is amazing<s>

Their absolutelywork is amazing </s>

(b) Bitext Denoising

Figure 1: Our proposed techniques for integrating parallel data into sequence-to-sequence pretraining.

auto-encoding objective in Eq. 1:

`dict(x) = − logP
(
x|gφ(gψ(x))

)
(2)

Bitext denoising. Our second approach encour-
ages learning from both monolingual and parallel
data sources, by including translation data in the
pretraining process. Given a source-target bitext
pair (x, y) in the parallel corpus, assumed to be
semantically equivalent, we model the following:

`bitext(x, y) = − logP
(
y|gφ(x)

)
(3)

in which we optimize the likelihood of generating
the target sentence y conditioned on the noised
version of the source sentence, gφ(x).1

Combined objective. Our final objective com-
bines `mono, `dict and `bitext.2 Given that our cor-
pus contains languages with varying data sizes, we
sample sentences using the exponential sampling
technique from Conneau and Lample (2019). We
use αmono = 0.5 to sample from the monolingual
corpus, and αbitext = 0.3 to sample from the par-
allel corpus. To prevent over-exposure to English
on the decoder side when sampling from the paral-
lel corpus, we halve the probability of to-English
directions and renormalize the probabilities. In ad-
dition, given that we have fewer amounts of parallel
data (used for `bitext) than monolingual data (used
for `mono and `dict), we sample between each task
using αtask = 0.3.

3 Experimental Settings

We pretrain our models on 20 languages (English,
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili, Urdu, Japanese, Basque, Romanian,
Sinhala and Nepalese), and evaluate them on ma-
chine translation and cross-lingual classification.

1To make our pretraining sequence length consistent with
`mono and `dict, we concatentate randomly sampled sentence
pairs from the same language pair to fit the maximum length.

2We use the same noising function gφ used by Lewis et al.
(2020) and Liu et al. (2020).

3.1 Pretraining

Data. We use Wikipedia as our monolingual cor-
pus, and complement it with OSCAR (Ortiz Suárez
et al., 2020), and CC100 (Conneau et al., 2020a)
for low-resource languages. For a fair comparison
with monolingually pretrained baselines, we use
the same parallel data as in our downstream ma-
chine translation experiments (detailed in §3.2). In
addition, we train a separate variant (detailed be-
low) using additional parallel data from ParaCrawl
(Esplà et al., 2019), UNPC (Ziemski et al., 2016),
CCAligned (El-Kishky et al., 2020), and OpenSub-
titles (Lison and Tiedemann, 2016).3 We tokenize
all data using SentencePiece (Kudo and Richard-
son, 2018) with a joint vocabulary of 125K sub-
words. We use bilingual dictionaries from FLoRes4

(Guzmán et al., 2019) for Nepalese and Sinhala,
and MUSE5 (Lample et al., 2018) for the rest of
languages. Refer to Appendix A for more details.

Models. We use the same architecture as BART-
base (Lewis et al., 2020), totaling ∼196M param-
eters, and train for 100k steps with a batch size
of ∼520K tokens. This takes around a day on
32 NVIDIA V100 16GB GPUs. As discussed be-
fore, we train two variants of our full model: PAR-
ADISE, which uses the same parallel data as the ma-
chine translation experiments, and PARADISE++,
which uses additional parallel data. To better under-
stand the contribution of each objective, we train
two additional models without dictionary denois-
ing, which we name PARADISE (w/o dict.) and
PARADISE++ (w/o dict.). Finally, we train a base-
line system using the monolingual objective alone,
which we refer to as mBART (ours). This follows
the original mBART work (Liu et al., 2020), but
is directly comparable to the rest of our models in
terms of data and hyperparameters.

3We cap the size of each language pair to 2GB.
4https://github.com/facebookresearch/flores
5https://github.com/facebookresearch/MUSE

21

Languages En-Vi En-Tr En-Ja En-Ar En-Ne En-Ro En-Si En-Hi En-Es En-Fr
Data Source IWSLT15 WMT17 IWSLT17 IWSLT17 FLoRes WMT16 FLoRes IITB WMT13 WMT14
Size 133K 207K 223K 250K 564K 608K 647K 1.56M 15M 41M
Direction ← → ← → ← → ← → ← → ← → ← → ← → ← → ← →
Random init. 23.6 24.8 12.2 9.5 10.4 12.3 27.5 16.9 7.6 4.3 34.0 34.3 7.2 1.2 10.9 14.2 32.1 31.4 37.0 38.9
mBART (ours) 29.1 31.5 21.3 15.8 15.7 17.3 32.1 19.2 10.3 6.1 34.3 34.9 11.0 2.7 20.2 19.0 29.8 30.4 36.0 38.2

PARADISE 30.0 32.6 23.5 17.2 17.2 19.2 35.3 21.1 13.7 7.9 35.9 36.5 14.0 3.7 23.6 20.7 32.6 32.7 37.8 39.8

Table 1: Machine translation results. Random initialization numbers taken from Liu et al. (2020).

Lang. pair (En-XX) Tr Ro Si Hi Es Avg∆

mBART (ours) 15.8 34.9 2.7 19.0 30.4 20.6±0.0
PARADISE (w/o dict.) 16.8 36.2 3.2 20.5 32.4 21.8+1.2
PARADISE 17.2 36.5 3.7 20.7 32.7 22.2+1.6
PARADISE++ 19.0 37.3 4.2 20.7 33.0 22.8+2.2

Lang. pair (XX-En) Tr Ro Si Hi Es Avg∆

mBART (ours) 21.3 34.3 11.0 20.2 29.8 23.3±0.0
PARADISE (w/o dict.) 23.2 35.6 13.2 22.3 31.6 25.2+1.9
PARADISE 23.5 35.9 14.0 23.6 32.6 25.9+2.6
PARADISE++ 24.9 36.8 15.1 23.5 32.9 26.6+3.3

Table 2: Ablation results on machine translation.

3.2 Downstream Settings

Machine translation. Following Liu et al.
(2020), we evaluate our models on sentence-level
machine translation from and to English using the
following datasets: IWSLT (Cettolo et al., 2015,
2017) for Vietnamese, Japanese and Arabic, WMT
(Callison-Burch et al., 2009a,b; Bojar et al., 2016,
2017) for Spanish, French, Romanian and Turk-
ish, FLoRes (Guzmán et al., 2019) for Sinhala and
Nepalese, and IITB (Kunchukuttan et al., 2018) for
Hindi. We report performance in BLEU as detailed
in Appendix C.

Cross-lingual classification. We evaluate our
models on zero-shot cross-lingual transfer on XNLI
(Conneau et al., 2018) and PAWS-X6 (Yang et al.,
2019), where we finetune on English data and test
performance on other languages. We develop a
new approach for applying sequence-to-sequence
models for classification: feeding the sequence into
both the encoder and decoder, and taking the con-
catenation of the encoder’s <s> representation and
the decoder’s </s> representation as the input of
the classification head. We provide an empirical
rationale for this in Appendix E. We finetune all
models with a batch size of 64 and a learning rate
of 2 × 10−5 for a maximum of 100k iterations,
performing early stopping on the validation set.

6Following Hu et al. (2021), we use English, German,
Spanish, French and Chinese for PAWS-X.

4 Results

4.1 Machine Translation

As shown in Table 1, PARADISE consistently out-
performs our mBART baseline across all language
pairs. Note that these two models have seen the
exact same corpora, but mBART uses the parallel
data for finetuning only, whereas PARADISE also
uses it at the pretraining stage. This suggests that
incorporating parallel data into pretraining helps
learn better representations, which results in better
downstream performance.

Table 2 reports additional ablation results on a
subset of languages. As can be seen, removing
dictionary denoising hurts, but is still better than
our mBART baseline. This shows that both of our
proposed approaches—dictionary denoising and
bitext denoising—are helpful and complementary.
Finally, PARADISE++ improves over PARADISE,
indicating that a more balanced corpus with more
parallel data is helpful.

4.2 Cross-lingual Classification

We report XNLI results in Table 3 and PAWS-X
results in Appendix F. Our proposed approach out-
performs mBART in all languages by a large mar-
gin. To our surprise, we also observe big gains in
English. We conjecture that this could be explained
by bitext denoising providing a stronger training
signal from all tokens akin to ELECTRA (Clark
et al., 2020), whereas monolingual denoising only
gets effective signal from predicting the masked
portion. In addition, given that we are using par-
allel data between English and other languages,
PARADISE ends up seeing much more English text
compared to mBART—yet a similar amount in the
rest of languages—which could also contribute to
its better performance in this language. Finally, we
observe that all of our different variants perform
similarly in English, but incorporating dictionary
denoising and using additional parallel data both
reduce the cross-lingual transfer gap.

22

Model en zh es de ar ur ru bg el fr hi sw th tr vi avg

mBART (ours) 77.5 68.0 70.7 68.8 66.7 62.2 68.6 72.1 69.6 70.1 63.4 62.6 66.6 65.0 69.7 68.1
PARADISE 83.4 73.8 77.6 76.0 72.4 65.1 74.0 74.4 73.2 77.7 70.6 66.2 70.4 72.1 75.3 73.5
PARADISE++ (w/o dict.) 83.3 72.9 77.2 75.7 64.4 66.9 73.4 74.8 75.7 77.7 68.5 67.4 71.0 73.3 75.0 73.1
PARADISE++ 83.0 74.0 79.0 76.5 68.5 66.8 74.3 76.0 76.4 77.7 70.2 70.5 72.3 74.2 75.4 74.3

Table 3: Accuracy of zero-shot crosslingual classification on the XNLI dataset.

Model #Langs Task Params. Est. GPU Days Data (GB) XNLI PAWS-X MT

mBERT (Devlin et al., 2019)† 104 MLM 179M (0.9x) — 60 65.4 86.2 —
MMTE (Siddhant et al., 2019)† 102 Translation 375M (1.9x) — 5000 67.4 85.6 —
mT5-small (Xue et al., 2021) 101 Eq. 1 300M (1.5x) — 27000 67.5 85.8 —
mT6 (Chi et al., 2021a) 94 SC+PNAT+TSC 300M (1.5x) 40 (1.3x) 2120 64.7 86.6 —
AMBER (Hu et al., 2021) 104 MLM+TLM 179M (0.9x) 1000 (31x) 100 71.6 89.2 —
XLM-15 (Conneau and Lample, 2019)‡ 15 MLM+TLM 250M (1.3x) 450 (14x) 100 72.6 88.0 —
XLM-R-base (Conneau et al., 2020a)‡ 100 MLM 270M (1.4x) 13K (406x) 2400 73.4 87.4 —
mBART (Liu et al., 2020) 25 Eq. 1 680M (3.5x) 4.5K (140x) 2400 — — 23.5

mBART (ours) 20 Eq. 1 196M (1.0x) 32 (1.0x) 72 68.1 85.4 21.1
PARADISE 20 Eq. 1, 2, 3 196M (1.0x) 32 (1.0x) 81 73.5 89.0 23.1
PARADISE++ 20 Eq. 1, 2, 3 196M (1.0x) 32 (1.0x) 95 74.3 89.2 23.8

Table 4: Comparison with prior work. † denotes results taken from Hu et al. (2020). ‡ denotes results taken from
Hu et al. (2021). 1 GPU day = 1 day on an NVIDIA V100 GPU.

4.3 Comparison with prior work
So as to put our results into perspective, we com-
pare our models with several popular systems from
the literature. As shown in Table 4, our proposed
approach obtains competitive results despite being
trained at a much smaller scale. Just in line with
our previous results, this suggests that incorporat-
ing parallel data makes pretraining more efficient
given that we outperform XLM-R base, mT5, and
mBART despite using less data/compute/model
size. Interestingly, our method also outperforms
XLM-15, MMTE, and mT6 which also use par-
allel data, as well as AMBER, showing evidence
contrary to Hu et al. (2021)’s suggestion that us-
ing dictionaries may hurt performance. Detailed
per-language results for each task can be found in
Appendix F.

5 Related Work

Most prior work on multilingual pretraining uses
monolingual data only (Pires et al., 2019; Conneau
et al., 2020a; Song et al., 2019; Liu et al., 2020;
Xue et al., 2021). There have been several propos-
als to incorporate parallel data into encoder-only
models (Lample and Conneau, 2019; Huang et al.,
2019; Hu et al., 2021; Chi et al., 2021b), with some
approaches replacing words according to a bilin-
gual dictionary, similar to our dictionary denois-
ing objective (Conneau et al., 2020b; Chaudhary
et al., 2020; Dufter and Schütze, 2020). In contrast,
we focus on sequence-to-sequence models, which

we believe are more flexible and provide a more
natural way of integrating parallel data. In that
spirit, Siddhant et al. (2019) showed that vanilla
machine translation models are already competitive
in cross-lingual classification. Closer to our work,
Chi et al. (2021a) incorporated parallel corpora
into sequence-to-sequence pretraining by feeding
concatenated parallel sentences to the encoder and
using different masking strategies. In contrast, our
approach feeds a noised sentence into the encoder,
and tries to recover its translation in the decoder
side, obtaining better results with a similar compu-
tational budget. Concurrent to our work, Kale et al.
(2021) extended T5 to incorporate parallel corpora
using a similar approach to our bitext denoising.

6 Conclusions

In this work, we proposed PARADISE, which intro-
duces two new objectives to integrate parallel data
into sequence-to-sequence pretraining. Experimen-
tal results on machine translation and cross-lingual
classification show that PARADISE provides signifi-
cant improvements over mBART-style pretraining
on monolingual corpora, obtaining results that are
competitive with several popular models at a much
smaller scale. Given these findings, we encourage
use of parallel data in smaller-scale multilingual
pre-training work. In the future, we look to see if
our improvements also hold at a larger scale.

23

References
Mikel Artetxe, Sebastian Ruder, Dani Yogatama,

Gorka Labaka, and Eneko Agirre. 2020. A Call for
More Rigor in Unsupervised Cross-lingual Learning.
ArXiv.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Sec-
ond Conference on Machine Translation, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 131–198, Berlin, Ger-
many. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009a. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece.
Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009b. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece.
Association for Computational Linguistics.

M. Cettolo, Marcello Federico, L. Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cat-
toni, and Marcello Federico. 2015. The iwslt 2015
evaluation campaign.

Aditi Chaudhary, Karthik Raman, Krishna Srinivasan,
and Jiecao Chen. 2020. Dict-mlm: Improved multi-
lingual pre-training using bilingual dictionaries.

Zewen Chi, Li Dong, Shuming Ma, Shaohan Huang
Xian-Ling Mao, Heyan Huang, and Furu Wei.
2021a. mt6: Multilingual pretrained text-to-text
transformer with translation pairs. arXiv preprint
arXiv:2104.08692.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Sak-
sham Singhal, Wenhui Wang, Xia Song, Xian-Ling

Mao, Heyan Huang, and Ming Zhou. 2021b. In-
foXLM: An information-theoretic framework for
cross-lingual language model pre-training. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3576–3588, Online. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. arXiv:2003.10555 [cs].

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7057–7067.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Emerging
cross-lingual structure in pretrained language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 6022–6034, Online. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Philipp Dufter and Hinrich Schütze. 2020. Identifying
elements essential for BERT’s multilinguality. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4423–4437, Online. Association for Computa-
tional Linguistics.

24

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document
pairs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5960–5969, Online. Associa-
tion for Computational Linguistics.

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The
FLoRes Evaluation Datasets for Low-Resource Ma-
chine Translation: Nepali-English and Sinhala-
English. arXiv:1902.01382 [cs].

Junjie Hu, Melvin Johnson, Orhan Firat, Aditya Sid-
dhant, and Graham Neubig. 2021. Explicit Align-
ment Objectives for Multilingual Bidirectional En-
coders. arXiv:2010.07972 [cs].

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A Massively Multilingual Multi-
task Benchmark for Evaluating Cross-lingual Gener-
alization. arXiv:2003.11080 [cs].

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494,
Hong Kong, China. Association for Computational
Linguistics.

Mihir Kale, Aditya Siddhant, Noah Constant, Melvin
Johnson, Rami Al-Rfou, and Linting Xue. 2021.
nmt5 – is parallel data still relevant for pre-training
massively multilingual language models? arXiv
preprint arXiv:2106.02171.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Guillaume Lample and Alexis Conneau. 2019.
Cross-lingual Language Model Pretraining.
arXiv:1901.07291 [cs].

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît
Sagot. 2020. A monolingual approach to contextual-
ized word embeddings for mid-resource languages.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1703–1714, Online. Association for Computational
Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-

25

ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 371–376, Berlin, Germany. As-
sociation for Computational Linguistics.

Aditya Siddhant, Melvin Johnson, Henry Tsai, Naveen
Arivazhagan, Jason Riesa, Ankur Bapna, Orhan Fi-
rat, and Karthik Raman. 2019. Evaluating the cross-
lingual effectiveness of massively multilingual neu-
ral machine translation.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and
Tie-Yan Liu. 2019. MASS: Masked Sequence
to Sequence Pre-training for Language Generation.
arXiv:1905.02450 [cs].

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv:2010.11934 [cs].

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A cross-lingual ad-
versarial dataset for paraphrase identification. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3687–
3692, Hong Kong, China. Association for Computa-
tional Linguistics.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel
corpus v1.0. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3530–3534, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

26

A Data

We list data sources used for pretraining PAR-
ADISE++ in Table 9 (monolingual data) and Ta-
ble 10 (parallel data).

B Pretraining hyperparameters

We use the Adam optimizer (ε = 10−6, β =
(0.9, 0.98)), and warm up the learning rate to a peak
of 7×10−4 after 10K iterations and then proceed to
decay the learning rate with the polynomial decay
schedule up until 100K iterations. All code and ex-
periments are performed with fairseq (Ott et al.,
2019). Following Liu et al. (2020), we add an addi-
tional layer-normalization layer on top of both the
encoder and decoder to stabilize training with FP16
precision (Micikevicius et al., 2018). All models
are trained on 32 V100 16GB GPUs and takes 24
hours to finish training.

C Machine translation evaluation

Following Liu et al. (2020), we use detokenized
SacreBLEU (Post, 2018) for all languages unless
specified otherwise next. For Japanese we use
KyTea7, for Nepalese, Sinhala, and Hindi we use
Indic-NLP8, for Arabic we use the QCRI Arabic
Normalizer9,10, and for Romanian we use Moses to-
kenization and script normalization following Sen-
nrich et al. (2016); Liu et al. (2020).

D Machine Translation Finetuning

We finetune our models using the same setup as
mBART, warming up the learning rate to 3× 10−5

over 2500 iterations and then decaying with a poly-
nomial schedule. We use 0.3 dropout and label
smoothing ε = 0.2.

E Comparison of finetuning approaches

Model avg ∆

PARADISE++ (encoder-decoder) 74.3 —
decoder-only 73.8 -0.5
encoder-only 72.0 -2.3

Table 5: Ablation of finetuning methods on XNLI.

Table 5 compares our proposed finetuning ap-
proach, which combines the representations from

7http://www.phontron.com/kytea/
8https://github.com/anoopkunchukuttan/

indic_nlp_library
9https://github.com/qntfy/gomosesgo

10https://alt.qcri.org/tools/
arabic-normalizer/

both the encoder and the decoder (see §3), to using
either of them alone.11 While prior work either
minimally used the decoder if at all (Siddhant et al.,
2019; Xue et al., 2021), or only added a classifica-
tion head on top of the decoder (Lewis et al., 2020),
we find that combining them both works best.

F Additional results

We list detailed results by language in this sec-
tion with results on XNLI in Table 8, PAWS-X
in Table 6, and our machine translation ablation
(with mBART (Liu et al., 2020) results included)
in Table 7. We note that on XNLI that mBART
underperforms XLM-R-large, however that may be
attributed to the fact that XLM-R was trained for
much longer rather than the architectural design.

Model de en es fr zh Avg

mBERT 85.7 94.0 87.4 87.0 77.0 86.2
MMTE 85.1 93.1 87.2 86.9 75.9 85.6
mT5-small 86.2 92.2 86.1 86.6 77.9 85.8
AMBER 89.4 95.6 89.2 90.7 80.9 89.2
XLM-15 88.5 94.7 89.3 89.6 78.1 88.0
XLM-100 85.9 94.0 88.3 87.4 76.5 86.4
XLM-R-base 87.0 94.2 88.6 88.7 78.5 87.4
XLM-R-large 89.7 94.7 90.1 90.4 82.3 89.4

PARADISE++ 89.1 94.3 89.6 90.6 82.3 89.2

Table 6: Accuracy of zero-shot cross-lingual classifica-
tion on PAWS-X. Bold numbers highlight the highest
scores across languages on the existing models (upper
part) and PARADISE variants (bottom part). We source
baseline results from Hu et al. (2020, 2021); Xue et al.
(2021).

11For decoder-only, we feed the input sequence to both the
encoder and the decoder, but add a classification head on top
of the decoder only, following Lewis et al. (2020).

27

Lang. Pair En-Tr En-Ro En-Si En-Hi En-Es Tr-En Ro-En Si-En Hi-En

mBART (ours) 15.8 34.9 2.7 19.0 30.4 21.3 34.3 11.0 20.2
PARADISE (w/o dict.) 16.8 36.2 3.2 20.5 32.4 23.2 35.6 13.2 22.3
PARADISE 17.2 36.5 3.7 20.7 32.7 23.5 35.9 14.0 23.6
PARADISE++ 19.0 37.3 4.2 20.7 33.0 24.9 36.8 15.1 23.5

mBART 17.8 37.7 3.3 20.8 34.0 22.5 37.8 13.7 23.5

Table 7: Ablation results on machine translation. Note that mBART is trained with 140x more compute and 3.5x
more parameters.

Models en zh es de ar ur ru bg el fr hi sw th tr vi avg

mBERT 80.8 67.8 73.5 70.0 64.3 57.2 67.8 68.0 65.3 73.4 58.9 49.7 54.1 60.9 69.3 65.4
MMTE 79.6 69.2 71.6 68.2 64.9 60.0 66.2 70.4 67.3 69.5 63.5 61.9 66.2 63.6 69.7 67.5
mT5-small 79.6 65.8 72.7 69.2 65.2 59.9 70.1 71.3 68.6 70.7 62.5 59.7 66.3 64.4 66.3 67.5
AMBER 84.7 71.6 76.9 74.2 70.2 61.0 73.3 74.3 72.5 76.6 66.2 59.9 65.7 73.2 73.4 71.6
XLM-15 (MLM+TLM) 84.1 68.8 77.8 75.7 70.4 62.2 75.0 75.7 73.3 78.0 67.3 67.5 70.5 70.0 73.0 72.6
XLM-100 82.8 70.2 75.5 72.7 66.0 59.8 69.9 71.9 70.4 74.3 62.5 58.1 65.5 66.4 70.7 69.1
XLM-R-base 83.9 73.6 78.3 75.2 71.9 65.4 75.1 76.7 75.4 77.4 69.1 62.2 72.0 70.9 74.0 73.4
mBART 87.7 76.4 81.5 79.8 75.5 — 78.9 — — 80.6 73.0 — — 76.1 77.4 —
XLM-R-large 88.7 78.2 83.7 82.5 77.2 71.7 79.1 83.0 80.8 82.2 75.6 71.2 77.4 78.0 79.3 79.2

mBART (ours) 77.5 68.0 70.7 68.8 66.7 62.2 68.6 72.1 69.6 70.1 63.4 62.6 66.6 65.0 69.7 68.1
PARADISE (w/o dict.) 83.3 72.9 77.2 75.7 64.4 66.9 73.4 74.8 75.7 77.7 68.5 67.4 71.0 73.3 75.0 73.1
PARADISE 83.0 74.0 79.0 76.5 68.5 66.8 74.3 76.0 76.4 77.7 70.2 70.5 72.3 74.2 75.4 74.3

Table 8: Accuracy of zero-shot crosslingual classification on the XNLI dataset. Bold numbers highlight the highest
scores across languages on the existing models (upper part) and PARADISE variants (bottom part). Results for
previous work are sourced from Hu et al. (2020, 2021); Xue et al. (2021).

Language Data source Data size (GB)

En Wiki 14G
De Wiki 5.9G
Fr Wiki 4.5G
Es Wiki 3.7G
Ja Wiki 3.0G
Ru Wiki 6.2G
Ar Wiki 1.7G
Ne CC100 3.8G
Si CC100 3.7G
Ro Wiki+WLM 2.5G
Zh Wiki+WLM 4.4G
El Wiki+WLM 2.9G
Eu Wiki+OSCAR 0.6G
Bg Wiki+OSCAR 2.5G
Hi Wiki+OSCAR 2.3G
Sw Wiki+CC100 1.1G
Th Wiki+OSCAR 2.4G
Ur Wiki+OSCAR 1.9G
Vi Wiki+OSCAR 2.8G
Tr Wiki+OSCAR 2.4G
Total — 72G

Table 9: Monolingual Data Statistics. Wiki refers to
Wikipedia, and WLM refers to the News Crawl data
from CommonCrawl used in WMT.

Language Data source Data size (GB) # Pairs

Ar UNPC 2.0G 5554595
Bg ParaCrawl 1.9G 6470710
De ParaCrawl 2.0G 9685483
El ParaCrawl 2.0G 6676200
Es ParaCrawl 2.0G 9138031
Eu OPUS 0.1G 585210
Fr ParaCrawl 2.0G 8485669
Hi IITB 0.4G 1609682
Ja JParaCrawl 2.0G 6366802
Ne CCAligned 0.2G 487157
Ro ParaCrawl 1.3G 6160525
Ru ParaCrawl 1.6G 5377911
Si CCAligned 0.2G 619730
Sw OPUS 0.2G 699719
Th OpenSubtitles 0.4G 3281533
Tr OpenSubtitles 2.0G 32077240
Ur CCAligned 0.3G 1371930
Vi OpenSubtitles 0.2G 3505276
Zh UNPC 2.0G 7706183
Total — 23G 126882448

Table 10: Parallel Data Statistics

28

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 29 - 38
May 26, 2022 ©2022 Association for Computational Linguistics

When does CLIP generalize better than unimodal models?
When judging human-centric concepts

Romain Bielawski
ANITI, UT & CerCo, CNRS, France
romain.bielawski@univ-tlse3.fr

Tim Van De Cruys
Université de Louvain, Belgique
tim.vandecruys@kuleven.be

Benjamin Devillers
ANITI, UT & CerCo, CNRS, France
benjamin.devillers@univ-tlse3.fr

Rufin VanRullen
ANITI, UT & CerCo, CNRS, France

rufin.vanrullen@cnrs.fr

Abstract

CLIP, a vision-language network trained with
a multimodal contrastive learning objective on
a large dataset of images and captions, has
demonstrated impressive zero-shot ability in
various tasks. However, recent work showed
that in comparison to unimodal (visual) net-
works, CLIP’s multimodal training does not
benefit generalization (e.g. few-shot or trans-
fer learning) for standard visual classification
tasks such as object, street numbers or ani-
mal recognition. Here, we hypothesize that
CLIP’s improved unimodal generalization abil-
ities may be most prominent in domains that in-
volve human-centric concepts (cultural, social,
aesthetic, affective...); this is because CLIP’s
training dataset is mainly composed of im-
age annotations made by humans for other hu-
mans. To evaluate this, we use 3 tasks that
require judging human-centric concepts: sen-
timent analysis on tweets, genre classification
on books or movies. We introduce and publicly
release a new multimodal dataset for movie
genre classification. We compare CLIP’s visual
stream against two visually trained networks
and CLIP’s textual stream against two linguis-
tically trained networks, as well as multimodal
combinations of these networks. We show that
CLIP generally outperforms other networks,
whether using one or two modalities. We con-
clude that CLIP’s multimodal training is bene-
ficial for both unimodal and multimodal tasks
that require classification of human-centric con-
cepts.

1 Introduction

Vision-language pretraining in neural networks is
gaining popularity due to the growing interest in
multimodal tasks such a Visual Question Answer-
ing or Image Captioning (Anderson et al., 2017;
Lu et al., 2019; Li et al., 2019; Singh et al., 2019),
but also to the availability of online resources that
allow to build large-scale training datasets without
manual annotations (Radford et al., 2021; Jia et al.,

2021). In theory, training a model on multimodal
data should help improve its representation of data
from each of the modalities. For an image-text
model, for instance, the image features could be
enriched by the abstraction of the linguistic data
–the semantic grounding property, and inversely,
the linguistic features could gain informativeness
through visual grounding (Harnad, 1990).

Unfortunately, this does not always happen in
practice. Recently, Devillers et al. (2021) evaluated
the visual generalization abilities of CLIP (Rad-
ford et al., 2021), a popular network trained with a
contrastive learning objective on more than 400M
image-caption pairs scraped from the web, and
other multimodal models (Sariyildiz et al., 2020;
Desai and Johnson, 2020). They showed that for
standard object classification tasks (e.g. digit, fash-
ion item or natural image classification), multi-
modal networks like CLIP underperformed com-
pared to other unimodal (vision-only) models like
BiT-M (Kolesnikov et al., 2019) in transfer learn-
ing, few-shot learning and unsupervised learning
settings. Here, we revisit this question using
datasets focusing on more “human-centric” con-
cepts.

Human learning generally involves interacting
with multimodal data. Thus, one could expect that
CLIP’s representations of images and text should
be somewhat closer to human representations than
those learned by unimodal models. Moreover,
given that CLIP was trained on image-caption pairs
from a variety of sources from the Internet (in-
cluding social networks), we can assume that an
important part of its training captions was written
by humans for other humans. This is different from
standard vision datasets, in which labels or annota-
tions are sometimes human-generated (e.g. through
Amazon’s Mechanical Turk), but always produced
for machine-learning purposes. Again, this differ-
ence should bring CLIP’s representations closer to
human ones when compared to unimodal models.

29

Thus, there should exist at least some specific tasks
for which CLIP’s multimodal training provides ad-
vantages over unimodal models. As an example,
consider the task of assigning a genre to a movie
based on its poster and title. This requires retriev-
ing fine-grained information about, among other
things, the artistic, emotional or stylistic aspect of
an image or a piece of text (or both). This can only
be properly achieved if the model’s training offered
appropriate exposure to such human-centric con-
cepts. Here, we use the term human-centric when-
ever a concept refers to cultural, social, aesthetic
and/or affective components of the world.

We thus make the hypothesis that CLIP should
perform better than unimodal models in general-
ization tasks where human-centric concepts are in-
volved. We evaluate this hypothesis on three tasks
involving such human-centric concepts: sentiment
analysis on tweets; genre classification of books;
genre classification of movies. All tasks can be
performed based on visual data (images), text data
(tweet, book or movie title, movie plot summary),
or both. For the movie genre classification, we
introduce a new, large-scale multimodal dataset
obtained by a crawling on The Movie Database
(TMDb). As detailed below, we find that CLIP
outperforms unimodal models in both vision and
text-based classification, as well as pairwise com-
binations of these unimodal models in the case
of multimodal (image+text) classification. Conse-
quently, CLIP establishes a new SOTA on these
tasks.

We provide our code for reproducibility1.

2 Models

We compare CLIP (trained contrastively on both
images and text) against several unimodal models.
For fairer comparisons, all the vision models are
ResNet50 (He et al., 2015) based architectures and
all the text models are transformer encoders.

CLIP was trained using a contrastive loss on a
large (400M) set of image-text pairs. The training
of CLIP consists in creating a joint (multimodal)
embedding space. For one batch of image-text
pairs, the objective of the network is that the embed-
ding of an image (through a ResNet50 backbone,
here simply referred to as CLIP) and the embed-
ding of its text description (through a transformer
backbone, here referred to as CLIP-T) are as close
as possible, while the embedding of an image and

1Link not displayed here to preserve anonymity

the embeddings of text descriptions of other images
in the batch are as far as possible. After training,
the text encoder and the image encoder can be used
as single-modality encoders.

For unimodally trained vision networks, we use
two pretrained ResNet50-based models: the stan-
dard ResNet50 that was trained for classification
on ImageNet-1K (here referred to as RN50), and
BiT-M that was trained on ImageNet-22K (Deng
et al., 2009).

For unimodal text embeddings, we test two stan-
dard text encoders against CLIP’s: Bert-large and
Bert-base (Devlin et al., 2018). We use the Bert sen-
tence transformer version (Reimers and Gurevych,
2019), based on Bert’s [CLS] token and fine-tuned
on SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018). Among the transformer
encoders provided in the HuggingFace (Hug) repos-
itory at the time our experiments were conducted,
these were the two best-performing across several
text classification tasks, and are now still close to
SOTA. These versions of Bert-large and Bert-base
are fine-tuned on downstream text classification
tasks, but we refer to them in this paper simply as
Bert-large and Bert-base.

Although all 3 text encoders are transformer en-
coders (Vaswani et al., 2017), they do not have
the same number of parameters. Bert-large has
300M, Bert-base has 110M, and CLIP-T has 80M
parameters. This gives a structural disadvantage to
CLIP-T, which only strengthens our conclusions, as
we found CLIP-T to be the overall best-performing
text model.

We consider both unimodal tasks (classification
of images or text), as well as multimodal tasks (clas-
sification of image-text pairs). When performing a
unimodal task, the encoding of the image (resp. the
text) is used directly by the corresponding classifier.
When performing a multimodal task (image-text
based classification), the encoding of an image by
a visual model and the encoding of the correspond-
ing text by a textual model are simply concatenated
to create the multimodal vector that is used for the
classification.

For BiT-M and RN50, we use the last layer out-
put before the classification head used for their
training, which counts 2048 dimensions. For CLIP,
we use the latent vector in the multimodal space
generated by the visual pipeline, counting 1024
dimensions; for CLIP-T, the one generated by the
textual pipeline (1024 dimensions); and for the

30

two Bert models, we use the vectors directly pro-
vided by the Sentence Transformer pipelines (1024-
dimensional for Bert-large and 768-dimensional for
Bert-small).

Figure 1: An original cover from the Book Cover dataset
(left) and the associated masked cover (right). The title,
the name of the author and parts of the text have been
blacked out by the EAST algorithm, while the white text
was incompletely detected, but subsequently blurred
by the second algorithm. This sample belongs to the
“Children’s books” genre. Its title is: “Frances Audio
Collection CD (I Can Read Level 2)”. This image is
copyright from Amazon.com, Inc. and used here for
academic purpose only.

3 Datasets

We evaluate the models on three datasets composed
of labelled image and text data, that can be inputted
as pairs for multimodal classification tasks, or used
as single inputs for unimodal classification tasks.
The language part of all these datasets is in English.

3.1 MVSA

MVSA or “Multi-View Sentiment Analysis” (Niu
et al., 2016) is a dataset of pairs of images and
associated text from Twitter, labelled with three
possible sentiments (Positive, Neutral or Negative).
Each image and each piece of text has three labels
given by three different users, adding up to 6 labels
for each image-text pair. We assign a score for
each label (Positive: 2, Neutral: 1, Negative: 0)
and we compute the rounded average score for
each pair. By doing so, we get only one label per
image-text pair that we can then use for single-label
classification across modalities.

3.2 Book covers

The Book Covers dataset was introduced by Iwana
et al. (2017). It consists of 57k images of book cov-
ers scraped from the Amazon website, with their
title as text information. Each pair of cover+title is
labelled with one genre among 30 possibilities. A

cleaner version of the dataset, removing one genre
and grouping two similar ones, with only 28 classes
and 55.1k images, was later introduced by Lucieri
et al. (2020). This is the dataset we use for our
experiments.

3.3 Plotster and TMDb

We introduce and publicly release the Plot-
ster dataset2, obtained by crawling TMDb
(www.themoviedb.org) using their provided API. It
consists of 207,902 triplets of {poster, title, plot}
(split in 189,185 train samples and 18,717 test
samples), with each having several potential la-
bels among 19 genres. A representative sample
from this dataset is shown in Figure 2. Typically,
each movie has between 1 and 6 genres, with an
average of 1.7. Each poster is an RGB image of
900 × 600 pixels (height×width). Plots have an
average length of 310.8 characters, and titles an
average length of 18.6 characters. For text input, in
unimodal or multimodal settings, we can choose ei-
ther plot or title. The results of both configurations
were computed and are displayed in this paper.

Figure 2: A data sample from Plotster. The image
displayed here is property of The Walt Disney Company
/ Marvel Entertainment and under the CC BY-SA 2.0
license.

A previous crawling on TMDb had been made
by Mangolin et al. (2020). It contained only 10,594
movies, as the authors aimed to retrieve other
pieces of data such as trailer video clips and subti-
tles. They had not included titles in their dataset.
From these movies, 10,554 (i.e., 99.6%) can also
be found in Plotster. For comparison, we isolated
the posters and plots from this dataset, and verified
that our results obtained on the full Plotster were
still valid on this subset.

In another control experiment, we verified that
CLIP’s improved performance on the Plotster

2Link not displayed here to preserve anonymity

31

None ∅ 63.33 ± 0.18 64.02 ± 0.74 64.60 ± 0.30
RN50 55.17 ± 0.37 63.93 ± 0.36 63.92 ± 0.55 64.13 ± 0.37
BiT-M 60.0 ± 1.46 61.93 ± 2.05 63.16 ± 2.82 62.77 ± 0.72
CLIP 63.07 ± 0.23 66.03 ± 0.15 66.03 ± 0.6 65.58 ± 0.38

None Bert-base Bert-large CLIP-TVision
Text

Table 1: Accuracies for the MVSA dataset. CLIP is the best vision model, CLIP-T the best text model. All text
models perform similarly in both unimodal and multimodal setting, except when paired with CLIP (which yields
the best performance of each column).

∅ 54.70 ± 0.25 54.92 ± 0.43 57.28 ± 0.27

RN50 10.04 ± 4.33 54.85 ± 0.52 55.53 ± 0.39 57.20 ± 0.49
BiT-M 29.33 ± 0.92 50.11 ± 0.57 50.49 ± 0.59 52.60 ± 0.46
CLIP 53.75 ± 0.23 60.38 ± 0.34 60.62 ± 0.27 60.66 ± 0.26

RN50 10.41 ± 2.43 54.26 ± 0.25 55.11 ± 0.17 57.26 ± 0.29
BiT-M 24.87 ± 0.99 48.93 ± 0.77 50.09 ± 0.71 52.08 ± 0.59
CLIP 33.04 ± 0.21 57.86 ± 0.45 58.47 ± 0.40 59.54 ± 0.28

None Bert-base Bert-large CLIP-T

None

Standard

Masked

Vision
Text

Table 2: Accuracies for the Book Cover dataset (standard images on top, masked images on the bottom). CLIP and
CLIP-T are the best performing models of each unimodal test, and together provide the best multimodal combination
for both standard and masked images. Masks diminish the performance of all models (and their combinations), but
the advantage for CLIP (and CLIP-T) remains.

dataset was not a result of specific movie posters,
plots and titles from TMDb having been included
in CLIP’s training (as the training set is not public,
there is no direct way to determine this). For our
control experiment, we crawled TMDb again, look-
ing for movies with a release date later than January
5, 2021, date of the OpenAI blog post introducing
CLIP. We thus assume that most of this data could
not have been included in CLIP’s training dataset.
The new crawl resulted in 20,280 movies, only 93
of which had been present in the original Plotster
dataset. We tested on these 20,280 new samples
the classifiers trained on Plotster (only in unimodal
settings), and report the corresponding results.

3.4 Masking

CLIP has been found to have an ability to “read”
text inside images (Goh et al., 2021). As most of
the images in the Book Cover dataset and in Plot-
ster have text on them, and as this text could be in-
formative about the genre of the book or movie, we
worried that this ability could give CLIP an unfair
advantage over other vision models. To minimize
this possibility, we created alternative versions of
these two datasets by applying a masking procedure
on the images (see Figure 1). We used the EAST
algorithm (Zhou et al., 2017) to generate bound-
ing boxes around text; if the score given to a text

detection reached a certain threshold, a black rect-
angle was applied over the corresponding bounding
box. On top of that, a second algorithm detects the
remaining small white text using a thresholding
method, a saturation filter and a size filter, and then
does a Telea inpainting (Telea, 2004) to remove
it. On 10 randomly selected posters, we verified
that this algorithm masked or blurred 84% of the
readable characters. It masked or blurred 95% of
them on 10 randomly selected book covers as well.

The results on the datasets with masks are re-
ported along with those of the originals.

4 Results

To compare the generalization capabilities of our
text, vision, and multimodal models, we focus on
transfer learning and few-shot learning settings.

4.1 Transfer learning

Our first experiment is transfer learning. We use
the pretrained networks (see Section 2) with frozen
weights as encoders, and train a new classification
head for each of our datasets in unimodal or multi-
modal settings.

For transfer learning in single-label classification
(sentiment on MVSA, book genre), we plug on top
of the frozen feature vector encoder one dense layer
(ReLu activations) bringing the dimensions down

32

Bert-base Bert-large CLIP-T Bert-base Bert-large CLIP-T

∅ .314 ± .01 .323 ± .01 .397 ± .00 .582 ± .00 .599 ± .01 .612 ± .00

RN50 .090 ± .01 .338 ± .01 .363 ± .01 .393 ± .02 .578 ± .01 .599 ± .01 .599 ± .01
BiT-M .415 ± .01 .490 ± .01 .499 ± .01 .507 ± .01 .625 ± .01 .637 ± .01 .631 ± .01
CLIP .526 ± .01 .559 ± .01 .558 ± .01 .593 ± .01 .672 ± .00 .683 ± .00 .687 ± .00

RN50 .070 ± .01 .335 ± .02 .352 ± .01 .383 ± .02 .576 ± .01 .597 ± .01 .596 ± .01
BiT-M .372 ± .00 .457 ± .02 .480 ± .01 .490 ± .01 .617 ± .01 .631 ± .01 .621 ± .01
CLIP .449 ± .01 .525 ± .01 .534 ± .01 .564 ± .00 .658 ± .00 .667 ± .00 .676 ± .00

None
Title Plot

None

Standard

Masked

Vision
Text

Table 3: f1-scores for the Plotster dataset. CLIP is the best model in vision, CLIP-T the best in text whether titles or
plots are given as input, and CLIP+CLIP-T is the best multimodal combination in all cases. The masking doesn’t
affect the advantage for CLIP.

to 256, and then another dense layer (softmax ac-
tivation) for the classification. We then train only
the weights of these 2 layers on the classification
task with a Cross-Entropy Loss; therefore the net-
work learns to output a probability density over the
classes.

For multi-label classification (movie genres) the
loss is a Binary Cross-Entropy Loss, and therefore
the second dense layer outputs a number between
0 and 1 for each class. As the ground-truth label
vector for one sample is an 19-dimensional one-hot
vector, we round the 19-dimensional prediction of
the network to get a binary predicted label vector.
A f1-score (Pedregosa et al., 2011) comparing the
predicted label vector to the ground-truth vector is
reported, as raw accuracy is not a reliable measure-
ment for multi-label classification. The f1-score is
computed for each movie, and subsequently aver-
aged over the test set of each dataset. For f1-scores,
as for accuracy, the higher the better.

Tables 1 and 2 show the results on the single-
label datasets: MVSA and Book Cover. The first
column corresponds to the result of the vision-only
experiment, the first line to those of the text-only
experiments, and the other cells display the results
of the multimodal ones. Table 3 shows the results
for the multi-label dataset (Plotster). In all tables,
the best vision-only performance is highlighted
in bold, the best text-only is underlined and the
best multimodal one is both underlined and bold.
The standard deviation is calculated over five ex-
periments with different random seeds and random
initialization of the weights of the classifiers.

On MVSA (Table 1), CLIP is the best perform-
ing vision-only model and CLIP-T the best text-
only model. The best multimodal combinations
are CLIP+Bert-base and CLIP+Bert-large, with

CLIP+CLIP-T near the same level (less than 0.5
percentage point behind). This is not unexpected,
as CLIP-T counts much fewer parameters than Bert-
base or Bert-large (see section 2).

For the Book Cover dataset (Table 2), CLIP is
by far the best performing vision model, both with
the standard covers and with the masked covers
as input. The difference between CLIP’s accu-
racy (53.8%) and the other two (RN50: 10.0%;
BiT-M: 29.3%) remains high in the masked con-
figuration (with CLIP at 33.0% and the other two
below 25%), even though CLIP has lost the ability
to read the text on the covers. This indicates that
CLIP’s reading ability is not the sole explanation
for its advantage over vision-only models. CLIP-T
is again the best text-only model. Here, the best
multimodal combination is CLIP+CLIP-T for both
standard and masked configurations. Finally, com-
pared to previously established SOTA performance
on the Book Cover dataset by Lucieri et al. (2020),
CLIP easily beats the previous visual SOTA (27.8
% accuracy), CLIP-T the previous textual SOTA
(55.6%), and CLIP+CLIP-T the previous bimodal
SOTA (55.7%).

Concerning our new Plotster dataset (Table 3),
similar conclusions emerge. In vision-only condi-
tions, RN50 performs relatively poorly; in the stan-
dard dataset, CLIP largely outperforms BiT, and
this difference decreases but remains in the masked
dataset. In text-only conditions, CLIP-T is the best
model, both with titles and plots as input. Finally,
in the multimodal settings, CLIP+CLIP-T is al-
ways the best-performing combination, whether
using standard or masked images, title or plot as
textual inputs. As before, the prevalence of CLIP in
all task settings, even when text has been removed
from the movie posters, indicates that its superior-

33

ity in our movie genre transfer learning task is not
solely due to its reading ability. We surmise that
this advantage reflects a form of semantic ground-
ing resulting from CLIP’s multimodal training.

We also tested CLIP, CLIP-T and their combi-
nation on a subset of Plotster corresponding to the
dataset of Mangolin et al. (2020), in order to com-
pare with previous SOTA values. We found that
CLIP beats the previously established visual SOTA
(f1-score of 0.603 against 0.409), CLIP-T the tex-
tual SOTA (f1-score of 0.589 against 0.488) and
CLIP+CLIP-T the bimodal SOTA (0.670 against
0.628).

In a separate control experiment, we tested all
our models (trained on the entire Plotster training
set) on a new set of movies, all released after Open-
AI’s initial blogpost introducing the CLIP model.
On this new test set, CLIP’s f1-score changes from
0.526 to 0.439, BiT’s goes from 0.415 to 0.318
and RN50’s from 0.090 to 0.020. CLIP-T’s (with
title as text input) goes from 0.397 to 0.276, Bert-
large from 0.323 to 0.237 and Bert-base from 0.314
to 0.229. The general diminution of the f1-score
across all networks is probably due to the fact
that features trained to classify older movies do
not work equally well when they are applied to
more recent movies. Nevertheless, CLIP and CLIP-
T remain the top-performing models; as it is un-
likely that these recent movie posters and captions
had been included in CLIP’s training dataset, we
conclude that CLIP’s high transfer-learning perfor-
mance on Plotster is not a consequence of prior
exposure to these stimuli, but a true form of gener-
alization.

In general, we see that in all the unimodal set-
tings, CLIP outperforms the other vision models,
and CLIP-T the other text models. This is true,
even though CLIP has roughly the same number of
parameters than RN50 or BiT-M, and fewer dimen-
sions in its latent space (and thus, less parameters in
its classifier head). Similarly, CLIP-T counts much
fewer parameters than Bert-base or Bert-large (al-
though it has a higher-dimensional latent space
than Bert-small). In most of the multimodal set-
tings, changing from one visual model to CLIP or
from one textual model to CLIP-T improves per-
formance (the only exceptions are for CLIP-T on
MVSA and on Plotster with plots as text inputs).
The best multimodal models always involve CLIP,
and also involve CLIP-T in all cases except MVSA.
This makes the CLIP + CLIP-T combination the

best overall multimodal model in our experiments.

4.2 Few-shot learning
The second experiment we conduct is a visual few-
shot learning task: we measure test classification
accuracy based on exposure to a small number
of randomly chosen training samples (or “proto-
types”) from each class. We can thus compare the
results for our datasets with those of Devillers et al.
(2021), who also measured visual few-shot learning
performance.

In their paper, Devillers et al. (2021) used a sin-
gle prototype vector for each class, obtained by av-
eraging the latent representation of the N randomly
drawn training samples for that class. Here, we pre-
fer to retain all N individual samples as prototypes,
and use a 1-nearest-neighbor (1-NN) classifier (Pe-
dregosa et al., 2011) to classify the new vectors.
We verified that this method, when applied to the
same datasets as in (Devillers et al., 2021), does not
alter their conclusion (see the first plot of Figure 3).
To select the class prototypes of Plotster (which is
a multiclass dataset), we randomly choose movies
with a given class label. For example, a movie with
genres “adventure” and “action” could be randomly
chosen as a prototype of either genre. Moreover,
when predicting the genres of a movie using the
1-NN classifier, we predict all the genres of the
closest prototype.

Figure 3 reports the few-shot accuracy on the
Book Covers and MVSA datasets as well as the
f1 score for the Plotster datasets. Contrary to the
conclusion of Devillers et al. (2021) using standard
visual datasets (see Figure 3, left), our results show
a clear advantage to CLIP in our more “human-
centric” visual tasks, even when masks are applied.
For MVSA, the networks required more samples
(between 20 and 100) to reach above-chance accu-
racy than for the other datasets (that use 1 to 10
samples). In that specific case, the three models are
more difficult to distinguish, but CLIP still appears
better than the other two visual models.

4.3 Summary
In the visual domain, CLIP systematically outper-
forms the unimodal vision models in transfer learn-
ing (Tables 1-3) and in visual few-shot learning
(Figure 3), despite having a smaller embedding
space than the other two ResNet50-based models.
Part of CLIP’s superiority may be due to its abil-
ity to read, but the advantage remains when text is
removed from the images. This conclusion goes

34

Figure 3: Few-shot learning accuracy (vision-only) over single label datasets (Book Covers, MVSA) and f1-score
over the multilabel Plotster datasets. The leftmost panel reports average accuracy on 6 standard visual datasets used
in Devillers et al. (2021) – namely CIFAR10, CIFAR100, CUB, FashionMNIST, MNIST and SVHN. Accuracy
was recomputed using the same method as for our datasets; the conclusions are identical to those of Devillers et al.
(2021): CLIP does not perform better than RN50 or BiT in this few-shot learning setting. On the contrary, for our
datasets CLIP outperforms the two other vision models. The advantage is reduced but still present when masks are
applied.

against the observations of Devillers et al. (2021)
using standard visual datasets (including SVHN, a
digit reading dataset), where CLIP was never bet-
ter (and often slightly worse) than other ResNet50
based models, including RN50 and BiT-M. We
explain this difference by the nature of the classifi-
cation performed: our tasks involve human-centric
concepts, as defined earlier.

In the text domain, CLIP-T, despite having been
trained with fewer parameters than the other two
transformers (Bert-small and Bert-large), is sys-
tematically the best performing model in transfer
learning.

Across seven multimodal settings (MVSA
dataset; Book Covers dataset [with / without
masks]; Plotster with [titles / plots] × [with / with-
out masks]), CLIP+CLIP-T was the best multi-
modal combination in six cases. In the remaining
case (MVSA), it was a tie between CLIP+Bert-
large and CLIP+Bert-small (two language models
that count many more parameters than CLIP-T).

We think that the semantic grounding provided
by linguistic inputs when training CLIP’s visual
stream, and respectively, the visual grounding pro-
vided by image features when training the CLIP-T
language model, shaped their latent space in a way
that makes it possible to better grasp the human-
centric components of an image or a text.

5 Discussion and conclusion

CLIP’s generalization abilities were originally de-
scribed in the context of zero-shot learning (Rad-
ford et al., 2021), but they may also extend to other
settings, including transfer learning and few-shot

learning. Past work has revealed that this is not
always the case (Devillers et al., 2021). Consider-
ing the latent representations learned by CLIP may
help us better understand when multimodal train-
ing does or does not benefit generalization abilities,
continuing the work of Hossain et al. (2019). In our
case, it appears that one of the domains where the
improvement is most significant is when human-
centric concepts are being judged.

During their joint contrastive training, CLIP and
CLIP-T have learned to extract common informa-
tion between image and text modalities, so that the
two streams would result in similar embedding vec-
tors. This means that the representation of text in
CLIP-T has been enriched with visual data, and
symmetrically, that the representation of images in
CLIP has been improved by semantic or linguistic
enrichment. This is what is collectively referred
to as the “semantic grounding” property (Harnad,
1990; Bender and Koller, 2020). However, another
consequence of this multimodal contrastive train-
ing is that when learning a common ground be-
tween modalities, some relevant information could
be lost. For text, what cannot be directly linked to
images (including grammatical or syntactic proper-
ties); and for images, what is not directly relevant to
the text description (including fine-grained visual
details that are rarely mentioned in the correspond-
ing caption). This information loss might be the
reason why CLIP was found to perform worse than
standard vision-only models in a unimodal setting
with standard visual datasets (Devillers et al., 2021).
For the same reason, one could actually expect that
in a multimodal setting, the combination of CLIP’s

35

vision and text streams (CLIP+CLIP-T) could lead
to worse performance than other combinations (e.g.
RN50+Bert). The unimodal networks are trained to
capture the relevant features of their modality, and
when combined, could cover the multimodal fea-
ture space more fully than CLIP, a network trained
to discard information that is not redundant across
modalities. Our results show that, at least in our
human-centric classification tasks, this limitation
was not consequential: CLIP, CLIP-T and their
combination often performed optimally. This may
be because human-centric information is particu-
larly well captured by features expressed in both
images and text, rather than in each modality in-
dependently. On the other hand, this same reason-
ing could explain why CLIP+Bert combinations
performed slightly better than CLIP+CLIP-T on
MVSA: Bert may have provided additional infor-
mation not captured by CLIP, which was lacking
in CLIP-T because of their redundant embeddings
(or, this might simply be due to the fact that Bert
has many more parameters than CLIP-T).

Our suggestion that CLIP (and CLIP-T) per-
form particularly well when judging human-centric
concepts resonates with recent findings relating
CLIP’s representations to human brain represen-
tations. Goh et al. (2021) reported that some arti-
ficial neurons in CLIP’s visual stream (but not in
standard visual models like Inception or ResNet)
are systematically activated by specific “concepts”
such as a particular person, emotion, country, re-
ligion, etc. Furthermore, these neurons could be
equally activated by visual features (e.g., a photo-
graph or drawing of the person’s face) or by writ-
ten text (e.g., the person’s name). The authors
related this multimodal invariance to properties of
specific biological neurons found in the human hip-
pocampus and temporal medial lobe, called “con-
cept cells”: these cells would also systematically
activate when presented with a picture, drawing or
written word representing a specific concept, such
as a photograph of the actress Jennifer Aniston
or her written name (Quiroga et al., 2005; Reddy
and Thorpe, 2014). Indeed, more recently Choksi
et al. (2021) compared brain fMRI representations
in the human hippocampus with the patterns of
representations measured in various vision models.
They found that CLIP and other networks trained
with multimodal objectives were more similar to
human hippocampus representations than standard
vision models (including RN50 and BiT-M). This

could explain why a multimodal network like CLIP
performs better when judging “human-centric con-
cepts”.

To conclude, we think that it is crucial to inves-
tigate the specific domains in which a multimodal
training such as CLIP’s can (or cannot) improve
generalization. Our work indicates that multimodal-
ity will be key for developing algorithms designed
for human-centric tasks (even for unimodal tasks)
such as detecting emotions, analyzing personality,
conducting a conversation or, more generally, when
human-machine interactions are involved.

6 Acknowledgements

All book cover images and book titles are copyright
Amazon.com, Inc. The display of the images are
transformative and are used as fair use for academic
purposes.

All posters displayed here are property of The
Walt Disney Company / Marvel Entertainment and
under the CC BY-SA 2.0 license.

This research was supported by ANITI ANR
grant ANR-19-PI3A-0004 and COCOBOTS ANR-
DLR bilateral French-German project ANR-21-
FAI2-0005.

References
Huggingface sentence transformer repos-

itory. https://huggingface.co/
sentence-transformers. Accessed: 2022-
02-21.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2017. Bottom-up and top-down attention for image
captioning and VQA. CoRR, abs/1707.07998.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Bhavin Choksi, Milad Mozafari, Rufin Vanrullen, and
Leila Reddy. 2021. Multimodal neural networks bet-
ter explain multivoxel patterns in the hippocampus.
In Neural Information Processing Systems (NeurIPS)

36

conference: 3rd Workshop on Shared Visual Rep-
resentations in Human and Machine Intelligence
(SVRHM 2021).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Karan Desai and Justin Johnson. 2020. Virtex: Learn-
ing visual representations from textual annotations.
CoRR, abs/2006.06666.

Benjamin Devillers, Bhavin Choksi, Romain Bielawski,
and Rufin VanRullen. 2021. Does language help
generalization in vision models? In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 171–182, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Gabriel Goh, Nick Cammarata †, Chelsea Voss †,
Shan Carter, Michael Petrov, Ludwig Schubert,
Alec Radford, and Chris Olah. 2021. Multi-
modal neurons in artificial neural networks. Distill.
Https://distill.pub/2021/multimodal-neurons.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1):335–346.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. CoRR, abs/1512.03385.

MD. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shi-
ratuddin, and Hamid Laga. 2019. A comprehensive
survey of deep learning for image captioning. ACM
Comput. Surv., 51(6).

Brian Kenji Iwana, Syed Tahseen Raza Rizvi, Sheraz
Ahmed, Andreas Dengel, and Seiichi Uchida. 2017.
Judging a book by its cover.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. CoRR, abs/2102.05918.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
Neil Houlsby. 2019. Large scale learning of gen-
eral visual representations for transfer. CoRR,
abs/1912.11370.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
CoRR, abs/1908.03557.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
CoRR, abs/1908.02265.

Adriano Lucieri, Huzaifa Sabir, Shoaib Ahmed Siddiqui,
Syed Tahseen Raza Rizvi, Brian Kenji Iwana, Seiichi
Uchida, Andreas Dengel, and Sheraz Ahmed. 2020.
Benchmarking deep learning models for classifica-
tion of book covers. SN Computer Science, 1(3):139.

Rafael B. Mangolin, Rodolfo Miranda Pereira, Al-
ceu S. Britto Jr., Carlos Nascimento Silla Jr.,
Valéria Delisandra Feltrim, Diego Bertolini, and Yan-
dre M. G. Costa. 2020. A multimodal approach
for multi-label movie genre classification. CoRR,
abs/2006.00654.

Teng Niu, Shiai Zhu, Lei Pang, and Abdulmotaleb El-
Saddik. 2016. Sentiment analysis on multi-view so-
cial data. In MultiMedia Modeling, page 15–27.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12(85):2825–2830.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman,
Christof Koch, and Itzhak Fried. 2005. Invariant
visual representation by single neurons in the human
brain. Nature, 435(7045):1102–1107.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. CoRR, abs/2103.00020.

Leila Reddy and Simon J Thorpe. 2014. Concept cells
through associative learning of high-level representa-
tions. Neuron, 84(2):248–251.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

Mert Bülent Sariyildiz, Julien Perez, and Diane Larlus.
2020. Learning visual representations with caption
annotations. CoRR, abs/2008.01392.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards VQA models
that can read. CoRR, abs/1904.08920.

Alexandru Telea. 2004. An image inpainting tech-
nique based on the fast marching method. Journal of
Graphics Tools, 9.

37

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang,
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.
EAST: an efficient and accurate scene text detector.
CoRR, abs/1704.03155.

38

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 39 - 45
May 26, 2022 ©2022 Association for Computational Linguistics

From Hyperbolic Geometry Back to Word Embeddings

Sultan Nurmukhamedov
Yandex School of Data Analysis
soltustik@gmail.com

Thomas Mach
University of Potsdam

mach@uni-potsdam.de

Arsen Sheverdin
University of Amsterdam

arsen.sheverdin@student.uva.nl

Zhenisbek Assylbekov
Nazarbayev University

zhassylbekov@nu.edu.kz

Abstract

We choose random points in the hyperbolic
disc and claim that these points are already
word representations. However, it is yet to be
uncovered which point corresponds to which
word of the human language of interest. This
correspondence can be approximately estab-
lished using a pointwise mutual information
between words and recent alignment tech-
niques.

1 Introduction

Vector representations of words are ubiquitous in
modern natural language processing (NLP). There
are currently two large classes of word embedding
models: they build (1) static and (2) contextualized
word vectors correspondingly.

Static embeddings map each word type into a
vector of real numbers, regardless of the context in
which the word type is used. The most promi-
nent representatives of this class of models are
WORD2VEC (Mikolov et al., 2013b,a) and GLOVE

(Pennington et al., 2014). The obvious problem
with this approach is the representation of poly-
semous words, such as bank—it becomes unclear
whether we are talking about a financial institution,
or we are talking about the river bank.

Contextualized word embeddings, such as
ELMO (Peters et al., 2018) and BERT (Devlin
et al., 2019), solve this problem by mapping each
word token into a vector space depending on the
context in which the given word token is used, i.e.
the same word will have different vector represen-
tations when used in different contexts. The second
approach can nowadays be considered mainstream,
despite relatively few papers offering theoretical
justifications for contextualized word embeddings.

For static embeddings, on the contrary, there is a
number of theoretical works, each of which offers
its own version of what is happening when word
vectors are trained. An incomplete list of such

works includes those of Levy and Goldberg (2014),
Arora et al. (2016), Hashimoto et al. (2016), Gittens
et al. (2017), Tian et al. (2017), Ethayarajh et al.
(2019), Allen et al. (2019), Allen and Hospedales
(2019), Assylbekov and Takhanov (2019), Zobnin
and Elistratova (2019). Other advantages of static
embeddings over contextualized ones include faster
training (few hours instead of few days) and lower
computing requirements (1 consumer-level GPU
instead of 8–16 non-consumer GPUs). Morevoer,
static embeddings are still an integral part of deep
neural network models that produce contextualized
word vectors, because embedding lookup matrices
are used at the input and output (softmax) layers of
such models. Therefore, we consider it necessary
to further study static embeddings.

Several recent works (Nickel and Kiela, 2017;
Tifrea et al., 2019) argue that static word embed-
dings should be better trained in hyperbolic spaces
than in Euclidean spaces, and provide empirical ev-
idence that word embeddings trained in hyperbolic
spaces need less dimensions to achieve the same
quality as state-of-the-art Euclidean vectors.1 Usu-
ally such works motivate the hyperbolicity of word
embeddings by the fact that hyperbolic spaces are
better suited for embedding hierarchical structures.
Words themselves often denote concepts with an
underlying hierarchy. An example of such a hi-
erarchy is the WORDNET database, an excerpt of
which is shown in Fig. 1.

In the present paper we will investigate where
the hyperbolicity originates from. If we take the
state-of-the-art Euclidean embeddings, is it possi-
ble to establish a direct connection between them
and their counterparts from a hyperbolic word em-
bedding? This was answered positively by As-
sylbekov and Jangeldin (2020) who established a
chain of connections: from word embeddings to

1The quality of word vectors is usually measured by the
performance of downstream tasks, such as similarity, analo-
gies, part-of-speech tagging, etc.

39

carnivore

canine

foxwolfdog

feline

catbig cat

tigerlion

Figure 1: An excerpt from the WORDNET database.

co-occurrence matrices, then to complex networks,
and, finally, to hyperbolic spaces. In this paper,
to provide an additional justification for the con-
structed chain, we propose a way to move from
the final point, hyperbolic spaces, to the initial one,
word embeddings. We show that drawing random
points from the hyperbolic plane results in a set
of points that reasonably well resembles word em-
beddings. In fact, we can match these points to
word embeddings. Contrary, the same trick does
not work with points drawn at random in the Eu-
clidean space. Thus, one can argue that the hyper-
bolic space provides the underlying structure for
word embeddings, while in the Euclidean space
this structure has to be superimposed.

Notation
We denote with R the real numbers. Bold-faced
lowercase letters (x) denote vectors, plain-faced
lowercase letters (x) denote scalars, bold-faced up-
percase letters (A) denote matrices, 〈x,y〉 is the
Euclidean inner product. We use Aa:b,c:d to de-
note a submatrix located at the intersection of rows
a, a + 1, . . . , b and columns c, c + 1, . . . , d of A.
‘i.i.d.’ stands for ‘independent and identically dis-
tributed’, ‘p.d.f’ stands for ‘probability distribution
function’. We use the sign ∝ to abbreviate ‘propor-
tional to’, and the sign ∼ to abbreviate ‘distributed
as’.

Assuming that words have already been con-
verted into indices, letW := {1, . . . , n} be a finite
vocabulary of words. Following the setup of the
widely used WORD2VEC model (Mikolov et al.,
2013a,b), we use two vectors per each word i: (1)
wi ∈ Rd when i ∈ W is a center word, (2) ci ∈ Rd
when i ∈ W is a context word; and we assume that
d� n.

In what follows we assume that our dataset con-
sists of co-occurence pairs (i, j). We say that “the
words i and j co-occur” when they co-occur in a
fixed-size window of words. Let #(i, j) be the

number of times the words i and j co-occur.

2 Background: From Word Embeddings
to Hyperbolic Space

Our departure point is the skip-gram with nega-
tive sampling (SGNS) word embedding model of
Mikolov et al. (2013b) that maximizes the follow-
ing objective function

∑

i∈W

∑

j∈W
#(i, j) log σ(〈wi, cj〉)

+ k · Ej′∼p[log σ(−〈wi, cj′〉)], (1)

where σ(x) = 1
1+e−x is the logistic sigmoid func-

tion, p is a smoothed unigram probability distribu-
tion for words,2 and k is the number of negative
samples to be drawn. Interestingly, training SGNS
is approximately equivalent to finding a low-rank
approximation of a shifted pointwise mutual infor-
mation (PMI) matrix (Levy and Goldberg, 2014)
in the form

log
p(i, j)

p(i)p(j)
− log k ≈ 〈wi, cj〉, (2)

where the left-hand side is the shifted PMI between
i and j, and the right-hand side is an ij-th element
of a matrix with rank ≤ d since wi, cj ∈ Rd. This
approximation was later re-derived by Arora et al.
(2016), Zobnin and Elistratova (2019), Assylbekov
and Takhanov (2019), and Allen et al. (2019) un-
der different sets of assuptions. In a recent paper,
Assylbekov and Jangeldin (2020) showed that the
removal of the sigmoid transformation in the SGNS
objective (1) gives word embeddings comparable
in quality with the original SGNS embeddings. A
maximization of such modified objective results
in a low-rank approximation of a squashed shifted
PMI (σSPMI) matrix, defined as

Aij := σ

(
log

p(i, j)

p(i)p(j)
− log k

)
. (3)

Moreover, treating the σSPMI matrix as a connec-
tion probabilities matrix of a random graph, the
authors show that such graph is a complex network,
that is it has strong clustering and scale-free de-
gree distribution, and according to Krioukov et al.
(2010), such graph possesses an effective hyper-
bolic geometry underneath. The following chain

2The authors of SGNS suggest p(i) ∝ #(i)3/4.

40

Figure 2: Random hyperbolic graph.

2 0 2 4 6 8
0.0

0.1

0.2

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

Figure 3: Distribution of PMI values (top) and of R−X .

summarizes this argument:

Word Embeddings −→ σSPMI −→
Complex Network −→ Hyperbolic Space

In our work, we go from the final point (hyperbolic
space) to the starting one (word embeddings), and
the next section provides the details of our method.

3 Method: From Hyperbolic Geometry
to Word Embeddings

It is difficult to visualize hyperbolic spaces because
they cannot be isometrically embedded into any
Euclidean space.3 However, there exist models of
hyperbolic spaces: each model emphasizes differ-
ent aspects of hyperbolic geometry, but no model
simultaneously represents all of its properties. We
will consider here the so-called native model (Kri-
oukov et al., 2010), in which the hyperbolic plane
H2 is represented by a disk of radius R, and we
use polar coordinates (r, θ) to specify the position
of any point v ∈ H2, where the radial coordinate r
equals the hyperbolic distance of v from the origin.
Given this notation, the distance x between two
points with coordinates (r, θ) and (r′, θ′) satisfies
the hyperbolic law of cosines

coshx = cosh r cosh r′

− sinh r sinh r′ cos(θ − θ′), (4)

for the hyperbolic space of constant curvature−1.4

A key property of hyperbolic spaces is that they
3This means that we cannot map points of a hyperbolic

space into points of a Euclidean space in such way that the
distances between points are preserved.

4Defining constant curvature is beyond the scope of our
paper. We just mention here that there are only three types of

expand faster than Euclidean spaces. E.g., a circle
with radius r has in the Euclidean plane a length
of 2πr = Θ(r) and an area of πr2 = Θ(r2),
while its length and area in the hyperbolic plane are
2π sinh(r) = Θ(er) and 2π(cosh r − 1) = Θ(er)
correspondingly. It is noteworthy that in a balanced
tree with branching factor b, the number of nodes
that are r edges from the root grows as Θ(br), i.e.
exponentially with r, leading to the suggestion that
hierarchical complex networks with tree-like struc-
tures might be easily embeddable in hyperbolic
space.

Based on the above facts, we construct a random
hyperbolic (RHG) graph as in the work of Kri-
oukov et al. (2010): we place randomly n points
(nodes) into a hyperbolic disk of radiusR, and each
pair of nodes (i, j) is connected with probability
σ(R − xij), where xij is the hyperbolic distance
(4) between points i and j. Angular coordinates of
the nodes are sampled from the uniform distribu-
tion: θ ∼ U [0, 2π], while the radial coordinates are
sampled from the exponential p.d.f.

ρ(r) =
α sinhαr

coshαR− 1
= Θ(eαr).

The hyperparameters R and α are chosen based on
the total number of nodes n, the desired average
degree k̄ and the power-law exponent γ according
to the equations (22) and (29) of Krioukov et al.
(2010). An example of such RHG is shown in
Figure 2. Notice, that the connection probabilities
matrix of our graph is

Bij := σ(R− xij),
isotropic spaces: Euclidean (zero curvature), spherical (posi-
tively curved), and hyperbolic (negatively curved).

41

Method
Word Similarity POS Tagging

WS353 MEN M. TURK CONLL-2000 BROWN

SGNS .678 .656 .690 90.77 92.60
PMI + SVD .669 .674 .666 92.25 93.76
σSPMI + SVD .648 .622 .666 92.76 93.78
RHG + SVD + Align .406 .399 .509 92.23 93.19
Random + Align .165 .117 .111 81.89 89.39

Table 1: Evaluation of word embeddings on the similarity and POS tagging tasks. For the similarity tasks the eval-
uation metric is the Spearman’s correlation with human ratings, for the POS tagging tasks it is accuracy. Random
stands for random vectors that were obtained as i.i.d. draws from N (0, I).

Comparing this to (3), we see that if A and B
induce structurally similar graphs then the distribu-
tion of the PMI values log p(i,j)

p(i)p(j) should be similar
to the distribution of R − xij values (up to a con-
stant shift). To test this empirically, we compute a
PMI matrix of a well-known corpus, text8, and
compare the distribution of the PMI values with the
p.d.f. ofR−X , whereX is a distance between two
random points of a hyperbolic disk (the exact form
of this p.d.f. is given in Proposition A.1). The re-
sults are shown in Figure 3. As we can see, the two
distributions are similar in the sense that both are
unimodal and right-skewed. The main difference is
in the shift—distribution of R−X is shifted to the
left compared to the distribution of the PMI values.

We hypothesize that the nodes of the RHG
treated as points of the hyperbolic space are al-
ready reasonable word embeddings for the words
of our vocabularyW . The only thing that we do
not know is the correspondence between words
i ∈ W and nodes of the RHG. Instead of align-
ing words with nodes, we can align their vector
representations. For this, we take singular value
decompositions (SVD) of A and B:

A = UAΣAV>A , B = UBΣBV>B,

and then obtain embedding matrices by

WA := UA,1:n,1:dΣ
1/2
A,1:d,1:d ∈ Rn×d

WB := UB,1:n,1:dΣ
1/2
B,1:d,1:d ∈ Rn×d

as in the work of Levy and Goldberg (2014). An
ith row in WA is an embedding of the word i ∈ W ,
while an ith row in WB is an embedding of the
RHG’s node i. To align these two sets of embed-
dings we apply a recent stochastic optimization
method of Grave et al. (2019) that solves

min
Q∈Od

min
P∈Pn

‖WAQ−PWB‖22,

where Od is the set of d × d orthogonal matrices
and Pd is the set of n × n permutation matrices.
As one can see, this method assumes that align-
ment between two sets of embeddings is not only a
permutation from one set to the other, but also an
orthogonal transformation between the two. Once
the alignment is done, we treat PWB as an embed-
ding matrix for the words inW .

4 Evaluation

In this section we evaluate the quality of word vec-
tors resulting from a RHG5 against those from the
SGNS, PMI, and σSPMI. We use the text8 cor-
pus mentioned in the previous section. We were
ignoring words that appeared less than 5 times (re-
sulting in a vocabulary of 71,290 tokens). We set
window size to 2, subsampling threshold to 10−5,
and dimensionality of word vectors to 200. The
SGNS embeddings were trained using our custom
implementation.6 The PMI and BPMI matrices
were extracted using the HYPERWORDS tool of
Levy et al. (2015) and SVD was performed using
the PYTORCH library of Paszke et al. (2019).

The embeddings were evaluated on word similar-
ity and POS tagging tasks. For word similarity we
used WORDSIM (Finkelstein et al., 2002), MEN
(Bruni et al., 2012), and M.TURK (Radinsky et al.,
2011) datasets. For POS tagging we trained a sim-
ple classifier7 by feeding in the embedding of a
current word and its nearby context to predict its
part-of-speech (POS) tag:

P̂OSt = softmax(σ(A[wt−2; . . . ; wt+2] + b))

5Our code is available at https://github.com/
soltustik/RHG

6https://github.com/zh3nis/SGNS
7feedforward neural network with one hidden layer and

softmax output layer

42

where [x; y] is concatenation of x and y. The
classifier was trained on CONLL-2000 (Tjong
Kim Sang and Buchholz, 2000) and BROWN

(Kucera et al., 1967) datasets.
The results of evaluation are provided in Table 1.

As we see, vector representations of words gen-
erated from a RHG lag behind in word similarity
tasks from word vectors obtained by other standard
methods. Note, however, that the similarity task
was designed with Euclidean geometry in mind.
Even though our RHG-based vectors are also ul-
timately placed in the Euclidean space (otherwise
the alignment step would not have been possible),
their nature is inherently non-Euclidean. Therefore,
the similarity scores for them may not be indica-
tive. So, for example, when RHG vectors are fed
into a nonlinear model for POS tagging, they are
comparable with other types of vectors.

We notice that random vectors—generated as
i.i.d. draws from N (0, I) and then aligned to the
embeddings from σSPMI—show poor results in
the similarity tasks and underperform all other
word embedding methods in the POS tagging tasks.
This calls into question whether multivariate Gaus-
sian is a reasonable (prior) distribution for word
vectors as was suggested by Arora et al. (2016),
Assylbekov and Takhanov (2019).

5 Conclusion and Future Work

In this work we show that word vectors can be ob-
tained from hyperbolic geometry without explicit
training. We obtain the embeddings by randomly
drawing points in the hyperbolic plane and by find-
ing correspondence between these points and the
words of the human language. This correspon-
dence is determined by the relation (hyperbolic
distance) to other words. This method avoids the,
often expensive, training of word vectors in hyper-
bolic spaces as in Tifrea et al. (2019). A direct
comparison is not what this paper attempts—our
method is cheaper but produces word vectors of
lower quality. Our method simply shows that word
vectors do fit better into hyperbolic space than into
Euclidean space.

Finally, we want to sketch a possible direction
for future work. The hyperbolic space is a special
case of a Riemannian manifold. Are Riemannian
manifolds better suited for word vectors? In par-
ticular which manifolds should one use? At the
moment, there is only limited empirical knowledge
to address these questions. For instance, Gu et al.

(2019) obtained word vectors of better quality, ac-
cording to the similarity score, in the product of
hyperbolic spaces, which is still a Riemannian man-
ifold but not a hyperbolic space anymore. We are
hopeful that future work may provide an explana-
tion for this empirical fact.

Acknowledgements

Zhenisbek Assylbekov was supported by the Pro-
gram of Targeted Funding “Economy of the
Future” #0054/ПЦФ-НС-19. The work of
Sultan Nurmukhamedov was supported by the
Nazarbayev University Faculty-Development Com-
petitive Research Grants Program, grant number
240919FD3921. The authors would like to thank
anonymous reviewers for their feedback.

References
Carl Allen, Ivana Balazevic, and Timothy Hospedales.

2019. What the vec? towards probabilistically
grounded embeddings. In Proceedings of NeurIPS.

Carl Allen and Timothy Hospedales. 2019. Analo-
gies explained: Towards understanding word embed-
dings. In Proceedings of ICML.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Zhenisbek Assylbekov and Alibi Jangeldin. 2020.
Squashed shifted pmi matrix: bridging word embed-
dings and hyperbolic spaces. In Proceedings of AJ-
CAI.

Zhenisbek Assylbekov and Rustem Takhanov. 2019.
Context vectors are reflections of word vectors in
half the dimensions. Journal of Artificial Intelli-
gence Research, 66:225–242.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.
2019. Towards understanding linear word analogies.
In Proceedings of ACL.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing search in context: The
concept revisited. ACM Transactions on informa-
tion systems, 20(1):116–131.

43

Alex Gittens, Dimitris Achlioptas, and Michael W Ma-
honey. 2017. Skip-gram- zipf+ uniform= vector ad-
ditivity. In Proceedings of ACL, pages 69–76.

Edouard Grave, Armand Joulin, and Quentin Berthet.
2019. Unsupervised alignment of embeddings with
wasserstein procrustes. In Proceedings of AISTATS.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher
Ré. 2019. Learning mixed-curvature representations
in product spaces. In 7th International Conference
on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net.

Tatsunori B Hashimoto, David Alvarez-Melis, and
Tommi S Jaakkola. 2016. Word embeddings as met-
ric recovery in semantic spaces. Transactions of the
Association for Computational Linguistics, 4:273–
286.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim
Kitsak, Amin Vahdat, and Marián Boguná. 2010.
Hyperbolic geometry of complex networks. Physi-
cal Review E, 82(3):036106.

Henry Kucera, Henry Kučera, and Winthrop Nelson
Francis. 1967. Computational analysis of present-
day American English. Brown university press.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Pro-
ceedings of NeurIPS.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NeurIPS.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in neural information processing
systems, pages 6338–6347.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Proceed-
ings of NeurIPS.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of NAACL-HLT.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: computing word relatedness using
temporal semantic analysis. In Proceedings of the
20th international conference on World wide web,
pages 337–346. ACM.

Ran Tian, Naoaki Okazaki, and Kentaro Inui. 2017.
The mechanism of additive composition. Machine
Learning, 106(7):1083–1130.

Alexandru Tifrea, Gary Bécigneul, and Octavian-
Eugen Ganea. 2019. Poincaré glove: Hyperbolic
word embeddings. In Proceedings of ICLR.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Nat-
ural Language Learning and the Second Learning
Language in Logic Workshop.

Alexey Zobnin and Evgenia Elistratova. 2019. Learn-
ing word embeddings without context vectors. In
Proceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 244–
249.

A Auxiliary Results

Proposition A.1. Let X be a distance between
two points that were randomly uniformly placed in
the hyperbolic disk of radius R. The probability
distribution function of X is given by

fX(x) =

∫ R

0

∫ R

0

sinh(x)ρ(r1)ρ(r2)dr1dr2

π
√

1−A(r1, r2, x) sinh(r1) sinh(r2)
, (5)

where A(r1, r2, x) = cosh(r1) cosh(r2)−cosh(x)
sinh(r1) sinh(r2)

, and

ρ(r) = α sinhαr
coshαR−1 .

Proof. Let us throw randomly and uniformly
two points (r1, θ1) and (r2, θ2) into the hy-
perbolic disk of radius R, i.e. r1, r2

i.i.d.∼ ρ(r),
θ1, θ2

i.i.d.∼ Uniform[0, 2π). Let X be the distance
between these points (X is a random variable).
Let γ be the angle between these points, then
γ := π − |π − |θ1 − θ2|| ∼ Uniform[0, π) and
thus

fcos γ(t) =
1

π
√

1− t2
, t ∈ [−1, 1].

44

Since the distance in our model of hyperbolic plane
is given by

X = cosh−1[cosh r1 cosh r2−sinh r1 sinh r2 cos γ]

we have

Pr(X ≤ x)

= Pr


cos γ ≥ cosh r1 cosh r2 − coshx

sinh r1 sinh r2︸ ︷︷ ︸
A(r1,r2,x)




= Pr(cos γ ≥ A(r1, r2, x))

=

∫ +∞

A(r1,r2,x)

1

π
√

1− t2

=
1

2
− sin−1A(r1, r2, x)

π
,

and therefore

fX|r1,r2(x) =
d

dx

[
1

2
− sin−1A(r1, r2, x)

π

]

=
sinhx

π
√

1−A(r1, r2, x) sinh(r1) sinh r2

for x ∈ (|r1 − r2|, r1 + r2). Integrating
fX|r1,r2(x)ρ(r1)ρ(r2) with respect to r1 and r2 we
get (5).

45

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 46 - 59
May 26, 2022 ©2022 Association for Computational Linguistics

A Comparative Study of Pre-trained Encoders for Low-Resource Named
Entity Recognition

Yuxuan Chen1 Jonas Mikkelsen1

Arne Binder1 Christoph Alt2,3 Leonhard Hennig1

1German Research Center for Artificial Intelligence (DFKI)
2Humboldt Universität zu Berlin 3Science of Intelligence

1{yuxuan.chen, jonas.mikkelsen, arne.binder, leonhard.hennig}@dfki.de
2christoph.alt@posteo.de

Abstract

Pre-trained language models (PLM) are ef-
fective components of few-shot named en-
tity recognition (NER) approaches when aug-
mented with continued pre-training on task-
specific out-of-domain data or fine-tuning on
in-domain data. However, their performance
in low-resource scenarios, where such data is
not available, remains an open question. We in-
troduce an encoder evaluation framework, and
use it to systematically compare the perfor-
mance of state-of-the-art pre-trained represen-
tations on the task of low-resource NER. We
analyze a wide range of encoders pre-trained
with different strategies, model architectures,
intermediate-task fine-tuning, and contrastive
learning. Our experimental results across ten
benchmark NER datasets in English and Ger-
man show that encoder performance varies
significantly, suggesting that the choice of
encoder for a specific low-resource scenario
needs to be carefully evaluated.

1 Introduction

Pre-trained language models (PLM) have been
shown to be very effective few-shot learners
for a wide range of natural language processing
tasks (Brown et al., 2020; Gao et al., 2021), as they
capture semantically and syntactically rich repre-
sentations of text via self-supervised training on
large-scale unlabeled datasets (Peters et al., 2018;
Devlin et al., 2019). Recent research in few-shot
named entity recognition (NER) has leveraged such
representations, e.g. for metric learning on task-
specific out-of-domain1 data (Fritzler et al., 2019;
Yang and Katiyar, 2020), optionally augmented by
continued pre-training with distantly supervised, in-
domain data (Huang et al., 2021). However, there
has been no systematic comparison of the NER per-
formance of such representations in low-resource
scenarios without task-specific out-of-domain data

1Out-of-domain and in-domain refer to NER-specific data
with disjoint label spaces, i.e. Yout 6= Yin.

and very limited in-domain data; a prevalent setting
in many practical applications.

In this paper we conduct a comparative study to
answer the following research questions: How well
do representations learnt by different pre-trained
models encode information that benefits these low-
resource scenarios? What can we observe for dif-
ferent categories of encoders, such as encoders
trained with masked language modeling, versus
encoders that are additionally fine-tuned on down-
stream tasks, or optimized with contrastive learn-
ing? How do they perform across different datasets
and languages? We present an evaluation frame-
work inspired by few-shot learning to evaluate
representations obtained via different pre-training
strategies, model architectures, pre-training data,
and intermediate-task fine-tuning in low-resource
NER scenarios of varying difficulty (see Figure 1).

We find that the choice of encoder can have sig-
nificant effects on low-resource NER performance,
with F1 scores differing by up to 25% between en-
coders, and simply picking an encoder of the BERT
family at random will usually not yield the best re-
sults for a given scenario. We observe that while
BERT in general performs adequately, ALBERT
and RoBERTa outperform BERT by a large mar-
gin in many cases, with ALBERT being especially
strong in very low-resource settings with only one
available labeled example per class.

The main contributions of this study are: (1)
a systematic performance evaluation of a wide
range of encoders pre-trained with different strate-
gies, such as masked language modeling, task-
specific fine-tuning, and contrastive learning on
the task of low-resource named entity recognition;
(2) an evaluation on ten benchmark NER datasets
in two languages, English and German; (3) an
encoder-readout evaluation framework that can be
easily extended with additional scenarios, encoders,
datasets, and readout approaches; which we release
at https://github.com/dfki-nlp/fewie.

46

Figure 1: Encoder-readout evaluation framework. For each of the N classes, we randomly sample K support
tokens including their sentence context, and an unlabeled query token with sentential context. The encoder fθ(·)
provides an embedding (or representation) for each token, and the readout module g(·) assigns a class to a query
token by comparing its representation qj to the representations {z1, . . . ,zN×K} of the support tokens. Depending
on the readout approach, the c-th class in S is represented either by its prototype embedding (as shown in the
example) or by its set of associated token embeddings, e.g. for nearest neighbor classification. In this example q1
representing Merkel would be assigned the class PER based on the closest class prototype embedding (red circle).

2 Encoder Evaluation Framework

To simulate low-resource NER scenarios of varying
difficulty, we draw inspiration from the evaluation
of few-shot learning methods. We first give a for-
mal definition of the few-shot NER task, and then
introduce the encoder evaluation framework itself.

2.1 Few-shot NER task definition

NER is typically formulated as a sequence label-
ing problem, where the input is a sequence of to-
kens X = {x1, x2, · · · , xT } and the output is the
corresponding T -length sequence of entity type la-
bels Y = {y1, y2, · · · , yT }. In contrast, few-shot
learning is cast as an episodic N -way K-shot prob-
lem, where in each episode, N classes are sampled
with K examples each to construct a support set
S = {Xi,Yi}N×Ki=1 for learning, and K ′ exam-
ples per class are sampled to create a query set
Q = {Xj ,Yj}N×K

′
j=1 for evaluation (S ∩ Q = ∅).

In a sequence labeling problem like NER, samples
are typically sentences, due to the importance of
contextual information for token classification, but
care has to be taken to ensure that the sampled sen-
tences contain no other entities. In particular, there
should be no entity overlap between the support
and the query sets (Ding et al., 2021).

2.2 Encoder-Readout Framework

Our framework consists of two modules, an en-
coder f(·) and a readout module g(·), as shown
in Figure 1. The encoder provides an embedding
z = fθ(x) of a token x, where θ denotes the pa-

rameters of the encoder. The readout module is
responsible for assigning a class to each token x′ in
the query setQ given the support set S . Depending
on the readout approach, the c-th class in S is rep-
resented either by its prototype embedding or by its
associated set of token embeddings, e.g. for nearest
neighbor classification. The decision is made by
comparing the embedding q = fθ(x′) with each of
the N class prototypes built from the support set S ,
or with each of the token-level embeddings.

3 Experiments

We illustrate the evaluation framework using a rep-
resentative set of encoders pre-trained with differ-
ent strategies. We then give details of the readout
approaches, the datasets we used, and all other ex-
perimental settings.

3.1 Encoders
We group encoders into four categories, depending
on their type of pre-training:

PLM These models are pre-trained on a large
general corpus in a self-supervised manner without
any task-specific fine-tuning. We consider six rep-
resentative encoders for English: BERT cased and
uncased (Devlin et al., 2019), SpanBERT (Joshi
et al., 2020), XLNet (Yang et al., 2019), AL-
BERT (Lan et al., 2020) and RoBERTa (Liu et al.,
2019), and three encoders for German: deepset’s
BERT, GottBERT (Scheible et al., 2020) and XLM-
RoBERTa (Conneau et al., 2020).2

2HuggingFace model identifiers for these and all other

47

Language Dataset Domain # Entity types Entity tag set

English

CoNLL-2003EN News 4 LOC,MISC,ORG,PER
OntoNotes 5.0 News, Dialogue 18 CARDINAL,DATE,EVENT,MONEY,...
Few-NERDcoarse General 8 art,building,event,product,...
Few-NERDfine General 66 art-film,product-car,other-law,...
WNUT-17 Social Media 6 corporation,creative-work,group,...
WikiAnn General 3 LOC,ORG,PER
WikiGold General 4 LOC,MISC,ORG,PER
Zhang et al. e-Commerce 4 ATTRIBUTE,BRAND,COMPONENT,PRODUCT

German
CoNLL-2003DE News 4 LOC,MISC,ORG,PER
GermEval 2014 General 12 LOC,LOCderiv,LOCpart,ORG,...
Smartdata News, General 16 DISASTER-TYPE,DISTANCE,LOCATION,...

Table 1: Statistics of the evaluated datasets

Fine-tuned PLM Recent research has shown
that intermediate-task training can result in signifi-
cant performance gains on the target task even in
low-resource settings (Vu et al., 2020; Poth et al.,
2021). We evaluate three BERT encoders that
are fine-tuned on token-level, sentence-level, and
document-level intermediate tasks, respectively:
BERTPOS for part-of-speech tagging, BERTMNLI,
fine-tuned on the MultiNLI dataset (Williams et al.,
2018), and BERTSQuAD for extractive question an-
swering (Rajpurkar et al., 2016). Evaluating these
encoders may allow us to observe whether the rep-
resentation granularity induced by the tasks they
were fine-tuned on has an effect on NER perfor-
mance: While token-level part-of-speech tag in-
formation is a staple feature of classic NER ap-
proaches (Finkel et al., 2005), it is less clear if
encoders trained on tasks that require conceptual
representations (and possibly understanding) of
sentence- and document-length context, learn en-
tity representations useful for NER.

PLM fine-tuned on NER We also experiment
with BERTCoNLL, a BERT model fine-tuned on the
CoNLL-2003 NER dataset. As this model’s hid-
den representations have been adapted to NER, we
expect it to exhibit better performance than the
other representations. The most interesting ques-
tion of using this model is whether its representa-
tions transfer to NER datasets with non-CoNLL
tagsets.

PLM with contrastive learning For each of the
English PLM encoders, we apply contrastive learn-
ing to learn representations with better separability.
The idea of contrastive learning is to pull positives
closer and push negatives away in the representa-
tion space during the pre-training phase (Rethmeier
and Augenstein, 2021). We use the loss function

models are listed in Appendix A.

proposed by Chopra et al. (2005):

LCL(xi, xj ;θ) := 1yi=yj · ‖fθ(xi)− fθ(xj)‖
+ 1yi 6=yj ·max

(
0, ε− ‖fθ(xi)− fθ(xj)‖

)
.

To guarantee that this label-aware contrastive learn-
ing conforms to the few-shot setting, we construct
positive/negative pairs from the support set: Given
an N -way K-shot support set, for each of the N
classes we construct 1 positive pair and K negative
pairs.3

3.2 Readout approaches

We analyze three variants for the readout ap-
proach:4 (1) Logistic Regression (LR), a lin-
ear classification algorithm that can be extended
to multinomial logistic regression to deal with
multi-class (N -way) settings, such as the one dis-
cussed here. (2) k-Nearest Neighbor (NN), a non-
parametric classification method adopted in metric
space. As proposed in STRUCTSHOT (Yang and
Katiyar, 2020), we set k = 1 to find the exact
nearest token in the support set. (3) Nearest Cen-
troid (NC) works similar to NN, but instead of
computing the distance between the query and ev-
ery instance in the embedding space, we represent
each class by the centroid of all token embeddings
belonging to this class, and assign the query to the
class with the nearest centroid.

3.3 Datasets

In order to provide a comprehensive evalua-
tion, we evaluate all encoders on a range of

3One extra example per class is needed for K = 1 to build
one positive pair for this class. This extra example is involved
only in the contrastive learning phase and not introduced to
the encoding and readout steps.

4Computational details of the readout approaches can be
found in Appendix B.

48

datasets covering different languages and domains,
including seven English benchmarks: CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003),
Few-NERD (Ding et al., 2021), OntoNotes
5.0 (Weischedel et al., 2013), WikiAnn (Pan
et al., 2017), WNUT-17 (Derczynski et al., 2017),
WikiGold (Balasuriya et al., 2009), and the dataset
of Zhang et al. (2020). For German, we se-
lected the following three datasets: CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003),
Smartdata (Schiersch et al., 2018) and GermEval
2014 (Benikova et al., 2014). Table 1 lists the do-
mains and tagset details of each dataset.

3.4 Experimental settings / Hyperparameters

Datasets We use the BIO tagging schema by de-
fault and the IO schema only when BIO is not pro-
vided by the original dataset (in case of Few-NERD,
OntoNotes 5.0 and WikiGold). WikiGold and
the dataset of Zhang et al. (2020) do not provide
train/test splits, we therefore use the full dataset
to sample support and query sets. For all other
datasets, test splits are used for sampling.5

General settings For each dataset, we evaluate
our methods under three few-shot scenarios: 5-way
1-shot, 5-way 5-shot and 5-way 10-shot. To pro-
duce accurate performance estimates, we sample
600 episodes for each scenario and report the mean
token-level micro-F1 score over all episodes, av-
eraged over all positive classes, and excluding the
’O’ class.

Encoders Max-length is fixed at 128. We use
randomly initialized, static embeddings as the base-
line encoder (Random). For contrastive learning,
we use the Adam optimizer and set the learning
rate to be 5× 10−5 and the number of epochs to be
1 across all encoders.

Readout approaches We L2-normalize the en-
coder embeddings before feeding them to the read-
out model. For NN and NC classification, Eu-
clidean distance serves as the similarity metric be-
tween tokens. For LR, an L2-penalty is applied to
the coefficients. All reported results use LR as the
default readout method, unless specified otherwise,
as we found LR to perform best on average (see
Section 4.4).

Framework implementation We implement
our low-resource NER encoder evaluation frame-
work using the HuggingFace Transformers li-

5For Few-NERD, we use the test data from the "super-
vised" split.

brary (Wolf et al., 2020), Hydra (Yadan, 2019),
and PyTorch (Paszke et al., 2019). Additional sce-
narios, encoders, and datasets can be easily added
simply by creating new experiment configurations.
Adding new readout methods is also a simple mat-
ter of a few lines of code.

4 Results and Discussion

4.1 Comparison of PLM encoders

We first analyze PLM encoders which have not
been fine-tuned on any task.

English results Table 2 presents the experimen-
tal results of English-language encoders for differ-
ent scenarios and datasets. For all scenarios and
datasets, the PLM encoders outperform the ran-
domly initialized baseline by a large margin. As ex-
pected, the NER classification performance of the
encoders increases with higher K, i.e. with more
instances per class in the support set. Overall, the
level of performance across various datasets of this
encoder-only approach to low-resource NER is sur-
prisingly good: We observe that ALBERT achieves
a token-level F1 score of F1 = 72.8 on CoNLL-
2003, XLNet a score of F1 = 85.7 on Few-NERD
fine-grained, and RoBERTa a score of F1 = 83.8
on OntoNotes 5.0. While these results are not di-
rectly comparable to those of state-of-the-art, fully
supervised approaches due to the differences in the
evaluation setup, they are achieved essentially fine-
tuning-free, and with much fewer labeled instances
per class.

Encoder analysis The best-performing en-
coders, on average and across datasets, are AL-
BERT, RoBERTa, and BERT. ALBERT is by far
the best encoder for K = 1, but the other encoders
achieve comparable performance or outperform
ALBERT for K ≥ 5. Even though ALBERT is
an order of magnitude smaller in terms of its num-
ber of parameters than either BERT or RoBERTa,
it provides very competitive embeddings in our
evaluation setup. As can be expected, BERTcased
consistently outperforms BERTuncased for datasets
with tag sets where casing provides useful informa-
tion for NER (e.g. CoNLL, WikiGold), but does not
necessarily perform better if the tag set contains en-
tity types whose instances use lower-case spelling.
XLNet achieves mixed results, mainly depending
on the dataset – on CoNLL-2003, WikiAnn and
WNUT-17, its F1 scores are significantly lower for
all scenarios than those of the best encoder, while
on Few-NERD fine-grained, XLNet achieves the

49

Dataset K Random BERT↓ BERT↑ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

CoNLL-2003EN

1 9.52 21.96 22.04 33.03† 21.71 18.39 18.49
5 12.53 60.94 62.17 68.33† 64.49 43.22 44.82

10 13.71 66.11 68.79 72.76 72.09 49.79 52.43

OntoNotes 5.0
1 18.66 42.71 45.09 50.45† 42.74 34.30 38.40
5 19.73 74.68 77.70 77.66 78.70 65.64 72.60

10 18.88 80.92 82.70 82.10 83.80† 74.14 78.38

Few-NERDcoarse

1 12.12 25.99 28.52 35.67† 28.12 23.34 25.93
5 15.59 53.85 56.04 59.14 58.66 45.50 52.32

10 16.04 59.44 63.20 63.30 65.52† 52.65 61.94

Few-NERDfine

1 21.14 49.74 48.50 54.27† 51.27 39.13 47.02
5 21.00 80.12 79.26 78.08 81.70 71.93 82.73

10 20.62 84.07 83.21 81.17 84.95 78.39 85.73

WNUT-17
1 18.86 25.71 25.67 28.47† 25.43 23.14 24.36
5 19.11 51.56 50.58 55.12 54.59 42.29 42.26

10 18.52 58.77 60.37 60.41 63.93† 48.84 49.74

WikiAnn
1 12.07 24.53 25.92 32.63† 24.80 22.67 22.06
5 15.64 48.33 52.29 53.11† 51.34 40.60 36.81

10 16.95 54.84 59.48 59.10 60.83 46.44 44.19

WikiGold
1 3.71 18.40 21.30 32.30† 20.63 14.90 18.01
5 10.02 49.19 55.54 55.87 56.08 41.07 45.44

10 11.62 55.85 63.91 61.23 64.84 48.09 53.85

Zhang et al.
1 13.49 37.39 36.82 41.23† 38.79 25.83 31.25
5 17.08 63.19 62.17 62.73 66.44† 49.08 57.69

10 16.21 67.45 67.09 66.61 70.16† 54.80 63.79

Table 2: Token-level micro-F1 scores of PLM encoders and a random baseline for 5-way K-shot scenarios, with
logistic regression readout. † denotes scores with significant difference to the next-best encoder’s score (α = 0.05).
↑ and ↓ indicate cased and uncased models.

Dataset K Random BERT↑ Gott-
BERT↑

XLM-R↑

CoNLL-
2003DE

1 12.53 29.42 26.27 30.65
5 15.38 65.98 58.37 65.22
10 16.00 71.43 64.77 71.18

GermEval
2014

1 17.52 25.89 24.08 27.24
5 20.70 61.79† 54.06 58.51
10 18.33 71.18† 60.30 65.37

Smartdata
1 26.12 51.12 49.96 53.17
5 23.52 82.50† 79.30 80.89
10 21.55 86.01 83.10 85.66

Table 3: Token-level micro-F1 scores of German PLM
encoders and a random baseline under 5-way K-shot
scenarios, with logistic regression readout. † denotes
scores with a significant difference to the next-best en-
coder’s score (α = 0.05). ↑ indicates cased models.

best score of all encoders. SpanBERT on aver-
age shows the worst performance of all encoders,
with F1 scores in most scenarios several percent-
age points lower than even those of XLNet. This
suggests that SpanBERT’s span-level masking and
training with a span boundary objective produce
token-level embeddings that are less well separable
by the logistic regression classifier.

Dataset analysis On a per-dataset basis, we can
observe the following from Table 2: On CoNLL-
2003, ALBERT outperforms the next-best encoder
BERTcased for K = 1 by 11% F1, and achieves a
best score of F1 = 72.8 for K = 10, closely fol-
lowed by RoBERTa. XLNet’s and SpanBERT’s
F1 scores are more than 20% lower than those
of ALBERT for K = 5 and K = 10. On Few-
NERD with coarse labels, ALBERT is again the
best encoder at K = 1. For K = 10, RoBERTa
achieves F1 = 65.5, but the other encoders ex-
cept for SpanBERT perform almost as well. Us-
ing the fine-grained labels of Few-NERD, all en-
coders achieve around 80% F1 score. The over-
all picture is similar for OntoNotes 5.0 and the
dataset of Zhang et al., with ALBERT being the
best encoder at K = 1 and RoBERTa outperform-
ing the other encoders at K = 10. BERT and
XLNet show competitive performance to ALBERT
and RoBERTa, yielding slightly lower F1 scores
in all scenarios. This trend is also confirmed for
the remaining datasets, WikiAnn, WNUT-17 and
WikiGold, with ALBERT and RoBERTa being the
strongest contenders, and BERT often catching up

50

Dataset K BERT↓ BPOS↓ BMNLI↓ BSQuAD↓

CoNLL-
2003EN

1 21.96 43.01† 22.29 35.05
5 60.94 65.72 61.34 65.94
10 66.11 68.46 64.71 68.50

OntoNotes
5.0

1 42.71 50.85† 42.99 47.83
5 74.68 66.17 75.29 76.37
10 80.92 68.02 80.94 79.68

Few-
NERDcoarse

1 25.99 34.70 26.08 35.07
5 53.85 49.88 52.52 59.77†
10 59.44 52.78 58.17 63.09†

Few-
NERDfine

1 49.74 43.97 46.71 51.17
5 80.12† 63.08 77.14 78.58
10 84.07† 66.43 81.26 81.58

WNUT-
17

1 25.71 32.04† 25.12 29.04
5 51.56 44.90 48.50 51.05
10 58.77† 49.11 56.30 54.58

WikiAnn
1 24.53 32.92 23.35 33.33
5 48.33 43.54 46.94 55.93†
10 54.84 45.70 53.47 63.37†

WikiGold
1 18.40 37.46† 20.33 30.80
5 49.19 55.54† 50.86 53.96
10 55.85 55.62 55.81 57.99†

Zhang et
al.

1 37.39 45.67† 37.29 40.90
5 63.19 59.58 62.98 61.01
10 67.45 60.61 66.23 61.95

(a) Micro-F1 scores of BERT, and fine-tuned BERTPOS, BERTMNLI
and BERTSQuAD.

Dataset Overlap K BERT↓ BCoNLL↓

CoNLL-
2003EN

1.00
1 21.96 90.46†
5 60.94 94.73†
10 66.11 94.40†

WikiGold 1.00
1 18.40 68.83†
5 49.19 81.40†
10 55.85 84.68†

WikiAnn 0.75
1 24.53 55.15†
5 48.33 67.22†
10 54.84 71.34†

Few-
NERDcoarse

0.50
1 25.99 53.25†
5 53.85 70.04†
10 59.44 72.66†

WNUT-
17 0.25

1 25.71 44.96†
5 51.56 63.99†
10 58.77 69.76†

OntoNotes
5.0 0.16

1 42.71 58.99†
5 74.68 76.21†
10 80.92† 77.75

Few-
NERDfine

0
1 49.74 59.36†
5 80.12 79.70
10 84.07† 82.00

Zhang et
al. 0

1 37.39 49.22†
5 63.19 65.40†
10 67.45 66.13

(b) Micro-F1 scores of BERT and BERTCoNLL. The
datasets are listed in descending order of tag set over-
lap with CoNLL-2003, as measured by Jaccard Index.

Table 4: Token-level micro-F1 scores of fine-tuned encoders under 5-way K-shot scenarios, with LR readout. †
denotes scores with significant difference to the next-best encoder’s score (α = 0.05). ↓ indicates uncased models.

in terms of F1 scores with increasing K.

German results Table 3 shows the results of
German-language encoders and the random base-
line on three evaluation datasets. Similar to the En-
glish results, we observe that: (i) BERT, GottBERT
and XLM-RoBERTa all benefit from more support
instances, i.e. achieve a better performance with
a larger training set, and outperform the random
baseline by a large margin. (ii) XLM-RoBERTa
shows the best performance across datasets in one-
shot settings, whereas BERT outperforms the other
encoders for K ≥ 5. (iii) GottBERT’s encodings
yield features that are less useful for low-resource
NER, resulting in worse performance than the other
two encoders in all scenarios.

On CoNLL-2003, BERT achieves a micro-F1
score of 71.4 at K = 10, XLM-R a competi-
tive score of 71.2, while GottBERT only achieves
F1 = 64.8. Similar performance differences be-
tween the three encoders can be observed for the
other two datasets at K = 5 and K = 10. At
K = 1, XLM-R consistently outperforms BERT

and GottBert, with GottBERT showing the worst
performance. The results show that BERT, a model
trained with less, but likely quality training data
(Wikipedia, OpenLegalData, News) produces rep-
resentations that are more suited for low-resource
NER in most of the evaluated settings, compared
to GottBERT (145GB of unfiltered web text), and
XLM-RoBERTa (≈100GB filtered CommonCrawl
data for German).

4.2 Fine-tuned encoders
Fine-tuned PLM The next group of encoders we
analyze are encoders fine-tuned on an intermedi-
ate task, in our case POS tagging, NLI, and QA.
Results are shown in Table 4a. We can see that
using a BERT encoder fine-tuned on POS tagging
significantly improves F1 scores at K = 1 for all
datasets except Few-NERD fine-grained, on av-
erage by about 9 points. However, for K ≥ 5,
BERTPOS’s performance is significantly worse than
that of BERT for the majority of datasets, except
CoNLL-2003 and WikiGold.

The BERTMNLI model’s performance is compet-
51

itive with the base BERT model’s, with no statis-
tically significant differences. Fine-tuning on this
sentence-level task, which is rather unrelated to
NER, hence seems to have neither negative nor
positive effects on the resulting token embeddings.

Embeddings obtained from BERTSQuAD, fine-
tuned on document-level span extraction, outper-
form BERT in most settings, often with statisti-
cal significance. However, on some datasets (e.g.
WNUT-17, Few-NERDfine), BERTSQuAD’s scores
are lower than BERT’s forK ≥ 5. Compared to the
other fine-tuned encoders, BERTSQuAD performs
better in general for K ≥ 5. Its good performance
may be attributed to the fact that approximately
41.5% of the answers in the SQuAD dataset corre-
spond to common entity types, and another 31.8%
to common noun phrases (Rajpurkar et al., 2016).

The observations for these three encoders coin-
cide with the intuition, that the more relevant the
knowledge encoded by the intermediate task is w.r.t.
the target task, the more likely an improvement on
the target task becomes.

PLM fine-tuned on NER Table 4b shows the
results obtained for BERTCoNLL, an encoder that
was fine-tuned on CoNLL-2003. As can be ex-
pected, this encoder performs very well on the
CoNLL-2003 test set, with large F1 gains in all
scenarios. For most of the other datasets, F1 scores
are also significantly improved for all settings of
K, especially with a large tagset overlap. These re-
sults coincide with the intuition that the higher the
tagset overlap, the larger the improvement. How-
ever, we note that some of these datasets are con-
structed from other data sources, e.g. web and so-
cial media texts, which indicates some transfer-
ability of the CoNLL-2003-tuned representations.
Even for datasets where there is little or no overlap
(OntoNotes 5.0, Zhang et al.), there are at least
some gains at K = 1. However, at K = 10,
the performance of the embeddings obtained from
BERTCoNLL is significantly worse than that of the
base BERT model.

4.3 PLM with contrastive learning

Table 5 compares the results of English encoders
before and after contrastive learning. In general,
results are mixed: For ALBERT and SpanBERT,
using CL improves F1 scores in most cases, of-
ten with significant differences, whereas for BERT,
RoBERTa and XLNET, the base encoders mostly
exhibit (marginally) better performance.

Encoder analysis We observe that ALBERT
benefits the most from contrastive learning, with
significant F1 gains in 5 out of 12 comparisons,
followed by SpanBERT (3), XLNet (1), BERT (1)
and RoBERTa (0). Surprisingly, it achieves slightly
higher F1-scores on Few-NERD coarse-grained
and significantly higher F1-scores on WikiGold in
all three scenarios. For 1-shot scenario on CoNLL-
2003, ALBERT also gets a large F1 increase by
3.68%, the best improvement among all encoders.

Dataset analysis Few-NERD coarse-grained
and WikiGold show better compatibility with con-
trastive learning, with 11 and 8 F1 improvements
out of 15 comparisons after contrastive learning,
respectively, compared with CoNLL-2003 (6) and
OntoNotes 5.0 (4). Specifically, all five encoders
have F1 gains on Few-NERD dataset in the one-
shot scenario.

4.4 Readout approaches

Finally, Table 6 compares the different readout ap-
proaches on the CoNLL-2003 and OntoNotes 5.0
datasets, using ALBERT. For K >= 5, Logis-
tic Regression outperforms Nearest Centroid and
Nearest Neighbor classification, while for one-shot
scenarios Nearest Neighbor performs best. NC is
outperformed by LR and NN in all scenarios but
5-shot on OntoNotes 5.0. This suggests that with
very few samples, the raw token embedding infor-
mation, as used by NN, is a better representation of
a class than the averaged embeddings as produced
by LR and CN, but with more samples, weighted
embeddings obtained with LR are more useful.

5 Related Work

Few-shot NER Recent work on few-shot NER has
primarily focused on integrating additional knowl-
edge to support the classification process. Fritzler
et al. (2019) are the first to use pre-trained word
embeddings for this task. Yang and Katiyar (2020)
extend a Nearest Neighbor token-level classifier
with a Viterbi decoder for structured prediction
over entire sentences. Huang et al (2021) propose
to continue pre-training of a PLM encoder with
distantly supervised, in-domain data, and to inte-
grate self-training to create additional, soft-labeled
training data. Recently, Gao et al. (2021) and
Ma et al. (2021) investigate methods for making
PLMs better few-shot learners via prompt-based
fine-tuning. While these approaches extend stan-
dard few-shot learning algorithms in promising di-

52

Dataset K
BERT↓ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

w/o CL CL w/o CL CL w/o CL CL w/o CL CL w/o CL CL

CoNLL-
2003EN

1 21.96 23.87† 33.03 36.71† 21.71 22.57 18.39 17.61 18.49 18.25
5 60.94 60.55 68.33 66.85 64.49 62.45 43.22 44.23 44.82 45.93

10 66.11 65.03 72.76 70.66 72.09 70.17 48.79 49.82 52.43 49.25

OntoNotes
5.0

1 42.71 42.89 50.45 51.38 42.74 41.66 34.30 32.95 38.40 38.64
5 74.68 74.02 77.66 76.65 78.70 75.29 65.64 64.29 72.60 70.66

10 80.92 80.36 82.10 81.47 83.80 82.51 74.14 74.72 78.38 75.99

Few-
NERDcoarse

1 25.99 27.42 35.67 38.16† 28.12 29.10 23.34 23.40 25.93 26.35
5 53.85 52.97 59.14 59.71 58.66 55.75 45.50 46.03 52.32 54.91†

10 59.44 59.89 63.30 64.53 65.52 62.86 52.65 55.47† 61.94 61.45

WikiGold
1 18.40 16.85 32.30 34.05† 20.63 19.90 14.90 15.39 18.01 19.13
5 49.19 49.19 55.87 57.67† 56.08 53.91 41.07 42.92† 45.44 44.21

10 55.85 56.87 61.23 62.68† 64.84 63.05 48.09 50.93† 53.85 52.26

Table 5: Token-level micro F1-scores of PLM encoders without and with contrastive learning (CL) for 5-way K-
shot scenarios, with logistic regression readout. † denotes scores with a significant (α = 0.05) improvement after
contrastive learning. ↑ and ↓ indicate cased and uncased models.

Dataset K LR NC NN

CoNLL-2003EN

1 33.03 35.21 40.76†
5 68.33† 61.53 62.24

10 72.76† 62.65 67.79

OntoNotes 5.0
1 50.45 51.52 52.72
5 77.66† 72.46 71.04

10 82.10† 73.49 76.11

Table 6: Micro-F1 scores of ALBERT for 5-way K-
shot scenarios, comparing Logistic Regression (LR),
Nearest Centroid (NC) and Nearest Neighbor (NN)
readout approaches.

rections, none of them directly investigate the con-
tribution of different pre-trained representations.
As such, our analysis complements these works.
Das et al. (2021) present a contrastive pre-training
approach for few-shot NER that uses in-domain
data to fine-tune token embeddings before few-shot
classification. In contrast, we only consider con-
trastive examples from the sampled few-shot set to
conform to the low-resource setting.

Encoder comparisons In parallel to our work,
Pearce et al. (2021) compare different Transformer
models on extractive question answering and, sim-
ilar to our results, find RoBERTa to perform best,
outperforming BERT. However, they did not re-
produce the strong performance we achieved with
ALBERT and, unlike our results, found XLNet to
be consistently outperforming BERT. Cortiz (2021)
compare Transformer models for text-based emo-
tion recognition and also found RoBERTa to per-
form best with XLNet being (shared) second, again
outperforming BERT.

There are several studies that investigate the per-

formance and transferability of PLM representa-
tions that have been fine-tuned with task-specific
NER data (Pires et al., 2019; Wu and Dredze, 2020;
Adelani et al., 2021; Ebrahimi and Kann, 2021;
Ács et al., 2021). For example, Wu and Dredze
(2020) analyze multilingual mBERT representa-
tions, with a focus on low-resource languages,
i.e. languages that are not well represented in the
original mBERT training data. They observe that
mBERT’s NER performance is worse for very high-
and very low-resource languages, and that per-
formance drops significantly with less pretraining
and supervised data. Adelani et al. (2021) find
that fine-tuned XLM-R-large representations out-
perform fine-tuned mBERT representations in 7
of 10 evaluated African languages, which they at-
tribute to the larger pretraining data size of XLM-R.
Ebrahimi and Kann (2021) find that continued pre-
training with Bible data from over 1600 languages
improves zero-shot NER performance of XLM-R
representations.

Our work can also be viewed as a kind of prob-
ing task (Conneau et al., 2018; Belinkov and Glass,
2019; Tenney et al., 2019; Petroni et al., 2019; Kass-
ner et al., 2021), since we analyze how much in-
formation about named entities is preserved in the
pre-trained representations, as measured by a linear
classifier.

6 Conclusion

We presented a systematic, comparative study of
pre-trained encoders on the task of low-resource
named entity recognition. We find that encoder

53

performance varies significantly depending on the
scenario and the mix of pre-training and fine-tuning
strategies. This suggests that the choice of en-
coders for a particular setting in current state-of-
the-art low-resource NER approaches may need to
be carefully (re-)evaluated. We also find that PLM
encoders achieve reasonably good token classifica-
tion performance on many English and German
NER datasets with as little as 10 examples per
class, in a fine-tuning-free setting. In particular,
ALBERT turned out to be a very strong contender
in one-shot settings, whereas RoBERTa often out-
performs other PLMs in settings with more exam-
ples. For German, BERT shows the best average
performance across scenarios, with XLM-R being
more useful in one-shot settings.

One obvious direction for future work is to eval-
uate additional encoders, in particular models that
are pre-trained in an entity-aware manner (Peters
et al., 2019; Zhang et al., 2019), and PLMs for
low-resource languages that are trained on much
smaller corpora or underrepresented in multilin-
gual PLMs. While our analysis is limited to NER,
another future direction would be to adapt the
encoder-readout framework in order to evaluate
other low-resource classification tasks.

Acknowledgments

We would like to thank Nils Feldhus, David Har-
becke, and the anonymous reviewers for their valu-
able comments and feedback on the paper. This
work has been supported by the German Federal
Ministry for Economic Affairs and Climate Ac-
tion as part of the project PLASS (01MD19003E),
and by the German Federal Ministry of Education
and Research as part of the project CORA4NLP
(01IW20010). Christoph Alt is supported by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy – EXC 2002/1 "Science of Intelligence" –
project number 390523135.

References
Judit Ács, Dániel Lévai, and Andras Kornai. 2021.

Evaluating transferability of BERT models on uralic
languages. In Proceedings of the Seventh Interna-
tional Workshop on Computational Linguistics of
Uralic Languages, pages 8–17, Syktyvkar, Russia
(Online). Association for Computational Linguis-
tics.

David Ifeoluwa Adelani, Jade Abbott, Graham Neu-

big, Daniel D’souza, Julia Kreutzer, Constantine
Lignos, Chester Palen-Michel, Happy Buzaaba,
Shruti Rijhwani, Sebastian Ruder, Stephen May-
hew, Israel Abebe Azime, Shamsuddeen H. Muham-
mad, Chris Chinenye Emezue, Joyce Nakatumba-
Nabende, Perez Ogayo, Aremu Anuoluwapo,
Catherine Gitau, Derguene Mbaye, Jesujoba Al-
abi, Seid Muhie Yimam, Tajuddeen Rabiu Gwad-
abe, Ignatius Ezeani, Rubungo Andre Niyongabo,
Jonathan Mukiibi, Verrah Otiende, Iroro Orife,
Davis David, Samba Ngom, Tosin Adewumi, Paul
Rayson, Mofetoluwa Adeyemi, Gerald Muriuki,
Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka
Odu, Eric Peter Wairagala, Samuel Oyerinde,
Clemencia Siro, Tobius Saul Bateesa, Temilola
Oloyede, Yvonne Wambui, Victor Akinode, Deb-
orah Nabagereka, Maurice Katusiime, Ayodele
Awokoya, Mouhamadane MBOUP, Dibora Gebrey-
ohannes, Henok Tilaye, Kelechi Nwaike, Degaga
Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Dominic Balasuriya, Nicky Ringland, Joel Nothman,
Tara Murphy, and James R. Curran. 2009. Named
entity recognition in Wikipedia. In Proceedings of
the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources
(People’s Web), pages 10–18, Suntec, Singapore. As-
sociation for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-D named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2524–
2531, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

54

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Germán Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single \backslash$&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136, Melbourne,
Australia. Association for Computational Linguis-
tics.

Diogo Cortiz. 2021. Exploring transformers in emo-
tion recognition: a comparison of bert, distillbert,
roberta, xlnet and electra. CoRR, abs/2104.02041.

Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J.
Passonneau, and Rui Zhang. 2021. Container: Few-
shot named entity recognition via contrastive learn-
ing. CoRR, abs/2109.07589.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-NERD: A few-shot named entity
recognition dataset. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3198–3213, Online. Associa-
tion for Computational Linguistics.

Abteen Ebrahimi and Katharina Kann. 2021. How to
adapt your pretrained multilingual model to 1600

languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 4555–4567, Online. Association for Computa-
tional Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL ’05, pages 363–370, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in Named
Entity Recognition Task. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing -
SAC ’19, pages 993–1000. ArXiv: 1812.06158.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical base-
line study. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10408–10423, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Nora Kassner, Philipp Dufter, and Hinrich Schütze.
2021. Multilingual LAMA: Investigating knowl-
edge in multilingual pretrained language models. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3250–3258, Online.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

55

Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan, Qi Zhang,
and Xuanjing Huang. 2021. Template-free prompt
tuning for few-shot ner. CoRR, abs/2109.13532.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Kate Pearce, Tiffany Zhan, Aneesh Komanduri, and
Justin Zhan. 2021. A comparative study of
transformer-based language models on extractive
question answering. CoRR, abs/2110.03142.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585–10605, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Rethmeier and Isabelle Augenstein. 2021. A
primer on contrastive pretraining in language pro-
cessing: Methods, lessons learned and perspectives.
CoRR, abs/2102.12982.

Raphael Scheible, Fabian Thomczyk, Patric Tippmann,
Victor Jaravine, and Martin Boeker. 2020. Got-
tbert: a pure german language model. CoRR,
abs/2012.02110.

Martin Schiersch, Veselina Mironova, Maximilian
Schmitt, Philippe Thomas, Aleksandra Gabryszak,
and Leonhard Hennig. 2018. A German Corpus for
Fine-Grained Named Entity Recognition and Rela-
tion Extraction of Traffic and Industry Events. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? Probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7882–7926, Online. Associa-
tion for Computational Linguistics.

56

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA, 23.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

Omry Yadan. 2019. Hydra - a framework for elegantly
configuring complex applications. Github.

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6365–6375,
Online. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Hanchu Zhang, Leonhard Hennig, Christoph Alt,
Changjian Hu, Yao Meng, and Chao Wang.
2020. Bootstrapping named entity recognition in E-
commerce with positive unlabeled learning. In Pro-
ceedings of The 3rd Workshop on e-Commerce and
NLP, pages 1–6, Seattle, WA, USA. Association for
Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441–1451, Florence, Italy. Association
for Computational Linguistics.

57

A Additional Training Details

We used a single RTXA6000-GPU for all experi-
ments. The average runtime per scenario (dataset,
encoder) for 600 episodes was approximately 1
minute (1-shot), 3 minutes (5-shot) and 6 minutes
(10-shot). Constrastive pre-training was also per-
formed on the same single RTXA6000-GPU, and
took approximately 1 hour of GPU-time, including
hyperparameter search.

For contrastive pre-training, the following hy-
perparameters were manually tuned: learning rate
in [2× 10−5, 5× 10−5], the number of epochs in
[1, 2, 5]. We used the most occurrences of F1-gains
across all encoders and scenarios on CoNLL-2003
dataset as criterion for hyperparameter selection.

All pre-trained models evaluated in this study
were used as they are available from Hugging-
Face’s model hub, without any modifications. Ta-
ble 7 lists the model identifiers. We used Hugging-
Face’s dataset hub for all datasets except the dataset
by Zhang et al. (2020), which is used here with the
permission of the authors.

Model HuggingFace ID

BERT↓ bert-base-uncased
BERT↑ bert-base-cased
ALBERT albert-base-v2
RoBERTa roberta-base
SpanBERT SpanBERT/spanbert-base-cased
XLNET xlnet-base-cased

BERT DE bert-base-german-cased
GottBERT uklfr/gottbert-base
XLM-R xlm-roberta-base

BERTPOS vblagoje/bert-english-uncased-finetuned-pos
BERTMNLI textattack/bert-base-uncased-MNLI
BERTSQuAD csarron/bert-base-uncased-squad-v1
BERTCoNLL dslim/bert-base-NER-uncased

Table 7: HuggingFace model identifiers of evaluated
encoders

B Readout approaches

Logistic Regression (LR) is a linear classification
algorithm that can be extended to multinomial lo-
gistic regression to deal with multi-class (N -way)
settings, such as the one discussed here. The prob-
ability that query token x′ belongs to the c-th class
is given by:

Pr(y = c) =
score(x′, c)

∑N
i=1 score(x′, i)

score(x′, i) := exp(Wi · fθ(x′)),

(1)

where W is a matrix of N rows learned from the
support set S, and Wi denotes the i-th row of W .
score(·) serves as the metric to measure the affinity
between token x′ and the prototype of class c, and
the prediction is given by

y∗ = arg max
c∈{1,··· ,N}

score(x′, c).

k-Nearest Neighbor (NN) is a non-parametric
classification method adopted in metric space. As
proposed in STRUCTSHOT (Yang and Katiyar,
2020), we set k = 1 to find the exact nearest token
in the support set. Given a query token x′,

y∗ = arg min
c∈{1,··· ,N}

dc(x
′)

dc(x
′) := min

x∈Sc
d
(
fθ(x′), fθ(x)

)
,

(2)

where Sc is the set of support tokens whose tags
are c, and d denotes the distance between two em-
beddings in the representation space.

Nearest Centroid (NC) works similar to NN. In
contrast, for each query token x′, instead of comput-
ing the distance between fθ(x′) and every instance
in the embedding space, we represent each class
by the centroid cc of all embeddings belonging to
this class, and assign token x′ to the class with the
nearest centroid:

y∗ = arg min
c∈{1,··· ,N}

d
(
fθ(x′), cc

)

cc =
1

|Sc|
∑

x∈Sc
fθ(x).

(3)

C Entity tag sets of English datasets

We list the full entity tag sets for all English bench-
marks. Overlap entity tags with CoNLL-2003EN
are highlighted with underline.

C.1 CoNLL-2003EN

LOC, MISC, ORG, PER.

C.2 OntoNotes 5.0
CARDINAL, DATE, EVENT, FAC, GPE, LAN-
GUAGE, LAW, LOC, MONEY, NORP, ORDI-
NAL, ORG, PERCENT, PERSON, PRODUCT,
QUANTITY, TIME, WORK_OF_ART.

C.3 Few-NERDcoarse

art, building, event, location, organization, other6,
person, product.

6Few-NERDcoarse sets non-entity as ’O’ and various entity
types as ’other’. Therefore, we treat ’other’ as ’MISC’ in this
case.

58

C.4 Few-NERDfine

art-broadcastprogram, art-film, art-music, art-
other, art-painting, art-writtenart, building-
airport, building-hospital, building-hotel,
building-library, building-other, building-
restaurant, building-sportsfacility, building-
theater, event-attack/battle/war/militaryconflict,
event-disaster, event-election, event-other,
event-protest, event-sportsevent, location-
GPE, location-bodiesofwater, location-island,
location-mountain, location-other, location-
park, location-road/railway/highway/transit,
organization-company, organization-education,
organization-government/governmentagency,
organization-media/newspaper, organization-other,
organization-politicalparty, organization-religion,
organization-showorganization, organization-
sportsleague, organization-sportsteam, other-
astronomything, other-award, other-biologything,
other-chemicalthing, other-currency, other-
disease, other-educationaldegree, other-god,
other-language, other-law, other-livingthing,
other-medical, person-actor, person-artist/author,
person-athlete, person-director, person-other,
person-politician, person-scholar, person-soldier,
product-airplane, product-car, product-food,
product-game, product-other, product-ship,
product-software, product-train, product-weapon

C.5 WNUT-17
corporation, creative-work, group, location, person,
product.

C.6 WikiAnn
LOC, ORG, PER.

C.7 WikiGold
LOC, MISC, ORG, PER.

C.8 Zhang et al.
ATTRIBUTE, BRAND, COMPONENT, PROD-
UCT.

59

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 60 - 66
May 26, 2022 ©2022 Association for Computational Linguistics

Clozer: Adaptable Data Augmentation for Cloze-style Reading
Comprehension

Holy Lovenia∗, Bryan Wilie∗, Willy Chung∗, Min Zeng∗,
Samuel Cahyawijaya, Su Dan, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
The Hong Kong University of Science and Technology

(hlovenia, bwilie, whcchung, min.zeng)@connect.ust.hk

Abstract
Task-adaptive pre-training (TAPT) alleviates
the lack of labelled data and provides perfor-
mance lift by adapting unlabelled data to down-
stream task. Unfortunately, existing adapta-
tions mainly involve deterministic rules that
cannot generalize well. Here, we propose
Clozer, a sequence-tagging based cloze answer
extraction method used in TAPT that is extend-
able for adaptation on any cloze-style machine
reading comprehension (MRC) downstream
tasks. We experiment on multiple-choice cloze-
style MRC tasks, and show that Clozer per-
forms significantly better compared to the ora-
cle and state-of-the-art in escalating TAPT ef-
fectiveness in lifting model performance, and
prove that Clozer is able to recognize the gold
answers independently of any heuristics.

1 Introduction

Endowing machines with the proficiency to read,
understand, and reason from unstructured text infor-
mation is an ongoing aspiration in natural language
processing. This aim raises a notable research
focus: machine reading comprehension (MRC).
Given a question, the goal of MRC is to infer the
correct answer based on important cues gathered
through understanding relevant context passage.
MRC tasks vary in structure, depending on their
question construction (e.g., cloze-style) and answer
type (e.g., multiple-choice) (Zeng et al., 2020).

Various methods using large pre-trained lan-
guage models (LMs) have been proposed in MRC
tasks. In recent years, adaptation methods such
as task adaptive pre-training (TAPT) have been
widely adopted for MRC tasks (Xie et al., 2021;
Wang et al., 2021; Glass et al., 2020). TAPT uses
in-domain unlabelled data of the downstream task
to generate a synthetic pre-training dataset adapted
to the downstream task through certain data aug-
mentation methods, depending on the downstream
task in use. For multiple-choice cloze-style MRC,
data augmentation often involves two steps: 1) an-
swer extraction or selection and 2) pseudo-answer

∗The authors contributed equally to this work.

Figure 1: Clozer extracts an answer for TAPT

generation (Figure 1). Both steps have been
adopted in several studies with varying implemen-
tations (Welbl et al., 2017; Onishi et al., 2016;
Yang et al., 2020). One notable work presents TA-
MAMC (Gururangan et al., 2020), which achieves
state-of-the-art performance by adopting the TAPT
framework. However, this method relies heavily
on the downstream task’s heuristics in the answer
selection step, which hinders its applicability to
other multiple-choice cloze-style MRC tasks.

In this paper, we take a step towards generalized
synthetic pre-training dataset construction, to use
TAPT to solve multiple-choice cloze-style MRC.
We propose Clozer, a cloze answer extraction based
on sequence tagging developed independently of
pre-defined rules to improve the generalizability of
the TAPT method for the cloze-style MRC tasks.
Clozer learns the intrinsic pattern of the down-
stream task dataset and acts as an answer extractor
for the unlabelled data (Figure 1). To adapt to the
downstream task, the extractions are grouped with
several other options to form a triplet of {context
passage, cloze question, multiple-choice options},
following the standard multiple-choice cloze-style
MRC task format, as a synthetic sample for the
second pre-training phase. We conduct our experi-
ments on two downstream tasks. Our experimental
results show that employing Clozer in TAPT pro-
vides a substantial performance boost, while being
generally applicable for both multiple-choice MRC
tasks we experiment on.

1
60

Figure 2: Method pipeline for Clozer-based TAPT

Our contributions are as follows: 1) to the best
of our knowledge, we are the first to introduce an
automatic generalizable cloze answer extraction
method to support a generalized TAPT method for
multiple-choice cloze-style MRC tasks; 2) we show
that Clozer significantly outperforms all other base-
lines on two multiple-choice cloze-style MRC tasks
without relying on any task-specific heuristics; and
3) we present further analysis to explain the effec-
tiveness and efficiency of our Clozer and provide
insight on how to improve its generalizability.

2 Related Work

Task-adaptive pre-training Howard and Ruder
(2018) propose Universal Language Model Fine-
tuning (ULMFiT), which pre-trains an LM on a
large general-domain corpus and fine-tunes it on
the target task. Second-phase pre-training has been
used to improve the performance of an LM for cer-
tain downstream tasks such as text classification
(Sun et al., 2019). Studies on TAPT (Gururangan
et al., 2020; Pruksachatkun et al., 2020) prove that
the performance boost it obtains can be on par with
domain-adaptive pre-training, with the benefit of
using a much smaller but relevant corpus. TAPT
has proved effective in many downstream tasks
such as abstractive summarization (Yu et al., 2021)
and dialogue systems (Zhang et al., 2021a).

Answer extraction Tan et al. (2018) develop an
extraction-then-synthesis framework to synthesize
answers from extraction results. Specifically, the
answer extraction model is first employed to pre-
dict the most important sub-spans from the pas-
sage, then the answer synthesis model takes the sub-
spans as additional features along with the question
and passage to further elaborate the final answers.
Xiong et al. (2016) introduce the Dynamic Coatten-
tion Network (DCN) for a question-answering task,

which learns the co-dependent representations of
the question and the passages. Seo et al. (2016) in-
troduce the Bi-Directional Attention Flow (BIDAF)
network to match the question and passages. It uses
the BIDAF mechanism to get a query-aware con-
text representation without early summarization.

Sequence tagging Sequence tagging is utilized
to assign a label for each token (i.e., word) in a se-
quence. While it’s commonly applied for tasks like
named entity recognition (NER), part-of-speech
(POS) tagging, and text chunking, Yao et al. (2013);
Wilie et al. (2020) prove that it is feasible to use this
approach to construct cloze questions by extracting
an answer span from a complete sentence. Yao
et al. (2013) cast answer extraction as an answer
sequence-tagging task, utilizing a linear-chain con-
ditional random field (CRF) with tree edit distance
(TED) and traditional contextual features.

3 Methodology

Our method follows the pipeline described in Fig-
ure 2. We follow TAPT’s objective, in which a
model learns on a small task-relevant set of data
instead of doing another round of masked language
modeling (MLM) for pre-training. Utilizing Clozer,
we adapt a large unlabelled pre-training dataset
based on the downstream task, which could be any
multiple-choice cloze-style MRC task.

We define the pre-training dataset P =
{(dPi , sPi)}ni=1 with dPi as a document and sPi as a
summary or a single sentence related to the passage
dPi . P could be any unlabelled data of document
and sentence pairs, e.g., headline-content of news,
title-body of articles, and synopsis-narration of sto-
ries. Through the task adaptation, we reconstruct
P into a synthetic cloze-style MRC task, where
the resulting task-adapted pre-training dataset is
represented by T = {(cTi , qTi , oTi , lTi)}mi=1. It fol-

2
61

lows the structure of the downstream task dataset
D = {(cDi , qDi , oDi , lDi)}mi=1, where cDi is a context
passage, qDi is a cloze question, oDi ∈ o1, . . . , ok is
a set of multiple-choice options, and lDi is the gold
answer’s index as the correct label.

We split the task adaptation into 1) gold answer
extraction and 2) pseudo options generation, which
are explained in §3.1 and §3.2 respectively. Af-
terwards, we employ TAPT using the task-adapted
dataset T , the details of which are provided in §3.3.

3.1 Gold answer extraction
Gold answer extraction (GAE) represents the pre-
training dataset’s summary as a cloze question by
taking out a gold answer, which depends on the
downstream task’s notion of what is a correct an-
swer. We tackle this problem by utilizing Clozer to
learn from the downstream task and identify the ap-
propriate gold answers by sequence tagging. First,
we repurpose the cloze questions and gold answers
in the downstream task as a token classification
dataset. We use the tag B-ANS for the gold answer
and the tag O for other words in the cloze question.

Afterwards, we fine-tune Clozer on this repur-
posed dataset so it can learn and approximate the
downstream task’s pattern of determining the gold
answers. It is worth mentioning that, due to its
independence from any heuristic rules, our Clozer
method is not constrained to a single specific inter-
pretation of gold answers. It can be adapted to ex-
tract any type of cloze answers (e.g., abstract mean-
ing) depending on the downstream task dataset. We
next use Clozer to predict the pre-training dataset’s
summaries and extract the gold answers. We re-
place the gold answers in the summaries with the
[MASK] token to form cloze questions and pass
the questions on to the next step. We drop candi-
dates with zero or more than one gold answer.

3.2 Pseudo options generation
Pseudo answer generation (POG) employs a pre-
trained masked LM to predict the [MASK] token.
For each cloze question, we obtain the model’s
top predictions and filter out the ones that are in-
complete or too similar to the gold answer. We
randomly pick k predictions as pseudo options. We
discard data samples with fewer than k remain-
ing predictions. After this step, each pre-training
dataset sample consists of a context paragraph, a
cloze question, a gold answer, and four pseudo
options. Following the downstream task dataset
structure, we recast the gold answer and pseudo

options as {o1, o2, ..., ok} in random order. The
gold answer’s option index becomes the label. In
cases beyond the scope of this work where multiple-
choice is not required by the cloze task, POG is
skipped.

3.3 Task-adaptive pre-training

We feed the task-adapted dataset to a pre-trained
multiple-choice classification model for TAPT. The
final step is to fine-tune the model on the down-
stream task and evaluate it. To see how Clozer per-
forms against other available methods, we present
the results of three baselines, where we employ
a directly fine-tuned model, TA-MAMC, and an
oracle in place of Clozer in the GAE step. The
baselines will be further explained in §4.

4 Experiment

Dataset As explained in §3, the methodology
requires the usage of a pre-training dataset and
a downstream task. In the experiment, we apply
Clozer for the TAPT method on two downstream
tasks separately. Both are multiple-choice cloze-
style MRC tasks and are obtained from the subtask
1 and subtask 2 of ReCAM (Zheng et al., 2021).
Given a context passage and multiple choice op-
tions, the appropriate gold answer must be derived
to complete a cloze question. The first task defines
its gold answers as imperceptible concepts, while
the second defines them as hypernyms. For the pre-
training dataset P , we use XSUM (Narayan et al.,
2018), an abstractive news summarization dataset.

Baseline To see how Clozer-based TAPT per-
forms against other methods, we employ three base-
lines for the experiment: 1) direct fine-tuning,
where a pre-trained multiple-choice model applies
no TAPT and is immediately fine-tuned on the
downstream task; 2) TA-MAMC, which selects
gold answers by emulating the POS-tag distribu-
tion of the downstream task’s training data; and
3) oracle, whose answer selection is built upon
heuristic rules specific to each downstream task.

The oracle utilizes a psycholinguistic database
of abstract words (Coltheart, 1981) to select the im-
perceptible concepts as the gold answers in the first
task. For the second task, it uses a hypernym hierar-
chy from WordNet (Changizi, 2008) to determine
the gold answers. Both heuristics are chosen be-
cause they are used to select the original gold (i.e.,
correct) answers in the ReCAM dataset creation.

3
62

Approach ReCAM 1 ReCAM 2

Acc F1 Acc F1

Direct FT 64.16% 64.15% 64.75% 64.65%
TA-MAMC† 64.99% 64.99% 67.69% 67.68%
Oracle 65.83% 65.80% 68.60% 68.50%

Clozer 65.95% 65.96% 73.56% 73.45%

Table 1: Performance comparison on the test sets of the
downstream tasks. Bold marks the best results. †We
reproduce this approach based on Zhang et al. (2021b).

Training and evaluation In the GAE, our Clozer
is implemented using a pre-trained ELECTRA-
base (Clark et al., 2020), while for the POG and
TAPT, we initialize the model using a pre-trained
BERT-base model (Devlin et al., 2019). Since only
the training set and the development set of both
downstream tasks are labelled, we split the original
training set with a ratio of 80:20 to form a training
set and a validation set. We use the development
set as a test set. Accuracy and F1-score are used to
assess the methods’ performance on the test set.

5 Results and Analysis

5.1 Overall results
We present our experimental results in Table 1.
Without additional TAPT, the direct fine-tuning
method yields the lowest results. In compari-
son, TA-MAMC, which relies on POS-tag distri-
bution, performs slightly better, and the oracle,
which exploits the downstream tasks’ heuristic
rules, achieves the best scores among our baselines.
Our proposed Clozer method, however, surpasses
all baselines in both downstream tasks, by around
2% for task 1 and 9% for task 2. While Clozer
provides substantial improvements, there is a con-
siderable discrepancy between both performances
due to the way the tasks are defined. We further
discuss Clozer’s performance discrepancy in §5.3.

5.2 Quality of answer extraction methods
As shown in Table 2, the oracle, which derives its
understanding of the answers from the semantics
provided by the heuristic rules, has the fewest data
after the GAE step (94k out of 200k), because the
heuristic rules it is built upon are deterministic and
leave no room for randomness. TA-MAMC’s POS-
tag distribution approach provides some knowledge
of the target’s syntax but represents no semantic ties
to ReCAM’s answers (i.e., imperceptible concepts
and hypernyms).

Task adapter
ReCAM 1 ReCAM 2

Post-
GAE

Post-
POG

Post-
GAE

Post-
POG

TA-MAMC 155017 47699 155858 48358
Oracle 94954 29073 75920 23520

Clozer 120073 35073 181476 53368

Table 2: Number of data samples left after the GAE and
POG for different task-adapter methods.

However, TA-MAMC has the benefit of exclud-
ing fewer examples than the oracle. Our Clozer
finds a middle ground by being more generaliz-
able compared to both baselines, while producing
a better answer extraction quality (Table 1). Clozer
shows superior results with only 5k more data sam-
ples in task 2 and with 12k fewer data samples in
task 1. This shows that, while the amount of data
contributes to the performance lift, the quality of
the extracted answers in the synthetic task-adapted
dataset is indispensable.

5.3 Clozer’s performances on different
downstream tasks

While TAPT lifts the model performance by 2% for
task 1 and 9% for task 2, the difference between the
tasks is glaring. We argue that this is largely due
to the amount of synthetic data left after applying
the task adaptation, as shown in Table 2, with 35k
samples left in task 1 and 53k samples in task 2.
This shows that the definition of abstractness cho-
sen by ReCAM for gold answers in task 1 is more
complex than the definition used by task 2, which
causes the answers in task 1 to be harder to grasp
by all of the approaches, including our Clozer.

This is coherent as ReCAM defines impercep-
tible concepts in task 1 using a model-based ap-
proach, which in turn introduces an innate bias to
the definition. This causes identifying answers in
task 1 to be conceptually more complex than in task
2, where the answers are simply nouns and verbs
derived from a hypernym hierarchy. This is also in
line with Zheng et al. (2021), who show that the
cross-task performance drops significantly more
for models trained on task 2 trying to make predic-
tions on task 1, rather than the opposite. Examples
of this complexity difference are in Appendix A.

6 Conclusion

We have proposed Clozer, an automatic generaliz-
able cloze answer extraction method, to help in syn-

4
63

thetic TAPT dataset construction in multiple-choice
cloze-style MRC tasks. Performing TAPT with
gold answers extracted by our ELECTRA-based
Clozer produces stronger models than the baselines
in terms of effectiveness (i.e., performance) and
efficiency (i.e., the amount of data used in TAPT).
Moreover, we also show that the quality of Clozer’s
extracted answers is higher, despite its indepen-
dence from the downstream task’s heuristics

Acknowledgement

This work has been supported by the China NSFC
Project (No. NSFC21EG14), School of Engineer-
ing PhD Fellowship Award, the Hong Kong Univer-
sity of Science and Technology and PF20-43679
Hong Kong PhD Fellowship Scheme, Research
Grant Council, Hong Kong.

References
Mark A. Changizi. 2008. Economically organized hier-

archies in wordnet and the oxford english dictionary.
Cognitive Systems Research, 9(3):214–228.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Max Coltheart. 1981. The mrc psycholinguistic
database. The Quarterly Journal of Experimental
Psychology Section A, 33(4):497–505.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Michael Glass, Alfio Gliozzo, Rishav Chakravarti, An-
thony Ferritto, Lin Pan, G P Shrivatsa Bhargav, Di-
nesh Garg, and Avi Sil. 2020. Span selection pre-
training for question answering. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 2773–2782, Online. As-
sociation for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Takashi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel,
and David McAllester. 2016. Who did what: A large-
scale person-centered cloze dataset. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2230–2235.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel Bowman.
2020. Intermediate-task transfer learning with pre-
trained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231–5247.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune BERT for text classification?
CoRR, abs/1905.05583.

Chuanqi Tan, Furu Wei, Nan Yang, Bowen Du, Weifeng
Lv, and Ming Zhou. 2018. S-net: From answer ex-
traction to answer synthesis for machine reading com-
prehension. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Ye Wang, Yanmeng Wang, Haijun Zhu, Bo Zeng,
Zhenghong Hao, Shaojun Wang, and Jing Xiao. 2021.
PINGAN omini-sinitic at SemEval-2021 task 4:read-
ing comprehension of abstract meaning. In Proceed-
ings of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 820–826, Online.
Association for Computational Linguistics.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, and Ayu Purwarianti. 2020. IndoNLU:
Benchmark and resources for evaluating Indonesian
natural language understanding. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 843–857, Suzhou, China.
Association for Computational Linguistics.

5
64

Xin Xie, Xiangnan Chen, Xiang Chen, Yong Wang,
Ningyu Zhang, Shumin Deng, and Huajun Chen.
2021. ZJUKLAB at SemEval-2021 task 4: Nega-
tive augmentation with language model for reading
comprehension of abstract meaning. In Proceed-
ings of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 810–819, Online.
Association for Computational Linguistics.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008–1025.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013. Answer extraction as
sequence tagging with tree edit distance. In Proceed-
ings of the 2013 conference of the North American
chapter of the association for computational linguis-
tics: human language technologies, pages 858–867.

Tiezheng Yu, Zihan Liu, and Pascale Fung. 2021.
Adaptsum: Towards low-resource domain adapta-
tion for abstractive summarization. arXiv preprint
arXiv:2103.11332.

Changchang Zeng, Shaobo Li, Qin Li, Jie Hu, and Jian-
jun Hu. 2020. A survey on machine reading compre-
hension—tasks, evaluation metrics and benchmark
datasets. Applied Sciences, 10(21):7640.

Boliang Zhang, Ying Lyu, Ning Ding, Tianhao Shen,
Zhaoyang Jia, Kun Han, and Kevin Knight. 2021a.
A hybrid task-oriented dialog system with domain
and task adaptive pretraining. arXiv preprint
arXiv:2102.04506.

Jing Zhang, Yimeng Zhuang, and Yinpei Su. 2021b. TA-
MAMC at SemEval-2021 task 4: Task-adaptive pre-
training and multi-head attention for abstract mean-
ing reading comprehension. In Proceedings of the
15th International Workshop on Semantic Evaluation
(SemEval-2021), pages 51–58, Online. Association
for Computational Linguistics.

Boyuan Zheng, Xiaoyu Yang, Yu-Ping Ruan, Zhenhua
Ling, Quan Liu, Si Wei, and Xiaodan Zhu. 2021.
SemEval-2021 task 4: Reading comprehension of
abstract meaning. In Proceedings of the 15th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2021), pages 37–50, Online. Association for Compu-
tational Linguistics.

6
65

A Examples of Gold Selection with Clozer

David Beckham has expressed his pride at helping London win their 2012 olympics bid despite

not being picked in great britains football squad.

A 22 year old man arrested on suspicion of murder following the death of Lewis Siddall has
been released on bail.

A cow which got into the water at Aberdeen harbour has been shot after a rescue effort failed to
coax it ashore.

Streets in Wales are blighted by discarded cigarette butts with 86 of roads strewn with smoking
related litter a charity survey shows.

It is officially a regeneration area and dyke house in Hartlepool has newly built smart houses but
they are in the minority.

Wales flyhalf Dan Biggar says he is learning to cope with the pressure of wearing the famous
number 10 jersey.

Table A1: Examples of gold selections in summaries taken from both dowstream tasks with Clozer. Highlighted in
yellow is the gold answer chosen according to the first definition of abstractness, imperceptibility, and in blue the

answer according to the second definition, non-specificity (for hypernyms), in each example.

For task 1 (ReCAM 1), abstractness follows the definition of imperceptibility, meaning any concept
that can’t be perceived directly in the physical world according to a psycholinguistic database (Coltheart,
1981). Task 2 (ReCAM 2) defines abstractness as non-specificity, representing nouns and verbs relatively
high in a hypernym hierarchy (Changizi, 2008). Examples of the difference between both are illustrated
in Table A1.

As discussed in §5.3, the abstract concepts chosen for ReCAM 1 are intuitively harder to define
compared to the concepts for ReCAM 2, even for humans (pride, suspicion vs picked, following).
However, this also shows that without being given any rules, our Clozer still manages to grasp the
underlying mechanics originally chosen to extract the abstract words in both tasks.

We refer to the original work (Zheng et al., 2021) on building the ReCAM dataset for more details on
the reason why those two definitions of abstractness have been chosen.

7
66

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 67 - 77
May 26, 2022 ©2022 Association for Computational Linguistics

Analyzing Gender Representation in Multilingual Models

Hila Gonen1 Shauli Ravfogel2,3 Yoav Goldberg2,3

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Computer Science Department, Bar Ilan University

3Allen Institute for Artificial Intelligence
{hilagnn, shauli.ravfogel, yoav.goldberg}@gmail.com

Abstract
Multilingual language models were shown to
allow for nontrivial transfer across scripts and
languages. In this work, we study the struc-
ture of the internal representations that enable
this transfer. We focus on the representation
of gender distinctions as a practical case study,
and examine the extent to which the gender
concept is encoded in shared subspaces across
different languages. Our analysis shows that
gender representations consist of several promi-
nent components that are shared across lan-
guages, alongside language-specific compo-
nents. The existence of language-independent
and language-specific components provides an
explanation for an intriguing empirical observa-
tion we make: while gender classification trans-
fers well across languages, interventions for
gender removal, trained on a single language,
do not transfer easily to others.

1 Introduction

Pretrained models of contextualized representa-
tions (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2020) are known in their ability to capture
both explicit and implicit information during train-
ing. A special case of these models are multilin-
gual models (Devlin et al., 2019; Conneau et al.,
2020), which are pretrained with texts in multiple
languages. These models were shown to induce
the emergence of similar representations in differ-
ent languages, a phenomenon that was put to use
for transfer between languages in end-tasks (Pires
et al., 2019; Muller et al., 2020; Gonen et al., 2020).
However, the underlying mechanism is still not
clear, and we do not know yet the full extent to
which the representations of these models share
information across languages.

The rise of pretrained models has been accom-
panied with growing concern regarding sensitive
information they might encode, e.g. gender or eth-
nic distinctions. Pretrained language models were
shown to be sensitive to gender information, both

when it is explicitly stated in texts, as well as when
it can be inferred from implicit information (Zhao
et al., 2019; May et al., 2019). We still lack a com-
plete understanding of what the model captures,
and the ways to control and change the information
in this context as well.

In this work, we aim to shed light on the way
gender, a popular use case of a human-interpretable
concept, is represented in multilingual models, and
whether it is encoded in a language-dependant way.
In a series of experiments, we uncover a surpris-
ing finding: gender-identification ability is highly
transferable across languages (section 4.1) but neu-
tralizing gender identification is not (section 4.2).
While these two findings may seem contradictory
at first glance, this is explained by several levels of
gender marking: both cross-lingual and language-
specific (section 5).

We start our analysis by training gender classi-
fiers and examining their ability to transfer across
languages. We then proceed to identifying “gen-
der subspaces” — subspaces that encode gender
— in each language, with the goal of understand-
ing which information is language-specific, and
which is shared across languages. Following recent
work on linear interventions (Ravfogel et al., 2020;
Elazar et al., 2021; Ravfogel et al., 2021, 2022), we
take an “amnesic” approach: we study the extent to
which neutralizing the gender subspace in one lan-
guage interferes with gender prediction in another
language. Finally, we analyze the similarity in the
gender-encoding components across languages.

We find that while linear probes for gender trans-
fer well between languages — that is, a gender
classifier that is trained on one language predicts
gender well in another language, the method we
employ for neutralizing gender fails to transfer
across languages. A deeper analysis reveals a fine-
grained organization of the gender-encoding sub-
spaces across languages: they are spanned by a few
main directions, which are largely similar across

67

languages; but in addition to these directions, there
are other directions that are language-specific. The
existence of several similar directions explains the
high degree of transferability of linear gender clas-
sifiers across languages, while the existence of a
large amount of language-specific information ex-
plains the inability to efficiently remove gender
information in one language based on another lan-
guage’s representation.

We summarize our findings and contributions as
follows: (a) we show that gender-identification is
highly transferable across languages (Section 4.1);
(b) we find that neutralizing gender identifica-
tion does not transfer well across languages (Sec-
tion 4.2); (c) we demonstrate that gender subspaces
are spanned by a few directions that are largely sim-
ilar across languages; and also by other directions
that are language-specific (Section 5.1); (d) we find
that the directions that are shared across languages
are the most dominant ones (Section 5.2).

The code for our experiments is avail-
able at https://github.com/gonenhila/
multilingual_gender.

2 Related Work

Multilingual Representation Analysis Pires
et al. (2019) begin a line of work that studies
mBERT’s representations and capabilities. They
inspect the model’s zero-shot transfer abilities us-
ing different probing experiments, and propose a
way to map sentence representations in different
languages, with some success. Karthikeyan et al.
(2020) further analyze the properties that affect
zero shot transfer of bilingual BERTs. Wu and
Dredze (2019) perform transfer learning from En-
glish to 38 languages, on 5 different downstream
tasks and report good results. Wang et al. (2019)
learn alignment between contextualized represen-
tations, and use it for zero shot transfer. Dufter
and Schütze (2020) make an attempt to control dif-
ferent aspects of mBERT and identify those that
contribute the most to its transfer ability.

Beyond focusing on zero-shot transfer abilities,
an additional line of work studies the represen-
tations of mBERT and the information it stores.
Using hierarchical clustering based on the CCA
similarity scores between languages, Singh et al.
(2019) are able to construct a tree structure that
faithfully describes relations between languages.
Chi et al. (2020) learn a linear syntax-subspace in
mBERT, and point out to syntactic regularities in

the representations that transfer across languages.
In Cao et al. (2019), the authors define the notion of
contextual word alignment and show improvement
in zero-shot transfer after fine-tuning accordingly.
In Libovický et al. (2020), the authors assume that
mBERT’s representations have a language-neutral
component, and a language-specific component
and provide an experimental setting to partially
support this assumption. Finally, in Gonen et al.
(2020), the authors propose an explicit decompo-
sition of the representations to language-encoding
and language-neutral components, and also demon-
strate that implicit word-level translations can be
easily distilled from the model when exposed to
the proper stimuli.

Unlike previous works, we pay attention specifi-
cally to how gender is manifested in the representa-
tions, as a case study for the analysis of a concrete
societal property. We do that by focusing on the
information included in the representations them-
selves, rather than on downstream tasks.

Gender Representation in Multilingual Models
To the best of our knowledge, no previous work
focuses on the way gender is represented in multi-
lingual models and the extent to which such repre-
sentations are shared across languages.

Some work has been done on identifying and
mitigating gender bias in languages other than En-
glish (Zhou et al., 2019; Bartl et al., 2020). Gonen
et al. (2019) identify and debias a new type of
gender bias, unique to gender-marking languages.
Williams et al. (2021) look at the relationships be-
tween the grammatical genders of inanimate nouns
and their co-occurring adjectives and verbs. In Zmi-
grod et al. (2019), the authors suggest a method
for converting between masculine-inflected and
feminine-inflected sentences in morphologically
rich languages, and use them for counterfactual
data augmentation in order to reduce gender stereo-
typing.

Zhao et al. (2020) analyze gender bias in multi-
lingual word embeddings, and evaluate it intrin-
sically and extrinsically. They point to several
factors that influence the gender bias in multilin-
gual embeddings, among which are the pretrained
monolingual word embeddings, and the alignment
method used. Additionally, Liang et al. (2020)
focus on contextualized embeddings, analyze the
gender representation in BERT, and also put ef-
forts into English-Chinese cross lingual debiasing.
Finally, Bansal et al. (2021) focus on Indian lan-

68

guages when debiasing multilingual embeddings.

3 Datasets and Multilingual
Representations

For our experiments we use the BiosBias Dataset
(De-Arteaga et al., 2019), the Multilingual Bios-
Bias Dataset (Zhao et al., 2020) and the multilin-
gual BERT model (mBERT, (Devlin et al., 2019))
as detailed below.

Multilingual Gender Data. De-Arteaga et al.
(2019) collected the English BiosBias dataset, a
set of short-biographies written in third person, and
annotated by perceived gender. To do so they iden-
tified online biographies, written in English, from
Common Crawl, by filtering for lines that match
a pattern of a name and an occupation.1 Gender
is labeled using heuristics, based on names and
pronouns. In their work, they have demonstrated
that profession classifiers trained on this dataset
condition on the gender concept, resulting in fair-
ness issues. Zhao et al. (2020) evaluate the bias in
cross-lingual transfer settings, for which they have
created the Multilingual BiosBias (MLBs) Dataset
which contains a similar set of biographies in three
additional languages: French, Spanish and German.
Note that these are not translations of the English
portion, but are crawled independently with a simi-
lar method.

For our experiments we use both datasets, so
that we have biographies in English, Spanish and
French.2 To decrease noise, we filter out examples
of professions with less than 500 occurrences. Ta-
ble 1 describes the statistics of the dataset in all
languages. Note that the dataset is not balanced
with respect to gender, especially for French and
Spanish (same as before our filtering), and that the
English portion is significantly larger. Following
(De-Arteaga et al., 2019), we split randomly into
Train/Dev/Test sets with ratio of 65%/10%/25%,
while ensuring that the main class (professions)
is balanced across them. Unfortunately, biogra-
phies data for more languages is not available at
this point, so we opt to use English, French and
Spanish only.

1A sequence of two capitalized words followed by “is a(n)
(xxx) title,” where title is a profession from BLS Standard
Occupation Classification system.

2Since the datasets are not available online, we used the
scripts the authors provide for crawling them ourselves. The
German portion we were able to extract was too small, so we
decided to avoid experimenting with it.

examples female male majority # prof

En 255682 118344 137338 53.71 28
Fr 42773 12196 30577 71.49 19
Es 46931 12867 34064 72.58 27

Table 1: Statistics of the MLBs dataset.

Multilingual Representations. To study the rep-
resentation of the gender concept in a multilin-
gual setting, we use multilingual BERT (mBERT,3

110M parameters) (Devlin et al., 2019). For each
example in the dataset, we extract its representation
from mBERT by averaging the last-layer represen-
tations in context of all the tokens in the paragraph.

4 Gender Representation across
Languages

4.1 Transfer of Gender Probes

As a first step in understanding gender representa-
tion in multilingual models, we start with a basic
experiment that aims to evaluate the extent to which
gender is represented similarly across languages.
The goal of this experiment is to check whether
features that help predict the gender of a contex-
tualized representation in one language are also
predictive of gender in another language.

To this end, we train a linear classifier (logis-
tic Regression classifier, trained in SKlearn4 with
default parameters) for gender classification in a
SOURCE language, and use it as is to predict the
gender in a TARGET language. The training is done
over the mBERT representations of the training
examples (see Section 3).

The results, presented in Table 2, indicate that
gender classifiers transfer very well across lan-
guages, with only a slight degradation in perfor-
mance when applied in a different language. For
example, the accuracy of the English gender classi-
fier in-language is 99.27%, and when the French or
Spanish classifiers are used to predict gender in the
English data, the accuracy is 98.10% and 97.29%,
respectively. The same trend is observed for the
French and Spanish datasets. These results sug-
gest that gender information is linearly accessible
in mBERT representations and is shared between
languages.

3Implemented with HuggingFace (Wolf et al., 2020).
4https://scikit-learn.org/stable/

69

En train Fr train Es train

En test 99.27 98.10 97.29
Fr test 95.97 97.50 94.61
Es test 84.04 84.10 85.97

Table 2: Accuracy of gender classification across lan-
guages with linear classifiers. Rows represent the lan-
guage of the prediction data, columns represent the lan-
guage in which the classifier was trained.

4.2 Cross-lingual Linear Gender Removal

The experiment described above suggests that some
gender components are shared between languages.
As bias mitigation techniques focus on the removal
of gender information, a natural question that arises
is whether mitigation efforts trained on one lan-
guage would transfer to another. This question is
important for two reasons. First, if possible, this
has a potential practical utility – e.g., enabling bias
mitigation in low-resource languages, for which
training data is scarce. Second, the degree of suc-
cess in transfer of bias mitigation efforts is a com-
plementary way to assess whether the representa-
tion of gender is indeed multilingual.

Previous experiments on removing the gender
concept from neural representations show encour-
aging results in-language for English. These are
done using INLP (Ravfogel et al., 2020), an exist-
ing approach for the identification and neutraliza-
tion of “concept subspaces”, e.g. the gender con-
cept. In these experiments, Ravfogel et al. (2020)
show they manage to neutralize the ability of lin-
ear probes to recover gender information from the
representations. In light of the above results that
show high quality transfer of gender classifiers
across languages, we leverage the INLP method,
and attempt to remove gender information from the
representations across languages.

Note that the goal of the following experiment is
not debiasing gender but rather analyzing gender
directions across langauges – INLP is used in this
experiment as an analysis tool, rather than a debi-
asing tool. In what follows, we give an overview
of INLP, and then describe the experiment and its
results.

Iterative Nullspace Projection (INLP) INLP
(Ravfogel et al., 2020) aims to remove linearly-
decodable information from vector representations.

INLP constructs a concept subspace iteratively,
by finding directions of the relevant concept (e.g.

gender) and neutralizing them by projecting the rep-
resentations onto their nullspace. On each iteration,
a classifier is trained on the representations, which
were projected onto the nullspace of the previous
classifiers, i.e., the classifier is optimized to iden-
tify residual information which was not captured
by previous directions. This iterative procedure
relies on the intuition that in order to find a sub-
space whose neutralization hinders the ability to
predict some concept, one first needs to identify
the directions that encode that concept, and only
then neutralize them.

Formally, given a dataset of representations X
(in our case, mBERT representations) and an-
notations Z for the information to be removed
(gender) the method renders Z linearly unpre-
dictable from X . It does so by iteratively train-
ing linear predictors w1, . . . , wn of Z, calculat-
ing the projection matrix onto their nullspace
PN := PN (w1), . . . , PN (wn), and transforming
X ← PNX . By the nullspace definition, this guar-
antees wiPNX = 0,∀wi, i.e., the features that wi
uses for gender prediction are neutralized. Note
that the guarantee is only with respect to linear
separation.

While the nullspace N(w1, . . . , wn) is a sub-
space in which Z is not linearly predictable, the
complement rowspace R(w1, . . . , wn) is a sub-
space of the representation space X that corre-
sponds to the property Z. In our case, the nullspace
is the gender neutral subspace and the rowspace is
the gender subspace. As part of the analysis in this
work, we utilize INLP in two complementary ways:
(1) we use the nullspace projection matrix PN to
zero out the gender subspace, in order to render the
representations gender-neutral,5 this projection is
onto the gender-neutral subspace; and (2) we use
the rowspace projection matrix PR = I − PN to
project mBERT representations onto the gender
subspace, keeping only the parts that are useful for
gender prediction.

Method We start by training INLP in one lan-
guage (En, Fr or Es) and identifying the comple-
menting subspaces: the gender-neutral subspace
– nullspace, and the gender subspace – rowspace
(the latter is used in Section 5). We then neutralize
the gender subspace in another language. Finally,
we examine the influence of this intervention and
asses the effect of gender information reduction.

5to the extent that gender is indeed encoded in a linear
subspace, and that INLP finds this subspace.

70

Importantly, the directions are learned by INLP
and are not predefined according to a word list or
in any other manual manner.

We run INLP with the objective of identifying
the gender, with SVM classifiers (using SKlearn)
for 100 iterations.6 We use the average representa-
tions of the training paragraphs (averaging over the
final-layer in-context representations of all tokens).

Results Tables 3 and 4 depict the results of gen-
der and profession predictions (with Logistic Re-
gression) in each language (rows) before and after
applying INLP (each column stands for a different
language for training INLP). In-language, the ac-
curacy of gender prediction drops to majority after
applying INLP, while profession classification is
only slightly hurt. For example, for English we
get gender prediction accuracy of 53.7 compared
to 99.3 before applying INLP, and profession pre-
diction accuracy of 78.1 compared to 79.9 before
applying INLP. Note that this is the expected be-
haviour as a result of applying INLP, since INLP is
designed to remove as much information as possi-
ble for the guarded attribute, namely gender, with
minimal effect on the main task. Indeed (Ravfogel
et al., 2020) show the same result for English in the
original paper. However, across languages, there is
virtually no effect, both for gender prediction and
profession prediction. For example, English gender
and profession predictions drop from 99.3 to 98.1
and from 79.9 to 79.5, respectively, after applying
Spanish INLP. This result is surprising in light of
the high quality transfer of gender identification
across languages shown in the previous experiment
(Section 4.1, Table 2).

Interestingly, the largest drops in performance
of profession classification due to application of
INLP are in-language. This can be explained by the
inherent correlations between gender and profes-
sion signals – removing gender information hurts
the ability to predict the profession in the same lan-
guage. This is not the case across languages since,
as seen by the gender prediction results, gender in-
formation is not removed from the representations
when applying INLP across languages.

5 Analyzing the Cross-linguality of
Gender Representation

At first glance, the two results presented in the
previous section look contradicting: linear gender

6as we have noticed that 100 iterations are enough to re-
move gender information in-language for all three languages.

before En INLP Fr INLP Es INLP

En 99.3 53.7 97.6 98.1
Fr 97.8 95.1 71.4 94.9
Es 85.7 82.8 82.6 72.5

Table 3: Gender prediction before and after applying
INLP. Rows stand for the language in which we predict,
columns stand for the language in which we train INLP.
We use 100 iterations of INLP in each language.

before En INLP Fr INLP Es INLP

En 79.9 78.1 79.2 79.5
Fr 73.0 72.4 68.2 72.4
Es 57.8 57.1 57.3 51.8

Table 4: Profession prediction before and after applying
INLP. Rows stand for the language in which we predict,
columns stand for the language in which we train INLP.
We use 100 iterations of INLP in each language.

classification transfers well across languages while
gender removal using INLP does not. In this sec-
tion we provide a detailed analysis that accounts for
this discrepancy and sheds light on the arrangement
of gender in multilingual representations – this is
essentially the main result of this work. Under
this more fine-grained view we present, we see that
gender representation is neither shared between lan-
guages nor unique per language, but is actually only
partially shared between languages. This allows
for some transferability (as seen in Section 4.1),
but prevents gender removal across languages (as
seen in Section 4.2).

To define the term “partial sharing” formally, we
represent gender in each language as a collection
of linear directions that together span the gender
subspace of that language. This collection of direc-
tions can be identified using INLP: when training
INLP in a specific language, we get a sequence of
orthogonal linear classifiers that are able to predict
gender with a decreasing level of accuracy, with
the first classifier being the most accurate one. To-
gether, these directions define the gender subspace
of the language. This formulation allows us to
more easily analyze the extent to which gender is
similarly encoded across languages.

We hypothesize that the two aforementioned re-
sults are compatible because some of these gen-
der directions are shared between languages,
while others are language-specific. The shared
directions allow high quality transfer of gender

71

classification across languages, while the language-
specific directions allow gender prediction even af-
ter applying INLP cross-lingually since they are not
identified in the source language. In what follows,
we devise two experiments to verify this hypothesis
and quantify this phenomenon.

5.1 Shared Gender Directions across
Languages

High Level Description and Intuition In the fol-
lowing experiment we analyze the relation between
gender representations in the different languages.
For that we leverage the formulation of gender rep-
resentation as a collection of many different direc-
tions in the space. We aim to answer the following
question: are gender directions fully shared across
languages, fully disjoint, or split (i.e. some are
shared across languages and some are disjoint)?

Concretely, in order to derive a measure of over-
lap between two given subspaces, we measure the
effect of neutralizing the gender subspace of one
language, on the total variance in the gender sub-
space of another languages; intuitively, the larger
the overlap is between the gender subspaces in
both languages, the larger the drop in variance is
expected to be.

Method Given two languages A and B we pro-
pose the following pipeline: (i) project the repre-
sentations of language A onto its gender subspace
in order to discard information that is not predictive
of gender in that language; (ii) project the already-
projected representations onto the gender-neutral
subspace of language B in order to remove the
gender-information captured in the subspace of lan-
guageB; (iii) measure the drop in the total variance
of the representations of language A between steps
i and ii.

To draw a more fine-grained view of the trans-
fer of gender-neutralization, in step iii we perform
Principle Component Analysis (PCA), and record
the total variance explained by the first n principle
components. Thus, we ask not only how does the
gender-neutralizing in languageB affect the gender
subspace of language A, but also which PCA di-
rections are affected. Concretely, we plot the total
explained variance by the first n principle compo-
nents. If the intervention does not change the plot
at all, this means that the two gender subspaces are
completely orthogonal, and if the variance drops
to zero at once, this means that the two gender
subspaces are completely aligned.

Compared Representations We start by training
INLP and obtaining a collection of 1007 gender
directions in each language (En, Fr and Es), from
the most prominent to the least prominent one. We
compare different sets of representations as detailed
below, for English vs. French, English vs. Spanish
and French vs. Spanish (the explanation below is
assuming English vs. French):

• ORIG: Original representations (in English).

• ENGENDER: ORIG projected on the English
gender subspace (rowspace).

• ENRAND: ORIG projected with a random ma-
trix with the same dimensions as the EnGen-
der matrix (for comparison).

• ENGENDER+FRNEUTRAL: ENGENDER pro-
jected on the French gender-neutral subspace
(nullspace).

• ENGENDER+FRRAND: ENGENDER pro-
jected on a random matrix with the same di-
mensions as the French gender-neutral matrix
(for comparison).

• ENGENDER+ENNEUTRAL: ENGENDER pro-
jected on English gender-neutral subspace
(nullspace, as a sanity check).

Result Analysis The results are shown in Fig-
ure 1. The plots support our initial hypothesis:
indeed, we find that gender directions are shared
between languages, but only partially. Focusing on
English vs. French, we can see that as expected,
the curve of ENGENDER+FRNEUTRAL (cyan) is
lower than that of ENGENDER (blue), implying that
there are shared gender directions between English
and French. Recall that projecting the representa-
tions on the English gender subspace (ENGENDER)
keeps mainly English gender directions, and then
projecting on the French gender-neutral subspace
(ENGENDER+FRNEUTRAL) removes French gen-
der directions. If no directions are shared, this
should result with similar values for both ENGEN-
DER and ENGENDER+FRNEUTRAL. However, the
sharing is only partial: if all directions are shared,
we expect ENGENDER+FRNEUTRAL to be zero
(similar to ENGENDER+ENNEUTRAL), which is
not the case.

7We use 100 for each language even when INLP required
less iterations to converge, so as to be consistent across lan-
guages and avoid artifacts due to the number of dimensions.

72

0 2 4 6 8 10 12 14
of Component

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ex

pl
ai

ne
d

Va
ria

nc
e

orig
EnGender
EnRand
EnGender + FrNeutral
EnGender + FrRand
EnGender + EnNeutral

(a) English and French.

0 2 4 6 8 10 12 14
of Component

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
pl

ai
ne

d
Va

ria
nc

e

orig
EnGender
EnRand
EnGender + EsNeutral
EnGender + EsRand
EnGender + EnNeutral

(b) English and Spanish.

0 2 4 6 8 10 12 14
of Component

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e

orig
FrGender
FrRand
FrGender + EsNeutral
FrGender + EsRand
FrGender + FrNeutral

(c) French and Spanish.

Figure 1: Explained variance of PCA of different repre-
sentations, for all three language pairs.

Controls The ENGENDER+FRRAND projec-
tions are intended as reference for ENGEN-
DER+FRNEUTRAL. If there are shared gender
directions between English and French, we ex-
pect the curve of ENGENDER+FRNEUTRAL to
be lower than that of ENGENDER+FRRAND, since
by projecting on the French gender-neutral sub-
space we are expected to lose more information
than with a random projection with the same di-
mensions. In Figure 1a we see that the curve of
ENGENDER+FRNEUTRAL (cyan) is indeed lower
than that of ENGENDER+FRRAND (pink), indicat-
ing that the loss of information is not due to random

shared directions.
Note also that the curve of ENGENDER (blue)

is significantly higher than that of ENRAND (red).
We hypothesize that this is due to the fact that gen-
der is usually dominant in natural texts, especially
in a dataset that includes information about indi-
viduals, as this one. Thus, keeping only gender
information by projecting on the English gender
subspace keeps a large portion of the information,
compared to projecting on arbitrary directions of
the same dimension.

Another sanity check is obtained by projecting
ENGENDER on the English gender-neutral sub-
space (ENGENDER+ENNEUTRAL), this should,
by definition, result in a 0 line, which is indeed the
case (orange).

5.2 Similarities of Dominant Directions

In the previous section we established the hypothe-
sis that some gender directions are shared between
languages while others are language-specific. Now,
we turn to perform a more fine-grained analysis
where we look at the specific directions in the dif-
ferent languages.

We look at the first 100 classifiers (trained dur-
ing INLP) in two languages, and compute all pair-
wise cosine similarities between them (across lan-
guages). This leads us to a surprising result – only
the first classifiers in both languages are similar to
each other, while the rest are not: we get that the
3 highest similarities are between the first English
classifier and the first French classifier, between
the second English classifier and the second French
classifier, and between the third English classifier
and the third French classifier, with values of 0.777,
0.597 and 0.453, respectively. For comparison,
the average absolute cosine similarity among all
pairwise similarities of the first 100 classifiers in
English and French is 0.037. This result means that
not only are some directions shared cross-lingually
while others are not, but also that the most dom-
inant directions are those that are shared, while
the less predictive directions are those that are lan-
guage specific.

Figure 2 depicts the similarities of the ith clas-
sifiers for the two languages (English-French,
English-Spanish and French-Spanish). We also
plot the gender classification accuracy in-language
for reference. This result completes the picture
and serves as an explanation for the extremely high
quality transfer of gender classification across lan-

73

guages – the most dominant directions that rep-
resent gender in each languages are cross-lingual,
which enables high accuracy in zero-shot transfer
of linear gender classifiers across languages. How-
ever, less dominant gender directions are language
specific, but are predictive enough so as to prevent
gender neutralization across languages using INLP.

0 20 40 60 80 100
i (# of classifier)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

En accuracy
Fr accuracy

(a) Similarity between the ith classifiers in En and Fr.

0 20 40 60 80 100
i (# of classifier)

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

En accuracy
Es accuracy

(b) Similarity between the ith classifiers in En and Es.

0 20 40 60 80 100
i (# of classifier)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Fr accuracy
Es accuracy

(c) Similarity between the ith classifiers in Fr and Es.

Figure 2: Similarity between the ith classifiers (blue) in
all three language pairs. The gender classification accu-
racy in-language (black and red) is added for reference.

5.3 Accuracy across Languages

Finally, we also look at the performance of each
classifier (trained during INLP) across languages.
In Figure 3, we depict the gender prediction accu-

racy in-language and across languages. We consis-
tently get that the performance of the first 2-3 classi-
fiers trained in-language and also across languages
is relatively similar, with a significant divergence
between in-language and across languages training
for the subsequent classifiers. This matches the ob-
servation of high similarity only between the first
classifiers across the different languages.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n

EN
 d

at
a

Majority
EN classifiers
FR classifiers
ES classifiers

(a) Gender prediction accuracy in English.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of classifier

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
n

FR
 d

at
a

Majority
EN classifiers on FR
FR classifiers on FR
ES classifiers on FR

(b) Gender prediction accuracy in French.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of classifier

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 o
n

ES
 d

at
a

Majority
EN classifiers on ES
FR classifiers on ES
ES classifiers on ES

(c) Gender prediction accuracy in Spanish.

Figure 3: Gender prediction accuracy with the different
classifiers in- and across-languages.

6 Conclusion

Towards better understanding of the underlying
mechanism of multilingual modeling, in this work
we focus on the way gender is represented across

74

languages. We analyze and quantify the extent to
which gender information is shared in multilingual
representations in English, French and Spanish.

We find that on the one hand, gender prediction
transfers very well across languages: training a
linear classifier on English data yields a high qual-
ity classifier for French and Spanish as well (true
for all three languages in both directions). On the
other hand, our attempt to transfer gender removal
in cross-lingual manner was unsuccessful.

We show that these two results are compatible,
and together they shed light on the structure of
the representation space: we provide experimen-
tal evidence that the most salient directions are
shared between languages (enabling good transfer
of the classifiers), while others are unique per lan-
guage (interfering with gender removal across lan-
guages). The key observation is that a single “good”
direction of the gender subspace in one language is
enough for cross-lingual gender prediction transfer,
while transfer of gender neutralization requires all
directions to be shared, otherwise, the remaining
ones can be used to recover gender information
after the removal of the shared ones.

7 Ethical Considerations

Gender bias mitigation has attracted a lot of at-
tention as a practical and socially important field
of study. This paper contributes to this effort by
studying the internal organization of gender rep-
resentations. We note that gender and bias are
complicated and multi-faceted constructs. When
studying gender bias in neural models, we unavoid-
ably rely on a narrow notion of binary gender, as
reflected in several annotated datasets. As such, we
see this study as a preliminary attempt that is based
on a relatively narrow concept of gender, that does
not reflect the subtle ways by which gender bias is
manifested. We advise for caution when applying
the conclusions of this study to other notions of
gender or different definitions of bias.

We acknowledge that gender is not a binary prop-
erty. Due to lack of existing resources, we use bi-
nary gender as a rough approximation of reality.
We hope to account for this in future work.

Acknowledgements

We would like to thank Ran Levy for valuable ideas
and feedback. This project received funding from
the Europoean Research Council (ERC) under the
Europoean Union’s Horizon 2020 research and in-

novation programme, grant agreement No. 802774
(iEXTRACT).

References
Srijan Bansal, Vishal Garimella, Ayush Suhane, and

Animesh Mukherjee. 2021. Debiasing multilingual
word embeddings: A case study of three indian lan-
guages. In Proceedings of the 32nd ACM Conference
on Hypertext and Social Media, pages 27–34.

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020.
Unmasking contextual stereotypes: Measuring and
mitigating BERT’s gender bias. In Proceedings of
the Second Workshop on Gender Bias in Natural
Language Processing, pages 1–16, Barcelona, Spain
(Online). Association for Computational Linguistics.

Steven Cao, Nikita Kitaev, and Dan Klein. 2019. Multi-
lingual alignment of contextual word representations.
In International Conference on Learning Representa-
tions.

Ethan A. Chi, John Hewitt, and Christopher D. Manning.
2020. Finding universal grammatical relations in
multilingual BERT. CoRR, abs/2005.04511.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Philipp Dufter and Hinrich Schütze. 2020. Identifying
elements essential for BERT’s multilinguality. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4423–4437, Online. Association for Computa-
tional Linguistics.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

75

Hila Gonen, Yova Kementchedjhieva, and Yoav Gold-
berg. 2019. How does grammatical gender affect
noun representations in gender-marking languages?
In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), Hong
Kong, China.

Hila Gonen, Shauli Ravfogel, Yanai Elazar, and Yoav
Goldberg. 2020. It’s not Greek to mBERT: Inducing
word-level translations from multilingual BERT. In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP,
Online.

K Karthikeyan, Zihan Wang, Stephen Mayhew, and Dan
Roth. 2020. Cross-lingual ability of multilingual bert:
An empirical study. In International Conference on
Learning Representations.

Sheng Liang, Philipp Dufter, and Hinrich Schütze. 2020.
Monolingual and multilingual reduction of gender
bias in contextualized representations. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5082–5093, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Jindřich Libovický, Rudolf Rosa, and Alexander Fraser.
2020. On the language neutrality of pre-trained mul-
tilingual representations. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 1663–1674, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized bert pretraining ap-
proach. In ICLR.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota. Association
for Computational Linguistics.

Benjamin Muller, Beno^ıt Sagot, and Djame Seddah.
2020. Can multilingual language models transfer
to an unseen dialect? a case study on north african
arabizi. arXiv:2005.00318.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256, Online. Association for Computational
Linguistics.

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav
Goldberg. 2021. Counterfactual interventions re-
veal the causal effect of relative clause representa-
tions on agreement prediction. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 194–209, Online. Association
for Computational Linguistics.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and
Ryan Cotterell. 2022. Linear adversarial concept
erasure. arXiv preprint arXiv:2201.12091.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. BERT is not an interlingua
and the bias of tokenization. In Proceedings of the
2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019), pages 47–55,
Hong Kong, China. Association for Computational
Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, Yijia Liu, and
Ting Liu. 2019. Cross-lingual BERT transformation
for zero-shot dependency parsing. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5721–5727, Hong Kong,
China. Association for Computational Linguistics.

Adina Williams, Ryan Cotterell, Lawrence Wolf-
Sonkin, Damián Blasi, and Hanna Wallach. 2021.
On the relationships between the grammatical gen-
ders of inanimate nouns and their co-occurring adjec-
tives and verbs. Transactions of the Association for
Computational Linguistics, 9:139–159.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.

76

In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 833–844.

Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini,
Kai-Wei Chang, and Ahmed Hassan Awadallah. 2020.
Gender bias in multilingual embeddings and cross-
lingual transfer. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, Online. Association for Computational Lin-
guistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), Minneapolis, Minnesota.

Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang,
Muhao Chen, Ryan Cotterell, and Kai-Wei Chang.
2019. Examining gender bias in languages with
grammatical gender. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5276–5284, Hong Kong, China. As-
sociation for Computational Linguistics.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmenta-
tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, Florence, Italy. Association for Compu-
tational Linguistics.

77

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 78 - 90
May 26, 2022 ©2022 Association for Computational Linguistics

Detecting Textual Adversarial Examples Based on
Distributional Characteristics of Data Representations

Na Liu1 Mark Dras1 Wei Emma Zhang2

1 School of Computing, Macquarie University
2 School of Computer Science, The University of Adelaide

na.liu8@students.mq.edu.au,mark.dras@mq.edu.au
wei.e.zhang@adelaide.edu.au

Abstract

Although deep neural networks have achieved
state-of-the-art performance in various ma-
chine learning tasks, adversarial examples, con-
structed by adding small non-random perturba-
tions to correctly classified inputs, successfully
fool highly expressive deep classifiers into in-
correct predictions. Approaches to adversarial
attacks in natural language tasks have boomed
in the last five years using character-level, word-
level, phrase-level, or sentence-level textual
perturbations. While there is some work in
NLP on defending against such attacks through
proactive methods, like adversarial training,
there is to our knowledge no effective general
reactive approaches to defence via detection of
textual adversarial examples such as is found
in the image processing literature. In this paper,
we propose two new reactive methods for NLP
to fill this gap, which unlike the few limited
application baselines from NLP are based en-
tirely on distribution characteristics of learned
representations: we adapt one from the image
processing literature (Local Intrinsic Dimen-
sionality (LID)), and propose a novel one (Mul-
tiDistance Representation Ensemble Method
(MDRE)). Adapted LID and MDRE obtain
state-of-the-art results on character-level, word-
level, and phrase-level attacks on the IMDB
dataset as well as on the later two with respect
to the MultiNLI dataset. For future research,
we publish our code 1.

1 Introduction

Highly expressive deep neural networks are fragile
against adversarial examples, constructed by care-
fully designed small perturbations of normal exam-
ples, that can fool deep classifiers to make wrong
predictions (Szegedy et al., 2013). Crafting adver-
sarial examples in images involves adding small
non-random perturbations to many pixels in inputs
that should be correctly classified by a target model.

1Code available at https://github.com/
NaLiuAnna/MDRE

These perturbations can force high-efficacy models
into incorrect classifications and are often imper-
ceptible to humans (Szegedy et al., 2013; Good-
fellow et al., 2014; Moosavi-Dezfooli et al., 2016;
Papernot et al., 2016b; Carlini and Wagner, 2017b;
Chen et al., 2018). However, when adversarial ex-
amples have been studied in the context of text, to
our knowledge, only Miyato et al. (2016) aligns
closely with the original intuition of adversarial
examples in applying perturbations to word embed-
dings, which are inputs of deep neural nets. Rather,
most adversarial attack techniques use more practi-
cal semantics-preserving textual changes other than
embedding perturbations, at character-level, word-
level, phrase-level, or sentence-level (Pruthi et al.,
2019; Jia and Liang, 2017; Alzantot et al., 2018;
Ribeiro et al., 2018; Ren et al., 2019; Iyyer et al.,
2018; Yoo and Qi, 2021; Li et al., 2020, 2021; Jin
et al., 2020); see Table 1. This variety increases the
difficulty of detecting textual adversarial examples.

Generating adversarial examples to attack deep
neural nets and protecting deep neural nets from
adversarial examples have been extensively studied
in image classification tasks (Szegedy et al., 2013;
Goodfellow et al., 2014; Moosavi-Dezfooli et al.,
2016; Papernot et al., 2016b; Carlini and Wagner,
2017b; Chen et al., 2018; Papernot et al., 2016a;
Feinman et al., 2017; Ma et al., 2018; Lee et al.,
2018). However, in the natural language domain,
only crafting of adversarial examples has been
comprehensively considered (Jia and Liang, 2017;
Alzantot et al., 2018; Ribeiro et al., 2018; Ren et al.,
2019; Iyyer et al., 2018). Defence against textual
adversaries, primarily through increasing the ro-
bustness of deep neural networks, is much less
studied (Jia et al., 2019; Pruthi et al., 2019). In
the image processing space, Cohen et al. (2020)
refers to these as proactive defence methods, and
Carlini and Wagner (2017a) notes that they can
be evaded by optimization-based attacks, such as
constructing new loss functions; in the NLP space,

78

Example Prediction

Original This is a story of two misfits who don’t stand a chance alone, but together they
are magnificent. Positive

Character-level
(Pruthi et al., 2019)

TZyTis is a sotry of two misifts who don’t stad a ccange alUone, but tpgthr they
are mgnificent. Negative

Word-level
(Alzantot et al., 2018)

This is a conte of two who don’t stands a opportunities alone, but together they
are opulent. Negative

Phrase-level
(Iyyer et al., 2018)

Why don’t you have two misfits who don’t stand a chance alone, but together
they’re beautiful. Negative

Sentence-level
(Jia and Liang, 2017)

This is a story of two misfits who don’t stand a chance alone, but together they are
magnificent. ready south hundred at size expected worked whose turn poor. Negative

Table 1: Examples of textual adversarial instances on a sentiment analysis task

Yoo and Qi (2021) observes that generating word-
level textual adversaries for proactive adversarial
training are computationally expensive because of
necessary search and constraints based on sentence
encoding. Consequently, Feinman et al. (2017);
Ma et al. (2018); Lee et al. (2018); Papernot and
McDaniel (2018) explore reactive defence methods
(Cohen et al., 2020) in the image processing space:
these focus on distinguishing real from adversarial
examples, in order to detect them before they are
passed to neural networks. These reactive defences
have been explored in only a limited way in the
NLP space (Mozes et al., 2021). Importantly, these
few methods rely on procedures like testing word
substitutions, quite unlike those in the image pro-
cessing space, which are functions of the learned
representations.

The contributions of this paper are two textual
adversarial reactive detectors as follows:

• Adapting the Local Intrinsic Dimensionality
(LID) method from image processing to the
text domain.

• Proposing a MultiDistance Representation En-
semble Method (MDRE).

Both of them are based on distribution differences
of semantic representations between normal exam-
ples and adversarial examples. They achieve state-
of-the-art results across a range of attack methods
and domains.

2 Related Work

In this section, we briefly review state-of-the-art
work on defending neural networks against both
image and textual adversarial examples.

Image Adversarial Defences: Adversarial train-
ing (Goodfellow et al., 2014) using adversarial
examples to augment training data or adding an
adversarial objective to a loss function, and defen-
sive distillation framework (Papernot et al., 2016a)
which transfers knowledge between same struc-

tured teacher and student models, are two effective
proactive defence methods. For reactive defences,
Feinman et al. (2017); Ma et al. (2018); Papernot
and McDaniel (2018); Lee et al. (2018) have all
proposed approaches that use the learned represen-
tations of the classifier that the attacker is trying
to fool, and then with a variety of techniques to
identify characteristics of the adversarial examples’
learned representations that permit the detection of
whether a data point is adversarial or original; these
techniques involve kernel density estimations in a
feature space of a last hidden layer and Bayesian
uncertainty estimates, Local Intrinsic Dimensional-
ity, Deep k-Nearest Neighbors, and Mahalanobis
distance-based confidence scores respectively.

Textual Adversarial Defences: Adversarial
training (Goodfellow et al., 2014) is a commonly
used defence method to augment training data with
adversarial examples and their correct labels, which
has been effective in Li et al. (2016), Li et al.
(2017), Ribeiro et al. (2018), and Ebrahimi et al.
(2018), but has limited utility in Pruthi et al. (2019)
and Jia and Liang (2017). Jia et al. (2019) ap-
plies interval bound propagation (IBP) to minimize
an upper bound of possible candidate sentences’
losses when facing word substitution adversaries.
Jones et al. (2020) introduced robust encodings
(RobEn) to cluster words and typos, and produced
one encoding for each cluster to harness adversar-
ial typos. Zhou et al. (2019) proposed the learning
to discriminate perturbations (DISP) framework
to block character-level and word-level adversar-
ial perturbations by recognising and replacing per-
turbed words. Mozes et al. (2021) noticed and
verified a characteristic of word-level adversaries
that replacement words are less likely to occur than
their substitutions, therefore, they constructed a
rule-based, model-agnostic frequency-guided word
substitutions (FGWS) algorithm, which is the only
existing textual reactive defence method as far as
we know.

79

3 Methods

3.1 Adapted Local Intrinsic Dimensionality
(LID)

From among the reactive image processing meth-
ods, we selected the Local Intrinsic Dimensionality
(LID) approach of Ma et al. (2018) as one that can
be directly adapted to textual representations. The
approach of Ma et al. (2018) uses LID to reveal
the local distance distribution for a reference point
representation to its neighbours, and uses outputs
of each layer from the target deep neural network
as an input point representations. LID was initially
presented for dimension reduction (Houle et al.,
2012). Ma et al. (2018) introduced LID to charac-
terize the local data submanifolds in the vicinity
of reference points and detect adversarial samples
from their originals. The LID definition is as fol-
lows.

Definition 3.1 (Local Intrinsic Dimensionality (Ma
et al., 2018)). Given a data sample x ∈ X , let
R > 0 be a random variable denoting the distance
from x to other data samples. If the cumulative
distibution function F (r) of R is positive and con-
tinuously differentiable at distance r > 0, the LID
of x at distance r is given by:

LIDF (r) ≜ lim
ϵ→0

ln(F ((1 + ϵ) · r)/F (r))

ln(1 + ϵ)
=

r · F ′(r)

F (r)
(1)

whenever the limit exists.

To simplify computation, given a reference sam-
ple x ∼ P , where P represents the data distribu-
tion, the Maximum Likelihood Estimator of the
LID at x is defined as follows (Ma et al., 2018):

L̂ID(x) = −
(

1

k

k∑

i=1

log
ri(x)

rk(x)

)−1

(2)

where ri(x) is the distance between x and its ith
nearest neighbor within a sample of points drawn
from P , k is the number of nearest neighbors.
Since the logarithmic function f(x) = loga(x)
for any base a and the negative reciprocal function
f(x) = −x−1 are monotonically increasing func-
tions when their independent variables are positive,
if neighbors of a reference sample x are compact,
its estimated LID from Equation (2) is smaller, oth-
erwise, its estimated LID is bigger.

When building a binary classifier to detect ad-
versarial examples using LID in Ma et al. (2018),
the inputs are lists of estimated LID from the Equa-
tion (2) of different layers’ outputs from the target

deep neural net, and adversarial and normal exam-
ples are two categories of the classifier.

To adapt this to textual representations, we im-
plement same technique — a detection classifier
based on LID characterizations derived from differ-
ent layers’ outputs of a deep neural net — but ap-
ply this to a Transformer. Here we use BERTBASE
model (Devlin et al., 2019), although in principle
any would be suitable. The x in the Equation (2) is
a representation of an input text from a layer’s hid-
den state of the first token of the target (BERTBASE)
model, since self-attention layers are essential mod-
ules of a transformer, and the last layer hidden state
of the first token is typically used as a component
to build a pooled output, a text representation for a
classifier. Therefore, an input of a detection clas-
sifier for an example is a 12-dimensional vector,
where each element illustrates the corresponding
layer’s estimated LID from the BERTBASE model.

3.2 MultiDistance Representation Ensemble
Method (MDRE)

Adversarial examples are constructed by adding
imperceptible non-random perturbations to inputs
of correctly classified test examples to fool highly
expressive deep neural nets into incorrect classifi-
cations (Szegedy et al., 2013). Motivated by the
reasoning behind LID expressed in Equation (2),
by Feinman et al. (2017)’s intuition that adversar-
ial samples lie off the true data manifold, and by
(Lee et al., 2018)’s recognition that they are out-of-
distribution samples by a class-conditional distri-
bution, we assume that samples with a same pre-
dicted label from a deep neural net lie on a data
submanifold; an adversarial example is generated
because perturbations cause a correctly predicted
example to transfer from one data submanifold to
another, making it an out-of-distribution sample
relative to training examples from its data submani-
fold. Consequently, we posit that it is likely that the
Euclidean distance between an adversarial example
x′ and the nearest neighbor of x′ among training
examples with the same predicted label as x′ is
bigger than the Euclidean distance between its cor-
responding original normal test example x and x’s
nearest neighbor among training examples with the
same predicted label as x.

In natural language processing, most inputs of
deep neural networks are learned representations
by representation learning models nowadays. Even
though current methods of representation learn-

80

Algorithm 1 MultiDistance Representation Ensemble Method (MDRE)

Input:
D = {X(train),X(norm),X(adv)}: a dataset; there are k examples in X(norm) and X(adv)

H: an array containing m representation learning models
g : Rm → {0, 1}: a binary classification model (MDRE)
f : Rn → Rl: a deep neural net that is the target model for an adversarial attack

Output:
Detection accuracy of MDRE: acc

1: Initializing inputs and labels of g: X = zeros[2k,m], y = zeros[2k]
2: Computing examples’ predictions from f of D: {ŷ(train), ŷ(norm), ŷ(adv)}
3: for j ∈ {0, · · · ,m− 1} do
4: Computing examples’ representations from H[j] of D: {V (train)

j ,V
(norm)
j ,V

(adv)
j }

5: for i ∈ {0, · · · , k − 1} do
6: Calculating d(norm)

j , d
(adv)
j for examples X(norm)

i ,X
(adv)
i

7: X[i, j] = d
(norm)
j , y[i] = 0

8: X[k + i, j] = d
(adv)
j , y[k + i] = 1

9: end for
10: end for
11: Training g by randomly choosing 80% of {(Xi,:,yi)}2k−1

i=0

12: acc = test accuracy of g using the rest 20% of {(Xi,:,yi)}2k−1
i=0

ing are effective in various tasks (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Lewis
et al., 2020), semantic meanings and semantic dif-
ferences between texts from humans’ perspective
are not perfectly captured by textual representation
vectors (Liu et al., 2020). In addition, as mentioned
in Section 1, most textual adversarial generation
algorithms do not modify representations, which
are input feature vectors of deep neural networks,
but modify original texts. Therefore, the assumed
characteristic of adversaries in the last paragraph
that the Euclidean distances between adversarial
examples and their nearest neighbors among train-
ing examples in the same submanifolds are bigger
than normal examples, may lose efficiency in tex-
tual adversarial detection scenarios. To build a
stronger reactive classifier, we use ensemble learn-
ing to combine distances between representations
learned from multiple representation learning mod-
els. We construct a more effective MultiDistance
Representation Ensemble Method (MDRE), as il-
lustrated in Algorithm 1.

The MDRE is a supervised binary classification
model g : Rm → {0, 1}. m is the number of
representation learning models; g can be any binary
classification model, such as logistic regressions
or deep neural nets; {0, 1} is the output label set,
with 1 corresponding to adversarial examples, 0 to

normal examples.
The input of MDRE is a matrix X and each row

vector of X is Xi,: = (d0, d1 · · · , dm−1) ∈ Rm.
The element of this vector dj , 0 ≤ j ≤ m − 1 is
a Euclidean distance between a semantic represen-
tation of a normal or adversarial example v and
a representation of its nearest neighbour among
training examples with the same predicted label as
v through the j-th representation learning model
H[j], as d(norm)

j or d(adv)j in Algorithm 1. To find
a nearest neighbour, we compare Euclidean dis-
tances between v and all representations among
training examples with the same predicted label as
v through H[j]. In Algorithm 1, X(norm) consists
of normal test examples corresponding to the ele-
ments of X(adv), where the elements of X(norm)

have correct predictions from the target model f ,
but X(adv) elements have incorrect predictions
from f . The training and testing process of MDRE
is same as the process of the selected model g.

4 Evaluation

In this section, we evaluate the utilities of the
adapted LID and MDRE by using character-level,
word-level, and phrase-level upstream attacks on
sentiment analysis and natural language inference
tasks, and comparing against several baselines: a
language model, DISP (Zhou et al., 2019), and

81

FGWS (Mozes et al., 2021). The experimental re-
sults demonstrate that the adapted LID and MDRE
outperforms these methods on sentiment analysis
and natural language inference tasks for word-level
and phrase-level attacks.

4.1 Experimental Setup
4.1.1 Tasks
We apply our approaches and baselines to senti-
ment analysis and natural language inference tasks,
since they are two most commonly used datasets in
textual adversarial example generation. The senti-
ment analysis task has been the most widely used
testbed for generating textual adversarial examples
(Pruthi et al., 2019; Alzantot et al., 2018; Ribeiro
et al., 2018; Ren et al., 2019; Iyyer et al., 2018;
Yoo and Qi, 2021; Li et al., 2020), making this the
natural domain for these experiments; they have
also been popularly applied to the natural language
inference task (Alzantot et al., 2018; Iyyer et al.,
2018; Yoo and Qi, 2021; Li et al., 2020, 2021; Jin
et al., 2020), so we choose this to explore the gen-
erality of our methods.

We use the IMDB dataset (Maas et al., 2011) in
the sentiment analysis task, which contains 50,000
movie reviews, divided into 25,000 training exam-
ples and 25,000 test examples, labelled for posi-
tive or negative sentiment. The average number
of words per review in the IMDB dataset is 262
when using the Natural Language Toolkit (NLTK)
(Bird et al., 2009) to tokenize examples. We set a
maximum sequence length of the IMDB dataset to
512 for all following models.

To test the robustness of our methods, the Multi-
Genre NLI (MultiNLI) corpus (Williams et al.,
2018) and its mismatched test examples, which are
derived from sources that differ from the training
examples, are used in the natural language infer-
ence task. The MultiNLI dataset includes 392,702
training examples and 9,832 mismatched testing
examples in which global_label fields are not "-",
with three classes: entailment, neutral, and contra-
diction. The average and maximum word numbers
of the MultiNLI dataset are 34 and 416 respectively,
using NLTK word tokenizer. We set the maximum
sequence length for this dataset to 256.

4.1.2 Attack Methods
We implement three widely used attack methods
using character-level, word-level, and phrase-level
perturbations to construct adversarial examples.
For all types of attacks, we take the BERTBASE

model as the target model, indicating that adver-
saries have different predictions with their originals
by the BERTBASE model.

Character-level. The character-level attack is
from Pruthi et al. (2019), which applies swapping,
dropping, adding, and keyboard mistakes to a ran-
domly selected word of an original example.

• Swapping: swapping two adjacent internal
characters.

• Dropping: removing an internal character.
• Adding: internally inserting a new character.
• Keyboard mistakes: substituting an internal

character with one of its adjacent characters
in keyboards.

Here, we set maximum numbers of perturba-
tions to half of the maximum sequence lengths of
datasets; consequently, for the IMDB dataset, the
maximum number of attacks is 256, and for the
MultiNLI dataset is 128. If after achieving this
number, the prediction of the perturbed text is still
consistent with the original example, these attacks
fail, and no character-level adversarial example
constructed for this original example.

Word-level. We use a method from Alzantot
et al. (2018), which is an effective and widely
cited word-level threat method. Their approach ran-
domly selects a word in a sentence, replaces it with
its synonymous and context fitted word according
to the GloVe word vectors (Pennington et al., 2014),
counter-fitting word vectors (Mrkšić et al., 2016),
and the Google 1 billion words language model
(Chelba et al., 2013), and applies population-based
genetic algorithms from the natural selection us-
ing a combination of crossover and mutation to
generate next adversarial generations.

While effective, the initial algorithm is some-
what inefficient and computationally expensive. In
implementing this method, Jia et al. (2019) found
that computing scores from the Google 1 billion
words language model (Chelba et al., 2013) for
each iteration in this approach causes its ineffi-
ciency; to improve this, they used a faster lan-
guage model and prevented semantic drift, which
is synonyms picked from previous iterations also
apply the language model to select words from
their neighbour lists. In our experiments, we adapt
these modifications by using a faster Transformer-
XL architecture (Dai et al., 2019) pretrained on the
WikiText-103 dataset (Merity et al., 2016), and not
allowing the semantic drift, so that we compute all
test examples words’ neighbours before attacks.

82

Dataset Training. Validation. Testing. Correctly Predicted
Test Examples

Adversarial/Original Examples
character-level word-level phrase-level

IMDB 20,000 5,000 25,000 23,226 12,299 9,627 6,315
MultiNLI 314,162 78,540 9,832 8,062 7,028 3,240 4,340

Table 2: The number of examples used in experiments

In this attack, we also set maximum numbers
of perturbations, which are one fifth of the maxi-
mum sequence lengths; therefore, for the IMDB
dataset is 102, and for the MultiNLI dataset is 51.
For an original test example, if the number of at-
tacks reaches this threshold but predictions do not
change, no corresponding adversarial example is
constructed for this original example.

Phrase-level. The phrase-level attack is from
Ribeiro et al. (2018), which uses translators and
back translators to generate adversarial examples.
As far as we know, this is the only phrase-level per-
turbation technique that can be used for paragraph-
length text. Their approach — termed semantically
equivalent adversaries (SEAs) — translates an orig-
inal sentences into multiple pivot languages, then
translates them back to the source language. If
there is a back translated sentences that is semanti-
cally equivalent to the original sentences, measured
by a semantic score greater than a threshold, and
it has a different prediction with the original sen-
tences, then it is an adversarial example. Otherwise,
this original example has no relevant adversaries.

4.1.3 Target Model

The BERTBASE model is implemented as a target
model for these three attacks, by which adversarial
examples are misclassified. We apportion training
sets on both datasets into training subsets and vali-
dation subsets, with an 80-20 split. After training,
the models achieve 92.90% test accuracy on the
IMDB dataset, and for the MultiNLI mismatched
test set is 82.01%. The correctly predicted test
examples are preserved for subsequent attack pro-
cesses. After attacks, adversarial examples and
their corresponding normal test examples maintain
for following detectors as negative and positive ex-
amples; in this, we follow the experimental setup
used for evaluating reactive defences in the image
processing literature (Ma et al., 2018) with an 80/20
training/test split. The number of examples used
on the IMDB and MultiNLI datasets and number
of originals and adversaries after attacks are shown
in Table 2.

4.1.4 Detection Methods
We evaluate three baselines in addition to the
adapted LID and MDRE in these experiments.

A language model. The first baseline is built
from a language model since even though most at-
tack algorithms intend to construct semantically
and syntactically similar adversaries, many tex-
tual adversaries are abnormal and ungrammatical,
as shown in Table 1. We use the Transformer-
XL model pretrained on the WikiText-103 dataset
from Hugging Face transformers (Wolf et al.,
2020), and obtain language model scores for texts
as the product of words prediction proportion
scores. We construct a detection classifier by using
a logistic regression model with language model
scores as inputs; the model acts to learn a threshold
on scores to distinguish adversarial examples.

Learning to Discriminate Perturbations
(DISP) (Zhou et al., 2019). Our second baseline
is the DISP framework, which is the only compa-
rable technique for detecting textual adversarial
examples across character-level and word-level at-
tacks to our knowledge. DISP consists of three
components: perturbation discriminator, embed-
ding estimator, and hierarchical navigable small
word graphs. The perturbation discriminator identi-
fies a set of character-level or word-level perturbed
tokens; the embedding estimator predicts embed-
dings for each perturbed token; then, hierarchical
navigable small word graphs map these embed-
dings to actual words to correct adversarial pertur-
bations. DISP is not itself designed as a adversarial
example detector, but we adapt it for that task: if
an adversarial example rectified by DISP predicts
the same class as the target model predicts for the
corresponding initial original example, or the pre-
diction of a normal (non-adversarial) example rec-
tified by DISP isn’t changed, we consider DISP to
have been successful in its detection. Otherwise,
it is not. Since DISP is designed for character-
level and word-level attacks, we do not apply it to
phrase-level attacks.

Frequency-guided word substitutions
(FGWS) (Mozes et al., 2021). Our third base-
line is FGWS. Mozes et al. (2021) noticed, and

83

Dataset Attack Method BERTBASE RoBERTaBASE XLNetBASE BARTBASE

IMDB
Character-level 0.3656 0.8613 0.5770 0.8286

Word-level 0.6999 0.8714 0.7918 0.8425
Phrase-level 0.1827 0.3224 0.3289 0.3010

MultiNLI
Character-level 0.4848 0.7104 0.6670 0.6457

Word-level 0.6864 0.7068 0.6870 0.6296
Phrase-level 0.2795 0.3899 0.3698 0.3325

Table 3: The accuracy of adversarial examples

verified using hypothesis testing, that a characteris-
tic of word-level adversaries was that replacement
words are less likely to occur than their substitu-
tions. They use this feature to construct a rule-
based, model-agnostic frequency-guided word sub-
stitutions (FGWS) algorithm which distinguishes
adversarial examples by replacing infrequent words
with their higher frequency synonyms. If the re-
placements cause prediction confidence changes
exceeding a threshold, these examples are deemed
adversarial examples. FGWS is only designed to
be applied to word-level attacks. They use Word-
Net (Fellbaum, 2005) and GloVe vectors (Penning-
ton et al., 2014) to find neighbors of a word. A
word frequency is its number of occurrences in
the corresponding dataset’s training examples; in-
frequent words are defined as those words whose
frequencies are lower than a threshold. They set
this threshold to be the frequency of the word at
the {0 -th, 10 -th, · · · , 100 -th} percentile of word
frequencies in training set. If the prediction confi-
dence differences between sequences with replaced
words and their corresponding original sequences
are higher than a threshold, the original sequences
are assumed to be adversarial examples. They set
this threshold to the 90%-th confidence difference
between words substituted validation set and origi-
nal validation set in their experiment.

Adapted Local Intrinsic Dimensionality (LID)
Following the characterization of our adapted LID
from Section 3.1, we use the BERTBASE model as
in the above baselines. We implement a logistic
regression model as the detection classifier as Ma
et al. (2018), and the neighborhood size k is tuned
using a grid search over 100, 1000, and the range
[10, 42) with a step size 2.

MultiDistance Representation Ensemble
Method (MDRE). In MDRE, we set m = 4,
H = [BERTBASE, RoBERTaBASE, XLNetBASE,
BARTBASE], and g is a logistic regression model.
See Algorithm 1 for more information of notations.

4.2 Experimental Results

Before discussing the effectiveness of the detection
classifiers, Table 4 and Table 3 show the accuracy
of the sentiment analysis and natural language infer-
ence classifiers on normal and adversarial examples
from four models with three types of attacks. The
BERTBASE model is the target model in terms of
generating all kinds of adversaries — that is, the
adversarial examples are specifically designed to
defeat the BERTBASE model — so all adversarial
instance predictions are incorrect, therefore, the
accuracy is 0. However, when we use a differ-
ent random seed which also modify the order of
training examples to fine-tune another BERTBASE
model used for prediction, its parameters is differ-
ent from the parameters of the BERTBASE model
used before. The accuracy of adversaries slightly
increases, indicating that BERT model parameters
do not converge but fluctuate when using stochastic
or mini-batch gradient descent.

Results for detection method accuracy are in
Table 5. Adapted LID and MDRE work bet-
ter than the baselines, except for DISP against
character-level attacks on MultiNLI dataset, where
the adapted LID is a close second. The detection
accuracy on the MultiNLI dataset is lower than
the IMDB dataset, although this is not a surprise.
It uses the mismatched test set of the MultiNLI
dataset which makes the task more challenging.
The results show that the adapted LID and MDRE
are sensitive to sample distributions, so if some
normal test examples representations are from a
different distribution of training samples represen-
tations, such as noise examples, they will influence
their performance.

Adapted LID is often close to MDRE. It is higher

Dataset BERTBASE RoBERTaBASE XLNetBASE BARTBASE

IMDB 0.9290 0.9532 0.9336 0.9429
MultiNLI 0.8201 0.8671 0.8630 0.8455

Table 4: The accuracy of normal test examples
84

Dataset Detecting Method Character-level Attack Word-level Attack Phrase-level Attack

IMDB

Language Model 0.4996 0.4966 0.4838
DISP 0.8936 0.7714 —

FGWS — 0.7958 —
LID 0.9142 0.8406 0.9093

MDRE 0.9193 0.7562 0.9505

MultiNLI

Language Model 0.4932 0.4707 0.4997
DISP 0.7496 0.6137 —

FGWS — 0.6128 —
LID 0.7328 0.5849 0.6146

MDRE 0.7016 0.6319 0.6809

Table 5: The accuracy for detection classifiers

in word-level attack on the IMDB dataset and
character-level attack on the MultiNLI dataset, but
it is lower on phrase-level attacks. Relative to its
initial application on image classification tasks, the
performance of the adapted LID approach is worse.
Most accuracy of LID on image adversarial attacks
on CIFAR-10, CIFAR-100, and SVHN datasets are
over or near 90% (Cohen et al., 2020). However,
in our experiments, the average accuracy of the
adapted LID is about 77% (against majority class
baseline of 50%). This reveals the difficulty of
detecting textual adversarial examples.

The performance of the language model is simi-
lar to random guess, since the ratio between posi-
tive (normal) and negative (adversarial) examples
is 1:1. We observed that language model prediction
proportion scores are sensitive to the number of
words in examples because each word scores is be-
tween 0 to 1 and more words leads to lower scores.
In addition, in some contexts, scores for synonyms
or typos which are out-of-dictionary words, are
lower but close to scores of original words, which
do not have the large differences that might be ex-
pected.

DISP effectively applies the bidirectional lan-
guage model feature of the BERTBASE model and
builds a powerful perturbation discriminator, which
labels character-level or word-level perturbed to-
kens to 1, and unperturbed tokens to 0. The
perturbation discriminator achieves F1 scores of
95.06% on the IMDB dataset and 97.67% on the
MultiNLI dataset, using their own adversaral at-
tack methods. However, the embedding estima-
tor predicts embeddings through inputting 5-grams
with masked middle tokens to a BERTBASE model
with one layer feed-forward head on top and out-
putting embeddings of these masked tokens from
300-dimensional pretrained FastText English word
vectors (Mikolov et al., 2018). This is challenging

and restricts the overall performance of DISP.
Intuitively, adversaries’ predictions are different

from their original counterparts, which are ordinary
language; therefore, adversaries may contain rare
and infrequent words. According to an English
word frequency dataset,2 some words frequencies
in examples of Alzantot et al. (2018) are shown in
Table 6. We can find that the intuition is correct

org. org. freq. sub. sub. freq.

terrible 8,610,277 horrific 1,017,211
horrifying 491,916

considered 57,378,298 regarded 6,892,622
kids 96,602,880 youngstars —
runner 7,381,022 racer 3,625,077
battling 1,340,424 — —
strives 1,415,683 — —

Table 6: Original and modified sample words frequencies in
examples of Alzantot et al. (2018)

that replacement words frequencies drop compared
with substitutions; however, they may be higher
than other normal words. Therefore, using one
threshold makes it difficult to separate adversari-
ally substituted words from all normal words. Al-
ternative approaches to applying the characteristic
of adversarial words frequencies may work better.
We note that it is perhaps surprising, then, that our
representation-based detection methods outperform
FGWS that do incorporate frequency information
from the raw text input. This underscores the use-
fulness of the distributional information available
in the learned representations.

We show detection methods applied to exam-
ples from the MultiNLI dataset in the Appendix A
supplement.

4.3 Ablation Analysis of MDRE
The key ideas behind MDRE is that (1) adversar-
ial examples are out-of-distribution samples rela-

2The english word frequency: https://www.kaggle.
com/rtatman/english-word-frequency

85

Dataset Detecting Method Character-level Attack Word-level Attack Phrase-level Attack

IMDB
MDREBERT 0.8941 0.7541 0.9129

MDRERoBERTa 0.8606 0.6645 0.9287
MDREXLNet 0.7226 0.5962 0.7819
MDREBART 0.8951 0.6858 0.9327

MultiNLI
MDREBERT 0.6102 0.5903 0.6382

MDRERoBERTa 0.6853 0.5903 0.6526
MDREXLNet 0.6323 0.6227 0.6452
MDREBART 0.6824 0.6366 0.6740

Table 7: The accuracy of detection classifiers for ablation analysis of MDRE

tive to training examples from their data subman-
ifolds and (2) ensemble learning can help iden-
tify this. Therefore, we combine four representa-
tion learning models: BERTBASE, RoBERTaBASE,
XLNetBASE, and BARTBASE to produce MDRE as
described in Section 4.1.4. In order to explore the
effects of these two components and each repre-
sentation learning model, we apply MDREBERT,
MDRERoBERTa, MDREXLNet, MDREBART models,
wherem = 1, H = [BERTBASE], [RoBERTaBASE],
[XLNetBASE], and [BARTBASE] respectively.

The results are shown in Table 7 which reveals
all models work in detecting textual adversarial ex-
amples: the detection accuracy on both the IMDB
and MultiNLI datasets, and all upstream adversarial
attacks is substantially higher than random guess
(50%). Comparing with the results of MDRE on
the IMDB and MultiNLI datasets from Table 5, en-
semble learning helps to build a stronger detector
except word-level attack on the MultiNLI dataset.

5 Conclusion and Future work

In this paper, we adapted Local Intrinsic Dimen-
sionality (LID) method (Ma et al., 2018) from im-
age processing and proposed a simple and gen-
eral textual adversarial reactive detector, MultiDis-
tance Representation Ensemble Method (MDRE),
based on the distribution characteristics of adver-
sarial examples representations, that they are out-
of-distribution samples and lie off the true data
manifold. The experimental results show adapted
LID and MDRE achieve state-of-the-art results on
detecting character-level, word-level, and phrase-
level adversaries on the IMDB dataset as well as on
the later two with respect to the MultiNLI dataset.
The results show that it is possible to construct ad-
versarial example detectors using only the learned
representations, and not relying on various textual
substitution processes as in the baselines.

As discussed in Section 3, adapted LID uses esti-
mated Local Intrinsic Dimensionality on text repre-

sentations form different layers outputs of a target
model, and MDRE is implemented on Euclidean
distances between samples’ representations and
representations of their nearest neighbors among
the training examples with the same predicted la-
bels from different representation learning mod-
els, to characterise representation distribution dif-
ferences between adversarial examples and nor-
mal examples. In terms of future work and the
LID approach, Athalye et al. (2018) found that in
the image processing space, LID is vulnerable to
their Backward Pass Differentiable Approximiation
(BPDA) attack; it would be useful to investigate
whether this is the case in the text space, and if
so, other detection methods from image processing
may be worth looking into. With respect to MDRE,
as it is a kind of nearest-neighbour ensembling
approach, looking into other possibilities falling
within that space could be productive. More gen-
erally, exploring more effective distribution char-
acteristics of data semantic representations among
adversarial and normal examples, may help to build
better detectors.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Anish Athalye, Nicholas Carlini, and David Wagner.
2018. Obfuscated gradients give a false sense of secu-
rity: Circumventing defenses to adversarial examples.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 274–283. PMLR.

Steven Bird et al. 2009. Natural language processing
with Python: analyzing text with the natural language
toolkit. " O’Reilly Media, Inc.".

Nicholas Carlini and David Wagner. 2017a. Adversar-
ial examples are not easily detected: Bypassing ten

86

detection methods. In Proc. 10th AISec workshop,
pages 3–14.

Nicholas Carlini and David Wagner. 2017b. Towards
evaluating the robustness of neural networks. In Proc.
IEEE S&P, pages 39–57.

Ciprian Chelba et al. 2013. One billion word bench-
mark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005.

Pin-Yu Chen et al. 2018. Ead: elastic-net attacks to
deep neural networks via adversarial examples. In
Proc. AAAI.

Gilad Cohen et al. 2020. Detecting adversarial samples
using influence functions and nearest neighbors. In
Proc. IEEE/CVF CVPR, pages 14453–14462.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Reuben Feinman et al. 2017. Detecting adversarial sam-
ples from artifacts. arXiv preprint arXiv:1703.00410.

Christiane Fellbaum. 2005. Wordnet and wordnets. In
Alex Barber, editor, ELL, pages 2–665. Elsevier.

Ian J Goodfellow et al. 2014. Explaining and
harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.

M. E. Houle et al. 2012. Generalized expansion dimen-
sion. In 2012 IEEE 12th ICDM Workshops, pages
587–594.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages

2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4129–4142, Hong Kong, China. Association
for Computational Linguistics.

Di Jin et al. 2020. Is bert really robust? a strong baseline
for natural language attack on text classification and
entailment.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy
Liang. 2020. Robust encodings: A framework for
combating adversarial typos. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2752–2765, Online. Asso-
ciation for Computational Linguistics.

Kimin Lee et al. 2018. A simple unified framework for
detecting out-of-distribution samples and adversarial
attacks. arXiv preprint arXiv:1807.03888.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-
textualized perturbation for textual adversarial attack.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5053–5069, Online. Association for Computa-
tional Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2016.
Learning robust representations of text. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1979–1985,
Austin, Texas. Association for Computational Lin-
guistics.

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2017.
Robust training under linguistic adversity. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 21–27, Va-
lencia, Spain. Association for Computational Lin-
guistics.

Yinhan Liu et al. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

87

Zhiyuan Liu et al. 2020. Representation learning for
natural language processing. Springer Nature.

Xingjun Ma et al. 2018. Characterizing adversarial
subspaces using local intrinsic dimensionality. arXiv
preprint arXiv:1801.02613.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Stephen Merity et al. 2016. Pointer sentinel mixture
models.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Takeru Miyato et al. 2016. Adversarial training methods
for semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Seyed-Mohsen Moosavi-Dezfooli et al. 2016. Deepfool:
a simple and accurate method to fool deep neural
networks. In Proc. CVPR, pages 2574–2582.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186,
Online. Association for Computational Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 142–148, San Diego, California. As-
sociation for Computational Linguistics.

Nicolas Papernot and Patrick McDaniel. 2018. Deep
k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. arXiv preprint
arXiv:1803.04765.

Nicolas Papernot et al. 2016a. Distillation as a defense
to adversarial perturbations against deep neural net-
works. In Proc. IEEE S&P, pages 582–597. IEEE.

Nicolas Papernot et al. 2016b. The limitations of deep
learning in adversarial settings. In 2016 IEEE Eu-
roS&P, pages 372–387.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5582–5591, Florence, Italy. Asso-
ciation for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085–
1097, Florence, Italy. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Christian Szegedy et al. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhilin Yang et al. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

Jin Yong Yoo and Yanjun Qi. 2021. Towards improv-
ing adversarial training of NLP models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 945–956, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4904–
4913, Hong Kong, China. Association for Computa-
tional Linguistics.

88

A Experimental Results Samples

Samples of outputs produced by the word-level at-
tack and four detection classifiers on the MultiNLI
dataset are shown in Table 8, to illustrate where
some detection methods work while others do not.
The DISP and FGWS baselines both also produce
‘corrected’ text; their outputs are included here.

In our experiments, the best accuracy of FGWS
is when the frequency threshold is 92 and the
threshold for the difference in prediction confi-
dence is about 0.1916, therefore, if a word appears
in the MultiNLI dataset training set and its occur-
rence frequency in the training corpus is lower than
92, it will be replaced by another word that is se-
mantically similar and has higher occurrence fre-
quency in the training set. If after transformations,
the difference in prediction confidence before and
after exceeds 0.1916, this example is considered as
an adversarial example.

In example (a), MDRE, adapted LID, and DISP
are successful, but FGWS does not detect this
word-level adversarial example, because the occur-
rence frequency of the substituted word shopping
for store is 1153 which is higher than the thresh-
old 92, but original words mentioning and buffer
are replaced by name and pilot respectively, since
their occurrence frequencies are 67 and 30 in the
MultiNLI training set which are lower than the
threshold 92. From the DISP output, we can see
that it detects shopping as a problem word and it is
substituted by do.

In example (b), only adapted LID is success-
ful. This is an odd (but not atypical) example in
that the premise is not grammatical in written En-
glish, which might cause its representation differ
from normal examples and lead MDRE to pre-
dict wrong. However, the prediction confidence
about the premise and the hypothesis are unrelated
from BERTBASE model is 90.49%, therefore, the
word-level adversarial method have to make many
changes to both premise and hypothesis to fool the
target classifier. All words occurrence frequencies
are above the threshold 92. FGWS and DISP fail
in detecting most substitution words in this adver-
sarial example.

In example (c), only MDRE and FGWS are suc-
cessful. As with example (a), there is only a single
word change. Even though dipped is not an infre-
quent word, there are only 45 occurrences in the
MultiNLI training corpus, which is lower than the
threshold 92, so FGWS detects it. The language

model detector doesn’t detect these three adver-
sarial examples, since it fails to learn a threshold
on the language model scores to separate normal
and adversarial examples, and predict nearly all
examples as normal examples.

89

Original example prediction: Entailment

Premise: Finally, it might be worth mentioning that the program has the capacity to store in a temporary memory buffer about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.
Hypothesis: It’s possible to store words in a temporary dictionary, if they don’t appear in a regular dictionary.

Word-level adversarial example prediction: Neutral

Premise: Finally, it might be worth mentioning that the program has the capacity to store in a temporary memory buffer about
100 words (proper names, for instance) that it has identified as not stored in its dictionary.
Hypothesis: It’s possible to shopping words in a temporary dictionary, if they don’t appear in a regular dictionary.

DISP output of this word-level adversarial example

Premise: Finally, it might be worth that that the program has the capacity to store in a temporary memory buffer about 100
words (proper names, for instance) that it has identified as not stored in its dictionary.
Hypothesis: It’s possible to do words in a temporary dictionary, if they don’t appear in a regular dictionary.

FGWS output of this word-level adversarial example

Premise: Finally, it might be worth name that the program has the capacity to store in a temporary memory pilot about 100
words (proper names, for instance) that it has identified as not stored in its dictionary.
Hypothesis: It’s possible to shopping words in a temporary dictionary, if they don’t appear in a regular dictionary.

(a) An example with MDRE, adapted LID, and DISP correct predictions;
FGWS and the language model incorrect predictions on the adversarial example

Original example prediction: Neutral

Premise: I’ve been going up as a progress in school, so I, it will be a good change for me.
Hypothesis: I think further change can help me improve even more.

Word-level Adversarial Example prediction: Entailment

Premise: I’ve been going up as a progress in teaching, so I, it will be a good amendment for me .
Hypothesis: I thought further alter can support me improvement even more.

DISP output of this word-level adversarial example

Premise: I’ve been going up as a progress in teaching, so I think it will be a good amendment for me.
Hypothesis: I thought further that can support and improvement even more.

FGWS output of this word-level adversarial example

Premise: I’ve been going up as a progress in teaching, so I, it will be a good amendment for me.
Hypothesis: I thought further alter can support me improvement even more.

(b) An example with adapted LID correct prediction;
MDRE, DISP, FGWS, and the language model incorrect predictions on the adversarial example

Original example prediction: Contradiction

Premise: Increased profit came from missing fewer sales by being in stock a higher percentage of the time.
Hypothesis: Profits declined because less sales were missed.

Word-level adversarial example prediction: Entailment

Premise: Increased profit came from missing fewer sales by being in stock a higher percentage of the time .
Hypothesis: Profits dipped because less sales were missed .

DISP output of this word-level adversarial example

Premise: Increased profit came from missing fewer sales by being in stock a higher percentage of the time .
Hypothesis: Profits dipped because less sales were missed .

FGWS output of this word-level adversarial example

Premise: Increased profit came from missing fewer sales by being in stock a higher percentage of the time .
Hypothesis: Profits duck because less sales were missed .

(c) An example with MDRE, FGWS correct predictions;
adapted LID, DISP, and the language model incorrect predictions on the adversarial example

Table 8: Examples of detection results on the MultiNLI dataset

90

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 91 - 99
May 26, 2022 ©2022 Association for Computational Linguistics

A Vocabulary-Free Multilingual Neural Tokenizer
for End-to-End Task Learning

MdMofijul Islam†∗, Gustavo Aguilar‡, Pragaash Ponnusamy‡
Clint Solomon Mathialagan‡, Chengyuan Ma‡, Chenlei Guo‡

University of Virginia †, Amazon.com ‡

mi8uu@virginia.edu, {gustalas, ponnup, matclint, mchengyu, guochenl}@amazon.com

Abstract

Subword tokenization is a commonly used input
pre-processing step in most recent NLP models.
However, it limits the models’ ability to leverage
end-to-end task learning. Its frequency-based
vocabulary creation compromises tokenization
in low-resource languages, leading models to
produce suboptimal representations. Addition-
ally, the dependency on a fixed vocabulary lim-
its the subword models’ adaptability across lan-
guages and domains. In this work, we pro-
pose a vocabulary-free neural tokenizer by dis-
tilling segmentation information from heuristic-
based subword tokenization. We pre-train our
character-based tokenizer by processing unique
words from multilingual corpus, thereby ex-
tensively increasing word diversity across lan-
guages. Unlike the predefined and fixed vocab-
ularies in subword methods, our tokenizer al-
lows end-to-end task learning, resulting in opti-
mal task-specific tokenization. The experimen-
tal results show that replacing the subword tok-
enizer with our neural tokenizer consistently im-
proves performance on multilingual (NLI) and
code-switching (sentiment analysis) tasks, with
larger gains in low-resource languages. Addi-
tionally, our neural tokenizer exhibits a robust
performance on downstream tasks when adver-
sarial noise is present (typos and misspelling),
further increasing the initial improvements over
statistical subword tokenizers.

1 Introduction

Subword tokenization methods, such as BPE (Sen-
nrich et al., 2016), Word-Piece (Schuster and Naka-
jima, 2012), and Unigram (Kudo, 2018), rely on a
predefined vocabulary to tokenize text. This vocabu-
lary is built based on frequencies of word fragments.
As a result, rare words are highly fragmented into
many subpieces, whereas the integrity of themost fre-
quent words is substantially preserved (Bostrom and
Durrett, 2020). This vocabulary bias is magnified in

∗Work performed as summer intern at Amazon Alexa AI.

Table 1: Segmentation ofWorkshop in different languages. Sub-
word tokenizers over-segment low-resources languages (Arabic
and Thai) and create junk tokens, whereas our neural tokenizer
reduces the junk tokens.

Tokenizers Word Languages
Arabic Thai English

BPE لمع / ةش رو/ การ/ประชุม/เชิง/ปฏิบัติ/การ workshop
Unigram /لمع ة / شرو การประชุม/เชิง/ปฏิบัติการ work/shop
Word-piece لمع / ةش / رو การ/ประช/ุม/เช/ิง/ปฏิ/บัต/ิการ workshop
Neural /لمع ةشرو การประชุมเชิงปฏิบัติการ workshop

multilingual settings, where low-resource languages
are heavily discriminated in favor of high-resource
ones (Tay et al., 2021; Chung et al., 2020; Wang
et al., 2021) (see Table 1). Additionally, a subword
vocabulary is often defined while processing a (large)
pre-training corpus, thereafter remaining fixed. Con-
sequently, when the data samples are drawn from a
different distribution (e.g., multilingual text vs. lin-
guistic code-switching, formal writing vs. arbitrary
spellings, or simply by adversarial manipulation), the
subword tokenizers struggle to adapt and poorly seg-
ment the input, in some cases defaulting to character
pieces. These issues usually get reflected in down-
stream tasks when using pre-trained models that rely
on subword tokenization (Devlin et al., 2019). The
models cannot adapt their predefined static vocabu-
lary, thereby employing suboptimal tokenization for
downstream tasks (Clark et al., 2021). We argue that
this represents an important bottleneck in the NLP
pipeline, where models could become truly end-to-
end, but they lag behind due to the only not-learnable
component.
To address the aforementioned issues, we design a

vocabulary-free neural tokenizer, which we train in
two phases. First, in the pre-training phase, we train
our neural tokenizer by distilling the segmentation
information from a subword tokenizer. In the multi-
lingual setting, our neural tokenizer learns from the
language-specific subword tokenizers so that it is not
biased towards high-resource languages. After the
pre-training phase, the neural tokenizer segments the
character sequence without requiring a predefined

91

vocabulary. In the second phase, we employ an end-
to-end learning approach, which allows our neural
tokenizer to adapt the tokenization behavior to the
downstream task. Such an end-to-end approach is
not feasible for models with subword tokenizers due
to the predefined vocabulary and their strong ties to
the models’ embedding layer. Additionally, unlike
the subword tokenizers, our neural tokenizer does
not require a vocabulary, and its versatile alphabet
reduces the bias towards high-resource languages
(i.e., there is not unbalanced word coverage favoring
specific languages).
We compare the impact of our approach with

respect to the subword tokenizers in downstream
monolingual, multilingual, and code-switching tasks.
For multilingual NLI, the results show that our neural
tokenizer generally improves the model performance,
with substantially larger gains for low-resource lan-
guages (+11 absolute points of accuracy for Thai, +8
for Arabic, and +4 for Swahili). For code-switched
Spanish-English sentiment analysis, our neural to-
kenizer also outperforms the baseline tokenizers,
demonstrating better language generalization capa-
bilities. We inspect the robustness of our neural
tokenizer in the presence of noisy text through ad-
versarial manipulation (e.g., typos and spelling vari-
ations), and we find that the tokenization result is
much more resilient to generate junk tokens (i.e., ex-
cessive fragmentation of subword pieces) than the
subword tokenizers. Finally, we provide extensive
experimental analyses that consistently suggest to
adopt our approach for more robust and versatile
representations of text.

2 Related Work

2.1 Subword Tokenization
Several subword tokenization approaches have been
proposed to segment the input text in the NLP
pipeline, such as BPE (Sennrich et al., 2016),
Word-Piece (Schuster and Nakajima, 2012), Un-
igram (Kudo, 2018), and SentencePiece (Kudo
and Richardson, 2018). These tokenizers use a
frequency-based approach to determine the vocab-
ulary from a corpus. Although these subword tok-
enization approaches improve upon previous rule-
based methods, recent studies show that subword
tokenization leads the model to produce suboptimal
representations (Bostrom and Durrett, 2020; Wang
et al., 2021; Chung et al., 2020; Kudo, 2018). For
instance, Bostrom and Durrett (2020) evaluate the
impact of Byte Pair Encoding (BPE) tokenization on

language model pretraining, and the results suggest
that BPE leads to suboptimal representations. Due to
the data imbalance among the languages, the impact
of multilingual tokenization on the representations is
profound (Tay et al., 2021; Wang et al., 2021)—i.e.,
the tokenizers are prone to excessive fragmentation
of subwords due to the lack of word coverage leading
to meaningless tokens.
To reduce the undermining effects of subword to-

kenization, several approaches have been proposed.
For example, Kudo (2018) introduced a subword reg-
ularization approach to probabilistically sample mul-
tiple segmentations to improve neural machine trans-
lation models. Along this line, Wang et al. (2021)
shows that multilingual representations can be im-
proved by utilizing multiple input segmentations. Al-
though these approaches improve the model’s repre-
sentations by using multiple subword segmentation,
they ultimately rely on heuristic-based subword tok-
enization with a fixed vocabulary. Thus, the limita-
tions of the heuristic-based tokenization still persist,
such as restricting the model’s ability to leverage
end-to-end task learning while adapting to an opti-
mal downstream tokenization.

2.2 Character-level Models

Although subword tokenization alleviates the out-
of-vocabulary problem, it relies on a static vocabu-
lary, which prevents end-to-end learning. A natural
alternative to that deficiency is to replace the sub-
word tokenization with a character-level approach
and learn the representations directly from the char-
acter sequence (Graves, 2013; Sutskever et al., 2011;
Radford et al., 2017). These character-based ap-
proaches can adapt more easily to noisy text, code-
switched languages, and adversarial manipulation
to extract the representation (Clark et al., 2021;
Tay et al., 2021; Hwang and Sung, 2017; Pinter
et al., 2019; Akbik et al., 2018; Xie et al., 2018;
Aguilar et al., 2020b). However, the character-based
approaches may not capture the token-level repre-
sentation, which degrades downstream task perfor-
mance. Moreover, these method have to process
longer sequences at the character level, thus increas-
ing quadratically the complexity of themodels (Clark
et al., 2021; Aguilar et al., 2020b; Costa-jussà and
Fonollosa, 2016).
Several approaches have been proposed to down-

sample the character sequence to sub-token sequence
(Tay et al., 2021; Clark et al., 2021). For exam-
ple, Clark et al. (2021) deterministically combined

92

a fixed number of characters’ representations to re-
duce the model complexity. Along this line, Tay
et al. (2021) downsampled the sequence of character
vectors by a fixed factor to produce latent subwords
representations. Furthermore, Zhang et al. (2019)
produced character n-grams, which are hashed and
summed to obtain word embeddings for downstream
tasks. Since these approaches deterministically re-
duce the sequence length in the downsampling op-
eration, they may not capture the morphological in-
formation, potentially struggling to learn representa-
tions on noisy text.

3 Method

We propose a learnable tokenizer that is trained
to convert sequence of characters into meaningful
subword-level tokens. Consider the multilingual al-
phabet Ψ (i.e., a closed set of letters) and the charac-
ter sequence c = [c1, . . . , cn] that represents a word
of length n and ci ∈ Ψ. We aim at learning the cor-
responding IOB1 sequence of tags t = [t1, . . . , tn]
that groups characters into the desired tokenization:

pθ(t | c, `) = fθ(c, `) (1)

Here ` denotes the language of the word. The model
fθ can be any neural architecture that allows a one-
to-one mapping from the input to the output.2 We
condition the model on ` in the multilingual setting,
while the monolingual variant does not require it.
A trained neural tokenizer, fθ, is capable of pro-

viding tokenization as a stand-alone tool, which can
be compared directly to the standard subword tok-
enizers (e.g., controlling by the task-specific model
in a downstream setting). Additionally, a trained
neural tokenizer can expose the internal representa-
tions of a segmentation so that it enables end-to-end
task learning by optimizing the tokenization towards
the task particularities. We describe both scenarios
in more detail in the following subsections.

3.1 Pre-training
We rely on the assumption that statistical subword
tokenizers learn reasonable tokenization until they
start over-segmenting the text due to the target vocab-
ulary size and the infrequent subword occurrences.
To stick to a data-driven approach (hence, avoiding
language specific heuristics), we choose a subword to-
kenizer, i.e. Unigram (Kudo, 2018), to generate our

1The beginning (B), inside (I), and outside (O) tagging
schema denoting the word boundaries at the character level.

2We stick to the LSTM architecture for all our experiments
since this simplifies iterations over pre-training and fine-tuning.

ground-truth segmentation while also discarding over
fragmented sequences. For example, if the subword
tokenizer segments tricycles as tri/cycle/s, then the
ground-truth label is BIIBIIIIB. We train our
neural tokenizer using the negative log-likelihood
objective over the subword tokenizer segments:

L = −
∑

i

ti log pθ(ti | c, `) (2)

Our neural tokenizer not only mimics the more
prominent (and insightful) patterns from the subword
tokenizer, but it also generalizes such behaviors to
unseen words.

Pre-training Dataset: We generate a pre-
training corpus by curating space-separated tokens
from the Wikipedia articles (e.g., removing
hyperlinks, HTML tags, and tokens whose lengths
are beyond 30 characters). Additionally, we use two
heuristics to improve the ground-truth label from
the subword tokenizer. First, if the input sequence
is less than four, we do not segment into subwords.
Second, if the subword tokenizer creates more than
50% subwords with a single character, we discard
the ground-truth label and do not tokenize. These
heuristics discard the junk tokenization of the
subword tokenizer, especially when the input comes
from low-resource languages and noisy text.

3.2 End-to-End Task Learning
While the pre-training provides a stand-alone neu-
ral tokenizer tool, we can also leverage the model’s
hidden representations for end-to-end task learning.
Recall that the neural tokenizer provides a tagging
sequence for the segmented tokens based on its in-
ternal character-level vectors. Such tags can be used
to group and reduce the dimensionality of the in-
ternal representations (e.g., via max-pooling). Our
neural tokenizer is based on the LSTM architecture,
so we use the LSTM output vectors and max-pool
them according to the tokenization tags (although
this approach is invariant to LSTM).

[h1, . . . , hn] = LSTM([c1, . . . , cn]) (3)
ri = maxpool([hi, . . . , hj])

where the interval [i, j] denotes the characters of a
single subword (i.e., an IOB segment), hi ∈ R1×d

and ri ∈ R1×d are vectors of dimensionality d. We
use the resulting vectors r as the subword representa-
tions, which we can feed to any task-specific model
on a downstream scenario. Note that we effectively

93

Figure 1: The neural tokenizer architecture and its two settings: (a) Pre-training and (b) Fine-tuning. (a) In the pre-training
setting, the model is trained to segment the sequence of characters by outputting the correct IOB tags according to the statistical
subword tokenizer. (b) In the fine-tuning setting, the model uses the trained segmentation layer to predict the tags and max-pool
the corresponding vectors (e.g., tri/cycle/s). These vectors are passed directly to the task-specific model, bypassing the need for
vocabulary and embedding layers. In the backpropagation step of the fine-tuning setting, all the parameters in the shadow boxes are
updated (i.e., the alphabet embedding, LSTM, and the task-specific parameters).

bypass the need of a vocabulary, while also enabling
the task-specific model to adjust the pre-trained tok-
enization parameters towards the task domain in an
end-to-end manner.

3.3 Neural Tokenizer Variants

The neural tokenizer model can be used to segment
the input for a task model in a general-purpose set-
ting, such as a task with monolingual input (i.e., ` is
constant). However, we need to slightly change the
neural tokenizer model for multilingual and mixed-
lingual (code-switched) settings to improve the tok-
enization and internal representations. We describe
two variants of our neural tokenizer: multilingual
and mixed-lingual neural tokenizers.

Multilingual Neural Tokenizer: Multilingual
subword tokenizers are designed to segment the text
with an fixed multilingual vocabulary, irrespective
of the input language. While this may be practical,
it has severe effects on the tokenization behavior,
disregarding dissimilar linguistic properties across
languages (e.g., morphology). Thus, if a language
identifier ` is available with the input, the neural
tokenizer can condition the tokenization on `. We
achieve such behavior by simply including the identi-
fier ` at the beginning of the sequence, which extends
the alphabet Ψ with the same number of languages
` we are including in the pre-training data.
Additionally, since multilingual subword tokeniz-

ers cannot tokenize low-resource languages appro-
priately due to the dominance of the high-resource
languages in their vocabulary, we use monolingual
subword tokenizers to generate the ground-truth seg-
mentation labels for pre-training. Using monolin-
gual subword tokenizers helps our neural tokenizer

avoid bias towards any languages, especially the high-
resource languages. Thus, we distill the tokenization
knowledge from the multiple monolingual subword
tokenizers into our neural tokenizer.

Mixed-Lingual Neural Tokenizer: In mixed-
lingual settings, such as in code-switching, we may
not have access to the language identifiers ` of the
input words or sentences. Thus, we need to train
a neural tokenizer to segment text with mixed lan-
guages without relying on language identifiers of the
input tokens. To do so, we change the pre-training
dataset to train the neural tokenizer with and without
language tags, hence forcing our model to general-
ize when the language tags are provided as well as
when they are missing. We replicate the dataset for
training the model with and without language tags.

4 Experimental Setup

4.1 Neural Tokenizer Model
We design the neural tokenizer character encoder
with a character embedding layer of 64 dimensions
followed by a two-layer bidirectional LSTM (Bi-
LSTM) that generates 128-dimensional vectors. We
use a fully connected layer of shape 128×2 followed
by a softmax operation to predict the character-level
segmentation label. The predicted labels represent
whether a character is the beginning or part of a
subword.3

4.2 Pre-training Neural Tokenizer
In the pre-training phase of the monolingual neu-
ral tokenizer, we have developed a monolingual
Unigram subword tokenizer with a vocabulary size

3Note that the O tag of the IOB schema is not used here.
94

of 30, 000 to generate the ground-truth segmenta-
tion labels. To train multilingual and mixed-lingual
(code-switched) neural tokenizers, we have devel-
oped monolingual Unigram tokenizers with a vo-
cabulary of 30, 000 for each language. We fixed the
vocabulary size by following monolingual vocabulary
size of BERT (Devlin et al., 2019).
We have utilized Adam optimizer with weight de-

cay regularization and cosine annealing warm restarts
with an initial learning rate set to 3e−4 to train the
neural tokenizer. In the cosine annealing warm
restarts learning scheduler, we set the cycle length
(T0) and cycle multiplier (Tmult) to 3 and 2, respec-
tively. We have trained the models for 6 epochs
and selected the best model based on the minimum
validation loss.

4.3 Baseline Tokenizers

We have developed subword tokenizers, such as BPE,
Unigram, andWord-Piece, for the experimental eval-
uations. We developed two versions of these subword
tokenizers: monolingual and multilingual. Follow-
ing state-of-the-art model with subword tokenizer
(Devlin et al., 2019), we have fixed the vocabulary
size of monolingual and multilingual tokenizers to
30000 and 120000, respectively. We have used the
Wikipedia dataset to develop the vocabulary of these
tokenizers.

4.4 Downstream Task Model

We have evaluated the impact of our neural and
heuristic-based subword tokenizers on the two down-
stream tasks: natural language inference (NLI) in
monolingual and multilingual settings and sentiment
analysis with code-switched languages. For the base-
lines models with subword tokenization, the seg-
mented subwords are projected to create feature em-
beddings of size 256. For the model with our neural
tokenizer, we max-pool the character embeddings
to create the subword-level representations of size
128. We project these pooled representations to the
embeddings of size 256 to match the subword rep-
resentations’ dimension of the baseline tokenizers.
We have used a two-layers Bidirectional LSTM with
the hidden feature embeddings of size 256 for ex-
tracting the task representations. In the experimental
evaluations, we have used the same task model archi-
tecture with the subword tokenizer and our neural
tokenizer. All the models are trained from scratch
for fair experimental evaluations.

5 Experimental Results and Discussion

We have evaluated the impact of our neural and sub-
word tokenizers on multilingual and monolingual
natural language inference (NLI) tasks and on a sen-
timent analysis task with code-switched language.
We also evaluated the impact of tokenizers in the
presence of noisy data (typos and misspelling).

5.1 Evaluations on Multilingual NLI Tasks
We have conducted the experimental analysis to eval-
uate the impact of neural and baseline tokenizers
on multilingual NLI tasks with five languages: Ara-
bic (ar), English (en), Russian (ru), Swahili (sw),
and Thai (th). We have used XNLI dataset (Con-
neau et al., 2018) for this experimentation. We have
developed three multilingual tokenizers (BPE, Un-
igram, and Word-piece) with a vocabulary size of
120, 000. Moreover, we have developed another
baseline, called Character-based Model, which seg-
ments input based on space without using any vocab-
ulary and pools character embedding to create word-
level representations. These representations are used
for downstream task. Finally, we have used the same
downstream learning architecture (Described in Sec-
tion 4.4) with all the above-mentioned tokenizers
and multilingual neural tokenizers.
Results and Discussion: The experimental re-

sults in Table 2 suggest that the neural tokenizer
outperforms the evaluated baseline tokenizers across
all languages for the NLI task. Especially, neural
tokenizer achieves substantially larger gains for the
low-resource languages over the baseline tokenizers,
such as +11 absolute points of accuracy for Thai
(th), +8 for Arabic (ar), and +4 for Swahili (sw). For
the English, neural tokenizer slightly improves the
performance compared to the baseline tokenizers.
The reasoning behind the performance improve-

ment of neural tokenizer is that it segments the input
based on lexical similarity and thus create better
segmentations, especially for the low-resource lan-
guages. As the subword tokenizers use a vocabulary
with the most frequent subwords in a corpus, these
tokenizers over-segment the input of low-resource
languages and create junk tokens, which lead to the
performance degradation.
We have also noticed similar phenomena in our

qualitative analysis, presented in Figure 2 and 3.
Subword tokenizers over-segment the words from
the low-resources languages compared to the high-
resources languages (Figure 2). For example, the
subword tokenizers create at least 10 subwords for

95

Table 2: Multilingual NLI task performance comparison of various tokenization approaches.

Tokenizers
Vocab
Size

Model Params
(Millions) Languages (Accuracy %)

ar sw th ru en
BPE 120,000 67.8 M 51.81 50.66 51.32 54.77 57.57

Unigram 120,000 67.8 M 53.78 51.32 56.09 53.13 57.24
Word-Piece 120,000 67.8 M 50.66 50.00 43.26 54.61 57.57

Character-based Model - 33.4 M 53.29 46.88 44.41 52.80 50.99
Neural - 33.4 M 61.51 53.95 68.42 60.69 58.22

more than 20%words in the multilingual NLI corpus.
On the other hand, the neural tokenizer creates fewer
subwords than the baseline tokenizers, including the
Unigram, which is used to pre-train our neural tok-
enizer. Specifically, the neural tokenizer reduces the
number of subwords for the low-resource languages,
such as Thai (th) and Swahili (sw). As the neural
tokenizer distills the segmentations knowledge from
the language-specific tokenizer, it does not bias to-
wards the high-resource languages. Additionally, we
have observed that subword tokenizer over-segment
the hypothesis and premise from low-resource lan-
guages, such as Arabic (ar), Swahili (sw), and Thai
(th), compared to the neural tokenizer (Figure 3).
This over-segmentation leads to performance degra-
dation for the NLI task with low-resource languages.

Additionally, one can argue that instead of using
the neural tokenizer, we can use a Character-based
Model to extract characters embedding for down-
stream task learning. To validate this argument, we
have developed a baseline, called Character-based
Model, which segments input based on space without
using any vocabulary and pools character embedding
to create word-level representations for downstream
task learning. This Character-basedModel is trained
end-to-end to learn characters embedding from input
character sequence and generate task representation
to produce task output. The results in Table 2 suggest
that although it achieves comparable performance to
the baseline subword tokenizers, there is a consider-
able performance gap between the Character-based
Model and the neural tokenizer across all the lan-
guages.

Moreover, our neural tokenizer achieved these
performance improvements with half the model size
compared to the model with baseline tokenizers. Be-
cause the model with baseline subword tokenizer has
to allocate most of the model parameters to learn the
subword embeddings. On the other hand, neural to-
kenizer creates the subword embeddings by pooling
the character-level representations, which reduces
the model size.

Table 3: Monolingual (English) NLI task performance compar-
ison with various tokenization approaches

Tokenizer Vocab
Size

Model Params
(Millions) Accuracy (%)

BPE 30,000 44.8 M 57.85
BPE 70,000 65.3 M 59.94

Unigram 30,000 44.8 M 58.65
Unigram 70,000 65.3 M 58.01

Word-Piece 30,000 44.8 M 58.65
Word-Piece 70,000 65.3 M 58.33
Neural 69,480 65.0 M 59.94
Neural - 33.3 M 60.58

5.2 Experimental Evaluations on
Monolingual NLI Tasks

We have investigated whether the neural tokenizer
can outperform the baseline subword tokenizers on
monolingual NLI tasks. We have developed three
baseline subword tokenizers (BPE, Unigram, and
Word-Piece) with the vocabulary of sizes 30,000
and 70,000. To ensure a fair comparison, we have
also trained our neural tokenizer in the monolingual
setting. Moreover, we have applied our neural tok-
enizer on the same corpus as the baseline tokenizers
and produced a vocabulary for the neural tokenizer.
In this vocabulary-based setting, we tokenize the in-
put based on the fixed vocabulary, similar to baseline
subword tokenizers. In this experimental evaluation,
we have selected the English language.

Results and Discussion: The experimental re-
sults in Table 3 suggest that our neural tokenizer
shows comparable performance to the subword tok-
enizers on the monolingual NLI task. Moreover, the
model with our neural tokenizer achieves a similar
performance to the model with the subword tokeniz-
ers. However, the neural tokenizer helps to achieve
similar performance with a smaller model. This per-
formance improvement of neural tokenizers with
reduced model size attributes that we can utilize
our neural tokenizer to extract representations for
downstream tasks instead of employing a resource-
intensive model with subword tokenizers.

96

Figure 2: Impact of tokenizer to segment words into different number of subwords in low and high resource languages.

Figure 3: Average number of subwords of hypothesis and
premise from low and high resource languages, which are tok-
enized by different tokenizers.

5.3 Experimental Evaluations on Noisy Text

We have evaluated the impact of tokenizer on mono-
lingual (English) NLI task in the presence of noisy
text (typos and misspelling). For this experimen-
tal evaluation, we have developed baseline monolin-
gual (English) tokenizers (BPE, Unigram, and Word-
Piece) with a vocabulary size of 30,000. We have
developed a monolingual neural tokenizer trained,
which is trained using a Unigram subword tokenizer
with a vocabulary size of 30, 000. Moreover, we
have developed a vocabulary-based neural tokenizer,
where we used our neural tokenizer to segment the
Wikipedia corpus with the English language and cre-
ate a vocabulary with the most frequent subwords.
We have used this vocabulary to tokenize the hypoth-
esis and premise of the NLI task. We adversarially
introduce noise to the 0%− 70% input words, such
as typos and misspelling, using TextAttack Library
(Morris et al., 2020).

(a) Accuracy of NLI (English) Task

(b) Average number of segmented subwords

Figure 4: Performance comparison of tokenizers on monolin-
gual (English) NLI task with noisy text (typos and misspelling).

Results and Discussion: The experimental re-
sults in Fig 4 suggest that the performance of the
models with vocabulary-based subword tokenizers
degrade with the increased amount of noisy words in
the input. Although the performance of the model
with our vocabulary-free neural tokenizer degrades
with the increased amount of noisy words, it out-
performs all the evaluated tokenization approaches.
Especially, our neural tokenizer outperforms the Un-
igram subword tokenizer, which is used to train our
neural tokenizer.
As the subword tokenizers use a fixed vocabulary,

they can not appropriately segment the text from the
out-of-distribution and introduce junk tokens. These
junk tokens lead the model to create suboptimal rep-
resentations and thus degrade the downstream task’s
performance. On the other hand, neural tokenizer
segments the input based on lexical similarity, and
thus it creates better segmentation in the presence of

97

Table 4: Segmentation of words using Unigram and Neural
Tokenizer, which is trained using Unigram subword tokenizer.
Red colored words are with noise (typos and misspelling).

Input Unigram Neural
tricycles t/ r/ i/ cycle/ s tricycle/ s
trycycles t/ r/ y/ cycle/ s trycycle/ s
improving improv/ ing improv/ ing
improbing imp/ robin/ g improbing
timeline timeline time/ line
timlline t/ i/ m/ l/ line timlline
swimming s/ w/ imming s/ w/ imming
swiming swim/ ing swiming
workshop workshop workshop
worksops works/ o/ p/ s worksops
biotechnology biotechnolog/ y biotechnolog/ y
bitechnology b/ i/ t/ echnology bitechnolog/ y

noise, such as typos and misspelling. However, the
vocabulary-based neural tokenizer’s performance de-
grades with the increased percentage of noisy words.
Because, in the vocabulary-based neural tokeniza-
tion, if a subword does not present in the vocabulary,
then we replace that subword with an <UNK> (un-
known) token. As a result, vocabulary-based neural
tokenizers create many <UNK> junk subwords in
the presence of noise and thus hurting the task per-
formance.
Additionally, the tokenizations present in Table. 4

suggest that our neural tokenizer helps to improve
the segmentations quality of the Unigram subword
tokenizer in the presence of noise (e.g., typos and
spelling variations). For example, Unigram creates
junk tokens in segmenting tricycles. Our neural to-
kenizer, trained using Unigram, reduces the junk
tokens and creates morphologically aligned segmen-
tation. However, in some cases, such as segmenting
swiming, the Unigram tokenizer creates better seg-
mentation than our neural tokenizer.

5.4 Experimental Evaluations on
Code-Switched Language

We have evaluated the impact of the tokenizers on
the sentiment analysis task with the Spanish-English
code-switched languages. We have used the Lince
dataset and the evaluation benchmark (Aguilar et al.,
2020a). We have developed three baseline tokeniz-
ers (BPE, Unigram, Word-Piece) with a vocabulary
size of 60,000. We have also trained a neural tok-
enizer in the mixed-lingual settings (Section 3.3),
where the training dataset is developed from the
Spanish and English Wikipedia articles.
Results and Discussion: The experimental re-

sults in Table 5 suggest that our neural tokenizer
outperforms the subword tokenizers, including the
Unigram subword tokenizer, on the sentiment anal-

Table 5: Performance comparison of tokenizers on sentiment
analysis task with code-switched languages (Spanish-English).

Tokenizer Vocab
Size Accuracy (%)

BPE 60,000 49.39
Unigram 60,000 49.18

Word-Piece 60,000 48.43
Character-based Model - 45.63

Neural - 51.41

ysis task with code-switched languages. Unlike the
heuristic-based subword tokenization, neural tok-
enizer allows end-to-end task learning, which helps
to improve the task’s performance.
Our neural tokenizer and the heuristic-based to-

kenizers segment the input into subwords, and the
task models use the subword embeddings. These
models, which use the subword embeddings, outper-
form the Character-based Model, where character
representations are used for downstream task learn-
ing. Because in the code-switched language settings,
extracting subword embeddings can be beneficial to
create aligned multilingual representations, which
help to improve the sentiment analysis task perfor-
mance. Thus, appropriately segmenting input with
code-switched languages is crucial to improve per-
formance in the code-switched language settings.

6 Conclusion

We propose a neural tokenizer to segment text with-
out a vocabulary, which allows end-to-end task learn-
ing. The experimental evaluations on multilingual
NLI task suggest that our neural tokenizer reduces
the model size and improves the task’s performance
for low-resources languages, such as Arabic, Swahili,
and Thai. Moreover, the neural tokenizer outper-
forms subword tokenizers on the NLI task with noisy
text (typos and misspelling). The qualitative analy-
sis also suggests that our neural tokenizer improves
the tokenizations of the subword tokenizers, which
is used to train our neural tokenizer. Additionally,
the neural tokenizer shows comparable performance
on sentiment analysis task with code-switched lan-
guages. The experimental results suggest that our
neural tokenizer can distill the segmentations knowl-
edge from multiple subword tokenizers to improve
the tokenization. This finding opens future research
avenues to design a learnable tokenizer for improv-
ing the state-of-the-art subword tokenization and the
downstream task’s performance.

98

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020a. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of the
12th Language Resources and Evaluation Conference,
pages 1803–1813, Marseille, France. European Lan-
guage Resources Association.

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Keskar, and Thamar Solorio. 2020b.
Char2subword: Extending the subword embedding
space using robust character compositionality. arXiv
preprint arXiv:2010.12730.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In Proceedings of the 27th international conference on
computational linguistics, pages 1638–1649.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
EMNLP, pages 4617–4624.

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and
Jason Riesa. 2020. Improving multilingual models
with language-clustered vocabularies. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 4536–4546.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representation.
arXiv preprint arXiv:2103.06874.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Marta R. Costa-jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Kyuyeon Hwang and Wonyong Sung. 2017. Character-
level language modeling with hierarchical recurrent

neural networks. In 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5720–5724. IEEE.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 66–75.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tokenizer
and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In EMNLP: System Demon-
strations, pages 119–126.

Yuval Pinter, Marc Marone, and Jacob Eisenstein. 2019.
Character eyes: Seeing language through character-
level taggers.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1715–1725.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on
International Conference on Machine Learning, pages
1017–1024.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2021.
Charformer: Fast character transformers via gradient-
based subword tokenization.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2021. Multi-view subword regularization. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 473–482.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. InProceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages
369–379.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix Stahlberg,
Xiaochang Peng, Kyle Gorman, and Brian Roark.
2019. Neural models of text normalization for speech
applications. Comput. Linguistics, 45(2):293–337.

99

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 100 - 110
May 26, 2022 ©2022 Association for Computational Linguistics

Identifying the Limits of Cross-Domain Knowledge
Transfer for Pretrained Models

Zhengxuan Wu
Stanford University

wuzhengx@stanford.edu

Nelson F. Liu
Stanford University

nfliu@cs.stanford.edu

Christopher Potts
Stanford University

cgpotts@stanford.edu

Abstract

There is growing evidence that pretrained lan-
guage models improve task-specific fine-tuning
even where the task examples are radically dif-
ferent from those seen in training. We study an
extreme case of transfer learning by providing
a systematic exploration of how much transfer
occurs when models are denied any information
about word identity via random scrambling. In
four classification tasks and two sequence label-
ing tasks, we evaluate LSTMs using GloVe em-
beddings, BERT, and baseline models. Among
these models, we find that only BERT shows
high rates of transfer into our scrambled do-
mains, and for classification but not sequence
labeling tasks. Our analyses seek to explain
why transfer succeeds for some tasks but not
others, to isolate the separate contributions of
pretraining versus fine-tuning, to show that the
fine-tuning process is not merely learning to un-
scramble the scrambled inputs, and to quantify
the role of word frequency. Furthermore, our
results suggest that current benchmarks may
overestimate the degree to which current mod-
els actually understand language.

1 Introduction

Fine-tuning pretrained language models has proven
to be highly effective across a wide range of NLP
tasks; the leaderboards for standard benchmarks
are currently dominated by models that adopt this
general strategy (Rajpurkar et al., 2016, 2018;
Wang et al., 2018; Yang et al., 2018; Wang et al.,
2019). Recent work has extended these findings in
even more surprising ways: Artetxe et al. (2020),
Karthikeyan et al. (2019), and Tran (2020) find evi-
dence of transfer between natural languages, and
Papadimitriou and Jurafsky (2020) show that pre-
training language models on non-linguistic data
such as music and computer code can improve test
performance on natural language.

Recently, Tamkin et al. (2020) show that BERT’s
performance on downstream GLUE tasks suffers

Figure 1: An overview of our experiment paradigm.
Starting with a model (e.g., pretrained BERT, GloVe-
initialized LSTM, etc.), we copy it and fine-tune it on
the regular and scrambled train set using a scrambling
function F. The model is then evaluated on regular and
scrambled test sets. Our paper explores different options
for F and a number of variants of our models to try to
quantity the amount of transfer and identify its sources.

only marginally even if some layers are reinitial-
ized before fine-tuning, and Gauthier and Levy
(2019), Zanzotto et al. (2020), Pham et al. (2020),
and Sinha et al. (2021) show that BERT-like mod-
els are largely insensitive to word order changes.
In this work, we extend this line of research by
providing a systematic exploration of how much
cross-domain transfer we see when the model is
denied any information about word identity.

Figure 1 gives an overview of our core experi-
mental paradigm: starting with two identical copies
of a single pretrained model for English, we fine-
tune one on English examples and the other on
scrambled English sentences, using a scrambling
function F (Section 3), and then we evaluate the re-
sulting models. We apply this paradigm to four

100

classification tasks and two sequence modeling
tasks, and we evaluate bag-of-words baselines,
LSTMs with GloVe initialization and rich atten-
tion mechanisms, and BERT. Our central finding
is that, for BERT, high rates of transfer occur on
classification tasks, but not sequence labeling tasks

To better understand why such transfer is suc-
cessful for some tasks but not others, we pursue a
number of hypotheses. First, we assess whether the
transfer occurs if only word identities are scram-
bled among words with similar frequencies. Sec-
ond, we assess whether our matching methods
might actually be inserting semantic consistency
into the scrambling process by matching synonyms.
Third, we analyze the learning dynamics behind
such transfer by studying the effects of model pre-
training.

Our findings suggest that performance on exist-
ing tasks may be less informative than previously
thought about the degree to which a model under-
stands language. Our pretrained models transfer
knowledge in our tasks even when they are denied
any information about word identity. Thus, a large
percentage of their success might trace to factors
that have nothing to do with communication or un-
derstanding. After all, our scrambled data do not
have the semantics of English, or indeed of any
language.

2 Related work

2.1 Studies of Why Transfer Happens

There are diverse efforts underway to more deeply
understand why transfer occurs. Probing tests of-
ten involve fitting supervised models on internal
representations in an effort to determine what they
encode. Such work suggests that BERT represen-
tations encode non-trivial information about mor-
phosyntax and semantics (Tenney et al., 2019; Liu
et al., 2019; Hewitt and Manning, 2019; Manning
et al., 2020) and perhaps weakly encode world
knowledge such as relations between entities (Da
and Kasai, 2019; Petroni et al., 2019), but that they
contain relatively little information about pragmat-
ics or role-based event knowledge (Ettinger, 2020).
Newer feature attribution methods (Sundararajan
et al., 2017) and intervention methods (McCoy
et al., 2019; Vig et al., 2020; Geiger et al., 2020)
are corroborating these findings while also yielding
a picture of the internal causal dynamics of these
models.

Another set of strategies for understanding trans-

Scrambling Method Sentence

Original English
(No Scrambling)

“the worst titles in recent cine-
matic history”

Similar Frequency “a engaging semi is everyone
dull dark”

Random “kitsch theatrically tranquil
andys loaf shorty lauper”

Table 1: An example from the SST-3 dataset and its two
scrambled variants.

fer involves modifying network inputs or internal
representations and studying the effects of such
changes on task performance, as in the above-cited
work by Tamkin et al. (2020), Gauthier and Levy
(2019), Zanzotto et al. (2020), Pham et al. (2020),
and Sinha et al. (2021).

2.2 Extreme Cross-Domain Transfer

Cross-domain transfer is not limited to monolin-
gual cases (Karthikeyan et al., 2019). With modifi-
cations to its tokenizer, English-pretrained BERT
improves performance on downstream multilingual
NLU tasks (Artetxe et al., 2020; Tran, 2020). Pa-
padimitriou and Jurafsky (2020) show that pretrain-
ing language models on structured non-linguistic
data (e.g., MIDI music or Java code) improves
test performance on natural language. Our work
complements and advances these efforts along two
dimensions. First, we challenge models with ex-
tremely ambitious cross-domain settings and find
that BERT shows a high degree of transfer, and
we conduct a large set of follow-up experiments
to help identify the sources and limitations of such
transfer.

3 Experimental Paradigm

We now describe the evaluation paradigm summa-
rized in Figure 1 (Section 3.1), with special atten-
tion to the scrambling functions F that we consider
(Sections 3.2–3.3).

3.1 Evaluation Pipeline

Figure 1 shows our main evaluation paradigm for
testing the transfer abilities of a model without
word identity information. On the left side, we
show the classic fine-tuning pipeline (i.e., we fine-
tune on the original English training set and eval-
uate on the original English test set). On the right
side, we show our new evaluation pipeline: start-
ing from a single model, we (1) fine-tune it with

101

a corrupted training split where regular English
word identities are removed and then (2) evaluate
the model on a version of the evaluation set that
is corrupted in the same manner. The paradigm
applies equally to models without any pretraining
and with varying degrees of pretraining for their
model parameters.

3.2 Scrambling with Similar Frequency
To remove word identities, we scrambled each sen-
tence in each dataset by substituting each word w
with a new word w′ in the vocabulary of the dataset.
For Scrambling with Similar Frequency, we use the
following rules:

1. w andw′ must have the same sub-token length
according to the BERT tokenizer; and

2. w and w′ must have similar frequency.

The first rule is motivated by the concern that sub-
token length may correlate with word frequency,
given that rarer and longer words may be tokenized
into more sub-tokens. The second rule is the core
of the procedure. The guiding idea is that word
frequency is often reflected in learned embeddings
(Gong et al., 2018), so this scrambling procedure
might preserve useful information and thus help to
identify the source of transfer. Table 1 shows an
example, and our supplementary materials provide
details on the matching algorithm and additional
examples of scrambled sentences.

3.3 Random Scrambling
To better understand the role of frequency in do-
main transfer, we also consider a word scrambling
method that does not seek to match word frequen-
cies. For this, we simply shuffle the vocabulary
and match each word with another random word in
the vocabulary without replacement.1 We include
the distributions of the difference in frequency for
every matched word pair in our supplementary ma-
terials, to show that each word is paired with a
new word with drastically different frequency in
the dataset.

4 Models

In this section, we describe the models we eval-
uated within our paradigm. Our supplementary
materials provide additional details about how the
models were designed, optimized, and evaluated.

1We also tried to pair words by the reverse order of fre-
quencies, which yielded similar results, so we report only
random scrambling results here.

BERT For our BERT model (Devlin et al., 2019),
we import weights from the pretrained BERT-base
model through the HuggingFace transformers
library (Wolf et al., 2020). For sequence classifi-
cation tasks, we append a classification head after
the [CLS] token embedding in the last layer of the
BERT model. If an input example contains a pair
of sentences, we concatenate them using a [SEP]
token in between. For sequence labeling tasks, we
append a shared classification head to each token
embedding in the last layer of the BERT model.

Our supplementary materials provide results for
DeBERTa models (He et al., 2021) as well.

LSTM We contextualize our results by compar-
ing them against a strong LSTM-based model
(Hochreiter and Schmidhuber, 1997). We lower-
case each input sentence and tokenize it by sep-
arating on spaces and punctuation. We then use
300-dimensional GloVe embeddings (Pennington
et al., 2014)2 as inputs to a single-layer recurrent
neural network with LSTM cells, with a hidden size
of 64. We use dot-product attention (Luong et al.,
2015) to formulate a context vector for each sen-
tence. Finally, we pass the context vector through
a multilayer perceptron (MLP) layer with a hidden
size of 64 to get the final prediction. For an input
example with a pair of sentences, we concatenate
two sentences together with a separator token be-
fore feeding them into our LSTM encoder. For
sequence labeling tasks, we directly feed the hid-
den state at each position to the MLP layer to get
the final prediction.

Bag-of-Words (BoW) Model We compare against
a BoW classifier, which provides an estimate of
model performance when only word co-occurrence
information is available. For each sentence in a
dataset, we first formulate a BoW vector that uses
unigram representations. Then, we feed the BoW
vector through a softmax classifier. For examples
with a pair of sentences, we create two BoW vec-
tors for each sentence, and concatenate them to-
gether before feeding them into the linear layer for
predicting labels. For sequence labeling tasks, we
use conditional random fields (Lafferty et al., 2001)
with character-level unigram BoW features.

Dummy Model We include a random classifier that
generates predictions randomly proportional to the

2We use the Common Crawl cased version: http://nlp.
stanford.edu/data/glove.840B.300d.zip

102

Dataset
Standard Models (Train and Test on English) Scrambled Models (Train and Test on Scrambled English)

BERT LSTM BoW Dummy
BERT-Scrambled LSTM-Scrambled

Similar Frequency Random Similar Frequency Random

SST-3 .71 (.02) .62 (.01) .59 (.00) .33 (.02) .65 (.01) .64 (.02) .57 (.02) .56 (.02)

SNLI .91 (.02) .78 (.02) 66 (.02) .33 (.01) .84 (.01) .82 (.02) .72 (.00) .71 (.01)

QNLI .91 (.02) .68 (.02) .62 (.01) .50 (.01) .82 (.01) .79 (.02) .62 (.01) .61 (.01)

MRPC .86 (.01) .72 (.02) .70 (.02) .50 (.02) .82 (.02) .78 (.02) .69 (.00) .68 (.00)

EN-EWT .97 (.01) .85 (.02) .65 (.01) .09 (.01) .86 (.01) .81 (.02) .80 (.01) .72 (.01)

CoNLL-2003 .95 (.01) .75 (.01) .28 (.02) .02 (.01) .74 (.01) .72 (.02) .61 (.02) .56 (.01)

Table 2: Model performance results for models trained on original English and on scrambled English. Standard
deviations are reported for all entries.

class distribution of the training set. We use this
model to further contextualize our results.

5 Tasks

Sequence Classification We select four NLU
datasets for sequence classification. We consider
sentiment analysis (SST-3; Socher et al., 2013),
where SST-3 is a variant of the Stanford Senti-
ment Treebank with positive/negative/neutral la-
bels; we train on the phrase- and sentence-level
sequences in the dataset and evaluate only on its
sentence-level labels. Additionally, we include nat-
ural language inference (QNLI; Demszky et al.,
2018 and SNLI; Bowman et al., 2015) and para-
phrase (MRPC; Dolan and Brockett, 2005). QNLI
is derived from a version of the Stanford Ques-
tion Answering Dataset (SQuAD; Rajpurkar et al.
2016). For sequence classification tasks, we use
Macro-F1 scores for SST-3, and accuracy scores
for the other NLU tasks.

Our supplementary materials provide results for
the full GLUE benchmark (Wang et al., 2018).

Sequence Labeling In contrast to sequence clas-
sification, where the classifier only considers the
[CLS] token of the last layer and predicts a sin-
gle label for a sentence, sequence labeling requires
the model to classify all tokens using their contex-
tualized representations. We select two datasets
covering distinct tasks: part-of-speech detection
(POS) and named entity recognition (NER). We
used the Universal Dependencies English Web
Treebank (EN-EWT; Silveira et al. 2014) for POS
and CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003) for NER. For sequence labeling tasks,
we used Micro-F1 (i.e., accuracy with full labels)
for POS and F1 scores for NER.

6 Results

In this section, we analyze the fine-tuning perfor-
mance of BERT on scrambled datasets. Table 2
shows performance results. We focus for now
on the results for Scrambling with Similar Fre-
quency. Additionally, we also include baseline
models trained with original sentences for com-
parison purposes. When training models on each
task, we select models based on performance on
the dev split during fine-tuning. We report average
performance results across runs with three different
random seeds.

6.1 Sequence Classification
Comparing the second column (BERT models
trained and tested on English) with the sixth col-
umn (BERT models trained and tested on Scram-
bled English with Similar Frequency Scrambling)
in Table 2, we see that BERT maintains strong
performance for all sequence classification tasks
even when the datasets are scrambled. More impor-
tantly, we find that BERT fine-tuned with a scram-
bled dataset performs significantly better than the
LSTM model (with GloVe embeddings) trained
and evaluated on standard English data

For example, on the MRPC task, BERT evalu-
ated with scrambled data experiences a less than
5% performance drop, and shows significantly bet-
ter performance than the best LSTM model (a
13.9% improvement). BERT evaluated with scram-
bled QNLI experiences the biggest drop (a 9.89%
decrease). However, this still surpasses the best
LSTM performance by a large margin (a 20.6%
improvement).

Table 2 also presents performance results for
other baseline models, which can be used to assess
the intrinsic difficulty of each task. Our results sug-
gest that BERT models fine-tuned with scrambled

103

tasks remain very strong across the board, and they
remain stronger than the best LSTM baseline mod-
els (those trained and tested on regular English) in
all the classification tasks.

The overall performance of the LSTM models
is worth further attention. The LSTMs are far
less successful at our tasks than the BERT mod-
els. However, it seems noteworthy that scrambling
does not lead to catastrophic failure for these mod-
els. Rather, they maintain approximately the same
performance in the scrambled and unscrambled
conditions. This might seem at first like evidence
of some degree of transfer. However, as we discuss
in Section 7.3, the more likely explanation is that
the LSTM is simply being retrained more or less
from scratch in the two conditions.

6.2 Sequence Labeling

For a more complex setting, we fine-tuned BERT
on sequence labeling tasks, and evaluated its trans-
fer abilities without word identities (i.e., using
datasets that are scrambled in the same way as
in our sequence classification tasks). The bottom
two rows of Table 2 show performance results for
these tasks, where the goal of the BERT model is
to classify every token correctly. As shown in Ta-
ble 2, BERT experiences a significant drop when
evaluated with a scrambled dataset for a sequence
labeling task. For LSTMs trained with scrambled
sequence labeling tasks, we also observe bigger
drops compared with sequence classification tasks.
For CoNLL-2003, the LSTM with GloVe embed-
dings drops from its baseline counterpart (a 18.7%
decrease). Our results suggest that transfer learning
without word identities is much harder for sequence
labeling tasks. One intuition is that sequence label-
ing tasks are more likely to rely on word identities
given the fact that classification (i.e., labeling) is at
the token-level.

7 Analysis

7.1 Frequency Effects

Preserving word frequencies during scrambling
may lead to higher performance when training and
evaluating on scrambled datasets. To assess how
much of the observed transfer relates to this fac-
tor, we can compare Scrambling with Similar Fre-
quency (SSF) with Random Scrambling (RS), as
described in Section 3. As shown in Table 2, per-
formance drops slightly if we use RS. For sequence
classification tasks, RS experiences 1–5% drops in

performance compared with SSF. For sequence la-
beling tasks, the difference is slightly larger: about
2–6%. This suggests that word frequency is indeed
one of the factors that affects transfer, though the
differences are relatively small, indicating that this
is not the only contributing factor. This is consis-
tent with similar findings due to Karthikeyan et al.
2019 for multilingual BERT.

7.2 Does Scrambling Preserve Meaning?
Another potential explanation is that our scram-
bling methods tend to swap words that are predic-
tive of the same labels. For example, when we are
substituting words with similar frequencies in SST-
3, “good” may be swapped with “great” since they
may have similar frequencies in a sentiment analy-
sis dataset. To rule this out, we conducted zero-shot
evaluation experiments with our BoW model on
sequence classification tasks. The rationale here
is that, to the extent that our swapping preserved
the underlying connection between features and
class labels, this should show up directly in the
performance of the BoW model. For example, just
swapping of “good” for “great” would hardly affect
the final scores for each class. If there are a great
many such invariances, then it would explain the
apparent transfer.

Figure 2 shows the zero-shot evaluation results
of our BoW model on all sequence classification
datasets. Our results show that both scrambling
methods result in significant performance drops,
which suggests that word identities are indeed de-
stroyed by our procedure, which again shines the
spotlight on BERT as the only model in our exper-
iments to find and take advantage of transferable
information.

7.3 Transfer or Simple Retraining?
Our results on classification tasks show that
English-pretrained BERT can achieve high perfor-
mance when fine-tuned and evaluated on scrambled
data. Is this high performance uniquely enabled by
transfer from BERT’s pretrained representations,
or is BERT simply re-learning the token identities
from its scrambled fine-tuning data?

To distinguish between these two hypotheses, we
first examine whether randomly-initialized BERT
models can also achieve high performance when
fine-tuned and evaluated on scrambled data. We
study models of varying capacity by modulating
the number of BERT Transformer blocks. We use
datasets scrambled with SSF.

104

Dataset LSTM-Baseline
LSTM-Scrambled

Similar Frequency
GloVe No GloVe

SST-3 .62 (.01) .57 (.02) .58 (.01)

SNLI .78 (.02) .72 (.00) .71 (.00)

QNLI .68 (.02) .62 (.01) .61 (.01)

MRPC .72 (.02) .69 (.00) .69 (.00)

EN-EWT .85 (.02) .80 (.01) .79 (.01)

CoNLL-2003 .75 (.01) .61 (.02) .60 (.01)

Table 3: Performance results for LSTM models
trained on regular English and on English with
Scrambling with Similar Frequency, with GloVe
embeddings and with randomly initialized embed-
dings.

Figure 2: Zero-shot evaluation with the Bag-of-Word (BoW)
model on scrambled datasets and the dummy model. Numbers
are the differences between the current points and the first points
in percentages.

We compare these varying-depth randomly-
initialized models against BERT models pretrained
on English. To modulate the capacity of these pre-
trained models, we progressively discard the later
Transformer layers (i.e., we make predictions from
intermediate layers). Comparing these models is a
step toward disentangling the performance gains of
pretraining from the performance gains relating to
model capacity.

Figure 3 summarizes these experiments. The red
line represents our fine-tuning results, across dif-
ferent model sizes. The shaded area represents the
performance gain from pretraining when training
and testing on scrambled data. Pretraining yields
consistent gains across models of differing depths,
with deeper models seeing greater gains.

For sequence labeling tasks, the patterns are dras-
tically different: the areas between the two lines
are small. Since the randomly-initialized and pre-
trained models achieve similar performance when
fine-tuned and tested on scrambled data, pretrain-
ing is not beneficial. This suggests that BERT
hardly transfers knowledge when fine-tuned for
sequence labeling with scrambled data.

Table 3 shows our results when training LSTMs
without any pretrained embeddings. Unlike with
BERT, GloVe initialization (a pretraining step)
hardly impacts model performance across all tasks.
Our leading hypothesis here is that the LSTMs may
actually relearn all weights without taking advan-
tage of pretraining. All of our LSTM models have
parameter sizes around 1M, whereas the smallest
BERT model (i.e., with a single Transformer layer)
is around 3.2M parameters. Larger models may be
able to rely more on pretraining.

Overall, these results show that we do see trans-

fer of knowledge, at least for classification tasks,
but that there is variation between tasks in how
much transfer actually happens.

7.4 Assessing Transfer with Frozen BERT
Parameters

We can further distinguish the contributions of pre-
training versus fine-tuning by freezing the BERT
parameters and seeing what effect this has on cross-
domain transfer. Ethayarajh (2019) provides evi-
dence that early layers are better than later ones for
classifier fine-tuning, so we explore the effects of
this freezing for all the layers in our BERT model.
We use datasets scrambled with SSF.

As shown in Figure 4, performance scores drop
significantly if we only fine-tune the classifier head
and freeze the rest of the layers in BERT, across
three of our tasks. However, we find that perfor-
mance scores change significantly depending on
which layer we append the classifier head to. Con-
sistent with Ethayarajh’s findings, contextualized
embeddings in lower layers tend to be more pre-
dictive. For example, if we freeze BERT weights
and use the contextualized embeddings from the
second layer for SST-3, the model reaches peak
performance compared with contextualized embed-
dings from other layers. More importantly, the
trend of the green line follows the red line in Fig-
ure 4, especially for SST-3 and QNLI. The only
exception is MRPC, where the red line plateaus but
the green line keeps increasing. This could be an
artifact of the size of the dataset, since MRPC only
contains around 3.7K training examples. Our re-
sults suggest that pretrained weights in successive
self-attention layers provide a good initial point for
the fine-tuning process.

105

Figure 3: Performance results when fine-tuning end-to-end for different number of Transformer layers. Annotated
numbers are the differences between the red lines and the green lines in percentages. Scoring for each task is defined
in Section 5.

Figure 4: Performance results when fine-tuning only the classifier head by freezing all preceeding layers in BERT
(red line) vs. fine-tuning end-to-end, which includes the classifier head and BERT with different numbers of layers
(green line). Numbers are scores for the red lines. Scoring for each task is defined in Section 5.

7.5 Probing for Word Identity Reassociations

We further investigate the learning dynamics of our
fine-tuned models. Specifically, we study whether
our fine-tuned models reassociate word identities
with tokens for our sequence classification tasks.
To do this, we measure the cosine similarities be-
tween words and their scrambled counterparts be-
fore and after the fine-tuning process.3 To the
extent that these similarities are increased after
fine-tuning, we have evidence that fine-tuning has
learned to ressociate words with their scrambled
counterparts. We use datasets scrambled with SSF.

We find essentially no evidence for such reas-
sociations. As shown in Figure 5, the correlation
distributions before fine-tuning and after are ex-
tremely similar. This suggests that our fine-tuned

3We only consider shared words in the model vocabulary
and our scrambling maps, which includes 30% of words in the
model vocabulary.

models rarely reassociate word identities in the em-
bedding layer.

To push this analysis a step further, we probe
whether word identities are recovered through
Transformer layers by adapting the probing method
with control task from Hewitt and Liang (2019).
Formally, we use an MLP classifier to predict the
word identity for w using the contextualized hid-
den representations of its scrambled counterpart w′.
For our control task, we ask the probe to predict
random word identities. The difference in perfor-
mance between these two conditions is know as
selectivity, and it estimates the degree to which the
word identities are recoverable, taking the power
of the probe model into account. As shown in Fig-
ure 5, our results suggest that relatively little infor-
mation about the scrambling map is latent in these
representations, across tasks and model layers.

106

Figure 5: Correlations between cosine similarities of word embeddings before fine-tuning v.s. fine-tuning with
scrambled datasets. Measurements of correlations are defined in Section 7.5.

Figure 6: Accuracy of word identity probes when applied to hidden states of each layer comparing to the control
task introduced by Hewitt and Liang (2019). Measurements of accuracies are defined in Section 7.5.

8 Conclusion

In this paper, we propose an evaluation pipeline
for pretrained models by testing their transfer abil-
ities when they are denied all information about
word identity. Specifically, we take an English pre-
trained BERT off-the-shelf and fine-tune it with
a scrambled English dataset. We conduct analy-
ses across six tasks covering both classification
and sequence labeling. By evaluating performance
against multiple baselines, we aim to assess where
BERT can transfer knowledge even without word
identities. We find considerable transfer for BERT
as compared to even powerful baselines, but only
for classification tasks.

What is the source of successful cross-domain
transfer with BERT? We find that word frequency
contributes, but only to a limited extent: scrambling
with matched word frequencies consistently outper-
forms scrambling with unmatched word frequen-
cies, but transfer still occurs robustly even with
random scrambling. We are also able to determine
that both pretraining and fine-tuning are important
and interacting factors in this transfer; freezing
BERT weights during task-specific training leads
to much less transfer, but too much task-specific
training erodes the benefits of pretraining and in
turn reduces the amount of transfer observed.

These analyses begin to piece together a full ac-
count of these surprising transfer results for BERT,
but they do not fully explain our experimental re-
sults. Recent literature suggests at least two new
promising avenues to explore. First, Sinha et al.

(2021) seek to help characterize the rich distribu-
tional prior that models like BERT may be learn-
ing, which suggests that higher-order notions of
frequency play a significant role in transfer. Sec-
ond, the findings of Ethayarajh (2019) may be in-
structive: through successful layers, BERT seems
to perform specific kinds of dimensionality reduc-
tion that help with low-dimensional classification
tasks. Our results concerning layer-wise variation
are consistent with this.

Our results are also highly relevant to questions
of benchmarking in NLP. It is widely assumed that
the benchmark tasks we considered here can help
illuminate the capacity of modern NLP systems
to process and understand language. However, in
our experiments, fine-tuned BERT models are suc-
cessful at these tasks even in scrambled conditions
that render all the examples meaningless, which
should lead us to think critically about whether suc-
cess in the usual unscrambled conditions is reliable
evidence of understanding.

References

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical

107

Methods in Natural Language Processing, pages 632–
642.

Jeff Da and Jungo Kasai. 2019. Cracking the contextual
commonsense code: Understanding commonsense
reasoning aptitude of deep contextual representations.
EMNLP 2019, page 1.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into natu-
ral language inference datasets.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 55–65.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Jon Gauthier and Roger Levy. 2019. Linking artificial
and human neural representations of language. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 529–539, Hong
Kong, China. Association for Computational Linguis-
tics.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models
partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Frage: Frequency-agnostic
word representation. In Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Asso-
ciates, Inc.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Wei
Chen. 2021. DeBERTa: Decoding-enhanced BERT
with disentangled attention. In 2021 International
Conference on Learning Representations.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

K Karthikeyan, Zihan Wang, Stephen Mayhew, and Dan
Roth. 2019. Cross-lingual ability of multilingual bert:
An empirical study. In International Conference on
Learning Representations.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Linguis-
tic knowledge and transferability of contextual repre-
sentations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1073–1094.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul
Smolensky. 2019. RNNs implicitly implement tensor
product representations. In In Proceedings of the 7th
International Conference on Learning Representa-
tions, New Orleans, USA.

Isabel Papadimitriou and Dan Jurafsky. 2020. Learn-
ing music helps you read: Using transfer to study
linguistic structure in language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6829–6839.

108

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473.

Thang M Pham, Trung Bui, Long Mai, and Anh Nguyen.
2020. Out of order: How important is the sequential
order of words in a sentence in natural language un-
derstanding tasks? arXiv preprint arXiv:2012.15180.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Christopher D. Manning. 2014. A gold
standard dependency corpus for English. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014).

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional hy-
pothesis: Order word matters pre-training for little.
ArXiv:2104.06644.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3319–3328, Interna-
tional Convention Centre, Sydney, Australia. PMLR.

Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferability

in pretrained language models. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 1393–1401, Online. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ke Tran. 2020. From english to foreign languages:
Transferring pre-trained language models. arXiv
preprint arXiv:2002.07306.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Causal mediation analysis for inter-
preting neural nlp: The case of gender bias.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

109

Fabio Massimo Zanzotto, Andrea Santilli, Leonardo
Ranaldi, Dario Onorati, Pierfrancesco Tommasino,
and Francesca Fallucchi. 2020. Kermit: Comple-
menting transformer architectures with encoders of
explicit syntactic interpretations. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 256–267.

110

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 111 - 120
May 26, 2022 ©2022 Association for Computational Linguistics

Temporal Knowledge Graph Reasoning with Low-rank
and Model-agnostic Representations

Ioannis Dikeoulias1, Saadullah Amin2, Günter Neumann1,2

1Department of Computer Science 2Department of Language Science and Technology
Saarland Informatics Campus, D3.2, Saarland University, Saarbrücken, Germany

German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{ioannis.dikeoulias,saadullah.amin,guenter.neumann}@dfki.de

Abstract
Temporal knowledge graph completion
(TKGC) has become a popular approach
for reasoning over the event and temporal
knowledge graphs, targeting the completion of
knowledge with accurate but missing informa-
tion. In this context, tensor decomposition has
successfully modeled interactions between
entities and relations. Their effectiveness in
static knowledge graph completion motivates
us to introduce Time-LowFER, a family of
parameter-efficient and time-aware extensions
of the low-rank tensor factorization model
LowFER. Noting several limitations in current
approaches to represent time, we propose a
cycle-aware time-encoding scheme for time
features, which is model-agnostic and offers a
more generalized representation of time. We
implement our methods in a unified temporal
knowledge graph embedding framework,
focusing on time-sensitive data processing.
The experiments show that our proposed
methods perform on par or better than the
state-of-the-art semantic matching models on
two benchmarks.

1 Introduction

Knowledge graphs offer promising technologies to
structure and organize common-sense and domain-
specific knowledge and form the information basis
for many anticipated technological foundations.
Their importance is signified by downstream
applications, including speech recognition, sen-
timent analysis, and knowledge base question
answering (Dai et al., 2020). In this context, event
and temporal knowledge graphs prove worthy
successors of static knowledge graphs, targeting
the augmentation of static relational data with
temporal meta information. Fig. 1 presents a
temporal sub-graph from Wikidata (Vrandečić,
2012), where we are interested in answering the
question:

Who was the president of the U.S. in 1961?

Figure 1: Time-sensitive relationships of U.S. presi-
dents with the democratic and republican parties along
with their timestamps. Temporal knowledge graph
completion (TKGC) aim to perform time-aware reason-
ing over the KG to answer questions of type (?, is-a,
US_president, 1961) with an answer J. F. Kennedy.

Temporal information opens new opportunities
for many time-sensitive domains, including time-
series forecasting, biomedical event extraction, and
time-sensitive crime reconstruction. However, tem-
poral knowledge graphs show many inconsistencies
and lack data quality across different dimensions,
including the accuracy, completeness, and timeli-
ness of facts. The quality of evolving knowledge
constitutes a challenging task due to the volatile
nature of knowledge. To approach the problem
of both completeness and correctness in temporal
knowledge graphs, this work addresses the task of
temporal link prediction and introduces time-aware
extensions of the parameter efficient and expres-
sive static embedding model LowFER (Amin et al.,
2020). More precisely, we formulate the main con-
tributions of this paper as follows:

• We identify characteristic time-extension
themes for extending static knowledge graph
embedding models.

111

• We propose Time-LowFER, a family of time-
aware and parameter efficient extensions of
LowFER to temporal knowledge graphs.

• We identify limitations in temporal representa-
tion learning and propose a time-sensitive en-
coding scheme based on multi-recurrent cycle-
aware time decomposition.

• We introduce a unified time-aware knowl-
edge graph embedding framework focusing
on time-sensitive data processing.

2 Related Work

TKGC is a prevalent task in temporal knowledge
graph reasoning and targets the incompleteness
and timeliness of entailed facts. Formally, the
task of TKGC is formulated as: given a temporal
knowledge graph G ⊆ E ×R× E × T of quadru-
ples (s, p, o, t) where s, o ∈ E represent entities,
p ∈ P represent predicates and t ∈ T represent
timestamps, the task is to answer either the query
(s, p, ?, t) or (?, p, o, t). For the sake of complete-
ness, we refer to s and o also as subject (head) and
object (tail) entities, and to p as relation (predicate),
also commonly denoted by r.

TKGC approaches are divided into (a) geomet-
ric embedding models using distance-based scor-
ing functions, (b) semantic matching models using
similarity-based scoring functions, and (c) deep
learning models. In this work, we focus on the
group of semantic matching models, commonly
referred to as factorization-based models. The
most prominent static models in this area are Dist-
Mult (Yang et al., 2015), SimplE (Kazemi and
Poole, 2018), ComplEx (Trouillon et al., 2016)
and TuckER (Balazevic et al., 2019). Further, not-
ing characteristic patterns throughout several time-
aware extensions of static embedding models, we
identified four distinct temporal extension themes
Fig. 2(b): (1) inclusion-based, (2) feature-based,
(3) regularization-based, and (4) aggregation-based
extensions.

2.1 Inclusion-based extensions

Inclusion-based approaches represent extensions,
where time features are exposed directly to the un-
derlying embedding model. Time features are con-
sidered individual input signals, favoring a more
expressive inclusion of time information within the
model.

(a) Inclusion (b) Modulation

(c) Regularization (d) Aggregation

Figure 2: Schematic illustration of time extension
types: (a) inclusion-based; (b) modulation-based; (c)
regularisation-based; and (d) aggregation-based.

A prominent example for inclusion-based time
extension is TTransE (Leblay and Chekol, 2018),
representing time as temporal translation of entity-
relation features. Similarly, TeRo (Xu et al., 2020a)
considers individual time features via temporal ro-
tation of entity features. Both models incorporate
time as a separate feature and can learn more ex-
pressive interactions between input features.

2.2 Modulation-based extensions

Modulation-based extensions are the most com-
monly used approaches for the time-aware exten-
sion of static embedding models. In this context,
modulation describes regulating a base signal us-
ing a separate modulation signal, i.e., time-based
relation modulation allows for a time-sensitive
parametrization of relation embeddings.

Most common approaches are TNTComplEx
(Lacroix et al., 2020) and TuckERTNT (Shao et al.,
2021), which extend their static base models Com-
plEx (Trouillon et al., 2016) and TuckER (Balaze-
vic et al., 2019) via a temporal modulation of either
entity or relation features. Similarly, diachronic
embeddings (Goel et al., 2020) represent a model-
agnostic and time-aware extension of static em-
bedding models via modulation of entity-specific
parameters. In contrast to inclusion-based exten-
sions, modulation-based extensions do not expose
time directly to the underlying embedding model.
Therefore, modulation is model-agnostic and simi-
larly allows for a parameter-efficient extension of
static embedding models.

112

2.3 Regularization-based extensions

Regularization-based extensions include tech-
niques that impose consistency constraints on learn-
able feature representations. A commonly used
scheme for time-aware regularization is temporal
smoothness regularizers, which leverage the seman-
tic nearness of the nearby timestamps.

Both TuckERTNT (Shao et al., 2021), and TNT-
ComplEx (Lacroix et al., 2020) implement this
type of smoothness regularization scheme. The au-
thors minimize the nuclear p-norm (N3, 3-norm) of
the discrete derivative of two nearby time embed-
dings, effectively penalizing sharp time gradients.
Likewise, for TransE-TAE (Jiang et al., 2016) the
authors introduce time-wise regularization schemes
that enforce constraints for the temporal ordering or
disjointness of facts. This way, embedding models
are less prone to overfitting and allow for improved
generalization to underlying data.

2.4 Aggregation-based extensions

Aggregation-based extensions leverage the compo-
sitionality of features such as clustering, grouping,
averaging, and sampling.

An application of this idea has been imple-
mented by TeMP (Wu et al., 2020), which intro-
duces time-based subgraph clusters that group in-
formation together that occurs within a specific
time range. Similarly, ATiSE (Xu et al., 2020b)
and TeRo (Xu et al., 2020a) introduce a tempo-
ral granularity parameter that varies the temporal
sampling rate at which facts are discretized over
time.

3 Low-rank Representation

Tensor factorization models decompose the order-3
and order-4 binary tensor into a compressed ten-
sor and a set of factor matrices, respectively, for
static and temporal KGs. TuckER (Balazevic et al.,
2019) proposed a Tucker decomposition model
for static KGs and showed that existing seman-
tic matching models could be subsumed in their
formulation. Noting the cubic growth of core ten-
sor in TuckER, LowFER (Amin et al., 2020) pro-
posed an efficient parameter initialization of the
core tensor using low-rank factorized bilinear pool-
ing. Due to its ability to handle arbitrary relations
(fully expressive), parameter efficiency, generaliza-
tion abilities, and state-of-the-art performance in
embedding-based models for static KGs (Zhu et al.,
2021), we extend it to the temporal KGs.

3.1 LowFER

LowFER (Amin et al., 2020) introduces a low-rank
decomposition of the core tensor in TuckER, reduc-
ing the parameter growth from O(d3) to O(kd2),
with d and k being the embedding dimension and
factorization rank, respectively. Given subject en-
tity and relation embeddings es and ep, LowFER
approximates the interaction tensor using two low-
rank projection matrices U ∈ Rde×kde and V ∈
Rdr×kde . More specifically, both entity and relation
features are projected to high-dimensional spaces
UTes and VTep, followed by Hadamard product
(denoted by ◦) and k-sized non-overlapping sum-
mation pooling:

f(es, ep, eo) = 〈g(es, ep), eo〉

where 〈., .〉 defines dot product and g represents a
vector-valued function, performing factorized bi-
linear pooling:

g(es, ep) := SumPool(UTes ◦VTep, k),

and eo represents the target entity. LowFER can
generalize the TuckER model. Moreover, for
k ≤ min(de, dr) with de, dr as entity and relation
dimensions, respectively, LowFER is able to ac-
curately represent TuckER’s core tensor Wtucker.
In addition, given the subsumption of TuckER,
LowFER is equally fully expressive and thus able
to represent arbitrary relations, e.g., symmetric, re-
flexive, and transitive, among others.

3.2 Time-LowFER

This section introduces Time-LowFER, a family
of time-aware extensions of the bilinear embed-
ding model LowFER. These include (i) LowFER-
TNT: a modulation-based extension following time-
relation modulation (Lacroix et al., 2020), (ii)
LowFER-CFB: an inclusion-based extension using
chained bilinear pooling, and (iii) LowFER-FTP: a
reduced variant of the latter, with factorized trilin-
ear pooling.

3.3 Factorized Bilinear Pooling

Following existing works of Lacroix et al. (2020);
Shao et al. (2021), we propose two variants of time
modulation also referred to as time modulation
(T) and time-no-time modulation (TNT), which ex-
tends the factorized bilinear pooling of LowFER.
The first variant (T) performs a simple temporal

113

modulation of relation features er using time fea-
tures et. We refer to this extension as LowFER-T
and formulate its scoring function as follows:

f(es, ep, eo, et) = 〈g(es, ep, et), eo〉

where et is time embedding and g is defined as:

g(es, ep, et) = UTes ◦VT (ep � et)

Time modulation (T), denoted by �, enables
LowFER-T to learn joint time-aware represen-
tations of entity and relation features such that
learned feature-to-feature interactions now incor-
porate the dynamics of the overlying knowledge
graph with more precise predictions.

However, not all predicates are similarly affected
by time or show reduced sensitivity to temporal
changes in related facts. For instance, the predi-
cate born_in is not changing over time, however
the predicate works_at (most probably) will. To
capture both dynamic and static characteristics
of temporal relations, we follow Lacroix et al.
(2020) and propose a time-no-time (TNT) variant
of LowFER, which calculates a combined represen-
tation of static and dynamic relations. We refer to
this extension as LowFER-TNT and formulate the
function g as:

g(es, ep, et) = UTes ◦VT (etp � et + ep)

etp denotes the time-aware relation embedding and
ep the static relation feature. Both T and TNT vari-
ants of LowFER do not modify the assumptions of
the underlying methods, i.e., the approximation of
TuckER’s core interaction tensor. Therefore, both
modulation-based extensions are fully expressive
and can be seen as (time-aware) generalizations of
LowFER, while equally, TNT subsumes T.

3.4 Chained Factorized Bilinear Pooling
Time features encode latent dynamics of evolving
knowledge graphs and allow for a time-aware clas-
sification of relational links, i.e., time features set
crucial constraints on feature interactions, similarly
disqualifying the existence of specific graph struc-
tures for a given time range. For instance, after
(U.S.) presidential elections, the link is_president
will remain static for at least four years. Simi-
larly, the signing of international climate agree-
ments would imply a change of demands for gov-
ernment and industry. However, bilinear models
(Section 3.3) are solely defined over two variables,

making them less suitable for multivariate analysis,
e.g., entity, relation, and time features. We propose
a multilinear method based on bilinear chaining
for use in multivariate learning to overcome these
limitations.

More precisely, we define a k-fold chaining of bi-
linear models through the nesting of bilinear trans-
formations:

BC
k (x1, . . . , xk+1)

= (B1 ◦ · · · ◦Bk)(x1, . . . , xk+1)

= Bk(Bk−1(. . . , xk), xk+1),

where B1, . . . , Bk denote bilinear transformations,
(x1, . . . , xk+1) denote the input features and the ◦
here represents the function composition operator.
Following LowFER, we introduce a time-aware
extension of LowFER based on two-fold chaining
of factorized bilinear methods.

g(es, ep, et) := SumPool((B1 ◦B2)(es, ep, et), k)

where B1 and B2 denote two nested bilinear trans-
formations. Similarly, the above equation can be re-
written in terms of three low-rank projection matri-
ces, U,V as similar to LowFER and Q ∈ Rdr×kde

as:

g(es, ep, et)

= SumPool(UTes ◦RT (VTep ◦QTet), k)

We refer to this method as chained factorized bi-
linear (CFB) pooling. CFB learns two joint repre-
sentations between relation and time features and
once between entities and the joint representation
of time-relation features. However, we note that
the intermediate projection matrix R ∈ Rkde×kde

is likely to share redundant parameters with both
relation and time projection matrices V and Q.

3.5 Factorized Trilinear Pooling

CFB enables the computation of fine-grained inter-
actions between different feature spaces. However,
CFB introduces redundant parameters via the inter-
mediate projection of joint time-relation features.
To retain the efficiency of the original low-rank
bilinear method, we introduce a (reduced) special-
ization of the CFB, which omits the intermediate
feature projection. Replacing R by an identity
matrix I, we formulate the respective method via
a three-way Hadamard product or entity, relation,

114

and time features, followed by summation pooling:

g(es, ep, et)

= SumPool(UTes ◦VTep ◦QTet, 1),

Where U, V, and Q are the low-rank projection
matrices, note the factorization rank, k is set to 1.

4 Cycle-aware Time Embedding

In this section, we propose a novel extension tech-
nique for embedding time features (et), which re-
lies on multi-recurrent cycle-aware (MRCA) time
decomposition and is model-agnostic. We first
explain the concept of multi-recurrence and then
show its application for cycle-aware encoding of
time features.

Temporal recurrence denotes the concept of ex-
pressing time as recurrent component within a cer-
tain time frame e.g., a week occurs approximately
four times per month or equally a year contains
four seasons. In this context, we speak of multi-
recurrence, if a time frame is expressed in terms
of multiple cycles, e.g., a year entails four sea-
sons, 12 months, 52 weeks and 365 days. Multi-
recurrence is expressible for all time concepts with
one or more underlying recurrent cycles. Even
more, (long-term) cycles themselves are also ex-
pressible in terms of more fine-grained (short-term)
cycles.

Our multi-recurrent cycle-aware (MRCA) encod-
ing uses a mapping ψcyc of timestamps T to a set
of recurrence encodings Cm×l:

ψcyc : T → Cm×l

ti 7→ (φrecW1
(ti), . . . , φ

rec
Wm

(ti)), 1 ≤ i ≤ n,

where each recurrence encoding φrecWk
defined upon

cycle window Wk, uses a mapping of timestamps
T to a set of cycle indices C l:

φrecWk
: T → C l

ti 7→ (ck1, . . . , c
k
l), 1 ≤ k ≤ m,

and each time component ckp with 1 ≤ p ≤ l is
defined as:

ckp =

{
v if p-th subcycle exists in Wk

0 else
.

Here, n denotes the number of timestamps, m is
the number of time windows, and l is the number
of recurrent subcycles. Now, to generate the cycle-
aware multi-recurrent time embedding, we consider

Figure 3: Overview of data processing and modeling
pipeline in the CHRONOKGE framework. A quadru-
ple fact is processed using triple augmentation and time
sampling (green), and afterward, timestamps are de-
composed into subcomponents (yellow). Then, the pro-
cessed quadruple is passed to the respective temporal
extension (orange) and model variation (violet).

the following five components and their respective
cycle decompositions1:

φrecW (ti) → (cWd)

φrecM (ti) → (cMd , c
M
w)

φrecS (ti) → (cSd , c
S
w, c

S
m)

φrecY (ti) → (cYd , c
Y
w , c

Y
m, c

Y
s)

φrecG (ti) → (cG1 , c
G
10, c

G
100, c

G
1000)

Where W,M,S, Y,G denote the weekly, monthly,
seasonal, yearly, and global components, respec-
tively, and d,w,m, s, y denote the daily, weekly,
monthly, seasonal, and yearly subcycles. The com-
ponents c1, c10, c100, c1000 denote the positional
year component for single years, decades, centuries
and milleniums, respectively. The final cycle-aware
time encoding ψMRCA is then generated by sum-
ming over all cycle decompositions of each sepa-
rate recurrence mapping φrecWk

:

et = ψMRCA(t) =

l1∑

i=1

(φrecG (t))i +

l2∑

i=1

(φrecY (t))i

+

l3∑

i=1

(φrecS (t))i +

l4∑

i=1

(φrecM (t))i

+

l5∑

i=1

(φrecW (t))i

1The generation of recurrent time cycles rely on prior
knowledge of empirically defined periods, e.g., a week has
seven days, a month has 30 days, a year consists of approxi-
mately 365 days, e.t.c.

115

#E #R #T time span gran. MD. TQ. MC.

ICEWS14 7,129 230 365 2014 daily 7 7 7

ICEWS05-15 10,488 251 4,017 2005-2015 daily 7 7 7

Table 1: Data statistics and properties: No. entities (E), no. relations (R), no. timestamps (T), time span, time
granularity, multiple domains (MD), temporal qualifier (TQ), and manual curation (MC).

5 Experiments and Results

5.1 Data
ICEWS (Integrated Crisis Early Warning System)
was founded in 2008 as a DARPA program and
is currently maintained by Lockheed Martin. The
conflict warning system collects news about politi-
cal events from different digital and social media
platforms and stores the extracted information in
the associated ICEWS database.

ICEWS14 is a subset of the ICEWS database,
including facts from the year 2014. It consists of
7,129 distinct entities, 230 relations, and 365 times-
tamps with 24 hours (daily) temporal granularity.

ICEWS05-15 is another subset of the ICEWS
database, including facts between the start of 2005
and the end of 2015. It consists of 10,488 distinct
entities, 251 relations, and 4,017 timestamps with a
temporal granularity of 24 hours (daily). In Table 1
we provide an overview of the datasets.

5.2 Implementation
For implementation, we developed an extensible
temporal knowledge representation learning frame-
work CHRONOKGE2. Fig. 3 shows the data and
modeling pipeline in the framework. We present
more details in Appendix A.1.

For training, we use the Adam (Kingma and Ba,
2015) optimizer with a learning rate of 0.01 and a
decay rate of 0.99. We perform 1-N scoring with
binary cross-entropy loss and choose a batch size
of 1000. We further apply a label smoothing of
0.01 to the target labels. The embedding dimension
of entities, relations, and time is set to 300. We use
k = 32 in LowFER-TNT and LowFER-CFB, and
use dropout following Amin et al. (2020).

5.3 Baselines
We choose the static LowFER model for our ex-
periments to apply to our proposed temporal exten-
sions. Since LowFER is a semantic matching linear
model, we only compare our results with the exten-
sions of such linear models. In particular, we use

2https://github.com/iodike/ChronoKGE

as baselines the time-aware extension of both Com-
plEx (TComplEx, TNTComplEx) (Lacroix et al.,
2020), TuckER (TuckERT, TuckERTNT) (Shao
et al., 2021) as well as SimplE (DE-SimplE) and
DistMult (DE-DistMult) (Goel et al., 2020).

5.4 Time and No-Time Modulation

Following the findings of Shao et al. (2021) and
Lacroix et al. (2020), we only modulate relations
with time information (instead of entities). For both
ICEWS datasets, as depicted in Table 2, we see per-
sistent improvements in the TNT-extension over
the T-extension. It shall be noted that both Tuck-
ERTNT and TNTComplEx use time and embed-
ding regularization schemes, where Time-LowFER
extensions are reported without any regularization
that can further improve the results.

While the T-extension learns a time-aware rela-
tion that primarily relies on temporal information,
the TNT extends it by learning an additional (static)
relation embedding as shown in Fig. 4. This effect
is beneficial for highly frequent relations (light ar-
eas), which should not rely too strictly on time. In
contrast, temporal information is much more valu-
able for relations that occur less frequently (dark
areas) and should be incorporated with a higher
weighting.

5.5 Chained and Factorized Bilinear Pooling

Now we evaluate Chained Factorized Bilinear
(CFB) pooling and Factorized Trilinear (FTP) pool-
ing. As shown in Table 2, the LowFER-CFB outper-
forms all baselines, including the T and TNT exten-
sions of LowFER. This can be attributed to the ad-
ditional expressive modeling capacity of LowFER-
CFB with multi-layered bilinear interactions. CFB
learns more accurate feature fusion between all
three input modalities. However, the inclusion of
intermediate feature projections favors the redun-
dancy of captured feature interactions. Therefore,
while the CFB offers improved results (w.r.t. MRR)
over the FTP, it is more vulnerable to overfitting.

116

ICEWS14 ICEWS05-15

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

DE-DistMult� 0.501 0.708 0.569 0.392 0.484 0.718 0.546 0.366
DE-SimplE� 0.526 0.725 0.592 0.418 0.513 0.748 0.578 0.392
TComplEx† 0.560 0.730 0.610 0.470 0.580 0.760 0.640 0.490

TNTComplEx† 0.560 0.740 0.610 0.460 0.600 0.780 0.650 0.500
TuckERT‡ 0.594 0.731 0.640 0.518 0.627 0.769 0.674 0.550

TuckERTNT‡ 0.604 0.753 0.655 0.521 0.638 0.783 0.686 0.559

LowFER-T 0.584 0.734 0.630 0.505 0.559 0.714 0.605 0.476
LowFER-TNT 0.586 0.735 0.632 0.507 0.562 0.717 0.608 0.480
LowFER-CFB 0.623 0.757 0.671 0.549 0.638 0.791 0.690 0.555
LowFER-FTP 0.617 0.765 0.665 0.537 0.625 0.792 0.681 0.534

Table 2: Time-LowFER performance on ICEWS datasets. � Results taken from (Goel et al., 2020). † Results taken
from (Lacroix et al., 2020). ‡ Results taken from (Shao et al., 2021).

(a) ICEWS14

(b) ICEWS05-15

Figure 4: Time-relation heatmap: (a) for ICEWS14;
and (b) for ICEWS05-15.

5.6 Simple and Cycle-aware Time Encoding

In this experiment, we evaluate two approaches
for timestamp encoding, Simple Time Encoding
(STE), which performs a bijective projection of
timestamps to natural numbers, and Cyclical Time
Encoding (CTE), which relies on multi-recurrent
cycle-aware time decomposition (MRCA). CTE

targets specific limitations in representation learn-
ing of absolute timestamps, such as its inability to
learn shared representations across different times-
tamps. By introducing cyclical time components,
time features to benefit from an improved sharing
of parameters within individual embedding sub-
spaces and allow for an increased generalization
of short-term events. Technically, CTE reduces
the multi-collinearity of low-latent time features
and allows for an improved semantic separability
across individual representations.

In CTE, we focus on high recall and therefore
concentrate primarily on the Hits@10 metric in our
evaluation. Detailed results are provided in Table
3. The MRCA-algorithm uses predefined time cy-
cles, which are divided into 10 short-term (in-year)
cycles and four long-term (multi-year) cycles, par-
ticularly favouring the dense distribution of time
information for ICEWS datasets (see Figure 4(a),
4(b)). As a consequence, both ICEWS datasets
show increased results (w.r.t Hits@10) with an in-
crease of 3.4% (ICEWS14) and 5.7% (ICEWS05-
15) for modulation-based extensions as well as
1.4% (ICEWS14) for feature-based extensions.

5.7 Time Sampling Rate

In this section, we investigate the effect of time
sampling in TKGC. Following the approach of Xu
et al. (2020a) and Xu et al. (2020b), we include
a time granularity parameter, allowing to sample
timestamps from a given dataset at different sam-
pling rates. In particular, we investigate sampling
rates in the power of two {1.0, 2.0, . . . , 1024.0},

117

ICEWS14 ICEWS05-15

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

STE
LowFER-T 0.584 0.734 0.630 0.505 0.559 0.714 0.605 0.476

LowFER-TNT 0.586 0.735 0.632 0.507 0.562 0.717 0.608 0.480

CTE
LowFER-T 0.600 0.764 0.654 0.511 0.556 0.771 0.621 0.442

LowFER-TNT 0.583 0.769 0.640 0.485 0.549 0.767 0.614 0.434

Table 3: STE and CTE results for T/TNT-extensions on ICEWS datasets.

(a) ICEWS14

(b) ICEWS05-15

Figure 5: Time concentration heatmap: (a) for
ICEWS14; and (b) for ICEWS05-15.

where 1.0 represents the initial sampling rate, in
which timestamps are discretized w.r.t to time gran-
ularity.

Sampling timestamps at lower rates cause the
underlying temporal KG to aggregate facts into
smaller time clusters, up to the extreme case where
all facts are linked only to one timestamp. In other
words, with increasing time sampling rates, a tem-
poral knowledge graph is synthetically transformed
into a static KG. While time sampling does not
represent a viable extension for evaluating time-
sensitive embedding models, it allows examining
the significance of temporal facts for individual
benchmark datasets.

Figure 6: Influence of increasing time sampling rates.

6 Conclusion

In this work, we introduced Time-LowFER, a fam-
ily of time-aware extensions of the bilinear factor-
ization model LowFER. Following existing work
in temporal link prediction, we extended LowFER
using time-modulated relations (TNT). Further, not-
ing several limitations of modulation-based exten-
sions, we proposed two feature-based extensions
of LowFER, which are based on bilinear chain-
ing (CFB) and trilinear fusion (FTP). In particular,
we showed that the FTP represents a parameter-
efficient specialization of the CFB, while CFB of-
fers state-of-the-art results among semantic match-
ing models for temporal link prediction.

In addition, we investigated four different ap-
proaches for time-aware extension of static embed-
ding models and outlined, despite the increased
popularity of time modulation techniques, the supe-
riority of feature-based KGE extensions. Further-
more, we investigated the process of time encoding
in representation learning and proposed a model-
agnostic method (CTE) for encoding timestamps
based on multi-recurrent cycle-aware (MRCA)
time decomposition.

118

Acknowledgments

The authors would like to thank the anonymous
reviewers for their helpful feedback. The work
was partially funded by the European Union (EU)
Horizon 2020 research and innovation programme
through the project Precise4Q (777107) and the
German Federal Ministry of Education and Re-
search (BMBF) through the project CoRA4NLP
(01IW20010). The authors also acknowledge the
cluster compute resources provided by the DFKI.

References
Saadullah Amin, Stalin Varanasi, Katherine Ann Dun-

field, and Günter Neumann. 2020. Lowfer: Low-
rank bilinear pooling for link prediction. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 257–268. PMLR.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Yuanfei Dai, Shiping Wang, Neal N Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5):750.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding
for temporal knowledge graph completion. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 3988–
3995. AAAI Press.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016. Towards
time-aware knowledge graph completion. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1715–1724, Osaka, Japan. The
COLING 2016 Organizing Committee.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 4289–4300.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Timothée Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2020. Tensor decompositions for tem-
poral knowledge base completion. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32.

Pengpeng Shao, Dawei Zhang, Guohua Yang, Jian-
hua Tao, Feihu Che, and Tong Liu. 2021. Tucker
decomposition-based temporal knowledge graph
completion. Knowledge-Based Systems, page
107841.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In
Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 2071–
2080. JMLR.org.

Denny Vrandečić. 2012. Wikidata: A new platform
for collaborative data collection. In Proceedings of
the 21st international conference on world wide web,
pages 1063–1064.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and
William L. Hamilton. 2020. TeMP: Temporal mes-
sage passing for temporal knowledge graph comple-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5730–5746, Online. Associa-
tion for Computational Linguistics.

Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury,
Hamed Shariat Yazdi, and Jens Lehmann. 2020a.
TeRo: A time-aware knowledge graph embedding
via temporal rotation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1583–1593, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury,
Hamed Yazdi, and Jens Lehmann. 2020b. Tempo-
ral knowledge graph completion based on time se-
ries gaussian embedding. In International Semantic
Web Conference, pages 654–671. Springer.

119

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction. Advances in Neural Information
Processing Systems, 34.

A Experimental Setup and
Hyperparameters

The experiments of our work are conducted on a
SLURM computing cluster. The virtual environ-
ments are initiated over a Unix-based system run-
ning Ubuntu 18.04.5 (Bionic Beaver) with kernel
version 5.4.0-80-generic. Each job uses a single
RTX3090 GPU (Ampere) with 24GB of shared
memory and 8 CPUs. All experiments are built
using the machine learning framework PyTorch at
version 1.9.0 and NVIDIA’s graphics programming
interface CUDA with toolkit version 11.1.

In addition, we performed HPT using Optuna’s
hyper-parameter optimization framework. We con-
figured the tuner to perform combined (relative/in-
dependent) sampling and used a median pruner
with a warm-up threshold of 10% and set startup
trials to 10. Further, we activated early stopping
and set a maximum timeout of 24h. For fine-tuning,
we set learning rate ∈ {0.1, 0.01, 0.001, 0.0001},
decay rate ∈ {0.1, 0.01, 0.001, 0.0001}, batch size
∈ {128, 256, 512, 1024} and label smoothing ∈
{0.1, 0.01, 0.001}. We selected the best parame-
ters for the final experiments and set the batch size
to 1024.

B ChronoKGE Framework

CHRONOKGE is a unified graph embedding frame-
work for the development of time-aware knowledge
graph completion models. It is implemented in
Python and builds upon PyTorch’s (Paszke et al.,
2019). Our framework focuses on time-sensitive
representation learning tasks for temporal and event
knowledge graphs and offers an easy-to-use and
flexible library with various time-focused function-
alities, including time-specific sampling and encod-
ing routines.

CHRONOKGE supports multiple temporal
knowledge graphs with diverse graph schemas and
offers a dynamic interface for adding new knowl-
edge graphs. Similarly, our framework provides

Figure 7: Overview of the ChronoKGE framework.

an easy interface to add new or extend existing
learning models. Therefore, several generic em-
bedding models are already available within the
model.kge package, which extend PyTorch’s de-
fault nn.Module by integrating commonly re-
quired methods in knowledge representation learn-
ing. In addition, it provides a customizable and
flexible package for defining experimental jobs as
well as additional modules for training. To sup-
port hyper-parameter optimization, we integrated a
parameter tuning system which is based on the Op-
tuna3 framework. The tuning system is part of the
integrated chrono_kge.tuner package and al-
lows for an automatic search of optimal hyper-
parameters.

C Limitations

In its current form, our proposed methods can over-
fit since they lack commonly used regularization
schemes, such as time-smoothness and nuclear
3-norm (Lacroix et al., 2020; Shao et al., 2021).
However, extending our work with regularization
schemes is straightforward. In terms of the de-
sign choices, LowFER-CFB offers a more expres-
sive representation. However, it is computationally
more expensive (7.85 sec/epoch for LowFER-CFB
compared to 4.19 sec/epoch for LowFER-TNT on
ICEWS-14) and MRCA, despite offering a general-
ized time representation, has limited performance
gains and further adds a computational footprint
(2.19 additional seconds per epoch on ICEWS-14
for LowFER-TNT).

3https://optuna.org

120

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 121 - 132
May 26, 2022 ©2022 Association for Computational Linguistics

ANNA: Enhanced Language Representation for Question Answering

Changwook Jun, Hansol Jang, Myoseop Sim, Hyun Kim, Jooyoung Choi,
Kyungkoo Min and Kyunghoon Bae

LG AI Research
{cwjun, hansol.jang, myoseop.sim, hyun101.kim, jooyoung.choi, mingk24, k.bae}@lgresearch.ai

Abstract

Pre-trained language models have brought sig-
nificant improvements in performance in a
variety of natural language processing tasks.
Most existing models performing state-of-the-
art results have shown their approaches in the
separate perspectives of data processing, pre-
training tasks, neural network modeling, or
fine-tuning. In this paper, we demonstrate how
the approaches affect performance individually,
and that the language model performs the best
results on a specific question answering task
when those approaches are jointly considered
in pre-training models. In particular, we pro-
pose an extended pre-training task, and a new
neighbor-aware mechanism that attends neigh-
boring tokens more to capture the richness
of context for pre-training language modeling.
Our best model achieves new state-of-the-art
results of 95.7% F1 and 90.6% EM on SQuAD
1.1 and also outperforms existing pre-trained
language models such as RoBERTa, ALBERT,
ELECTRA, and XLNet on the SQuAD 2.0
benchmark.

1 Introduction

Question answering (QA) is the task of answer-
ing given questions, which demands a high level
of language understanding and machine reading
comprehension abilities. As pre-trained language
models based on a transformer encoder (Vaswani
et al., 2017) have brought a huge improvement
in performance on a broad range of natural lan-
guage processing (NLP) tasks including QA tasks,
methodologies for QA tasks are widely used to de-
velop applications such as dialog systems (Bansal
et al., 2021) and chat-bots (Hemant et al., 2022;
Duggirala et al., 2021) in a variety of domains.

Pre-trained language models like BERT (Devlin
et al., 2018) are designed to represent individual
words for contextualization. However, recent ex-
tractive QA tasks such as Stanford Question An-
swering Dataset (SQuAD) benchmarks (Rajpurkar

Figure 1: Example of a passage with a pair of question
and answer sampled from the SQuAD 1.1 dataset.

et al., 2016, 2018) involve reasoning relationships
between spans of texts that include a group of two
or more words in the evidence document (Lee et al.,
2016). In the example, as shown in Figure 1, “a
golden statue of the Virgin Mar”, the correct an-
swer for the question “What sits on top of the Main
Building at Notre Dame?”, is a group of words
consisting of nouns and other words and is called
as a noun phrase, which performs as a noun in a
sentence. Since predicting a span of answer texts
including a start and end positions may be chal-
lenging for self-supervised training rather than pre-
dicting an individual word, we introduce a novel
pre-training approach that extends a standard mask-
ing scheme to wider spans of texts such as a noun-
phrase rather than an entity level and prove that
this approach is more effective for an extractive
QA task by outperforming existing models.

In this paper, we present a new pre-training
approach, ANNA (Approach of Noun-phrase
based language representation with Neighbor-
aware Attention), which is designed to better under-

121

stand syntactic and contextual information based
on comprehensive experimental evaluation of data
processing, pre-training tasks, attention mecha-
nisms. First, we extend the conventional pre-
training tasks. Our models are trained to predict
not only individual tokens but also an entire span
of noun phrases during the pre-training procedure.
This noun-phrase span masking scheme lets models
learn contextualized representations in the whole
span level, which benefits predicting answer texts
for the specific extractive QA tasks. Second, we
enhance the self-attention approach by incorpo-
rating a novel neighbor-aware mechanism in the
transformer architecture (Vaswani et al., 2017). We
find that more consideration of relationships be-
tween neighboring tokens by masking diagonality
in attention matrix is helpful for contextualized rep-
resentations. Additionally, we use a larger volume
of corpora for pre-training language models and
find that using a lot of additional datasets does not
guarantee the best performance.

We evaluate our proposed models on the SQuAD
datasets which is a major extractive QA bench-
marks for pre-trained language models. For
SQuAD 1.1 task, ANNA achieves new state-of-the-
art results of 90.6% Exact Match (EM) and 95.7%
F1-score (F1). When evaluated on the SQuAD 2.0
development dataset, the results show that our pro-
posed approaches obtain competitive performance
outperforming self-supervised pre-training models
such as BERT, ALBERT, RoBERTa, and XLNet
models.

We summarize our main contributions as fol-
lows:

• We propose a new pre-trained language model,
ANNA that is designed to address extractive
QA tasks. ANNA is trained to predict the
masked group of words that is an entire noun
phrase, in order to better learn syntactic and
contextual information by taking advantage of
span-level representations.

• We introduce a novel transformer encoding
mechanism stacking new neighbor-aware self-
attention on an original self-attention in the
transformer encoder block. The proposed
method takes into account neighbor tokens
more importantly than identical tokens during
the computation of attention scores.

• ANNA establishes new state-of-the-art results
on the SQuAD 1.1 leaderboard and outper-

forms existing pre-trained language models
for the SQuAD 2.0 dataset.

2 Related works

Pre-trained contextualized word representations
There have been many recent efforts on pre-training
language representation models aiming for captur-
ing linguistic and contextual information, and the
models have brought a significant improvement of
performance in a variety of NLP tasks. ELMo (Pe-
ters et al., 2018) is a deep contextualized word
representation to learn complex characteristics of
word use across linguistic contexts, and pre-trained
models with these representations have shown no-
ticeable improvements in many NLP challenges.
BERT (Devlin et al., 2018) is a pre-trained lan-
guage model with a deep bidirectional long short-
term memory, which learns context in text using
the masked language modeling (MLM) and the
next sentence prediction (NSP) objectives for self-
supervised pre-training. The latest language mod-
els (Liu et al., 2019; Lan et al., 2019; Yang et al.,
2019b; Radford et al., 2018; Raffel et al., 2019a;
Lewis et al., 2019) influenced by BERT mainly em-
ploy the transformer architecture (Vaswani et al.,
2017) for pre-training but are trained with similar
or extended to the pre-training objectives used in
BERT implementation for enhancement of perfor-
mance. There also exist many attempts to improve
the capabilities of the standard transformer mecha-
nism in contextualized word representations.

Extension of MLM Many recent studies have
attempted to use different pre-training objectives
by extending the MLM task in language modeling
including BART (Lewis et al., 2019) and T5 (Raf-
fel et al., 2019b). ELECTRA (Clark et al., 2020)
introduces a new pre-training method of replaced
token detection that replaces input tokens with al-
ternative samples and detects whether the tokens
are replaced or not. MASS (Song et al., 2019) is
pre-trained on the sequence to sequence framework
where fragments of input sentences are masked,
and the masked fragment is predicted in its decoder
part. XLNet (Yang et al., 2019b) adopts a span-
based masking approach that predicts a masked
subsequent span of tokens in a context of tokens au-
toregressively. SpanBERT (Joshi et al., 2020) and
REALM (Guu et al., 2020) employ a span masking
scheme that masks spans of tokens rather than ran-
dom individual tokens, and the model is designed to
learn span representations during pre-training. Sim-

122

ilarly, LUKE (Yamada et al., 2020), ERNIE (Zhang
et al., 2019), and KnowBERT (Peters et al., 2019)
learn joint representations of words and entities by
incorporating knowledge of entity embeddings.

Improvement of Attention Mechanism Since the
standard transformer architecture has flexibility,
many studies have shown the implementation of
Transformer-based variants for improving further
performance on language modeling and NLP tasks
such as machine translation. (Shaw et al., 2018)
extends self-attention mechanism by incorporating
embeddings of relative positions or distances be-
tween sequence elements, which is beneficial for
performance improvement in machine translation
tasks. (Yang et al., 2019a) introduces a context-
aware self-attention approach that improves the
self-attention with additional contextual informa-
tion. (Sukhbaatar et al., 2019) presents a novel
attention method extending the self-attention layer
with persistent vectors storing information which
plays a similar role as the feed-forward layer. (Fan
et al., 2021) proposes a mask attention network
that is a sequential layered structure incorporated
a new dynamic mask attention layer with the self-
attention and feed-forward networks.

3 Methodology

We introduce a novel transformer encoder architec-
ture integrating a new neighbor-aware mechanism
for pre-training a language model. Figure 2 demon-
strates the architecture of ANNA model. ANNA
extends the original transformer encoder blocks
by including a neighbor-aware self-attention layer
stacked on a multi-head self-attention layer.

3.1 Neighbor-aware Self-Attention

In this study, we propose a neighbor-aware atten-
tion mechanism. In an attention matrix, there is
a pattern of diagonal line that illustrates a token
more attends to itself, but less influences to other
tokens. To give more attention to related tokens, we
implement a new neighbor-aware attention mech-
anism that is designed to mitigate influences of
identical tokens by ignoring the diagonality in an
attention matrix when attention scores are com-
puted. Instead, other tokens are more attended, so
that the neighbor-aware mechanism enhances bet-
ter understanding for relationships between tokens
in inputs. Here, we integrate a neighbor-aware self-
attention layer between the self-attention and the

Figure 2: Architecture of ANNA.

feed-forward network. The original attention infor-
mation of a token, passed through the self-attention
and the residual connection, is passed through the
neighbor-aware self-attention again, so the token
can more reflect a context to understand the sen-
tence.

As the self-attention layer shown in Figure 2 is
adopted from the standard transformer architecture
(Vaswani et al., 2017), we denote the self-attention
as AS that is calculated using query (Q), key (K)
and value (V) projections as follows:

AS(Q,K, V) = SS(Q,K)V (1)

SS(Q,K) =

[
exp(QiK

T
j /
√
dk)∑

k exp(QiK
T
k /
√
dk)

]
(2)

where Q, K and V represent HWq, HWk and
HWv, respectively. H ∈ RL×d denoted as the
input hidden vectors, L is the length of the input
sequence, and d is the hidden size. Wq,Wk,Wv ∈
Rd×d are the projection matrices, and dk is the
query/key dimension. AS , AN ∈ RL×L represents
the attention matrices.

We define the Neighbor-aware Attention layer
presented with AN as follows:

123

Figure 3: Example of the input sequence “Animal Farm is a satirical allegorical novella by George Orwell, first
published on 1945” for pre-training ANNA. Different types of masking schemes are illustrated with such colors:
masking a noun or noun phrase span (Orange), a whole word masking (Blue), and a wordpiece token masking
(Green).

AN (Q,K, V) = SN (Q,K)V

SN (Q,K) =
M(i, j)exp(QiK

T
j /
√
dk)∑

kM(i, j)exp(QiKT
k /
√
dk)

M(i, j) =

{
0, if i = j
1, others

where M denotes a mask that functions to omit
capturing interactions of identical tokens. The in-
teractions between each pair of input tokens xi and
xj at positions i and j for 0≤ i, j≤ L are calculated
except for i = j.

3.2 Pre-training Task
We present a new pre-training task for training
ANNA model. We follow the conventional MLM
pre-training objective similar to BERT (Devlin
et al., 2018). BERT is more sensible and effective
to deeply represent context fusing the left and the
right text with the MLM objective rather than uni-
directional language models (Radford et al., 2018,
2019; Brown et al., 2020) or shallow Bi-LSTM
models (Clark et al., 2018; Huang et al., 2015).
In addition, a new masking scheme is applied for
focusing on noun phrases in order to train our lan-
guage model for better understanding syntactic and
lexical information considering the specific down-
stream tasks. Here, we define three different mask-
ing schemes as illustrated in Figure 3. First, we
use a span masking scheme that masks a group of
texts in a span-level adopted by SpanBERT (Joshi
et al., 2020). In this study, nouns or noun phrases
identified by spaCy’s parser (Honnibal and Mon-
tani, 2017) are randomly masked for span masking
selection. Then we apply a whole word masking

approach that masks all of the sub-tokens corre-
spondings to a word at once, while we randomly
mask tokens not included in the above two cases.

Following BERT, we randomly select 15% of the
tokens in input sequences, and 80% of the selected
tokens are replaced with the special token [MASK].
We keep 10% of the tokens in the rest of them un-
changed, and the other 10% are replaced with ran-
domly selected tokens. Our language model is also
designed to train for the prediction of each token in
the masked span by computing the cross-entropy
loss function. However, the next sentence predic-
tion (NSP) objective used in the BERT implemen-
tation is not used in this study, as RoBERTa (Liu
et al., 2019) removes the NSP task due to perfor-
mance decreases on downstream tasks.

3.3 Vocabulary and Tokenizer

In this study, we build a new vocabulary of 127,490
wordpieces that are extracted from the English
Common Crawl corpus (Raffel et al., 2019a) and
English Wikipedia dump datasets. The vocabu-
lary consists of sub-words (30%) tokenized by the
WordPiece algorithm (Wu et al., 2016), and 70% of
the rest include noun-phrase words in their original
form. We aim to prevent words from being out
of vocabulary words and also keep noun phrases
as the original forms so that our model is able to
take many words in order to better learn human
linguistic understanding during training.

In addition, we propose a new approach of word
tokenization to suit our vocabulary used to pre-
train ANNA model. This approach avoids sepa-
rating words by special symbols since our vocab-
ulary contains words including special characters
by tokenizing noun-phrase words with white space
only. Many studies use a subword-based word rep-
resentation method for efficiency in vocabulary. A

124

Words BERT tokens ANNA tokens
Sant’Egidio Sant , ’ , E , ##gi , ##dio Sant’Egidio
COVID-19 CO , ##VI , ##D , - , ’19’ COVID-19
U.S. U , . , S , . U.S.
Ph.D. Ph , . , D , . Ph.D.
l’amour l , ’ , am , ##our l’amour
non-profit non , - , profit non-profit
X-Files X , - , Files X-Files
UTF-16 U , ##TF , - , 16 UTF-16
C++ C , + , + C++

Table 1: Comparison of tokenization results between BERT and ANNA.

word is represented with several subword units tok-
enized by BERT tokenizer as exampled in Table 1.
However, we do not follow this conventional tok-
enization method (Wu et al., 2016), since we use
a span masking scheme that masks an entire noun
phrase randomly selected during a pre-training pro-
cedure. It is not suitable to train models as the
length of masking tokens gets longer if subword
units are used for the span masking scheme. We
also aim to represent a whole-word token rather
than subword units when attention scores are calcu-
lated. We implement an ANNA tokenizer in order
to enhance a better understanding of contexts by
not separating words as much as possible. Table 1
compares word tokenization results between BERT
and ANNA tokenizers.

3.4 Pre-training Datasets

We use an English Wikipedia dataset like BERT
(Devlin et al., 2018), and add publicly avail-
able English-language corpora such as a Colossal-
Cleaned version of Common Crawl (C4) corpus
(Raffel et al., 2019a), Books3 (Gao et al., 2020),
and OpenWebText2 (OWT2) extended from Web-
Text (Radford et al., 2019) and OpenWebTextCor-
pus (Gokaslan and Cohen) for pre-training our
models. Details of datasets and pre-processing
techniques are described in Appendix B.

With the extensive data pre-processing proce-
dure, we gain the size of 12GB, 580GB, 51GB,
and 22GB for Wikipedia, C4, Books3, and OWT2,
respectively. The pre-processed texts are tok-
enized into 410B word-piece tokens in total for
pre-training our models.

In this study, we conduct an experiment in order
to investigate whether the use of different sources
of data for pre-training language models affects
model performance on downstream tasks. We

compare the performance of models pre-trained
with different datasets in Table 2. We observe
that C4 improves performance on the SQuAD 1.1
task when it is added to the Wikipedia dataset, but
that models pre-trained over Books3 and OWT2
datasets are not beneficial for performance in-
creases. We also find that the use of the larger
volume of data including all of these four corpora
is not helpful to improve performance. Thus we
use both the C4 data and the Wikipedia corpus for
pre-training ANNA models. Pre-training details
for ANNA models can be found in Appendix A.

Corpora EM F1
Wikipedia 85.51 90.99
Wikipedia + C4 85.90 91.02
Wikipedia + Books3 85.40 90.79
Wikipedia + OWT2 84.79 90.27
ALL 85.14 90.22

Table 2: Comparison of model performance pre-trained
with the different data sources. Models pre-trained
with different pre-training corpora are evaluated on the
SQuAD1.1 dataset. ALL includes the four datasets of
Wikipedia, C4, Books3, and OWT2. Due to the limita-
tion of computing resources, ANNABase model is used
for this experiment.

4 Experiments

In this section, we present the fine-tuning results of
ANNA transferred to specific extractive question
answering tasks.

We evaluate ANNA on SQuAD 1.1 and 2.0 tasks
that are well-known machine reading comprehen-
sion benchmarks in the NLP area, and some NLU
tasks. The dataset of SQuAD 1.1 consists of around
100k pairs of a question and an answer along with
Wikipedia passages where the answers are included.
This task is to predict a correct span of an answer

125

text for a given question from the corresponding
Wikipedia passage (Rajpurkar et al., 2016). For
SQuAD 2.0, the dataset is extended to the SQuAD
1.1 dataset by combining over 50,000 unanswerable
questions, so that systems are required to predict
answers to both answerable and unanswerable ques-
tions (Rajpurkar et al., 2018). We follow the fine-
tuning procedure of BERT (Devlin et al., 2018), but
the provided SQuAD training dataset only is used
for fine-tuning, while BERT augments its training
dataset with other QA datasets available in public.

SQuAD 1.1 Table 3 indicates the results of our
best performing system compared with top results
on the SQuAD 1.1 leaderboard. We also compare
ours with BERT baselines. ANNA establishes a
new state-of-the-art result on this task outperform-
ing LUKE (Yamada et al., 2020) by EM 0.4 points
and F1 0.3 points on the test dataset. LUKE is the
latest best performing system in the leaderboard,
and it is designed for contextualized representa-
tions of words and entities. As for a comparison
with SpanBERT (Joshi et al., 2020) that masks
contiguous sequences of token for span representa-
tions, ANNA also achieves better performance by
both EM 1.8 points and F1 1.1 points.

SQuAD 2.0 ANNA is evaluated on SQuAD 2.0
development dataset, and the results are compared
with the published pre-trained language models
(Devlin et al., 2018; Liu et al., 2019; Lan et al.,
2019; Yang et al., 2019b; Clark et al., 2020) in Ta-
ble 4, which demonstrates that ANNA outperforms
all of those language models and in particular, pro-
duces performance increases than ELECTRA by
0.4 points of EM and 0.2 points of F1.

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a collection of
datasets used for training and evaluation diverse
natural language understanding tasks (Wang et al.,
2018). Since fine-tuning on GLUE is currently in
progress, we show the results of the tasks that we
complete in Appendix A.

5 Model Analysis

We conduct additional experiments in terms of per-
spectives such as data processing, pre-training task,
and attention mechanisms. We report a detailed
analysis of how those approaches affect the per-
formance of ANNA on a specific downstream task
individually. In this study, ANNABase model is

used for these additional experiments due to the
limitation of computing resources.

5.1 Effect of ANNA Tokenization
As mentioned in Section 3.3, we build a new vocab-
ulary containing noun-phrase words in their orig-
inal format. For this, we introduce a new word
tokenization strategy that keeps words in the origi-
nal formats for noun phrases, which suits for our
vocabulary. We compare our tokenization approach
with the standard word-piece split approach, and
find that ANNA tokenization performs better as
shown in table 5.

5.2 Effect of Data Processing
We describe several data pre-processing techniques
we conduct to build a high-quality dataset for pre-
training ANNA in Section 3.4. Here we demon-
strate how the use of the data processing techniques
affects the performance on the extractive question
answering task. There exist documents with a va-
riety of ranges of word length in the pre-training
corpora. For a generation of an input sequence, doc-
uments containing less than 100 words are filtered
out, while the others are split into multiple sentence
chunks. Due to the maximum sequence length of
512, we limit the size of the chunks to not exceed-
ing approximately 300 words. We observe that the
data processing procedure making a suitable word
length for the max sequence length is helpful to
improve performance slightly as shown in Table 6.
However, the input sequences overlapped with 128
tokens at the back and front between successive
sentence chunks rather hurt system performance.

5.3 Effect of Pre-training Mechanism
We investigate how different MLM objectives af-
fect the performance of models on a specific down-
stream task. During a pre-training procedure, a
model is trained with a deep bidirectional represen-
tation of input sequences. First, we concatenate
part-of-speech (POS) tags to each word, then we
apply a whole word masking approach to explore
whether a masking method employing syntactic in-
formation is helpful to understand the context. We
also mask tokens identified as named entities and
noun phrases instead of masking single tokens ran-
domly. In all of the experiments, we use the same
percentage of 15% for the masking tasks. Table 7
compares results on the SQuAD 1.1 task for mod-
els using those MLM schemes. Comparing with
the standard MLM approach that simply masks

126

System
Dev Test

EM F1 EM F1
BERTLarge (Devlin et al., 2018) 84.2 91.1 85.1 91.8
BERTLarge (ensemble) - - 87.4 93.1
SpanBERT (Joshi et al., 2020) - - 88.8 94.6
XLNetLarge (Yang et al., 2019b) 89.0 94.5 89.9 95.1
LUKE (Yamada et al., 2020) 89.8 95.0 90.2 95.4
ANNABase 87.0 92.8 - -
ANNALarge 90.0 95.4 90.6 95.7

Table 3: Performance of systems evaluated on the SQuAD 1.1 datasets.

System
SQuAD 2.0 SQuAD 2.0

Dev EM Dev F1
BERTLarge (Devlin et al., 2018) 79.0 81.8
ALBERTLarge (Lan et al., 2019) 85.1 88.1
RoBERTa (Liu et al., 2019) 86.5 89.4
XLNetLarge (Yang et al., 2019b) 87.9 90.6
ELECTRALarge (Clark et al., 2020) 88.0 90.6
ANNALarge 88.4 90.8

Table 4: Performance of systems evaluated on the SQuAD 2.0 development dataset.

SQuAD1.1 SQuAD1.1
Dev EM Dev F1

WordPiece tokenizer 85.3 90.8
ANNA tokenizer 86.3 91.2

Table 5: Ablation study of our tokenizer comparing to
BERT tokenizer

15% of tokens, the pre-trained models using Entity
and Noun-phrase MLM schemes improve perfor-
mance, but the approach masking words including
POS tags decreases performance than the standard
MLM. Thus we use the Noun-phrase MLM ap-
proach to pre-train ANNA models for final results.

5.4 Effect of Neighbor-aware Self-Attention
We attempt to implement a new transformer en-
coder focusing on relatives, entities, or neighbors in
input tokens in order to enhance capturing syntactic
and contextual information. Firstly, we extend the
original self-attention based on the transformer in
order to consider relationships between input to-
kens. The relation matrix of input tokens is simply
added when attention scores are computed. For an
entity-self-attention that focuses on named entities,
we identify named entities in text and then com-
pute additional attention scores to those entities for
learning effective representations. We describe the
mechanism of a neighbor-aware self-attention in

detail in Section 3.1. We report that the neighbor-
aware self-attention approach performs better than
the original self-attention and other transformer
modifications on the extractive question-answering
task in Table 8. We consider that the neighbor-
aware mechanism is effective to capture relation
information of neighboring tokens in an input se-
quence.

5.5 Effect of Layer-stacking Approach

We examine how approaches to stack sub-layers in
a transformer encoder architecture impact perfor-
mance. We compose a transformer encoder block
by collaborating three sub-layers such as a self-
attention, a neighbor-aware self-attention, and a
feed-forward network in different combinations.
We evaluate the models using different combination
methods of stacking layers and report the results
on the SQuAD 1.1 dataset in Table 9.

We observe that a self-attention substituted with
a neighbor-aware attention in an original trans-
former architecture decreases performance by F1
0.5 points. When a neighbor-aware attention is
stacked between a self-attention and a feed-forward
network, the model slightly performs better than
the original transformer. The sequential layered
structure of a self-attention, a neighbor-aware at-
tention, and a feed-forward network achieve the
best performance on the exact matching criteria,

127

Data Processing
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Wiki+C4

85.9 91.0
(Without sentence chunking)
Wiki+C4

85.0 90.5
(Sentence chunking with 128 token-overlap)
Wiki+C4 86.3 91.2
(Sentence chunking)

Table 6: Comparison of model performance pre-trained with the use of different data processing techniques.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Standard MLM 83.7 89.1
w/POS 80.7 87.1
Entity 85.3 90.8
Noun phrase 86.3 91.2

Table 7: Results of different masking schemes during
the pre-training task.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Self-Att. 85.9 91.1
Relative-QK-Att. 86.0 91.1
Relative-QV-Att. 85.2 90.7
Entity-Self-Att. 85.7 90.9
Neighbor-Aware-Att. 86.4 91.4

Table 8: Comparison of model performance pre-trained
with different transformer variants. Att is an abbrevia-
tion for Attention. The Self-Att. scores are the mean of
multiple runs.

which demonstrates that our proposed approach
has an effect on the extractive question answering
task. We consider that attention scores computed
in a self-attention layer are re-weighted to actually
related tokens by ignoring identical tokens during
the computation of attention scores in the neighbor-
aware attention so that the neighbor-aware mech-
anism is helpful to capture relationships between
input tokens.

6 Conclusion

In this paper, we present a novel pre-trained lan-
guage representation model, ANNA which im-
proves the original transformer encoder architec-
ture by collaborating a neighbor-aware mechanism,
and is pre-trained for contextualized representa-
tions of words and noun phrases in a span level.
The experimental results show that ANNA achieves

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
SA→ FFN 85.9 91.1
NAA→ FFN 85.5 90.6
SA→ SA→ FFN 85.5 91.0
NAA→ NAA→ FFN 86.1 91.5
NAA→ SA→ FFN 86.1 91.4
SA→ NAA→ FFN 86.4 91.4

Table 9: Performance of different stacking approaches
of Self-attention (SA), Neighbor-aware-attention (NAA)
and Feed-forward-network (FNN) layers in transformer
encoder blocks. The SA-FNN scores are the mean of
multiple runs.

a new state-of-the-art on the specific extractive
question answering task by outperforming pub-
lished language model systems including BERT
baselines, as well as the latest top system on the
corresponding leaderboard. There are two main di-
rections for future research: (1) validating the com-
petitiveness of ANNA to a variety of NLP tasks;
and (2) enhancing the robustness of ANNA in order
to apply for real-world question answering tasks in
business.

References

Aakash Bansal, Zachary Eberhart, Lingfei Wu, and
Collin McMillan. 2021. A neural question answering
system for basic questions about subroutines. In 2021
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 60–71.
IEEE.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training

128

text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc V Le. 2018. Semi-supervised se-
quence modeling with cross-view training. arXiv
preprint arXiv:1809.08370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Vishnu Dutt Duggirala, Rhys Sean Butler, and
Farnoush Banaei Kashani. 2021. ita: A digital teach-
ing assistant. In CSEDU (2), pages 274–281.

Zhihao Fan, Yeyun Gong, Dayiheng Liu, Zhongyu Wei,
Siyuan Wang, Jian Jiao, Nan Duan, Ruofei Zhang,
and Xuanjing Huang. 2021. Mask attention net-
works: Rethinking and strengthen transformer. arXiv
preprint arXiv:2103.13597.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Aaron Gokaslan and Vanya Cohen. Openwebtext cor-
pus.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

P Hemant, Pramod Kumar, and CR Nirmala. 2022. Ef-
fect of loss functions on language models in question
answering-based generative chat-bots. In Machine
Learning, Advances in Computing, Renewable En-
ergy and Communication, pages 271–279. Springer.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur
Parikh, Dipanjan Das, and Jonathan Berant. 2016.
Learning recurrent span representations for ex-
tractive question answering. arXiv preprint
arXiv:1611.01436.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Matthew E Peters, Mark Neumann, Robert L Lo-
gan IV, Roy Schwartz, Vidur Joshi, Sameer Singh,
and Noah A Smith. 2019. Knowledge enhanced
contextual word representations. arXiv preprint
arXiv:1909.04164.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Nakatani Shuyo. 2010. Language detection library for
java. Retrieved Jul, 7:2016.

129

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint
arXiv:1905.02450.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lam-
ple, Herve Jegou, and Armand Joulin. 2019. Aug-
menting self-attention with persistent memory. arXiv
preprint arXiv:1907.01470.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: deep con-
textualized entity representations with entity-aware
self-attention. arXiv preprint arXiv:2010.01057.

Baosong Yang, Jian Li, Derek F Wong, Lidia S Chao,
Xing Wang, and Zhaopeng Tu. 2019a. Context-
aware self-attention networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 387–394.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019b.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities.
arXiv preprint arXiv:1905.07129.

Appendices

A Performance on GLUE
At this stage, we have not submitted our results to
the official GLUE leaderboard 1, since we currently
work on fine-tuning for the GLUE benchmark. In-
stead, we report our results on the tasks that we
have completed the evaluation so far as shown in
Table 10. We compare performance with two base-
line models, BERT and SpanBERT, as the former

1https://gluebenchmark.com/leaderboard

is a pre-trained language model using a standard
encoder architecture, and the later is pre-trained
to predicts spans of texts, and motivated our noun-
phrase masking approach. Comparing to the base-
lines, ANNA outperforms those baselines on every
task, and gains the improvement of 1.7% accuracy
over SpanBERT in average. For further improve-
ment of performance on GLUE, we continue to
work on fine-tuning.

B Pre-training Datasets and Pre-processing

In this study, we use several large corpora for pre-
training language models. As shown in Table 11,
the total size of data is about 900GB for the four
corpora.

For pre-training language models with a large
volume of corpora, it is crucial to generate high-
quality data for inputs. We use heuristic pre-
processing techniques to improve the data quality
for the generation of input sequences as follows:

• Each document is split into sentences, and
we filter the sentences including less than 10
words out due to their incompleteness. Also,
documents with less than 100 words are ig-
nored for input sequences.

• Text noises such as paragraph separators, spe-
cial characters, URL addresses, and directory
paths are heuristically filtered by regular ex-
pressions.

• For Books3 data, non-English documents
are deleted by a language-detection module
(Shuyo, 2010) which is utilized for the dele-
tion of documents written in non-English
words in the Common Crawl dataset.

• Since the maximum sequence length is 512
tokens, we split the pre-processed documents
into multiple sentence chunks that do not ex-
ceed the predefined maximum length for the
input of pre-training.

C Pre-training Details

Table 12 summarizes hyperparameters that we
use for pre-training our two models: ANNABase
(L=12, H=768, A=12, Total Parameters=160M)
and ANNALarge (L=24, H=1024, A=16, Total Pa-
rameters=550M). We use the maximum sequence
length of 512, the Adam optimization (Kingma
and Ba, 2014) with learning rates of 2e-4 and 1e-4
is used for the large and base models, respectively.

130

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.
BERTLarge 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 82.5
SpanBERT 64.3 94.8 90.9/87.9 89.9/89.1 71.9/89.5 88.1/87.7 94.3 79.0 85.0
RoBERTa 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8/90.2 95.4 88.2 87.6
ANNA 65.8 96.4 91.4/88.4 91.5/90.9 73.5/89.5 90.1/89.7 95.0 83.7 86.7

Table 10: Comparison results on the GLUE development set. The “Avg.” column is slightly different than the
official GLUE scores, since the scores of WNLI and AX tasks are excluded in the average.

Wikipedia C4 Books3 OWT2
Size of text 16GB 730GB 100GB 62GB
Token counts for text 3.3B 160B 22B 13B
Size of pre-processed text 12GB 580GB 51GB 22GB
Token counts for pre-processed text 2.6B 126B 12B 5B

Table 11: Statistics of four corpora for pre-training including before and after the pre-processing procedure.

Our large model ANNALarge is trained on 256 TPU
v3 for 1M steps with the batch size of 2048, and it
takes about 10 days.

Hyper-parameter ANNALarge ANNABase

Number of layers 24 12
Hidden size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Dropout 0.1 0.1
Warmup steps 10k 10k
Learning rates 2e-4 1e-4
Batch size 2048 1024
Weight decay 0.01 0.01
Max steps 1M 1M
Learning rate decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Number of TPU 266 64
Training time 10 days 5 days

Table 12: Hyperparameters for pre-training ANNA
models.

131

Response to reviewers’ comments

We would like to thank all reviewers for their
comments, and address the comments in this page.
R and A refer to reviewers’ comments and their
answers to the comments, respectively.

R1: Some parts of the Model Analysis lack
insights on the experimental results: the impact of
tokenization is still understandable, but many other
experiments raise further questions: for instance,
why does one layer stacking approach work better
than the other? It will be much more impactful to
understand the deeper details here.
A1: Some research on attention stacking such
as (Mask Attention Networks: Rethinking and
Strengthen Transformer) show that sequential
attention layers stacked with an additional attention
layer that used a different masking approach
improve performance. Our experiments present
that capturing the global semantics followed by
capturing interactions with neighbors is beneficial
for performance improvement.

R2: The authors do not say if they will release
their code (in spite of providing the details on
hyperparams etc.). This will hurt future works that
try to replicate or improve on the results, especially
since the work claims to achieve SOTA results.
A2: We are planning to release our source codes
via GitHub. As we are a commercial company,
however, it is taking a while since there are some
processes to get approval for code release. We hope
to release source codes of the ANNA model shortly.

R3: L67: Not the first paper to perform span
masking (eg. SpanBERT).
A3: In line 67, the “First” means the order of
what we are presenting in our paper, not meaning
that this work is the first paper to perform span
masking. To make it clear, we changed “First”
with “Firstly”.

R4: (Minor) The paper is sprinkled with writing
errors and could use another round of proofreading
and surface-level revision.
A4: Sorry for the writing errors. We tried to
proofread thoroughly for revision.

R5: The claim “We assume that a single
self-attention layer in Transformer encoder may be
insufficient to learn context” is not very convincing.

Why do you assume that, based on what? Do you
have a proof of that assumption?
A5: We meant that there’s something to sup-
plement for the standard attention mechanism,
and thus tried to implement the neighbor-aware
attention. To avoid ambiguity, we deleted the
sentence in revision.

R6: I am not sure why the proposed neighbor-
aware attention is specifically good for QA. Why
did you pick that task, and why was this particular
improvement proposed for this task specifically? is
there some intuition or something special about
that?
A6: Our team is interested in the question-
answering task. We found that many of the
answers have long sequences including phrases
illustrated in Figure 1, as well as short answers.
Thus we hypothesized word span might be more
beneficial for the QA task rather than a single
word. For future work, we plan to upgrade our
model and extend it to other tasks.

R7: The Self-Att. scores in Table 8 and SA-FNN
scores in Table 9 are “the mean of multiple runs.”.
Why only these, why not all numbers in the table?
Is this a fair comparison? How are the numbers in
the other rows obtained?
A7: The difference between the experimental
results in Tables 8 and 9 was not noticeable on the
first try. Thus we tried multiple runs to get fair
results.

R8: can you elaborate more in terms of the
pre-training objectives, i.e., the noun-phrase
prediction, e.g., an equation that can describe the
overall loss function?
A8: At the last paragraph in Section 3.2, we
describe how we train our pre-trained language
model mentioning that ‘Following BERT, . . .
Our language model is also designed to train
for the prediction of each token in the masked
span by computing the cross-entropy loss function.’

R9: on SQUAD 2.0, is the result SOTA?
A9: Not achieved the SOTA on SQuAD2.0 yet.

R10: have you evaluated on other downstream
tasks except the QA?
A10: In Appendix A, Table 10 shows results on the
GLUE benchmark.

132

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 133 - 142
May 26, 2022 ©2022 Association for Computational Linguistics

Isomorphic Cross-lingual Embeddings for Low-Resource Languages

Sonal Sannigrahi1,2 Jesse Read2

1Saarland University
2École Polytechnique

sosa00001@stud.uni-saarland.de jesse.read@polytechnique.edu

Abstract

Cross-Lingual Word Embeddings (CLWEs)
are a key component to transfer linguistic in-
formation learnt from higher-resource settings
into lower-resource ones. Recent research in
cross-lingual representation learning has fo-
cused on offline mapping approaches due to
their simplicity, computational efficacy, and
ability to work with minimal parallel resources.
However, they crucially depend on the assump-
tion of embedding spaces being approximately
isomorphic i.e. sharing similar geometric
structure, which does not hold in practice, lead-
ing to poorer performance on low-resource
and distant language pairs. In this paper, we in-
troduce a framework to learn CLWEs, without
assuming isometry, for low-resource pairs via
joint exploitation of a related higher-resource
language. In our work, we first pre-align the
low-resource and related language embedding
spaces using offline methods to mitigate the
assumption of isometry. Following this, we
use joint training methods to develops CLWEs
for the related language and the target embed-
ding space. Finally, we remap the pre-aligned
low-resource space and the target space to gen-
erate the final CLWEs. We show consistent
gains over current methods in both quality and
degree of isomorphism, as measured by bilin-
gual lexicon induction (BLI) and eigenvalue
similarity respectively, across several language
pairs: {Nepali, Finnish, Romanian, Gujarati,
Hungarian}-English. Lastly, our analysis also
points to the relatedness as well as the amount
of related language data available as being key
factors in determining the quality of embed-
dings achieved.

1 Introduction

In a world with over 7000 spoken languages, out of
which nearly 43% are endangered, there is an acute
need for accurate language technology systems that
ensure equal access of resources in a predominantly

digital world1. Early successes in neural natural
language tasks were primarily data-driven and En-
glish focused (Belinkov and Glass, 2019), however
as we move on to low-resource, multi-lingual sce-
narios it becomes imperative to develop meaningful
representations.
Taking machine translation (MT) as an example,
we have observed remarkable progress over the last
few years propelled by advances in neural language
modelling. This success has been mainly confined
to major world languages (Hassan et al., 2018; Liu
et al., 2020), however, a significant proportion of
languages are endangered or otherwise have a very
scarce amount of digital resources which presents
serious challenges for training MT systems. Rather
than traditional expert-guided feature engineering,
neural MT (NMT), like deep neural architectures
more generally, require notoriously large data sets
from which to extract features automatically in the
context of hidden layers; for example with recur-
rent (Cho et al., 2014; Schmidhuber and Hochreiter,
1997), and attention mechanisms (Bahdanau et al.,
2014). It is for this reason that the most impres-
sive results (e.g., (Liu et al., 2020; Barrault et al.,
2019)) come from languages with large scale digi-
tal resources such as parallel corpora with which to
train them. This is, however, not the case for most
minority languages.
Current research in expanding natural language
tools for low-resource settings has focused on
transferring information from languages for which
we have sufficient data to model correctly (Chen
et al., 2019; Lample et al., 2018, 2017). In or-
der to achieve this, cross-lingual word embeddings
(CLWEs) are important which is what we focus
on in this work. As CLWEs represent words from
multiple languages in a shared vector space, they
are key in promoting language sharing across low
and high-resource languages. The two primary ap-

1http://www.unesco.org/
languages-atlas/en/statistics.html

133

proaches in learning CLWEs are: 1) mapping meth-
ods which independently map monolingual word
embeddings by learning a linear transformation ma-
trix to project them into another monolingual space
with very little supervision i.e requiring a weak
cross-lingual signal (Artetxe et al., 2018a; Mikolov
et al., 2013) or 2) joint methods which jointly opti-
mise monolingual as well as cross-lingual learning
objectives using parallel corpora thus requiring a
strong cross-lingual signal. (Gouws et al., 2016;
Luong et al., 2015; Lample et al., 2018)
As mapping methods use transformation matrices
to align embedding spaces they make the crucial
assumption that, regardless of domain or linguistic
differences, these spaces are approximately isomor-
phic i.e. they share a similar structure (Vulić et al.,
2020)2. It has been shown that this assumption does
not hold in general and therefore the benefit of map-
ping methods requiring little to no cross-lingual sig-
nal can no longer be taken advantage of directly in
low-resource scenarios (Søgaard et al., 2018; Vulić
et al., 2020). At the same time, while joint methods
do not make the isomorphism assumption they are
inapplicable in low-resource settings due to their
high data requirements (Ormazabal et al., 2019).
While most recent work in low-resource CLWEs
have focused on reducing the supervision signal
as much as possible (Artetxe et al., 2018c), further
study points to this not being the best approach
(Vulić et al., 2019). We claim that in addition to
utilising monolingual resources, related language
parallel data can be crucial in artificially generating
isomorphic embedding spaces between the source
and target.
In this paper, we address the limitations outlined
above by proposing an alternative method to learn
CLWEs for low-resource and distant language pairs.
Contrary to previous approaches, we combine the
benefits from both mapping and joint-training meth-
ods to develop high-quality, isomorphic embed-
dings. In our proposed framework, we maintain
the low level of supervision as obtained by map-
ping methods while still guarding the isomorphic
embeddings achieved by joint-training by indepen-
dently aligning source and target embeddings to
a related higher-resource language. We apply our
method in several low-resource settings and con-
duct evaluations on bilingual lexicon induction and
eigenvalue similarity. Our experiments show that,

2Two vector spaces are said to be isomorphic if there is an
invertible linear transformation from one to the other.

despite no additional source-target parallel data,
our approach outperforms conventional mapping
and joint-training methods on both evaluation met-
rics.
The main contributions of this work can be outlined
as the following:

• We introduce a framework combining map-
ping and joint methods to learn isomorphic
cross-lingual embeddings for low-resource
language pairs.

• We successfully employ CLWEs in challeng-
ing, low-resource scenarios without the use of
explicit source-target parallel data.

• We achieve significant gains over state-of-the-
art methods in both bilingual word induction
as well as eigenvalue similarity.

2 Related Work

Cross-Lingual Word Embeddings CLWEs aim
to represent words from several languages into a
shared embedding space which allows for several
applications in low-resource areas such as transfer
learning (Peng et al., 2021), NMT (Artetxe et al.,
2018c), and Bilingual Lexicon Induction (BLI) (Pa-
tra et al., 2019). Largely, there are two classes of
approaches to learn CLWEs: mapping and joint
methods. While the former aims to map mono-
lingually learnt embeddings together, the latter si-
multaneously learns both embedding spaces using
some cross-lingual supervision (i.e. a cross-lingual
signal). Common approaches to achieve this cross-
lingual signal come from parallel corpora aligned
at the word (Luong et al., 2015) or sentence level
(Gouws et al., 2015). In addition to this, later meth-
ods proposed the use of comparable corpora (Vulić
and Moens, 2016) or large bilingual dictionaries
(Duong et al., 2016) as a form of supervision. For
a more detailed survey of methods and limitations
of CLWEs, the reader is referred to (Ruder et al.,
2019).

Offline Mapping As mapping methods map
monolingual embedding spaces together, instead
of relying on a cross-lingual signal (such as in joint
methods) they work by finding a transformation
matrix that can be applied to the individual em-
bedding spaces. In the case of supervised learn-
ing, a large bilingual dictionary would have been
used as supervision however Artetxe et al. (2018b)

134

get rid of this requirement via a self-learning strat-
egy. Their approach is based on a robust iterative
method combined with initialisation heuristics to
get state-of-the-art performance using offline map-
ping. Most of these methods align spaces using a
linear transformation- usually imposing orthogonal-
ity constraints- in turn assuming that the underlying
structure of these embeddings are largely similar.
Several works (Søgaard et al., 2018; Vulić et al.,
2020) have shown that this assumption does not
hold when working with non-ideal scenarios such
as low-resource or typologically different language
pairs. In order to mitigate this assumption, Mohiud-
din et al. (2020) learn a non-linear map in a latent
space, Nakashole (2018) uses maps that are only
locally linear, and Glavaš and Vulić (2020) propose
to learn a separate map for each word. However
these are supervised methods, meaning they suffer
from limitations of hubbness and isomorphism as
outlined in Ormazabal et al. (2019). To address
these limitations, Ormazabal et al. (2021) proposes
a method in which they fix the target language
embeddings, and learn a new set of embeddings
for the source language that are aligned with them
using self-learning. Their method outperforms cur-
rent mapping, joint, as well hybrid methods on the
MUSE dataset (Conneau et al., 2018).

Joint-Training The fundamental limitations of
offline methods are not faced by joint-training
methods if there is a strong cross-lingual signal
available (Ormazabal et al., 2019). In practice, how-
ever, we don’t always have access to such forms of
supervision therefore recent works have attempted
to reduce the supervision level so as to preserve the
isomorphism achieved by joint methods while still
being as widely applicable as mapping methods.
Lample et al. (2018) use concatenated monolingual
corpora in different languages and learn word em-
beddings over this constructed corpus, using iden-
tical words as anchor points. Devlin et al. (2019)
use a bidirectional transformer to learn a multi-
lingual embedding space which showed signifi-
cant progress in the zero-shot cross-lingual transfer
task. Further extending upon these works, Wang
et al. (2020) effectively combined joint and map-
ping based methods in their framework “joint-align”
however their method was not tested on distant
language low-resource pairs. In their work, they
use fully unsupervised joint initialisation as the
first step, vocabulary reallocation where they “un-
share” some vocabulary to better align them, and

lastly they perform a refinement step using off-
the-shelf alignment methods. Furthermore, for low-
resource setups Kementchedjhieva et al. (2018) pro-
pose Multi-support Generalized Procrustes Anal-
ysis (MGPA) which learns a three-way alignment
between English, a low-resource language, and a
supporting related language. In addition to Wang
et al. (2020), Woller et al. (2021) show the benefit
of using related languages in the context of CLWEs.
In their work, they use a two step approach where
they first use joint-align to learn a CLWE between
the low-resource and related language and as a next
step they map it to the target language to build
the final multilingual embedding space. Although
they focus on the use case of Occitan via French,
Spanish, and Catalan, we show that this type of
approach is well motivated across several language
pairs.

3 Methodology

Given two embedding spaces, X and Y , for
languages x and y respectively, our goal is to
align them together without any direct parallel
data between them and without assuming orthog-
onality/structural similarity. In order to do this,
let us consider a third embedding space, Z, of a
language z related to the source x. Furthermore,
let there also be sufficient parallel data between
y and z to jointly learn their aligned embedding
spaces (Ormazabal et al., 2019). Our approach first
aligns the spaces X and Z using an unsupervised
offline mapping method (Artetxe et al., 2018b).
Vulić et al. (2020) find that for typologically
similar languages that have in-domain monolingual
corpora, isomorphism in their learnt vector spaces
is preserved. To that end, due to the linguistic
similarities between x and z we may perform
offline mapping. Figure 1 shows a visualisation
of how these two embedding spaces are aligned
using an induced seed dictionary as per Artetxe
et al. (2018b). For further details about the offline
alignment, the reader is referred to read the original
paper.

Once the space X is aligned to the monolingual
space Z, we wish to also align Y to Z as well.
Due to the typological differences between the two
languages, we can no longer assume isometry of
their embedding spaces therefore can no longer use
offline mapping methods. However, due to higher-
resource nature of z, we have access to parallel

135

Figure 1: Toy visualisation of mapped cross lingual em-
bedding spaces with red representing one language and
blue the other

corpora between y and z. This allows us to apply
joint-training approaches (Luong et al., 2015) to
simultaneously learn their embeddings. As found
in Ormazabal et al. (2019), under ideal conditions
of having parallel data, joint-training approaches
produce isomorphic embeddings that perform bet-
ter than their offline counterparts in bilingual lex-
icon induction despite the non-relatedness of the
languages considered. As shown in Figure 2, we
can now produce two embedding spaces, Source
aligned to Related and Target aligned to Related
while preserving isomorphism. As a final step in
our alignment framework, we use the z−aligned
embedding spaces, X̃ and Ỹ , to induce the final
cross-lingual word embedding spaces. Now that
both X and Y are projected onto Z, they share
structural similarity which permits the use of of-
fline mapping on X̃ and Ỹ . Figure 2 shows the
complete alignment framework to produced the
resultant isomorphic embedding spaces.

Figure 2: Visualisation of our proposed alignment
method in context; dotted lines represent lack of par-
allel data between language pairs

Our proposed framework can be summarised in the
following steps:

1. For a source-target pair, choose a related
higher-resource language to the low-resource
target such that there is sufficient source-
related parallel data to perform joint mapping.
(Ormazabal et al., 2019)

2. Use offline mapping (Artetxe et al., 2018b)

to align related and source language into a
shared embedding space. Due to their related-
ness, these resultant embeddings remain iso-
morphic as the assumption in mapping meth-
ods hold true.

3. Use joint training (Luong et al., 2015) to map
related and target language into a shared em-
bedding space using the higher-resource par-
allel data between them. As this is the highest
level of supervision possible, we ensure that
the embedding spaces remain isomorphic.

4. Lastly, map the aligned-source and aligned-
target embeddings using unsupervised map-
ping methods as they are now isometric in
nature following the alignment to the related
language for both the source and target.

This framework uses the low cross-lingual signal
utilised by mapping techniques while still maintain-
ing the isomorphism of the resultant embedding
spaces as in joint approaches. This is achieved
by exploiting the existing isomorphism between
embeddings as much as possible by pre-aligning
the spaces via a pivot-language. However, unlike
pivot-based MT we do not compound errors across
embedding spaces due to the final refinement step
done by mapping the aligned embeddings into their
shared cross-lingual space (Dabre et al., 2020).
The first step of cross-lingual mapping, allows
us to internalise the structure of the low-resource
embedding space by pre-aligning with the related
language. In the second step, we re-learn a joint
embedding space for the related language and the
target. In the last stage, the offline mapping makes
use of the internalised structure by associating
the modified source embedding space with the
modified target embedding space which have both
independently been aligned to the same related
language.

With this pipeline, we are able to target a large
group of low-resource languages which belong
to higher-resource language families for instance,
English-Nepali via Hindi. Linguistically, Nepali
and Hindi are quite similar as they share the same
script and also have 80% of subword tokens in
common when using a shared BPE vocabulary
of 100k subword units (Lample and Conneau,
2019). In this work, we perform experiments
on several low-resource language pairs to show
the effectiveness of our approach in various

136

language families- specifically we look at Uralic,
Indo-European, and Romance languages.

Our goal is not to fully replace current methods
of learning cross-lingual word representations but
to aid them in the area of low-resource languages.
As shown by Ormazabal et al. (2019), depending
on the type of resources available as well as the
languages considered, different methods can be
preferred. While current approaches perform well
for several languages and resource levels (Ormaz-
abal et al., 2021), their performance still leaves
room for improvement in the low-resource, typo-
logically diverse area. Despite the simplicity of
our method, our experiments show that we perform
competitively on quality as well as degree of iso-
morphism across all low-resource pairs considered.
Due to the reliance on a sufficiently resourced re-
lated language, our method is not applicable to
every low-resource pair however referring to the
task of related-language NMT we see that there is
indeed a large group of languages that could benefit
from this approach (Dabre et al., 2020).

4 Experimental Design

In this section we discuss the datasets used, training
settings for different configurations used in our
experiments, and lastly the evaluation metrics used
to assess the embedding spaces produced by our
framework.

4.1 Datasets

In our work, we train CLWEs between English
and five other low-resource languages: Nepali
(ne), Finnish (fi), Romanian (ro), Gujarati (gu),
and Hungarian (hu). We use pre-trained fasttext
word embeddings (Grave et al., 2018) which uses
Wikipedia dumps and Common Crawl for all lan-
guages. In addition to this, we use available par-
allel data between the following related language
pairs respectively: English-Hindi (hi) for Nepali,
English-Estonian (et) for Finnish, English-Italian
(it) for Romanian, English-Hindi (hi) for Gujarati,
and English-Finnish (fi) for Hungarian. We obtain
the data from IIT Bombay3 for En-Hi and from
the WMT workshops4. We preprocess all the data
using Moses scripts and tokenise using BPE. For

3http://www.cfilt.iitb.ac.in/iitb_
parallel/

4http://www.statmt.org

the Indic languages, we use IndicNLP5 for word
segmentation. Table 1 details the statistics of the
approximate corpus sizes used for learning mono-
lingual embeddings. For evaluation, we use the
gold-standard bilingual dictionary from the MUSE
dataset (Conneau et al., 2018) for Finnish and for
the remaining language pairs, we use bilingual dic-
tionaries published by Pavlick et al. (2014). To
show the relatedness of the languages chosen, we
report genetic proximities6 of the pairs with their
related languages in Table 3.

Sentences Tokens
Languages
Ne 92.3K 2.8M
Fi 6M 91M
Ro 88.6K 2.28M
Gu 382K 6M
Hu 1M 15M
En 67.8M 2.0B

Table 1: Monolingual Training Corpora sizes

Segments
Language Pairs
Hi-En 1.5M
Et-En 1.7M
It-En 151M
Fi-En 6.2M

Table 2: Parallel Training Corpora sizes

x z y Gen. Proximity (↓)
Nepali Hindi En 19.4
Finnish Estonian En 16.7
Gujarati Hindi En 31.8
Romanian Italian En 29.4
Hungarian Finnish En 62.2

Table 3: Language Set-Ups with Genetic Proximity of
Source and Related language where lower is better

4.2 Training Settings

Mapping: Using fasttext (Grave et al., 2018)
with the default parameters7, we first gather

5https://github.com/anoopkunchukuttan/
indic_nlp_library

6https://www.elinguistics.net/Compare_
Languages.aspx

7These are 300-dimensional vectors with 10 negative sam-
ples, a sub-sampling threshold of 1e-5 and 5 training iterations

137

monolingual word embeddings for each of the
respective languages. After this, we map the
embeddings to a cross-lingual space using VecMap
(Artetxe et al., 2018b) in the unsupervised mode
as we do not have any bilingual dictionaries. In this
mode an initial solution is found using heuristics
and iteratively refined.

Joint Training: To train the embeddings jointly,
we use the BiVec tool proposed by Luong et al.
(2015) which is an extension of skip-gram
algorithm aiming to predict the context around
both the source and target word aligned to a given
parallel corpus at the word level. We use the same
hyperparameters as in the mapping methods.

In addition to the mapping and joint-training meth-
ods trained as described earlier, we also train Joint
Align (Wang et al., 2020). We use the official im-
plementation8 on preprocessed tokenised data to
train a non-contextual model in specific as we are
working on non-contextual word embeddings. Fur-
thermore, we replace the default RCLS retrieval
step with unsupervised VecMap to have more con-
sistency across the baselines. We also train other
baseline models, namely Multi-support GPA (Ke-
mentchedjhieva et al., 2018) where we incorporate
pre-trained monolingual embeddings of the respec-
tive related language. Lastly, we train the model
proposed from Woller et al. (2021) which used
Joint Align for the first alignment step and super-
vised MUSE (using identical character strings as
the supervision signal) for the second.

4.3 Evaluation Metrics

We evaluate our embeddings on two aspects: the
quality and degree of isomorphism achieved be-
tween the source and target. As in Ormazabal
et al. (2019), we measure this by bilingual lexicon
induction (BLI) and eigenvalue similarity respec-
tively. Firstly, we induce the word-level transla-
tions by linking neighbouring source-target word
translations in the resultant embeddings spaces us-
ing CSLS retrieval and finally evaluate the induced
dictionary against the English-Target bilingual dic-
tionary released by Pavlick et al. (2014)9 to com-
pute precision scores for the BLI task using the
MUSE evaluation scripts (Conneau et al., 2018).

8https://github.com/thespectrewithin/
joint_align

9https://cs.brown.edu/people/epavlick/
data.html

Next, we measure eigenvalue similarity for the em-
beddings following the procedure in Søgaard et al.
(2018) on centralised and normalised embeddings.
We perform the same evaluations across different
cross-lingual alignment methods on all the consid-
ered language pairs.

5 Results and Discussion

In this section, we discuss our main experimental
results on BLI and eigenvalue similarity across
the chosen language pairs. Furthermore, we also
conduct ablation tests on our learnt embeddings to
further verify the sources of improvements.

5.1 BLI

Results in Table 4 report the BLI scores for the dif-
ferent baselines and our proposed method. We use
the Low-Resource to English language direction
however MGPA can only be trained with the related
and low-resource language at the target. As per
Woller et al. (2021), we evaluate the resultant Low-
Resource-English embeddings afterwards. Across
all language pairs, we see substantial gains from
our method as compared to mapping, joint, and
other hybrid baselines. Woller et al. (2021) outper-
form our approach on two language pairs (Ne-En,
Gu-En) which we suspect is due to Joint-Align’s
performance in comparison to regular Joint training.
However, these improvements are not consistent.
As Joint-Align uses a vocabulary re-sharing step,
we can hypothesise that for language pairs with
significant vocabulary overlap this step might be
useful in learning better alignments. In particular,
Joint Align on average performs poorly on most
language pairs, suggesting that it is inapplicable in
a truly low-resource scenario. VecMap performs
well overall, however, our approach outperforms
VecMap by a significant margin. Despite using
VecMap and a purely joint-training based approach
without any additional source-target supervision,
the gains in the scores are substantial. Interestingly,
our method performs well even in the case of fi→
en where we use Estonian as the related language;
Estonian is in fact lower-resource than Finnish,
however our performance suggests that "pivoting"
via Estonian was still helpful in learning Finnish-
English word embeddings. Therefore, even if the
embeddings learnt in the intermediate stages are
not ideal, the structural alignments earned are ul-
timately helpful in obtaining better source-target
embeddings.

138

ne→ en fi→ en ro→ en gu→ en hu→ en avg
VecMap (Artetxe et al., 2018b) 52.3 61.9 61.6 45.4 53.2 54.8
Joint (Luong et al., 2015) 21.3 30.5 31.4 33.4 25.5 28.4
JointAlign (Wang et al., 2020) 24.5 31.3 28.2 35.4 26.5 25.2
MGPA (Kementchedjhieva et al., 2018) 41.6 55.7 57.3 39.6 45.7 47.9
JointAlign+MUSE (Woller et al., 2021) 59.4 62.5 62.6 49.1 55.8 57.8
Ours 58.4 65.2 64.5 48.4 56.3 58.6

Table 4: Precision at 1 scores of proposed method and previous works on BLI (higher is better)

5.2 Eigenvalue Similarity

In eigenvalue similarity, mapping methods perform
much worse than joint training (Table 5). This find-
ing is in line with the literature (Ormazabal et al.,
2019), and is explained by the high linguistic di-
vergence between English and source languages,
resulting in embeddings that are far less isomor-
phic. Our hybrid approach performs even better
than joint methods and achieved the best eigenvalue
similarity score across all language pairs, showing
that we do indeed obtain isometric embeddings
while still not requiring the higher level of super-
vision in joint learning approaches. Although our
proposed framework does not make any significant
changes to the mapping and joint components, the
combination of the two cross-lingual approaches
leads to better embeddings both in terms of quality,
shown by the performance in BLI, as well as struc-
ture, shown by the eigenvalue similarity scores. In
addition to this, MGPA as well as Woller et al.
(2021)’s method attains good eigenvalue similarity
scores suggesting that the incorporation of a related
language is indeed helpful

5.3 Ablation Tests

To study where the improvements of the cross-
lingual encoding method come from, we conduct
several ablation tests (results in Table 7), assessing
the contribution of different embedding schemes to
the final quality of the embeddings: firstly, we look
at the initial unaligned monolingual embeddings,
next we look at the embeddings that are indepen-
dently aligned to the related language, and lastly we
look at the embeddings after the final offline map
has been constructed. These embedding schemes
allows us to verify the importance of the intermedi-
ate structural alignments via the related language.
As expected the unaligned embeddings have a near
0 BLI score, suggesting that the initial embeddings
do not have any linking however as the score is still
non-zero we can attribute this to identical words

across some language pairs. However, the inter-
mediate embeddings obtained (Related-Aligned in
Table 7) have a significant jump in performance
even though there is no explicit alignment between
the source and target at this stage. This intermedi-
ate performance is surprisingly close to the final
performance obtained by Joint Align as well, which
suggests that the related-language strategy allows
for a better understanding of word associations
even before performing the final step of offline
mapping.
Next, we studied the relevance of the relatedness
as well as amount of parallel language of the re-
lated language. For this ablation test, we took three
languages of different degrees of relatedness to
each source language and then we measured the im-
provements between the intermediate embedding
space aligned to the related language and the final
embedding space between the source and the target.
Doing so allowed us to further isolate intermediate
improvements as obtained by the related languages
and their final contribution in the quality of the
learnt embeddings. We report results in Table 6.
Consistently, across all the language pairs consid-
ered the BLI scores take a sharp drop as we reduce
the relatedness (as measured by lexical similarity)
of the intermediate language. The scores here point
to relatedness of the chosen language as being one
of the key factors in improving downstream per-
formance. These results are in line with findings
from Woller et al. (2021) where the relatedness of
Catalan to Occitan was the driving force in their
performance even though the resource levels of
French and Spanish were significantly higher than
Catalan.

6 Conclusion and Future Work

In this work, we developed a framework to learn
cross-lingual word embeddings in low-resource
scenarios. We addressed limitations of both offline
as well as joint training methods to develop high

139

ne→ en fi→ en ro→ en gu→ en hu→ en avg
VecMap (Artetxe et al., 2018b) 205.8 118.2 176.4 189.3 94.5 156.8
Joint (Luong et al., 2015) 48.6 30.3 41.2 42.5 35.6 39.7
JointAlign (Wang et al., 2020) 56.2 45.5 50.1 48.2 38.6 47.7
MGPA (Kementchedjhieva et al., 2018) 58.4 48.1 48.3 52.5 35.1 48.8
JointAlign+MUSE (Woller et al., 2021) 38.3 28.1 35.6 37.1 28.1 33.4
Ours 37.5 23.4 32.7 33.2 26.6 30.7

Table 5: Eigenvalue Similarity Scores (lower is better)

ne→ en fi→ en ro→ en gu→ en hu→ en
hi gu et et hu hi it fr de hi ta fr fi et fr

24.7 21.3 15.8 33.4 27.1 19.6 33.8 30.7 21.3 24.6 16.8 14.6 23.9 22.8 13.6
58.4 42.3 30.5 65.2 54.3 38.1 64.5 61.3 42.6 48.4 32.3 29.6 56.3 55.3 36.7

Table 6: BLI Scores P@1 for different related languages. Top row provides scores from intermediate cross-lingual
embeddings achieved after prior alignment to the related language, the second row provides scores after the full
alignment scheme.

BLI Score
Embeddings

Our Method
Unaligned 0.4
Related-Aligned 24.6
Full Alignment 58.6

Offline Mapping
Unaligned 0.4
Mapped 54.8

Joint Align
Unaligned 0.4
Aligned 25.2

Table 7: Ablation Tests on Different Embeddings, re-
porting average Precision @ 1 score

quality, isomorphic embeddings for several low-
resource language pairs. In particular, we main-
tain the low cross-lingual signal as required by
offline methods while still obtaining structurally
sound/isomorphic embeddings as in joint-training
based approaches. Our method works by exploiting
a higher-resource related-language to jointly learn
a cross-lingual space between the related-language
and target while also learning a cross-lingual space
between the source and the related language using
offline mapping. Due to the pre-alignment with a
related-language, the resultant cross-lingual spaces
are now structurally similar and can be mapped to
each other without breaking any orthogonality as-
sumption. Whilst our approach does not change the
individual components at all, we obtain far superior

results in both BLI as well as eigenvalue similarity
across all languages. On a high-level, the gains in
our method can be attributed to incorporating more
linguistic information in the low-resource language
via the related language. This would in turn allow
for better modelling of the structure of the embed-
ding spaces without explicitly requiring additional
source-target parallel data. As our ablation tests
show, indeed the intermediate embeddings them-
selves have some performance gains even though
the source and target embeddings are not aligned
to each other yet.
Future work in this direction would include verify-
ing how high-resource the related language needs
to be to still see performance gains. In addition to
this, we would like to explore how the relatedness
of the pivot language affects the performance of the
learnt embeddings. Specifically, we would like to
discover to what extent isomorphism is preserved
in related language pairs- permitting the use of of-
fline methods in more distant languages. Studying
this would allows us to suggest further generali-
sations of our approach to cover a wider range of
language families.

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. Generalizing and improving bilingual word
embedding mappings with a multi-step framework
of linear transformations. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intel-
ligence, pages 5012–5019.

140

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018c. Unsupervised neural ma-
chine translation.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.

Xilun Chen, Ahmed Hassan Awadallah, Hany Has-
san, Wei Wang, and Claire Cardie. 2019. Multi-
source cross-lingual model transfer: Learning what
to share. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3098–3112, Florence, Italy. Association
for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2020. A survey of multilingual neural machine
translation. ACM Comput. Surv., 53(5).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2016. Learning crosslingual
word embeddings without bilingual corpora. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1285–
1295, Austin, Texas. Association for Computational
Linguistics.

Goran Glavaš and Ivan Vulić. 2020. Non-linear
instance-based cross-lingual mapping for non-
isomorphic embedding spaces. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 7548–7555, Online.
Association for Computational Linguistics.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed represen-
tations without word alignments. In Proceedings
of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine
Learning Research, pages 748–756, Lille, France.
PMLR.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2016. Bilbowa: Fast bilingual distributed represen-
tations without word alignments.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Renqian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on automatic
chinese to english news translation.

Yova Kementchedjhieva, Sebastian Ruder, Ryan Cot-
terell, and Anders Søgaard. 2018. Generalizing Pro-
crustes analysis for better bilingual dictionary induc-
tion. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
211–220, Brussels, Belgium. Association for Com-
putational Linguistics.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based and neural unsupervised machine
translation.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng
Gao. 2020. Very deep transformers for neural ma-
chine translation. arXiv preprint arXiv:2008.07772.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Bilingual word representations
with monolingual quality in mind. In Proceedings
of the 1st Workshop on Vector Space Modeling for
Natural Language Processing, pages 151–159.

141

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Tasnim Mohiuddin, M Saiful Bari, and Shafiq Joty.
2020. LNMap: Departures from isomorphic as-
sumption in bilingual lexicon induction through non-
linear mapping in latent space. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2712–2723,
Online. Association for Computational Linguistics.

Ndapa Nakashole. 2018. NORMA: Neighborhood sen-
sitive maps for multilingual word embeddings. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
512–522, Brussels, Belgium. Association for Com-
putational Linguistics.

Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor
Soroa, and Eneko Agirre. 2019. Analyzing the lim-
itations of cross-lingual word embedding mappings.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4990–4995, Florence, Italy. Association for Compu-
tational Linguistics.

Aitor Ormazabal, Mikel Artetxe, Aitor Soroa, Gorka
Labaka, and Eneko Agirre. 2021. Beyond offline
mapping: Learning cross lingual word embeddings
through context anchoring.

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg,
Matthew R. Gormley, and Graham Neubig. 2019.
Bilingual lexicon induction with semi-supervision
in non-isometric embedding spaces. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 184–193, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ellie Pavlick, Matt Post, Ann Irvine, Dmitry Kachaev,
and Chris Callison-Burch. 2014. The language de-
mographics of Amazon Mechanical Turk. Transac-
tions of the Association for Computational Linguis-
tics, 2:79–92.

Xutan Peng, Yi Zheng, Chenghua Lin, and Advaith Sid-
dharthan. 2021. Summarising historical text in mod-
ern languages.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Jürgen Schmidhuber and Sepp Hochreiter. 1997. Long
short-term memory. Neural Comput, 9(8):1735–
1780.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
2018. On the limitations of unsupervised
bilingual dictionary induction. arXiv preprint
arXiv:1805.03620.

Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-
rhonen. 2019. Do we really need fully unsupervised
cross-lingual embeddings?

Ivan Vulić and Marie-Francine Moens. 2016. Bilingual
distributed word representations from document-
aligned comparable data.

Ivan Vulić, Sebastian Ruder, and Anders Søgaard.
2020. Are all good word vector spaces isomorphic?

Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang,
Graham Neubig, and Jaime Carbonell. 2020. Cross-
lingual alignment vs joint training: A comparative
study and a simple unified framework.

Lisa Woller, Viktor Hangya, and Alexander Fraser.
2021. Do not neglect related languages: The case
of low-resource Occitan cross-lingual word embed-
dings. In Proceedings of the 1st Workshop on
Multilingual Representation Learning, pages 41–50,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

142

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 143 - 155
May 26, 2022 ©2022 Association for Computational Linguistics

Video Language Co-Attention with
Multimodal Fast-Learning Feature Fusion for VideoQA

Adnen Abdessaied∗, Ekta Sood∗, Andreas Bulling
Institute for Visualization and Interactive Systems (VIS)

University of Stuttgart, Germany
{adnen.abdessaied,ekta.sood,andreas.bulling}@vis.uni-stuttgart.de

Abstract

We propose the Video Language Co-
Attention Network (VLCN) – a novel
memory-enhanced model for Video Ques-
tion Answering (VideoQA). Our model com-
bines two original contributions: A multi-
modal fast-learning feature fusion (FLF)
block and a mechanism that uses self-
attended language features to separately
guide neural attention on both static and
dynamic visual features extracted from in-
dividual video frames and short video clips.
When trained from scratch, VLCN achieves
competitive results with the state of the
art on both MSVD-QA and MSRVTT-QA
with 38.06% and 36.01% test accuracies, re-
spectively. Through an ablation study, we
further show that FLF improves general-
ization across different VideoQA datasets
and performance for question types that are
notoriously challenging in current datasets,
such as long questions that require deeper
reasoning as well as questions with rare
answers1.

1 Introduction

Video Question Answering (VideoQA) has emerged
as a challenging task at the intersection of natu-
ral language processing and computer vision. In
contrast to image-based visual question answer-
ing (Lu et al., 2016; Anderson et al., 2018; Yu et al.,
2019), VideoQA takes dynamic visual content (a
video) as input (Xu et al., 2017; Gao et al., 2018;
Li et al., 2019). This poses new challenges given
that generating correct answers requires models
to analyze spatial, appearance-based features of
individual video frames jointly with the temporal,
motion-based dynamics across multiple frames (Zhu
et al., 2017).

However, there still is a semantic gap between the
visual and language channels (Lei et al., 2018; Sun
et al., 2021; Song et al., 2018) that prior work has

∗*Equal contribution.
1Our code is publicly available at the project web-

site https://www.perceptualui.org/publications/
abdessaied22_repl4NLP/

tried to close by leveraging external memory (Kim
et al., 2018, 2019; Fan et al., 2019). While ex-
ternal memory allows models to cache sequential
information and retrieve relevant multimodal con-
tent (Patel et al., 2021), latest models still suffer
from decreased performance, for example on am-
biguous questions that require deeper reasoning
abilities.

Moreover, current deep neural models for
VideoQA are limited in that they only gradually
learn during training. In contrast, human cogni-
tion leverages two different learning systems: a
gradual and a fast-learning system (McClelland
et al., 1995).The interplay between the fast and
gradual duel learning systems is essential for hu-
mans to learn new representations, hence to gen-
eralizing (McClelland et al., 2020b). Current net-
works lack a similar fast-learning mechanism, which
impedes their ability to efficiently reason and gener-
alize to unseen data since the fast learning system
acts as an encoder of new information which is
then transferred to the gradual learning system for
referencing and consolidating (Arani et al., 2021).

To address these limitations, we propose the
Video Language Co-Attention Network (VLCN)
– a novel memory-enhanced model for VideoQA.
VLCN implements a video language co-attention
module that uses self- and guided-attention to align
language features of the question with static and
dynamic visual features extracted from videos. As
such, the module offers complementary informa-
tion that our network attends to, independently
of each other, when visually grounding a ques-
tion. Furthermore, VLCN features a novel mul-
timodal fast-learning fusion (FLF) block that helps
the model to deal with challenging questions that
need deeper reasoning and understanding. Inspired
by the cognitive fast-learning system (McClelland
et al., 2019), we leverage the differentiable neural
computer (DNC) to incorporate an external mem-
ory which the network learns how to use by freeing
and reusing its memory slots.

We seamlessly integrate our novel video language
co-attention module as well as the fast-learning
feature fusion approach in the recent transformer-
based MCAN network (Yu et al., 2019). We show

143

that our model achieves competitive results with
the state of the art on two challenging datasets –
MSVD-QA and MSRVTT-QA. Our results further
show that our model performs better on ambiguous
questions and can better reason not only about
questions with rare answers but also longer ques-
tions that require a deeper understanding of both
the question and the visual input. In addition,
we show that FLF facilitates generalization across
different VideoQA datasets via transfer learning.

2 Related Work

Our work is related to previous works on 1) at-
tention mechanisms in VideoQA, and 2) memory-
enhanced networks.

Attention Mechanisms in VideoQA. Neural
attention mechanisms have become the de-facto
standard in machine comprehension tasks (Sood
et al., 2020; Yu et al., 2019; Li et al., 2019). In
VideoQA, attention mechanisms are particularly
important given that the information necessary to
generate correct answers is scattered across frames
– many of which are redundant or even irrelevant to
the question at hand (Patel et al., 2021).

Ye et al. (2017) introduced the attribute-
augmented attention network that learned tempo-
rally attended video representations according to
semantic attributes. Xu et al. (2017) reported new
state-of-the-art performance by applying question-
guided attention over both the appearance and
motion features of individual as well as multiple
video frames. Motivated by the challenge to cap-
ture long-range dependencies, Li et al. (2019) used
a transformer-based co-attention network to exploit
the global dependencies of the text and the tempo-
ral dynamics of the videos. Yang et al. (2020) lever-
aged BERT (Devlin et al., 2018) to obtain richer
contextual feature representations over the ques-
tion. More recently, Seo et al. (2021) proposed a
two-stream multimodal video transformer based ar-
chitecture (CoMVT) that jointly attends over words
in text and visual objects and scenes to learn visual-
dialogue context. Although CoMVT achieves state-
of-the-art results on multiple downstream VideoQA
datasets, it requires a computationally-demanding
pretraning stage on 1.2M instructional videos.

These previous methods have used question fea-
tures to guide attention over either frame or clip-
level visual features, and some applied self and
co-attention to individual frames. Our work, how-
ever, is the first to use self-attention on the question
which then separately guides the attention over both
individual video frames and clips.

Memory-enhanced Networks. In parallel,
other works have focused on augmenting models
with external memory components to improve their
reasoning capabilities particularly over long-range

data that are common in many visiolinguistic tasks,
e.g. images with many objects or videos with a
large number of frames. One of the first methods
introduced a memory component over simple facts
for question answering (Weston and Bordes, 2015).

The introduction of end-to-end trainable models
popularized the use of external memory components
(Sukhbaatar et al., 2015). Driven by the insight that
memory access is similar to neural attention (Collier
and Beel, 2019), other works integrated attention
mechanisms to allow networks to better interact
with their external memory through read and write
operations, such as the Neural Turing Machine
(NTM) (Graves et al., 2014) or the Differential
Neural Computer (DNC) (Graves et al., 2016). The
latter includes a dynamic memory allocation scheme
that enables it to learn how to effectively free and
reuse memory slots.

Several works aimed to leverage the potential
of memory-enhanced networks for VideoQA. Na
et al. (2017) applied memory over the video frames
using multi-layered CNNs read and write networks
to capture richer temporal dynamics of frame-level
sequence information. Xue et al. (2018) obtained
syntax parse trees over questions and then stored
these into memory, allowing their model to per-
form better on more complex questions. Fan et al.
(2019) used one memory component to effectively
learn global context information from appearance
and motion features in combination with another
question-memory to help understand the complex
semantics of questions and highlight queried sub-
jects. Gao et al. (2018) used a co-memory attention
mechanism to generate attention from motion and
appearance cues. More recently, Yin et al. (2020)
achieved new state-of-the-art results on MSVD-QA
(Xu et al., 2017) by using a DNC (Graves et al.,
2016) to encode the textual information of the ques-
tion and the visual information of the video.

While previous works used memory-enhanced
networks to extract linguistic and visual features, we
propose a memory-augmented block adapted from
the DNC to potentially emulate the human-like
fast-learning capabilites (McClelland et al., 2020a)
and use it to fuse multimodal features previously
attended by an encoder-decoder transformer-based
co-attention module instead.

3 Method

We propose the Video Language Co-Attention Net-
work (VLCN) that integrates two original contri-
butions (see Figure 1): First, we propose to use
self- and guided-attention to separately align the
language features with the static and dynamic vi-
sual features extracted from single video frames and
frame sequences (clips). Second, we introduce Fast-
Learning Fusion (FLF) – a novel memory-enhanced
multimodal block that learns a single fused repre-

144

Figure 1: Architecture of the proposed Video Language Co-attention Network (VLCN). Our model aligns
three different types of input (language features L, static visual features F and dynamic visual features
C) using self- and guided-attention. Then, it fuses the attended reduced features (l, f and c) with the
help of Fast-Learning Fusion (Fast-Learning Fusion (FLF)) – a novel memory-augmented multimodal
fusion block. AR = Attention Reduction.

sentation of all features (i.e. language, static and
dynamic visual features).

3.1 Feature Representation

In contrast to images, videos consist of multiple
frames that capture temporal object dynamics and
motion features. Combinations of static and dy-
namic visual features have therefore become the
de-facto standard for video representations (Xu
et al., 2017; Le et al., 2020a) in VideoQA. We
adopt the same approach in our Video Language
Co-Attention Network (VLCN).

Visual Features. For each video, we first sample
nv evenly-distributed frames and clips where a clip
is a sequence of 16 consecutive video frames. Then,
we apply a VGG network (Simonyan and Zisser-
man, 2014) pre-trained on ImageNet (Russakovsky
et al., 2015) and a C3D network2 (Ji et al., 2012)
pre-trained on Sports1M (Karpathy et al., 2014)
on these sampled frames and clips, respectively.
The activations of their last dv-dimensional fully-
connected layers are our static and dynamic visual
features.

This results in a set of static frame features F =
[f1, . . . , fnv

] ∈ Rnv×dv and a set of dynamic clip
features C = [c1, . . . , cnv

] ∈ Rnv×dv .

Language Features. Question tokens are repre-
sented using 300-D GloVe embeddings (Pennington

2https://github.com/DavideA/c3d-pytorch

et al., 2014) and encoded with a Long Short-Term
Memory (LSTM) network (Hochreiter and Schmid-
huber, 1997) with dl hidden dimensions. Thus, each
question is represented as a matrix L ∈ Rnl×dl ,
where nl is the number of question tokens.

3.2 Video Language Co-Attention

The intuition behind our overall approach is the way
humans typically answer questions about videos:
first, we read the question. Then, we consider the
visual input, i.e. its static (colours, objects and
shapes) and dynamic (movements and actions) vi-
sual features, to answer it. VLCN uses stacked
video language co-attention layers in an encoder-
decoder fashion (see Figure 1). Given a set of
features, each layer simultaneously computes the
self-attention of the question, frames and clips fea-
tures. Then, the self-attended question features of
the last layer, i.e. L(K), are used to separately guide
the attention over the frames and clip features in
a bottom up manner (Anderson et al., 2018). At
the core of self- and guided-attention sits a multi-
head attention block (Vaswani et al., 2017) that
computes a scaled dot-product of a query q ∈ R1×d

and a set of n keys K ∈ Rn×d, where d is a com-
mon hidden dimension. A softmax function is then
applied to obtain the attention weights A on the
values V ∈ Rn×d following:

A = softmax(
qKT

√
d

)V. (1)

145

Similar to (Vaswani et al., 2017), attention weights
A are computed for multiple queries Q ∈ Qn×d

at the same time using Equation (1). The out-
puts of the final video language co-attention layers
L(K) ∈ Rnl×d, F (K) ∈ Rnv×d and C(K) ∈ Rnv×d

encode information about the attention weights
over the question tokens and visual semantics. We
reduce them to get the final attended features
l, f, v ∈ Rd by linearly combining the rows of L(K),
F (K) and C(K), respectively (see Figure 1). Tak-
ing the language features as an example, we first
process L(K) by a multi-layer Feed-Forward Net-
work (FFN) followed by a softmax to obtain the
attention weights that we use to linearly combine
the rows of L(K) as:

a = softmax(FFN(L(K))) ∈ [0, 1]nl , (2)

l =

nl∑

i=1

aiL
(K)[i, :] ∈ Rd. (3)

3.3 Fast-Learning Feature Fusion

We opted to use the DNC as a basis for this ap-
proach given that it is, to our knowledge, the most
capable memory-augmented model to date that
can be trained in an end-to-end fashion (Graves
et al., 2016). In previous works (Graves et al.,
2016; Yin et al., 2020), the DNC was heavily used
to process long input sequences. However, its ca-
pability to treat shorter input sequences remains
unexplored even though it has been argued for by
cognitive science to be capable of emulating the
human fast-learning system proposed in the com-
plementary learning systems theory (McClelland
et al., 1986, 2019). In our work, we leverage it

—for the first time —to fuse our three multi-modal
inputs (i.e. language, static, and dynamic visual
features) within the VideoQA task.

Differential Neural Computer (DNC). The
DNC consists of two major components: A neural
network controller and an external memory. At
each time-step t, the controller receives an input
vector xt and emits an output vector yt. In addition,
it receives a set of R read vectors {rit−1}Ri=1 from
the N ×W memory matrix Mt−1 of the previous
time-step t−1. Both controller inputs and the read
vectors are concatenated to form the final input
vector χt = [xt; r

1
t−1; . . . ; rRt−1]. Theoretically, the

controller can be a network of any type. However, it
is common to use an LSTM network with L hidden
layers. The output vector yt is computed via

yt = Wh[h1t ; . . . ;hLt] +Wr[r1t ; . . . ; rRt], (4)

where Wh and Wr are learnable weights and ht =
{hit}Li=1 are the hidden states of the LSTM con-
troller. These hidden states are used to parame-
terize one write and R read heads to interact with
the N ×W external memory matrix through the

so-called fast-learning connections. Further details
on the DNC can be found in (Graves et al., 2016).

Feature Fusion. First, the reduced language
and visual features l, f and c (see Figure 1) are
projected and summed to get the first interme-
diate output z1. Then, they are duplicated and
stacked one after another to form the input se-
quence X = [l, f, c] = [x1, x2, x3] ∈ R3×d to the
DNC. The output sequence Y = [y1, y2, y3] ∈ R3×d

is summed along the first dimension to obtain the
final output o and the last R read vectors are con-
catenated to form the global read vector r. Finally,
the second intermediate output z2 is obtained by
projecting [o; r] onto the same space as z1 and the
final output z is computed by summing z1 and z2.
We concatenated the last read vectors to the DNC’s
output to preserve the memory information from
the last step of processing the input sequences.

Answer Prediction. Given that VideoQA is for-
mulated as a classification task, the fused features
z are projected onto the answer space using a fully-
connected layer. A sigmoid function is applied to
train the network with binary cross-entropy (BCE)
loss (see Figure 1).

4 Experiments

Datasets. We conducted experiments on two
open-ended VideoQA datasets: MSVD-QA and
MSRVTT-QA (Xu et al., 2017). They are, in turn,
based on the Microsoft Research Video Description
Corpus (MSVD) (Chen and Dolan, 2011) and the
Microsoft Research Video to Text (MSRVTT) (Xu
et al., 2016) datasets, respectively. Both datasets
contain automatically generated questions that fall
into five different categories: what, who, how, when
and where. MSVD-QA has a total number of 1200
videos and 50 505 question-answer pairs and comes
with three splits based on the videos: The train-
ing, validation, and test sets account for 61%, 13%,
and 26% of the total number of videos, respectively.
Similarly, MSRVTT-QA has three splits with 10 000
videos and 243 680 question-answer pairs in total.
The training, validation, and test sets account for
65%, 5%, and 30% of the total number of videos,
respectively. Further details on the datasets can be
found in Appendix A.1.

Implementation Details. For each video, we
sampled nv = 20 frames and clips and used them
to generate the static and dynamic visual features.
We set the dimensionality of the input question
features dl and input visual features dv (static and
dynamic) to 512 and 4, 096, respectively. The fused
features z1, z2 and z had a dimension dz = 1, 024.
Following (Vaswani et al., 2017), we set the latent
dimension d of the multi-head attention block to
512 and the number of heads to eight, i.e. each had

146

a dimensionality of 64. Since VideoQA is formu-
lated as a classification task, similar to (Xu et al.,
2017), we used the most frequent 1, 000 ground-
truth answers of the training and validation splits
as our answer candidates. The number of video
language co-attention layers K was fixed to six. Fi-
nally, for the DNC3 in the FLF block we used a
two-layer bidirectional LSTM network (Hochreiter
and Schmidhuber, 1997) with 512 hidden dimen-
sions as a controller as well as four read and one
write heads to interact with the 512 × 64 exter-
nal memory matrix. We used Adam (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.98 to optimize
the weights of our model over a maximum of 30
epochs. We set the base learning rate to 10−4.
The batch-size was fixed to 64 and 32 during train-
ing and evaluation, respectively. We implemented
our model in PyTorch (Paszke et al., 2019). It is
based on a Visual Question Answering (VQA) open-
source implementation4 and will be made publicly
available together with our pre-trained models. All
experiments were conducted on one Nvidia Tesla
V100 GPU with 32GB VRAM.

Ablated Models. In all experiments that follow
we denote with VLCN our full model that uses a
DNC inside the FLF block and whose architecture is
illustrated in Figure 1. Although we experimented
with training the DNC with different permutations
of its inputs, we did not obtain any improvements
in terms of performance when we changed the or-
der of the input features. Therefore, we kept the
same order that we used to encode the features (i.e.
[l, f, c]). We additionally implemented different ab-
lated versions of our model to study the impact
of the proposed video language co-attention and
fast-learning fusion:

• MCAN : This is the original MCAN model as pro-
posed in (Yu et al., 2019) but adapted for VideoQA.
We trained it using the concatenated static and dy-
namic visual features as they share the same dimen-
sionality dv. This model was not equipped with our
novel video-language co-attention and fast-learning
feature fusion.

• VLCN−FLF : For this model we used a simple
multimodal fusion by summing the reduced features
l, f and c, i.e. only the first intermediate output z1
was passed through to the subsequent parts of the
network (see Figure 1).

• VLCN+LSTM : For this model we only used the
controller of the DNC, i.e. a two-layer bidirectional
LSTM with 512 hidden dimensions, to compute
the second intermediate output z2 by summing the
outputs of the LSTM and projecting them onto
the same space as z1. This model did not have the

3https://github.com/ixaxaar/pytorch-dnc
4https://github.com/MILVLG/mcan-vqa

external long-term memory matrix and the fast-
learning connections.

Model Training. We evaluated the robustness of
our model and its ablated versions by training each
five times with five different seeds. We report the
performance as µ±σ, where µ and σ are the average
and standard deviation of the ensemble-accuracy
on MSVD-QA and MSRVTT-QA test.

Question Length and Answer Frequency.
Complementing analyses according to common
question type categories (what, who, how, when
and where), we propose two other question-binning
strategies: In the first strategy, questions are put
into three bins based on question length. The first
bin contains questions with up to three words, the
second bin between four and eight, and the last
bin with more than nine words. The longer the
question, the harder it should be for the model
to answer as it requires deeper reasoning and un-
derstanding. In the second strategy, questions are
binned according to the frequency rank of their
ground-truth answers in the training and valida-
tion splits. The first bin contains questions whose
ground-truths are the 100 most frequent answers.
The second contains questions whose ground-truths
are the next 200 most frequent answers. The last
bin contains the rest of the questions, i.e. questions
with the scarcest 700 answers. The rarer answers
to a question are, the more difficult it should be for
the model to answer correctly.

Transfer Learning of the FLF Weights.
MSRVTT-QA includes more questions and longer
videos compared to MSVD-QA: The average video
lengths of MSRVTT-QA and MSVD-QA are 20 and
10 seconds, respectively (Aafaq et al., 2019). Perfor-
mance on MSRVTT-QA should thus benefit from
the knowledge acquired while training on MSVD-
QA (Pan and Yang, 2010). Through transfer-
learning of the fast-learning connections and the
DNC controller weights learned from MSVD-QA,
FLF should be able to better interact with its ex-
ternal memory when dealing with questions from
MSRVTT-QA. To study this hypothesis, we con-
ducted the following experiment: We trained an
ensemble of five VLCNs using five different seeds
on MSVD-QA. Then, we trained two further en-
sembles of five VLCNs on MSRVTT-QA using the
same seeds: For one ensemble, we initialised the
FLF weights of each model with those learned from
MSVD-QA and fine-tuned them on MSRVTT-QA.
We call these models VLCN+FT. For models in
the second ensemble we trained these weights from
scratch. Additionally, we experimented with fine-
tuning the entire architecture of the FLF block
instead. These experiments did not yield any perfor-
mance improvements and we decided not to include
them in this work.

147

5 Results

Comparison with the State of the Art.
VLCN achieves competitive performance with the
state of the art on both MSVD-QA and MSRVTT-
QA. On MSVD-QA, our best model reaches an
overall accuracy of 38.06% compared to 35.70%,
36.10%, and 36.20% achieved by CoMVT (scratch)
(Seo et al., 2021), HCRN (Le et al., 2020b), and
MA-DRNN (Yin et al., 2020), respectively. This
corresponds to a relative improvement of 1.86% over
the state of the art when the latter is trained from
scratch (see Table 1). Although CoMVT can reach
an overall accuracy of 42.60%, this was only pos-
sible after a computationally-demanding pretrain-
ing stage on HowToFUP (Miech et al., 2019) —a
dataset consisting of 1.2M instructional videos for
the task of Future Utterance Prediction (FUP). On
the most diverse question types our model achieves
a higher accuracy on what (∼ 4% increase) and
performs slightly worse on who compared to MA-
DRNN. On the other types how, when and where,
our model performs on par with the state of the art
methods. As depicted in Table 2, our best VLCN
model achieves an overall accuracy of 36.01% on
MSRVTT-QA – the second best performance af-
ter CoMVT which achieves 37.30% accuracy when
trained from scratch and 39.50% after pretaining
on HowToFUP.

Ablation Study. Our analysis of the question
length shows that VLCN achieves the best perfor-
mance across all question length bins on MSVD-QA
and on long questions, i.e. questions with length
bigger than three, on MSRVTT-QA (see Tables 3
and 4). By comparing the first two rows of Table 3
and Table 4, we can see that VLCN−FLF outper-
forms MCAN across all of the question length bins
of MSVD-QA and on very long questions (≥ 9) of
MSRVTT-QA. This suggests that our co-attention
approach helps the model make reliable predictions
when the question becomes more complex compared
to the simple question-guided attention over the
stacked visual features. We hypothesize that the
static and dynamic visual features offer complemen-
tary information that our network needs to attend
to, independently of each other, while trying to visu-
ally ground the question. By removing the external
memory of the FLF block and using a plain LSTM
network, VLCN+LSTM falls behind on all question
length bins resulting in an overall accuracy decrease
of 0.84% and 0.8% on MSVD-QA and MSRVTT-
QA, respectively, compared to VLCN (see Tables 3
and 4). We hypothesize that the proposed external
memory is indispensable when answering questions
that exceed the working memory capacity of the
model, i.e. in this case of the LSTM network.

We then analyzed the performance of our ab-
lated versions with respect to the answer frequency

bins (see Table 5). On MSVD-QA, VLCN achieves
the best results on the most challenging questions,
i.e. questions whose answers are not amongst
the 100 most frequent, and performs on par with
VLCN−FLF on questions with the 100 most fre-
quent answers. Although VLCN+LSTM performs
on par with VLCN and improves on the perfor-
mance of MCAN and VLCN−FLF on the most
challenging questions, it falls behind VLCN when
it comes to the easier questions with the most fre-
quent answers. This results in an overall accuracy
decrease of 0.5% compared to VLCN.

Similarly, VLCN outperforms all of its ablated
versions on the most challenging questions of
MSRVTT-QA (see Table 6). In contrast to MSVD-
QA, VLCN+LSTM does not reach superior results
on the most challenging questions compared to
MCAN and VLCN−FLF. Performance on such
questions only improves when using the external
memory. In fact, VLCN achieves 20.97% and 5.84%
on questions with the second 100 most frequent an-
swers and questions with the scarcest 700 answers,
respectively. This translates into a relative im-
provement of 2.49% and 3.89% compared to the
second best models on such answer frequency bins,
i.e. MCAN and VLCN+LSTM, respectively (see
Table 6). It is interesting to see the difficulty of
answering questions with rare ground truth answers
as highlighted by the severe drop in performance
for the last answer frequency bin of Table 5 and
Table 6. We do not think that this is related to
a language understanding problem as suggested
by the error analysis we conducted on the ablated
versions. Please refer to Appendix A.2 for more
details.

Transfer Learning. The last two rows of Ta-
bles 4 and 6 show the importance of curricu-
lum learning (Bengio et al., 2009). By fine-tuning
the converged weights of FLF from MSVD-QA on
MSRVTT-QA, VLCN+FT reaches new state of the
art result on MSRVTT-QA by improving the accu-
racy on all question length and answer frequency
bins compared to VLCN. This indicates that trans-
fer learning of the fast-learning connections of FLF
is possible and improves performance across dif-
ferent datasets. Further details about the effect
of fine-tuning on the performance on individual
question types can be found in Appendix A.3.

Qualitative Analysis. Figure 2 shows sample
attention maps learned by the last video language
co-attention layer together with the predictions of
our model and its ablated versions. These predic-
tions are depicted in the orange box, where other de-
notes the ablated versions of our full VLCN model.
Further examples can be found in Appendix A.4.
The language self-attention SA(L) and the guided-
attention over the clips G(C,L) show that VLCN

148

Model
Question Type

What Who How When Where All

ST-VQA (Jang et al., 2017) 18.10 50.00 83.80 72.40 28.60 31.30
Co-Mem (Gao et al., 2018) 19.60 48.70 81.60 74.10 31.70 31.70
HMEMA (Fan et al., 2019) 22.40 50.10 73.00 70.70 42.90 33.70
SSML (Amrani et al., 2020) – – – – – 35.13
QueST (Jiang et al., 2020) 24.50 52.90 79.10 72.40 50.00 36.10
HCRN (Le et al., 2020b) – – – – – 36.10
MA-DRNN (Yin et al., 2020) 24.30 51.60 82.00 86.30 26.30 36.20
CoMVT (Seo et al., 2021)

Scratch – – – – – 35.70
Pretrained – – – – – 42.60

VLCN (Ours) 28.42 51.29 81.08 74.13 46.43 38.06

Table 1: Performance comparison of VLCN with the state of the art on MSVD-QA test. The table shows
the overall accuracy as well as the accuracy with respect to individual question types in %.

Model
Question Type

What Who How When Where All

ST-VQA(Jang et al., 2017) 24.50 41.20 78.00 76.50 34.90 30.90
Co-Mem (Gao et al., 2018) 23.90 42.50 74.10 69.00 42.90 32.00
HMEMA(Fan et al., 2019) 26.50 43.60 82.40 76.00 28.60 33.00
QueST (Jiang et al., 2020) 27.90 45.60 83.00 75.70 31.60 34.60
SSML (Amrani et al., 2020) – – – – – 35.00
HCRN (Le et al., 2020b) – – – – – 35.60
CoMVT (Seo et al., 2021)

Scratch – – – – – 37.30
Pretrained – – – – – 39.50

VLCN (Ours) 30.69 44.09 79.82 78.29 36.80 36.01

Table 2: Performance comparison of VLCN with the state of the art on MSRVTT-QA test. The table
shows the overall accuracy as well as the accuracy with respect to individual question types in %.

Model
Question Length (number of words)

1-3 4-8 ≥ 9 All

MCANavg 35.83± 1.30 36.37± 0.33 38.13± 0.98 36.64± 0.44
VLCN−FLFavg 37.85± 1.63 36.89± 0.28 38.32± 0.53 37.16± 0.27
VLCN+LSTMavg 39.40± 1.64 36.38± 0.29 38.33± 0.61 36.82± 0.31
VLCNavg 39.48± 0.73 37.37± 0.21 38.65± 0.52 37.66± 0.21

Table 3: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each length bin in %.

Model
Question Length (number of words)

1-3 4-8 ≥ 9 All

MCANavg 38.94± 0.46 36.15± 0.16 33.35± 0.18 35.49± 0.16
VLCN−FLFavg 38.49± 0.46 35.85± 0.17 33.42± 0.27 35.29± 0.16
VLCN+LSTMavg 38.45± 0.35 35.82± 0.12 33.15± 0.19 35.20± 0.12
VLCNavg 38.31± 0.41 36.57± 0.18 33.45± 0.15 35.77± 0.15
VLCN+FTavg 38.92± 0.27 36.78± 0.02 33.65± 0.08 36.00± 0.01

Table 4: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each length bin in %.

attends to the word doing the most. The high val-
ues of the last column of G(L,C) indicate that the
model is searching for possible clips that align well
with the action doing. This highlights the impor-
tance of the independent language guided-attention

over the clips. However, the guided-attention map
over the frames G(L,F) is flat indicating that the
model is not sure which frames are important to an-
swer the question. This uncertainty is alleviated by
the efficient fast-learning feature fusion of FLF that

149

Model
Answer Frequency Bin

1-100 101-300 ≥ 301 All

MCANavg 50.40± 0.55 16.09± 0.47 2.76± 0.18 36.64± 0.44
VLCN−FLFavg 51.37± 0.19 15.72± 0.90 2.49± 0.73 37.16± 0.27
VLCN+LSTMavg 50.57± 0.86 16.57± 1.01 3.25± 0.72 36.82± 0.31
VLCNavg 51.35± 0.36 17.80± 0.42 3.35± 0.17 37.66± 0.21

Table 5: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each frequency bin in %.

Model
Answer Frequency Bin

1-100 101-300 ≥ 301 All

MCANavg 48.90± 0.34 17.08± 0.74 3.26± 0.29 35.49± 0.16
VLCN−FLFavg 48.64± 0.11 16.90± 0.59 3.28± 0.35 35.29± 0.16
VLCN+LSTMavg 48.53± 0.21 16.62± 0.44 3.39± 0.29 35.20± 0.12
VLCNavg 47.70± 0.24 20.97± 0.25 5.84± 0.18 35.77± 0.15
VLCN+FTavg 48.03± 0.11 20.98± 0.33 5.88± 0.12 36.00± 0.01

Table 6: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each frequency bin in %.

Figure 2: Visualization of the attention maps learned by the last video language co-attention layer. The
indices [0, 19] indicate the individual 20 frames and clips of the video (some of which are shown).

leads our full VLCN model to predict the correct
answer. While all of the ablated versions predict
the wrong answer spread, our VLCN model answers
the question correctly by predicting cut.

6 Conclusion

In this work, we proposed the Video Language Co-
Attention Network (VLCN) for VideoQA. At its
core are two distinct novel contributions: Stacked
co-attention layers in an encoder-decoder frame-
work to separately guide self-attended language fea-
tures over both static video frame and dynamic

clip features; and Fast-Learning Fusion (FLF)
– a memory-enhanced multimodal block to effi-
ciently fuse the reduced features. We demonstrated
that the combination of both results in significant
improvements and competitive performance with
state-of-the-art models on the challenging MSVD-
QA and MSRVTT-QA datasets. We also demon-
strated the particular advantage of our model in
dealing with long questions that require deeper
reasoning or questions with rare answers. Finally,
further experiments showed that our FLF block al-
lows our model to generalize better across different
datasets via transfer learning.

150

Acknowledgments

A. Bulling was funded by the European Research
Council (ERC; grant agreement 801708). E. Sood
was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - EXC 2075 -
390740016.

References

Nayyer Aafaq, Ajmal Mian, Wei Liu, Syed Zulqar-
nain Gilani, and Mubarak Shah. 2019. Video
Description: A Survey of Methods, Datasets, and
Evaluation Metrics. Association for Computing
Machinery, 52(6).

Elad Amrani, Rami Ben-Ari, Daniel Rotman, and
Alex Bronstein. 2020. Noise estimation using
density estimation for self-supervised multimodal
learning. arXiv preprint arXiv:2003.03186.

Peter Anderson, Xiaodong He, Chris Buehler,
Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. 2018. Bottom-up and top-
down attention for image captioning and visual
question answering. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), pages 6077–6086.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz.
2021. Learning fast, learning slow: A general con-
tinual learning method based on complementary
learning system. In International Conference on
Learning Representations.

Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
learning. In Proc. International Conference on
Machine Learning (ICML), page 41–48.

David Chen and William B Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation.
In Proc. Annual Meeting of the Association for
Computational Linguistics (ACL), pages 190–200.

Mark Collier and Joeran Beel. 2019. Memory-
augmented neural networks for machine transla-
tion. arXiv preprint arXiv:1909.08314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Chenyou Fan, Xiaofan Zhang, Shu Zhang, Wen-
sheng Wang, Chi Zhang, and Heng Huang. 2019.
Heterogeneous memory enhanced multimodal at-
tention model for video question answering. In
Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1999–2007.

Jiyang Gao, Runzhou Ge, Kan Chen, and Ram
Nevatia. 2018. Motion-appearance co-memory
networks for video question answering. In Proc.
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6576–6585.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
et al. 2016. Hybrid computing using a neural
network with dynamic external memory. Nature,
538:471–476.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9:1735–1780.

Yunseok Jang, Yale Song, Youngjae Yu, Youngjin
Kim, and Gunhee Kim. 2017. Tgif-qa: Toward
spatio-temporal reasoning in visual question an-
swering. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
2758–2766.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2012.
3D convolutional neural networks for human ac-
tion recognition. IEEE transactions on pattern
analysis and machine intelligence, 35:221–231.

Jianwen Jiang, Ziqiang Chen, Haojie Lin, Xibin
Zhao, and Yue Gao. 2020. Divide and Con-
quer: Question-Guided Spatio-Temporal Con-
textual Attention for Video Question Answer-
ing. Proc. Conference on Artificial Intelligence
(AAAI), 34:11101–11108.

Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
2014. Large-scale Video Classification with Con-
volutional Neural Networks. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (CVPR).

Junyeong Kim, Minuk Ma, Kyungsu Kim, Sungjin
Kim, and Chang D. Yoo. 2019. Progressive at-
tention memory network for movie story question
answering. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Kyung-Min Kim, Seong-Ho Choi, Jin-Hwa Kim,
and Byoung-Tak Zhang. 2018. Multimodal dual
attention memory for video story question an-
swering. In Proc. European Conference on Com-
puter Vision (ECCV), pages 673–688.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Thao Minh Le, Vuong Le, Svetha Venkatesh, and
Truyen Tran. 2020a. Hierarchical Conditional
Relation Networks for Video Question Answering.
In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Thao Minh Le, Vuong Le, Svetha Venkatesh, and
Truyen Tran. 2020b. Hierarchical conditional
relation networks for video question answering.

151

In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9972–
9981.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L
Berg. 2018. Tvqa: Localized, compositional
video question answering. arXiv preprint
arXiv:1809.01696.

Xiangpeng Li, Jingkuan Song, Lianli Gao, Xian-
glong Liu, Wenbing Huang, Xiangnan He, and
Chuang Gan. 2019. Beyond rnns: Positional self-
attention with co-attention for video question
answering. In Proc. Conference on Artificial In-
telligence (AAAI), volume 33, pages 8658–8665.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi
Parikh. 2016. Hierarchical Question-Image Co-
Attention for Visual Question Answering. In
Proc. Advances in Neural Information Processing
Systems (NeurIPS), pages 1–9.

James L McClelland, Felix Hill, Maja Rudolph, Ja-
son Baldridge, and Hinrich Schütze. 2020a. Plac-
ing language in an integrated understanding sys-
tem: Next steps toward human-level performance
in neural language models. National Academy of
Sciences, 117:25966–25974.

James L McClelland, Felix Hill Maja, Rudolph,
Jason Baldridge, and Hinrich Schütze. 2019. Ex-
tending machine language models toward human-
level language understanding. arXiv preprint
arXiv:1912.05877.

James L McClelland, Bruce L McNaughton, and
Andrew K Lampinen. 2020b. Integration of new
information in memory: new insights from a com-
plementary learning systems perspective. Philo-
sophical Transactions of the Royal Society B,
375(1799):20190637.

James L McClelland, Bruce L McNaughton, and
Randall C O’Reilly. 1995. Why there are com-
plementary learning systems in the hippocampus
and neocortex: insights from the successes and
failures of connectionist models of learning and
memory. Psychological review, 102(3):419.

James L McClelland, David E Rumelhart, PDP Re-
search Group, et al. 1986. Parallel distributed
processing, volume 2. MIT press Cambridge, MA.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste
Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. 2019. HowTo100M: Learning a Text-
Video Embedding by Watching Hundred Million
Narrated Video Clips. In ICCV.

Seil Na, Sangho Lee, Jisung Kim, and Gunhee
Kim. 2017. A read-write memory network for
movie story understanding. In Proc. Interna-
tional Conference on Computer Vision (ICCV),
pages 677–685.

Sinno Jialin Pan and Qiang Yang. 2010. A sur-
vey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22:1345–1359.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-
performance deep learning library. In Proc. Ad-
vances in Neural Information Processing Systems
(NeurIPS), pages 8024–8035.

Devshree Patel, Ratnam Parikh, and Yesha Shastri.
2021. Recent advances in video question answer-
ing: A review of datasets and methods. arXiv
preprint arXiv:2101.05954.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors for
word representation. In Proc. Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. 2015. Imagenet large scale visual
recognition challenge. International journal of
computer vision, 115:211–252.

Paul Hongsuck Seo, Arsha Nagrani, and Cordelia
Schmid. 2021. Look Before you Speak: Visually
Contextualized Utterances. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (CVPR).

Karen Simonyan and Andrew Zisserman. 2014.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556.

Xiaomeng Song, Yucheng Shi, Xin Chen, and Ya-
hong Han. 2018. Explore multi-step reasoning in
video question answering. In Proc. International
Conference on Multimedia (ACM-MM), pages
239–247.

Ekta Sood, Simon Tannert, Philipp Müller, and An-
dreas Bulling. 2020. Improving Natural Language
Processing Tasks with Human Gaze-Guided Neu-
ral Attention. In Proc. Advances in Neural In-
formation Processing Systems (NeurIPS), pages
1–15.

Sainbayar Sukhbaatar, Arthur Szlam, Jason We-
ston, and Rob Fergus. 2015. End-to-end memory
networks. arXiv preprint arXiv:1503.08895.

Guanglu Sun, Lili Liang, Tianlin Li, Bo Yu, Meng
Wu, and Bolun Zhang. 2021. Video question an-
swering: a survey of models and datasets. Mobile
Networks and Applications, pages 1–34.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Proc. Advances in Neural

152

Information Processing Systems (NeurIPS), vol-
ume 30.

Sumit Chopra Jason Weston and Antoine Bor-
des. 2015. Memory networks. arXiv preprint
arXiv:1410.3916.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video Question Answering via Gradually Refined
Attention over Appearance and Motion. In Proc.
International Conference on Multimedia (ACM-
MM), page 1645–1653.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016.
MSR-VTT: A large video description dataset for
bridging video and language. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5288–5296.

Hongyang Xue, Wenqing Chu, Zhou Zhao, and
Deng Cai. 2018. A better way to attend: At-
tention with trees for video question answer-
ing. IEEE Transactions on Image Processing,
27(11):5563–5574.

Zekun Yang, Noa Garcia, Chenhui Chu, Mayu
Otani, Yuta Nakashima, and Haruo Takemura.
2020. Bert representations for video question an-
swering. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
1556–1565.

Yunan Ye, Zhou Zhao, Yimeng Li, Long Chen, Jun
Xiao, and Yueting Zhuang. 2017. Video ques-
tion answering via attribute-augmented attention
network learning. In Proc. Conference on Re-
search and Development in Information Retrieval
(ACM-SIGIR), pages 829–832.

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and
Yanzhi Wang. 2020. Memory Augmented Deep
Recurrent Neural Network for Video Question
Answering. IEEE Transactions on Neural Net-
works and Learning Systems, 31:3159–3167.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019. Deep modular co-attention net-
works for visual question answering. In Proc.
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6281–6290.

Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexan-
der G Hauptmann. 2017. Uncovering the tempo-
ral context for video question answering. Inter-
national Journal of Computer Vision, 124(3):409–
421.

A Appendix

A.1 Datasets

From Tables 7 and 8 we can see how the ques-
tions are not equally-distributed across all of the
types. Question type what is the most diverse
and accounts for 62.63% and 68.53% of the total

Videos QA pairs
Question Type

What Who How When Where

Train 1200 30 933 19 485 10 479 736 161 72
Val 250 6 415 3995 2168 185 51 16
Test 520 13 157 8149 4552 370 58 28

All 1970 50 505 31 629 17 199 1291 270 116

Table 7: Statistics of MSVD-QA. The table shows
the number of videos and question-answer pairs in
the train, validation, and test splits as well as the
number of questions per question type.

Videos QA pairs
Question Type

What Who How When Where

Train 6513 158 581 108 792 43 592 4067 1626 504
Val 497 12 278 8337 3439 344 106 52
Test 2990 72 821 49 869 20 385 1640 677 250

All 10 000 243 680 166 998 67 416 6051 2409 806

Table 8: Statistics of MSRVTT-QA. The table
shows the number of videos and question-answer
pairs in the train, validation, and test splits as well
as the number of questions per question type.

number of questions in MSVD-QA and MSRVTT-
QA, respectively. Our best VLCN model achieves
new state-of-the-art performance on this question
type across both datasets, i.e. 28.42% and 30.69%
on MSVD-QA and MSRVTT-QA, respectively – a
relative improvement of 4.12% and 2.79% over MA-
DRNN (Yin et al., 2020) and QueST (Jiang et al.,
2020).

A.2 Ablation Study

Tables 9 and 10 show the ensemble performance
of our VLCN model and its ablated versions with
respect to individual question types. On MSVD-
QA, our full model achieves the best accuracy on
the most diverse question type what and performs
on par with its ablated versions on the remaining
question types, i.e. who, how, when, and where.
Similar results can be observed on MSRVTT-QA:
Our full VLCN model achieves the best accuracy
on the most diverse question type what as well
as question type when and performs on par with
the rest of its ablated versions on the remaining
question types who, how, and where.

A.3 Transfer Learning

By observing the last two rows of Table 10, we can
see the effect of transfer learning on the performance
of our full VLCN model with respect to individual
question types. In fact, by fine-tuning the fast-
learning connections and the DNC weights inside
the FLF block on MSRVTT-QA, we improved the
performance on three different questions types, i.e.
the most and second most diverse types what and
who as well as question type when. This results in
a new state-of-the-art overall accuracy of 36.01%.

153

Question Type

Model What Who How When Where

MCANavg 26.94± 0.43 49.89± 0.43 82.48± 0.94 72.76± 0.69 45.71± 1.43
VLCN−FLFavg 27.23± 0.58 50.77± 0.68 82.00± 1.00 73.79± 1.29 45.71± 5.72
VLCN+LSTMavg 26.44± 0.69 51.33± 1.12 80.65± 3.41 72.06± 0.69 47.14± 5.25
VLCNavg 27.89± 0.30 51.14± 0.18 81.08± 1.30 73.45± 0.85 46.43± 5.05

Table 9: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each question type in %.

Question Type

Model What Who How When Where

MCANavg 29.33± 0.03 45.38± 0.55 83.33± 0.61 75.07± 0.47 36.48± 1.35
VLCN−FLFavg 29.15± 0.18 45.13± 0.24 83.01± 0.12 75.83± 0.76 37.28± 1.32
VLCN+LSTMavg 28.92± 0.12 45.36± 0.32 83.06± 0.26 74.89± 1.57 37.76± 1.55
VLCNavg 30.39± 0.07 43.92± 0.40 80.93± 0.90 76.87± 0.60 37.58± 1.48
VLCN+FTavg 30.59± 0.10 44.27± 0.22 80.44± 1.14 77.75± 0.54 36.80± 0.44

Table 10: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each question type in %.

A.4 Qualitative Analysis

We further show a qualitative example to highlight
the supremacy of our full VLCN model over its
ablated versions. In Figure 3, we can see how
both the language self-attention SA(L) and the
guided-attention over the frames GA(L,F) are both
flat indicating that the model is having difficulties
aligning the multi-modal features. However, the
guided-attention over the clips GA(L,C) shows
high attention values to the word who which is,
in this case, the keyword to answer the question
who sat in his chair? depicted in the orange box.
While all of the ablated versions predict the wrong
answer lady, our VLCN model answers the question
correctly by predicting man.

154

Figure 3: Visualization of the attention maps learned by the last video language co-attention layer. The
indices [0, 19] indicate the individual 20 frames and clips of the video (some of which are shown).

155

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 156 - 166
May 26, 2022 ©2022 Association for Computational Linguistics

Detecting Word-Level Adversarial Text Attacks via SHapley Additive
exPlanations

Lukas Huber∗
TU Munich,

Department of Informatics,
Germany

lukas1.huber@tum.de

Marc Alexander Kühn∗

TU Munich,
Department of Informatics,

Germany
marcalexander.kuehn@tum.de

Edoardo Mosca∗

TU Munich,
Department of Informatics,

Germany
edoardo.mosca@tum.de

Georg Groh
TU Munich,

Department of Informatics,
Germany

grohg@in.tum.de

Abstract

State-of-the-art machine learning models are
prone to adversarial attacks: Maliciously
crafted inputs to fool the model into making
a wrong prediction, often with high confidence.
While defense strategies have been extensively
explored in the computer vision domain, re-
search in natural language processing still lacks
techniques to make models resilient to adver-
sarial text inputs. We adapt a technique from
computer vision to detect word-level attacks
targeting text classifiers. This method relies
on training an adversarial detector leveraging
Shapley additive explanations and outperforms
the current state-of-the-art on two benchmarks.
Furthermore, we prove the detector requires
only a low amount of training samples and, in
some cases, generalizes to different datasets
without needing to retrain.

1 Introduction

Adversarial examples are slightly perturbed input
samples purposely crafted to fool a target model
(Szegedy et al., 2014). Despite being similar to the
original samples, they are often misclassified with
high confidence (Goodfellow et al., 2015). With-
out effective defense techniques, machine learning
models become unusable in high-stakes situations
and safety-critical tasks (Sharma et al., 2019).

Research in computer vision has extensively
worked on better understanding adversarial image
attacks and developing more robust models (Madry
et al., 2018; Ozdag, 2018). However, the litera-
ture in Natural Language Processing (NLP) has
witnessed fewer advances concerning this issue

∗These authors contributed equally

(Mozes et al., 2021; Zhou et al., 2019; Wang et al.,
2019).

Text data needs to fulfill several properties such
as lexical, grammatical, and semantic constraints.
Thus, many efficient adversarial image attacks—
e.g. gradient-based ones—are not transferable as
they would lead to incorrect characters and non-
existing terms (Zhang et al., 2020). However, word-
level attacks that can preserve semantical infor-
mation without introducing noticeable inconsisten-
cies are particularly effective and not detectable via
spell checkers (Garg and Ramakrishnan, 2020; Ren
et al., 2019).

The lack of defense strategies against word-level
text attacks motivates our research as this is a major
obstacle to the safe deployment of NLP models.
This work’s contribution can be summarized as
follows:

(1) Based on an analogous idea from computer
vision (Fidel et al., 2020), we propose an adver-
sarial attack detector leveraging SHapley Additive
exPlanations (SHAP) to accurately recognize input
manipulations (Lundberg and Lee, 2017). Results
show that it outperforms the previous state of the
art in adversarial detection on multiple datasets
(Mozes et al., 2021).

(2) We analyze our method in terms of data effi-
ciency and generalization. The proposed approach
still offers competitive performance when trained
on very little data and can even be transferred to un-
seen datasets while almost matching the previous
state of the art.

156

(3) Alongside the quantitative analysis and its re-
sults, we visualize the space of generated Shapley-
value-based explanations. This qualitative analysis
sheds light on the reasons behind our method’s high
performance and desirable properties.

2 Related Work

2.1 Adversarial Text Attacks

An adversarial text attack is an artificial input
obtained by modifying a sample from the avail-
able data. Normally, the altered text is similar—
syntactically, semantically, or both—to the original
one. However, their corresponding classification
output substantially differs. Attacks can be either
targeted or untargeted (Tao et al., 2018). Attacks
of the first type aim to create misclassification re-
sults w.r.t. a specific class whereas the latter type
wants to generate a misclassification regardless of
the exact class.

Methods like DeepWordBug (Gao et al., 2018)
or Hotflip (Ebrahimi et al., 2018) introduce
character-level noise to create typos and grammat-
ical inconsistencies in the sentence. These adver-
sarial examples appear very similar to the origi-
nal samples, but do not perfectly preserve their
meaning and can be recognized due to their lexical
incorrectness.

Other types of attacks instead alter the text at
the word level and produce semantically equivalent
and grammatically correct sentences to the initial
input. Examples of techniques using this strategy
are PWWS (Ren et al., 2019), TextFooler (Jin et al.,
2020), and BAE (Garg and Ramakrishnan, 2020).

2.2 Defense Strategies for Computer Vision

Robustness against adversarial attacks—and espe-
cially their automatic detection—has been more
exhaustively researched for computer vision ap-
plications rather than for text inputs. Hence, we
briefly present a selection of the most promising
approaches.

Xu et al. (2018) propose Feature Squeezing,
based on the assumption that feature spaces are
often unnecessarily large and leave extensive pos-
sibilities for an attacker to generate adversarial ex-
amples. Their approach leverages this fact by com-
paring the prediction of the original input image
with a simplified one. When this difference sur-
passes a specific threshold, the input is classified
as adversarial.

Roth et al. (2019) detect adversarial examples by
measuring statistical differences between original
and perturbed logits. According to their results,
output logits corresponding to adversarial examples
exhibit a much larger variation than normal samples
when the input is perturbed.

Integrating explainability to detect adversarial
examples has already been shown to be beneficial.
Fidel et al. (2020) detect patterns in the SHAP sig-
natures of input images (Lundberg and Lee, 2017).
For normal samples, the inter-class SHAP signa-
tures share common characteristics. For adversarial
examples, however, the SHAP signatures show a
mixture between two classes which can easily be
detected using an additional classification model.

2.3 Defense Strategies for Natural Language
Processing

Character-level attacks can be countered with de-
fenses based on spell checkers (Pruthi et al., 2019;
Huang et al., 2019). Nonetheless, those same de-
fenses are extremely vulnerable to word-level at-
tacks capable of preserving language coherence
(Wang et al., 2019). Effective methods against syn-
tactically correct attacks are Adversarial Training
(AT) (Goodfellow et al., 2015), Dirichlet Neighbor-
hood Ensemble (DNE) (Zhou et al., 2020), Adver-
sarial Sparse Convex Combination (ASCC) (Dong
et al., 2021) and Synonym Encoding Method (SEM)
(Wang et al., 2019). The first three leverage some
form of data augmentation to train the model on
perturbed samples as well. The last, instead, in-
troduces an encoder step before the target model’s
input layer and trains it to eliminate potential per-
turbations.

Particularly relevant for this work are adversar-
ial detection methods. In contrast to other defenses,
they can explicitly recognize manipulated inputs
and send an alert signal. For natural language
data, the available methods are Frequency-Guided
Word Substitution (FGWS) (Mozes et al., 2021)
and learning to DIScriminate Perturbation (DISP)
(Zhou et al., 2019). The first—exploiting frequency
properties of adversarial words—is the most recent
and accurate method. Its authors showed medium
to high F1 detection scores in a range from 62.2-
91.4%, varying on the type of attack and target
model.

2.4 Feature Relevance Explainability Methods
Among explainability techniques, feature relevance
methods are often used to explain predictions pro-

157

Input Text

Classifier

Prediction

Shapley Values

Adversarial
Detector

 looks fine

 is adversarial

Post-Hoc
Explainability

(a) Goal Pipeline

(1) Train Target
Classifier

(2) Generate Text
Attacks (PWWS)

(3) Generate
Explanations (SHAP)

(4) Train
Adversarial Detector

Original
Samples

(b) Construction Steps

Figure 1: Our detector for recognizing adversarial examples: the overall pipeline once the detector is trained (a) and
the necessary steps in order to train it (b). While generating many adversarial attacks and explanations is required
for training, the detector can then be simply "plugged in" and deployed together with the classifier f .

duced by black-box models (Arrieta et al., 2020;
Mosca et al., 2021). Their goal is to attribute a
relevance score to each input feature. Such value
should quantify the effect that the feature has on
the output, i.e. their contribution to the model’s
prediction (Wich et al., 2021).

Some of these methods rely on computing the
gradient of the output w.r.t. the input features (Si-
monyan et al., 2014; Sundararajan et al., 2017).
Others, such as LRP (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017), are specifi-
cally designed for neural networks and follow the
information flow in a backward fashion through the
model’s architecture. The procedure continues one
layer at a time until the input features are reached.
LIME (Ribeiro et al., 2016) explains black-box
models via a local surrogate that approximates their
behavior around a single instance. The surrogate
can be then interpreted directly to estimate each
feature’s relevance.

Lundberg and Lee (2017) prove that several pop-
ular feature relevance methods—including LIME,
LRP, and DeepLIFT—belong to a broader class
of approaches: additive feature relevance methods.
The authors propose a unified view of such meth-
ods that, combined with the game-theoretic concept
of Shapley values (Shapley, 1952), constitutes the
SHAP framework. SHAP-based explanations are
covered more in detail in Section 3.2 as they rep-
resent a fundamental component of our proposed

method.

3 Methodology

Our defense belongs to the adversarial detection
category and is strongly inspired by the work of
Fidel et al. (2020), which detects image-based ad-
versarial attacks for computer vision models by
using SHAP signatures. This work, instead, stud-
ies the application of this idea to text attacks for
NLP classifiers. As sketched in Figure 1a, our goal
pipeline consists of multiple stages. First, the input
is fed to a classifier trained on the task-at-hand,
which outputs a prediction. Shapley values are
then computed w.r.t. the outcome and passed onto
a machine-learning detector that predicts whether
the sample is an adversarial attack. Note that our
detector does not make any assumption on the clas-
sifier and is hence model-agnostic.

The classifier targeted by the attacks becomes
considerably more robust when used in combina-
tion with the adversarial detector. To achieve our
goal, we have to take several steps in order to train
our detector. These steps—also summarized in Fig-
ure 1b for the reader—are described in detail in the
next sections.

3.1 Crafting Adversarial Text Attacks

To train and test our detector, we choose to craft
attacks semantically similar to the original input.
This choice preserves lexical and grammatical co-

158

Use synonym that causes most
significant change

Replace word that causes most
significant change in classification

US loses 140,000 jobs due to covid-
19 pandemic.

United States, United States of
America, America, US, USA, …

Greedily iterate until classification changes

Figure 2: A simplified view of the generation of adversarial examples using PWWS (Ren et al., 2019)

herence also in adversarial sentences. We believe
that such attacks are more subtle as they cannot be
detected by spell checkers. In practice, for each
sample x in the dataset, we generate

x∗ = x+ ∆x, ∥∆x∥ < ϵ (1)

where ∆x is a semantic perturbation and the
classes predicted for x and x∗ are different. To
this end, we utilize the untargeted Probability
Weighted Word Saliency (PWWS) method by Ren
et al. (2019). This approach shows high effec-
tiveness with good transferability. According to
human evaluation, PWWS provides realistic ex-
amples with lexical correctness and only sporadic
grammatical errors or semantic shifting (Ren et al.,
2019).

The technique selects the word to be replaced
based on two factors. The first is the change in
the classification probability after substitution. The
second, called word saliency, measures the varia-
tion in the output probability of the classifier if the
word is set to unknown (out of vocabulary). The
chosen word is then replaced by a word from a syn-
onym set which causes the most significant change
of classification probability. The algorithm greed-
ily iterates until enough words have been replaced
to change the final classification label. Figure 2
sketches the core idea behind the method.

3.2 Generating Model Explanations
Whenever classifying an input sentence as either
regular or adversarial, our detector needs access to
its corresponding feature relevance explanation. In
other words, the detector takes its decision based on
how strong each feature—in our case each word—
influences the final model prediction. The assump-
tion is that the model’s reaction to original and
adversarial samples is different even if the inputs
look similar for a human. Thus, the model explana-
tions for the two samples should also substantially
differ from each other (Fidel et al., 2020).

We pick SHAP (Lundberg and Lee, 2017) to
produce instance-level explanations to train the
adversarial detector. This choice is motivated by
the empirical superiority proven by its developers
(Lundberg and Lee, 2017) and its previous success-
ful applications in detecting attacks in computer
vision. However, while Fidel et al. (2020) generate
SHAP signatures w.r.t. the penultimate layer of
the target model, we produce explanations directly
w.r.t. the input sentence as text perturbations are
introduced at the word level.

SHAP is based on a game theory concept—
called Shapley values (Shapley, 1952)—originally
used to fairly distribute a reward to a set of players
that contributed to a certain outcome. In our case,
the outcome is the model’s prediction whereas the
input features, i.e. the input words, are the players
involved. Since the players most likely contributed
differently to the turnout, their payout should differ
based on their impact. Given a text classifier f
and the set of all available features M , the Shapley
value corresponding to each feature i is computed
independently. More precisely, it is a weighted
average of the relative outcome differences

f(S ∪ {i})− f(S) (2)

across all feature subsets S ⊆M \ {i}.
As there are 2|M | possible choices for S, exact

Shapley values are exponentially complex to com-
pute. However, the SHAP framework offers several
methods to approximate them accurately and effi-
ciently (Lundberg and Lee, 2017). In our work, we
utilize DeepSHAP as it is tailored to deep learn-
ing models, which we utilize as targets for the text
attacks (Lundberg and Lee, 2017). An official im-
plementation has been made publicly available by
the SHAP authors. 1

Figure 3 shows two examples of explanations
generated for IMDb, a movie review dataset (Maas

1https://github.com/slundberg/shap

159

(a) Original SHAP signature

(b) Adversarial SHAP signature

Figure 3: Force plots generated for a sample of the IMDb dataset and its corresponding adversarial attack. The
base value indicates the average model’s prediction across the whole dataset and f(x) represents the model output
probability for the selected instance. Red attributes drive the predictions towards class 1 (i.e. a positive review)
and blue ones towards class 0 (i.e. a negative review). Starting from the base value (∼ 0.48) and adding up all
word contributions we reach the final prediction of 0.01. Hence, the original sample is classified as negative with
high confidence. In the adversarial SHAP signature, most negative words were replaced by synonyms such that the
prediction is now positive.

et al., 2011), with DeepSHAP. The first (Figure
3a) was generated from an original sample while
the second (Figure 3b) from its corresponding ad-
versarial attack generated with PWWS. As we can
see, the attack changes substantially the effect that
words have on the prediction. Hence, word-level
contributions are a major indicator for detecting
parts of a sentence that have a suspiciously high
impact on the model decision. This supports our
initial hypothesis that SHAP explanations do not
rely on image-only properties and therefore can
also serve as features for an adversarial detector in
the NLP domain.

3.3 Target Model and Detector Architectures

Our pipeline includes two machine learning mod-
els: the text classifier trained for the task-at-hand
and the adversarial detector.

For consistency with Mozes et al. (2021), used
later for performance comparison, we chose a Bidi-
rectional LSTM (Bi-LSTM) (Schuster and Paliwal,
1997) as architecture to be targeted by the adver-
sarial attacks. However, other NLP models can
also be utilized as the detector does not make any
assumption on the classifier. The text inputs are
first trimmed and padded to an equal length of 100.
Increasing the input length drastically increases
complexity along the pipeline while only yielding
minor accuracy gains. Tokens are transformed into
GloVe embeddings (Pennington et al., 2014) before
being fed to the Bi-LSTM core layer. We attach a
fully connected head layer to compute output prob-

abilities. We adjust the number of output neurons
based on the dataset currently in use.

SHAP values are extracted from the model for
all output classes. Therefore, the SHAP signatures
passed to the detector are numerical vectors of di-
mensionality [#classes × 100]. Here, each numer-
ical value corresponds to the impact of a single
word w.r.t. the model’s output. We do not pick any
particular architecture for our adversarial detector.
Instead, we experiment with a variety of relatively
simple machine learning models to test their per-
formance. We include a random forest (Breiman,
2001), a Support Vector Machine (SVM) (Boser
et al., 1992), and a simple two-layer-feed-forward
neural network (Rumelhart et al., 1985).

3.4 Overall Pipeline and Experimental Setup

With the methodology for the main steps outlined
in the previous sections, we now describe in greater
detail how those steps are combined, following
what we initially presented in Figure 1b. We repeat
the procedure for each text dataset utilized for test-
ing. These will be presented later in our evaluation
section (4).

To begin with, we train the Bi-LSTM model on
the given dataset. We consider this step concluded
once the model converges to a satisfactory accu-
racy. This is usually around 90% accuracy, depend-
ing on the dataset. After that, we utilize PWWS
as proposed by Ren et al. (2019)—implemented

160

Method AG_News IMDb SST-2 Yelp Polarity Metric

Our
Neural Network 0.90 / 0.90 0.96 / 0.96 0.75 / 0.75 0.94 / 0.94 F1 score / Accuracy
Random Forest 0.91 / 0.91 0.87 / 0.87 0.77 / 0.77 0.84 / 0.84 F1 score / Accuracy
SVM 0.90 / 0.90 0.90 / 0.90 0.74 / 0.74 0.89 / 0.89 F1 score / Accuracy

SotA Detector FGWS (Mozes et al., 2021) - 0.77 0.63 - F1 score

Other Defenses
DNE (Zhou et al., 2020) 0.91 0.82 - - Accuracy
SEM (Wang et al., 2019) 0.76 0.85 - - Accuracy
ASCC (Dong et al., 2021) - 0.77 - - Accuracy

Table 1: Performance of different detector architectures on the AG_News, IMDb, SST-2 and Yelp Polarity datasets.
For comparison, we report also the defense performance of Frequency-Guided Word Substitutions (FGWS), Dirichlet
Neighbourhood Ensemble (DNE), Synonym Encoding Method (SEM) and Adversarial Sparse Convex Combinations
(ASCC).

in the TextAttack library 2—to produce adversar-
ial attacks targeting our trained NLP model. We
generate one attack for each sample in the dataset.
Instance-level explanations—i.e. Shapley value
approximations—are then created via SHAP, both
for normal and adversarial samples (Lundberg and
Lee, 2017).

We combine all explanations to compose a bal-
anced dataset for our adversarial detector. The
data is split into training and test sets following an
80/20-ratio. We further used the default hyperpa-
rameters for all models in the framework. To allow
for optimal reproducibility, we seeded all of our ex-
periments. For the neural network-based detector,
we pick layers of size 400 using a ReLU activation
and an L1 weight regularizer to avoid overfitting.
To further increase regularization, Dropout is used
(Srivastava et al., 2014). The model is then trained
for 10 epochs using the Adam optimizer with a
learning rate of 0.001 and β1, β2 set to their default
values of 0.9 and 0.99 respectively (Kingma and
Ba, 2015).

4 Evaluation

4.1 Performance Results

We evaluate our approach on four major datasets
often used in research, namely IMDb (Maas et al.,
2011), SST-2 (Socher et al., 2013), Yelp Polarity
and AG_News (Zhang et al., 2015). While the last
one classifies news articles into four distinct cate-
gories, the other three are binary sentiment analysis
tasks on movie review data. The reviews are not
fed into the detector directly but their correspond-
ing SHAP signatures are instead. The number of
samples in the datasets used for the experiment is
reported in Table 2. Every dataset consists of a
50:50 split between original and adversarial sam-

2https://github.com/QData/TextAttack

ples and the sizes are varying between 940 (Yelp
Polarity) and 100,000 (AG_News) samples.

Dataset Size #Normal #Adversarial
AG_News 100,000 50,000 50,000
IMDb 3,580 1,790 1,790
SST-2 3,162 1,581 1,581
Yelp Polarity 940 470 470

Table 2: Sizes of the individual SHAP signature datasets
used for training the adversarial detector. All datasets
consist of 50% normal and 50% adversarial signatures.

Table 1 shows the performance of various de-
tector architectures on the four datasets together
alongside results achieved by previously proposed
methods. To the best of our knowledge, the FGWS
method proposed by Mozes et al. (2021) is the
best detector currently available. With our SHAP-
based classifiers, we significantly outperform their
method on the IMDb dataset by 19% with an F1-
score of 96% and on the SST-2 dataset by 14% with
an F1-score of 77%. Relatively simple machine
learning models like a random forest or a support
vector machine are able to classify the data very
accurately. Both Mozes et al. (2021) and our work
evaluate their defenses against PWWS targeting a
Bi-LSTM model.

Besides adversarial detectors, we also outper-
form all other existing defenses to the best of our
knowledge. On IMDb, our approach improves by
11% accuracy compared to the best method (Wang
et al., 2019). On AG_News, it is matched only
by the DNE method from Zhou et al. (2020). For
each approach considered, we report the result w.r.t.
the configuration achieving the best performance
against PWWS from their corresponding original
work. For completeness, we mention that Zhou
et al. (2019) reports great results but their perfor-
mance is not comparable as they do not test their
method against any well-established attack.

161

Figure 4: F1-scores for independent runs on the AG_News dataset using differently sized subsets of the training data.
The F1-score starts to plateau after a few thousand samples for all detectors which shows data efficiency.

Classifier Unnormalized
SHAP

Unnorm. SHAP +
Predicted Class

Normalized
SHAP

Neural Network 0.90 0.90 0.90
Random Forest 0.91 0.91 0.92
SVM 0.90 0.90 0.90
Linear SVM 0.67 0.67 0.65

Table 3: F1-scores of input modifications for the detec-
tors on the AG_News dataset.

To further improve the predictive performance
of the model, we also included the predicted class
coming from the base model as an input feature for
the detector. As shown in Table 3, this had neither
a positive nor a negative influence on the perfor-
mance of the model. Normalizing the SHAP signa-
tures only led to minor improvements for random
forests and neural networks. This can be explained
by the fact that all input features are Shapley values
and are therefore in the same range.

4.2 Transferability

Base-Model IMDb (Test) SST-2 (Test)
IMDb - 0.56
SST-2 0.42 -
Yelp Polarity 0.71 0.66

Table 4: F1-scores of the inference step with IMDb and
SST-2 datasets on neural network base-models which
were trained on IMDb, SST-2 and Yelp Polarity.

During our research the question arose whether
the detectors are agnostic to the dataset or highly
specialized. To evaluate this property, we trained
three base-models with a neural network backbone
on the IMDb, SST-2 and Yelp Polarity datasets.

Then, we performed the inference step with the
IMDb and SST-2 test sets on all three detectors and
observed how the performance varies with different
dataset combinations.

The results can be seen in Table 4. We report the
strongest results when the detector was tested on
the same dataset that was also used during training.
This resulted in our competitive F1-scores of 94%
on IMDb and 77% on SST-2. Interestingly, there
existed other combinations which also produced
results comparable to the state of the art, although
the performance dropped compared to our strongest
detectors. To be precise, the base-model which
was trained on Yelp Polarity achieved good F1-
scores on test sets of IMDb with 71.5% and of SST-
2 with 66%. In comparison, the state-of-the-art
detector tested with similarly generated adversarial
samples on a LSTM with PWWS by Mozes et al.
(2021) achieved F1-scores of 77.4% on IMDb and
of 63.4% on SST-2.

Such results are yet not strong enough to prove
full generalization capabilities. However, we find
them promising as they indicate that our detectors
are in some cases actually transferable to other
datasets once trained. Future research is crucial as
in practice it allows to reuse models for different
tasks.

4.3 Data efficiency

While our approach offers state-of-the-art detection
performance of adversarial attacks, the correspond-
ing detector model can be trained with a surpris-
ingly low amount of data. To evaluate this property,

162

we trained a neural network and a random forest
on incremental subsets of the IMDb dataset where
all runs were conducted independently from each
other. We started with a dataset size of 100 and
incrementally increased the number of samples up
to 10,000. From Figure 4 one can directly observe
the limited amount of data needed for the model
to converge. For a neural network about 4,000
samples are needed before the F1-score starts to
plateau. For a random forest classifier even less
data is sufficient with around 3,000 samples.

4.4 Qualitative Results

UMAP: n_neighbors=500, min_dist=0.001

Adversarial
Normal

Figure 5: Visualization of the SHAP signatures of the
AG_News dataset using UMAP. We randomly selected
10% of the samples to avoid overplotting.

In order to understand how the detector is able
to distinguish between normal and adversarial in-
puts, we visualized the SHAP signatures in a two-
dimensional space. To project the samples we rely
on the UMAP dimensionality reduction algorithm
proposed by McInnes et al. (2020). It is based on
the fact that most high-dimensional data actually
lies on a much lower-dimensional manifold and
can be explained by a reduced number of variables.
Figure 5 clearly shows four distinct red clusters
corresponding to the four classes of the AG_News
dataset. Regardless of their original class, most of
the adversarial samples collapse into a single clus-
ter which is clearly separable from the others. This
explains why rather simple detector models are suf-
ficient to accurately differentiate between normal
and adversarial inputs. Our result is consistent with
the experiments done by Fidel et al. (2020) which
performed a similar analysis on SHAP signatures
for images from the CIFAR-10 dataset (Krizhevsky
et al., 2009).

4.5 Limitations

After the success in computer vision (Fidel et al.,
2020), this work shows that SHAP values are also
a valuable asset for discriminating between origi-
nal and adversarial text samples. However, while
word-level explanations are particularly effective at
detecting word-level attacks, it is unclear how they
would transfer to more sophisticated text manipu-
lations. We believe this is a vulnerability as future
attacks could involve using negations or paraphras-
ing whole sentences instead of unigrams.

While the approach’s pipeline is intuitive and the
results look promising, further research needs to
study transferability to more complex target mod-
els such as transformers architectures. At the same
time, we hope that future research also focuses on
creating standard benchmarks to facilitate perfor-
mance comparisons with previous defense meth-
ods.

5 Conclusion

Adversarial text examples are a major challenge
for current research and represent an obstacle for
safely deploying NLP models in high-stakes appli-
cations. While attacks are hard to be distinguished
from their corresponding originals, patterns in the
model’s reaction can be recognized and leveraged
using SHAP signatures for detecting manipulated
input samples.

Our work trains a machine learning detector us-
ing SHAP explanations of normal and adversar-
ial samples generated with PWWS. The proposed
method is both intuitive and effective since it al-
lows to detect parts of a sentence that have a sus-
piciously high impact on the model prediction and
therefore distinguishes between regular and ma-
nipulated samples. Furthermore, our detector is
model-agnostic as it does not make any assumption
on the classifier targeted by the attacks.

Our approach achieves high accuracy and consid-
erably outperforms the previous state of the art. In
terms of data efficiency, we prove that the method
can achieve nearly optimal performance also when
using a small portion of the available data for train-
ing. A qualitative analysis of the SHAP signature
landscape shows most adversarial samples con-
tained in a single cluster, suggesting that model
explanations explicitly encode information to sep-
arate attacks from their counterpart. We believe
this result explains why relatively simple detector
architectures suffice to achieve good performance

163

results.
In terms of transferability to multiple datasets,

our results are promising but yet not sufficient to
prove full generalization capabilities. Although in
some cases we match state-of-the-art performance
even when training on one dataset and testing on
another, our results are highly dependent on the
dataset pair.

We encourage future research to continue work-
ing on generalization across multiple data sources
and to evaluate performance against multiple types
of attacks and models. We believe our contribu-
tion can help researchers to develop better defense
strategies against attacks and thus promoting the
safe deployment of NLP models in practice. We
release our code to the public to facilitate further
research and development 3.

References

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador García, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. 2020. Ex-
plainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward respon-
sible ai. Information Fusion, 58:82–115.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):130–140.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N
Vapnik. 1992. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory,
pages 144–152.

Leo Breiman. 2001. Random forests. Machine learning,
45(1):5–32.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong
Liu. 2021. Towards robustness against natural lan-
guage word substitutions. In 9th International Con-
ference on Learning Representations (ICLR).

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

3https://github.com/huberl/
adversarial_shap_detect_Repl4NLP

Gil Fidel, Ron Bitton, and Asaf Shabtai. 2020. When ex-
plainability meets adversarial learning: Detecting ad-
versarial examples using SHAP signatures. In 2020
International Joint Conference on Neural Networks
(IJCNN). IEEE.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56. IEEE.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174–6181.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris
Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy
Dvijotham, and Pushmeet Kohli. 2019. Achieving
verified robustness to symbol substitutions via in-
terval bound propagation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4083–4093.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alex Krizhevsky et al. 2009. Learning multiple layers
of features from tiny images.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4768–4777, Red Hook, NY, USA. Curran Associates
Inc.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

164

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning
Representations.

Leland McInnes, John Healy, and James Melville. 2020.
Umap: Uniform manifold approximation and projec-
tion for dimension reduction.

Edoardo Mosca, Maximilian Wich, and Georg Groh.
2021. Understanding and interpreting the impact of
user context in hate speech detection. In Proceedings
of the Ninth International Workshop on Natural Lan-
guage Processing for Social Media, pages 91–102.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186,
Online. Association for Computational Linguistics.

Mesut Ozdag. 2018. Adversarial attacks and defenses
against deep neural networks: A survey. Procedia
Computer Science, 140:152–161. Cyber Physical
Systems and Deep Learning Chicago, Illinois Novem-
ber 5-7, 2018.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5582–5591. Association for Com-
putational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann.
2019. The odds are odd: A statistical test for de-
tecting adversarial examples. In Proceedings of the
36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 5498–5507. PMLR.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1985. Learning internal representations by
error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science.

M. Schuster and K. K. Paliwal. 1997. Bidirectional
recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681.

Lloyd S. Shapley. 1952. A Value for n-Person Games.
RAND Corporation, Santa Monica, CA.

P. Sharma, D. Austin, and H. Liu. 2019. Attacks on ma-
chine learning: Adversarial examples in connected
and autonomous vehicles. In 2019 IEEE Interna-
tional Symposium on Technologies for Homeland Se-
curity (HST), pages 1–7.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 3145–3153. PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In 2nd International Conference on Learning
Representations, ICLR 2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 3319–3328. JMLR. org.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xi-
angyu Zhang. 2018. Attacks meet interpretability:
Attribute-steered detection of adversarial samples. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Xiaosen Wang, Hao Jin, and Kun He. 2019. Natural
language adversarial attacks and defenses in word
level. arXiv preprint arXiv:1909.06723.

165

Maximilian Wich, Edoardo Mosca, Adrian Gorniak,
Johannes Hingerl, and Georg Groh. 2021. Explain-
able abusive language classification leveraging user
and network data. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 481–496. Springer.

Weilin Xu, David Evans, and Yanjun Qi. 2018. Fea-
ture squeezing: Detecting adversarial examples in
deep neural networks. In Proceedings 2018 Network
and Distributed System Security Symposium. Internet
Society.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing. ACM Transactions on Intelligent Systems and
Technology, 11(3):1–41.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649–657, Cambridge,
MA, USA. MIT Press.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-wei
Chang, and Xuanjing Huang. 2020. Defense against
adversarial attacks in nlp via dirichlet neighborhood
ensemble. arXiv preprint arXiv:2006.11627.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4904–
4913, Hong Kong, China. Association for Computa-
tional Linguistics.

166

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 167 - 172
May 26, 2022 ©2022 Association for Computational Linguistics

Binary Encoded Word Mover’s Distance

Christian Johnson
Universität Osnabrück, Institut für Kognitionswissenschaft

Wachsbleiche 27, 49074 Osnabrück, Germany
cjohnson@uni-osnabrueck.de

Abstract

Word Mover’s Distance is a textual distance
metric which calculates the minimum trans-
port cost between two sets of word embeddings.
This metric achieves impressive results on se-
mantic similarity tasks, but is slow and difficult
to scale due to the large number of floating
point calculations. This paper demonstrates
that by combining pre-existing lower bounds
with binary encoded word vectors, the metric
can be rendered highly efficient in terms of
computation time and memory while maintain-
ing competitive accuracy on several textual sim-
ilarity benchmarks.

1 Introduction

A textual distance metric which can be used to
accurately and quickly quantify the semantic dis-
similarity between documents is useful for many
natural language processing (NLP) tasks includ-
ing text classification, document clustering, and
document retrieval.

Word Mover’s Distance (WMD) proposed by
(Kusner et al., 2015) is a variant of the Earth
Mover’s Distance which measures the semantic dis-
tance between texts. Earth Mover’s Distance is a
well-studied transportation problem for measuring
the distance between two probability distributions
and was originally proposed for image retrieval
applications (Rubner et al., 1998).

WMD leverages semantic distance information
from pre-trained neural word embeddings to cal-
culate a minimum transportation cost needed to
’move’ the words from one text to those of an-
other (Kusner et al., 2015). Let c(i, j) represent
the Euclidean distance transport cost between word
embeddings i and j in documents d and d′, re-
spectively. The minimum cumulative (weighted)
transport cost differentiating the two documents
can then be summarized as,

min
T≥0

n∑

i,j=1

Tij c(i, j)

subject to:
n∑

j=1

Tij = di ∀ i ∈ {1, ..., n}

n∑

i=1

Tij = d′j ∀ j ∈ {1, ..., n}

(1)

where Tij represents how much of word embed-
ding i travels to word embedding j. Solving this
linear program given the above constraints provides
the WMD. When evaluated via a k Nearest Neigh-
bors (kNN) classification task on eight document
classification datasets, WMD is demonstrated to
outperform a variety of text similarity metrics such
as the Okapi BM25, TF-IDF vector distance, and
Latent Dirichlet Allocation (Kusner et al., 2015;
Blei et al., 2003).

Per Equation 1, embedding distances must be
computed for all pairs of unique tokens in the eval-
uated documents, scaling the time complexity for
solving the underlying optimization problem by
O(p3 log p), where p denotes the number of unique
words in a set of query documents. Given these
demands, the memory and online computation time
requirements for calculating WMD quickly dimin-
ish the potential to scale this metric in a production
environment, especially as vocabulary size grows.

Kusner et al. and others have introduced sev-
eral lower bounds to the WMD which reduce com-
putations by relaxing constraints on the original
transport problem, albeit with accompanying per-
formance trade-offs. The Relaxed Word Mover’s
Distance (RWMD) is obtained by removing the
second or third constraints from Equation 1, re-
ducing the number of distance calculations given
that all probability mass for each word in docu-
ment d is moved to its most similar word in d′.
On the aforementioned kNN classification task, the

167

RWMD produces an average error of 0.56, com-
pared to 0.42 for the original WMD (Kusner et al.,
2015).

Werner et al. (Werner and Laber, 2019) pro-
pose another lower bound which involves a prepro-
cessing phase for computing real-value distances
between vocabulary items. During this phase, dis-
tances are computed between each word’s r near-
est neighbors and stored in a distance matrix M
(Werner and Laber, 2019). These precomputed vec-
tor distances are retrieved when calculating trans-
port costs c(i, j) between words; if c(i, j) cannot
be found in M , a default maximum value cmax is
used instead. The Related Relaxed Word Mover’s
Distance (Rel-RWMD), which combines the pre-
processing phase with the relaxed conditions of the
RWMD, is significantly faster to compute while
suffering a modest drop in accuracy compared to
the WMD on text similarity tasks.

Of final note is the Word Centroid Distance
(WCD), which is computed as the distance between
the unweighted average of each text’s word em-
bedding vectors (Kusner et al., 2015). Although
not an alignment-based distance metric, WCD is a
competitive metric which likewise leverages neural
word embedding vectors.

One pain-point of the original WMD which mo-
tivates the use of lookup tables by Werner et al.
is the large amount of floating point calculations
needed to resolve the underlying transport prob-
lem. Floating point arithmetic CPU instructions
are generally slower than integer or bit operations.
Tissier et al. (Tissier et al., 2019) have proposed
an autoencoding methodology for computing bi-
nary embeddings as encoded representations of
an original, real-valued embedding space. With
normalized XOR Hamming distance calculations,
these binary vectors allow one to circumvent CPU-
intensive floating point arithmetic while also re-
ducing the working memory footprint of the word
vectors by up to 97% (Tissier et al., 2019).

This paper contributes a methodology for inte-
grating the binary vectors of Tissier et al. with the
existing Rel-RWMD lower bound as the Binary En-
coded Word Mover’s Distance (BEWMD). It is hy-
pothesized that by replacing the default cmax value
of the Rel-RWMD with normalized binary vector
Hamming distances, the proposed metric will pro-
duce a more accurate lower-bound to the original
WMD while maintaining competitive computation
times and, importantly, low memory requirements.

2 Methodology

The proposed lower bound is realized via neu-
ral network encoding of real-valued word vectors
and manipulation of the Rel-RWMD calculation.
An autoencoder network is trained with resort to
a novel regularization parameter, while the Rel-
RWMD calculation is modified to accommodate
the binary-encoded vectors and render it bidirec-
tional.

2.1 Autoencoder Architecture

An autoencoder is a neural network composed of
an encoder and a decoder. The encoder forces an
input into a representation which is then decoded
into a reconstruction of the original input. By com-
paring the original and reconstructed inputs via a
loss function which minimizes their difference, the
autoencoder learns an encoded representation of
the input data which is assumed to preserve the
structure of the original embedding space. Per the
methodology of (Tissier et al., 2019), a neural au-
toencoder with a specialized loss function is em-
ployed to produce the binary word vectors which
support the proposed lower bound.

The autoencoder is implemented in Python 3.x
via Tensorflow 2.x, consisting of an encoder with
two hidden layers and a decoder with a single hid-
den layer. The encoder’s input layer is the same
size as a single real-valued vector (300 dimensions),
while the subsequent hidden layers and the input
to the decoder are adaptable to a desired encoded
vector size.

2.2 Correlation Based Regularization

This paper’s approach deviates from that of (Tissier
et al., 2019) in that the loss function used to min-
imize the difference between inputs and recon-
structed vectors contains an additional correla-
tion based regularization term. A standard mean
squared error loss function is insufficient to pre-
serve the original vector space’s semantic relation-
ships in the encoded vectors, as the network will
learn to discard ’too much similarity information
from the original space in favor of the reconstruc-
tion’ (Tissier et al., 2019). Tissier et al. exploit the
encoder’s weight matrix W , along with its trans-
position W T and corresponding identity matrix I
to derive an additional differentiable regularization
term lreg which is added to the mean square error
loss function, as demonstrated in Equation 2.

168

lreg =
1

2
∥W TW − I∥2 (2)

where the loss function, including the mean squared
error as lrec, amounts to

L = lrec + λreg lreg (3)

where λreg is a regularization hyperparameter be-
tween 1 and 4. Implementing this regularization
parameter per the methodology of (Tissier et al.,
2019), it was found that the adjusted loss function
indeed improves training, but still results in com-
pressed vectors which discard much of the semantic
information contained in the original vector space.
Thus, the loss function used in this paper includes
an additional regularization parameter determined
via correlation analysis of batch-pairwise distance
matrices.

Let B denote a single training batch of size m.
In all experiments, a batch size of m = 75 is used.
Considering an m× n input batch matrix, where n
denotes the original vector size of 300 dimensions,
the corresponding, binarized code batch matrix will
be an m × k matrix, where k denotes the size of
the reduced vectors.

Computing the pairwise m×m Euclidean dis-
tance matrices BX and BY for both the input and
encoded vector spaces, respectively, one converts
the matrices into ranks rBX and rBY to compute
the Spearman rank correlation coefficient rs as

rs =
cov(rBX , rBY)

σrBX
σrBY

(4)

where cov(rBX , rBY) denotes the covariance of
the rank variables, while σrBX

and σrBY
are the

standard deviations of the rank variables. This
calculation of the Spearman correlation coefficient
is used because it allows for tie rank values, which
is conceivable given the limited range of Hamming
distances possible with the binary vectors. This
coefficient is then integrated into the loss function
as

L = lrec + λreg(lreg + rs) (5)

The additional regularizer rs is summed with
lreg such that its contribution to the loss is also mod-
ulated by the hyperparameter λreg. Given that both
regularization terms serve the same purpose with
respect to the reconstruction loss (preserving dis-
tance information from the original vector space),
it is sensible to combine them in this way and avoid

the need for an additional regularization hyperpa-
rameter. With this new parameter, the adjusted
objective function results in faster convergence and
improves the binary embeddings’ performance on
downstream tasks, presumably by preserving more
distance information from the original vector space.
This improved loss function suggests that local-
ized distance correlations are a valuable training
objective.

2.3 Proposed Lower Bound Calculation
The resultant binary encoded word embeddings
are integrated into a modified version of the Rel-
RWMD, where they are used to compute a normal-
ized Hamming distance in cases where the cosine
distance between two word embeddings cannot
be found in a precomputed lookup table (cache)
C, defining the transport cost c(i, j) between two
words as:

c(i, j) =





0, if i = j

cosine(i, j) if cosine(i, j) ∈ C

Hamming(i, j) otherwise
(6)

As mentioned, the RWMD removes either the
second or third constraint from Equation 1 to cre-
ate the two relaxed solutions ℓ1(d, d′) and ℓ2(d′, d).
These solutions require only the identification of
each word’s nearest neighbor from the other doc-
ument in either of the two directions, given that
each word’s mass will be transferred entirely to its
most similar word in the other document. Rather
than opting for one of the two lower bounds (Rel-
RWMD uses the maximum of the two), the solution
presented in this paper computes both lower bounds
and combines them via summation to render the
distance calculation bidirectional. This summation
approach is supported by the fusion methodology
evaluated by (Hamann, 2018). Thus, the Binary
Encoded Word Mover’s Distance (BEWMD) is de-
fined as

BEWMD =
α + β

2

where: α =
1

n
· min

n∑

i,j=1

c(i, j)

β =
1

n
· min

n∑

j,i=1

c(j, i)

(7)

Note that the summed costs are divided by the
document length n, in order to constrain the metric
to a value between 0 and 1; the sum of the pendant

169

unidirectional transport costs α and β is likewise
divided by 2. Cosine distance is employed rather
than Euclidean given that angular distance is theo-
retically more-resilient to variations in vector mag-
nitude which are semantically-irrelevant artifacts of
the vector-training process, as in the methodologies
of (Mikolov et al., 2013; Zhang et al., 2018).

3 Results

Per the methodology of (Werner and Laber, 2019;
Dai et al., 2015), BEWMD performance on a down-
stream semantic-similarity task is evaluated via the
Stanford Triplets Wikipedia benchmark1. Metrics
are assessed according to their ability to distin-
guish for a triplet of documentsD1,D2,D3, which
pair of documents is most-related. Success for a
single triplet is achieved if a metric computes the
lowest distance score for the most-related docu-
ment pair, namely D1 and D2. Triplet documents
are Wikipedia articles which were preprocessed to
remove non-alphanumeric characters and tokens
which are not embedded under the attested models,
in order to maintain computation time comparabil-
ity across all tested metrics.

The autoencoder model used to produce the en-
coded vectors was fitted to pretrained word vectors
from FastText (Bojanowski et al., 2016) (Common
Crawl, 600B tokens)2. Consequently, all other dis-
tance metrics which rely on pretrained word embed-
dings used the same vectors. The autoencoder is fit-
ted to the first 300,000 word vectors, which, given
that the vectors are sorted by frequency, are as-
sumed to be highly-representative of the full vector
space. Training lasted for ten epochs with λreg = 4.
Original real-valued vectors of 300 floating-point
dimensions are encoded to 512-bit representations,
per the register sizes of AVX-512 CPUs. Although
the WMD was originally defined with Euclidean
distances, cosine rather than Euclidean distance is
used to compute the cost c(i, j) for all metrics, so
as to avoid spurious comparisons with BEWMD.

Tables 1, 2, and 3 demonstrate metric perfor-
mance in terms of test error, offline, and online
computation time, respectively. Table 4 documents
the memory requirements of any vector models
or lookup tables used during online computations.
Online computation time is recorded as average
time per evaluation iteration, or seconds required
to evaluate a single triplet during online distance

1http://cs.stanford.edu/ quocle/triplets-data.tar.gz
2https://fasttext.cc/docs/en/english-vectors.html

calculation. Offline computation time is defined as
the amount of computation time in minutes to per-
form any one-time preprocessing such as the fitting
of neural network models or calculation of lookup
tables. Results are reported from Python imple-
mentations of the relevant metrics, where identical
vector models or cache lookup tables are, where
possible, used to maintain comparability across
the metrics. The RWMD and Rel-RWMD lower
bounds are interpreted as the maximum of the two
possible relaxed solutions ℓ1(d, d′) and ℓ2(d

′, d)
(Kusner et al., 2015). The cmax value used when
calculating Rel-RWMD is set to 0.8. All metrics
are evaluated against the same 300 triplets. Calcu-
lations were performed on a machine with an Intel
i7-8565U CPU and 8GB RAM.

BEWMD WCD WMD RWMD Rel-RWMD

0.393 0.436 0.389 0.594 0.641

Table 1: Triplets test error as a value between 0 and 1

BEWMD WCD WMD RWMD Rel-RWMD

283.50 0.00 0.00 0.00 88.85

Table 2: Offline computation time (min)

BEWMD WCD WMD RWMD Rel-RWMD

1.68 0.006 23.18 19.39 0.52

Table 3: Online computation time (sec/iter)

BEWMD WCD WMD RWMD Rel-RWMD

836 4409 4409 4409 790

Table 4: Online memory requirements (MB)

Additionally, this paper compares metric perfor-
mance on three of the kNN benchmarks from (Kus-
ner et al., 2015): BBC Sport contains sports articles
between 2004-2005, Classic contains sets of sen-
tences from academic papers, and Ohsumed is a col-
lection of medical abstracts categorized by disease
groups. Datasets are retrieved from the repository
associated with the original paper3. Each dataset
is subsampled to 100 randomly-selected samples
(80 train, 20 test) across 5 sampling iterations. Ta-
ble 5 shows the evaluated datasets and mean kNN

3https://github.com/mkusner/wmd

170

test classification error across all 5 random sub-
samplings for each metric. In all cases, a value of
k = 5 is used. The same preprocessing techniques
employed during the aforementioned Triplets evalu-
ation were also used when performing the distance
calculations which support the kNN evaluation. Al-
though the reported results cannot address those
from the original paper, they provide an additional
indication of the proposed metric’s performance
relative to its peers.

BEWMD WCD WMD RWMD Rel-RWMD

BBC Sport 0.12 0.07 0.16 0.23 0.45
Classic 0.11 0.25 0.14 0.21 0.42

Ohsumed 0.58 0.6 0.6 0.65 0.7

Table 5: Mean test error on kNN classification task

4 Discussion

Results on these limited tasks demonstrate that
the proposed metric is competitive with the orig-
inal WMD in terms of test error while offering
respectable online computation time improvements
and a lower memory footprint.

Comparing BEWMD Triplets performance to
that of the other metrics, it can be ascertained that
for this task it is the most accurate lower bound
to the original WMD. Notably, the BEWMD of-
fers a clear improvement upon the Rel-RWMD,
assumedly by utilizing normalized binary vector
Hamming distances as opposed to a default cmax
value (Werner and Laber, 2019). Furthermore, BE-
WMD test error is highly-competitive with the orig-
inal WMD, confirming the accuracy of the encoded
vectors as compared to their real-valued counter-
parts.

Results for the three kNN benchmark tasks
further substantiate BEWMD as a consistently-
effective lower bound. BEWMD consistenly out-
performs RWMD, Rel-RWMD, and even the origi-
nal WMD. These results pose the hypothesis that
the encoded vectors can offer a more-effective word
representation for certain tasks. However, rigorous
evaluation of the potential representation advan-
tages offered by the encoded vectors is outside the
scope of this paper.

Regarding computation and memory demands,
BEWMD compares favorably with RWMD and
Rel-RWMD, offering a reasonable computation
time trade-off against the Rel-RWMD when BE-
WMD’s improved test error is considered. All met-
rics which employ the real-valued vectors demand

some 4GB of memory, while BEWMD and Rel-
RWMD benefit from the reduced memory footprint
of precomputed lookup tables and binary encoded
vectors. Optimization of the BEWMD calculation
so as to remove the need for precomputed lookup
tables altogether remains a promising next step for
further reducing the memory demands of the pro-
posed metric.

It is worth noting the efficacy of WCD given
that, in terms of Triplets test error alone, this met-
ric outperforms all WMD lower bounds except the
BEWMD. Furthermore, kNN benchmark evalua-
tions place WCD consistently ahead of RWMD and
Rel-RWMD, even surpassing WMD on the BBC
Sport dataset. Although WCD requires more mem-
ory than either BEWMD or Rel-RWMD, its low
computation time coupled with a relatively low test
error on several evaluations pose this metric as a
pragmatic alternative to WMD and the proposed
metric for many use-cases.

These evaluations suggest that the BEWMD of-
fers a balanced alternative to the original WMD,
improving speed up to 14x while achieving com-
petitive test error on several tasks. Furthermore,
BEWMD’s reduced memory footprint makes it suit-
able for low-resource compute environments. The
demonstrated benefits of the BEWMD are, how-
ever, offset by its considerable offline computations,
which demand, under the experimental parame-
ters used in this paper, some 4 hours to compute
both the encoded vectors and the nearest neighbor
lookup table. For applications under constrained
hardware where an upfront computation investment
is tolerable, the BEWMD offers a consistently op-
timal lower bound to the original WMD.

As an ethical aside, it must be mentioned that
optimized libraries for several of the lower bounds
presented here outperform the evaluated BEWMD
Python implementation in terms of online compu-
tation time, and it is not this paper’s intent to evade
these performance discrepencies. The evaluations
presented here aim only to compare lower bound
performance using comparable software implemen-
tations.

This paper suggests that binary encoded word
vectors are valuable towards improving the scala-
bility of WMD-derived distance metrics. The pre-
sented lower bound may be enhanced by optimiz-
ing the distance calculation in order to circumvent
WMD approximation or the need for precomputed
lookup tables.

171

References
David Blei, Andrew Ng, and Michael Jordan. 2003. La-

tent dirichlet allocation. Journal of Machine Learn-
ing Research, 3:993–1022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Andrew Dai, Christopher Olah, and Quoc Le. 2015.
Document embedding with paragraph vectors.

Felix Hamann. 2018. A neural embedding compressor
for scalable document search. page 0.

Matt Kusner, Y. Sun, N.I. Kolkin, and Kilian Weinberger.
2015. From word embeddings to document distances.
Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), pages 957–966.

Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. pages 1–12.

Yossi Rubner, Carlo Tomasi, and Leonidas Guibas.
1998. Metric for distributions with applications to
image databases. pages 59–66.

Julien Tissier, Amaury Habrard, and Christophe Gravier.
2019. Near-lossless binarization of word embed-
dings. In AAAI.

Matheus Werner and Eduardo Laber. 2019. Speeding up
word mover’s distance and its variants via properties
of distances between embeddings.

Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, and
Xueqi Cheng. 2018. Aggregating Neural Word Em-
beddings for Document Representation, pages 303–
315.

172

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 173 - 183
May 26, 2022 ©2022 Association for Computational Linguistics

Unsupervised Geometric and Topological Approaches for Cross-Lingual
Sentence Representation and Comparison

Shaked Haim Meirom1 and Omer Bobrowski1,2

1 Viterbi Faculty of Electrical & Computer Engineering, Technion - Israel Institute of Technology
2 School of Mathematical Sciences, Queen Mary University of London
{shakedmeirom@campus, omer@ee}.technion.ac.il

Abstract
We propose novel structural-based approaches
for the generation and comparison of cross lin-
gual sentence representations. We do so by
applying geometric and topological methods to
analyze the structure of sentences, as captured
by their word embeddings. The key proper-
ties of our methods are: (a) They are designed
to be isometric invariant, in order to provide
language-agnostic representations. (b) They
are fully unsupervised, and use no cross-lingual
signal. The quality of our representations, and
their preservation across languages, are eval-
uated in similarity comparison tasks, achiev-
ing competitive results. Furthermore, we show
that our structural-based representations can be
combined with existing methods for improved
results.

1 Introduction

Word embeddings are driven by distributional con-
cepts, i.e. words can be described by their sur-
rounding words. For example, the words “dog”
and “cat” often occur in similar contexts, and there-
fore their embeddings are expected to be nearby,
and to have similar distances to other words. Such
similarities are inherent to the real world (e.g., a
dog is similar to a cat), and therefore should be
language-agnostic. For that reason, the embedding
spaces of different languages are expected to be
near-isomorphic (Miceli Barone, 2016). Notably,
Vulić et al. (2020) demonstrated that high degree of
isomorphism can be reached with sufficient mono-
lingual resources. This assumption has enabled
various applications at the word level, e.g. gener-
ating cross-lingual word embeddings by mapping
monolingual vector spaces (Artetxe et al., 2018;
Conneau et al., 2018).

In this paper, we take a step further, leveraging
the approximate isomorphism between monolin-
gual spaces at the sentence level. Considering each
sentence as a point cloud (made by its word em-
beddings), our key argument is that these point

clouds retain geometric and topological structures
that should be preserved across languages. There-
fore, they have the potential to enable language-
agnostic sentence representations.

We investigate different approaches for extract-
ing and utilizing such structures. Firstly, we devise
a geometric approach, based on the intra-distances
of the word embeddings in a sentence. Secondly,
we explore a topological approach, borrowing
methods from Topological Data Analysis (TDA).
Briefly, TDA provides algebraic-topological meth-
ods to extract global structural information from
shapes. These methods are coordinate free and
invariant to isometries (Carlsson, 2009; Zomoro-
dian, 2012), which is highly desired in our setting.
Our main goal is to employ these structure-based
features to generate novel cross-lingual sentence
representations, in a fully unsupervised manner.

In order to evaluate the cross-lingual nature of
our representations, we experiment with similarity
comparison tasks, including bilingual sentence re-
trieval (Guo et al., 2018) and machine translation
quality estimation (Specia et al., 2020).

Our contributions can be summarized as follows.
(1) Proposing the novel concept of exploiting the
isomorphism of word embedding spaces at the sen-
tence level. (2) Devising fully unsupervised meth-
ods for cross-lingual sentence representation, based
on geometric and topological approaches. (3) Pro-
viding measures of similarity for the new represen-
tations. (4) Evaluating the extent to which these
representations are preserved across languages, via
downstream similarity comparison tasks.

2 Isometry of Word Embedding Spaces

Measuring and utilizing the similarities between
word embedding spaces, is a well-studied topic
in NLP. In this context, a standard assumption is
that monolingual word embedding spaces are ap-
proximately isomorphic. A common use for such
near-isomorphism is to search for a linear trans-

173

formation between the embedding spaces of differ-
ent languages (Artetxe et al., 2018; Mikolov et al.,
2013a; Glavaš et al., 2019). Other studies argue
that a better practice is to consider orthogonal trans-
formations (Xing et al., 2015; Smith et al., 2017).
These transformations have been used to induce
bilingual dictionaries (Xing et al., 2015; Artetxe
et al., 2018), as well as cross-lingual transfer learn-
ing (Ruder et al., 2019). In fact, mapping-based
approaches have become a prevalent way to learn
cross-lingual embedding spaces.

The isomorphism assumption is also used in
fully unsupervised settings, including unsupervised
bilingual lexicon induction (Artetxe et al., 2018;
Conneau et al., 2018) and unsupervised machine
translation (Lample et al., 2018; Artetxe et al.,
2019). Here, the alignment between the mono-
lingual embedding spaces cannot be achieved by
mapping pre-existing bilingual dictionaries. In-
stead, it is achieved either by using adversarial
training (Conneau et al., 2018) or by comparing the
distribution of similarities or distances of the word
embeddings across languages (Artetxe et al., 2018;
Alvarez-Melis and Jaakkola, 2018).

As explained by Xu and Koehn (2021), the iso-
morphism of embedding spaces can be extended to
isometry, using normalization techniques. As the
isometry of word embedding spaces becomes the
premise for a large variety of methods, the follow-
ing question arises: can we leverage the isometry
of word embeddings at the sentence level?

Our approach is to take the embedding of a sen-
tence to be the word-by-word embedding, resulting
in a point-cloud (finite collection of points). As-
suming nearly-isometric word embeddings, one
would expect that the geometric and topological
structures of these point clouds are preserved across
languages to some extent. For this reason, we de-
vised methods to extract such structural informa-
tion from sentences and provide means to compare
the structures of different sentences.

3 Related Work

Various studies of unsupervised cross-lingual sen-
tence representations rely on aggregation of either
mapped word embeddings or contextualized word
embeddings from pre-trained multilingual models
(Smith et al., 2017; Conneau et al., 2018; Xu and
Koehn, 2021; Kvapilíková et al., 2020). These
studies often rely (implicitly or explicitly) on the
isometry assumption between word vector spaces,

for constructing cross lingual mappings. However,
they do not utilize the isometry for generating sen-
tence representations.

Closer to our work are studies using struc-
tural similarities between languages. Both Aldar-
maki et al. (2018) and Alvarez-Melis and Jaakkola
(2018) exploit the preservation of geometric struc-
tures between monolingual vector spaces for cross
lingual mapping of word embeddings. However,
neither refer to geometric structures of sentences.

Finally, several studies have used topological ap-
proaches in NLP related tasks, such as word sense
disambiguation (Jakubowski et al., 2020) and text
visualization (Sami and Farrahi, 2017). TDA meth-
ods were also used to generate sentence and docu-
ment representations. Zhu (2013) was the first to
introduce the concept of topological text represen-
tation. Built on this idea, recent studies designed
various methods for document representations by
computing persistent homology (see Section 6.2)
over their word embeddings. These methods were
evaluated on tasks such as document classifica-
tion and discourse analysis (Tymochko et al., 2020;
Gholizadeh et al., 2020; Savle et al., 2019). Most
related to our work is Michel et al. (2017), where
persistence diagrams were used to represent docu-
ments and sentences. Their final representation and
comparison of sentences are quite different than
ours, and achieved negative results in classification
and clustering tasks. To the best of our knowl-
edge, no previous study used topological-based
approaches in cross-lingual tasks.

4 Sentence Distance Matrix

In this section we present the fundamental element
of our pipeline – the Sentence Distance Matrix
(SDM). Representing sentences by point clouds,
the geometric information about the sentence can
be encoded by the pairwise distances between the
words. Formally, let X = (x1, ..., xn) be a col-
lection of word embeddings. We define SDMX

to be the n× n matrix whose entries are given by
(SDMX)i,j = dist(xi, xj), where dist can be any
metric in the embedding space.

The motivation for using SDMs, is that in the
hypothetical case where X and Y represent equal-
length sentences1, with parallel words, and in lan-
guages with perfectly-isometric word embeddings,
we have SDMX = SDMY . Realistically, while
translated words are not always parallel, they are ex-

1We will treat non-equal sentence lengths in Section 6.1.

174

(a) ‘dog’, ‘stood’, ‘floor’,
‘cat’, ‘sat’, ‘mat’

(b) ‘perro’, ‘paró’, ‘suelo’,
‘gato’ , ‘sentó’, ‘alfombra’

Figure 1: SDMs for an English sentence (a) and its
Spanish translation (b), stopwords removed. Note the
pairs dog-cat and stood-sat are close in both languages.

pected to be semantically related. In addition, while
perfect-isometry does not exist, we do expect to
have near-isometric embeddings. Thus, we expect
translated sentences to have SDMX ≈ SDMY ,
implying that the SDM is a good candidate to rep-
resent and compare the structure of sentences.

We demonstrate the resemblance between the
SDMs of sentences in different languages in the
following example. The Spanish sentence:

El perro se paró en el suelo y el gato se
sentó en la alfombra,

is a translation of the following English sentence:
The dog stood on the floor and the cat
sat on the mat.

The SDMs of these sentences are presented in
Figure 1. The resemblance between the English
sentence and its Spanish translation is apparent
through their SDMs.

Defining suitable metrics to compare between
SDMs (see Sections 5 and 6), will enable us mea-
sure similarity between sentences in different lan-
guages, without any supervised or bilingual sig-
nal. This measurement can be useful in many NLP
tasks, such as Machine Translation Quality Estima-
tion (Specia et al., 2020), Parallel Corpus Filtering
(Koehn et al., 2020), Parallel Corpus mining (Guo
et al., 2018) and Cross-Lingual Plagiarism Detec-
tion (Danilova, 2013). In addition, such multilin-
gual representations can be useful in cross lingual
transfer learning (Ruder et al., 2019).

5 Toy Example

To demonstrate the potential of SDMs, we start
with a simple experiment. As we argued earlier,
the SDMs of sentences and their translations should
be similar, especially if the translation uses paral-
lel words (word-by-word translation). This sug-
gests that SDMs can achieve high performance in a

Figure 2: Distances between SDMs of English sentences
and SDMs of parallel Italian sentences.

Accuracy En-It It-En
P@1 0.939± 0.008 0.902± 0.006
P@5 0.979± 0.003 0.957± 0.006

P@10 0.987± 0.003 0.969± 0.05

Table 1: Results of bilingual sentence retrieval, based on
word-by-word translations, using SDMs as the distance
measure between sentences.

suitable bilingual sentence retrieval setting, which
measures the accuracy on retrieving the translation
of a sentence from a given bilingual corpus.

The experiment settings are as follows. We use
the English-Italian dataset provided by Dinu et al.
(2014) and Artetxe et al. (2016). The dataset con-
tains monolingual word embeddings trained with
word2vec using the CBOW method with negative
sampling (Mikolov et al., 2013a)2. We apply length
normalization and mean centering to all embed-
dings. In addition to the embeddings, the dataset
also contains a bilingual dictionary, split into a
training set of 5,000 word pairs and a test set of
1,500 word pairs, both are uniformly distributed in
frequency bins. We use the training bilingual dic-
tionary, and removed repetitions3, which resulted
in a dictionary of 3,281 word pairs. We generate a
bilingual corpus of 1,000 artificial sentence pairs
using random sampling from the bilingual dictio-
nary, such that each sentence is made of a sequence
of 20 random words, and its parallel sentence is
made of the translations of these words.

Next, we calculate the SDM of each sentence
(a 20 × 20 distance matrix), using the Euclidean
distance. In order to measure the distance between
the English and Italian sentences, we use the Frobe-
nius norm of the difference between their respective
SDMs. This results in a 1000× 1000 distance ma-
trix, the first 100×100 block of which is presented

2The hyper-parameters and corpora used to create the
dataset are described in Artetxe et al. (2016).

3Words which appear more than once in the dictionary.

175

in Figure 2. The sentences have the same order in
both languages. Therefore, the distance between
each sentence and its translation appears in the di-
agonal. One can easily notice that the diagonal
tends to contain the lowest values, supporting our
intuition that translations should have the closest
SDM to their source sentences.

To provide quantitative evaluation we used the
mean accuracy measure. We count how many
times the correct translation of a source sentence
is retrieved, and report mean precision@k for
k = 1, 5, 10, by repeating the experiment 10 times.
The results are provided in Table 1. Note that even
though the SDMs do not rely on any supervised
or bilingual signal, the results are near-perfect.
This demonstrates the potential of SDMs in cross-
lingual settings, and the preservation of the geomet-
ric structure of sentences across languages.

6 Methods

In this section, we describe how to utilize SDMs for
sentence representation in the realistic case, where
parallel sentences in different languages may differ
in length and word ordering. Section 6.1 describes
a direct approach – interpolating the SDMs of par-
allel sentences to have the same size, enabling a
direct matrix comparison. Section 6.2 describes a
vastly different approach – extracting topological
structure information from the SDMs using TDA.

6.1 A Geometric Approach

In Section 5 we showed that the Frobenius norm
is an effective method to measure similarity be-
tween SDMs of sentences in different languages.
However, this procedure requires that the compared
sentences share the same length and order. In re-
ality however, this is often not the case. In this
section we propose a framework that generalizes
this procedure to the most generic setting.

The first challenge to address is different sen-
tence lengths. To this end, we propose to rescale
the SDM matrices. Matrix rescaling is a funda-
mental challenge in the field of image processing,
e.g. when zooming in (upscaling) or zooming out
(downscaling). We use the well-known B-spline
interpolation method introduced by Hou and An-
drews (1978), and refined by Unser et al. (1991).
Briefly, in order to upscale an SDM we find the
piecewise polynomial function that best approxi-
mates the original matrix values, and then sample
this function at the desired resolution. The result-

Figure 3: Interpolated SDMs pipeline. The word em-
beddings of each sentence are used to generate an SDM.
The smaller SDM is then interpolated to match the size
of the larger one. Using Frobenius norm we can now
measure the distance between the sentences.

ing pipeline is presented in Figure 3, and is referred
to as interpolated SDM (ISDM).

The next challenge we need to address is the
different word ordering between parallel sentences.
Intuitively, we propose to match words based on
their geometric representation (encoded by the
SDM) rather than their position within the sentence,
without any bilingual signal. Given two sentences,
we take the columns of their interpolated SDMs
(vaguely representing words) and search for the op-
timal matching that minimizes the Frobenius norm.
This variation of the pipeline is referred to as order-
aware interpolated SDM (OSDM).

6.2 A Topological Approach
In this section, we propose a vastly different
method to represent and compare sentences, by
extracting robust information from the SDMs, de-
scribing the topological structure of sentences.

6.2.1 Topological Data Analysis
Topological Data Analysis (TDA) promotes the
use of mathematical topology in analyzing data
and networks (Carlsson, 2009; Zomorodian, 2012;
Zhu, 2013). The key idea is that topology can be
used to study the shape of data in a qualitative way
that is isometric invariant and robust to continuous
deformations. In this section we briefly introduce
the relevant concepts and tools of TDA, and discuss
how to adapt them for sentence analysis.
The Vietoris-Rips complex. A simplicial complex
is a high-dimensional generalization of a graph,
consisting of vertices, edges, triangles, tetrahedra,
and higher dimensional faces. In order to extract
structural information from point clouds (word em-
beddings in our setting), a common practice in TDA

176

Figure 4: VR complexes of word embeddings, for an increasing diameter r (using the Euclidean distance). For
instance, VR(r=5.6) includes two 1-dimensional faces (edges), since there are two subsets of size 2, whose diameter
is less than 5.6. The embeddings were extracted using GloVe (Pennington et al., 2014), and transformed to R2 using
PCA, for visualization purposes. Note that the last step introduces two 2-dimensional faces (triangles).

Figure 5: Persistence diagram for the sequence of VR
complexes in Figure 4. The red points mark connected
components (0-cycles), and their deaths occur when
two components merge. For example, at r ≈ 3.3 a 0-
dimensional cycle dies, as the components of “man” and
“woman” merge. The blue point marks a hole (1-cycle),
appearing at r ≈ 7 and later filled in at r ≈ 8.

is to first construct a simplicial complex known as
the Vietoris-Rips (VR) complex. Given a point
cloud P , the vertex set of VRr(P) is just P , and
its k-dimensional faces are all subsets S ⊂ P of
size k+ 1, whose diameter is less than r. In Figure
4 we present a sequence of VR complexes, for a
point cloud P made by the word embeddings of
the well-known word set “king”, “queen”, “man”,
and “woman”.

Homology is an algebraic topological structure that
characterizes the shape of topological spaces. If X
is a topological space (e.g., the VR complex), we
attach to it a sequence of vector spaces (or groups)
denotedH0(X),H1(X),H2(X), etc. The basis el-
ements ofH0(X) correspond to the connected com-
ponents (referred to as 0-cycles) of X , H1(X) – to
loops surrounding holes in X (1-cycles), H2(X) –
to closed surfaces enclosing “bubbles” in X (2-
cycles). Generally, Hk(X) represents informa-
tion about “k-dimensional cycles”, which can be
thought of as k-dimensional surfaces that are empty
from within. For more details, see (Hatcher, 2002).

Persistent Homology (PH) is the core method used
in TDA, whose goal is to extract robust multi-scale
topological information from data. Consider the
VRr(P) complex described above. Increasing the
value of r, k-cycles may form at various times (r),
and later terminate (merge with another component
or fill in). The k-th persistent homology, denoted
PHk, tracks this birth-death process. The informa-
tion provided by PHk is often summarized by a per-
sistence diagram, which is a collection of points in
the plane, where the x and y coordinates represent
the birth and death times of a cycle, respectively.
In Figure 5 we present the persistence diagram
extracted from the sequence of VR complexes in
Figure 4. This example demonstrates the unique
information captured by PH, which in this exam-
ple highlights the circular relationship between the
words king→queen→woman→man→king.
Wasserstein Distance is the most commonly used
metric to compare between persistence diagrams,
based on an optimal matchings of their points. For
every two diagrams D1, D2 we denote by D̂1, D̂2

their augmented versions that include the diagonal
line (death=birth). This allow for matchings that
add or remove points from each diagram, by as-
signing them with the nearest point on the diagonal.
The p-Wasserstein distance is then

Wp(D1, D2) := inf
ϕ:D̂1→D̂2

(∑

x∈D̂1

∥x−ϕ(x)∥p
)

1/p

,

where ϕ goes over all possible bijections.

6.2.2 Order-Aware Persistence Diagrams
We wish to use persistent homology to extract and
compare the structural information of sentences. In
order to do so, we take our point clouds to be the
word embeddings of a sentence, and compute the
persistent homology for the VR complex, using the
distances calculated by the SDM. To measure sim-
ilaity between two sentences, we use the Wasser-

177

Figure 6: Topological distance pipeline. The word em-
beddings of each sentence are used to generate an SDM.
The SDMs are used to generate the persistence diagrams
for the VR complex. The Wasserstein distance is used
to measure the similarity between the diagrams.

stein distance of their corresponding persistence
diagrams. See Figure 6 for the complete pipeline.

Note that each step of the pipeline is isometric
invariant, and therefore allows for cross-lingual
representation and similarity measurement. In ad-
dition, while the proposed method compares struc-
tural information of sentences, it does not require
them to have the same length (as opposed to the
comparison of raw SDMs). One drawback of this
pipeline is that it is oblivious to the word ordering
within sentences. Next, we wish to present two
possible solutions to address this issue.

The first solution is to enrich the diagrams with
the positions of the words within a given sentence.
Note that in the case of the VR complex, each death
event in PH corresponds to an edge e∗ entering the
complex, as the parameter value r increases. De-
note by pos1, pos2 the positions of the words that
are the end-points of e∗. We create an augmented
diagram, where each cycle is represented by four
coordinates (birth, death,pos1,pos2). We refer
to the result as the order-aware persistence dia-
gram (OPD). To compare between two such dia-
grams, D1 and D2, we devised an adaptation of the
Wasserstein distance, where the diagonal of D1 is
augmented by taking the pos1, pos2 values to be
the average word positions of all cycles in D2, and
vice verse.

The second method is inspired by the “time
skeleton” concept suggested by Zhu (2013). The
key idea is to encode the flow of the sentence into
the VR complex, by placing an edge between every
two words at adjacent positions in the sentence (at
r = 0), independently of the distance between their
embeddings. We refer to these edges as sequence

edges. This method increases the expressiveness of
H1 (i.e., holes), since all adjacent words are con-
nected immediately, enabling early appearances of
holes. On the other hand, note that the resulting VR
complex is always connected, hence H0 is trivial.

7 Experiments and Results

In this section we want to examine the preservation
of our new representations across languages, by
evaluating their performance in real-world tasks.
In particular, we will focus on tasks that are based
on similarity between parallel sentences. Note that
the proposed methods are fully unsupervised, in the
sense that they do not use any task-specific training
or cross-lingual data. We will evaluate the effective-
ness of our methods as well as their combination
with other unsupervised methods (i.e. without in-
creasing the level of supervision).

7.1 Bilingual Sentence Retrieval

The objective of bilingual sentence retrieval is to
find the translation of sentences in a source lan-
guage from a list of candidates in the target lan-
guage. In this section we want to show that our
methods can be used to enhance the performance
of existing semantic-based methods for the fully
unsupervised version of this task.

We evaluate on the English-Spanish and English-
Russian language pairs of the UN parallel corpus
(Ziemski et al., 2016). We consider 2,000 source
sentences queries and 20,000 possible target sen-
tences for each direction4. For the monolingual
word representations, we use pre-trained fasttext
word embeddings (Grave et al., 2018).

For the baseline, we use the fully unsupervised
version of Vecmap (Artetxe et al., 2018) to map
monolingual word embeddings into a cross-lingual
space. We aggregate the word embeddings by
mean-pooling, in order to represent sentences. The
pipeline we examine has two steps: (1) use the
baseline to list the top 10 nearest neighbours of
each source sentence. (2) Re-rank this list using
our novel representations.

For the first step, we score all possible sentence
pairs using the cosine distance between their em-
beddings. We mitigate the hubness problem of em-
bedding spaces using the margin-based approach
of Artetxe and Schwenk (2019)5. We then create

4We considered sentences with at least 5 words, and
stripped punctuation as a pre-processing step.

5We used the Ratio variant with parameter k = 10.

178

English-Spanish English-Russian
En→Es Es→En En→Ru Ru→En

P@1 P@5 MAP P@1 P@5 MAP P@1 P@5 MAP P@1 P@5 MAP
Vecmap 45.4 64.0 .535 56.2 73.3 .634 36.3 55.9 .448 45.1 65.0 .535
ISDM 39.4 58.0 .480 56.6 71.7 .634 37.1 55.6 .449 42.5 61.1 .511
OSDM 40.3 60.1 .490 4.93 70.9 .586 42.7 58.7 .494 35.2 57.7 .452
OPD0 52.7 68.5 .593 60.5 76.1 .671 40.5 58.2 .480 51.1 69.7 .589
OPD1 51.5 67.3 .583 59.7 76.1 .665 39.2 58.0 .469 50.8 68.4 .583

OPD0+1 53.6 68.5 .599 60.7 76.4 .672 40.6 58.4 .480 51.5 69.7 .592
OPD2 46.7 64.8 .545 57.0 74.1 .641 38.1 56.6 .461 46.1 66.6 .546

OPD0+1+2 51.7 67.2 .584 58.9 74.8 .657 40.3 59.1 .479 49.7 68.7 .578

Table 2: Results for the fully unsupervised bilingual sentence retrieval, as described in Section 7.1. OPDa+b stands
for a linear combination between the baseline, OPDa and OPDb. We highlight the best result for each direction.

an ordered list of the top 10 nearest neighbours of
each source sentence.

In the second step, we wish to enhance the base-
line ranking by applying our new geometric and
topological methods. The methods we examine
are: (1) interpolated SDM (ISDM), (2) order-aware
interpolated SDM (OSDM), and (3) order-aware k-
cycles persistence diagrams (OPDk)6. We use each
of these methods to compute the distance between
every source sentence and its 10 nearest neighbors,
found in step 1. We note that the calculations in this
step are applied directly to the monolingual word
embeddings (rather than the Vecmap embeddings).
Next, we create new scores for each sentence pair
by a linear combination of the baseline distance
(from step 1) and the structure-based distances7.
Finally, we re-rank the top nearest neighbours lists
according to the new scores. As this is a retrieval
task, we follow Glavaš et al. (2019) and use the
Mean Average Precision (MAP), in addition to pre-
cision@k (with k ∈ {1, 5}) for the evaluation.

We report the average results (across all sen-
tence queries) in Table 2. As can be seen, using
our structure-based methods improves the results
of the baseline on all fronts. Remarkably, the im-
provement (15% on average for P@1, and 10% on
average for MAP), does not rely on any additional
data or training. In most cases, the combination
between OPD0 and OPD1 yields the best results,
except for one case in which the OSDM triumphs.
It is also interesting to note that the distance pro-
vided by OPD2 improves the results as well. While
the structural information provided by 2-cycles is
less intuitive (and consequently is uncommonly
used in applications), our results indicate that such

6For the OPD1 we utilize the sequence edges method.
7The weights of the linear combination were chosen ac-

cording to preliminary experiments, and were usually bal-
anced, slightly favoring our methods.

high-dimensional topological structures do carry
significant information in language processing.

7.2 Machine Translation Quality Estimation

The goal here is to predict quality scores for trans-
lated sentences, in a way that is consistent with
human perceived scores, referred to as direct as-
sessment. Since the objective is to compare parallel
sentences, this is a suitable scenario to test our
novel representations across languages.

The implementation details are as follows.
We generate monolingual word representations,
based on pre-trained BPEmb subword embeddings
(Heinzerling and Strube, 2018). These embeddings
were chosen in order to properly deal with out-
of-vocabulary words. For words that consist of
multiple subwords, we take average of the subword
vectors. This common practice outperforms other
aggregation methods (Bommasani et al., 2020).

We use the monolingual embeddings to calculate
the structural-based distances between every source
sentence and its translation8, using the methods
proposed in Section 6. We take the inverse of the
distance as the predicted quality score. We tested
our methods separately as well as combined (taking
linear combinations of the respective scores9). We
note that for the topological approach, we always
used OPD0 and OPD1 together, as this method
demonstrated superior results.

We tested this pipeline on the language pairs
English-German (en-de) and Sinhala-English (si-
en), of the WMT2020 Quality Estimation shared
task (Specia et al., 2020). Each language pair in-
cludes 1,000 source sentences and their transla-
tions, produced by state-of-the-art NMT models.

8As a pre-processing step, we remove stopwords and
stripped punctuation.

9The coefficients were optimized manually in preliminary
experiments.

179

We compare the results of our methods to the su-
pervised baseline of the shared task, which uses
LSTM-based Predictor-Estimator approach (Kim
et al., 2017), and to the following competitors.
TransQuest (Ranasinghe et al., 2020) is the winner
method of the shared task. The method uses an
ensemble of two architectures, which rely on pre-
trained XLM-R large transformer models, and are
fine-tuned on quality estimation datasets.
FVCRC (Zhou et al., 2020) is an unsupervised
method based on a BERTScore (Zhang et al., 2020).
The method relies on pre-trained transformer-based
models (mBert, XLM) to extract word (or subword)
embeddings. It aligns the embeddings using cosine
similarity based greedy matching, and predicts the
quality score as the sum of the respective simi-
larities. It enhances the alignments using explicit
cross-lingual knowledge from external models.
Bergamot-LATTE, glass-box (Fomicheva et al.,
2020) is an unsupervised method that assumes ac-
cess to the machine translation model. It extracts
features from the model output and uses uncertainty
quantification to predict the translation quality.

As most of the competing methods rely on pre-
trained transformer-based models, we also wish
to evaluate the merge between these models and
our framework. We do so in a way that keeps the
combined pipeline fully unsupervised (avoiding
fine-tuning and bilingual knowledge). To this end,
we adapted the FVCRC approach to be fully unsu-
pervised, replacing their alignment procedure with
optimal transportation matching10. We refer to this
fully unsupervised transformer-based method as
cross lingual matching (CLM)11.

Following the shared task guidelines, we present
the Pearson correlation between the predicted and
the manually annotated scores in Table 3. Note that
both of our approaches (geometric and topological)
provide meaningful and competitive results, even
though they are fully unsupervised and do not rely
on any cross-lingual signal or external model. Inter-
estingly, the combinations between our geometric
and topological approaches has yielded superior
results. More specifically, the results reveal that
our methods outperform the supervised baseline
as well as the unsupervised methods in the en-de
direction. In addition, in the si-en direction, the
combination between CLM and our methods per-
forms better than its competitor – the unsupervised

10Specifically we use the Sinkhorn distance (Cuturi, 2013).
11As FVCRC, our implementation also uses BERTScore.

Method Supervision en→de si→en
TransQuest Sup. 0.55 0.68

Baseline 0.15 0.37

FVCRC Unsup.* 0.11 0.39
Bergamot-LATTE Unsup.** 0.26 0.51

ISDM

Fully Unsup.

0.12 0.26
OSDM 0.27 0.16
OPD 0.20 0.19

ISDM + OPD 0.19 0.29
OSDM + OPD 0.27 0.18
CLM + OPD 0.13 0.45

CLM + OSDM 0.14 0.45

Table 3: Pearson correlation with direct assessment
scores for the WMT2020 Machine Translation Qual-
ity Estimation shared task. The ‘+’ sign stands for a
linear combination between methods. Unsupervised re-
sults improving the supervised baseline are highlighted.
*FVCRC uses explicit bilingual signal. **Bergamot-
LATTE relies on the MT model scores.

Figure 7: Comparing word embeddings of English and
Sinhala. To demonstrate the inferior quality of the Sin-
hala word embeddings, we present the distance matrices
for six words in English and their translations in Sin-
hala. We observe that similar meaning corresponds to
short distances between the word embeddings in En-
glish. However, the same is not true for Sinhala.

FVCRC, and better than the supervised baseline.
We attribute the relative lower performance of

our methods in the si-en direction to the poor rep-
resentation of the monolingual word embeddings
for Sinhala, as a low resource language. The rep-
resentation capability and the expressiveness of
the distances between the pre-trained word embed-
dings are demonstrated at Figure 7. Generally, the
performance of our methods will be improved if the
degree of isomorphism between the relevant word
vector spaces is increased. This can be achieved,
for example, by training the word embeddings with
additional monolingual data, as suggested by Vulić
et al. (2020). This is left as future work.

8 Conclusion and Future Work

We introduced the concept of leveraging the isom-
etry of word embedding spaces at the sentence

180

level. This enabled us to propose geometric and
topological approaches that facilitate fully unsuper-
vised generation of cross-lingual sentence represen-
tations, together with suitable similarity measures.

We conducted cross-lingual experiments, where
our standalone methods have achieved competi-
tive results on different tasks. Moreover, we ob-
served that combining our methods with traditional
ones has led to notable enhanced performance. We
should emphasize that this was achieved without
any additional data or training. We conclude that
geometric and topological structures of sentences
are preserved to a significant level across languages.
Interestingly, our experiments show that the shapes
we extract have complex structures. For example,
in many cases we found meaningful homological
cycles in various degrees. We note that these repre-
sentations are weaker on scenarios with low degree
of isomorphism, e.g. due to lack of monolingual
data (Vulić et al., 2020).

A promising direction for future work is to uti-
lize the proposed representations in cross-lingual
transfer learning (training a model on one language
and using it on another language).

Finally, we note that the main motivation for
this work was to promote the use of geometric and
topological approaches in core NLP tasks, and espe-
cially cross-lingual tasks. We believe that the ideas
and methods we presented here will contribute to
the future development of this line of research.

Acknowledgements

The authors are grateful to Roi Reichart for helpful
comments and feedback, especially regarding the
relevant NLP tasks. OB was supported in part by
the Israel Science Foundation, Grant 1965/19.

References
Hanan Aldarmaki, Mahesh Mohan, and Mona Diab.

2018. Unsupervised word mapping using structural
similarities in monolingual embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 6:185–196.

David Alvarez-Melis and Tommi Jaakkola. 2018.
Gromov-Wasserstein alignment of word embedding
spaces. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1881–1890.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.
Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.

In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2289–2294.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 789–798.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019.
An effective approach to unsupervised machine trans-
lation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
194–203.

Mikel Artetxe and Holger Schwenk. 2019. Margin-
based parallel corpus mining with multilingual sen-
tence embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3197–3203.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020.
Interpreting Pretrained Contextualized Representa-
tions via Reductions to Static Embeddings. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4758–
4781.

Gunnar Carlsson. 2009. Topology and data. Bulletin of
the American Mathematical Society, 46(2):255–308.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. Proceedings
of ICLR 2018.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
Neural Information Processing Systems, volume 26,
pages 2292–2300. Curran Associates, Inc.

Vera Danilova. 2013. Cross-language plagiarism detec-
tion methods. In Proceedings of the Student Research
Workshop associated with RANLP 2013, pages 51–
57.

Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni.
2014. Improving zero-shot learning by mitigating
the hubness problem. Proceedings of the 3rd Inter-
national Conference on Learning Representations
(ICLR2015), workshop track.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Vishrav Chaudhary, Mark Fishel,
Francisco Guzmán, and Lucia Specia. 2020.
BERGAMOT-LATTE submissions for the WMT20
quality estimation shared task. In Proceedings of
the Fifth Conference on Machine Translation, pages
1010–1017.

Shafie Gholizadeh, Armin Seyeditabari, and Wlodek
Zadrozny. 2020. A novel method of extracting
topological features from word embeddings. arXiv
preprint arXiv:2003.13074.

181

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 710–721.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation, Miyazaki, Japan.

Mandy Guo, Qinlan Shen, Yinfei Yang, Heming
Ge, Daniel Cer, Gustavo Hernandez Abrego, Keith
Stevens, Noah Constant, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. "effective parallel
corpus mining using bilingual sentence embeddings".
In "Proceedings of the Third Conference on Machine
Translation: Research Papers", pages "165–176".

Allen Hatcher. 2002. Algebraic topology. Cambridge
University Press.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Hsieh Hou and H Andrews. 1978. Cubic splines for
image interpolation and digital filtering. IEEE Trans-
actions on acoustics, speech, and signal processing,
26(6):508–517.

Alexander Jakubowski, Milica Gasic, and Marcus Zi-
browius. 2020. Topology of word embeddings: Sin-
gularities reflect polysemy. In Proceedings of the
Ninth Joint Conference on Lexical and Computa-
tional Semantics, pages 103–113.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na. 2017.
Predictor-estimator using multilevel task learning
with stack propagation for neural quality estimation.
In Proceedings of the Second Conference on Machine
Translation, pages 562–568.

Philipp Koehn, Vishrav Chaudhary, Ahmed El-Kishky,
Naman Goyal, Peng-Jen Chen, and Francisco
Guzmán. 2020. Findings of the wmt 2020 shared task
on parallel corpus filtering and alignment. In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 726–742.

Ivana Kvapilíková, Mikel Artetxe, Gorka Labaka,
Eneko Agirre, and Ondřej Bojar. 2020. Unsuper-
vised multilingual sentence embeddings for parallel
corpus mining. Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
Student Research Workshop, pages 255–262.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only. In
International Conference on Learning Representa-
tions.

Antonio Valerio Miceli Barone. 2016. Towards cross-
lingual distributed representations without parallel
text trained with adversarial autoencoders. In Pro-
ceedings of the 1st Workshop on Representation
Learning for NLP, pages 121–126.

Paul Michel, Abhilasha Ravichander, and Shruti Rijh-
wani. 2017. Does the geometry of word embeddings
help document classification? a case study on persis-
tent homology-based representations. In Proceedings
of the 2nd Workshop on Representation Learning for
NLP, pages 235–240.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in Neural Information Processing Sys-
tems, volume 26, page "3111–3119".

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. 2020. TransQuest: Translation quality esti-
mation with cross-lingual transformers. In Proceed-
ings of the 28th International Conference on Compu-
tational Linguistics, pages 5070–5081.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding mod-
els. Journal of Artificial Intelligence Research, page
569–630.

Ishrat Rahman Sami and Katayoun Farrahi. 2017. A
simplified topological representation of text for local
and global context. In Proceedings of the 25th ACM
international conference on Multimedia, pages 1451–
1456.

Ketki Savle, Wlodek Zadrozny, and Minwoo Lee. 2019.
Topological data analysis for discourse semantics?
In Proceedings of the 13th International Conference
on Computational Semantics - Student Papers, pages
34–43.

Samuel L Smith, David HP Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. International Conference on Learning Rep-
resentations.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
and André F. T. Martins. 2020. Findings of the WMT
2020 shared task on quality estimation. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 743–764, Online. Association for Computa-
tional Linguistics.

Sarah Tymochko, Zachary New, Lucius Bynum, Em-
ilie Purvine, Timothy Doster, Julien Chaput, and
Tegan Emerson. 2020. Argumentative topology:
Finding loop(holes) in logic. arXiv preprint
arXiv:2011.08952.

182

Michael Unser, Akram Aldroubi, Murray Eden, et al.
1991. Fast b-spline transforms for continuous im-
age representation and interpolation. IEEE Transac-
tions on pattern analysis and machine intelligence,
13(3):277–285.

Ivan Vulić, Sebastian Ruder, and Anders Søgaard.
2020. Are all good word vector spaces isomorphic?
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3178–3192.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1006–1011.

Haoran Xu and Philipp Koehn. 2021. Cross-lingual
bert contextual embedding space mapping with
isotropic and isometric conditions. arXiv preprint
arXiv:2107.09186.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Lei Zhou, Liang Ding, and Koichi Takeda. 2020. Zero-
shot translation quality estimation with explicit cross-
lingual patterns. Proceedings of the 5th Conference
on Machine Translation (WMT), page 1068–1074.

Xiaojin Zhu. 2013. Persistent homology: An introduc-
tion and a new text representation for natural lan-
guage processing. In IJCAI, pages 1953–1959.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3530–3534.

Afra Zomorodian. 2012. Topological data analysis. Ad-
vances in applied and computational topology, 70:1–
39.

183

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 184 - 190
May 26, 2022 ©2022 Association for Computational Linguistics

A Study on Entity Linking Across Domains:
Which Data is Best for Fine-Tuning?

Hassan Soliman1,2 Heike Adel1
Mohamed Gad-Elrab1 Dragan Milchevski1 Jannik Strötgen1

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Saarland University, Saarbrücken, Germany

1firstname.lastname@de.bosch.com
2s8hasoli@stud.uni-saarland.de

Abstract

Entity linking disambiguates mentions by map-
ping them to entities in a knowledge graph
(KG). One important question in today’s re-
search is how to extend neural entity linking
systems to new domains. In this paper, we aim
at a system that enables linking mentions to en-
tities from a general-domain KG and a domain-
specific KG at the same time. In particular,
we represent the entities of different KGs in
a joint vector space and address the questions
of which data is best suited for creating and
fine-tuning that space, and whether fine-tuning
harms performance on the general domain. We
find that a combination of data from both the
general and the special domain is most helpful.
The first is especially necessary for avoiding
performance loss on the general domain. While
additional supervision on entities that appear in
both KGs performs best in an intrinsic evalua-
tion of the vector space, it has less impact on
the downstream task of entity linking.

1 Introduction

Entity linking, i.e., the task of disambiguating men-
tions in text by linking them to entities of a knowl-
edge graph (KG), is key to many semantic applica-
tions, such as KG population, question answering
or information retrieval (Sevgili et al., 2021). In
the context of KGs, a domain is characterized, i.a.,
by the set and distribution of entities (Onoe and
Durrett, 2020). For KGs from special domains,
the availability of annotated data for training entity
linking is limited. Thus, there is a need for methods
that work across domains in low-resource settings,
such as transfer or few-shot learning techniques
(Hedderich et al., 2021).

Given a KG from a special domain, it is useful
for many applications to not treat this KG in isola-
tion but still be able to link mentions to the general
domain as well. Figure 1 illustrates this. Without
combining the KGs Wikipedia and Doctor Who, it
would not be possible to link all mentions of the

Jaime Holloway was an American high school senior

Jaime Holloway
United States

Clara Oswald

Clara Oswald
(Immortals)

Wikipedia

Doctor Who

Figure 1: Illustration of entity linking to two KGs
(Wikipedia and Doctor Who) at the same time by repre-
senting the entities of both graphs in a joint vector space.
Colors indicate the KG to which the entities belong.

example sentence to their respective entities. Early
works prior to neural entity linking (Hoffart et al.,
2011) allow linking to multiple KGs by combin-
ing the KGs before applying the methods. In the
context of neural networks, a more elegant way is
to combine different KGs via a joint vector space
(Gupta et al., 2017). This also enables us to learn
similar embeddings for overlapping entities, i.e.,
entities that appear in more than one KG, which
would arguably be more difficult when only uniting
triple sets. In Figure 1, the entities “Clara Oswald”
and “Clara Oswald (Immortals)” are an example of
overlapping entities.

In this paper, we aim at methods for adding a KG
from a specific target domain into an existing vector
space from a source-domain KG and fine-tuning the
joint vector space to improve the entity linking re-
sults. While some recent work has considered zero-
shot entity linking (Logeswaran et al., 2019; Wu
et al., 2020), a systematic investigation on which
data sources are most useful for fine-tuning entity
linking systems, is still missing. Thus, the first
research question we address is: Which data is best
suited for fine-tuning joint vector spaces of KGs?

Furthermore, it is unclear how fine-tuning on the
target domain affects the vector space of the source-
domain KG. Thus, the second research question we
pose is: Does fine-tuning harm performance of
entity linking on the general domain?

184

To answer these research questions, we present a
systematic investigation of the impact of different
information sources on the vector space (intrinsic
evaluation) as well as on the entity linking perfor-
mance (extrinsic evaluation). Further, we will pub-
lish the list of overlapping entities that we created
along with this paper to ensure reproducibility.

2 Related Work

As in other fields of natural language processing,
deep learning became the predominant approach
in entity linking (He et al., 2013; Sun et al., 2015;
Francis-Landau et al., 2016; Yamada et al., 2016;
Gupta et al., 2017; Kolitsas et al., 2018). In to-
day’s research, the usage of pre-trained language
models, such as BERT (Devlin et al., 2019), is par-
ticularly popular (Peters et al., 2019; Logeswaran
et al., 2019; Humeau et al., 2020; Wu et al., 2020).

In this paper, we aim at a neural entity linking
system which allows linking mentions to more than
one KG by creating a joint vector space for entity
representations from different KGs. Related to this,
Gupta et al. (2017) propose a method to create a
joint vector space for entities from different sources
that are represented by different means, such as de-
scriptions, contexts or fine-grained types. In the
context of entity linking across domains, Onoe and
Durrett (2020) build a domain-independent system
that relies on fine-grained entity types. In contrast,
Logeswaran et al. (2019) and Wu et al. (2020) uti-
lize descriptions of entities from KGs to obtain en-
tity representations. In particular, Logeswaran et al.
(2019) propose domain-adaptive pre-training to ap-
ply entity linking to unseen entities from a KG of a
new domain. Wu et al. (2020) build on that work
but train their model only on labeled data from a
general domain (Wikipedia). Vyas and Ballesteros
(2021) generalize those models and allow them to
handle arbitrary KGs with entities represented by
an arbitrary set of attribute-value pairs.

In contrast to those works, we also take into
account overlapping entities between the two KGs
and study which impact fine-tuning on different
data sources has on the joint vector space as well
as on entity linking performance.

3 Linking Model and Extension Method

In this section, we detail the entity linking model
and describe how the model can be extended to a
new domain.

3.1 Entity Linking Model

To be able to directly compare with state-of-the-
art related work, we build upon the entity linking
model proposed by Wu et al. (2020). It consists
of three parts (context encoder, candidate encoder
and cross-encoder) which are used in two phases
(candidate generation and candidate ranking). Note
that our extension approach is independent of the
underlying system though.

Candidate generation. In this step, the context
encoder creates a vector representation for a men-
tion given a textual context. Similarly, the candi-
date encoder embeds a candidate entity from the
knowledge graph given its textual description. For
both model parts, a BERT encoder is used and the
CLS token serves as the output embedding. For
candidate generation, the k most similar entities to
a given mention are retrieved where similarity is
measured by cosine similarity between the entity
and the mention embeddings.

Candidate ranking. For candidate ranking, the
cross-encoder estimates how likely a mention rep-
resents a candidate entity. For this, a third BERT
model is used that receives as input the concate-
nation of the textual context of the mention and
the title and description of the candidate entity. Its
CLS token is then fed into a feed-forward layer to
compute a score that is trained to be higher for the
correct candidate entity than for wrong candidate
entities.

3.2 Extension to New Domains

To extend the model to a new domain, we fine-
tune the weights θ of the context and candidate
encoders.

Information Sources for Fine-Tuning. In our
experiments, we investigate which data or which
set of data is most promising for fine-tuning. For
this, we use the following information sources: (i)
data annotated with entities from the KG of the tar-
get domain (T), (ii) additional data that is annotated
with entities from the KG of the source domain (S),
and (iii) a list of overlapping entities between the
KG from the source domain and the KG of the tar-
get domain (O). The following paragraphs describe
how the data sources are used for fine-tuning.

Fine-Tuning Loss Functions. For fine-tuning on
data annotated with entity information from a KG

185

Domain Entities Mentions Overlapping (O)
Train* Dev* Test Candidates Filtered

T

American Football 31,929 3,000 320 578 24,074 22,928
Doctor Who 40,281 6,360 640 1,334 10,458 3,611
Fallout 16,992 2,500 320 466 2,876 752
Final Fantasy 14,044 4,360 640 1,041 1,495 413

S Wikipedia (Reddit) 5,903,538 7,711 409 1,328 - -

Table 1: Statistics for the datasets used in our experiment (* corresponds to the fine-tuning phase).

(i.e., settings S and T), we use the following loss
function:

s(a, b) := a⊤b

Lθ =
∑

m,e∈D

(
− s(vm, ve) + log

∑

c∈Ce

exp(s(vm, vc))
)

(1)

where D is a dataset, annotated with mentions m
and their corresponding entities e, vm is the repre-
sentation of the context encoder of mention m in a
textual context, ve is the representation of the can-
didate encoder of the textual description of entity e
from the KG and Ce is a randomly sampled batch
of negative entities from the KG.

For fine-tuning on the list of overlapping entities
(i.e., setting O), we use the following loss function:

Lθ =
∑

eKG1,eKG2∈D

(
− 2 · s(veKG1 , veKG2)

+ log
∑

c∈CeKG2

exp(s(veKG1 , vc))

+ log
∑

c∈CeKG1

exp(s(veKG2 , vc))
)

(2)

where D is the list of overlapping entities, eKG1 is
an entity that appears in KG 1, eKG2 is its counter
entity from KG 2 and veKG1 and veKG2 are the rep-
resentations of their textual descriptions from the
two KGs, and s is defined as in Equation 1. CeKG2

and CeKG1 are randomly sampled batches of neg-
ative entities from the list of overlapping entities
(that are from KG 2 and KG 1, respectively, and
do not overlap with veKG1 and veKG2 , respectively).
This loss function encourages overlapping entities
from KG 1 and KG 2 to have similar vector repre-
sentations in the joint vector space while it pushes
representations of other entity pairs further apart.

Combination of Information Sources. We also
experiment with combinations of the different infor-
mation sources described above. In particular when
combining settings S and T, in each epoch, we first
present batches from S to the model followed by

batches from T. When adding O to a combination,
we first fine-tune the model on S and/or T (using
loss function 1) and then continue fine-tuning on O
(using loss function 2).

4 Experiments and Results

In this section, we present our study and report the
effects of fine-tuning on the latent representation
as well as on the downstream task of entity linking.

Baseline. We use the neural entity linking model
BLINK (Wu et al., 2020) as our baseline model.1

Fine-tuning Configurations. We experiment
with the following combinations of the informa-
tion sources presented in Section 3.2: S, T, TO, TS,
TOS.2 Hyperparameters are provided in Section A
of the appendix.

4.1 Data
Data from target domain (T). The experimen-
tal setup requires domain-specific entity linking
data which is split into fine-tuning and test set. To
the best of our knowledge, there is no benchmark
available for this. Therefore, we adopt the Wikia
dataset for zero-shot entity linking across domains
(Logeswaran et al., 2019). We select four domains
(American Football, Doctor Who, Fallout, Final
Fantasy) and randomly split each domain into fine-
tuning (train and dev) and test sets (see top part of
Table 1). Throughout the experiments, we consider
Wikipedia as the source-domain KG and one of the
domains from Wikia as the target-domain KG.

Data from source domain (S). As additional
contextual data for source-domain entities, we
adopt the Reddit dataset (Botzer et al., 2021) that
contains Reddit blog posts with mentions linked to

1It has been trained on an English Wikipedia dump from
May 2019, using over 5.9M pages as entities (page titles are
used as entity names and summary paragraphs as descrip-
tions) and around 9M Wikipedia interlinks as mention-entity
annotations. For further details, please see Wu et al. (2020).

2We focus on combinations with T since combinations
without T did not perform well in preliminary experiments.

186

Target KG → American Football Doctor Who Fallout Final Fantasy

Model MRR ACS MRR ACS MRR ACS MRR ACS

BLINK 0.4991 0.9938 0.4607 0.9650 0.4071 0.9603 0.3623 0.9532
T 0.4982 0.9892 0.3926 0.9095 0.3533 0.9317 0.4136* 0.9515
TO 0.4990 0.9919 0.4932* 0.9784* 0.4558* 0.9680* 0.4400* 0.9628
TS 0.4999 0.9958* 0.4323 0.9605 0.4223* 0.9676* 0.4072* 0.9746*
TOS 0.4995 0.9896 0.4619 0.9830* 0.4534* 0.9820* 0.4209* 0.9791*

Table 2: Intrinsic evaluation of overlapping entities between each domain-specific KG and Wikipedia KG. * shows
statistically different results in comparison to BLINK (randomization test, α = 0.005 with Bonferroni correction).

Target KG → American Football Doctor Who Fallout Final Fantasy

Model AP@1 MAP@10 AP@1 MAP@10 AP@1 MAP@10 AP@1 MAP@10

E
va

lo
n

ta
rg

et
K

G

BLINK 0.1747 0.4104 0.4108 0.4810 0.3412 0.4444 0.3833 0.5179
S 0.1713 0.3732 0.5337* 0.6191* 0.4249* 0.5295* 0.3881 0.5433
T 0.2093* 0.4606* 0.6169* 0.6925* 0.4313* 0.5510* 0.3871 0.5405
TO 0.1938 0.4103 0.5697* 0.6558* 0.4485* 0.5590* 0.3439 0.4881
TS 0.2076 0.4583* 0.6124* 0.7124* 0.4657* 0.5915* 0.4121 0.5710*
TOS 0.1540 0.3292 0.5345* 0.6149* 0.4227* 0.5405* 0.3910 0.5486*

E
va

lo
n

so
ur

ce
K

G

BLINK 0.8479 0.8973 0.8509 0.8985 0.8509 0.8987 0.8494 0.8987
S 0.8727 0.9051 0.8750* 0.9063 0.8788* 0.9089 0.8758* 0.9070
T 0.8539 0.8994 0.8209 0.8556 0.8057 0.8464 0.8599 0.8991
TO 0.8524 0.8953 0.8532 0.8865 0.8381 0.8714 0.8630 0.8956
TS 0.8607 0.8957 0.8582 0.8976 0.8599 0.8965 0.8788* 0.9085
TOS 0.8170 0.8386 0.8773* 0.9062 0.8637 0.8858 0.8795* 0.9038

Table 3: Extrinsic evaluation: entity linking. Source KG is Wikipedia in all cases. For the evaluation on the target
KG, the domain-specific test set is used. For the evaluation on the source KG, the Reddit test set is used. * shows
statistically different results in comparison to BLINK (randomization test, α = 0.005 with Bonferroni correction).

Wikipedia entities. We choose the mentions with
gold annotations as test set and the mentions with
bronze and silver annotations as fine-tuning set.3

The bottom part of Table 1 shows statistics on the
data from the source domain.

Overlapping entities (O). To obtain overlapping
entities between the source KG and each of the
domain-specific KGs, we first create a candidate
list with strict string matching of the entity name
aliases (titles of Wikipedia/Wikia pages) from the
source and target KGs. Second, we filter this list
based on the semantic similarity of the textual de-
scriptions of the entities. In particular, we em-
bed the descriptions with the Roberta-large sen-
tence transformer model by Reimers and Gurevych
(2019) and filter the list of candidate entity pairs
based on the cosine similarity between their vectors.
We set the matching threshold for the cosine simi-
larity to 0.5. Statistics of the overlapping entities
are shown on the right side of Table 1.

To ensure the quality of the extracted lists of
overlapping entities, we sample 100 entity pairs
per domain and manually check their correctness.

3The annotation quality bronze/silver/gold was determined
based on inter-annotator agreement by Botzer et al. (2021).

Table 4 shows results. Especially for the domains
with the largest number of overlapping entities
(American Football and Doctor Who), the num-
ber of correct entity pairs is quite high, indicating
the usefulness of that information source for our
experiments.

Target KG Correct Wrong Unclear

American Football 100 0 0
Doctor Who 84 10 6

Fallout 79 15 6
Final Fantasy 65 17 18

Table 4: Manual analysis of 100 randomly sampled over-
lapping entities per target domain. The table shows the
number of correctly and wrongly identified overlapping
entity pairs. The column Unclear shows the number of
pairs for which we did not have enough information to
assess their correctness.

4.2 Intrinsic Evaluation of Vector Space

We first investigate the effect of fine-tuning on the
latent representations of the entities. Intuitively, the
better the fine-tuning, the closer the overlapping
entities should be in the space. To assess that, we
compute the cosine similarity between the vector
of the target-domain entity and the vector of its

187

counter entity from the source KG for each pair in
the list of overlapping entities and aggregate the re-
sults to the Average Cosine Similarity (ACS). Thus,
ACS reflects the average of cosine similarities be-
tween overlapping entities.

In addition, we assess the rank of the counter
entity in the list of nearest neighbors in the vector
space for each entity of the list of overlapping enti-
ties. Ideally, the counter entity should have a high
rank. We evaluate this with the Mean Reciprocal
Rank (MRR), a measure from information retrieval.

Table 2 compares the embeddings generated
by our models to the embeddings generated by
the baseline model (BLINK) in the four domains.
Most fine-tuning configurations outperform the
baseline model. This shows the value of fine-tuning
for the joint vector space in general. For all do-
mains except for American Football, MRR and
ACS are enhanced up to 7.77% and 2.59%, re-
spectively, with fine-tuning on overlapping entities
(O) providing most performance gains. For Ameri-
can Football, the results are closer to the baseline
and fine-tuning on overlapping entities (O) does
not enhance performance compared to fine-tuning
on source and target data (TS). This could be ex-
plained by the larger number of overlapping entities
in this domain (see Table 1). In general, the results
show that fine-tuning on target data only (T) is not
sufficient and especially fine-tuning on overlapping
entities (O) helps improving the vector space.4

4.3 Entity Linking Results
To evaluate entity linking, we use the standard
measures of average precision for the top-1 en-
tity (AP@1) and the mean average precision for
the top-10 entities (MAP@10).

In the upper part of Table 3, we report the results
of applying the fine-tuned models to a set of unseen
documents with entities from the different target
domains. As shown in the table, fine-tuning out-
performs BLINK. Interestingly, even fine-tuning
on source entities (S) helps in three out of four do-
mains when evaluating on the target KG. Training
on both target and source KG entities (TS) achieves
the best performance for all domains with an in-
crease of up to 20% in both MAP and AP measures.

4Note that the dataset used for fine-tuning on O is the
same that we use for the intrinsic evaluation. The reason
is that we only aim at analyzing the effects of fine-tuning
on the overlapping entities in the joint vector space without
the necessity for generalization to an unseen dataset. The
effects on the unseen test sets for entity linking are described
in Section 4.3.

Including overlapping entities does not further en-
hance the performance. An explanation for this
could be that the entity linking system does not
rely on the candidate generation step alone (which
requires a good joint vector space) but in addition
uses a cross-encoder in the candidate ranking step
that re-evaluates each pair of mention and candi-
date entity, taking the combination of their contexts
into account.

In order to ensure that the fine-tuned model still
performs well on mentions of entities from the
source KG, we also evaluate it on the test data from
Reddit. The results can be found in the bottom part
of Table 3. Fine-tuning on the source KG only (S)
improves the baseline system BLINK as expected.
In contrast, fine-tuning on the target KG only (T)
harms the performance on the source KG test set a
bit. When the model is trained on a combination of
entities from both target and source KGs (TS/TOS),
performance on the source-KG test set is enhanced
in most cases.

With respect to our research questions, we can
conclude that a combination of data with mentions
linked to entities from both the source and the tar-
get KG is most suited for fine-tuning and that espe-
cially adding training data from the source-domain
KG avoids performance loss on the source domain.
With this fine-tuning setup, we obtain a robust sys-
tem that can link mentions to both source and target-
domain KGs at the same time.

5 Conclusion

In this paper, we presented a systematic investiga-
tion of extending an entity linking system to a new
domain by creating a joint vector space. Our re-
sults showed that it is helpful to add data from both
the source domain and the target domain. While
an additional supervision on entities that appear in
both knowledge graphs improves the quality of the
vector space, it has less impact on the downstream
task of entity linking. Additional data linked to
the source-domain KG avoids performance loss on
the general domain and is, thus, especially useful
to achieve a system that can link mentions to both
source and target-domain KGs at the same time.

Acknowledgments

We would like to thank Dietrich Klakow, the mem-
bers of the BCAI NLP&KRR research group and
the anonymous reviewers for their helpful com-
ments.

188

References
Nicholas Botzer, Yifan Ding, and Tim Weninger. 2021.

Reddit entity linking dataset. Information Processing
& Management, 58(3).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing semantic similarity for entity link-
ing with convolutional neural networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1256–1261, San Diego, California. Association for
Computational Linguistics.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017, pages 2681–2690. Association for
Computational Linguistics.

Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai
Zhang, and Houfeng Wang. 2013. Learning entity
representation for entity disambiguation. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 30–34, Sofia, Bulgaria. Association for
Computational Linguistics.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strötgen, and Dietrich Klakow. 2021. A survey
on recent approaches for natural language process-
ing in low-resource scenarios. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2545–2568,
Online. Association for Computational Linguistics.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Polyencoders: Architec-
tures and pre-training strategies for fast and accurate
multisentence scoring. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529,
Brussels, Belgium. Association for Computational
Linguistics.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity de-
scriptions. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3449–3460, Florence, Italy. Association for
Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2020. Fine-grained
entity typing for domain independent entity linking.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8576–8583, New York, NY, USA.
AAAI Press.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2021.
Neural entity linking: A survey of models based on
deep learning. arXiv:2006.00575.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity
disambiguation. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence, IJCAI
2015), page 1333–1339, Buenos Aires, Argentina.
AAAI Press.

Yogarshi Vyas and Miguel Ballesteros. 2021. Linking
entities to unseen knowledge bases with arbitrary
schemas. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 834–844. Association for Computational
Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In

189

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity disam-
biguation. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 250–259, Berlin, Germany. Association
for Computational Linguistics.

A Hyperparameters

Hyperparameters Values

Fine-tuning Batch Size 16
Learning Rate 3e-5
Number of Epochs 5
Candidate Generation: Top K 10
Mention with Context: Max Context Length 128
Entity with Description: Max Description Length 128

Table 5: Hyperparameters for fine-tuning.

All settings, i.e., all combinations of information
sources (S, T, TS, TO and TOS) share the same
hyperparameters for fine-tuning. They are provided
in Table 5.

For learning rate and number of epochs, we fol-
lowed the proposed values by Wu et al. (2020). In
addition, we applied early stopping to store the best
model checkpoint based on the model performance
on the validation set.

We set the number of candidate entities k to 10
and the maximum number of tokens in the context
of mention and entity to 128 in order to save com-
putation costs. Note that we applied the same k
and context lengths when evaluating the baseline
BLINK model.

Fine-tuning and evaluation was performed on a
Tesla V100 GPU. All our experiments were run on
a carbon-neutral GPU cluster.5

B Ethical Considerations

We acknowledge the ACL Code of Ethics. In partic-
ular, we only use well-known benchmark datasets
for our evaluation. Both the Wikia and the Reddit
dataset do not include personal data, such as infor-
mation about the authors of the posts (Logeswaran
et al., 2019; Botzer et al., 2021). The list of overlap-
ping entities that we will publish does not contain
any privacy-related or IP-related content either.

5The Bosch Group is carbon neutral. Administration, man-
ufacturing and research activities do no longer leave a carbon
footprint. This also includes GPU clusters on which the exper-
iments have been performed.

190

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 191 - 203
May 26, 2022 ©2022 Association for Computational Linguistics

TRAttack: Text Rewriting Attack Against Text Retrieval

Junshuai Song, Jiangshan Zhang, Jifeng Zhu, Mengyun Tang, Yong Yang
Tencent, China

{jasonjssong,jiangszhang,jifengzhu,mengyuntang,
coolcyang}@tencent.com

Abstract

Text retrieval has been widely-used in many
online applications to help users find rele-
vant information from a text collection. In
this paper, we study a new attack scenario
against text retrieval to evaluate its robust-
ness to adversarial attacks under the black-
box setting, in which attackers want their
own texts to always get high relevance scores
with different users’ input queries and thus
be retrieved frequently and can receive large
amounts of impressions for profits. Consider-
ing that most current attack methods only sim-
ply follow certain fixed optimization rules, we
propose a novel text rewriting attack (TRAt-
tack) method with learning ability from the
multi-armed bandit mechanism. Extensive ex-
periments conducted on simulated victim envi-
ronments demonstrate that TRAttack can yield
texts that have higher relevance scores with
different given users’ queries than those gen-
erated by current state-of-the-art attack meth-
ods. We also evaluate TRAttack on Ten-
cent Cloud’s and Baidu Cloud’s commercially-
available text retrieval APIs, and the rewrit-
ten adversarial texts successfully get high rele-
vance scores with different user queries, which
shows the practical potential of our method
and the risk of text retrieval systems.

1 Introduction

Text retrieval is a popular and important technol-
ogy for solving information explosion. In many
commercial systems, such as Baidu Knows1, An-
swer2 and StackExchange3, text retrieval is the key
to find relevant content and help search engines
to return the information that users want (Trot-
man et al., 2014). With the development of deep
neural networks, many deep learning-based mod-
els (Kalchbrenner et al., 2014; Devlin et al., 2018;
Sun et al., 2019) are proposed for measuring text

1https://zhidao.baidu.com/
2https://www.answers.com/
3https://stackexchange.com/

User Input Queries Ori. Adv.
怎么锻炼逻辑思维能力？
How to exercise logical thinking
skills?

✓ ✓

想提升理解能力和逻辑能力？
Want to enhance comprehen-
sion and logical skills?

× ✓

填字游戏能提高逻辑思维吗？
Can crosswords enhance logical
thinking?

× ✓

Ori.: 怎么锻炼逻辑思维能力,让自己更加有
效率的学习和工作？
How to exercise logical thinking skills to study
and work more efficiently?
Adv.: 怎么锻炼逻辑思维能力,让自己方为有
智用的自课和工作？

Table 1: The retrieval results of three different user in-
put queries on an original text (Org. for short) and the
adversarial rewritten text (Adv. for short), in which the
green words in Org. are replaced with the red words
for adversarial goals. ‘✓’ represents that the text is re-
trieved by the corresponding query.

relevance. Though the quality of retrieval results is
greatly improved, these deep learning-based mod-
els (Li et al., 2019a; Song et al., 2020) also bring
unexpected serious risks to the text retrieval sys-
tems due to their vulnerability.

In this paper, we study a new attack problem in
the text retrieval area, in which texts are ranked
based on their relevance scores with different user
queries. Previous researchers have studied adver-
sarial attacks on retrieval systems (Li et al., 2019a,
2021a). However, the attack goal is to completely
subvert the top-k retrieval results of a given single
query, with which attackers can deceive the target
information retrieval system into retrieving irrel-
evant content for evading the censorship of pro-
fessional monitors. Different from the above at-
tack problem, here we focus on a new attack goal

191

where attackers aim to find adversarial texts that
can get high relevance scores with many differ-
ent user queries at the same, and thus there is a
high probability for their texts to be retrieved and
receive large amounts of impressions (Li et al.,
2019b).

This new text retrieval attack problem is realis-
tic as attackers always want more impressions and
get more profits than normal users. Table 1 illus-
trates an attack example, in which the adversarial
text is successfully retrieved by all three queries
while the original text can be retrieved by one of
them only. Attackers can obtain much more im-
pressions and thus get more profits from the text re-
trieval platform. To verify how serious this form of
attack is and facilitate the development of the cor-
responding countermeasures, we emphasize that it
is crucial to develop practical attack methods that
can find adversarial texts against existing text re-
trieval systems.

Query-based adversarial example generation
frameworks (Morris et al., 2020; Zeng et al., 2021)
could be a good solution for solving the above at-
tack problem under the black-box setting. These
methods continuously interact with the victim en-
vironment and then iteratively update the gener-
ated adversarial examples by received reward sig-
nals. However, most of them only simply follow
certain fixed optimization rules (Li et al., 2018;
Alzantot et al., 2018; Zang et al., 2019) to generate
adversarial examples. In other words, they only
optimize the adversarial results instead of the at-
tack policies, which greatly limits their attack per-
formance.

For launching attacks more effectively, we pro-
pose a novel text rewriting attack (TRAttack)
method that can optimize attack policies and ex-
amples at the same time by learning from the his-
torical attack knowledge. TRAttack follows the
word replacement framework so that it can pre-
serve semantic consistency and language fluency
of adversarial examples well. For learning from
attack knowledge, we choose reinforcement learn-
ing (Sutton and Barto, 2018) to carefully balance
the exploration and exploitation in the learning
process due to the small number of training sam-
ples and expensive interactive costs with the vic-
tim environments. Specifically, we choose the
well-known multi-armed bandit (MAB) (Kuleshov
and Precup, 2014; Lattimore and Szepesvári,
2020; Li et al., 2021b) method. With MAB, the

substitutes of each word are viewed as arms to
be selected and TRAttack iteratively updates their
sampling weights by evaluating the expected ad-
versarial rewards in following iterations for better
attack performance. Our main contributions are
summarized as follows:

• We discuss a new possible attack threat in text
retrieval and formulate the corresponding at-
tack problem to study its robustness to adver-
sarial attacks.

• We develop a novel reinforcement learning-
based query-efficient text rewriting attack
(TRAttack) method that can achieve high at-
tack performance against text retrieval under
the black-box setting.

• We compare TRAttack with existing popular
query-based methods and TRAttack achieves
much better attack performance. We also suc-
cessfully attack commercial APIs provided
by Tencent Cloud4 and Baidu Cloud5, which
shows the potential risks of text retrieval sys-
tems as APIs could be used in real online ap-
plications.

2 Related Work

Language Modeling With the development
of deep learning-based natural language process-
ing (Devlin et al., 2018; Cui et al., 2020; Xiao
et al., 2020), the quality of text retrieval has been
greatly improved in recent years. RNN (Chung
et al., 2014; Lipton et al., 2015) is a typical way to
encode sequential text information, while convo-
lutional neural networks (CNN) (Liu et al., 2018)
and attention-based modeling methods (Vaswani
et al., 2017; Zhou et al., 2018) are also used to
extract high-dimensional representations for texts.
BERT (Devlin et al., 2018; Cui et al., 2020) is a
transformer-based method that is bidirectionally
trained and has a deeper sense of language con-
text, presenting state-of-the-art results in a wide
variety of NLP tasks. Further, many variants based
on BERT are proposed and achieve better perfor-
mance, such as SpanBERT (Joshi et al., 2020),
ERNIE (Sun et al., 2019; Xiao et al., 2020), etc.
These language modeling methods can be adopted
in text retrieval and have boosted the quality of re-
trieval results (Sakata et al., 2019).

4https://cloud.tencent.com/
5https://ai.baidu.com/

192

Adversarial Methods in NLP We consider the
most realistic and challenging black-box attack
scenario, where attackers have no prior knowl-
edge of the victim model. They can only inter-
act with the victim model to get useful informa-
tion and optimize their attacks (Zang et al., 2020;
Zeng et al., 2021; Morris et al., 2020). Li et al.
(2018) follow the idea of greedy word replacement
and propose TextBugger. TextFooler (Jin et al.,
2020) and PWWS (Ren et al., 2019) are similar
to TextBugger, but both of them make stricter re-
strictions on every single modification for gener-
ating plausible and semantically similar adversar-
ial examples. Alzantot et al. (2018) develop Ge-
netic via genetic algorithms. Zang et al. (2019)
further propose PSO based on a particle swarm
optimization-based search algorithm to generate
adversarial examples. BERT-Attack (Li et al.,
2020) and BAE (Garg and Ramakrishnan, 2020)
use pre-trained masked language models exempli-
fied by BERT to achieve adversarial goals while
the generated examples are fluent and semanti-
cally preserved.

3 Text Rewriting Attack

In this section, we first formally define the new at-
tack problem against text retrieval under the black-
box setting and then introduce the details of our
proposed text rewriting attack method.

3.1 Problem Definition
For a query input q, retrieval systems return a
list of texts: Xq = {x1, x2, ..., xk | f(q, xi) ≤
f(q, xj), s.t. i ≤ j} ordered by their relevance
scores (or similarities) with q where f(·) is the rel-
evance function and k is the size of Xq. As shown
in Table 1, attackers’ goal is to generate adversar-
ial texts that have ‘abnormally’ high relevance to
many given user queries meanwhile, so that there
is a high probability for their texts to be retrieved
and thus they can receive large amounts of impres-
sions.

For a text x, we use nx to represent the number
of impressions that it receives in a period of time.
Formally, it can be calculated as:

nx =
∑

q

s(q, x) (1)

where s(q, x) represents whether the text x is re-
trieved by the query q. Then, the attackers’ goal
is to find a text xadv that can get nxadv

as high as
possible.

To make nx computable in our experiments, we
set s(q, x) > 0 when x belongs to the top-k rel-
evance texts of the query q, otherwise we have
s(q, x) = 0. Considering that higher ranking or-
ders usually represent larger probabilities to be
exposed to users, we further specifically define
s(q, x) = (k−r+1)/k to assign higher values for
texts that have higher ranking orders r ∈ [1, k] un-
der a query q. We have s(q, x) ∈ [0, 1]. Besides,
we define Qx as the query set that a retrieval sys-
tem receives in a period of time where the queries
and x are on the same topic. Then the objective
function can be approximately written as:

arg maxxadv

Qt∑

q

s(q, xadv) (2)

where the adversarial goal is to find the text xadv
that can always receive high ranking orders un-
der given relevant queries in Qx and thus maxi-
mize nxadv

=
∑Qt

q s(q, xadv). Note, retrieval sys-
tems calculate relevance scores for ranking differ-
ent query-text pairs, but these scores are not avail-
able to attackers. They can only optimize their at-
tack goals with statistical signals. In our experi-
ments, we adopt the above approximated nxadv

in
Equation 2 as the adversarial goal under the black-
box setting, and also use it to guide the optimiza-
tion of adversarial attacks.

3.2 Text Rewriting Algorithm

Text rewriting can be implemented by directly
generating adversarial texts from scratch (Lipton
et al., 2015; Zang et al., 2020) or replacing partial
words in the original text only (Li et al., 2020).
Since the perturbation budget in the second word
replacement framework can be easily bounded to
preserve the fluencies and semantics of adversar-
ial texts (Li et al., 2020; Garg and Ramakrishnan,
2020), we also adopt it in TRAttack. The key
difference is that there is a particularly-designed
memory in TRAttack for caching historical’ attack
knowledge. Specifically, the memory learns ef-
fective word replacement policies that can greatly
boost the attack performance. We carefully launch
the solution based on MAB, which achieves a
good balance between exploration and exploita-
tion as the attack goes on. How to sample from
and update the memory are two important ques-
tions. In the following, we first introduce the core
idea and structure of the memory H in TRAttack,

193

and then give the details of the solutions for the
above two questions.
Memory Design with MAB With the MAB
mechanism, we need to store some specific in-
formation for balancing the exploration and ex-
ploitation in the learning process. Specifically, we
choose the upper confidence bound (UCB) bandit
method in TRAttack. Equation 3 illustrate that
how UCB chooses actions (arms) based on exist-
ing knowledge:

a∗ = arg maxa r(a) + c

√
lnm

N(a)
(3)

where r(a) is the estimated reward of choosing the
arm a, N(a) is the number of times that arm a
has been selected before and m is the overall num-
ber of players done on the current bandit problem.
r(a) and c

√
lnm
N(a) represent the exploitation part

and the exploration part in UCB, respectively. c
is a hyper-parameter to control the level of explo-
ration. At the beginning, UCB encourages explo-
ration as c

√
lnm
N(a) is relatively large with a small

N(a) for each arm. With the learning process,
UCB will concentrate on exploitation, selecting
the arm with the highest estimated reward.

Memory in TRAttack TRAttack follows
the word replacement framework for generat-
ing adversarial examples, and we equip TRAt-
tack with MAB in the word replacement pro-
cess. Specifically, for a word w, the sub-
stitutes of it are viewed as arms to be
selected in MAB. We design the memory
Hw = [(s1, r(s1), N(s1)), ..., (sj , r(sj), N(sj))]
for each word w to store specific information
about its substitutes (arms), where sj represents
the j-th potential substitute. r(sj) and N(sj) are
the estimated reward of replacing w with sj and
the number of times that w has been replaced by
sj before. With Hw on every word w, we can con-
duct the word replacement policy similar to Equa-
tion 3. However, it is costly to fully explore the
search space as the standard UCB does because
there is a large number of potential substitutes for
each word in TRAttack.

To optimize the efficiency of convergence, we
further make two updates in TRAttack. First,
we manually set the maximum number of substi-
tutes for each word to L = 200 to reduce the
search space and thus speed up the model conver-
gence. Secondly, we use a function g(m) neg-

atively correlated with m to replace the original
hyper-parameter c in Equation 3, with which we
can actively reduce exploration in the learning pro-
cess and further accelerate the model convergence.
Though the above two updates may lead to sub-
optimal results, it is necessary for TRAttack be-
cause of the high learning costs against text re-
trieval systems in practice. Then, we have Equa-
tion 4 in TRAttack for selecting word substitutes:

arg maxs r(s) + g(m)

√
lnm

N(s)

s.t. s ∈ Hw and |Hw| ≤ L

(4)

To make sure that TRAttack will concentrate on
exploitation after a few iterations in practice, we
generally require that g(m)

√
lnm
N(s) tends to 0 with

the increase of m even that N(s) of a substitute s
is small. In other words, the word substitute selec-
tion in TRAttack can gradually totally depend on
the substitute reward so that TRAttack can achieve
high performance within the expected time frame.

Overall, for each word w, we use a list Hw

to store its substitutes with corresponding rewards
and accumulated numbers of times that they have
been selected. We have H = {Hw;w ∈ W}
where W represents the whole word set in a re-
trieval system. Besides, TRAttack adopts masked
language models to generate word substitutes
as (Li et al., 2020) for ensuring that the adversar-
ial text is fluent and semantically preserved. As a
result, we have an empty Hw for each word w at
the beginning. All word substitutes are gradually
collected and merged into H with the learning pro-
cess. More details about the substitute generation
and the maintenance of H will be introduced in
the following parts.

TRAttack with Memory Algorithm 1 shows
the complete text rewriting process of TRAttack
for a given text x and it mainly contains 3 steps.

Step 1: Text Expanding (Optional) Consider-
ing that there are usually some short texts consist-
ing of a few words only, word replacement may
easily result in adversarial examples with obvi-
ously different semantics. To overcome the above
problem, we propose to expand texts first and then
replace the words that are newly added only for
well-preserving the text semantic. To achieve this
goal, we choose existing famous pre-trained lan-
guage models (Radford et al., 2019; Zhang et al.,

194

2020) to expand the original text directly. As lan-
guage models may generate long texts, we manu-
ally stop the text expanding process when meeting
the first question mark or full stop.

In such a way, xadv could be viewed as the con-
catenation of x and an additional expanded trigger
text xt and we have xadv = concat(x, xt). Then,
our attack goal can be formulated as replacing the
words in xt to improve the relevance scores be-
tween xadv and different users’ queries. In prac-
tice, attackers can even manually expand x instead
of adopting language models and thus this step is
optional in TRAttack. TRAttack can also directly
conduct attacks base on x as most existing meth-
ods (Zeng et al., 2021) without text expanding.

Step 2: Word Replacement with Memory
For an initialized adversarial text xadv =
concat(x, xt), we first decide the word replace-
ment order in xt, and then choose specific word
substitutes with the help of the memory H for gen-
erating effective adversarial examples.

For the word importance, there have been many
solutions for estimating it (Li et al., 2020; Garg
and Ramakrishnan, 2020). Here we calculate the
word importance of each w in a text xt by delet-
ing it from xadv and computing the average de-
crease in the probability of predicting the correct
relevance label y with the corresponding queries
in Qx. Then we sort the words in xt by their im-
portance and get I = [w1, w2, ..., w|xt|] for further
word replacement.

For a selected word w to be replaced, we then
need to decide the word substitute set Sw for it and
conduct the word replacement operation for bet-
ter attack performance. Following the idea in (Li
et al., 2020), we generate word substitutes for a
word w by masking it in xadv and feeding the
masked xadv into a well-trained masked language
model, in which the genuine nature of the masked
language model makes sure that the texts with the
generated substitutes are relatively fluent and also
preserve most semantic information. Each time,
we use the top-M predictions from a masked lan-
guage model to initialize Sw first, and then update
Sw with learned Hw for better word replacement
choices. On the one hand, for the substitutes that
are new and do not appear in Hw before, we use
S∗
w to represent them and make sure all the sub-

stitutes in S∗
w are selected by default, which helps

us to continuously enrich the candidate substitutes
of different words. On the other hand, we select

Algorithm 1 Text Rewriting Attack

Input: Text x, query set Qx, memory H =
{Hw;w ∈ W}, number of substitutes M ,
number of memory size L

Output: Adversarial text xadv
1: Expand x and get the initialized xadv ←

concat(x, xt)
2: Sort the words in xt by their estimated impor-

tance and get I ← [w1, w2, ..., w|xt|]
3: for i← 1 to |xt| do
4: Generate the top-M substitutes for wi using

masked language models and use them to
initialize Swi

5: S∗
wi
← Swi \ (Swi ∩Hwi)

6: Select M − |S∗
w| words from Hwi as S∗∗

wi

according to Equation 4
7: Swi ← S∗

wi
∪ S∗∗

wi

8: for j ← 1 to |Swi | do
9: Get x′adv by replacing wi with sj

10: Calculate the reward r′(sj)
11: if r′(sj) > 0 then
12: xadv ← x′adv
13: Update Hwi

14: return Adversarial text xadv

the other M − |S∗
w| substitutes from the learned

memory Hw for the current word w and get S∗∗
w .

Finally, we reconstruct Sw ← S∗
w ∪ S∗∗

w .
The selection of substitutes from Hw is based

on Equation 4. For r(s), we define it based
on the attack performance improvement between
x

′
adv and xadv where x

′
adv is obtained by replac-

ing w with s in xadv. Specifically, we set r(s) =
(nx′

adv
− nxadv

)/|Qx|, where 1/|Qx| is used for
normalization, and we have r(s) ∈ [−1, 1]. With
the learning process, a word substitute s with bet-
ter historical attack performance will have a larger
r(s) and thus have a larger chance to be selected in
the future, which can boost the attack performance
of TRAttack. For g(m), we define g(m) = c

m and

c = 50 is a constant. In this setting, g(m)
√

lnm
N(w)

tends to 0 with the increase of m and thus we
can successfully actively reduce exploration for
achieving high attack performance within limited
attack attempts and costs.

Step 3: Memory Update For each substitute
s ∈ Sw with the newly calculated reward r′(s) in
the current iteration, we update Hw following the
below rules. If s is new to Hw, we directly merge
it into Hw. If s already appears in Hw, we use the

195

following Equation 5 to update r(s) of s in Hw:

r(s) =
r(s) ∗N(s) + r′(s)

N(s) + 1
(5)

And then we set N(s) ← N(s) + 1. Besides, if
the size of Hw exceeds L, we additionally remove
the substitutes with relatively low r(·) in Hw and
make sure that |Hw| does not exceed L.

4 Experiments

4.1 Experimental Settings

Dataset LCQMC (Liu et al., 2018) is a large-
scale Chinese question matching corpus collected
from Baidu Knows. BQ-Corpus (Chen et al.,
2018) contains question pairs from online bank
custom service logs. We use these 2 publicly-
available datasets for text retrieval in our experi-
ments. Overall, there are 256433 and 35395 differ-
ent texts in LCQMC and BQ-Corpus, respectively.

Evaluation Metric We adopt 4 metrics for eval-
uating different attack methods comprehensively.
For the attack performance, we define R(xadv) =
nxadv

/|Qx| to represent the attack performance of
a generated adversarial text xadv where 1/|Qx|
is used for normalization. For the quality of ad-
versarial examples, we adopt the common metric
perplexity (PPL) (Li et al., 2020) as (Zang et al.,
2019), and use the cosine similarity between text
embeddings as an approximation for the semantic
consistency (Jin et al., 2020). As only xt in xadv
is modified, we test PPL and semantic consistency
on it by default. Besides, we report the number
of interactions of each method, which is another
important metric for evaluating the attack costs.

Text Retrieval Systems Given a user query q,
the text retrieval system computes relevance be-
tween q and existing texts in the system and then
returns the most relevant texts to the user. Due
to a large number of the corpus in real-world sys-
tems, there are usually two stages for text retrieval:
candidate generation and ranking (Yang et al.,
2019). In our experiments, we simulate different
retrieval systems. Specifically, we adopt the popu-
lar BM25 (Trotman et al., 2014) for selecting 100
texts as candidates each time and then use different
ranking models to rank them by calculating their
relevance scores with different given queries. We
choose 4 different representative language mod-
els as the ranking model, including LSTM, CNN,
BERT (Cui et al., 2020) and ERNIE-Gram (Xiao

et al., 2020). Most of the above ranking models
have been introduced in Section 2 and their imple-
mentation details can be found in Appendix A.

Overall, we use the 4 text retrieval models and
the 2 datasets to construct 8 different simulated
text retrieval environments as the testbeds for ex-
perimental evaluation. If a generated adversar-
ial text xadv frequently receives large relevance
scores with different user queries, it will have high
ranking orders in users’ retrieval results most of
the time, leading to a high R(xadv). In order to
fully demonstrate the changes of the ranking re-
sults of generated adversarial examples, we set
k = 100 that is the number of candidates by de-
fault when calculating R(·).

4.2 Comparison with Query-based Attack
Baselines

We compare TRAttack with 4 popular query-based
adversarial methods that work well under the
black-box setting, including TextBugger (Li et al.,
2018), PWWS (Ren et al., 2019), Genetic (Alzan-
tot et al., 2018), PSO (Zang et al., 2019) and
BERT-Attack (Li et al., 2020). TextBugger and
PWWS are greedy methods, in which they first
sort words in given texts by importance and then
replace them with carefully selected substitutes
for achieving adversarial goals. Genetic and PSO
are representative population-based search algo-
rithms. For generating effective adversarial exam-
ples, both of them first initialize a text set (the
size is set to 20 in our experiments) and then
iteratively update them with different evolution-
ary algorithms. For BERT-Attack, it is also a
greedy word replacement method and we replace
the masked language model in it with Chinese-
BERT-wwm (Cui et al., 2019) for conducting ad-
versarial attacks in Chinese. As for our method
TRAttack, we adopt Chinese-BERT-wwm as the
masked language model for generating word sub-
stitutes as well. For the parameters, we set M =
36 and L = 200 by default. Besides, for a fair
comparison, we adopt the optional text expanding
process with CPM (Zhang et al., 2020) in all attack
methods.

The comparison results6 are illustrated in Ta-
ble 2. In each testbed, we randomly choose 500
texts to generate adversarial examples and calcu-
late the average results. As we can see, TRAt-

6We discuss the experimental results on the LCQMC
dataset in Section 4.2 and the results on the BQ-Corpus
dataset are reported in Appendix due to the page limitation.

196

Method Num. Per. PPL Sem.
TextBugger 151 0.8126 1106 0.5117

PWWS 197 0.7115 565 0.6625
Genetic 807 0.5599 432 0.8233

PSO 306 0.4705 432 0.8781
BERT-Attack 137 0.7533 995 0.9129

TRAttack 141 0.8341 1159 0.9015

(a) The simulated text retrieval system with LSTM

Method Num. Per. PPL Sem.
TextBugger 151 0.6519 917 0.4868

PWWS 197 0.5581 532 0.7162
Genetic 807 0.4423 404 0.8252

PSO 306 0.4089 403 0.8852
BERT-Attack 137 0.6514 795 0.9177

TRAttack 141 0.6772 1104 0.9079

(b) The simulated text retrieval system with CNN

Method Num. Per. PPL Sem.
TextBugger 151 0.6891 841 0.7062

PWWS 197 0.6369 722 0.7059
Genetic 807 0.5436 512 0.8178

PSO 310 0.5028 362 0.8229
BERT-Attack 137 0.6492 971 0.9078

TRAttack 141 0.6636 1355 0.9014

(c) The simulated text retrieval system with BERT

Method Num. Per. PPL Sem.
TextBugger 151 0.7506 797 0.6819

PWWS 197 0.7107 475 0.7216
Genetic 807 0.6290 335 0.8414

PSO 307 0.5891 321 0.8361
BERT-Attack 137 0.6831 914 0.9126

TRAttack 141 0.7037 1375 0.9086

(d) The simulated text retrieval system with ERNIE-Gram

Table 2: Attack results on different simulated text retrieval systems on the LCQMC dataset. Num., Per. and Sem.
represent the number of interactions, the attack performance R(·) and the semantic consistency, respectively.

tack achieves the best results on the whole. In
TextBugger, it defines some ‘bug’ generation ways
for adversarial attacks. Though it achieves high
attack performance, most of its generated adver-
sarial texts are less fluent and semantically con-
sistent compared with other methods. PWWS
follows the greedy word replacement framework.
As the synonym-based word substitute generation
method with thesauri like WordNet (Miller, 1995)
always provides very limited synonyms for many
words, we use the embedding-based word substi-
tute generation method as TextBugger in it for
better attack performance. In our experiments,
PWWS receives lower Per. than TextBugger while
PPL and Sem. are usually better.

Genetic and PSO are population-based meth-
ods. For PSO, as the sememe-based word sub-
stitute generation method (Zang et al., 2019) also
greatly reduces the number of potential word sub-
stitutes, we adopt the embedding-based word sub-
stitute generation method in it as well. In our
experiments, both of these two methods receives
relatively low attack performance compared with
other methods, which may be due to the fact that
they usually need a long period of evolution (large
Num.) to achieve satisfying results.

BERT-Attack adopts masked language models
to generate adversarial examples and receives rel-
atively high Per. and Sem. in our tests at a
low attack cost. TRAttack follows the similar
framework with it and can further get an obvious

improvement on Per., while PPL and Sem. are
slightly worse than BERT-Attack. This is due to
that we always choose words that can achieve high
attack performance from the learned memory in
TRAttack, but these newly selected words may
slightly damage the fluency and semantic consis-
tence sometimes. Here, to illustrate the advantages
of our method more comprehensively, we conduct
additional experiments for TRAttack. Specifically,
We test TRAttack by reducing different numbers
of words that can be replaced by substitutes in
it. The results conducted on the simulated text re-
trieval system based on LSTM and the LCQMC
dataset are reported in Table 3.

Value Num. Per. PPL Sem.
1 127 0.7923 836 0.9153
2 114 0.7478 691 0.9250
3 101 0.7139 557 0.9281
4 88 0.6674 496 0.9395

Table 3: Attack results with different reduced numbers
of words that can be replaced.

As we can see, with a larger reduced number
of words that can be replaced, TRAttack gradu-
ally receives better PPL and Sem. while Per. be-
comes smaller. An important experimental result
is that TRAttack achieves better performance on
all the 4 metrics than BERT-Attack when the re-
duced number is set to 1, which clearly shows
the advantages of TRAttack. Overall, we can

197

say that TRAttack achieves the best performance
among all compared methods by optimizing the at-
tack policies (memory) and examples meanwhile.
Besides, it is worth mentioning that the learned
knowledge in TRAttack is general and can be con-
tinuously updated with new attack results, which
is the key advantage and foundation for TRAt-
tack to further achieve better attack performance
in the future. We also illustrate an adversarial ex-
ample generated by TRAttack in Table 9 in Ap-
pendix, which can successfully receive high rele-
vance scores with 10 different queries.

4.3 Parameter Analysis
Tables 4 and 5 show the test results of TRAttack re-
garding two different hyper-parameters on the sim-
ulated text retrieval system based on LSTM and
the LCQMC dataset: the number of substitutes M
and the memory size L.

Value Num. Per. PPL Sem.
6 42 0.7206 868 0.9040
12 74 0.7710 966 0.9080
24 113 0.8117 1053 0.9065
36 141 0.8341 1159 0.9015
48 171 0.8429 1233 0.9038

Table 4: Attack results with different M .

Value Num. Per. PPL Sem.
50 141 0.8175 1138 0.9110
200 141 0.8341 1159 0.9015
500 141 0.8369 1190 0.9067

2000 141 0.8329 1193 0.9033

Table 5: Attack results with different L.

Intuitively, TRAttack can receive better attack
performance with a larger M . As we can see in
Table 4, the performance improvement gradually
becomes insignificant. For balancing the attack
performance and other metrics, M = 36 could
be a good choice for conducting adversarial at-
tacks in practice. As for L, the attack performance
can generally be increased along with it increas-
ing. However, as we actively speed up the conver-
gence of TRAttack by g(m) for achieving good
performance within limited attack costs, the word
replacement policy with a large memory may not
be learned well, thus leading to a worse result. As
we can see in Table 5, TRAttack receives a rela-
tively good result with L = 200.

4.4 Attack Commercial APIs
We have shown that TRAttack can effectively
attack simulated text retrieval systems in Sec-
tion 4.2. Here, we show that TRAttack can also
successfully create adversarial texts on commer-
cial text retrieval APIs provided by Tencent Cloud
and Baidu Cloud. Due to the QPS limitation, we
randomly test 10 samples for both APIs in our ex-
periments.

API Num. Per. PPL Sem.
Tencent 1761 0.5570 1014 0.8878
Baidu 1712 0.6619 556 0.8951

Table 6: Attack results of TRAttack on the Tencent
Cloud’s and Baidu Cloud’s APIs.

The results are reported in Table 6, in which
we iteratively optimize the generated adversarial
texts by 10 iterations in TRAttack for better at-
tack performance. As a result, TRAttack suc-
cessfully generates effective adversarial examples
that can increase Per. from 0.3686 to 0.5570 and
from 0.4085 to 0.6619 on the Tencent Cloud’s and
Baidu Cloud’s commercial APIs with only about
2000 times of interactions, respectively. Tables 10
and 11 in Appendix show specific attack cases of
TRAttack on the commercial APIs. The experi-
ments in this part are conducted as of November
2021.

5 Conclusion

In this paper, we discuss a new realistic attack
problem against text retrieval. We follow the
word replacement framework and propose TRAt-
tack. Extensive experiments show that benefiting
from the the learning ability of MAB, TRAttack
achieves better performance than existing meth-
ods. The generated adversarial texts by TRAt-
tack can successfully mislead both offline text re-
trieval models and online commercial APIs, which
demonstrates the potential risks of real-world text
retrieval systems.

6 Broader Ethical Impact

We explore the potential security issues of text re-
trieval systems in this paper and propose TRAt-
tack that is experimentally verified to be effective
to many text retrieval models. Hope that our ap-
proach and discussions could inspire more explo-
rations and designs of advanced defense methods
and security policies.

198

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang,
Daohe Lu, and Buzhou Tang. 2018. The bq cor-
pus: A large-scale domain-specific chinese cor-
pus for sentence semantic equivalence identification.
In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing, pages
4946–4951.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for Chinese natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, pages 657–668, Online. Association for
Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu. 2019.
Pre-training with whole word masking for chinese
bert. arXiv preprint arXiv:1906.08101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Siddhant Garg and Goutham Ramakrishnan. 2020.
Bae: Bert-based adversarial examples for text clas-
sification. arXiv preprint arXiv:2004.01970.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Volodymyr Kuleshov and Doina Precup. 2014. Al-
gorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028.

Tor Lattimore and Csaba Szepesvári. 2020. Bandit al-
gorithms. Cambridge University Press.

Jie Li, Rongrong Ji, Hong Liu, Xiaopeng Hong, Yue
Gao, and Qi Tian. 2019a. Universal perturbation at-
tack against image retrieval. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4899–4908.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Xiaodan Li, Jinfeng Li, Yuefeng Chen, Shaokai Ye,
Yuan He, Shuhui Wang, Hang Su, and Hui Xue.
2021a. Qair: Practical query-efficient black-box
attacks for image retrieval. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3330–3339.

Zhao Li, Junshuai Song, Shichang Hu, Shasha Ruan,
Long Zhang, Zehong Hu, and Jun Gao. 2019b. Fair:
Fraud aware impression regulation system in large-
scale real-time e-commerce search platform. In
2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1898–1903. IEEE.

Zhao Li, Junshuai Song, Zehong Hu, Zhen Wang, and
Jun Gao. 2021b. Constrained dual-level bandit for
personalized impression regulation in online ranking
systems. ACM Transactions on Knowledge Discov-
ery from Data (TKDD), 16(2):1–23.

Zachary C Lipton, John Berkowitz, and Charles
Elkan. 2015. A critical review of recurrent neu-
ral networks for sequence learning. arXiv preprint
arXiv:1506.00019.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng,
Jing Chen, Dongfang Li, and Buzhou Tang. 2018.
Lcqmc: A large-scale chinese question matching
corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1952–1962.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

199

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th annual meeting of the as-
sociation for computational linguistics, pages 1085–
1097.

Wataru Sakata, Tomohide Shibata, Ribeka Tanaka, and
Sadao Kurohashi. 2019. Faq retrieval using query-
question similarity and bert-based query-answer rel-
evance. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1113–1116.

Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu,
Zhenpeng Li, Jian Li, and Jun Gao. 2020. Poison-
rec: an adaptive data poisoning framework for at-
tacking black-box recommender systems. In 2020
IEEE 36th International Conference on Data Engi-
neering (ICDE), pages 157–168. IEEE.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Richard S Sutton and Andrew G Barto. 2018. Rein-
forcement learning: An introduction. MIT press.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 2014 Australasian
Document Computing Symposium, pages 58–65.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Dongling Xiao, Yu-Kun Li, Han Zhang, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie-
gram: Pre-training with explicitly n-gram masked
language modeling for natural language understand-
ing. arXiv preprint arXiv:2010.12148.

Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Sim-
ple applications of bert for ad hoc document re-
trieval. arXiv preprint arXiv:1903.10972.

Yuan Zang, Bairu Hou, Fanchao Qi, Zhiyuan Liu, Xi-
aojun Meng, and Maosong Sun. 2020. Learning to
attack: Towards textual adversarial attacking in real-
world situations. arXiv preprint arXiv:2009.09192.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan
Liu, Meng Zhang, Qun Liu, and Maosong Sun.
2019. Word-level textual adversarial attacking
as combinatorial optimization. arXiv preprint
arXiv:1910.12196.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and
Maosong Sun. 2021. Openattack: An open-source
textual adversarial attack toolkit. In Proceedings of

the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations, pages 363–371.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe
Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan
Zheng, Jiannan Cao, Guoyang Zeng, Huanqi Cao,
Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan
Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi
Li, and Maosong Sun. 2020. Cpm: A large-scale
generative chinese pre-trained language model.

Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu,
Zhengchao Zhao, Xiusi Chen, and Jun Gao. 2018.
Atrank: An attention-based user behavior modeling
framework for recommendation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

A Accuracy of Text Retrieval Models

In both LSTM and CNN, We use an embedding
layer to encode words firstly. And then we directly
use one LSTM layer to extract the text representa-
tion in LSTM while using the CNN structure for
CNN. With the representations of a given query
and a candidate text, the relevance is predicted by
feeding concatenated features of both texts into a
2-layer deep neural network (DNN) with Softmax
for calculating probabilities. In BERT and ERNIE-
Gram, we directly concatenate the two texts in-
puts, and use BERT and ERNIE-Gram to get the
final representation. The results are also predicted
by feeding the representation into a 2-layer DNN
with Softmax. The size of word embeddings and
the DNN in each model is set to be 128. We adopt
CrossEntropy as the loss function and use Adam
as the optimizer. For the learning rate, we use
α = 2e − 3 in LSTM and CNN, and α = 2e − 5
in BERT and ERNIE-Gram.

Models LCQMC BQ-Corpus
LSTM 0.7864 0.6780
CNN 0.7597 0.6671
BERT 0.8888 0.8529

ERNIE-Gram 0.9054 0.8610

Table 7: Accuracy of different models on 2 datasets.

For the model training, we adopt the popular
early stopping mechanism for better performance,
and Table 7 reports the accuracy of different mod-
els on the 2 datasets.

200

Method Num. Per. PPL Sem.
TextBugger 145 0.9374 993 0.5286

PWWS 191 0.9296 822 0.5576
Genetic 808 0.7316 681 0.7749

PSO 297 0.6374 353 0.8642
BERT-Attack 127 0.9008 1027 0.9281

TRAttack 132 0.9299 1200 0.9234

(a) The simulated text retrieval system with LSTM

Method Num. Per. PPL Sem.
TextBugger 145 0.7863 1229 0.5212

PWWS 191 0.7485 749 0.6981
Genetic 808 0.6352 524 0.8233

PSO 298 0.5881 481 0.8842
BERT-Attack 127 0.7969 1110 0.9215

TRAttack 132 0.8383 1452 0.9106

(b) The simulated text retrieval system with CNN

Method Num. Per. PPL Sem.
TextBugger 145 0.6160 1026 0.5817

PWWS 191 0.5800 921 0.6826
Genetic 808 0.5247 643 0.7900

PSO 298 0.5042 353 0.8591
BERT-Attack 127 0.5916 1703 0.9079

TRAttack 132 0.6004 2294 0.9075

(c) The simulated text retrieval system with BERT

Method Num. Per. PPL Sem.
TextBugger 145 0.6616 885 0.5553

PWWS 191 0.6271 900 0.6932
Genetic 808 0.5643 641 0.8115

PSO 296 0.5473 554 0.8687
BERT-Attack 127 0.6448 1546 0.9029

TRAttack 132 0.6539 2184 0.9057

(d) The simulated text retrieval system with ERNIE-Gram

Table 8: Attack results on different simulated text retrieval systems on the BQ-Corpus dataset. Num., Per. and
Sem. represent the number of interactions, the attack performance R(·) and the semantic consistency, respectively.

User Input Queries Ori. Adv.
怎样自己制作文字图片？
How to make text pictures? 0.5930 / 0.69 0.9972 / 0.97
谁会自己制作文字图片？
Who can make text pictures by yourself? 0.9506 / 0.93 0.9996 / 1.00
哪个网站可以自己制作图片？
Which website can we use to make pictures? 0.8650 / 0.35 0.9957 / 0.96
怎样在手机上制作自己的文字图片？
How to make my own text pictures on the mobile phone? 0.7229 / 0.26 0.9993 / 0.99
怎么制作自己的网页？
How to create my own webpage? 0.1236 / 0.54 0.9962 / 0.94
如何自己制作带音乐、多张图片和文字的电子贺卡？
How to make an e-card with music, multiple pictures, and
text by myself?

0.9658 / 0.26 0.9996 / 0.99

怎么可以制作自己的网页？
How can I make my own webpage? 0.2927 / 0.49 0.9982 / 1.00
火车票图片制作
Train ticket picture making 0.5336 / 0.44 0.9895 / 0.94
自己怎么制作冰淇淋？
How to make ice cream by myself? 0.9889 / 0.22 0.9997 / 0.98
读书卡怎样制作？
How to make a reading card? 0.9242 / 0.32 0.9999 / 0.98
Ori. : 怎样自己制作文字图片？有哪些软件可以帮助我们制作文字图片 ?
How to make text pictures? Which software can help us make text pictures?
Adv.: 怎样自己制作文字图片？有那种软件支帮帮助我们制做文本图图 ?

Table 9: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 different
queries meanwhile on the simulated text retrieval system based on LSTM and the LCQMC dataset.

201

User Input Queries Ori. Adv.
守护甜心第四季什么时候播？
When will the fourth season of "Shugo Chara!" be
broadcast?

0.5592 / 0.62 0.6417 / 0.64

破产姐妹什么时候播第四季
When will the "Broke Girls" broadcast the fourth sea-
son

0.5519 / 0.48 0.6151 / 0.78

活佛济公第四部到底什么时候播
When will the fourth season of "The Legend of Crazy
Monk" be broadcast

0.5665 / 0.54 0.6194 / 0.67

爱情回来了什么时候播
When will "Love is Back" be broadcast 0.4966 / 0.07 0.6612 / 0.59
美人制造什么时候播
When will "Cosmetology High" be broadcast 0.4986 / 0.15 0.6627 / 0.69
叶罗丽精灵梦第三季什么时候播？
When will the third season of "Yeloli" be broadcast? 0.5067 / 0.28 0.5099 / 0.28
世界上另一个我什么时候播
When will "Another Me in the World" be broadcast 0.5375 / 0.42 0.6524 / 0.72
终极宿舍什么时候播
When will "THE X-DORMITORY" be broadcast 0.4980 / 0.21 0.7200 / 0.78
新少年四大名捕电视剧什么时候播
When will "The Four" be broadcast 0.5294 / 0.44 0.5477 / 0.51
不一样的美男子什么时候播？
When will "Special Different Man" be broadcast? 0.4825 / 0.04 0.6579 / 0.76
Ori. : 守护甜心第四季什么时候播？《老友记》里有哪些经典台词 ?
When will the fourth season of "Shugo Chara!" be broadcast? What are the classic lines in "Friends"?
Adv.: 守护甜心第四季什么时候播？（小友記秀里有谁多经经台辞 ?

Table 10: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 differ-
ent queries meanwhile on the Tencent Cloud’s commercial API.

202

User Input Queries Ori. Adv.
在家可以做的兼职有什么？
What are the part-time jobs that can be done at home? 0.8460 / 0.60 0.9553 / 0.95
在家电脑兼职可以做什么
What are the part-time jobs that can be done on the
computer at home

0.7734 / 0.61 0.8474 / 0.88

有没有什么在家就可以做的兼职？
Are there any part-time jobs that can be done at home? 0.7795 / 0.51 0.9009 / 0.92
可在家做的兼职？
Part-time jobs can be done at home? 0.8129 / 0.55 0.9304 / 0.92
在家兼职的工作有哪些
What are the part-time jobs that can be done at home 0.8449 / 0.65 0.8706 / 0.75
有没有在家能做的兼职？
Are there any part-time jobs that can be done at home? 0.7280 / 0.32 0.8558 / 0.83
如何在家做淘宝客服兼职
How to be a part-time Taobao customer service at home 0.6210 / 0.24 0.6793 / 0.51
有什么可以在家做的工作
What work can be done at home 0.7704 / 0.39 0.7848 / 0.46
有没有在家做兼职的工作？
Are there any part-time jobs that can be done at home? 0.7321 / 0.46 0.7558 / 0.57
有什么工作在家就可以做
What work can be done at home 0.7736 / 0.25 0.7973 / 0.44
Ori. : 在家可以做的兼职有什么？有什么工作是必须要做的?
What are the part-time jobs that can be done at home? What work must be done?
Adv.: 在家可以做的兼职有什么？有什么职作是固必要 ? 的?

Table 11: A generated adversarial example by TRAttack that successfully receives high f(·) / s(·) under 10 differ-
ent queries meanwhil on the Baidu Cloud’s commercial API.

203

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 204 - 212
May 26, 2022 ©2022 Association for Computational Linguistics

On the Geometry of Concreteness

Christian Wartena
Hochschule Hannover

Expo Plaza 12
30539 Hannover, Germany

christian.wartena@hs-hannover.de

Abstract

In this paper we investigate how concreteness
and abstractness are represented in word em-
bedding spaces. We use data for English and
German, and show that concreteness and ab-
stractness can be determined independently and
turn out to be completely opposite directions in
the embedding space. Various methods can be
used to determine the direction of concreteness,
always resulting in roughly the same vector.
Though concreteness is a central aspect of the
meaning of words and can be detected clearly
in embedding spaces, it seems not as easy to
subtract or add concreteness to words to ob-
tain other words or word senses like e.g. can be
done with a semantic property like gender.

1 Introduction

In the current paper we aim to shed some light
on the way concreteness and abstractness are rep-
resented in word embeddings. This might help
to better understand the concept of concreteness
that seems to be an important semantic property
used to explain various phenomena in language
and language understanding. Ultimately, it might
also contribute a little bit to the understanding of
the semantic spaces in which we embed words for
many tasks.

1.1 Research Questions

The first question we want to address is to what de-
gree concreteness can be represented as a vector in
the embedding space. Such a vector vconcr should
have the property that either the cosine between a
vector vw for a word w and vconcr or the length of
the projection of vw on vconcr corresponds to the
concreteness value w.

The second question concerns the relation be-
tween concreteness and abstractness. Is abstract-
ness characterized by a direction in the embeddings
space in a similar way as concreteness is, or is ab-
stractness just the absence of concreteness? The

studies of Hill and Korhonen (2014) and Naumann
et al. (2018) suggest that abstractness could go into
many different directions and is quite different from
concreteness since abstract words occur in more
diverse contexts. On the other hand side, in all psy-
cholinguistic studies concreteness and abstractness
are treated as the two extremes on one scale.

Finally, we want to know, whether concreteness
is a property that can be added to or removed from
words, like e.g. gender can be separated and used
to explicitly relate words like king to queen. There
seem to be many cases of regular polysemy in
which one reading of the word is more concrete
than the other one. Examples are the polysemy
between buildings and institutions for words like
school, church, parliament, theater, etc. or between
process and the result of the process (like e.g. cre-
ation, that can either denote the process of creating
something or the thing that is created) or between
a function and the person holding that function. In
all cases it is clear that one reading is more con-
crete than the other one. What we want to know
is to which extend the difference between the two
meanings is determined by concreteness.

1.2 Concreteness

Concreteness is a core semantic property of words
that has received a lot of attention in psycholinguis-
tic research. Friendly et al. (1982) define concrete
words as words that “refer to tangible objects, ma-
terials or persons which can be easily perceived
with the senses”. Brysbaert et al. (2014) define
concreteness as the degree to which the concept
denoted by a word refers to a perceptible entity.
Theijssen et al. (2011) point out that in general
two concepts of concreteness are used that do not
completely overlap, namely sensory perceivability
and specificity. However, they also note that most
subjects in tests interpret concreteness as sensory
perceivability. Also in a corpus study they could
show that in cases where concreteness plays a role

204

in the choice of a syntactic construction, sensory
perceivability is the best predictor.

Various studies suggest that concrete and ab-
stract words are represented and processed differ-
ently by the human brain (see a.o. Binder et al.
(2005); Kousta et al. (2011); Borghi et al. (2017)).
E.g. it is assumed that concreteness influences
learning, recognition memory and the speed of
visual recognition, reading and spelling (Spreen
and Schulz, 1966; Hargis and Gickling, 1978; Sa-
doski et al., 2004; Palmer et al., 2013; Neath and
Surprenant, 2020). Moreover, studies conducted
on abstract and concrete words also found that
the participants remembered concrete words better
than the abstract words (for an overview of various
studies see e.g. Yui et al., 2017). This difference
is explained by the Dual Coding Theory (Paivio,
1970) according to which concrete concepts are
stored verbally and visually in mind while abstract
concepts are only stored verbally. A difference in
recognition ease and speed is explained by the Con-
text Availability Hypothesis (Schwanenflugel and
Shoben, 1983; Schwanenflugel, 2013). This hy-
pothesis states that it is crucial to evoke the context
of a word to access its meaning and that it is easier
to construct the appropriate context for concrete
than for abstract words.

Among others Hill et al. (2014) and Naumann
et al. (2018) have shown that abstract words occur
in more broad and diverse contexts than concrete
words. Furthermore, it was noted in several studies
(see e.g. (Tanaka et al., 2013)) and investigated in
detail by Frassinelli et al. (2017) and Naumann
et al. (2018) that concrete words tend to occur in
the context of other concrete words and abstract
words in the context of other abstract words.

Most studies that collected or predicted concrete-
ness values for words either ignored the fact that
many words have several senses or excluded am-
biguous words. The statement of Gilhooly and
Logie (1980) still seems to be valid: “The problem
of word ambiguity has generally been overlooked
in compiling lists of words measured on various
attributes.” Only a few mostly smaller studies col-
lected concreteness judgments for different word
senses. These are, as far as we know, (Gilhooly
and Logie, 1980) for English, (Hager, 1994) for
German, and more recently (Ðurd̄ević et al., 2017)
for Serbian and both (Reijnierse et al., 2019) and
(Scott et al., 2019) for English words.

1.3 Organization of this paper

The remainder of the paper is organized as follows.
In section 2 start with an overview of the few stud-
ies that try to identify concreteness in embedding
spaces. In section 3 we describe the data we have
used. In the following sections we present a se-
ries of experiments to get a better understanding
of the representation of concreteness in embedding
spaces: in section 4 we compare several possibili-
ties to determine the direction of concreteness and
abstractness in an embedding space, in section 5
we compare the mutual similarity between concrete
and abstract words and finally in section 6 we have
a short look at the possibilities to represent the
meaning of ambiguous words with a concrete and
an abstract sense.

2 Related Work

Word embeddings are widely used as a proxy for
the meaning of words but in fact word embed-
dings are chiefly compact representations of the
contexts in which they occur. Since concrete words
occur preferably in the context of other concrete
words and since concrete words are used as ob-
ject to sensory verbs we expect that concreteness
can be found in word embeddings. Indeed a num-
ber studies have shown the presence of concrete-
ness in word embeddings: Rothe et al. (2016) try
to find low-dimensional feature representations of
words in which at least some dimensions corre-
spond to interpretable properties of words. One
of these dimensions is concreteness. For training
and testing they use Google News embeddings and
two subsets of frequent words from the norms of
Brysbaert et al. (2014). For their test set of 8,694
frequent words they found a moderate correlation
with the human judgments (Kendall’s τ = 0.623).
Similarly, Hollis and Westbury (2016) investigated
which dimensions of word embeddings correlate
to one of the classical word norms. They found no
direct correlations, but after reducing the number
of dimensions for a set of words by applying Sin-
gular Value Decomposition, they found a strong
correlation between one of the dimensions and con-
creteness. Charbonnier and Wartena (2019, 2020)
train regression models on word embeddings to
predict concreteness values, thus showing that con-
creteness information is present in the embeddings.

205

3 Materials

The answers to the research questions might de-
pend on the embeddings we use. Nevertheless,
we will restrict the experiments to just two embed-
dings, one for English and one for German, and
for the moment being assume that results for other
embeddings will be similar.

For English we use the 300 dimensional fastText
embeddings without subword information trained
on the Common Crawl with 600 billion tokens.
For German we also use 300 dimensional fastText
embeddings trained on the Common Crawl and
Wikipedia. Both embeddings are available at the
fastText site (https://fasttext.cc/).

The concreteness values are taken from Brys-
baert et al. (2014) for English and from the merged
dataset from Charbonnier and Wartena (2020) for
German. Since concreteness is most clearly defined
for nouns, from both datasets we use only nouns for
which we also have embeddings. In the data from
Brysbaert et al. (2014) the words are rated between
1.0 and 5.0. The ratings for the German data range
from 1.0 to 7.0. As examples of concrete nouns
we take for the English data all nouns rated above
4.0 and for German all nouns rated above 6.0. As
clearly abstract nouns we use nouns rated below
2.7 for English and rated below 4 for German. This
results in the numbers given in Table 1.

Table 1: Number of abstract and concrete nouns used.

English German
nouns 18,307 3,281

concrete nouns 6,345 753
abstract nouns 5,713 1,072

4 Concreteness vectors

In this section we will compare different methods
to build prototypical vectors for concreteness and
abstractness.

4.1 Methods

A straightforward method to obtain a vector for
concreteness is to take the average embedding of
all concrete words and subtract the average embed-
ding of all words. As a second method we can take
embeddings of concrete and abstract words, apply
principal component analysis (PCA) and hope that
the most important component represents concrete-
ness. Finally, we can use use linear regression to

find a vector that fits best to the concreteness values
in the data set.

Since concreteness is most clearly defined for
nouns, we take the average of all embeddings of
concrete nouns and subtract the average of all noun
vectors. The same can be done for abstract nouns
and if, hopefully, the vectors for concreteness and
abstractness roughly point in opposite directions,
we can compute the average of the concrete and the
opposite of the abstract vector, to get one vector rep-
resenting concreteness and abstractness. Formally,
let vn be the average of the word embeddings of
all nouns, vcn the average of all embeddings of all
concrete nouns and van the average of all embed-
dings of all abstract nouns, for the sets of abstract
and concrete nouns as defined in section 3. Now
let

vconcr = vcn − vn, (1)

vabstr = van − vn. (2)

For convenience we will use unit vectors defined
as usual by setting v̂concr = vconcr

|vconcr| and v̂abstr =
vabstr
|vabstr| .

A vector based both on concrete and on abstract
words can be defined as

vca =
v̂concr − v̂abstr

2
, (3)

v̂ca =
vca
|vca|

. (4)

For the principal component analysis we take
the same sets of concrete and abstract words and
put their embeddings in one matrix on which we
perform PCA with 12 components. We take the
first component as concreteness vector that we will
call vpca in the following.

For the regression we use all nouns, not just the
most concrete and abstract ones. For all words we
use their length normalized embeddings. As first
option we use standard multiple linear regression,
minimizing the sum of squared errors between real
and predicted concreteness value. We let v2regr be
the vector of the regression coefficients. Since we
use the squared errors, the linear regression is quite
sensitive to outliers. As an alternative we use linear
regression with Huber loss function that is defined
as:

LH(α) =

{
1
2(α)2 for |α| ≤ δ,
δ (|α| − 1

2δ), otherwise,
(5)

where α = y − f(x) is the residual or prediction
error. For both the German and the English data

206

we set δ = 0.25. Finally, we add γ ||w||1 as a regu-
larization term, where w is the vector of regression
coefficients. We set γ = 1 · 10−4. We call the
resulting vector of coefficients v1regr.

4.2 Results

We do not have any method to access the quality of
the vectors obtained by the different methods, but
we can at least compare them. Furthermore, we can
compute the correlation between real concreteness
values of a word and the length of the projections of
word embeddings on the concreteness vectors. The
later value cannot be seen as a real concreteness
prediction, but gives some indication how well the
concreteness vector fits to the actual data.

For the English data we find |vconcr| = 0.152
and |vabstr| = 0.156, for German |vconcr| = 0.222
and |vabstr| = 0.160. Here we do not see a no-
ticeable difference between concrete and abstract
words.

Tables 2 and 3 give the cosine similarities be-
tween the various concreteness vectors for English
and German respectively.

The first remarkable observation is that, both for
the English and German data, the angle between
vconcr and vabstr is almost 180 degrees. This is
maybe the most remarkable result of the present
study: the vectors computed independently for dis-
tinct sets of concrete and abstract words are almost
perfectly diametrically opposed! This suggests
that abstractness and concreteness are indeed to
extremes on the scale of the same property.

Furthermore, we see that all vectors are very
much alike, except v2regr, the vector of coefficients
of a classical linear regression model. Here indeed
extreme values seem to dominate and specify a
direction different from those obtained by all other
methods.

A second indication for the quality of the con-
creteness vectors is the degree to which they can
be used to predict the concreteness of individual
words. Ideally, the length of the projection of a em-
bedding vector on the concreteness vector would
correspond to the empirically determined concrete-
ness values. As it is not clear whether the length
of an embedding value has any meaning or just the
direction is important, we also could assume that
the cosine between a word vector and the concrete-
ness vector should be used. In Table 4 we therefore
give the correlation (Pearsons’s r and Kendalls’s
τ) for cosine and projection length. We should not

interpret these numbers as an attempt to predict the
concreteness. In the first place it would be easy to
design a better (non linear) prediction model and
in the second place we did not split into training
and test data to make a sound prediction experi-
ment (However, the vectors were, dependent on the
method, computed using only a small part of the
data, e.g. only nouns and the results might more-
over not change, when one or a few words would
be left out from the data).

Again we see that the values for English and
German are almost the same. In both cases we see
that v2regr gives the best correlation, which is not
very surprising since this vector was optimized for
Pearson correlation. More remarkable is the fact
that, especially for the English data, the correlation
of v1regr with the concreteness judgements is not
much worse. Furthermore, we see that the cosine is
a much better predictor for the concreteness values
than the projection length. Given that the cosine is
just the projection length of the unit vector of the
word embedding, this suggests that vector length
in word embeddings is not relevant and only the
direction matters. Finally, the correlation is in the
same order of magnitude as the correlation found
by Rothe et al. (2016) but much behind the results
from from Charbonnier and Wartena (2019), who
use a non-linear classifier and additional morpho-
logical information.

5 Diversity of concrete and abstract
words

As discussed above it has been observed that ab-
stract words occur in more diverse contexts than
concrete words. Does this also mean that abstract
words are more diverse? I.e., can words be concrete
just in one way but abstract in many different ways?
To answer this question we selected randomly 100
words from our set of concrete and 100 from the set
of abstract words. We compute the average cosine
similarity for all pairs of words within each set and
within the union of both sets. The results are given
in Table 5. We see here no large differences be-
tween the abstract and concrete nouns. The abstract
nouns even seem to be slightly more similar to each
other than the concrete nouns. This again suggests
that abstractness and concreteness are quite sym-
metric properties. The average similarity within
each set (4,950 pairs for each set) is clearly larger
that within the entire set of 200 nouns (i.e. 19,900
pairs), showing the importance of concreteness for

207

Table 2: Cosine similarities between concreteness vectors computed using different methods for English data.

vconcr vabstr vca vpca v1regr v2regr

vconcr 1.000 - - - - -
vabstr -0.945 1.000 - - - -
vca 0.986 -0.986 1.000 - - -
vpca 0.916 -0.882 0.912 1.000 - -
v1regr 0.955 -0.960 0.971 0.812 1.000 -
v2regr 0.630 -0.589 0.618 0.447 0.695 1.000

Table 3: Cosine similarities between concreteness vectors computed using different methods for German data.

vconcr vabstr vca vpca v1regr v2regr

vconcr 1.000 - - - - -
vabstr -0.917 1.000 - - - -
vca 0.979 -0.979 1.000 - - -
vpca 0.937 -0.888 0.932 1.000 - -
v1regr 0.945 -0.990 0.988 0.914 1.000 -
v2regr 0.572 -0.585 0.591 0.457 0.593 1.000

Table 4: Correlation (Pearsons’s r) and rank correlation
(Kendalls’s τ) of concreteness values with the lengths
of the projection of each word vector on a concreteness
vector and the correlation with the cosines between each
word vectors and a concreteness vector for different
concreteness vectors.

projection cosine

P’s r K’s τ P’s r K’s τ

English vca 0.74 0.61 0.85 0.65
vpca 0.63 0.55 0.78 0.59
v1regr 0.78 0.64 0.86 0.67
v2regr 0.81 0.67 0.89 0.71

German vca 0.71 0.56 0.80 0.59
vpca 0.64 0.49 0.74 0.54
v1regr 0.72 0.56 0.80 0.60
v2regr 0.78 0.62 0.84 0.65

similarity in the embedding space.

6 Concreteness and regular polysemy

A word like school can refer to the schoolhouse or
to the educational institution. In our sets of word
embeddings there is only one embedding for all
meanings of the word school, even including the
sense of a group (as in a school of fish), a group
of artists or thinkers and even the verb to school.
We would hope that if we add a little bit of con-

Table 5: Average cosine similarity between 100 abstract
and 100 concrete nouns

English German
concr 0.13 0.22
abstr 0.15 0.23

concr ∪ abstr 0.11 0.18

creteness to the embedding of school, we get an
embedding that is a bit closer to the embedding
of schoolhouse and if we add some abstractness,
the embedding becomes more similar to other ab-
stract concepts from education. As a first indication
to see whether this is indeed the case, we visual-
ize the distances between a few ambiguous words
(school, university and hospital for English and
Schule (school), Universität (university) and Fab-
rik (factory) for German) along with some related
concrete and abstract words. For each ambiguous
word w we use the original embedding vw as well
as vw + 0.2v̂ca and vw − 0.2v̂ca. We add 0.2 v̂ca
since 0.2 is roughly the length of the projection of
the most abstract and the most concrete words on
v̂ca. In the visualization the variants are labeled
with the original word and either an a or c. The
projection in a two-dimensional space is done with
tSNE (Van der Maaten and Hinton, 2008). The
results are shown in Figure 1 1.

1The translation of all German words used in this figure
and the subsequent tables is given in the appendix.

208

(a) English (b) German

Figure 1: Three ambiguous English (left) and German (right) words with concrete and abstract variants and some
related words in a two dimensional projection of the embedding space.

Since we added clearly abstract and concrete
words concreteness becomes a clear dimension in
the visualization. For all words we see that the
concrete variants indeed moved into the direction
of the related concrete words and similar for the
abstract variants.

In order to know whether the concrete and ab-
stract variants of the embeddings really become
more similar to synonyms of the respective senses
we selected 10 ambiguous words for English and
German along with a closely related word for the
abstract and for the concrete sense. For German
we selected 10 words that are ambiguous between
a building (or location) and an institution. For En-
glish we selected words that either denote a process
or an actor involved in that process. Here we tried
to select words that do not have too many senses,
are predominantly used as noun and for the related
words we tried to find synonyms that do not have
the same ambiguity. Most of the related words
were taken from the synsets in WordNet (Miller,
1995) to make the choices somewhat more objec-
tive. Now for each word we add (subtract) 0.2 v̂ca
and determine how much the resulting vector is
closer to the embedding of the related concrete (ab-
stract) word than the original vector. The results
for are give in Tables 6 and 7.

In all cases we see that the improvement is very
small or even negative. For some of the word pairs,
like Parlament – Parlamentsgebäude (Parliament -

Parliament’s house) or Schule – Schulgebäude, it
seems that the second word is a real synonym of
the building sense of the first word and we would
expect that the cosine similarity would be much
larger when adding the concreteness to the general
vector. Thus we have to conclude that though the
senses of these ambiguous German words clearly
have different degrees of concreteness, the differ-
ence between the senses is much more than just the
concreteness.

For the English words that are ambiguous be-
tween a process and an entity, adding concreteness
in two cases even makes the pairs more dissimilar
and adding abstractness only in one case makes
the word more similar to a synonym of the process
reading.

7 Conclusion

We have seen that concreteness can be identified as
a direction in the word embedding space. Various
methods, based on many words with concreteness
values or just on a view highly concrete words give
almost the same vector for concreteness. Moreover,
the cosine of these vectors with the embeddings
of words correlates strongly with the concreteness
judgments of human subjects of these words. Thus
our first research question can be answered posi-
tively.

Furthermore, we see that concreteness and ab-
stractness are quite symmetric properties. We can

209

Table 6: Ten ambiguous English words with each time one word related to the concrete sense (person or artifact)
and one word related to the abstract sense (process). The column after the related word gives the cosine between the
embeddings of the word and the related word; the column labeled δ gives the improvement if cosine similarity when
adding (resp. subtracting) 0.2 v̂ca to the embedding of the original word.

word concr. related cos δ abstr. related cos δ

passage passageway 0.52 0.05 transition 0.30 0.00
entry entranceway 0.32 0.03 debut 0.16 -0.01
creation world 0.25 -0.00 founding 0.31 -0.02
shot scene 0.37 0.00 stroke 0.23 -0.02
opposition opponent 0.51 0.01 resistance 0.38 -0.03
help assistant 0.19 0.03 assistance 0.58 -0.00
opening gap 0.36 -0.02 initiative 0.24 0.02
replacement successor 0.38 -0.07 replacing 0.60 -0.04
storage storehouse 0.39 0.01 warehousing 0.50 -0.01
shipment freight 0.50 0.02 dispatch 0.48 -0.02

Table 7: Ten ambiguous German words with each time one word related to the concrete sense (building or location)
and one word related to the abstract sense (institution). The column after the related word gives the cosine between
the embeddings of the word and the related word; the column labeled δ gives the improvement if cosine similarity
when adding (resp. subtracting) 0.2 v̂ca to the embedding of the original word.

word concr. related cos δ abstr. related cos δ

Parlament Parlamentsgebäude 0.70 0.01 Politik 0.47 0.01
Laden Schuppen 0.28 0.06 Einzelhandel 0.45 -0.01
Gericht Gerichtsgebäude 0.57 0.03 Urteil 0.55 0.01
Schule Schulgebäude 0.64 0.02 Lernen 0.45 0.01
Büro Bürohaus 0.55 0.01 Arbeit 0.43 0.02
Polizei Polizeiwache 0.65 0.03 Ordnung 0.27 0.01
Kirche Kirchturm 0.60 0.05 Religion 0.51 0.01
Universität Hörsaal 0.42 0.04 Forschung 0.39 0.01
Theater Schauspielhaus 0.72 -0.00 Kultur 0.46 0.01
Fabrik Schornstein 0.31 0.07 Produktion 0.57 0.01

compute vectors for concreteness and abstractness
independently and found both for English and Ger-
man that the angle between these vectors is almost
180 degrees. Moreover, we do not see any indica-
tion that all concrete form one cluster while abstract
words are distributed more uniformly through the
embedding space or the other way around. Thus,
we also can give a positive answer to the second
research question.

Finally, we hoped that we would find pairs of
words that just differ w.r.t. the concreteness dimen-
sion, like the words king and queen only differ w.r.t.
the gender dimension. At least we would like to
find words with different senses, where the degree
of concreteness is the main difference between the
senses. Though there are many polysemous words,
that seem to be good candidates and though we can

make suggestive visualizations for selected exam-
ples, our last experiment is not very encouraging in
this respect. In the first place it has to be noted that
the evaluation is quite problematic since we do not
know what the embedding of the specific senses of
a word should be. Nevertheless, at least in the case
of the building/institution ambiguity the senses the
senses are clearly distinguished by concreteness,
but there are many more differences between the
senses than just this aspect. The last result does not
mean that it is not possible to learn the relation be-
tween vectors for different senses of a word in the
case of regular polysemy, but the relation is more
complex than just linearly adding concreteness to
the embedding.

210

References
Jeffrey R Binder, Chris F Westbury, Kristen A McKier-

nan, Edward T Possing, and David A Medler. 2005.
Distinct brain systems for processing concrete and
abstract concepts. Journal of cognitive neuroscience,
17(6):905–917.

Anna M Borghi, Ferdinand Binkofski, Cristiano Castel-
franchi, Felice Cimatti, Claudia Scorolli, and Luca
Tummolini. 2017. The challenge of abstract concepts.
Psychological Bulletin, 143(3):263.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior
Research Methods, 46(3):904–911.

Jean Charbonnier and Christian Wartena. 2019. Predict-
ing word concreteness and imagery. In Proceedings
of the 13th International Conference on Computa-
tional Semantics-Long Papers, pages 176–187.

Jean Charbonnier and Christian Wartena. 2020. Predict-
ing the Concreteness of German Words. In Proceed-
ings of Konvens / SwissText.

Diego Frassinelli, Daniela Naumann, Jason Utt, and
Sabine Schulte m Walde. 2017. Contextual character-
istics of concrete and abstract words. In IWCS 2017
— 12th International Conference on Computational
Semantics — Short papers.

Michael Friendly, Patricia E. Franklin, David Hoff-
man, and David C. Rubin. 1982. The Toronto
Word Pool: Norms for imagery, concreteness, ortho-
graphic variables, and grammatical usage for 1,080
words. Behavior Research Methods & Instrumenta-
tion, 14(4):375–399.

K. J. Gilhooly and R. H. Logie. 1980. Meaning-
dependent ratings of imagery, age of acquisition,
familiarity, and concreteness for 387 ambiguous
words. Behavior Research Methods & Instrumen-
tation, 12(4):428–450.

Willy Hager. 1994. Bildhaftigkeit, Konkretheit-
Abstraktheit und Bedeutungshaltigkeit von 63
mehrdeutigen Substantiven. In Willi Hager and
Marcus Hasselhorn, editors, Handbuch deutsch-
sprachiger Wortnormen, chapter 3.6, pages 212–217.
Hogrefe Verlag für Psychologie, Göttingen.

Charles H Hargis and Edward E Gickling. 1978. The
function of imagery in word recognition development.
The Reading Teacher, 31(8):870–874.

Felix Hill and Anna Korhonen. 2014. Concreteness
and subjectivity as dimensions of lexical meaning.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 725–731.

Felix Hill, Anna Korhonen, and Christian Bentz.
2014. A quantitative empirical analysis of the
abstract/concrete distinction. Cognitive science,
38(1):162–177.

Geoff Hollis and Chris Westbury. 2016. The principals
of meaning: Extracting semantic dimensions from
co-occurrence models of semantics. Psychonomic
bulletin & review, 23(6):1744–1756.

Stavroula-Thaleia Kousta, Gabriella Vigliocco, David P
Vinson, Mark Andrews, and Elena Del Campo. 2011.
The representation of abstract words: why emotion
matters. Journal of Experimental Psychology: Gen-
eral, 140(1):14.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Daniela Naumann, Diego Frassinelli, and Sabine
Schulte im Walde. 2018. Quantitative Semantic Vari-
ation in the Contexts of Concrete and Abstract Words.
In Proceedings of the 7th Joint Conference on Lexi-
cal and Computational Semantics, pages 76–85, New
Orleans, LA, USA.

Ian Neath and Aimée M Surprenant. 2020. Concrete-
ness and disagreement: Comment on Pollock (2018).
Memory & cognition, 48(4):683–690.

Allan Paivio. 1970. On the functional significance of
imagery. Psychological Bulletin, 73(6):385.

Shekeila D Palmer, Lucy J MacGregor, and Jelena
Havelka. 2013. Concreteness effects in single-
meaning, multi-meaning and newly acquired words.
Brain research, 1538:135–150.

W. Gudrun Reijnierse, Christian Burgers, Marianna
Bolognesi, and Tina Krennmayr. 2019. How pol-
ysemy affects concreteness ratings: The case of
metaphor. Cognitive Science, 43(8):e12779.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 767–777. Association for
Computational Linguistics.

Mark Sadoski, Victor L Willson, Angelia Holcomb, and
Regina Boulware-Gooden. 2004. Verbal and nonver-
bal predictors of spelling performance. Journal of
Literacy Research, 36(4):461–478.

Paula J Schwanenflugel. 2013. Why are abstract con-
cepts hard to understand? In The psychology of word
meanings, pages 235–262. Psychology Press.

Paula J Schwanenflugel and Edward J Shoben. 1983.
Differential context effects in the comprehension of
abstract and concrete verbal materials. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 9(1):82.

Graham G. Scott, Anne Keitel, Marc Becirspahic,
Bo Yao, and Sara C. Sereno. 2019. The glasgow
norms: Ratings of 5,500 words on nine scales. Be-
havior Research Methods, 51(3):1258–1270.

211

Otfried Spreen and Rudolph W. Schulz. 1966. Parame-
ters of abstraction, meaningfulness, and pronuncia-
bility for 329 nouns. Journal of Verbal Learning &
Verbal Behavior, 5(5):459–468.

Shinya Tanaka, Adam Jatowt, Makoto P. Kato, and Kat-
sumi Tanaka. 2013. Estimating content concreteness
for finding comprehensible documents. In Proceed-
ings of the Sixth ACM International Conference on
Web Search and Data Mining, WSDM ’13, pages
475–484, New York, NY, USA. ACM.

Daphne Theijssen, Hans van Halteren, Lou Boves, and
Nelleke Oostdijk. 2011. On the difficulty of making
concreteness concrete. Computational Linguistics in
the Netherlands Journal, 1:61–77.

Dušica Filipović Ðurd̄ević, Aleksandar Kostić, and Zo-
rana Ðind̄ića. 2017. Number, relative frequency, en-
tropy, redundancy, familiarity, and concreteness of
word senses: Ratings for 150 serbian polysemous
nouns. In Selected Papers From the 4th and 5th
Workshop on Psycholinguistic, Neurolinguistic and
Clinical Linguistic Research, volume 2 of Studies in
Language and Mind, pages 13–50. Filozofski fakultet
u Novom Sadu.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of machine
learning research, 9(11).

Lin Yui, Roslin Ng, and Hiran Perera-WA. 2017. Con-
crete vs abstract words–what do you recall better? a
study on dual coding theory. Technical report, PeerJ
Preprints.

Appendix: Translation of German words
used in the figures and tables.

Word Translation

Arbeit work, labor
Baum tree
Bildung education
Büro office
Bürohaus office building
Curriculum curriculum
Einzelhandel retail
Experiment experiment
Fabrik factory
Forschung research
Gebäude building
Gericht court
Gerichtsgebäude court building
Hörsaal lecture hall
Kirche church
Kirchturm church tower
Kultur culture
Laden shop
Lernen to learn
Ordnung order
Parlament parliament
Parlamentsgebäude parliament’s house
Politik politics
Polizei police
Polizeiwache Police station
Produktion production
Religion religion
Schauspielhaus playhouse, theater
Schornstein chimney
Schule school
Schulgebäude school building
Schuppen shed
Theater theater
Turm tower
Universität university
Urteil verdict, judgment
Wirtschaft economy
Wissenschaft science

212

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 213 - 220
May 26, 2022 ©2022 Association for Computational Linguistics

PALBERT: Teaching ALBERT to Ponder.

Nikita Balagansky, Daniil Gavrilov
Tinkoff

n.n.balaganskiy@tinkoff.ai, d.gavrilov@tinkoff.ai

Abstract

Currently, pre-trained models can be consid-
ered the default choice for a wide range of
NLP tasks. Despite their SoTA results, there
is practical evidence that these models may re-
quire a different number of computing layers
for different input sequences, since evaluating
all layers leads to overconfidence on wrong
predictions (namely overthinking). This prob-
lem can potentially be solved by implementing
adaptive computation time approaches, which
were first designed to improve inference speed.

Recently proposed PonderNet may be a
promising solution for performing an early
exit by treating the exit layer’s index as a la-
tent variable. However, the originally pro-
posed exit criterion, relying on sampling from
trained posterior distribution on the probabil-
ity of exiting from i-th layer, introduces major
variance in model outputs, significantly reduc-
ing the resulting model’s performance.

In this paper, we propose Ponder ALBERT
(PALBERT) – an improvement to PonderNet
with a novel deterministic Q-exit criterion and
a revisited model architecture. We compared
PALBERT with recent methods for perform-
ing an early exit. We observed that the pro-
posed changes can be considered significant
improvements on the original PonderNet ar-
chitecture and outperform PABEE on a wide
range of GLUE tasks. In addition, we also
performed an in-depth ablation study of the
proposed architecture to further understand
Lambda layers and their performance.

1 Introduction

These days, fine-tuning pre-trained models on
downstream tasks became a de facto standard tech-
nique for training NLP models. One model that
is widely used in real-world applications is AL-
BERT (Lan et al., 2020), which is based on the
Transformer architecture (Vaswani et al., 2017)
with shared layers (i.e., the same layer is evalu-
ated several times to provide an output).

Figure 1: A comparison of the original sampling exit
criterion of PonderNet (on the top) and the proposed
Q-exit criterion (on the bottom). PonderNet performs
sampling from the Bernoulli distribution obtained from
the Lambda layer at each step, possibly exiting a model
too early or too late. For Q-exit, we evaluate the Cumu-
lative distribution function (CDF) of the probability of
exiting at layer i. Once CDF becomes greater than the
threshold value (0.5 in this example), we perform an
early exit. With such a deterministic criterion, we can
perform an early exit from a model more robustly with-
out introducing variance in the exit layer’s index during
inference.

While ALBERT-Base evaluates the Transformer
block 12 times, layer sharing makes it possible to
evaluate it an arbitrary number of times. Zhou et al.
(2020) showed that running ALBERT-Base block
for a fixed number of times (10) could increase
the accuracy of the fine-tuned model on specific
tasks (e.g., MRPC). This phenomenon is called
overthinking. Because of this fact, making mod-
els perform an early exit is not only done to in-

213

Figure 2: An estimation of Ex∼D

[
p(i|x)

]
, where p(i|x) is a trained posterior probability of exiting from layer i

of PALBERT models across different tasks, and D is the distribution of the training dataset. We took 5 models
trained on these tasks and sampled exit layer indices for the training dataset’s inputs. We smoothed the obtained
probabilities for visibility.

crease inference speed but also to make them
more accurate. A recent PABEE (Zhou et al.,
2020) solution was designed to overcome this issue
by performing an early exit based on the consensus
between different classifier heads from different
layers. The model stops evaluating when several
classifiers in a row produce the same result.

An orthogonal way to perform an early exit from
a model is PonderNet (Banino et al., 2021) – a vari-
ational approach that treats the exit layer’s index as
a latent variable. By maximizing the lower bound
of the likelihood of the training data, PonderNet
trains a model which can predict whether it is neces-
sary to exit from a specific layer during evaluation.
However, Banino et al. (2021) proposed to sample
from the trained posterior distribution of exiting
from each layer during inference, which leads to
major variance in model outputs.

This paper proposes Ponder ALBERT (PAL-
BERT) – an improvement to PonderNet adapted
for ALBERT fine-tuning. Instead of performing
an early exit by sampling from the trained poste-
rior distribution during evaluation, we used a novel
zero-variance exit criterion, namely Q-exit, which

evaluates the CDF of the exit layer’s probability dis-
tribution and perform a deterministic early exit. We
also revisited the architectural choices of Lambda
layers used to predict the probability of exiting
from the current layer in order to make them aware
of dynamics in hidden states across previous layers
and the number of currently running layers.

We experimented with PALBERT on the GLUE
Benchmark datasets (Wang et al., 2018). The abla-
tion study showed that PALBERT produced signif-
icantly better results than the original PonderNet
architecture adapted for ALBERT fine-tuning. Fur-
thermore, PALBERT outperformed PABEE and is
comparable to plain ALBERT fine-tuning, while
also exceeding it in speeds. We also analyzed the
trained model and provided insights on further im-
provement of the variational approach for early
exiting.

2 Related Work

Most of the approaches used to perform an early
exit from a model are based on the probability
distribution of predictions: BranchyNet (Teerapit-
tayanon et al., 2016), FastBERT (Liu et al., 2020),

214

Figure 3: PALBERT score dependency on the Q-exit threshold. We report the mean and std values of task metrics
across 5 trained models. See section 4.2 for more details

DeeBERT (Xin et al., 2020), which can be seen
as an entropy criterion. However, there is strong
practical evidence that classification models’ over-
thinking causes a reduction in predictions’ entropy,
making these methods difficult to use (Zhou et al.,
2020). Furthermore, it is unclear how to adapt
entropy methods for regression tasks (Zhou et al.,
2020).

Zhou et al. (2020) proposed PABEE – a method
to perform an early exit based on several classifiers
from the different levels of a model. Once several
classifiers in a row (the number of these classifiers
is determined by the patience hyperparameter t)
produce the same result, we can perform an early
exit. LeeBERT (Zhu, 2021) also uses the idea of a
consensus-based exiting strategy augmenting the
training algorithm with the self-distillation tech-
nique and cross-level optimization. Self-distillation
is orthogonal to the early exit approach and can be
combined with PALBERT. Because of this, we did
not include LeeBERT in our experiments and only
used PABEE as a consensus-based method.

An alternative way to perform an early exit is the
Ponder architecture (Banino et al., 2021), which
uses auxiliary Lambda layers to predict whether
a model should exit from a specific layer during

the runtime. Inputs to Lambda layers used in Pon-
derNet are hidden states from the current layer of
a model. PonderNet can be seen as a model with
the latent variable that corresponds to the exit layer
index, which is trained by maximizing the lower
bound of the marginalized likelihood of the data.

During inference, PonderNet authors proposed
to sample from the trained posterior distribution
of exit layer probabilities. However, this exit cri-
terion can lead to uncertainty in outputs for the
same input. Even if the Lambda layer produced
probability equal to 0.1 of exiting from the first
layer, we could still exit a model too early in one
of ten, cases even though the probability was small.
We also hypothesize that predicting exiting from a
layer based entirely on a single hidden state could
be sub-optimal since performing early exit could
also depend on the dynamics in hidden states across
layers (i.e., Lambda layer should know how hidden
states change during the evaluation).

3 Ponder ALBERT

The usual ALBERT evaluation can be defined as a
computation of n hidden states hi = S(hi−1) from
the input embeddings h0 of an input sequence x,
where i ∈ [1;n]. Once hn is obtained, it is passed

215

to a classifier block C(hn) to get the parameters
of an output distribution p(y|x). A common way
to fine-tune this architecture on downstream tasks
is to initialize the embeddings and the S layer by
using ALBERT (pre-trained on Masked Language
Modelling) while initializing C randomly and then
optimizing all parameters by maximizing the likeli-
hood of the training data.

While plain ALBERT performs a fixed number
of computational steps, it is possible to perform
an arbitrary number of evaluations of the layer S.
Banino et al. (2021) proposed to extend each Trans-
former layer with a so-called Lambda layer. More
precisely, for each layer i, after S outputs a new
hi, it is then passed to the classifier and Lambda
layers to get parameters C(hi) of output distribu-
tions p(y|x, i) and the probability of exiting from
the i-th layer λi = Λ(hi), which induces a gen-
eralized geometric distribution on probability of
exiting from layer i equal to

p(i|x) = λi

i−1∏

j=1

(1− λj). (1)

Then, having the probability distribution from
each layer p(y|x, i), the parameters of the model
are optimized to maximize

L(x, y) = Ei∼p(i|x)
[
p(y|x, i)

]
−

−βKL
(
p(·|x)||p(·|λ)

)
≤ p(y|x)

(2)

Here, p(·|λ) is a prior distribution of exiting
from each layer, parametrized by the hyperparame-
ter λ, and Ei∼p(i|x)

[
p(y|x, i)

]
is evaluated analyti-

cally by averaging likelihoods from different layers
with posterior exit probabilities. If we treat the exit
layer index as a latent variable, then optimizing L
from the Equation 2 could be seen as maximizing
the lower bound of marginalized likelihood p(y|x)
(Kingma and Welling, 2014).

Note that the probability of exiting from the last
layer n is normalized as p(n|λ) = 1−∑n−1

i=1 p(i|λ)
in order to make p(i|λ) sum into 1 with a finite
number of steps. The same is true for p(i|x). Also
note that weights of Lambda layers are shared
across layers of the model.

3.1 Exit Criterion
During inference, Banino et al. (2021) proposed
to sample the exit layer index from p(i|x) (i.e.,

by sampling iteratively from a Bernoulli distribu-
tion with parameter λi). While a sampling-based
exit criterion correlates with the variational view
of PonderNet’s training objective (it can be seen as
performing a single sample Monte-Carlo estima-
tion of Ei∼p(·|x)

[
p(y|x, i)

]
); such estimation has

major variance, which introduces the randomness
in the inference process of PonderNet (see Figure
2).

To overcome the issue of randomness, we pro-
pose Q-exit1: a novel deterministic criterion of
performing early exit, which we used for PAL-
BERT. Instead of sampling from the distribution
p(i|x) during inference, we evaluate its CDF by
accumulating p(i|x) from each layer. Once the
CDF is greater than the threshold hyperparameter
q, we perform an early exit. See Figure 1 for a
schematic comparison of the sampling criterion
with Q-exit. Threshold q can be seen as a trade-off
between underthinking and overthinking. There-
fore, q should be selected during the validation
of the trained model in order to choose the best-
performing value.

Based on our experiments, we found that the
proposed criterion produced significantly better ac-
curacy on various tasks compared to the original
sampling criterion (see Sections 4.1, 4.4), while
also being more practical than the original sam-
pling criterion.

3.2 Lambda Layer Architecture

While the original PonderNet used a single layer
MLP to obtain logit of exiting probability, we hy-
pothesize that making the Lambda layer understand
the dynamics of changing ALBERT hidden states
is crucial for achieving good performance. To do
so, instead of passing a single hidden state hi from
the i-th layer in Λ, we concatenate it with hi−1.
I.e., for PALBERT, we evaluate the probability of
exiting from i-th layer as

λi = Λ([hi, hi−1]). (3)

We used a 3 layer MLP with tanh activation for
the Lambda layer to operate with more complex in-
put. Based on the ablation study, we observed that
increasing the capacity improves the accuracy of
the trained model (See section 4.1). We also found
it beneficial to fine-tune the Lambda layer with a
different learning rate than all other parameters.

1Q-exit stands for Quantile

216

Method Speed-up SST-2 RTE QNLI CoLA MRPC MNLI QQP STS-B Macro
Dev set

ALBERT ×1.0 92.7 76.5 91.5 56.6 90.5 84.8 88.9 90.6 84.0
PABEE ×1.41 92.7 76.9 91.5 55.6 88.3 84.5 88.9 89.9 83.5

PonderNet ×1.48 91.3 74.0 88.3 51.3 87.1 81.7 87.7 88.2 81.2
PALBERT ×1.29 93.1 78.3 91.0 58.1 89.3 84.7 88.9 89.9 84.2

Test set
ALBERT ×1.0 93.4 70.0 92.1 50.5 85.6 79.0 84.7 87.4 80.3
PABEE ×1.39 92.7 71.1 91.3 46.0 84.3 79.2 83.7 86.5 79.3

PALBERT ×1.26 93.0 73.5 91.7 48.6 87.1 79.8 84.4 86.5 80.6

Table 1: A comparison of PALBERT with recent approaches on the GLUE benchmark. Each result for the dev set
is a median task score across 5 runs. We report the two metrics’ mean for the MRPC, QQP, and STS-B tasks. For
the MNLI task, we report the mean accuracy across matched and mismatched datasets. For the test set, we used
the best model according to the dev score. In the Macro column, we present the average results across tasks. We
bolded the best results and underlined the second-best results.

4 Experiments

4.1 Ablation Study

We performed an ablation study of the proposed
changes in PonderNet architecture. We experi-
mented with adding the proposed Q-exit criterion,
Lambda layer architecture, and fine-tuning strate-
gies. We also compared the proposed changes with
fine-tuning vanilla ALBERT. These methods were
benchmarked on SST-2, RTE, and CoLA tasks
from the GLUE Benchmarking dataset (Wang et al.,
2018).

For evaluation, we performed a grid hyperparam-
eter search on an appropriate metric score on the
dev split for each dataset. Following the PABEE
training setup, we trained all models with a fixed
learning rate until validation metrics stopped in-
creasing for 5 epochs. We used a fixed q = 0.5 for
all experiments on models with the Q-exit criterion.

We trained each model 5 times with the best
hyperparameters and reported the mean and std
values. A full list of the methods’ hyperparameter
ranges can be found in Table 3.

See Table 2 for the full list of the results of our
ablation study. Based on these experiments, Pon-
derNet architecture is seen as performing signifi-
cantly worse than vanilla ALBERT fine-tuning. At
the same time, the deterministic Q-exit criterion
dramatically improves PonderNet accuracy when
compared to a random sampling of the exit layer.
A more complex Lambda layer that can handle hid-
den state changes’ dynamics can further improve
model accuracy when compared to the original Pon-
derNet.

4.2 Understanding the Threshold of Q-exit

As noted previously in Section 3.1, we treat the
threshold value q of the Q-exit criterion as a trade-
off between underthinking and overthinking, where
increasing q forces a model to evaluate more layers,
and vice versa.

Therefore, it is necessary to find the best-
performing threshold for each task where a model
has the highest accuracy. To do so, we evaluated
trained PALBERT models from the ablation study
(see Section 4.1) on dev splits of tasks with differ-
ent values of q. We then averaged obtained metrics
and reported the mean and std values for various
thresholds (See Figure 3 for the results).

We observed that exiting models with q = 0.5
shows the best overall performance for different
tasks. Making q greater than 0.5 leads to a re-
duction in accuracy and can often force models to
evaluate all 12 layers of ALBERT-Base.

We associate such behavior of trained models
with the fact that the huge probability mass of
trained posterior probability p(i|x) is concentrated
near the last layers of models (see Figure 2). We hy-
pothesize that the reason for this is that the param-
eterization of prior probability p(i|λ) as geometric
distribution with normalized last layer, proposed
with PonderNet (Banino et al., 2021), leads to a
huge prior probability of exiting on the last layers
(See Section 3). For MRPC, we observe a huge
variance in the probabilities of exiting from differ-
ent models on the first layers, which we believe
leads to poor performance on this task. Note that
these plots could be seen as an estimation of proba-

217

Figure 4: A comparison between PALBERT and PABEE models on CoLA and SST-2 tasks. We varied the thresh-
old value of Q-exit for PALBERT and the patience hyperparameter for PABEE to obtain the plots of task scores
of inference increasing in speed. 1x stands for plain ALBERT inference without performing an early exit. The
horizontal line corresponds to plain ALBERT fine-tuning. See Section 4.3 for the analysis of these plots.

bilities of exiting from each layer with vanilla Pon-
derNet sampling exit criterion. For the RTE task,
layers i ∈ [1; 10] have approximately the same
probability of exiting with total probability mass
close to 0.5, introducing huge variance in model
outputs.

It is also notable that PALBERT, with a large
threshold value q that performs constant exit on the
last layer, has better accuracy than vanilla ALBERT
fine-tuning for the SST-2 task.

4.3 Speed Analysis

While making q < 0.5 improves inference speed,
it can also lead to underthinking and lower accu-
racy (see Figure 4). We compared PALBERT using
different threshold values q to PABEE with differ-
ent patience values t, which stands for the number
of layers necessary to output the same result in a
row to perform an early exit. We trained a PABEE
model following the setup from the ablation study
(see Section 4.1). We evaluated task scores for the
specified hyperparameters as well as the increase
in speed when compared to vanilla ALBERT infer-

ence of a full model with 12 layers.
Overall, we observed that PALBERT mostly pro-

duced higher scores on different tasks while also
being slightly faster than PABEE. For the CoLA
and MRPC datasets, PALBERT performed signifi-
cantly better. The proposed method outperformed
PABEE by a large margin while achieving the same
increase in speed.

We observed questionable results for the SST-
2 dataset: the best score for the PABEE model
is slightly higher than for PALBERT. However, it
was obtained with a negligible increase in speed,
because the best-performing patience for this setup
is 11 layers (while the whole model has only 12
layers).

Furthermore, unlike PALBERT, PABEE per-
formed significantly worse than plain ALBERT
fine-tuning on the CoLA and RTE tasks. We hy-
pothesize that the reason for this is that separate
classifiers for each layer Ci in PABEE were not
able to train well enough on such small datasets as
CoLA and RTE. Therefore, we can assume that per-
forming an early exit to avoid overthinking is not
the main feature of fine-tuning a well-performing

218

Method SST-2 RTE CoLA
ALBERT 92.7 ± 0.3 77.0 ± 1.9 57.0 ± 2.1
PonderNet 91.1 ± 0.6 73.5 ± 1.9 50.8 ± 2.2

Q-exit Lambda LR 3-Layer Lambda hidden concat.
+ - - - 92.2 ± 0.3 77.3 ± 1.4 55.7 ± 0.9
+ + - - 92.7 ± 0.4 77.3 ± 1.4 56.5 ± 1.2
+ + + - 92.6 ± 0.3 77.0 ± 1.4 56.3 ± 2.4
+ + - + 93.0 ± 0.3 76.5 ± 1.6 56.9 ± 1.9
+ + + + 92.9 ± 0.2 77.8 ± 1.2 57.4 ± 1.7

Table 2: An ablation study of the proposed PALBERT architecture. "Lambda LR" corresponds to fine-tuning the
Lambda layer with its own learning rate, "3-layer Lambda" refers to making the Lambda layer have three MLP
layers instead of one, and "hidden concat." stands for concatenation of two hidden states as input to the Lambda
layer.

model. Instead, it might be possible to simply focus
on improving the training process (e.g., by adding
auxiliary tasks on each layer).

4.4 GLUE Experiments

Finally, we compared PALBERT with different
baseline models on all GLUE tasks.

We re-implemented PABEE according to the
original work (Zhou et al., 2020) and used a fixed
patience value t = 6. We also compared PALBERT
with PonderNet architecture adapted for ALBERT
fine-tuning. We trained 5 models with the best hy-
perparameters across the hyperparameter search
and reported the median task score on the dev set.
We evaluated the test scores on the best models,
selected based on their dev scores.

See Table 1 for the full list of results. We ob-
served that PALBERT significantly outperformed
PABEE on a wide range of tasks. Vanilla Ponder-
Net with the sampling exit criterion performed the
worst. Vanilla ALBERT outperformed PABEE on
most tasks and is comparable to PALBERT, while
the latter has the higher score averaged across all
tasks (see Macro column in Table 1).

PABEE showed the highest increase in speed and
is faster than vanilla ALBERT fine-tuning ×1.41
times. PALBERT is still ×1.29 times faster than
vanilla ALBERT, while also significantly outper-
forming PABEE on most tasks.

Note that for tasks with a small dataset (e.g.,
CoLA, RTE), PABEE is performing poorly. We
hypothesize that this is caused by several indepen-
dent classifiers at each layer Ci failing to train well
enough, whereas PALBERT was capable of utiliz-
ing knowledge sharing between layers.

Parameter Values range
Learning rate [1e-5, 2e-5, 3e-5, 5e-5]
Batch size [16, 32, 128]
Lambda learning rate [1e-5, 2e-5, 3e-5]
β [0.5]
λ [0.1]
Optimizer [Adam]
Classifier dropout [0.1]

Table 3: Hyperparameter search ranges used in all of
our experiments. Vanilla ALBERT and PABEE only
used batch size and learning rate parameters, while the
PonderNet model avoids finding the best Lambda layer
learning rate. Weight β of KL used in Equation 2 has a
fixed value of 0.5, while prior exit probability distribu-
tion parameter λ is fixed to 0.1 and following original
PonderNet (Banino et al., 2021).

5 Conclusion and Future Work

In this paper, we proposed improving the Ponder-
Net architecture in order to perform an early exit
using a fine-tuned ALBERT model with the novel
Q-exit criterion and a revisited Lambda layer ar-
chitecture. While PALBERT outperformed some
recent State-of-The-Art methods used for early exit,
there is a clear direction for further improvement of
this method, as it was not capable of outperforming
plain ALBERT on some GLUE tasks.

We believe that PALBERT could benefit from
the development of new parameterization of the
prior distribution on exiting from each layer since
it directly affects the resulting posterior distribution
used to perform an early exit (see Figure 2).

In addition, adding more auxiliary tasks could
also make it possible to improve PALBERT further.
This way, training of PALBERT can be made more

219

PABEE-like by making independent classifiers on
each layer of the model or adding self-distillation
across layers.

Finally, there is still no theoretical justification
for the Q-exit threshold value. Although we ob-
served that q = 0.5 performed best, it is without a
clear explanation as to why that is so. We hypoth-
esize that bringing more insights into developing
deterministic exit criteria could further improve the
proposed method.

References
Andrea Banino, Jan Balaguer, and Charles Blundell.

2021. Pondernet: Learning to ponder. In 8th
ICML Workshop on Automated Machine Learning
(AutoML).

Diederik P. Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 6035–6044. Associa-
tion for Computational Linguistics.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2016. BranchyNet: Fast inference via early
exiting from deep neural networks. In Proceed-
ings of the 23rd International Conference on Pattern
Recognition, pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Alex Wang, Amapreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bow-
man. 2018. Glue: A multi-task benchmark
and analysis platform for natural language un-
derstanding. Cite arxiv:1804.07461Comment:
https://gluebenchmark.com/.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses pa-
tience: Fast and robust inference with early exit. In
Advances in Neural Information Processing Systems,
volume 33, pages 18330–18341. Curran Associates,
Inc.

Wei Zhu. 2021. LeeBERT: Learned early exit for
BERT with cross-level optimization. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2968–2980,
Online. Association for Computational Linguistics.

220

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 221 - 226
May 26, 2022 ©2022 Association for Computational Linguistics

Towards Improving Selective Prediction Ability of NLP Systems

Neeraj Varshney, Swaroop Mishra, Chitta Baral
Arizona State University

{nvarshn2, srmishr1, cbaral}@asu.edu

Abstract

It’s better to say “I can’t answer” than to answer
incorrectly. This selective prediction ability
is crucial for NLP systems to be reliably de-
ployed in real-world applications. Prior work
has shown that existing selective prediction
techniques fail to perform well, especially in
the out-of-domain setting. In this work, we
propose a method that improves probability es-
timates of models by calibrating them using
prediction confidence and difficulty score of
instances. Using these two signals, we first
annotate held-out instances and then train a
calibrator to predict the likelihood of correct-
ness of the model’s prediction. We instantiate
our method with Natural Language Inference
(NLI) and Duplicate Detection (DD) tasks and
evaluate it in both In-Domain (IID) and Out-
of-Domain (OOD) settings. In (IID, OOD) set-
tings, we show that the representations learned
by our calibrator result in an improvement
of (15.81%, 5.64%) and (6.19%, 13.9%) over
MaxProb –a selective prediction baseline– on
NLI and DD tasks respectively.

1 Introduction

In real-world applications, AI systems often en-
counter novel inputs that differ from their training
data distribution. Prior work has shown that even
state-of-the-art models tend to make incorrect pre-
dictions on such inputs (Elsahar and Gallé, 2019;
Miller et al., 2020; Koh et al., 2021; Hendrycks
et al., 2021). This raises reliability concerns and
hinders their adoption in real-world safety-critical
domains like biomedical and autonomous robots.
Selective prediction addresses these concerns by
enabling systems to abstain from making predic-
tions when they are likely to be incorrect. Avoiding
incorrect predictions allows them to maintain high
task accuracy and thus makes them more reliable.

Hendrycks and Gimpel (2017) proposed ‘Max-
Prob’ that uses the maximum softmax probability
across all answer candidates as the confidence es-

timate to selectively make predictions. While per-
forming reasonably well in the in-domain setting,
MaxProb and other existing selective prediction
techniques fail to translate that performance in the
out-of-domain setting (Varshney et al., 2022b; Ka-
math et al., 2020).

In this work, we propose a selective predic-
tion method that improves probability estimates
of models in both in-domain and out-of-domain
settings by learning strong representations via cali-
bration. Specifically, we calibrate models’ outputs
using a held-out dataset and use the calibrator as
confidence estimator for selective prediction. To
this end, we first argue that “all instances are not
equally difficult and the model is not equally con-
fident in all its predictions” and then through ex-
tensive experiments, we show that prediction con-
fidence is positively correlated with correctness
while difficulty score is negatively correlated (5.2).
We leverage the above finding to calibrate models’
outputs using these two signals.

For computing the difficulty scores, we use a
model-based technique (3.1) because human per-
ception of difficulty may not always correlate well
with machine interpretation. To calibrate a model,
we annotate instances of a held-out dataset condi-
tioned on the model’s predictive correctness (com-
puted using difficulty score and prediction confi-
dence) and then train a calibrator using these in-
stances. This annotation score represents the likeli-
hood of correctness of the model’s prediction. Fi-
nally, the trained calibrator predicts this likelihood
value for test instances and is used as the confi-
dence estimator for selective prediction.

To evaluate the efficacy of our method, we con-
duct comprehensive experiments in In-Domain
(IID) and Out-of-Domain (OOD) settings for Natu-
ral Language Inference (NLI) and Duplicate Detec-
tion (DD) tasks. We also compare its performance
with existing calibration techniques. On the NLI
task, our method achieves 15.81% and 5.64% im-

221

provement on AUC of risk-coverage curve over
MaxProb in IID and OOD setting respectively. Fur-
thermore, on the DD task, it achieves 6.19% and
13.9% improvement in IID and OOD setting re-
spectively. Finally, we hope that our work will fa-
cilitate development of more robust and reliable AI
systems making their wide adoption in real-world
applications possible.

2 Selective Prediction

Selective prediction enables a system to abstain
on instances where it is likely to be incorrect i.e
it consists of a selector (g) that determines if the
system should output the prediction. Usually, g
comprises of a prediction confidence estimator g̃
and a threshold th that controls the abstention level:

g(x) = 1[g̃(x)) > th]

A selective prediction system makes trade-offs
between coverage and risk. For a dataset D, cov-
erage at a threshold th corresponds to the fraction
of answered instances (where g̃ > th) and risk is
the error on those answered instances.

With the decrease in th, coverage will increase,
but the risk will usually also increase. The overall
selective prediction performance across all thresh-
olds is measured by the area under risk-coverage
curve (El-Yaniv et al., 2010). Lower the AUC, the
better the system as it represents lower average
risk across all thresholds.

3 Method

We propose to train a confidence estimator that
can assign higher scores to correctly predicted in-
stances than incorrectly predicted ones. To this
end, we leverage a held-out dataset and annotate
it’s instances conditioned on the model’s predictive
correctness. Specifically, we infer the model on the
held-out dataset and annotate instances with a score
such that correctly predicted instances get assigned
a higher score than incorrectly predicted instances.
This annotation score models the likelihood of the
prediction being correct and is computed using
the model’s prediction confidence and difficulty
level of the instance. Finally, a calibrator (regres-
sion model) is trained using this annotated held-out
dataset and used as the confidence estimator for
selective prediction.

We detail each component of our method and
the intuition behind it in the following subsections.

3.1 Difficulty Score Computation
To compute difficulty score of an instance, we
evaluate it after every training epoch and subtract
the aggregated softmax probability assigned to the
ground-truth answer from 1 i.e. for an instance i,
difficulty score di is calculated as:

si =

∑E
j=1 cji

E

di = 1− si
where the model is trained till E epochs and cji

is prediction confidence of the correct answer given
by the model after jth training epoch. Note that
cji is probability assigned to the correct answer not
the maximum probability across all answer candi-
dates. The intuition behind this procedure is that
the instances that can be consistently answered
correctly from the early stages of training are in-
herently easy and should receive lower difficulty
score than the ones that require a large number
of training steps. A similar method has been ex-
plored in Swayamdipta et al. (2020) for analyzing
“training dynamics” but here we use it to quantify
difficulty of the held-out instances.

3.2 Annotation Score Computation
We define annotation score for the held-out in-
stances as a function of softmax probability out-
putted by the model and the difficulty score. We
show that softmax score is positively correlated
while difficulty score is negatively correlated with
the predictive correctness i.e the system is more
likely to be correct if the softmax score is high and
difficulty score is low. Furthermore, in order to jus-
tifiably separate the scores for correct and incorrect
prediction scenarios in the range 0 to 1, we push
the scores above 0.5 in case of correct and below
0.5 in case of incorrect scenarios. Concretely, we
use the following functions to compute this:

AS1 =

{
0.5 + maxProb

2 , if correct
0.5− maxProb

2 , otherwise

AS2 =

{
0.5 + si

2 , if correct
0.5− si

2 , otherwise

AS3 =

{
0.5 + max(si,maxProb)

2 , if correct
0.5− min(si,maxProb)

2 , otherwise

AS1 uses only softmax, AS2 uses only difficulty
score and AS3 uses a combination of both. These

222

annotation strategies assign a relatively higher
score when the model’s prediction is correct and a
lower score when it is incorrect. This gold score
ranges from 0 to 1 as both si and maxProb lie in
the same range and better captures the likelihood of
correctness unlike the categorical labels (1 for cor-
rect and 0 for incorrect) used in typical calibration
approaches. Note that this annotation computa-
tion is only required for training the calibrator
and not at test time. Therefore, difficulty score of
the test instances need not be computed.

Both difficulty score and annotation score com-
putation procedures are generic and are widely ap-
plicable since NLP systems usually make proba-
bilistic predictions for all kinds of tasks ranging
from Classification to Question Answering.

3.3 Calibration

Equipped with annotation scores, we extract syn-
tactic features, namely, lengths, Semantic Textual
Similarity (STS) value, number of common words
between given sentences, and presence of negation
words / numbers from the held-out instances to
train the calibrator model. These features along
with maxProb and prediction outputted by the
model serve as inputs for the calibrator. Finally,
we use a simple random forest implementation of
Scikit-learn (Pedregosa et al., 2011) to train our
calibrator that learns strong representations for the
inputs. We note that these syntactic features are
general and applicable for all language understand-
ing tasks and any regression model can be used as
the calibrator. We compare our method with other
calibration techniques described in Section 4.1.

4 Experimental Setup

4.1 Calibration Baselines

Kamath et al. (2020) study a calibration-based se-
lective prediction technique for Question Answer-
ing datasets where they annotate a held-out dataset
such that correctly predicted instances are assigned
class label ‘1’ and incorrect ones are assigned la-
bel ‘0’. Then, a calibrator is trained using this
annotated binary classification dataset using fea-
tures such as input length and probabilities of top
5 predictions. The softmax probability assigned
to class ‘1’ by this calibrator is used as the con-
fidence estimator for selective prediction. We re-
fer to this approach as Calib C. We also train a
transformer-based model for calibration (Calib T)
that leverages the entire input text for this classifi-

cation task instead of the syntactic features (Garg
and Moschitti, 2021).

Our proposed calibration method differs from
these approaches as we quantify the correctness
on a continuous scale (instead of categorical labels
‘1’ and ‘0’) using prediction confidence and diffi-
culty of the instances and use explicitly provided
general syntactic features described in Section 3.3
for training. Our annotation procedure provides
more flexibility for the calibrator to look for fine-
grained features distinguishing various annotation
scores. We note that our simplest annotation strat-
egy (AS1) that does not incorporate difficulty score
is similar to Calib R method described in Varshney
et al. (2022b) but our calibration method uses more
general syntactic features.

Note that for fair estimation of abilities of
the proposed method, we compare it with other
calibration-based techniques only. Other tech-
niques such as Monte-Carlo dropout (Gal and
Ghahramani, 2016) and Error Regularization (Xin
et al., 2021) are complementary and can further
improve our performance.

4.2 Datasets

We conduct experiments with Natural Language In-
ference and Duplicate Detection datasets and com-
pare the performance of various calibration tech-
niques in in-domain and out-of-domain settings.

NLI Datasets: SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018) (Matched and Mis-
matched), and Stress Test (Naik et al., 2018) (Com-
petence, Distraction, and Noise).

Duplicate Detection Datasets: QQP (Iyer et al.,
2017) and MRPC (Dolan and Brockett, 2005).

For NLI task, we train 3-way classification
model (NLI has three labels) on SNLI and eval-
uate the selective prediction performance on SNLI
(IID) and MNLI, Stress Test (OOD) datasets. For
the DD task, we train model on MRPC and evaluate
on MRPC (IID) and QQP (OOD) datasets. We use
BERT-BASE model (Devlin et al., 2019) with a lin-
ear layer on top of [CLS] token representation for
training the model for these tasks. We train these
models with the default learning rate of 5e− 5 for
3 epochs.1 We use the same experimental setup as
(Varshney et al., 2022b) for calibration methods.

1See Appendix for details

223

Method SNLI MNLI Stress Test
Matched Mismatched Avg Competence Distraction Noise Avg

MaxProb (AUC) 2.78 14.00 14.44 14.22 47.87 26.49 20.34 31.57

Calib T (%) -181.2 -129.55 -127.86 -128.69 -48.65 -81.3 -91.17 -68.93
Calib C (%) +8.97 +2.15 -1.36 +0.40 -3.75 +8.27 -0.80 +0.55
Proposed (%) +15.81 +2.35 +2.04 +2.19 +8.01 +6.60 +0.22 +5.64

Table 1: Comparing percentage improvement of various calibration approaches on AUC of risk-coverage curve
(over MaxProb) in in-domain (SNLI) and out-of-domain settings (MNLI, Stress Test) for NLI task.

Method MRPC QQP

MaxProb (AUC) 6.13 40.46

Calib T (%) -148.87 +2.21
Calib C (%) -0.82 +2.0
Proposed (%) +6.19 +13.9

Table 2: Comparing % improvement of various calibra-
tion approaches on AUC of risk-coverage curve in IID
(MRPC) and OOD (QQP) settings for DD task.

5 Results and Analysis

5.1 MaxProb Struggles in OOD Setting

First rows in Table 1 and 2 show the AUC values
achieved by MaxProb in NLI and DD tasks respec-
tively. Note that in selective prediction, low AUC
values of risk-coverage curves are preferred. We
find that MaxProb performs well in the IID setting
as it achieves low AUC values (2.78 on SNLI and
6.13 on MRPC). However, it fails to translate that
in the OOD setting (AUC of 14.22 on MNLI, 31.57
on Stress Test, and 40.46 on QQP). This implies
that the model makes a significant number of incor-
rect predictions with relatively high MaxProb and
thus needs to be calibrated.

For calibration methods, we compare the perfor-
mance improvement achieved over MaxProb w.r.t
the minimum possible AUC.

5.2 Proposed Method Outperforms All

Our method shows a clear benefit over existing
calibration techniques as it leads to a considerable
improvement in all the cases. The proposed method
achieves 15.81% and 6.19% improvement in the
IID setting on SNLI and MRPC respectively. Fur-
thermore, it achieves 2.19% on MNLI, 5.64% on
Stress Test, and 13.9% on QQP in the OOD setting.
Calib T considerably degrades performance in both
IID and OOD settings. However, Calib C results
in a minor improvement in the IID setting (8.97%
for SNLI) but does not consistently improve in the
OOD setting (especially on MNLI Mismatched and

Figure 1: Trend of Model Accuracy with Confidence
and Difficulty score for the NLI task.

Competence Stress Test). We attribute this to the
limited signal that is given to the calibrator by an-
notating the held-out dataset with categorical labels
‘1’ and ‘0’. Thus, it learns weak representations.

Comparing Annotation Functions: We find
that the improvement using our method comes from
using AS3 as the annotation score which outper-
forms AS1 and AS2. This is expected as it lever-
ages useful signals provided by both maxProb and
difficulty score for annotation computation.

Relationship With Predictive Correctness: To
further analyze our method, we plot the relation-
ship of predictive correctness with prediction confi-
dence and difficulty score in Figure 1. It shows that
prediction confidence is positively correlated while
the difficulty score is negatively correlated with
correctness. This further justifies our annotation
score computation procedure.

6 Conclusion and Future Work

We proposed a selective prediction method that
calibrates the model outputs using prediction confi-
dence and difficulty level of the instances. Through
comprehensive experiments, we demonstrated that
it achieves considerable improvement over Max-
Prob on NLI and Duplicate Detection tasks in both
IID and OOD settings. We hope that our work
will facilitate development of more robust and re-
liable AI systems making their wide adoption in
real-world applications possible.

224

Acknowledgements

We thank the anonymous reviewers for their in-
sightful feedback. This research was supported by
DARPA SAIL-ON and DARPA CHESS programs.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Ran El-Yaniv et al. 2010. On the foundations of noise-
free selective classification. Journal of Machine
Learning Research, 11(5).

Hady Elsahar and Matthias Gallé. 2019. To annotate
or not? predicting performance drop under domain
shift. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2163–2173, Hong Kong, China. Association for Com-
putational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Siddhant Garg and Alessandro Moschitti. 2021. Will
this question be answered? question filtering via
answer model distillation for efficient question an-
swering. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7329–7346, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021.
The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 8340–8349.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for
detecting misclassified and out-of-distribution exam-
ples in neural networks. Proceedings of International
Conference on Learning Representations.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai.
2017. First quora dataset release: Question pairs.
data. quora. com.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-
lective question answering under domain shift. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5684–
5696, Online. Association for Computational Lin-
guistics.

Pang Wei Koh, Shiori Sagawa, Henrik Mark-
lund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Im-
ran Haque, Sara M Beery, Jure Leskovec, Anshul
Kundaje, Emma Pierson, Sergey Levine, Chelsea
Finn, and Percy Liang. 2021. Wilds: A benchmark
of in-the-wild distribution shifts. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 5637–5664. PMLR.

John Miller, Karl Krauth, Benjamin Recht, and Ludwig
Schmidt. 2020. The effect of natural distribution
shift on question answering models. In International
Conference on Machine Learning, pages 6905–6916.
PMLR.

Swaroop Mishra and Anjana Arunkumar. 2021. How
robust are model rankings: A leaderboard customiza-
tion approach for equitable evaluation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13561–13569.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis
Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-
Graber. 2021. Evaluation examples are not equally
informative: How should that change NLP leader-
boards? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4486–4503, Online. Association for Computa-
tional Linguistics.

225

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral.
2022a. Ildae: Instance-level difficulty analysis of
evaluation data. arXiv preprint arXiv:2203.03073.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral.
2022b. Investigating selective prediction approaches
across several tasks in iid, ood, and adversarial set-
tings. arXiv preprint arXiv:2203.00211.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. The art of abstention: Selective prediction and
error regularization for natural language processing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1040–1051, Online. Association for Computational
Linguistics.

Appendix

A Related Work

Instance-level difficulty analysis has recently re-
ceived considerable attention. Varshney et al.
(2022a) explore five different applications of diffi-
culty analysis of evaluation data such as conduct-
ing efficient yet accurate evaluations with fewer
instances and estimating OOD performance reli-
ably. Rodriguez et al. (2021) incorporate item re-
sponse theory based difficulty quantification and
analyze ranking reliability of leaderboards. Mishra
and Arunkumar (2021) study robustness of model
rankings by weighting instances based on their diffi-
culty score. Swayamdipta et al. (2020) analyze the
behavior of model on individual instances during
training (training dynamics) and categorize training
instances into three different difficulty regions.

B Experimental Details

We use batch size of 32 on Nvidia V100 16GB
GPUs for our experiments. We train these models

with the default learning rate of 5e−5 for 3 epochs.
In Calib T approach, we use BERT-BASE model as
the calibrator and train it using the annotated held-
out dataset. For training this calibrator, we use the
default learning rate of 5e − 5. In the proposed
approach, we use a simple random forest imple-
mentation of Scikit-learn (Pedregosa et al., 2011)
to train the calibrator. Note that more advanced
regression models could be used to further improve
the performance of our approach. However, we
leave that for future work as the focus of this paper
is to show efficacy of our proposed approach on
the selective prediction task.

C Features of Training Calibrator

We extract syntactic features, namely, lengths, Se-
mantic Textual Similarity (STS) value, number of
common words between given sentences, and pres-
ence of negation words / numbers from the held-out
instances to train the calibrator model. These fea-
tures along with maxProb and prediction outputted
by the model serve as inputs for the calibrator.

For the NLI task, we compute these features for
premise and hypothesis sentences i.e. STS value,
number of common words, etc. between premise
and hypothesis sentences.

Similarly, for the DD task, we compute these
features for the given two sentences.

226

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 227 - 235
May 26, 2022 ©2022 Association for Computational Linguistics

On Target Representation in Continuous-output Neural Machine Translation

Evgeniia Tokarchuk
Language Technology Lab
University of Amsterdam
e.tokarchuk@uva.nl

Vlad Niculae
Language Technology Lab
University of Amsterdam

v.niculae@uva.nl

Abstract

Continuous generative models proved their
usefulness in high-dimensional data, such as
image and audio generation. However, contin-
uous models for text generation have received
limited attention from the community. In this
work, we study continuous text generation using
Transformers for neural machine translation
(NMT). We argue that the choice of embeddings
is crucial for such models, so we aim to focus on
one particular aspect: target representation via
embeddings. Weexplorepretrainedembeddings
and also introduce knowledge transfer from the
discrete Transformer model using embeddings
in Euclidean and non-Euclidean spaces. Our
results on the WMT Romanian-English and
English-Turkish benchmarks show such transfer
leads to the best-performing continuous model.

1 Introduction & Related work

Discrete neural models represent the major-
ity of systems used in sequence-to-sequence
tasks (Sutskever et al., 2014; Vaswani et al.,
2017). Despite the promising advantages of
continuous-output models in terms of efficiency
and expressivity, literature has awarded them
relatively little attention. While past work focuses
on continuous training objectives, we remark that
the choice of word representations is essential.

Continuous-output NMT was first studied by
Kumar and Tsvetkov (2019). They study regular-
ized probabilistic loss functions, even though their
results show that by far the biggest gain comes
from switching to pretrained fastText (Bojanowski
et al., 2017) embeddings from word2vec (Mikolov
et al., 2013). Bhat et al. (2019) follow up with a
study of margin-based losses. However, to the best
of our knowledge, there is no comprehensive study
on token-level representation and their impact on
the continuous NMT performance.

In our work, we attempt to fill the gap and give
insights about target representation in continuous-

output NMT by highlighting an analogy between tar-
get representations and the output layer of a discrete
model. We propose, as a knowledge transfer strat-
egy, pretraining word representations with a discrete
translation model. On two different language pairs,
namely Romanian-English (Ro→En) and English-
Turkish (En→Tr), we find that this strategy outper-
forms externally-trained representations, even from
massive pretrained language models. Moreover, we
find, somewhat surprisingly, that high dimensional-
ity not only does not help, but can even substantially
hurt, and that taking into account the natural spher-
ical geometry of the cosine objective can lead to
better performance with smaller dimensionality.

2 Continuous-output NMT
NMT seeks to translate a sequence of tokens
𝒙1:𝑁 = (𝑥1, ...,𝑥𝑁) from the source language to a
sequence 𝒚1:𝑇 = (𝑦1, ...,𝑦𝑇) in the target language
using a neural model:

𝒙1:𝑁 →𝒚1:𝑇 (𝒙1:𝑁) = argmax
𝒚1:𝑇

𝑝(𝒚1:𝑇 |𝒙1:𝑁) . (1)

The probabilistic model above is typically imple-
mented by sequence-to-sequence deep neural mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017), using the decomposition

𝑝(𝒚1:𝑇 |𝒙1:𝑁) =
𝑇∏︂
𝑖=1

𝑝(𝑦𝑖 | 𝒚1:𝑖−1,𝒙1:𝑁) . (2)

In a discrete model, the conditional token
probabilities in eq. (2) are categorical distributions
over a fixed vocabulary Vtgt,

𝑝(𝑦𝑖 | 𝒚1:𝑖−1,𝒙1:𝑁)=
exp𝒆⊤𝑦𝑖𝑾𝒉𝑖∑︁ |Vtgt |

𝑗=1 exp𝒆⊤𝑦𝑗𝑾𝒉𝑖

=
exp𝒉𝑖 ·𝒘(𝑦𝑖)∑︁

𝑣∈Vtgt exp𝒉𝑖 ·𝒘(𝑣) ,
(3)

where 𝒉𝑖 ∈ℝ𝑑 is the model output for position 𝑖, (a
function of 𝒙 and the Transformer weights 𝜽), and

227

𝒘(𝑣) ∈W is the embedding of vocabulary token
𝑣, i.e., the 𝑣th row of 𝑾. Typically, W =ℝ𝑑 and
𝑾 is randomly initialized and learned jointly with
𝜽. The log-probability of the gold token is typically
referred as the cross-entropy loss, and has the value:

𝐿D(𝜽,𝑾) =−
𝑇∑︁
𝑖=1

log𝑝(𝑦𝑖 | 𝒚1:𝑖−1,𝒙1:𝑁)

=
𝑇∑︁
𝑖=1

⎛⎜
⎝
−𝒉𝑖 ·𝒘(𝑦𝑖) + log

∑︁
𝑣∈Vtgt

exp𝒉𝑖 ·𝒘(𝑣)⎞⎟
⎠
.

In a continuous model, the output space is not lim-
ited to a discrete vocabulary but instead gives mass
to the entire space W, and we interpret the nota-
tion 𝑝(𝑦𝑖 |𝒚1:𝑖−1,𝒙) to mean 𝑝(𝒘(𝑦𝑖) |𝒚1:𝑖−1,𝒙). A
common parametrization uses the cosine similarity,

𝑝(𝒘(𝑦𝑖) |𝒚1:𝑖−1,𝒙) ∝ exp
𝒉𝑖 ·𝒘(𝑦𝑖)

∥𝒉𝑖 ∥∥𝒘(𝑦𝑖)∥ . (4)

Here, the distribution is over a continuous space,
so the normalizer is an integral

∫
Wd𝒗exp 𝒉𝑖 ·𝒗

∥𝒉𝑖 ∥ ∥𝒗 ∥ .
By a symmetry argument, it can be shown that the
normalizer does not depend on 𝒉 and is therefore
a constant, yielding the cosine distance loss:

𝐿C(𝜽) =−
𝑇∑︁
𝑖=1

log𝑝(𝒘(𝑦𝑖) |𝒚1:𝑖−1,𝒙)

= const+
𝑇∑︁
𝑖=1

(︃
1− 𝒉𝑖 ·𝒘(𝑦𝑖)

∥𝒉𝑖 ∥∥𝒘(𝑦𝑖)∥

)︃
.

(5)

The cosine loss is an intuitive choice with a history
of use in NLP (Subramanian et al., 2018; Wieting
et al., 2019). Its probabilistic interpretation we
give has roots in directional statistics (Mardia et al.,
2000), and corresponds to a Langevin distribution
(also known as vMF) with fixed scale. Kumar and
Tsvetkov (2019) studied more general Langevin
distributions for NMT. Even though these more
flexible formulations provide useful modelling
extensions, the impact of the loss seems less than
the impact of embeddings.

Unlike the discrete model, where the embeddings
𝒘(·) can be learned from scratch, in a continuous
model, this is not an option because the trivial
solution of setting them all to the same (nonzero)
value and learning to always output that value as
𝒉𝑖 leads to the minimal loss of zero. Therefore,
for continuous-output NMT, good pretrained token
representations are essential!

encoder decoder

final linear layer

input
embeddings

output
embeddings

next gold token

cross-entropy loss

encoder decoder

target embeddings

input
embeddings

output
embeddings

next gold token

cosine loss

(frozen)

Figure 1: Illustration of the parallels between the
discrete (left) and continuous (right) Transformers.

Model architecture. We build our continuous
model on top of the Transformer (Vaswani et al.,
2017) encoder-decoder model, which powers most
state-of-the-art NMT models. In contrast, previous
work uses recurrent models (Bahdanau et al., 2015).
The encoder is unchanged, while the decoder is
slightly reorganized, as shown in figure 1. We
re-interpret the output layer 𝑾 as the target embed-
dings, which only needs to be applied to the gold
token during training. The target embeddings are
frozen and set to one of the choices discussed in §3.

3 Target Embeddings
3.1 Euclidean Representations
fastText. Following Kumar and Tsvetkov (2019)
we use fastText (Bojanowski et al., 2017) target
embeddings. We experiment with two different
variants. The first is the publicly-available Com-
monCrawl pretrained fastText model (Mikolov
et al., 2018; Grave et al., 2018). These models
contain subword information and we use the
provided API to extract vectors for every subword
in the preprocessed MT training data. For com-
parison, we also train fastText models entirely
from scratch on the preprocessed MT training data.
mBART. Since the work of Kumar and Tsvetkov
(2019), large language models proved highly
effective at generating contextualized vector
representations for a variety of downstream
tasks. We therefore consider extracting target
representations from mBART (Tang et al., 2021).
For further adaptation to MT, we use the fine-tuned
NMT many-to-many mBART-large many-to-many
model (Tang et al., 2021) from the huggingface
Transformers library (Wolf et al., 2020). A natural
thought would be to extract the mBART input

228

embeddings for subwords occuring in the MT data.
However, we found that mBART input embeddings
are less adequate that mBART model outputs, es-
pecially for subwords that are common in multiple
languages, and lead to the poor performance. We
refer to the appendix D for details. Therefore, we
propose encoding every subword type 𝑣 ∈ 𝑉 by
processing [target-lang] v through the mBART
decoder, and using the last hidden activations.
MT-transfer. Using our observation of the paral-
lel between the linear output layer of a discrete MT
model𝑾 and the target embeddings in a continuous
one (figure 1), we propose a novel knowledge trans-
fer strategy. We train a Transformer-base model
(baseline) on the preprocessed MT parallel data,
choose the best checkpoint on development set, and
use the output layer weights as target embeddings.

3.2 Non-euclidean Representations
Both embedding methods discussed so far assume
that the tokens live in an Euclidean space, like most
NLP models. However, this assumption is receiv-
ing increasing scrutiny (Nickel and Kiela, 2017;
Bronstein et al., 2017; Tifrea et al., 2019). Indeed,
since the cosine distance is a function of directions
only, it may be suboptimal to use embeddings that
encode information in vector lengths. We consider
two methods for learning embeddings on the
surface of the sphere, 𝒘(𝑦) ∈𝕊𝑑−1 ⊆ℝ𝑑, where

𝕊𝑑−1≔ {𝒖 ∈ℝ𝑑 : ∥𝒖∥ = 1} . (6)

Spherical Text Embeddings (JoSe). Meng et al.
(2019) propose learning directional embeddings
on the unit sphere using Riemannian optimization,
reporting improved performance on word similarity
tasks, where cosine similarity is typical. Since
continuous MT models also rely on cosine similar-
ity, we expect similar results. We train spherical
embeddings using the code released by Meng et al.
(2019) on the target-side monolingual data of each
MT language pair, after BPE tokenization. The
released pretrained JoSe model does not apply, due
to lack of subword information.
Spherical MT embeddings. As a spherical
counterpart of the MT transfer learning insight,
we propose training a baseline Transformer
model with decoder input and output embeddings
constrained to 𝕊𝑑−1. We employ Riemannian
optimization (Gabay, 1982; Udriste, 1994;
Bonnabel, 2013); specifically, Riemannian Adam
(Becigneul and Ganea, 2019) for the last hidden

layer 𝑾 as well as the other embeddings, and
regular (Euclidean) Adam (Kingma and Ba, 2015)
for all other parameters. Riemannian Adam is
provided in geoopt (Kochurov et al., 2020). To our
knowledge, this is the first instance of non-euclidean
embeddings trained with an MT objective.

3.3 Dimensionality Reduction
While high-dimensional vectors can be richer,
computational costs increase with dimension, and
distances can be harder to tell apart (Aggarwal
et al., 2001; Beyer et al., 1999).

To explore the impact of the target dimension,
for the embeddings trained only on MT data, we
retrain the embeddings for every dimensionality
we consider. For external embeddings, we
use PCA: in the case of fastText, we use the
provided reduce_model.py script. For mBART,
we apply cosine kernel PCA (Schölkopf et al.,
1997) from scikit-learn (Pedregosa et al.,
2011). Dimensionality reduction on the sphere is
non-trivial and a possible avenue for future work.

4 Experiments
We experiment using the publicly available WMT
2016 Ro→En dataset with 612K parallel training
sentences, and the WMT 2018 En→Tr dataset with
207K parallel training sentences. We compute
BLEU (Papineni et al., 2002) using sacrebleu

(Post, 2018)1 on newsdev2016 and newstest2016

for both Ro→En and En→Tr. Detailed information
about data is collected in appendix A.

All experiments and implementation are based
on fairseq (Ott et al., 2019) framework. We use
6-layers Transformer base model as a baseline. For
continuous model, encoder and decoder embed-
dings size are set to 512 (they are not initialized
with pretrained embeddings), and output layer size
depends on the target embeddings dimensionality.
We choose the best model checkpoint based on
development BLEU. For generation, we rely on the
top-1 nearest neighbor search (greedy) using cosine
similarity, the details are discussed in appendix C.

4.1 Results & Analysis
Table 1 shows the BLEU along with the BERTScore
(Zhang et al., 2020) results of continuous output
NMT models with different target embeddings.
Since BERTScore is based on semantic similarity,
it is suitable to assess the continuous model

1BLEU+case.mixed+numrefs.1+smooth.exptok.13a+version.1.5.1
229

embeddings dim.
Ro→En En→Tr

dev16 test16 dev16 test16 test17

BLEU BSc BLEU BSc BLEU BSc BLEU BSc BLEU BSc
discrete - 33.0 65.6 31.6 64.9 12.0 69.3 12.2 69.2 12.2 69.8

+beam=5 - 33.7 66.6 32.3 66.1 12.7 70.4 12.8 70.5 13.0 71.0
Trained on target monolingual data
JoSe (𝕊) 100 29.6 43.3 27.4 43.1 2.7 54.1 2.9 54.7 3.3 55.9
JoSe (𝕊) 50 29.9 50.9 28.2 51.8 9.7 64.0 9.4 63.9 9.9 64.7
fastText 512 26.4 47.0 25.4 47.9 3.5 52.8 3.3 54.1 3.3 52.7
fastText 300 27.2 51.4 26.6 52.1 9.1 64.0 9.0 63.9 9.5 64.7
fastText 100 29.3 57.1 28.6 57.2 9.2 62.6 9.2 62.6 9.4 63.1
fastText 50 29.3 56.4 28.6 56.5 9.2 63.1 9.2 63.1 9.4 63.8
Trained on bilingual data
MT-transfer 512 29.7 56.4 28.7 57.2 10.9 67.9 10.7 67.8 11.3 68.6
MT-transfer 100 32.2 63.0 30.9 62.9 8.5 61.8 8.2 61.5 8.9 62.3
MT-transfer 50 31.7 62.3 30.6 62.3 8.5 60.8 8.6 60.7 8.9 61.4
MT-transfer (𝕊) 512 30.4 61.0 29.0 60.9 10.3 67.1 9.8 66.8 10.2 67.6
MT-transfer (𝕊) 100 30.8 61.0 29.7 60.9 11.4 68.6 11.2 68.1 11.6 69.1
MT-transfer (𝕊) 50 31.3 60.9 30.0 60.9 9.2 63.3 9.1 62.8 9.5 63.5
Pretrained on external data
fastText 300 27.5 55.1 27.0 55.7 9.2 62.6 9.1 62.1 9.3 63.0
fastTextPCA 100 29.6 59.4 28.6 59.0 9.1 63.0 9.3 62.8 9.5 63.5
mBART-MT 1024 24.9 48.6 24.6 49.5 0.0 29.5 0.0 29.6 0.0 29.5
mBART-MTPCA 512 29.5 58.9 28.7 59.5 9.5 65.6 8.9 64.5 9.2 65.2
mBART-MTPCA 100 28.9 57.1 27.9 58.0 9.7 65.1 9.2 64.5 9.8 65.3
mBART-MTPCA 50 27.3 54.2 26.4 54.1 8.2 61.8 7.9 61.4 8.5 62.2

Table 1: BLEU and BERTscore (BSc), in percentages, on newstest and newsdev. Spherical models are denoted by 𝕊.

performance. We re-scale BERTScore using
baseline, to provide more human-readable outputs.
The BERTScores agrees with the BLEU score both
on Ro→En and En→Tr. Contrary to past work
(Kumar and Tsvetkov, 2019; Bhat et al., 2019),
when upgrading to state-of-the-art Transformer
models with BPE, continuous models do not catch
up to the discrete counterpart. We attribute this to
the highly tuned Transformer architecture, and find
that our exploration manages to shrink the gap con-
siderably. We next analyze the various dimensions
of variation in the choice of target representation.

MT knowledge transfer. On both tasks, the best
performing continuous model uses embeddings
learned by a discrete MT model. Bilingual data
contains valuable information about the target
language, but external mBART embeddings lag
behind MT-transfer, perhaps since the latter are
fine-tuned to the target language and domain. This
finding prompts promising directions for hybrid
embeddings via fine-tuning or adaptation.

Geometry. Spherical embeddings (JoSe and
MT-transfer(𝕊)) prove useful compared to the
euclidean embeddings, and tend to scale well to
smaller dimensions and datasets. MT-transfer(𝕊)
is the best continuous model for En→Tr.
Dimensionality. Throughout, we record the
best performance with embeddings slightly
smaller than the standard values used in discrete
models. This is most pronounced for mBART-MT,
with which En→Tr training fails entirely for
𝑑 = 1024. According to our findings, the smaller
dimensionality of the target embeddings benefits
the model’s performance. However, it might no
longer hold for large-scale MT datasets.
External pretraining. Surprisingly, we find no
clear indication that large-scale external pretraining
with fastText or mBART is superior to leaning
only on the task data, even when compared
to monolingual embeddings, and even on the
lower-resource language pair. However, we cannot
use the full contextualization abilities of mBART,
because we are limited to selecting one embedding

230

Ro En, freq. <100 En Tr, freq. <100 Ro En, freq. 100 En Tr, freq. 100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F 1

0.57
0.68

0.52

0.67

0.40

0.66

0.33

0.52

0.31

0.51

0.27

0.49

discrete MT-transfer (best) mBART-MT (best)

Figure 2: Word-level 𝐹1 score by training frequency.

Output
Src. În Bucuresti se vor inregistra 26 de grade la amiaza.
Ref. Bucharest will register 26 degrees at noon.
discrete Bucharest will register 26 degrees at noon.
MT-transfer There will be 26 degrees at afternoon in Bucharest.
mBART-MT There will be 26 degrees in Bucharest at evening.

Src. horă s, i rock cu vioară s, i chitară
Ref. Hora and rock with a violin and guitar
discrete Hora and rock with both a violin and guitar
MT-transfer Hora, rock with vivid and chitar
mBART-MT Resolution and rock with its shadow and furniture

Table 2: Translation examples. Words with training
frequency < 100 are highlighted.

vector per target subword. Better transfer of
contextual representations from large language
models remains an open question.
Rare words. One might expect external pretrain-
ing to benefit words that occur rarely in the MT train-
ing data, via transfer. Figure 2 reveals the opposite
trend. Even the best continuous model struggles for
words with frequency under 100, but mBART-MT
degrades much more for such rare words. For more
common words, the gap is small. Some examples of
sentences with the rare words are shown in Table 2.
More examples can be found in Appendix E.
Length. We find continuous models to struggle
more with shorter sentences. For Turkish target
sentences longer than 10 words, the difference in
average sentence BLEU between the discrete and
the best continuous model is 1.04; for sentences
with ≤10 words it is 2.48. Ro→En exhibits a similar
trend. This suggests future work should focus on the
representations of rare words and short sentences.

5 Conclusion
In this work, we investigated the importance of
target representations for continuous NMT in two
language pairs. We find that our proposed strategy
to transfer embeddings from a discrete Transformer
model outperforms all other embedding choices.
We pinpoint the impact of properties like dimen-
sionality and geometry, and provide further insight
into the errors made by continuous models. Our
proposed transfer strategy is effective despite using

much less data compared to large pretrained models.
We believe that further research into combining
external data with MT-transfer embeddings may
be necessary for improving continuous model
performance. Even though our model performance
is behind the discrete model, we argue that this work
can be seen as a stepping stone for building strong
and reliable continuous model for text generation.

Acknowledgments

We thank all the members of the UvA Language
Technology Lab for their constant feedback on
our work. Special thanks to Ali Araabi and
Amir Soleimani for their useful comments on the
manuscript, and to Nicola De Cao for the insightful
discussions on the topic. Finally, we want to
thank anonymous reviewers for their valuable
input and suggestions. Vlad Niculae is partially
supported by the Hybrid Intelligence Centre, a
10-year program funded by the Dutch Ministry
of Education, Culture, and Science through the
Netherlands Organisation for Scientific Research
(https://hybrid-intelligence-centre.nl).

References
Charu C Aggarwal, Alexander Hinneburg, and Daniel A

Keim. 2001. On the surprising behavior of distance
metrics in high dimensional space. In Proceedings
of the International Conference on Database Theory.
Springer.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning toalignand translate. InProceedingsof the In-
ternational Conference on Learning Representations.

Gary Becigneul and Octavian-Eugen Ganea. 2019.
Riemannian adaptive optimization methods. In In-
ternational Conference on Learning Representations.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan,
and Uri Shaft. 1999. When is “nearest neighbor”
meaningful? In International conference on database
theory, pages 217–235. Springer.

Gayatri Bhat, Sachin Kumar, and Yulia Tsvetkov.
2019. A margin-based loss with synthetic negative
samples for continuous-output machine translation.
In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 199–205, Hong
Kong. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association
for Computational Linguistics, 5:135–146.

231

Silvere Bonnabel. 2013. Stochastic gradient descent
on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. 2017. Geometric
deep learning: Going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42.

DanielGabay.1982. Minimizingadifferentiable function
over a differential manifold. Journal of Optimization
Theory and Applications, 37(2):177–219.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC 2018).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning
Representations.

Max Kochurov, Rasul Karimov, and Serge Kozlukov.
2020. Geoopt: Riemannian optimization in PyTorch.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tokenizer
and detokenizer for neural text processing. CoRR,
abs/1808.06226.

Sachin Kumar and Yulia Tsvetkov. 2019. Von Mises-
Fisher loss for training sequence to sequence models
with continuous outputs. In Proceedings of the Inter-
national Conference on Learning Representations.

Kanti V Mardia, Peter E Jupp, and KV Mardia. 2000.
Directional statistics, volume 2. Wiley Online Library.

Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang,
Honglei Zhuang, Lance Kaplan, and Jiawei Han.
2019. Spherical text embedding. Advances in Neural
Information Processing Systems, 32.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Chris-
tian Puhrsch, and Armand Joulin. 2018. Advances
in pre-training distributed word representations. In
Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018).

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representations.
In Advances in Neural Information Processing
Systems, volume 30.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 48–53, Minneapolis, Minnesota.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA. Association for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pages
186–191, Brussels, Belgium. Association for
Computational Linguistics.

Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. 1997. Kernel principal component
analysis. In Proceedings of the International
Conference on Artificial Neural Networks, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subwordunits. InProceedingsof the54thAnnualMeet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany. Association for Computational Linguistics.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio,
and Christopher J Pal. 2018. Learning general
purpose distributed sentence representations via large
scale multi-task learning. In Proceedings of the In-
ternational Conference on Learning Representations.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing
Systems, Cambridge, MA, USA. MIT Press.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen,
Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and
Angela Fan. 2021. Multilingual translation from
denoising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP
2021, pages 3450–3466, Online. Association for
Computational Linguistics.

Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen
Ganea. 2019. Poincare Glove: Hyperbolic word
embeddings. In Proceedings of the International
Conference on Learning Representations.

232

Constantin Udriste. 1994. Convex Functions and
Optimization Methods on Riemannian Manifolds,
volume 297. Springer Science & Business Media.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, Red Hook, NY, USA. Curran Associates Inc.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond BLEU:training
neural machine translation with semantic similarity.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 4344–4355, Florence, Italy. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cis-
tac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
SylvainGugger, MariamaDrame, QuentinLhoest, and
Alexander Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the
2020ConferenceonEmpiricalMethodsinNaturalLan-
guage Processing: System Demonstrations, pages 38–
45, Online. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with BERT. In Proceedings of the In-
ternational Conference on Learning Representations.

233

A Data
We follow a standard pre-processing pipeline: all
training sentences are tokenized and truecased
using moses. We apply BPE (Sennrich et al.,
2016) segmentation with 40K merge operations
for Ro→En and 16K for En→Tr. Where necessary,
we apply the SPM (Kudo and Richardson, 2018)
model provided by the mBART pretrained model.
The training data statistics are collected in Table 3.

Validation set newsdev2016 and test set
newstest2016 for Ro→En contains 1999 sen-
tences. Validation set newsdev2016 and test set
newstest2016 for En→Tr contains 1999 sentences.
En→Tr validation set newsdev2016 contains 1001
sentences, test set newstest2016 contains 3000 sen-
tences and newstest2017 contains 3007 sentences.

Ro→En En→Tr
train sentences 612K 207k
running tokens (tgt) 16.6M 4.6M
target vocab. size 25k 12K

Table 3: Training data statistics

B Hyperparameters
For all models, the learning rate is set to 5 ·10−4 and
the effective batch size set to 64k tokens. Warm-up
steps are 10K for Ro→En and 4k for En→Tr. We
use dropout 0.3 for all our models. We train model
with the Adam optimizer (Kingma and Ba, 2015).

C Generation
To find the closest token on each generation step,
we use the cosine similarity between output of the
model and target embeddings.

𝑦̃𝑖 = argmin
𝑣∈𝑉𝑡𝑔𝑡

𝑑(𝒉𝑖,𝒘(𝑣)) (7)

where 𝑦̃𝑡 is the token predicted by the model, and
𝑑(·) is the cosine distance between the model
output and the token embeddings of the token in
target vocabulary.

The complexity of the NN search for NMT
depends on vocabulary size, the sequence length
and the vector dimensions. To speed up search,
we use the faiss (Johnson et al., 2019) library for
fast nearest neighbors search. However, instead of
approximation, we use exact search, which never-
theless boosts the computation speed. Investigation
of the different variants of the approximate nearest
neighbors search is out of the scope of this paper.

D mBART embeddings
As we mentioned in §3.1, the straightforward way
to utilize the mBART embeddings is to extract the
input embeddings matrix. The extracted embed-
dings matrix contains 250K vocabulary types. We
filter embeddings to keep only the tokens, which
is observed in training MT data. After filtering,
the vocabulary consists of 27,508 types. However,
the performance of continuous models using these
embeddings drop dramatically on Ro→En (17.0
BLEU on the development set, which is 16.7 BLEU
worse than a discrete model). We hypothesize that
this might be due to the multilingual ambiguity of
the token embeddings in the input matrix. For the
filtered embeddings matrix, the 3 nearest neighbors
for the word "_neighbor" are: "_neighborhood",
"_mondat", "_mbr". For mBART-MT, obtained
as discussed in §3.1, the 3 nearest neighbors for
the word "_neighbor" are: "friend", "_companion"
and "_mentor".

E Examples
We provide sentence examples of the best
performing model for each embeddings type in
table 4 on the next page.

234

Output
Src. În Bucuresti se vor inregistra 26 de grade la amiaza.
Ref. Bucharest will register 26 degrees at noon.
discrete Bucharest will register 26 degrees at noon.
JoSe (𝕊) There will be 26 degrees at afternoon in Bucharest.
fastText There will be 26 degrees in Bucharest at afternoon.
MT-transfer There will be 26 degrees at afternoon in Bucharest.
MT-transfer(𝕊) There will be 26 degrees in Bucharest at the afternoon.
fastText (pretrained) There will be 27 degrees in Bucharest in the afternoon.
mBART-MT There will be 26 degrees in Bucharest at evening.

Src. The other undergraduates giggled.
Ref. Diğer lisans öğrencileri kıkırdadı.
discrete Diğer lisans öğrencileri de oldukça yavaş gitti.
JoSe (𝕊) Diğer başka leme eğitim aları da zevkler.
fastText Diğer mezunlar da karmaşıklaştırıldı.
MT-transfer Diğer mezunlar ise hediye ediliyorlar.
MT-transfer (𝕊) Diğer mezunlar ise bıkmış durumda.
fastText (pretrained) Diğer mezunlar ise relayor.
mBART-MT Diğer lisans öğrencileri beenhard.

Table 4: Translation examples for Ro→En and En→Tr. Continuous models have a tendency to select synonyms
or near-synonyms (noon and afternoon, öğrencileri and mezunlar.)

235

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 236 - 248
May 26, 2022 ©2022 Association for Computational Linguistics

Zero-shot Cross-lingual Transfer is Under-specified Optimization

Shijie Wu, Benjamin Van Durme, Mark Dredze
Department of Computer Science

Johns Hopkins University
shijie.wu@jhu.edu, vandurme@jhu.edu, mdredze@cs.jhu.edu

Abstract

Pretrained multilingual encoders enable zero-
shot cross-lingual transfer, but often produce
unreliable models that exhibit high perfor-
mance variance on the target language. We
postulate that this high variance results from
zero-shot cross-lingual transfer solving an
under-specified optimization problem. We
show that any linear-interpolated model be-
tween the source language monolingual model
and source + target bilingual model has
equally low source language generalization er-
ror, yet the target language generalization er-
ror reduces smoothly and linearly as we move
from the monolingual to bilingual model, sug-
gesting that the model struggles to identify
good solutions for both source and target lan-
guages using the source language alone. Ad-
ditionally, we show that zero-shot solution lies
in non-flat region of target language error gen-
eralization surface, causing the high variance.

1 Introduction

Pretrained multilingual encoders like Multilingual
BERT (mBERT; Devlin et al., 2019) and XLM-
RoBERTa (XLM-R; Conneau et al., 2020) facilitate
zero-shot cross-lingual transfer (Wu and Dredze,
2019; Hu et al., 2020) — training the model on one
language then using it on another language without
additional task-specific training data. While the
generalization performance on the source language
has low variance, on the target language the vari-
ance is much higher with zero-shot cross-lingual
transfer (Keung et al., 2020; Wu and Dredze, 2020),
making it difficult to compare different models in
the literature. Similarly, pretrained monolingual
encoders also have unstable performance during
fine-tuning (Devlin et al., 2019; Phang et al., 2018).

Why are these models so sensitive to the random
seed? Many theories have been offered: catas-

Code is available at https://github.com/
shijie-wu/crosslingual-nlp.

trophic forgetting of the pretrained task (Phang
et al., 2018; Lee et al., 2020; Keung et al., 2020),
small data size (Devlin et al., 2019), impact of ran-
dom seed on task-specific layer initialization and
data ordering (Dodge et al., 2020), the Adam op-
timizer without bias correction (Mosbach et al.,
2021; Zhang et al., 2021), and a different general-
ization error with similar training loss (Mosbach
et al., 2021). However, none of these factors fully
explain the high generalization error variance of
zero-shot cross-lingual transfer on target language
but low variance on source language.

We offer a new explanation for high variance in
target language performance: the zero-shot cross-
lingual transfer optimization problem is under-
specified. Based on the well-established linear in-
terpolation of 1-dimensional plot and contour plot
(Goodfellow et al., 2014; Li et al., 2018), we empir-
ically show that any linear-interpolated model be-
tween the monolingual source model and bilingual
source and target model has equally low source
language generation error. Yet the target language
generation error surprisingly reduces smoothly and
linearly as we move from a monolingual model to
a bilingual model. To the best of our knowledge,
no other paper documents this finding.

This result provides a new answer to our mystery:
only a small subset of the solution space for the
source language solves the target language on par
with models with actual target language supervi-
sion; the optimization could not find such a solution
with existing condition (without target language su-
pervision), hence an under-specified optimization
problem. If target language supervision were avail-
able, as it was in the counterfactual bilingual model,
the optimization would find the smaller subset. By
comparing both mBERT and XLM-R, we find that
the generalization error surface of XLM-R is flatter
than mBERT, contributing to its better performance
compared to mBERT. Thus, zero-shot cross-lingual
transfer has high variance, as the solution found by

236

zero-shot cross-lingual transfer lies in the non-flat
region of the target language generalization error
surface. Small turbulence on the parameter space
would lead to big generalization error difference,
hence the high variance.

2 Existing Hypotheses (Related Work)

Prior studies have observed fine-tuning variance
with pretrained encoder, and have offered various
hypotheses to explain this behavior. Catastrophic
forgetting – when neural networks trained on one
task forget that task after training on a second task
(McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017) —has been credited as the source of high
variance in both monolingual fine-tuning (Phang
et al., 2018; Lee et al., 2020) and zero-shot cross-
lingual transfer (Keung et al., 2020). Mosbach et al.
(2021) wonder why preserving cloze capability is
important. However, in zero-shot cross-lingual
transfer, deliberately preserving the multilingual
cloze capability with regularization improves per-
formance but does not eliminate the zero-shot trans-
fer gap (Aghajanyan et al., 2021; Liu et al., 2021).

Small training data size often seems to have
higher variance in performance (Devlin et al.,
2019), but Mosbach et al. (2021) found that when
controlling the number of gradient updates, smaller
data size has the similar variance as larger data size.

In the pretraining-then-fine-tune paradigm, ran-
dom seeds impact the initialization of task-specific
layers and data ordering during fine-tuning. Dodge
et al. (2020) show development set performance
has high variance with respect to seeds. Addition-
ally, Adam optimizer without bias correction—an
Adam (Kingma and Ba, 2014) variant (inadver-
tently) introduced by the implementation of Devlin
et al. (2019)—has been identified as the source
of high variance during monolingual fine-tuning
(Mosbach et al., 2021; Zhang et al., 2021). How-
ever, in zero-shot cross-lingual transfer, while dif-
ferent random seeds lead to high variance in target
languages, the source language has much smaller
variance in comparison even with standard Adam
(Wu and Dredze, 2020).

Beyond optimizers, Mosbach et al. (2021) at-
tributes high variance to generalization issues: de-
spite having similar training loss, different mod-
els exhibit vastly different development set perfor-
mance. However, in zero-shot cross-lingual trans-
fer, the development or test performance variance
is much smaller on the source language compared

Parameters with low generation
error on source language

Parameters with low
generation error on

target language

Found by zero-shot optimization

Found by bilingual optimization

Figure 1: zero-shot cross-lingual transfer is an under-
specified optimization problem. With the existing con-
dition, the optimization could not find the solution that
we really want.

to target language.

3 Under-specified Optimization

Existing hypotheses do not explain the high vari-
ance of zero-shot cross-lingual transfer: much
higher variance on generalization error of the target
language compared to the source language. We
propose a new explanation: zero-shot cross-lingual
transfer is an under-specified optimization prob-
lem.1 As in Fig. 1, optimizing a multilingual model
for a specific task using only source language an-
notation allows choices of many good solutions
in terms of generalization error. However, un-
beknownst to the optimizer, these solutions have
wildly different generalization errors on the target
language. In fact, a small subset has similar low
generalization error as models trained on target lan-
guage. Yet without the guidance of target data, the
zero-shot cross-lingual optimization could not find
this smaller subset. As we will show in §5, the so-
lution found by zero-shot transfer lies in a non-flat
region of target language generalization error, and
small turbulence in the parameter space causes big
difference in generalization error, causing its high
variance.

3.1 Linear Interpolation
We test this hypothesis via a linear interpolation
between two models to explore the neural network
parameter space. Consider three sets of neural net-
work parameters: θsrc, θtgt, θ{src,tgt} for a model

1This explanation provides deeper insight on the common
belief that no target data causes high variance. We provide
evidence on how these two factors interact.

237

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 2: Normalized performance of a linear interpolated model between a monolingual and bilingual model.
A single plot line shows the performance normalized by the matching bilingual model and aggregated over eight
language pairs and four tasks, with the shaded region representing 95% confidence interval. The x-axis is the linear
mixing coefficient α in Eq. (1) and Eq. (2), with α = 0 and α = 1 representing source language monolingual model
and source + target bilingual model, respectively. Each subfigure title indicates the source and target languages.
Across all experiments, the source language dev performance stays consistently high (red and purple lines) during
interpolation while the target language dev performance starts low and increases smoothly and linearly as it moves
towards the bilingual model (gray and blue lines). App. D break down this figure by tasks.

trained on task data for the source language only,
target language only and both languages, respec-
tively. This includes both task-specific layers and
encoders.2 Note all three models have the same ini-
tialization before fine-tuning, making the bilingual
model a counterfactual setup if the corresponding
target language supervision were available. We
obtain the 1-dimensional (1D) linear interpolation
of a monolingual (source) task trained model and
bilingual task trained model with

θ(α) = αθ{src,tgt} + (1− α)θsrc (1)

or we could swap source and target by

θ(α) = αθ{src,tgt} + (1− α)θtgt (2)

where α is a scalar mixing coefficient (Goodfellow
et al., 2014). Additionally, we can compute a 2-

2We also experiment with interpolating the encoder param-
eters only and observe similar findings. On the other hand,
interpolating the task-specific layer only has a negligible ef-
fect.

dimensional linear interpolation as

θ(α1, α2) = θ{src,tgt} + α1δsrc + α2δtgt (3)

where δsrc = θsrc − θ{src,tgt}, δtgt = θtgt −
θ{src,tgt}, α1 and α2 are scalar mixing coefficients
(Li et al., 2018).3 Finally, we can evaluate any in-
terpolated models on the development set of source
and target languages, testing the generalization er-
ror on the same language and across languages.

The performance of the interpolated model il-
luminates the behavior of the model’s parameters.
Take Eq. (1) as an example: if the linear interpo-
lated model performs consistently high for our task
on the source language, it suggests that both models
lie within the same local minimum of source lan-
guage generalization error surface. Additionally, if

3Li et al. (2018) use two random directions and they nor-
malize it to compensate scaling issue. In this setup, we find
δsrc and δtgt have near identical norms, so we do not apply
additional normalization. As these two directions are not ran-
dom, we find that it spans around 55◦. We plot the norm ratio
and angle of these two vectors in App. B.

238

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-RU EN

RU

0.50

0.70

0.90
0.95

0.95

0.99 1.
00

EN Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-RU EN

RU

0.50

0.
700.

90
0.

95

0.99

1.
00

RU Normalized Performance

(a) EN-RU NER w/ mBERT

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-RU EN

RU

0.300.50

0.70

0.90
0.95

0.95
0.99 1.0

0

EN Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-RU EN

RU

0.50
0.700.

900.
95

0.
99

1.00

RU Normalized Performance

(b) EN-RU NER w/ XLM-R

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-ZH AR

ZH

0.50
0.70

0.90
0.95

0.95
0.99

1.00

AR Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-ZH AR

ZH
0.50

0.70

0.90

0.95

0.95

0.99

1.
00

ZH Normalized Performance

(c) AR-ZH XNLI w/ mBERT

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-ZH AR

ZH

0.500.70

0.70

0.90

0.90

0.95

0.95

0.99

1.00

AR Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-ZH AR

ZH

0.50

0.70

0.70
0.90

0.90

0.95

0.95

0.99

1.00

ZH Normalized Performance

(d) AR-ZH XNLI w/ XLM-R

Figure 3: Normalized performance of 2D linear interpolation between bilingual model and monolingual models.
The x-axis and the y-axis are the α1 and α2 in Eq. (3), respectively. By comparing mBERT and XLM-R, we observe
that XLM-R has flatter target language generalization error surface compared to mBERT. Different language pairs
and tasks combination shows similar trends and additional figures can be found in App. E

the linear interpolated model performs vastly differ-
ently on the target language, it would support our
hypothesis. On the other hand, if the linear interpo-
lated model performance drops on the source lan-
guage, it suggests that both models lie in different
local minimum of source language generalization
error surface, suggesting the zero-shot optimization
searching the wrong region.

4 Experiments

We consider four tasks: natural language infer-
ence (XNLI; Conneau et al., 2018), named entity
recognition (NER; Pan et al., 2017), POS tagging
and dependency parsing (Zeman et al., 2020). We
evaluate XNLI and POS tagging with accuracy
(ACC), NER with span-level F1, and parsing with
labeled attachment score (LAS). We consider two
encoders: base mBERT and large XLM-R. For
the task-specific layer, we use a linear classifier
for XNLI, NER, and POS tagging, and Dozat and
Manning (2017) for dependency parsing.

To avoid English-centric experiments, we con-
sider two source languages: English and Arabic.
We choose 8 topologically diverse target languages:
Arabic4, German, Spanish, French, Hindi, Russian,
Vietnamese, and Chinese. We train the source lan-
guage only and target language only monolingual
model as well as a source-target bilingual model.

4Arabic is only used when English is the source language.

We compute the linear interpolated models as
described in §3.1 and test it on both the source and
target language development set. We loop over
{−0.5,−0.4, · · · , 1.5} for α, α1 and α2.5 We re-
port the mean and variance of three runs by using
different random seeds. We normalized both mean
and variance of each interpolated model by the
bilingual model performance, allowing us to ag-
gregate across tasks and language pairs. Details of
fine-tuning can be found in App. A.

5 Results

In Fig. 2, we observe that interpolations between
the source monolingual and bilingual model have
consistently similar source language performance.
In contrast, surprisingly, the target language per-
formance smoothly and linearly improves as the
interpolated model moves from the zero-shot model
to bilingual model.6 The only exception is mBERT,
where the performance drops slightly around 0.1
and 0.9 locally. In contrast, XLM-R has a flatter
slope and smoother interpolated models.

Fig. 3 further demonstrates this finding with a

5We additionally select 0.025, 0.05, 0.075, 0.125, 0.15,
0.175, 0.825, 0.85, 0.875, 0.925, 0.95, and 0.975 for α due to
preliminary experiment.

6We also show the variance of the interpolated models
in App. C. The source language has much lower variance
compared to target language on the monolingual side of the in-
terpolated models, echoing findings in Wu and Dredze (2020).

239

2D linear interpolation. The generalization error
surface of the target language of XLM-R is much
flatter compared to mBERT, perhaps the funda-
mental reason why XLM-R performs better than
mBERT in zero-shot transfer, similar to findings
in CV models (Li et al., 2018). As we discuss
in §3, these two findings support our hypothesis
that zero-shot cross-lingual transfer is an under-
specified optimization problem. As Fig. 3 shows,
the solution found by zero-shot transfer lies in a
non-flat region of target language generalization
error surface, causing the high variance of zero-
shot transfer on the target language. In contrast,
the same solution lies in a flat region of source lan-
guage generalization error surface, causing the low
variance on the source language.

6 Discussion

We have presented evidence that zero-shot cross-
lingual transfer is an under-specified optimization
problem, and the cause of high variance on target
language but not the source language tasks during
cross-lingual transfer. This finding holds across 4
tasks, 2 source languages and 8 target languages.
Training bigger encoders addresses this issue in-
directly by producing encoders with flatter cross-
lingual generalization error surfaces. However, a
more robust solution may be found by introducing
constraints into the optimization problem. There
are a few potential solutions.

Few-shot cross-lingual transfer is a potential way
to further constrain the optimization problem. Zhao
et al. (2021) finds that it is important to first train
on source language then fine-tune with the few-
shot target language example. Through the lens
of our analysis, this finding is intuitive since fine-
tuning with a small amount of target data provides
a guidance (gradient direction) to narrow down the
solution space, leading to a potentially better solu-
tion for the target language. The initial fine-tuning
with the source data is also important since it pro-
vides a good starting point. Additionally, Zhao
et al. (2021) observes that the choice of shots mat-
ters. This is expected as it significantly impacts the
quality of the gradient direction.

Similarly, silver target data is a potential way to
further constrain the optimization problem. While
Yarmohammadi et al. (2021) finds that jointly train-
ing with gold source data and silver target data ben-
efits cross-lingual transfer, a pipeline fine-tuning
approach like few-shot cross-lingual transfer is also

worth exploring.
Unsupervised model selection like Chen and

Ritter (2020) and optimization regularization like
Aghajanyan et al. (2021) have been proposed in the
literature to improve zero-shot cross-lingual trans-
fer. Through the lens of our analysis, both solutions
attempt to constrain the optimization problem.

As none of the existing techniques fully con-
strain the optimization, future work should study
the combination of existing techniques and develop
new techniques on top of it instead of studying one
technique at a time.

Acknowledgments

This research is supported in part by ODNI,
IARPA, via the BETTER Program contract #2019-
19051600005. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

This research is supported by the following open-
source softwares: NumPy (Harris et al., 2020), Py-
Torch (Paszke et al., 2017), PyTorch lightning (Fal-
con, 2019), scikit-learn (Pedregosa et al., 2011),
Transformer (Wolf et al., 2019).

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representa-
tional collapse. In International Conference on
Learning Representations.

Yang Chen and Alan Ritter. 2020. Model selection for
cross-lingual transfer using a learned scoring func-
tion. arXiv preprint arXiv:2010.06127.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods

240

in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. arXiv preprint arXiv:2002.06305.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Rep-
resentations.

WA Falcon. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Ian J Goodfellow, Oriol Vinyals, and Andrew M
Saxe. 2014. Qualitatively characterizing neural
network optimization problems. arXiv preprint
arXiv:1412.6544.

Charles R. Harris, K. Jarrod Millman, Stéfan J
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585:357–362.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
Bhardwaj. 2020. Don’t use English dev: On the
zero-shot cross-lingual evaluation of contextual em-
beddings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 549–554, Online. Association for
Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Interna-
tional Conference on Learning Representations.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Zihan Liu, Genta Indra Winata, Andrea Madotto, and
Pascale Fung. 2021. Preserving cross-linguality of
pre-trained models via continual learning. In Pro-
ceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021), pages 64–71,
Online. Association for Computational Linguistics.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. Psychology of Learn-
ing and Motivation, 24:109–165.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
BERT: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(85):2825–2830.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

241

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Shijie Wu and Mark Dredze. 2020. Do explicit align-
ments robustly improve multilingual encoders? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4471–4482, Online. Association for Computa-
tional Linguistics.

Mahsa Yarmohammadi, Shijie Wu, Marc Marone, Hao-
ran Xu, Seth Ebner, Guanghui Qin, Yunmo Chen,
Jialiang Guo, Craig Harman, Kenton Murray, et al.
2021. Everything is all it takes: A multipronged
strategy for zero-shot cross-lingual information ex-
traction. arXiv preprint arXiv:2109.06798.

Daniel Zeman, Joakim Nivre, Mitchell Abrams,
Elia Ackermann, Noëmi Aepli, Hamid Aghaei,
Željko Agić, Amir Ahmadi, Lars Ahrenberg,
Chika Kennedy Ajede, Gabrielė Aleksandravičiūtė,
Ika Alfina, Lene Antonsen, Katya Aplonova, An-
gelina Aquino, Carolina Aragon, Maria Jesus Aran-
zabe, �Hórunn Arnardóttir, Gashaw Arutie, Jes-
sica Naraiswari Arwidarasti, Masayuki Asahara,
Luma Ateyah, Furkan Atmaca, Mohammed Attia,
Aitziber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Keerthana Balasubramani, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, Victoria Basmov, Colin Batche-
lor, John Bauer, Seyyit Talha Bedir, Kepa Ben-
goetxea, Gözde Berk, Yevgeni Berzak, Irshad Ah-
mad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Agnė Bielinskienė, Kristín Bjarnadóttir,
Rogier Blokland, Victoria Bobicev, Loïc Boizou,
Emanuel Borges Völker, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd,
Kristina Brokaitė, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Tatiana Cav-
alcanti, Gülşen Cebiroğlu Eryiğit, Flavio Massimil-
iano Cecchini, Giuseppe G. A. Celano, Slavomír Čé-
plö, Savas Cetin, Özlem Çetinoğlu, Fabricio Chalub,
Ethan Chi, Yongseok Cho, Jinho Choi, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinková, Au-
rélie Collomb, Çağrı Çöltekin, Miriam Connor, Ma-
rine Courtin, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Mehmet Oguz

Derin, Elvis de Souza, Arantza Diaz de Ilar-
raza, Carly Dickerson, Arawinda Dinakaramani,
Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaž Erjavec, Aline Eti-
enne, Wograine Evelyn, Sidney Facundes, Richárd
Farkas, Marília Fernanda, Hector Fernandez Al-
calde, Jennifer Foster, Cláudia Freitas, Kazunori
Fujita, Katarína Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza,
Fabrício Ferraz Gerardi, Kim Gerdes, Filip Gin-
ter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta González Saavedra, Bernadeta Griciūtė,
Matias Grioni, Loïc Grobol, Normunds Grūzı̄tis,
Bruno Guillaume, Céline Guillot-Barbance, Tunga
Güngör, Nizar Habash, Hinrik Hafsteinsson, Jan
Hajič, Jan Hajič jr., Mika Hämäläinen, Linh
Hà Mỹ, Na-Rae Han, Muhammad Yudistira Han-
ifmuti, Sam Hardwick, Kim Harris, Dag Haug,
Johannes Heinecke, Oliver Hellwig, Felix Hen-
nig, Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Eva Huber, Jena Hwang,
Takumi Ikeda, Anton Karl Ingason, Radu Ion,
Elena Irimia, O. lájídé Ishola, Tomáš Jelínek, Anders
Johannsen, Hildur Jónsdóttir, Fredrik Jørgensen,
Markus Juutinen, Sarveswaran K, Hüner Kaşıkara,
Andre Kaasen, Nadezhda Kabaeva, Sylvain Ka-
hane, Hiroshi Kanayama, Jenna Kanerva, Boris
Katz, Tolga Kayadelen, Jessica Kenney, Václava
Kettnerová, Jesse Kirchner, Elena Klementieva,
Arne Köhn, Abdullatif Köksal, Kamil Kopacewicz,
Timo Korkiakangas, Natalia Kotsyba, Jolanta Ko-
valevskaitė, Simon Krek, Parameswari Krishna-
murthy, Sookyoung Kwak, Veronika Laippala, Lu-
cia Lam, Lorenzo Lambertino, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John Lee,
Phng Lê Hồng, Alessandro Lenci, Saran Lertpra-
dit, Herman Leung, Maria Levina, Cheuk Ying
Li, Josie Li, Keying Li, Yuan Li, KyungTae Lim,
Krister Lindén, Nikola Ljubešić, Olga Loginova,
Andry Luthfi, Mikko Luukko, Olga Lyashevskaya,
Teresa Lynn, Vivien Macketanz, Aibek Makazhanov,
Michael Mandl, Christopher Manning, Ruli Manu-
rung, Cătălina Mărănduc, David Mareček, Katrin
Marheinecke, Héctor Martínez Alonso, André Mar-
tins, Jan Mašek, Hiroshi Matsuda, Yuji Matsumoto,
Ryan McDonald, Sarah McGuinness, Gustavo Men-
donça, Niko Miekka, Karina Mischenkova, Mar-
garita Misirpashayeva, Anna Missilä, Cătălin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, AmirHossein
Mojiri Foroushani, Amirsaeid Moloodi, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Shinsuke Mori, Tomohiko
Morioka, Shigeki Moro, Bjartur Mortensen, Bohdan
Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani,
Mariam Nakhlé, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lng
Nguyễn Thi., Huyền Nguyễn Thi. Minh, Yoshihiro
Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Alireza
Nourian, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha,

242

Adédayo. Olúòkun, Mai Omura, Emeka Onwueg-
buzia, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Şaziye Betül Özateş, Arzucan Özgür, Balkız
Öztürk Başaran, Niko Partanen, Elena Pascual,
Marco Passarotti, Agnieszka Patejuk, Guilherme
Paulino-Passos, Angelika Peljak-Łapińska, Siyao
Peng, Cenel-Augusto Perez, Natalia Perkova, Guy
Perrier, Slav Petrov, Daria Petrova, Jason Phelan,
Jussi Piitulainen, Tommi A Pirinen, Emily Pitler,
Barbara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnin, a, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rääbis, Alexandre Rademaker, Taraka Rama, Lo-
ganathan Ramasamy, Carlos Ramisch, Fam Rashel,
Mohammad Sadegh Rasooli, Vinit Ravishankar,
Livy Real, Petru Rebeja, Siva Reddy, Georg Rehm,
Ivan Riabov, Michael Rießler, Erika Rimkutė,
Larissa Rinaldi, Laura Rituma, Luisa Rocha, Eiríkur
Rögnvaldsson, Mykhailo Romanenko, Rudolf Rosa,
Valentin Ros, ca, Davide Rovati, Olga Rudina, Jack
Rueter, Kristján Rúnarsson, Shoval Sadde, Pegah
Safari, Benoît Sagot, Aleksi Sahala, Shadi Saleh,
Alessio Salomoni, Tanja Samardžić, Stephanie Sam-
son, Manuela Sanguinetti, Dage Särg, Baiba Saulı̄te,
Yanin Sawanakunanon, Kevin Scannell, Salvatore
Scarlata, Nathan Schneider, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh
Shohibussirri, Dmitry Sichinava, Einar Freyr Sig-
urðsson, Aline Silveira, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Maria Skachedubova, Aaron Smith, Is-
abela Soares-Bastos, Carolyn Spadine, Stein�hór Ste-
ingrímsson, Antonio Stella, Milan Straka, Emmett
Strickland, Jana Strnadová, Alane Suhr, Yogi Les-
mana Sulestio, Umut Sulubacak, Shingo Suzuki,
Zsolt Szántó, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Mary Ann C. Tan, Takaaki Tanaka, Sam-
son Tella, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Marsida Toska, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Utku Türk, Francis Ty-
ers, Sumire Uematsu, Roman Untilov, Zdeňka Ure-
šová, Larraitz Uria, Hans Uszkoreit, Andrius Utka,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Aya Wakasa, Joel C. Wallen-
berg, Lars Wallin, Abigail Walsh, Jing Xian Wang,
Jonathan North Washington, Maximilan Wendt,
Paul Widmer, Seyi Williams, Mats Wirén, Chris-
tian Wittern, Tsegay Woldemariam, Tak-sum Wong,
Alina Wróblewska, Mary Yako, Kayo Yamashita,
Naoki Yamazaki, Chunxiao Yan, Koichi Yasuoka,
Marat M. Yavrumyan, Zhuoran Yu, Zdeněk Žabokrt-
ský, Shorouq Zahra, Amir Zeldes, Hanzhi Zhu, and
Anna Zhuravleva. 2020. Universal dependencies 2.7.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q
Weinberger, and Yoav Artzi. 2021. Revisiting few-

sample BERT fine-tuning. In International Confer-
ence on Learning Representations.

Mengjie Zhao, Yi Zhu, Ehsan Shareghi, Ivan Vulić,
Roi Reichart, Anna Korhonen, and Hinrich Schütze.
2021. A closer look at few-shot crosslingual trans-
fer: The choice of shots matters. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5751–5767, Online.
Association for Computational Linguistics.

243

A Fine-tuning Experiments Detail

We follow the implementation and hyperparameter
of Wu and Dredze (2020). We optimize with Adam
(Kingma and Ba, 2014). The learning rate is 2e-5.
The learning rate scheduler has 10% steps linear
warmup then linear decay till 0. We train for 5
epochs and the batch size is 32. For token level
tasks, the task-specific layer takes the representa-
tion of the first subword, following previous work
(Devlin et al., 2019; Wu and Dredze, 2019). Model
selection is done on the corresponding dev set of
the training set. We fine-tune each model using a
single Quadro RTX 6000 and it takes less than one
hour except for XNLI.

During fine-tuning, the maximum sequence
length is 128. We use a sliding window of con-
text to include subwords beyond the first 128 for
NER and POS tagging. At test time, we use the
same maximum sequence length with the excep-
tion of parsing, where the first 128 words instead
of subwords of a sentence were used. We ignore
words with POS tags of SYM and PUNCT during
parsing evaluation. For NER, the prediction of
BIO was post-processed to make sure a valid span
is produced.

All datasets we used are publicly available:
NER7, XNLI89, POS tagging and dependency pars-
ing10. For POS tagging and dependency pars-
ing, we use the following treebanks: Arabic-
PADT, German-GSD, English-EWT, Spanish-
GSD, French-GSD, Hindi-HDTB, Russian-GSD,
Vietnamese-VTB, and Chinese-GSD. Data statistic
can be found in Tab. 1.

B Norm Ratio and Angle of δsrc and δtgt

Fig. 4 plots the relationship between ‖δsrc‖/‖δtgt‖
and angle between δsrc and δtgt. We observe most
δsrc and δtgt have similar norms, and the angle
between them is around 55◦.

7https://www.amazon.
com/clouddrive/share/
d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN

8https://dl.fbaipublicfiles.com/XNLI/
XNLI-MT-1.0.zip

9https://dl.fbaipublicfiles.com/XNLI/
XNLI-1.0.zip

10https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3424

XNLI NER
POS tagging

Parsing

en-train 392703 20000 12543
en-dev 2490 10000 2002

ar-train 392703 20000 6075
ar-dev 2490 10000 909

de-train 392703 20000 13814
de-dev 2490 10000 799

es-train 392703 20000 14187
es-dev 2490 10000 1400

fr-train 392703 20000 14449
fr-dev 2490 10000 1476

hi-train 392703 5000 13304
hi-dev 2490 1000 1659

ru-train 392703 20000 3850
ru-dev 2490 10000 579

vi-train 392703 20000 1400
vi-dev 2490 10000 800

zh-train 392703 20000 3997
zh-dev 2490 10000 500

Table 1: Number of examples.

C Normalized Variance of Linear
Interpolated Models

Fig. 5 plots the normalized variance of linear inter-
polated models.

D Break Down of Normalized
Performance of Linear Interpolated
Models by Tasks

Fig. 6 (NER), Fig. 7 (Parsing), Fig. 8 (POS), and
Fig. 9 (XNLI) plot the normalized performance of
linear interpolated models break down by task. We
observe similar findings as Fig. 2.

E Additional 2D Linear Interpolation

Fig. 10 plots additional 2D linear interpolation. We
observe similar findings as Fig. 3.

244

0.6 0.8 1.0 1.2 1.4
Dist1 / Dist2

30

40

50

60

70

80

90

An
gl

e

Split by encoder
encoder

mBERT
XLM-R

0.6 0.8 1.0 1.2 1.4
Dist1 / Dist2

30

40

50

60

70

80

90

An
gl

e

Split by task
task
NER
Parsing
POS
XNLI

Figure 4: ‖δsrc‖/‖δtgt‖ v.s. angle between δsrc and δtgt. Most δsrc and δtgt have similar norms, and the angle
between them is around 55◦.

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 V
ar

ia
nc

e

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 V
ar

ia
nc

e

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 V
ar

ia
nc

e

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 V
ar

ia
nc

e

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 5: Normalized variance of linear interpolation between monolingual model and bilingual model. The source
language has much lower variance compared to target language on the monolingual side of the interpolated models.

245

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 6: Normalized NER performance of linear interpolated model between monolingual and bilingual model

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 7: Normalized Parsing performance of linear interpolated model between monolingual and bilingual model

246

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 8: Normalized POS performance of linear interpolated model between monolingual and bilingual model

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (EN) bilingual (EN+X)

source=EN, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (EN+X)

source=X, target=EN

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (AR) bilingual (AR+X)

source=AR, target=X

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Mixing Coefficient

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

monolingual (X) bilingual (AR+X)

source=X, target=AR

mBERT (source)
mBERT (target)
XLM-R (source)
XLM-R (target)

Figure 9: Normalized XNLI performance of linear interpolated model between monolingual and bilingual model

247

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-HI EN

HI
0.30

0.50
0.70

0.90
0.95

0.99

EN Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-HI EN

HI

0.300.
500.

70

0.
90

0.
95

0.99 0.
99

HI Normalized Performance

(a) EN-HI Parsing w/ mBERT

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-HI EN

HI

0.30

0.50

0.70

0.90
0.95

0.99

EN Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

EN-HI EN

HI

0.30

0.
500.
70

0.
90

0.
95

0.99

HI Normalized Performance

(b) EN-HI Parsing w/ XLM-R

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-DE AR

DE

0.50

0.70

0.90

0.95

0.99

0.99

AR Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-DE AR

DE

0.50

0.
700.

90
0.

95

0.
99

DE Normalized Performance

(c) AR-DE POS w/ mBERT

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-DE AR

DE 0.70

0.90

0.95

0.99

0.99

1.00

AR Normalized Performance

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

AR-DE AR

DE

0.50

0.
700.
90

0.
95

0.
99

DE Normalized Performance

(d) AR-DE POS w/ XLM-R

Figure 10: Additional normalized performance of 2D linear interpolation between bilingual model and monolin-
gual models

248

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 249 - 268
May 26, 2022 ©2022 Association for Computational Linguistics

Same Author or Just Same Topic? Towards Content-Independent Style
Representations

Anna Wegmann, Marijn Schraagen and Dong Nguyen
Department of Information and Computing Sciences

Utrecht University
Utrecht, the Netherlands

a.m.wegmann, m.p.schraagen, d.p.nguyen@uu.nl

Abstract

Linguistic style is an integral component of
language. Recent advances in the development
of style representations have increasingly used
training objectives from authorship verifica-
tion (AV): Do two texts have the same author?
The assumption underlying the AV training
task (same author approximates same writing
style) enables self-supervised and, thus, exten-
sive training. However, a good performance
on the AV task does not ensure good “general-
purpose” style representations. For example,
as the same author might typically write about
certain topics, representations trained on AV
might also encode content information instead
of style alone. We introduce a variation of the
AV training task that controls for content us-
ing conversation or domain labels. We evalu-
ate whether known style dimensions are repre-
sented and preferred over content information
through an original variation to the recently
proposed STEL framework. We find that rep-
resentations trained by controlling for conver-
sation are better than representations trained
with domain or no content control at represent-
ing style independent from content.

1 Introduction

Linguistic style (i.e., how something is said) is an
integral part of natural language. Style is relevant
for natural language understanding and generation
(Nguyen et al., 2021; Ficler and Goldberg, 2017)
as well as the stylometric analysis of texts (El and
Kassou, 2014; Goswami et al., 2009). Applications
include author profiling (Rao et al., 2010) and style
preservation in machine translation systems (Niu
et al., 2017; Rabinovich et al., 2017).

While authors are theoretically able to talk about
any topic and (un-)consciously choose to use many
styles (e.g., designed to fit an audience (Bell,
1984)), it is typically assumed that there are com-
binations of style features that are distinctive for
an author (sometimes called an author’s idiolect).

A1

don’t suggest an open relation-
ship if you’re not ready

A2

it’s clear that
these are wildly
different situa-
tions

B
Aren't open relation-
ships usually just about
fixing something in the
relationship?

CC - Same Topic as A1Same Author as A1

Figure 1: Contrastive Authorship Verification (CAV)
Setup and Content Control (CC) Variable. The CAV
task is to match A1 with the utterance A2 that was writ-
ten by the same author. Contrary to the traditional au-
thorship verification task (AV), this is complemented
by a third “constrastive” utterance that was written by
a different author (B). In addition to the CAV variation
to AV, we experiment with content control (CC) by se-
lectingB andA1 to have the same approximate content
with the help of a topic proxy. As topic proxies we use
conversation and domain information.

Based on this assumption, the authorship verifica-
tion task (AV) aims to predict whether two texts
have been written by the same author (Coulthard,
2004; Neal et al., 2017; Martindale and McKenzie,
1995). Recently, training objectives based on the
AV task have been used to train style representa-
tions (Boenninghoff et al., 2019b; Hay et al., 2020;
Zhu and Jurgens, 2021). Training objectives on
AV are especially promising because they do not
require any additional labeling when author iden-
tifiers are available. Similar to the distributional
hypothesis, the assumption underlying the AV train-
ing task (same author approximates same writing
style) enables extensive self-supervised learning.

Style and content are often correlated (Gero
et al., 2019; Bischoff et al., 2020): For example,
people might write more formally about their pro-
fessional career but more informally about personal
hobbies. As a result, style representations might
encode spurious content correlations (Poliak et al.,
2018), especially when their AV training objective
does not control for content (Halvani et al., 2019;

249

Sundararajan and Woodard, 2018). Current style
representation learning methods either use no or
only limited control for content (Hay et al., 2020)
or use domain labels to approximate topic (Boen-
ninghoff et al., 2019a). Zhu and Jurgens (2021)
work with 24 domain labels (here: product cate-
gories) for more than 100k Amazon reviews to
improve generalizability. However, using a small
set of labels might be too coarse-grained to fully
represent and thus control for content. In this paper,
we use “content” and “topic” to refer to different
concepts. We assume same content (fulfilled if
two utterances are paraphrases of each other) im-
plies same topic (e.g., two utterances that discuss
personal hobbies), while same topic does not nec-
essarily imply same content.

Approach. We introduce two independent vari-
ations to the AV task (see Figure 1): adding a
contrastive sentence (CAV setup) and addressing
content correlation with a topic proxy (CC). We
train several siamese BERT-based neural networks
(Reimers and Gurevych, 2019) to compare style
representations learned with the new variations to
the AV task. We train on utterances from the plat-
form Reddit but our approach could be applied
to any other conversation dataset as well. While
previous work mostly aimed for learning represen-
tations that represent an author’s individual style
(Boenninghoff et al., 2019b; Hay et al., 2020; Zhu
and Jurgens, 2021), we aim for general-purpose
style representations. As a result, we evaluate the
generated representations on (a) whether known
style dimensions (e.g. formal vs. informal) are
present in the embedding space (Section 4.2) and
preferred over content information (Section 4.3)
and (b) whether sentences written by the same au-
thor are closer to each other even when they have
different content (Section 4.1).

Contribution. With this paper, we (a) contribute
an extension of the AV task that aims to control for
content (CC) with conversation labels, (b) intro-
duce a novel variation of the AV setup by adding
a contrastive utterance (CAV setup), (c) compare
style representations trained with different levels
of content control (CC) on two task setups (AV and
CAV), (d) introduce a variation of the STEL frame-
work (Wegmann and Nguyen, 2021) to evaluate
whether representations prefer content over style
information and (e) demonstrate found stylistic fea-
tures via agglomerative clustering. We find that rep-
resentations trained on the conversation topic proxy

are better than representations trained with domain
or no content control at representing style inde-
pendent from content. Additionally, combining
the conversation topic proxy with the CAV setup
leads to better results than combining it with the
AV setup. We show that our representations are
sensitive to stylistic features like punctuation and
apostrophe types such as ’ vs. ' using agglomerative
clustering. We hope to further the development of
content-controlled style representations. Our code
and data are available on GitHub.1

2 Related Work

Recently, deep learning approaches have been used
in authorship verification (Shrestha et al., 2017;
Litvak, 2019; Boenninghoff et al., 2019a; Saedi
and Dras, 2021; Hay et al., 2020; Hu et al., 2020;
Zhu and Jurgens, 2021). Training on transformer
architectures like BERT has been shown to be com-
petitive with other neural as well as non-neural ap-
proaches in AV and style representation (Zhu and
Jurgens, 2021; Wegmann and Nguyen, 2021). AV
methods have controlled for content by restricting
the feature space to contain “content-independent”
features like function words or character n-grams
(Neal et al., 2017; Stamatatos, 2017; Sundararajan
and Woodard, 2018). However, even these features
have been shown to not necessarily be content-
independent (Litvinova, 2020).

Semantic sentence embeddings are typically
trained using supervised or self-supervised learn-
ing (Reimers and Gurevych, 2019). For super-
vised learning, models are often trained on man-
ually labelled natural language inference datasets
(Conneau et al., 2017). For self-supervised learn-
ing, contrastive learning objectives (Hadsell et al.,
2006) have been increasingly used. Contrastive
objectives push semantically distant sentence pairs
apart and pull semantically close sentence pairs
together. Different strategies for selecting sentence
pairs have been used, e.g., same sentences as se-
mantically close vs. randomly sampled as seman-
tically distant sentences (Giorgi et al., 2021; Gao
et al., 2021). Reimers and Gurevych (2019) also
experiment with a triplet loss, which pushes an an-
chor closer to a semantically close sentence and
pulls the same anchor apart from a semantically
distant sentence. Semantic representations are typi-
cally first evaluated on the task that they have been

1https://github.com/nlpsoc/
Style-Embeddings

250

trained on, e.g., binary tasks for binary contrastive
objectives and triplet tasks (similar to Figure 1) for
triplet objectives (Reimers and Gurevych, 2019).
Semantic representations are often also evaluated
on the STS benchmark (Cer et al., 2017) or seman-
tic downstream tasks like semantic search, NLI
(Bowman et al., 2015; Williams et al., 2018) or
SentEval (Conneau and Kiela, 2018).

Typically, objective functions that are known
from semantic embedding learning have been used
(Hay et al., 2020; Zhu and Jurgens, 2021) with
AV training tasks to learn style representations.
Zhu and Jurgens (2021) address possible spuri-
ous correlations by sampling half of the different
and same author utterances from the same and the
other half from different domains (e.g., subred-
dits for Reddit). Style representations are often
trained and evaluated on the AV task (Boenninghoff
et al., 2019a; Zhu and Jurgens, 2021; Bischoff et al.,
2020).

3 Style Representation Learning

We describe the new Contrastive Authorship Veri-
fication setup (CAV) and our approach to content
control (CC) in Section 3.1. Then we describe the
generation of training tasks (Section 3.2) and the
hyperparameters for model training (Section 3.3).

3.1 Training Task

The authorship verification (AV) task is the task
of predicting whether two texts are written by the
same or different authors. In the following, we in-
troduce two independent variations to the AV task:
Adding (1) contrastive information with the CAV
setup and (2) content control via topic proxies.

CAV setup. We introduce an adaption of the
Authorship Verification task — the Contrastive Au-
thorship Verification setup (CAV, Figure 1): Given
an anchor utterance A1 and two other utterances
A2 and B, the task is to identify which of the two
sentences were written by the same author as A1.
Using a contrastive AV setup adds learnable infor-
mation to the task (namely the contrast between A2

and B w.r.t. A1) and enables the use of learning
objectives that require three input sentences and
have been successful in semantic embedding learn-
ing (Reimers and Gurevych, 2019). We experiment
with both CAV and AV setups for style represen-
tation learning. In the future, it is also possible to
adapt this setup to include several instead of just
one contrastive “negative” different author utter-

ance (similar to contrastive semantic learning, e.g.,
in Gao et al. (2021)). One task with the CAV setup,
which consists of three utterances (A1, A2, B), can
be split up into two AV tasks: (A1, A2) and (A1,
B). We compare the CAV and AV setups during
evaluation (Section 4).

Content Control (CC). Models optimized for
AV have been known to make use of semantic
information (Sari et al., 2018; Sundararajan and
Woodard, 2018; Potha and Stamatatos, 2018) and
to perform badly in cross-topic settings (Halvani
et al., 2019; Bischoff et al., 2020). Recent stud-
ies use AV tasks to train style representations and
address possible correlations by controlling for do-
main (Zhu and Jurgens, 2021; Boenninghoff et al.,
2019b). However, it is unclear to what extent these
domain labels are better (or worse) than other ways
of controlling for content. We compare three dif-
ferent levels of content control by approximating
content with the help of a topic proxy. We sample
the utterance pairs written by different authors (B
and A1 for CAV, c.f. Figure 1) (i) from the same
conversation, (ii) from the same domain (e.g., sub-
reddit for Reddit as in Zhu and Jurgens (2021))
or (iii) randomly (as a baseline, similar to Hay et al.
(2020)). Our newly proposed use of the same con-
versation “topic proxy” is inspired by semantic sen-
tence representation learning, where conversations
have previously been used as a proxy for seman-
tic information encoded in utterances (Yang et al.,
2018; Liu et al., 2021). We test to what extent
the three different topic proxies are contributing to
content-independent style representations during
evaluation (Section 4.3).

3.2 Task Generation

We use a 2018 Reddit sample with utter-
ances from 100 active subreddits2 extracted via
ConvoKit (Chang et al., 2020)3. Per subreddit,
we sample 600 conversations with at least 10 posts
(which we call utterances). All subreddits are di-
rected at an English audience, which we infer from
the subreddit descriptions.

Generation. We removed all invalid utterances4.
Then, we split the set of authors into a non-

2https://zissou.infosci.cornell.edu/
convokit/datasets/subreddit-corpus/
subreddits_small_sample.txt

3MIT license
4Utterance of only spaces, tabs, line breaks or

of the form: "", " [removed] ", "[removed]",
"[removed]", "[deleted]", "[deleted]",
" [deleted] "

251

Setup Uttterance Author (A1, A2) (A1, B)
CC level Data Split # AV # CAV # # ma co do co do

Conversation
train set 420,000 210,000 546,757 194,836 9 0.27 0.56 1.00 1.00
dev set 90,000 45,000 116,451 41,848 8 0.26 0.55 1.00 1.00
test set 90,000 45,000 116,621 41,902 8 0.27 0.55 1.00 1.00

Domain
train set 420,000 210,000 544,587 240,065 9 same pairs 0.01 1.00
dev set 90,000 45,000 116,490 50,939 8 as 0.02 1.00
test set 90,000 45,000 116,586 51,182 8 conversation 0.02 1.00

No
train set 420,000 210,000 548,082 270,079 9 same pairs 0.00 0.01
dev set 90,000 45,000 117,149 57,352 8 as 0.00 0.01
test set 90,000 45,000 117,434 57,726 8 conversation 0.00 0.02

Table 1: Data Split Statistics. Per content control (CC) level, we display the number of tasks per setup (# CAV, #
AV), unique utterances and authors for each split. We also show the maximum number of times an author occurs
as A1’s author (ma) and the fraction of same author (A1, A2) and utterance pairs of different authors (A1, B) that
occur in the same conversation (co) and domain (do).

overlapping 70% train, 15% development and 15%
test author split. For each CC level (conversation,
domain, no) and each author split, we generated
a set of training tasks, i.e., nine sets in total (see
Table 1).

First, we generated the tasks for the train split of
the dataset with conversation content control. We
sampled 210k distinct utterances A1 from the train
author split. We use a weighted sampling process
to not overrepresent authors that wrote more utter-
ances than others. The maximum time one author
wrote A1 is 9 (c.f. “ma” in Table 1). Then, for
each utterance A1, we randomly sampled an utter-
ance B that was part of the same conversation as
A1 but written by a different author. Then, for all
210k (A1, B)-pairs, an utterance A2 was sampled
randomly from all utterances written by the same
author as A1 and for which A1 6= A2 holds. We
equivalently sampled 45k tasks for the dev and test.

For the domain and no CC level, we reuse A1

and A2, to keep as many correlating variables con-
stant as possible. Thus, we only resampled 210k
utterances B written by a different author from A1

by sampling from the same domain or randomly.

We make sure that each combination of (A1, A2,
B) occurs only once. Thus there are no repeating
CAV tasks.5 However, it is possible that some
utterances occur more than once across tasks. In
total, we generate 210k train, 45k dev and 45k test
tasks for each CC level (see Table 1), corresponding
to a total of 420k, 90k and 90k AV-pairs when

5Due to the sampling process, there might be same au-
thor (A1, A2) pairs that occur twice. However, this remains
unlikely due to the high number of authors and utterances.
Overall, the share of repeating pairs remains lower than 1%.

splitting the CAV task into (A, SA) and (A, DA)
pairs (c.f. Section 3.1).

3.3 Training

We use the Sentence-Transformers6

python library (Reimers and Gurevych, 2019)7

to fine-tune several siamese networks based on
(1) ‘bert-base-uncased’, (2) ‘bert-base-cased’
(Devlin et al., 2019) and (3) ‘roberta-base’ (Liu
et al., 2019). We expect those to perform well
based on previous work (Zhu and Jurgens, 2021;
Wegmann and Nguyen, 2021). We compare using
(a) contrastive loss (Hadsell et al., 2006) with the
AV setup (Section 3.1) tasks and (b) triplet loss
(Reimers and Gurevych, 2019) with the CAV setup
(Figure 1). The binary contrastive loss function
uses a pair of sentences as input while the triplet
loss expects three input sentences. For the loss
functions, we experiment with three different
values for the margin hyperparameter (i) 0.4, (ii)
0.5, (iii) 0.6. We train with a batch size of 8 over 4
epochs using 10% of the training data as warm-up
steps. We use the Adam optimizer with the
default learning rate (0.00002). We leave all other
parameters as default. We use the BinaryClassifica-
tionEvaluator on the AV setup with contrastive loss
and the TripletEvaluator on the CAV setup with
triplet loss from Sentence-Transformers
to select the best model out of the 4 epochs.
The BinaryClassificationEvaluator calculates the
accuracy of identifying similar and dissimilar
sentences, while the TripletEvaluator checks if
the distance between A and SA is smaller than

6https://sbert.net/
7with Apache License 2.0

252

Testing Task
AV CAV

Training Task Conversation Domain No Conversation Domain No
Setup CC level AUC ±σ AUC ±σ AUC ±σ acc ±σ acc ±σ acc ±σ

RoBERTa base .53 .57 .61 .53 .58 .63

AV
Conversation .69± .02 .70± .02 .71± .02 .68± .02 .69± .02 .70± .02

Domain .68± .01 .71± .01 .73± .02 .67± .01 .70± .01 .73± .00
No .58± .01 .63± .02 .79± .00 .59± .01 .66± .01 .78± .00

CAV
Conversation .69± .00 .70± .00 .71± .00 .68± .00 .69± .00 .70± .00

Domain .68± .00 .70± .00 .72± .00 .68± .00 .70± .00 .72± .01
No .58± .00 .63± .03 .77± .00 .59± .00 .65± .00 .77± .00

Table 2: Test Results. Results for 6 different fine-tuned RoBERTa models on the test sets. We display the accuracy
of the models for the contrastive authorship verification setup (CAV) and the AUC for the authorship verification
task (AV) with different content control approaches (CC). We display the standard deviation (σ). Best performance
per column is boldfaced. Models generally outperform others on the CC level they have been trained on.

the distance between A and DA. We use cosine
distance as the distance function.

4 Evaluation

We evaluate the learned style representations on the
Authorship Verification task (i.e., the training task)
in Section 4.1. Then, we evaluate whether models
learn to represent known style dimensions via the
performance on the STEL framework (Wegmann
and Nguyen, 2021) in Section 4.2. Last, we evalu-
ate representations on their content-independence
with an original manipulation of STEL (Section
4.3).

4.1 Authorship Verification
We display the AV and CAV performance of trained
models in Table 2. On the development sets,
RoBERTa models consistently outperformed the
cased and uncased BERT models. Also, different
margin values only led to small performance differ-
ences (Appendix A). Consequently, in Table 2, we
only display the performance of the six fine-tuned
RoBERTa models on the test sets using the three
different content controls (CC) and two different
task setups (AV and CAV setups) with constant
margin values of 0.5.

AV performance is usually calculated with ei-
ther (i) AUC or (ii) accuracy using a predetermined
threshold (Zhu and Jurgens, 2021; Kestemont et al.,
2021). We use cosine similarity to calculate the
similarity between sentence representations. Thus,
there is no clear constant default threshold to de-
cide between same and different author utterances.
A threshold could be fine-tuned on the development
set, however for simplicity we use AUC to calculate
AV performance instead.We use accuracy for the

CAV task — here no threshold is necessary (cosine
similarity is calculated between A1, A2 and A1,
B and the highest similarity utterance is chosen).
This makes the performance scores on the test sets
less comparable across setups – however, compara-
bility of the CAV and AV performance scores are
limited in any case as the AV vs. CAV setups are
fundamentally different. Performance scores can
be compared across the same column, i.e., within
the same AV and CAV setup. We aggregate per-
formance with mean and standard deviation for
three different random seeds per model parameter
combination.8

Overall, the AV & CAV training task setup (rows
in Table 2) lead to similar performance on the test
sets. As a result, we do not distinguish between
them in this section’s discussion. Generally, the
representations tested on the CC level they were
trained on (diagonal) outperform other models that
were not trained with the same CC level. For exam-
ple, representations trained with the conversation
CC level, perform better on the test set with the
conversation CC than representations trained with
the domain or no CC.

Tasks with the conversation label are hardest
to solve. For all models, the performance is lowest
on the conversation test set and increases on the
domain and further on the random test set. This is
in line with our assumption that the conversation
test set has semantically closer different author ut-
terance (A1, B)-pairs that make the AV task harder
due to reduced spurious content cues (Section 3.1).

Representations trained with the conversa-
tion CC might encode less content information.

8We used seeds 103-105. A total of 5 out of 18 models did
not learn. We re-trained those with different seeds.

253

1 2

Anchor (A)
r u a fan of them
or something?

Are you one of
their fans?

Sentence (S)
Oh, and also that
young physician
got an unflatter-
ing haircut

Oh yea and that
young dr got a
bad haircut

Figure 2: STEL-Or-Content Task. We take the origi-
nal STEL instances (figure without manipulations) and
move A2 to the sentence position with the different
style (here: the more formal A2 replaces the more for-
mal S1). These resulting triple tasks can test if a model
prefers style over content cues.

The average performance across the three CC lev-
els is slightly higher for the models trained with
domain than conversation CC level and lowest for
no CC. Across the three test sets with the different
CC levels, the standard deviation in performance is
biggest for models trained without CC and smallest
for models trained with the conversation CC. Rep-
resentations trained with domain or no CC might
latch on to more semantic features because they are
more helpful on the no and domain CC test sets.
Models learned with the conversation CC might in
turn learn more content-agnostic representations.
Overall, a representation that performs well on the
AV task alone might do so by latching on to con-
tent (not style) information. As a result, a good
AV performance alone might not be indicative of
a good representation of style. We further evalu-
ate the quality of style representations and their
content-independence in Sections 4.2 and 4.3.

4.2 STEL Task

We calculate the performance of the representations
on the STEL framework (Wegmann and Nguyen,
2021)9. Here, models are evaluated on whether
they are able to measure differences in style across
four known dimensions of style (formal vs. infor-
mal style, complex vs. simple style, contraction
usage and number substitution usage). Models are
tested on 1830 tasks of the same setup: Two “sen-
tences” S1 and S2 have to be matched to the style
of two given “anchor” sentences A1 and A2. The
task is binary. Sentences can either be matched

9https://github.com/nlpsoc/STEL, with data
from Rao and Tetreault (2018); Xu et al. (2016) and with
permission from Yahoo for the “L6 - Yahoo! Answers
Comprehensive Questions and Answers version 1.0 (multi
part)”: https://webscope.sandbox.yahoo.com/
catalog.php?datatype=l. Data and code available
with MIT License with exceptions for proprietary Yahoo data.

without reordering (A1-S1 & A2-S2) or with re-
ordering (A1-S2 & A2-S1). For example, consider
the sentences in Figure 2 before alterations. The
correct solution to the task is to reorder the sen-
tences, i.e., to match A1 with S2 because they both
exhibit a more informal style and A2 with S1 be-
cause they both exhibit a more formal style. The
STEL sentence pairs (S1, S2) and (A1, A2) are
always paraphrases of each other (in contrast to
A1 and B for the AV task which are only chosen
to be about the same approximate topic, c.f. 3.1).
The anchor pairs and sentence pairs are randomly
matched and are thus otherwise expected to have
no connection in content or topic. Representations
can thus not make use of learned content features
to solve the task.

We display the STEL results for the RoBERTa
models in Table 3. STEL performance is com-
parable across all fine-tuned models — for all
different CC levels and AV & CAV setups. Sur-
prisingly, the overall STEL performance for the
fine-tuned models is lower than that of the original
RoBERTa base model (Liu et al., 2019). Thus, mod-
els may have ‘unlearned’ some style information.
In the remainder of this subsection, we analyze
possible reasons for this STEL performance drop.

Performance stays approximately the same or im-
proves for the formal/informal and the contraction
dimensions but drops for the complex/simple and
the nb3r substitution dimensions. Based on manual
inspection, we notice nb3r substitution to regularly
appear in specific conversations and for specific
topics. Future work could investigate whether the
use of nb3r substitution is less consistent for one
author than other stylistic dimensions. As the nb3r
dimension of STEL only consists of 100 instances,
future work could increase the number of instances.
Further, we perform an error analysis to investigate
the STEL performance drop in the complex/simple
dimension. We manually look at consistently un-
learned (i.e., wrongly predicted by the fine-tuned
but correctly predicted by the original RoBERTa
model) or learned (i.e., wrongly predicted by the
RoBERTa model and correctly predicted by the
fine-tuned model) STEL instances (see details in
Appendix B.1). We find several problematic ex-
amples where the correct solution to the task is at
least ambiguous. We display two such examples
in Table 4. The share of examples with problem-
atic ambiguities is higher for the unlearned (50/55)
than for the newly learned STEL instances (29/41).

254

all formal, n = 815 complex, n = 815 nb3r, n = 100 c’tion, n = 100
o o-c o o-c o o-c o o-c o o-c

acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ
org .80 .05 .83 .09 .73 .01 .94 .13 1.0 .00

A
c .71 .35 .83± .02 .64± .00 .57± .02 .13± .04 .61± .02 .04± .01 .91± .10 .00± .01
d .73 .28 .84± .01 .56± .04 .69± .05 .05± .02 .61± .02 .03± .02 .98± .03 .00± .00
n .72 .22 .85± .01 .46± .04 .57± .01 .03± .01 .62± .04 .05± .02 .98± .01 .00± .00

C
c .71 .42 .81± .02 .69± .02 .59± .01 .24± .02 .65± .09 .03± .01 .99± .02 .04± .02
d .71 .32 .82± .01 .61± .02 .57± .01 .12± .01 .64± .05 .03± .01 .99± .01 .01± .01
n .71 .24 .85± .00 .50± .02 .56± .01 .04± .01 .59± .03 .06± .01 .98± .04 .00± .00

Table 3: STEL and STEL-Or-Content Results. We display STEL accuracy across 4 style dimensions (n =number
of instances) for the same RoBERTa models as in Table 2: Per task setup (AV - A, CAV - C) and content control
level (conversation - c, domain - d, none - n), the performance on the original (o) and the STEL-Or-Content task
instances (o-c) are displayed. Per column, the best performance is boldfaced. For the fine-tuned RoBERTa models,
performance generally increases on the STEL-Or-Content task compared to the original RoBERTa model (org).

Generally, the number of complex/simple STEL
instances with ambiguities is surprisingly high for
both the learned as well as the unlearned instances,
consistent with the lower performance of the mod-
els in this category. Several of the found ambigui-
ties should be relatively easy to correct in the future
(e.g., spelling mistakes or punctuation differences).

4.3 Content-Independence of Style
Representations

We tested whether models are able to distinguish
between different authors (in Section 4.1) and rep-
resent styles when the content remains the same
(Section 4.2). However, we have not tested whether
models learn to represent style independent from
content.

Different approaches have been used to test
whether style representations encode unwanted
content information, including (a) comparing per-
formance on the AV task across domain (Boen-
ninghoff et al., 2019b; Zhu and Jurgens, 2021),
(b) assessing performance on function vs. con-
tent words (Hay et al., 2020; Zhu and Jurgens,
2021) and (c) predicting domain labels from ut-
terances using their style representations (Zhu and
Jurgens, 2021). However, these evaluation meth-
ods have limitations: Domain labels usually come
from a small set of coarse-grained labels and func-
tion words have been shown to not necessarily be
content-independent (Litvinova, 2020). Addition-
ally, next to content, AV might include other spuri-
ous features that help increase performance without
representing style.

To test if models learn to prefer style over con-
tent, we introduce a variation to the STEL frame-
work — the STEL-Or-Content task: From one orig-

inal STEL instance (Section 4.2), we take the sen-
tence that has the same style as A2 and replace it
with A2. In Figure 2, this leads to S1 being re-
placed by A2. The new task is to decide whether
A1 matches with the new S1 (originally A2) or
with S2. The task is more difficult than the original
STEL task as S2 is written in the same style as A1
but has different content and the new S1 is written
in a different style but has the same content. The
representations will have to decide between giving
‘style or content’ more weight. This setup is similar
to the CAV task (Figure 1). The main differences
to the CAV task are (i) that we do not use same
author as a proxy for same style but instead use the
predefined style dimensions from the STEL frame-
work and (ii) that we control for content with the
help of paraphrases (instead of using ony a topic
proxy).

We display the STEL-Or-Content results in Ta-
ble 3. The performance for the new task is low
(< 0.5 which corresponds to a random baseline).
However, the task is also very difficult as lexical
overlap is usually high between the anchor and the
false choice (i.e., the sentence that was written in
a different style but has the same content). Nev-
ertheless, performance should only be considered
in combination with other evaluation approaches
(Sections 4.1 and 4.2) as on this task alone mod-
els might perform well because they punish same
content information.

Models trained on the CAV task with the con-
versation CC level are the best at represent-
ing style independent from content. The perfor-
mance increases from an accuracy of 0.05 for the
original RoBERTa model to up to 0.42± .01 for the
representation trained with the CAV task and the

255

Agg. GT Anchor 1 (A1) Anchor 2 (A2) Sentence 1 (S1) Sentence 2 (S2) Ambiguity

un 3 TDL Group an-
nounced in March
2006, in response
to a request [...]

[...] storm names
Alberto Helene
Beryl Isaac Chris
[...]

Palestinian voters in
the Gaza Strip [...]
were eligible to partici-
pate in the election.

1. Palestinian voters in
the Gaza Strip [...] were
eligible to participate in
the election.

A1/A2
have
different
content

l 7 [...] 51 Phantom
[...] received nom-
inations in that
same category.

[...] 1 phan-
tom [...] received
nominations in the
same category.

[...] the Port Jackson
District Commandant
could exchange with
all military land with
buildings on the harbor.

[...] the Port Jackson Dis-
trict Commandant could
communicate with all
military installations on
the harbour.

A2
spelling
mistake,
S1 sounds
unnatural

Table 4: STEL Error Analysis. For the complex/simple STEL dimension, we display examples of ambiguous
instances that were learned (l) or unlearned (un) the fine-tuned RoBERTa models. A ground truth (GT) of 3 means
that S1 matches with A1 and S2 with A2 in style, while 7 means S1 matches with A2 and S2 with A1.

conversation CC. This ‘CAV conversation repre-
sentation’ did not just learn to punish same content
cues because of its performance on the AV task
and the STEL framework: (1) On the AV task, the
representation performed comparably on all three
test sets. If the model had learned to just pun-
ish same content cues, we would expect a clearer
difference in performance as confounding same
content information should be more prevalent for
the random than the conversation test set. (2) The
representation performed comparably to the other
representations on the STEL framework, where
style information is needed to solve the task but
content information cannot be used.

5 Style Representation Analysis

We want to further understand what the style rep-
resentations learned to be similar styles. We take
the best-performing style representation (RoBERTa
trained on the CAV task with the conversation CC
and seed 106) and perform agglomerative cluster-
ing on a sample of 5.000 CAV tasks of the conver-
sation test set resulting in 14,756 unique utterances.
We use 7 clusters based on an analysis of Silhou-
ette scores (Appendix C). Out of all utterance pairs
that have the same author, 46.2% appear in the
same cluster. This is different from random assign-
ments among 7 clusters10 which corresponds to
20.1% ± .00. As authors will have a certain vari-
ability to their style, a perfect clustering according
to general linguistic style would not assign all same
author pairs to the same cluster.

In Table 5, we display examples for 4 out of 7
clusters. We manually looked at a few hundred ex-
amples per cluster to find consistencies. We found

10Calculated mean and standard deviation of 100 random
assignments of utterances to the 7 clusters of the same size.

C # Consistent Example

3 no last
punct.

I am living in china, they are experi-
encing an enormous baby boom

4 punctuation
/ casing

huh thats odd i'm in the 97% per-
centile on iq tests, the sat, and the
act

5 ’ vs ' I assume it’s the blind lady?

7 linebreaks I admire what you're doing but [...]

I know I'm [...]

Table 5: Clusters for RoBERTa Trained on CAV
with Conversation Content Control. We display one
example for 4 out of 7 clusters. We mention noticeable
consistencies within the cluster (Consistent).

clear consistencies within clusters in the punctua-
tion (e.g., 97% of utterances have no last punctua-
tion mark in Cluster 3 vs. an average of 37% in the
other clusters), casing (e.g., 67% of utterances that
use i instead of I appear in Cluster 4), contraction
spelling (e.g., 22 out of 27 utterances that use didnt
instead of didn’t appear in Cluster 4), the type of
apostrophe used (e.g., 90% of utterances use ‘ vs
' in Cluster 5 vs. an average of 0% in the other
clusters) and line breaks within an utterance (e.g.,
72% of utterances in Cluster 7 include line breaks
vs. an average of 22% in the other clusters). We
mostly found letter-level consistencies — likely be-
cause they are easiest to spot manually. We expect
representations to also capture more complex stylo-
metric information because of their performance on
the AV and STEL tasks (Section 4). Future work
could analyze whether and what other stylistic con-
sistencies are represented by the models.

For comparison we also cluster with the base
RoBERTa model (see Appendix D). The only three
interesting RoBERTa clusters (i.e., clusters 2,3,4

256

that contain more than three elements and not as
many as 86.7% of all utterances), seem to mostly
differ in utterance length (average number of char-
acters are 15 in Cluster 2 vs. in 1278 in Cluster
3) and in the presence of hyperlinks (84% of utter-
ances contain ‘https://’ in Cluster 4 vs. an overall
average of 2%). Average utterance lengths are not
as clearly separated by the clusters of the trained
style representations.

6 Limitations and Future Work

We propose several directions for future research:
First, conversation labels are already inherently

available in conversation corpora like Reddit.
However, it remains a difficulty to transfer the con-
versation CC to other than conversation datasets.
Moreover, even when using the conversation CC,
content information might still be useful for AV: If
one person writes “my husband” and another writes
“my wife” within the same conversation, it is highly
unlikely that those utterances have been generated
by the same person. With the recent advances in
semantic sentence embeddings, it might be inter-
esting to train style representations on CAV tasks
with a new content control level: Two utterances
could be labelled as having the same content if their
semantic embeddings are close to each other (e.g.,
when cosine similarity is above a certain threshold).

Second, for the STEL-Or-Content task, the so-
called “triplet problem” (Wegmann and Nguyen,
2021) remains a potential problem. Consider the
example in Figure 2. Here, the STEL framework
only guarantees that A1 is more informal than A2
and S2 is more informal than S1. Thus, in some
cases A2 can be stylistically closer to A1 than S2.
However, we expect this case to be less prevalent:
A2 would need to be already pretty close in style
to A1, or both S2 and S1 would need to be sub-
stantially more informal or formal than A1. In
the future, removing problematic instances could
alleviate a possible maximum performance cap.

Third, the representation models may learn to
represent individual stylistic variation as we use
utterances from the same individual author as posi-
tive signals (c.f. Zhu and Jurgens (2021)). However,
because the representation models learn with same
author pairs that are generated from thousands of
authors, it is likely that they also learn consisten-
cies along groups of authors that use similar style
features (e.g., demographic groups based on age or
education level, or subreddit communities). Future

work could explore how different CC levels and
training tasks influence the type of styles that are
learned.

7 Conclusion

Recent advances in the development of style rep-
resentations have increasingly used training objec-
tives from authorship verification (Hay et al., 2020;
Zhu and Jurgens, 2021). However, representations
that perform well on the Authorship Verification
(AV) task might do so not because they represent
style well but because they latch on to spurious
content correlations. We train different style rep-
resentations by controlling for content (CC) using
conversation or domain membership as a proxy for
topic. We also introduce the new Contrastive Au-
thorship Verification setup (CAV) and compare it
to the usual AV setup. We propose an original adap-
tation of the recent STEL framework (Wegmann
and Nguyen, 2021) to test whether learned repre-
sentations favor style over content information. We
find that representations that were trained on the
CAV setup with conversation CC represent style
in a way that is more independent from content
than models using other CC levels or the AV setup.
We demonstrate some of the learned stylistic dif-
ferences via agglomerative clustering — e.g., the
use of a right single quotation mark vs. an apos-
trophe in contractions. We hope to contribute to
increased efforts towards learning general-purpose
content-controlled style representations.

Ethical Considerations

We use utterances taken from 100 subcommuni-
ties (i.e., subreddits) of the popular online platform
Reddit to train style representations with differ-
ent training tasks and compare their performance.
With our work, we aim to contribute to the devel-
opment of general style representations that are
disentangled from content. Style representations
have the potential to increase classification perfor-
mance for diverse demographics and social groups
(Hovy, 2015).

The user demographics on the selected 100 sub-
reddits are likely skewed towards particular demo-
graphics. For example, locally based subreddits
(e.g., canada, singapore) might be over-represented.
Generally, the average Reddit user is typically

257

more likely to be young and male.11 Thus, our
representations might not be representative of (En-
glish) language use across different social groups.
However, experiments on the set of 100 distinct
subreddits should still demonstrate the possibil-
ities of the used approaches and methods. We
hope the ethical impact of reusing the already pub-
lished Reddit dataset (Baumgartner et al., 2020;
Chang et al., 2020) to be small but acknowledge
that reusing it will lead to increased visibility of
data that is potentially privacy infringing. As we
aggregate the styles of thousands of users to cal-
culate style representations, we expect it to not be
indicative of individual users.

We confirm to have read and that we abide by
the ACL Code of Ethics.

Acknowledgements

We thank the anonymous ARR reviewers for their
helpful comments. This research was supported
by the “Digital Society - The Informed Citizen”
research programme, which is (partly) financed
by the Dutch Research Council (NWO), project
410.19.007. Dong Nguyen was supported by the
research programme Veni with project number
VI.Veni.192.130, which is (partly) financed by the
Dutch Research Council (NWO).

References
Jason Baumgartner, Savvas Zannettou, Brian Keegan,

Megan Squire, and Jeremy Blackburn. 2020. The
Pushshift Reddit dataset. In Proceedings of the In-
ternational AAAI Conference on Web and Social Me-
dia, pages 830–839, Atlanta, USA. Association for
the Advancement of Artificial Intelligence.

Allan Bell. 1984. Language style as audience design.
Language in Society, 13(2):145–204.

Sebastian Bischoff, Niklas Deckers, Marcel Schliebs,
Ben Thies, Matthias Hagen, Efstathios Stamatatos,
Benno Stein, and Martin Potthast. 2020. The im-
portance of suppressing domain style in authorship
analysis. arXiv preprint 2005.14714.

Benedikt Boenninghoff, Steffen Hessler, Dorothea
Kolossa, and Robert M. Nickel. 2019a. Explainable
authorship verification in social media via attention-
based similarity learning. In 2019 IEEE Interna-
tional Conference on Big Data (Big Data), pages
36–45.

11https://www.journalism.org/2016/02/25/reddit-news-
users-more-likely-to-be-male-young-and-digital-in-their-
news-preferences/

Benedikt Boenninghoff, Robert M. Nickel, Steffen
Zeiler, and Dorothea Kolossa. 2019b. Similarity
learning for authorship verification in social media.
In ICASSP 2019 - 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 2457–2461.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Jonathan P. Chang, Caleb Chiam, Liye Fu, An-
drew Wang, Justine Zhang, and Cristian Danescu-
Niculescu-Mizil. 2020. ConvoKit: A toolkit for the
analysis of conversations. In Proceedings of the
21th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 57–60, 1st virtual
meeting. Association for Computational Linguistics.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Malcolm Coulthard. 2004. Author identification, idi-
olect, and linguistic uniqueness. Applied linguistics,
25(4):431–447.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sara El Manar El and Ismail Kassou. 2014. Authorship
analysis studies: A survey. International Journal of
Computer Applications, 86(12).

258

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylis-
tic Variation, pages 94–104, Copenhagen, Denmark.
Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Katy Gero, Chris Kedzie, Jonathan Reeve, and Lydia
Chilton. 2019. Low level linguistic controls for style
transfer and content preservation. In Proceedings of
the 12th International Conference on Natural Lan-
guage Generation, pages 208–218, Tokyo, Japan.
Association for Computational Linguistics.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep contrastive learning for
unsupervised textual representations. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 879–895,
Online. Association for Computational Linguistics.

Sumit Goswami, Sudeshna Sarkar, and Mayur Rustagi.
2009. Stylometric analysis of bloggers’ age and gen-
der. In Proceedings of the International AAAI Con-
ference on Web and Social Media (Volume 3), pages
214–217.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Volume
2 (CVPR’06), pages 1735–1742.

Oren Halvani, Christian Winter, and Lukas Graner.
2019. Assessing the applicability of authorship ver-
ification methods. In Proceedings of the 14th Inter-
national Conference on Availability, Reliability and
Security (ARES ’19), New York, NY, USA. Associa-
tion for Computing Machinery.

Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357–362.

Julien Hay, Bich-Lien Doan, Fabrice Popineau, and
Ouassim Ait Elhara. 2020. Representation learning
of writing style. In Proceedings of the Sixth Work-
shop on Noisy User-generated Text (W-NUT 2020),

pages 232–243, Online. Association for Computa-
tional Linguistics.

Dirk Hovy. 2015. Demographic factors improve classi-
fication performance. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752–762, Beijing, China. As-
sociation for Computational Linguistics.

Zhiqiang Hu, Roy Ka-Wei Lee, Lei Wang, Ee-peng
Lim, and Bo Dai. 2020. Deepstyle: User style em-
bedding for authorship attribution of short texts. In
Web and Big Data, pages 221–229, Cham. Springer
International Publishing.

Mike Kestemont, Enrique Manjavacas, Ilia Markov,
Janek Bevendorff, Matti Wiegmann, Efstathios Sta-
matatos, Benno Stein, and Martin Potthast. 2021.
Overview of the cross-domain authorship verifica-
tion task at PAN 2021. In Proceedings of the
Working Notes of CLEF 2021, pages 1743–1759,
Bucharest, Romania.

Marina Litvak. 2019. Deep dive into authorship verifi-
cation of email messages with convolutional neural
network. In 5th International Conference on Infor-
mation Management and Big Data, pages 129–136,
Lima, Peru. Springer International Publishing.

Tatiana Litvinova. 2020. Stylometrics features under
domain shift: Do they really “context-independent”?
In 22nd International Conference on Speech and
Computer, pages 279–290, Cham. Springer Interna-
tional Publishing.

Che Liu, Rui Wang, Jinghua Liu, Jian Sun, Fei Huang,
and Luo Si. 2021. DialogueCSE: Dialogue-based
contrastive learning of sentence embeddings. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2396–
2406, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint 1907.11692.

Colin Martindale and Dean McKenzie. 1995. On
the utility of content analysis in author attribution:
"the federalist". Computers and the Humanities,
29(4):259–270.

Tempestt Neal, Kalaivani Sundararajan, Aneez Fatima,
Yiming Yan, Yingfei Xiang, and Damon Woodard.
2017. Surveying stylometry techniques and applica-
tions. ACM Computing Surveys, 50(6).

Dong Nguyen, Laura Rosseel, and Jack Grieve. 2021.
On learning and representing social meaning in NLP:
a sociolinguistic perspective. In Proceedings of the
2021 Conference of the North American Chapter of

259

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 603–612, On-
line. Association for Computational Linguistics.

Xing Niu, Marianna Martindale, and Marine Carpuat.
2017. A study of style in machine translation: Con-
trolling the formality of machine translation output.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2814–2819, Copenhagen, Denmark. Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Nektaria Potha and Efstathios Stamatatos. 2018. Intrin-
sic author verification using topic modeling. In Pro-
ceedings of the 10th Hellenic Conference on Artifi-
cial Intelligence, SETN ’18, New York, NY, USA.
Association for Computing Machinery.

Ella Rabinovich, Raj Nath Patel, Shachar Mirkin, Lu-
cia Specia, and Shuly Wintner. 2017. Personal-
ized machine translation: Preserving original author
traits. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
1074–1084, Valencia, Spain. Association for Com-
putational Linguistics.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying latent user at-
tributes in Twitter. In Proceedings of the 2nd In-
ternational Workshop on Search and Mining User-
Generated Contents, SMUC ’10, page 37–44, New
York, NY, USA. Association for Computing Machin-
ery.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may I introduce the GYAFC dataset: Cor-
pus, benchmarks and metrics for formality style
transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 129–140,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Chakaveh Saedi and Mark Dras. 2021. Siamese net-
works for large-scale author identification. Com-
puter Speech & Language, 70:101241.

Yunita Sari, Mark Stevenson, and Andreas Vlachos.
2018. Topic or style? Exploring the most useful fea-
tures for authorship attribution. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 343–353, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Prasha Shrestha, Sebastian Sierra, Fabio González,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 669–674, Valencia, Spain. Associa-
tion for Computational Linguistics.

Efstathios Stamatatos. 2017. Masking topic-related in-
formation to enhance authorship attribution. Jour-
nal of the Association for Information Science and
Technology, 69(3):461–473.

Kalaivani Sundararajan and Damon Woodard. 2018.
What represents “style” in authorship attribution? In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 2814–2822, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Po-
lat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contribu-
tors. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

Anna Wegmann and Dong Nguyen. 2021. Does it cap-
ture STEL? A modular, similarity-based linguistic
style evaluation framework. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7109–7130, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

260

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learn-
ing semantic textual similarity from conversations.
In Proceedings of The Third Workshop on Repre-
sentation Learning for NLP, pages 164–174, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jian Zhu and David Jurgens. 2021. Idiosyncratic but
not arbitrary: Learning idiolects in online registers
reveals distinctive yet consistent individual styles.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
279–297, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

261

A Results on the Development Set

A.1 Hyperparameter Tuning
We evaluated contrastive (on the AV training setup),
triple (on the CAV training setup) and online con-
trastive loss (on the AV training setup) using imple-
mentations from Sentence-Transformers.
We experiment with the loss hyperparameter “mar-
gin” with values of 0.4, 0.5, 0.6 for the uncased
BERT model (Devlin et al., 2019) on the domain
training data. Results are displayed in Figure 6.
Contrastive and triplet loss perform better than on-
line contrastive loss. The margin value only has a
small influence on the performance scores. Based
on these results, we decided to run all further mod-
els only with the contrastive and triplet loss func-
tions and a margin value of 0.5.

conversation domain no
CAV AV CAV AV CAV AV
acc auc acc auc acc auc

c 0.4 0.63 0.63 0.68 0.68 0.71 0.71
c 0.5 0.63 0.63 0.68 0.68 0.71 0.71
c 0.6 0.62 0.63 0.68 0.68 0.71 0.71

t 0.4 0.63 0.62 0.68 0.67 0.70 0.70
t 0.5 0.64 0.64 0.68 0.68 0.70 0.70
t 0.6 0.63 0.63 0.67 0.67 0.70 0.70

c-on 0.4 0.58 0.58 0.64 0.64 0.67 0.67
c-on 0.5 0.58 0.58 0.64 0.64 0.67 0.67
c-on 0.6 0.58 0.58 0.64 0.64 0.67 0.67

Table 6: Hyperparameter-tuning results on the dev
AV and CAV datasets with varying content control.
Results for BERT uncased trained on the contrastive
authorship verification tasks (CAV). With different loss
functions (contrastive - c, triple - t, contrastive online -
c-on) and margin values (0.4, 0.5, 0.6). For each dev set
(conversation, domain and no content control), we dis-
play the accuracy of the models for the CAV task and
the AUC for the authorship verification task (AV). For
each dev set and CAV/AV setup, the best performance
is boldfaced. contrastive and triple loss behave compa-
rable. The margin value only has a small influence.

262

conv sub no
CAV AV CAV AV CAV AV
acc AUC acc AUC acc AUC

-
bert 0.52 0.51 0.59 0.57 0.64 0.61

BERT 0.53 0.52 0.59 0.57 0.63 0.60
RoBERTa 0.53 0.53 0.58 0.57 0.63 0.61

c

bert c 0.5 0.65 0.66 0.66 0.67 0.68 0.68
bert t 0.5 0.65 0.66 0.66 0.67 0.67 0.68

BERT c 0.5 0.66 0.67 0.67 0.68 0.69 0.70
BERT t 0.5 0.66 0.67 0.67 0.68 0.68 0.69

RoBERTa c 0.5 0.69 0.70 0.70 0.71 0.70 0.72
RoBERTa t 0.5 0.68 0.69 0.69 0.70 0.70 0.70

s

bert c 0.5 0.63 0.63 0.68 0.68 0.71 0.71
bert t 0.5 0.64 0.64 0.68 0.68 0.70 0.70

BERT t 0.5 0.65 0.65 0.68 0.68 0.71 0.71
BERT c 0.5 0.64 0.65 0.69 0.69 0.71 0.72

RoBERTa c 0.5 0.67 0.68 0.71 0.72 0.73 0.74
RoBERTa t 0.5 0.68 0.68 0.70 0.70 0.72 0.73

r

bert c-0.5 0.55 0.54 0.63 0.62 0.76 0.76
bert t-0.5 0.55 0.54 0.62 0.61 0.74 0.75

BERT c 0.5 0.57 0.56 0.64 0.63 0.76 0.77
BERT t 0.5 0.58 0.56 0.64 0.62 0.75 0.75

RoBERTa c 0.5 0.59 0.58 0.65 0.64 0.77 0.78
RoBERTa t 0.5 0.59 0.57 0.65 0.63 0.77 0.77

(a) CAV and AV Performance

conv sub no
AV AV AV

thr acc thr acc thr acc

0.82 0.51 0.70 0.55 0.69 0.58
0.86 0.51 0.85 0.55 0.85 0.58
0.96 0.52 0.97 0.55 0.97 0.58

0.72 0.61 0.73 0.62 0.73 0.63
0.27 0.61 0.27 0.62 0.29 0.63

0.24 0.62 0.28 0.63 0.26 0.64
0.72 0.62 0.73 0.63 0.73 0.64

0.72 0.64 0.72 0.64 0.73 0.65
0.30 0.63 0.31 0.64 0.32 0.64

0.73 0.59 0.73 0.63 0.73 0.65
0.16 0.60 0.19 0.63 0.19 0.64

0.20 0.61 0.27 0.63 0.23 0.65
0.74 0.60 0.74 0.64 0.72 0.66

0.72 0.63 0.72 0.65 0.72 0.67
0.22 0.63 0.24 0.65 0.19 0.66

0.76 0.53 0.77 0.58 0.74 0.69
0.14 0.53 0.37 0.57 0.24 0.68

0.40 0.54 0.35 0.59 0.23 0.69
0.74 0.54 0.76 0.59 0.74 0.69

0.80 0.56 0.77 0.60 0.74 0.71
0.38 0.55 0.34 0.59 0.19 0.66

(b) Details on the AV results

Table 7: (Dev) Results. We display the accuracy of the models for the contrastive authorship verification (CAV)
setup and the AUC for the authorship verification (AV) setup on each dev set (conversation, domain and no).
We show results for 18 fine-tuned models: BERT uncased (bert), RoBERTa and BERT cased trained with the
conversation, domain and no content control. With different loss functions (contrastive - c, triple - t) and margin
values (0.4, 0.5, 0.6). For the AV task, we also display the optimal threshold according to AUC (thr) and its
matching accuracy. Generally, RoBERTa models perform the best with increasing performance from conversation
to domain to random. Accuracies for< CAV are higher than for AV. Models perform the best on the task they
have been trained on. Contrastive and Triple loss seem to behave comparable. Best performance per dev set and
CAV/AV task is boldfaced.

A.2 Detailed Results on the Development Sets
We display the performance of further fine-tuned models on the dev sets in Table 7. RoBERTa (Liu
et al., 2019) generally performs better than the uncased and cased BERT model (Devlin et al., 2019).
Performance for the triplet and contrastive loss functions are comparable. We only use RoBERTa models
in the main paper and both contrastive and triplet loss as a result.

263

train data model all formal complex nb3r c’tion
STEL o-c STEL o-c STEL o-c STEL o-c STEL o-c

- BERT uncased (bert) 0.75 0.03 0.76 0.05 0.70 0.00 0.93 0.09 1.00 0.00
BERT cased (BERT) 0.78 0.05 0.80 0.10 0.71 0.00 0.92 0.11 1.00 0.00

conv.

bert c 0.5 0.68 0.21 0.72 0.40 0.59 0.07 0.73 0.06 1.00 0.01
bert t 0.5 0.68 0.30 0.71 0.52 0.61 0.15 0.72 0.05 0.99 0.06

BERT c 0.5 0.73 0.32 0.83 0.62 0.60 0.19 0.67 0.06 1.00 0.00
BERT t 0.5 0.73 0.37 0.79 0.66 0.63 0.15 0.74 0.05 1.00 0.15

domain

bert c 0.4 0.70 0.12 0.76 0.26 0.61 0.01 0.72 0.02 1.00 0.00
bert c 0.5 0.69 0.13 0.74 0.27 0.59 0.01 0.68 0.05 1.00 0.00
bert c 0.6 0.70 0.13 0.76 0.26 0.61 0.01 0.72 0.04 1.00 0.00
bert c-on 0.4 0.65 0.02 0.67 0.03 0.60 0.00 0.69 0.02 0.84 0.00
bert c-on 0.5 0.65 0.02 0.67 0.03 0.60 0.00 0.69 0.02 0.84 0.00
bert c-on 0.6 0.65 0.02 0.67 0.03 0.60 0.00 0.69 0.02 0.84 0.00
bert t 0.4 0.71 0.15 0.78 0.31 0.59 0.01 0.78 0.05 1.00 0.00
bert t 0.5 0.68 0.18 0.74 0.37 0.58 0.03 0.72 0.06 1.00 0.00
bert t 0.6 0.69 0.22 0.76 0.44 0.58 0.04 0.69 0.06 1.00 0.00

BERT c-0.5 0.73 0.23 0.82 0.48 0.61 0.02 0.77 0.03 1.00 0.00
BERT t-0.5 0.71 0.28 0.81 0.56 0.57 0.06 0.80 0.04 1.00 0.00

random

bert c 0.5 0.69 0.09 0.77 0.20 0.58 0.01 0.68 0.02 0.98 0.00
bert t 0.5 0.70 0.13 0.75 0.26 0.61 0.03 0.79 0.06 1.00 0.00

BERT c-0.5 0.72 0.21 0.84 0.44 0.55 0.02 0.75 0.07 1.00 0.01
BERT t-0.5 0.73 0.23 0.84 0.48 0.59 0.03 0.68 0.05 1.00 0.00

Table 8: Results on STEL and STEL-Or-Content. We display STEL accuracy for different language models and
methods. The performance on the set of STEL and STEL-Or-Content (o-c) task instances is displayed. The best
performance is boldfaced. Performance for the trained models goes down for the original STEL framework in the
complex/simple and nb3r substitution dimension. Performance generally increases for the STEL-Or-Content task.

B Details on STEL results

We display the STEL results on further trained models in Table 8. Interestingly, cased BERT seems to be
the better choice for the contraction STEL dimension.

264

aggregate unlearned learned
f/i c/s f/i c/s

CC
conversation 21 34 62 22
domain 13 34 62 24
no 21 44 67 24

setup AV 8 9 61 11
CAV 6 14 55 14

- all 1 4 48 8

Table 9: Error Analysis STEL Results. For the for-
mal/informal (f/i) and complex/simple (c/s) STEL di-
mension, we display the number of instances that were
unlearned and learned by all RoBERTa models in an
aggregate. We use three different aggregates: (i) all
models trained with a given CC level, (ii) all models
trained with a certain task setup and (iii) all models.

unlearned learned

no ambiguity 5
55

≈ 9% 12
41

≈ 29%

typo simple 21
55

≈ 38% 13
41

≈ 32%
typo complex 11

55
≈ 20% 6

41
≈ 15%

error grammar simple 15
55

≈ 27% 9
41

≈ 22%
error grammar complex 5

55
≈ 9% 3

41
≈ 7%

changed content 5
55

≈ 9% 3
41

≈ 7%

word as/more complex 16
55

≈ 29% 11
41

≈ 27%
naturalness 7

55
≈ 13% 3

41
≈ 7%

Table 10: Categories Error Analysis STEL Results.
For the six fine-tuned RoBERTa models, we manually
looked at the common learned as well as the unlearned
simple/complex examples. We put the examples in the
displayed ambiguity classes.

B.1 Error Analysis RoBERTa STEL results
In Table 9, we display the number of learned and
unlearned STEL instances across different aggre-
gates for the RoBERTa models. We combine all
such unique STEL instances across the aggregates
and annotate if they contain ambiguities. In Ta-
ble 10, we display the results. Overall, the learned
STEL instances contain fewer ambiguities. How-
ever, they still show considerable amounts of ambi-
guities.

C Details on cluster parameters

We use agglomerative clustering for the RoBERTa
model trained on the CAV setup with a margin of
0.5 and conversations as CC with seed 106 (R CAV
CONV 106). We experiment with different num-
bers of clusters and display the results in Table 11.
The highest Silhouette scores are reached for clus-
ter sizes of 5, 6, 7. We select a cluster size of 7 for
evaluation.

n avg. silhouette

2 0.23
3 0.21
4 0.23
5 0.27
6 0.27
7 0.26
8 0.23
9 0.19

10 0.20
11 0.19
12 0.18
13 0.19
14 0.17
15 0.16
16 0.16
17 0.16
18 0.17
19 0.17
20 0.17
21 0.16
22 0.16
23 0.15
24 0.15
25 0.15
26 0.15
30 0.15
40 0.15
50 0.15

100 0.13
150 0.13
200 0.12

Table 11: Silhouette values. We experiment with dif-
ferent numbers of clusters for one fine-tuned RoBERTa
model (R CAV CONV 106). It was on the CAV task
with conversation CC. The highest Silhouette score is
reached for cluster sizes of 5–7.

D Details on the cluster analysis

We give more examples of the seven clusters in Ta-
ble 12. Refer to our Github repository for the com-
plete clustering. We did not find obvious consisten-
cies for clusters 1, 2 and 6. That does, however, not
mean that more nuanced stylistic consistencies are
not present. We recommend using a higher number
of clusters, possibly different clustering algorithms
and testing out statistics for known style features
to pinpoint more consistencies.

Out of all utterance pairs that have the same au-
thor, 46.2% appear in the same cluster for the style
embedding model. This is different from a random
distribution among 7 clusters12 which corresponds
to 20.1%± .00. As authors will have a certain vari-
ability to their style as well (e.g., Zhu and Jurgens
(2021)), a perfect clustering according to writing

12Calculated mean and standard deviation of 100 random
assignments of utterances to the 7 clusters, with the same
number of elements in each cluster.

265

style would not assign all same author pairs to the
same cluster. For the RoBERTa base model the
fraction of same author pairs in the same cluster is
closer to the random distribution (75.4% vs. 76.1%
for the random distribution13). The fraction of utter-
ance pairs that appear in the same domain are close
to the random distribution for both the style embed-
ding model (23.6% vs. 20.1%) and the RoBERTa
base model (77.6% vs. 76.0%). The percentage for
the RoBERTa base models is a lot higher as the first
cluster contains almost 90% of all utterances. Ran-
dom assignment of utterances across the 7 clusters,
that keeps the clustering size would already lead
to 76.0% same author pairs appearing in the same
cluster (almost all of them in the first). Results are
similar for utterance pairs that appear in the same
conversation.

13The share is high for RoBERTa base because the first
cluster already contains 86.7% of all utterances.

266

C # Consistency Example 1 Example 2 Example 3

1 4065 citing pre-
vious com-
ments,
standard
punctuation,
URLs

Yes. Proportionally, this kid’s feet are
absolutely enormous.

> Please delete your account.

Says the no life who always shits
on anything Kanye or anti-Drake I can
promise you that capitalism is very
much alive in Norway.

[This should help.](YOUTUBE-LINK)

2 4016 short sen-
tences?

Nice catch! Well done. cookies are in
the back of this Grammar party. You
can have two.

You can mute them we’ve been told! Came here to post this only to find it’s
already the top voted comment. This is
a good sub.

3 2165 no last punc-
tuation mark

I am living in china, they are experienc-
ing an enormous baby boom

Seems like sarcasm. But could also be
Poe

[...] The earth probably has two or more
degrees of symmetry, but less than infi-
nite (like a sphere), but I'm honestly not
too concerned about the minutiae of it

4 1794 punctuation /
casing

huh thats odd i'm in the 97% percentile
on iq tests, the sat, and the act

Its not a problem if you a got a full
game. Whats the problem if a game
didnt get expansions?

Fair point, I didnt know that. Just at
glance I kind of went 'woah that doesnt
seem right'

5 1555 ’ instead of '
apostrophe

I assume it’s the blind lady? Oh I wasn’t really dismissing them.
I’m saying Ford will try their own
thing compared to Fiat

It’s 4am in Brussels and I am still hyped

6 781 similar to 1? Well, as your neighbors, I’d say Fuck
you.. But we’re not like that, see? We
want to be part of the alliance, not part
of the ’fuck you, we cant be compet-
itive with jobs or innovate any more,
so we’re going to run massive tariffs
against all our friendly nations

Hah, thus the one calf larger than the
other issue. I have it too ;)

[So you are saying that current encryp-
tion falls apart as long as the quantum
computer is large enough](URL). (for
reference, the current highest qubit is
50)’

7 380 linebreaks I admire what you're doing but [...]

I know I'm in the minority. [...]

75% of the problems I run into are
solved by [...]

I work in live streaming.

All the suggestions others have given
are excellent. RS7 makes the most
sense to me.

But [...]

Meanwhile, [...]

Table 12: Clustering - fined-tuned RoBERTa model. We display examples for each cluster of the 7 clusters that
resulted from the agglomerative clustering of 14,756 randomly sampled texts with the RoBERTa model fine-tuned
on the CAV setup with the conversation CC. We mention noticeable consistencies (Consistency) within the cluster
and give three examples each. Consistencies that are not as clear are marked with a ‘?’.

C # Consistency Example 1 Example 2 Example 3

1 12798 wide vari-
ety

Just googled it, looks like a great
device for the price! If I weren’t
so impatient I would have bought
this online. Great battery life!

This is exactly why i believe
iphone 5 body was perfect ex-
ample of good balance with de-
sign(timeless) and utility

[...]
The earth probably has two or more degrees of sym-
metry, but less than infinite (like a sphere), but I'm
honestly not too concerned about the minutiae of it

2 1110 short
utterances

here we go!! And her good posture. Not in California.

3 310 long utter-
ances

I’ve never had the pleasure of see-
ing Neil live but I got on a big
kick a few years ago after buying
one of his live albums (can’t re-
member which one) where I lis-
tened to all his live albums and
then wanted to see as many of his
live performance I could find on
YouTube. [...]

> but the movie has the
superior ending I think.

[...]

[...]

So heavily influenced by the social economics
... but still voluntary, got it. [...]

Then how about this. [...]
Everyone still keeps their child that way, you
even promote child birth. No sterilization, no
stigmatization of poor people, no poor people
stuck with child with heavy needs requiring care
that they can’t pay for.

4 232 URLs https://youtu.be/
GmULc5VANsw

[This](https://np.
reddit.com/r/
MakeupAddiction/
comments/25hkqi/how_
to_tell_if_your_
foundationprimer_is_
silicone/) might help!

I thought there was 51 stars because of Puerto Rico

https://en.m.wikipedia.org/wiki/
51st_state

Table 13: Clusters for RoBERTa base. We display examples for 4 out of 7 clusters as a result of the agglomerative
clustering of 14756 randomly sampled texts from the conversation test set. We mention noticeable consistencies
(Consistency) within the cluster and give three examples each.

267

E Computing Infrastructure

The training of 23 RoBERTa (Liu et al., 2019), 13
uncased BERT and 6 cased BERT models (Devlin
et al., 2019) took about 846 GPU hours with one
RTX6000 card with 24 GB RAM on a Linux com-
puting cluster. Further analysis and clustering of
two RoBERTa models took about 24 GPU hours.
We used a machine with 32 GB RAM and 8 intel
i7 CPUs using Ubuntu 20.04 LTS without GPU
access to generate the training data.

We used Sentence-Transformers 2.1.0
(Reimers and Gurevych, 2019) and numpy 1.18.5
(Harris et al., 2020), scipy 1.5.2 (Virtanen et al.,
2020) and scikit-learn 0.24.2 (Pedregosa
et al., 2011).

We use previous work, including code and
data, consistent with their specified or implied in-
tended use (Reimers and Gurevych, 2019; Chang
et al., 2020; Wegmann and Nguyen, 2021). The
ConvoKit open-source Python framework invites
NLP researchers and ‘anyone with questions about
conversations’ to use it (Chang et al., 2020). The
SentenceTransformers Python framework
can be used to compute sentence / text embed-
dings.14 We comply with asking permission for
part of the dataset for STEL and citing the speci-
fied works (Wegmann and Nguyen, 2021). Weg-
mann and Nguyen (2021) state the intended use of
developing improved style(-sensitive) measures.

F Intended Use

We hope our work will inform further research into
style and its representations. We invite researchers
to reuse any of our provided results, code and data
for this purpose.

14https://sbert.net/

268

Proceedings of the 7th Workshop on Representation Learning for NLP, pages 269 - 279
May 26, 2022 ©2022 Association for Computational Linguistics

WeaNF: Weak Supervision with Normalizing Flows

Andreas Stephan
University of Vienna

andreas.stephan@univie.ac.at

Benjamin Roth
University of Vienna

benjamin.roth@univie.ac.at

Abstract

A popular approach to decrease the need for
costly manual annotation of large data sets
is weak supervision, which introduces prob-
lems of noisy labels, coverage and bias. Meth-
ods for overcoming these problems have ei-
ther relied on discriminative models, trained
with cost functions specific to weak supervi-
sion, and more recently, generative models,
trying to model the output of the automatic
annotation process. In this work, we explore
a novel direction of generative modeling for
weak supervision: Instead of modeling the
output of the annotation process (the labeling
function matches), we generatively model the
input-side data distributions (the feature space)
covered by labeling functions. Specifically,
we estimate a density for each weak labeling
source, or labeling function, by using normal-
izing flows. An integral part of our method
is the flow-based modeling of multiple simul-
taneously matching labeling functions, and
therefore phenomena such as labeling function
overlap and correlations are captured. We an-
alyze the effectiveness and modeling capabil-
ities on various commonly used weak super-
vision data sets, and show that weakly super-
vised normalizing flows compare favorably to
standard weak supervision baselines.

1 Introduction

Currently an important portion of research in nat-
ural language processing is devoted to the goal of
reducing or getting rid of large labeled datasets. Re-
cent examples include language model fine-tuning
(Devlin et al., 2019), transfer learning (Zoph et al.,
2016) or few-shot learning (Brown et al., 2020).
Another common approach is weakly supervised
learning. The idea is to make use of human in-
tuitions or already acquired human knowledge to
create weak labels. Examples of such sources are
keyword lists, regular expressions, heuristics or in-
dependently existing curated data sources, e.g. a
movie database if the task is concerned with TV

shows. While the resulting labels are noisy, they
provide a quick and easy way to create large labeled
datasets. In the following, we use the term labeling
functions, introduced in Ratner et al. (2017), to de-
scribe functions which create weak labels based on
the notions above.

Throughout the weak supervision literature gen-
erative modeling ideas are found (Takamatsu et al.,
2012; Alfonseca et al., 2012; Ratner et al., 2017).
Probably the most popular example of a system
using generative modeling in weak supervision is
the data programming paradigm of Snorkel (Ratner
et al., 2017). It uses correlations within labeling
functions to learn a graph capturing dependencies
between labeling functions and true labels.

However, such an approach does not directly
model biases of weak supervision reflected in the
feature space. In order to directly model the rele-
vant aspects in the feature space of a weakly super-
vised dataset, we investigate the use of density esti-
mation using normalizing flows. More specifically,
in this work, we model probability distributions
over the input space induced by labeling functions,
and combine those distributions for better weakly
supervised prediction.

We propose and examine four novel models for
weakly supervised learning based on normalizing
flows (WeaNF-*): Firstly, we introduce a stan-
dard model WeaNF-S, where each labeling func-
tion is represented by a multivariate normal distri-
bution, and its iterative variant WeaNF-I. Further-
more WeaNF-N additionally learns the negative
space, i.e. a density for the space where the label-
ing function does not match, and a mixed model,
WeaNF-M, where correlations of sets of labeling
functions are represented by the normalizing flow.
As a consequence, the classification task is a two
step procedure. The first step estimates the densi-
ties, and the second step aggregates them to model
label prediction. Multiple alternatives are discussed
and analyzed.

269

We benchmark our approach on several com-
monly used weak supervision datasets. The results
highlight that our proposed generative approach is
competitive with standard weak supervision meth-
ods. Additionally the results show that smart ag-
gregation schemes prove beneficial.

In summary, our contributions are i) the devel-
opment of multiple models based on normalizing
flows for weak supervision combined with density
aggregation schemes, ii) a quantitative and qualita-
tive analysis highlighting opportunities and prob-
lems and iii) an implementation of the method1. To
the best of our knowledge we are the first to use
normalizing flows to generatively model labeling
functions.

2 Background and Related Work

We split this analysis into a weak supervision and
a normalizing flow section as we build upon these
two areas.

Weak supervision. A fundamental problem in
machine learning is the need for massive amounts
of manually labeled data. Among others, weak
supervision provides a way to counter the problem.
The idea is to use human knowledge to produce
noisy, so called weak labels. Typically, keywords,
heuristics or knowledge from external data sources
is used. The latter is called distant supervision
(Craven and Kumlien, 1999; Mintz et al., 2009).
In Ratner et al. (2017), data programming is
introduced, a paradigm to create and work with
weak supervision sources programmatically. The
goal is to learn the relation between weak labels
and the true unknown labels (Ratner et al., 2017;
Varma et al., 2019; Bach et al., 2017; Chatterjee
et al., 2019). In Ren et al. (2020) the authors
use iterative modeling for weak supervision.
Software packages such as SPEAR (?), WRENCH
(?) and Knodle (Sedova et al., 2021) allow a
modular use and comparison of weak supervision
methods. A recent trend is to use additional
information to support the learning process.
Chatterjee et al. (2019) allow labeling functions to
assign a score to the weak label. In Ratner et al.
(2018) the human provided class balance is used.
Additionally Awasthi et al. (2020); Karamanolakis
et al. (2021) use semi-supervised methods for
weak supervision, where the idea is to use a small
amount of labeled data to steer the learning process.

1https://github.com/AndSt/wea_nf

Normalizing flows. While the concept of
normalizing flows is much older, Rezende and
Mohamed (2016) introduced the concept to deep
learning. In comparison to other generative
neural networks, such as Generative Adversarial
networks (Goodfellow et al., 2014) or Variational
Autoencoders (Kingma and Welling, 2014),
normalizing flows provide a tractable way to
model high-dimensional distributions. So far,
normalizing received rather little attention in the
natural language processing community. Still, Tran
et al. (2019) and Ziegler and Rush (2019) applied
them successfully to language modeling. An
excellent overview over recent normalizing flow
research is given in Papamakarios et al. (2021).
Normalizing flows are based on the change of
variable formula, which uses a bijective function
g : Z → X to transform a base distribution Z into
a target distribution X:

pX(x) = pZ(z)

∣∣∣∣det

(
∂g(z)

∂zT

)∣∣∣∣
−1

where Z is typically a simple distribution, e.g. mul-
tivariate normal distribution, and X is a compli-
cated data generating distribution. Typically, a
neural network learns a function f : X → Z by
minimizing the KL-divergence between the data
generating distribution and the simple base distri-
bution. As described in Papamakarios et al. (2021)
this is achieved by minimizing negative log likeli-
hood

log pX(x) = log pZ(f(x)) + log

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣

The tricky part is to design efficient architectures
which are invertible and provide an easy and effi-
cient way to compute the determinant. The compo-
sition of bijective functions is again bijective which
enables deep architectures f = f1◦· · ·◦fn. Recent
research focuses on the creation of more expressive
transformation modules (Lu et al., 2021). In this
work, we make use of an early, but well established
model, called RealNVP (Dinh et al., 2017). In each
layer, the input x is split in half and transformed
according to

y1:d = x1:d (1)

yd+1:D = xd+1:D � exp (s(x1:d)) + t (x1:d) (2)

where� is the pointwise multiplication and s and t
neural networks. Using this formulation to realize

270

(a) Schematic view of the densities estimated by WeaNF-S/I.
The concatenated input [x;λ] is fed into the flow to learn the
probability P (x|λ). The graph shows the posterior P (λ|x).

(b) WeaNF-N and WeaNF-M aim to smoothen the probabil-
ity space, aiming to generalize more robustly to instances not
directly matched by labeling functions.

Figure 1: Schematic overview of WeaNF-*. The X−axis represents the labeling function embedding λ, the
Y−axis the text input x. The Z−axis represents the learned density related to a labeling function. In this example
we use the task sentiment analysis and keyword search as labeling functions. Blue denotes a negative sentiment
and red a positive sentiment.

a layer fi, it is easy and efficient to compute the
inverse and the determinant.

Normalizing flows were used for semi-
supervised classification (Izmailov et al., 2019;
Atanov et al., 2020) but not for weakly supervised
learning, which we introduce in the next chapter.

3 Model Description

In this section the models are introduced. The
following example motivates the idea. Consider
the sentence s, "The movie was fascinating, even
though the graphics were poor, maybe due to a low
budget.", the task sentiment analysis and labeling
functions given by the keywords "fascinating" and
"poor". Furthermore, "fascinating" is associated
with the class POS, and "poor" with the class NEG.
We aim to learn a neural network, which translates
the complex object, text and a possible labeling
function match, to a density, in the current exam-
ple P (s|fascinating) and P (s|poor). We combine
this information using basic probability calculus to
make a classification prediction.

Multiple models are introduced. The standard
model WeaNF-S naively learns to represent
each labeling function as a multivariate normal
distribution. In order to make use of unlabeled
data, i.e. data where no labeling function matches,
we iteratively apply the standard model (WeaNF-I).
Based on the observation that labeling functions

overlap, we derive WeaNF-N modeling the
negative space, i.e. the space where the labeling
function does not match and the mixed model,
WeaNF-M, using a common space for single
labeling functions and the intersection of these.
Furthermore, multiple aggregation schemes are
used to combine the learned labeling function
densities. See table 1 for an overview.

Before we dive into details, we introduce
some notation. From the set of all possible inputs
X , e.g. texts, we denote an input sample by x and
its corresponding vector representation by x. The
set of t labeling functions is T = {λ1, . . . , λt} and
the classes are Y = {y1, . . . , yc}. Each labeling
function λ : X → ∅ ∪ {y} maps the input to a
specific class y ∈ Y or abstains from labeling.
In some of our models, we also associate an
embedding with each labeling function, which we
denote by λ ∈ Rh. The set of labeling functions
corresponding to label y is Ty.

WeaNF-S/I. The goal of the standard model is
to learn a distribution P (x|λ) for each labeling
function λ. Similarly to Atanov et al. (2020) in
semi-supervised learning, we use a randomly ini-
tialized embedding λ ∈ Rh to create a representa-
tion for each labeling function in the input space.
We concatenate input and labeling function vector
and provide it as input to the normalizing flow, thus

271

P (y|x) ∝ WeaNF-S/I WeaNF-N WeaNF-M

Maximum maxλ∈Ty Pθ(x|λ)
√ √

Union
∑

λ∈Ty P (λ|x)
√

NoisyOr 1−∏λ∈Ty (1− P (λ|x))
√

Simplex P
([
x; 1
|Ty |
∑

λ∈Ty λ
]) √

Table 1: Overview over the used aggregation schemes. Note that P (λ|x) is only accessible with WeaNF-N (see
equation 4). Bold symbols denote vector representations.

learning P ([x;λi]), where [·] describes the con-
catenation operation. A standard RealNVP (Dinh
et al., 2017), as described in section 2 is used. See
appendix B.1 for implementational details. In order
to use the learned probabilities to perform label pre-
diction, an aggregation scheme is needed. For the
sake of simplicity, the model predicts the label cor-
responding to the labeling function with the highest
likelihood, y = arg maxy∈Y maxλ∈Ty P (x|λ).

Additionally, to make use of the unlabeled data,
i.e. the data points where no labeling function
matches, an iterative version WeaNF-I is tested.
For this, we use an EM-like (Dempster et al.,
1977) iterative scheme where the predictions of the
model trained in the previous iteration are used as
labels for the unlabeled data. The corresponding
pseudo-code is found in algorithm 1.

Algorithm 1 Iterative Model (WeaNF-I)

Require: Xl ∈ Rnl×d, corresponding matches
λl ∈ {0, 1}nl×t, unmatched Xu ∈ Rnu×d

F = train_flow(Xl, λl)
for i = 1, . . . , r do

(λu)i = arg maxλ F ((Xu)i;λ)
X = concat(Xl, Xu), λ = concat(λl, λu)
F = train_flow(X,λ)

end for

Negative Model. In typical classification sce-
narios it is enough to learn P (x|y) to compute
a posterior P (y|x) by applying Bayes’ formula
twice, resulting in

P (y|x) =
P (x|y)P (y)

P (x|y)P (y) + P (x|¬y)P (¬y)
(3)

where the class prior P (y) is typically approx-
imated on the training data or passed as a pa-
rameter. This is not possible in the current set-
ting as often two labeling functions match simul-

taneously. In order to learn P (λ|x), we explore
a novel variant that additionally learns P (x|¬λ).
The learning process is similar to P (x|λ), so a
second embedding λ̃ is introduced to represent
¬λ. We optimize P ([x;λ] and P

([
x; λ̃

])
simul-

taneously. In each batch I , the positive sample
pairs (xi, λi)i∈I and negative pairs (xi, λj), sam-
pled such that (xi, λj) /∈ {(xi, λi)}i∈I , are used to
train the network. The number of negative samples
per positive sample is an additional hyperparameter.
Now Bayes’ formula can be used as in equation 3
to obtain

P (λ|x) =
P (x|λ)P (λ)

P (x|λ)P (y) + P (x|¬λ)P (¬λ)
. (4)

The access to the posterior probability P (λ|x) pro-
vides additional opportunities to model P (y|x).
After initial experimentation we settled on two op-
tions. A simple addition of probabilities neglecting
intersection probability, equation 5, which we call
Union, and the NoisyOr formula, equation 7, which
has previously shown to be effective in weakly su-
pervised learning (Keith et al., 2017):

P (y|x) ∝
∑

λ∈Ty
P (λ|x) (5)

P (y|x) = P ({∨λ∈Tyλ}|x) (6)

= 1−
∏

λ∈Ty
(1− P (λ|x)) (7)

Mixed Model. It was already mentioned that
it is common that two or multiple labeling func-
tions hit simultaneously. While WeaNF-N pro-
vides access to a posterior distribution which al-
lows to model these interactions, the goal of the
mixed model WeaNF-M is to model these intersec-
tions explicitly already in the density of the nor-
malizing flow. More specifically, we aim to learn
P (x|{λi}i∈I) for arbitrary index families I . Once
again, the embeddings space is used to achieve this

272

Dataset #Classes #Train / #Test samples #LF’s Coverage(%) Class Balance

IMDb 2 39741 / 4993 20 0.60 1:1
Spouse 2 8530 / 1187 9 0.30 1:5
YouTube 2 1440 / 229 10 1.66 1:1
SMS 2 4208 / 494 73 0.51 1:6
Trec 6 4903 / 500 68 1.73 1:13:14:14:9:10

Table 2: Some basic statistics describing the datasets. Coverage is computed on the train set by #matches /
#samples.

goal. For a given sample x and a family I of match-
ing labeling functions, we uniformly sample from
the simplex of all possible combinations and ob-
tain λI =

∑
i∈I αiλi, αi ≥ 0,

∑
i∈I αi = 1. Af-

terwards we concatenate the weighted sum of the
labeling function embeddings λI with the input x
and learn P ([x;λI]). Now that the density is able
to access the intersections of labeling functions, we
derive a new direct aggregation scheme. By σy we
denote the simplex generated by the set of bound-
ary points {λ}λ∈Ty . It is important to think about
this simplex, as it theoretically describes the input
space where the model learns the density related
to class y. We use the naive but efficient variant
which just computes the center of the simplex:

P (y|x) ∝ P




x;

1

|Ty|
∑

λ∈Ty
λ




 (8)

Implementation. In practice, sampling of data
points has to be handled on multiple occasions.
Empirically and during the inspection of related
implementations, e.g. the Github repository ac-
companying Atanov et al. (2020), we found that
it is beneficial if every labeling function is seen
equally often during training. It supports prevent-
ing a biased density towards specific labeling func-
tions. When training WeaNF-N, the negative space
is much larger than the actual space, so an addi-
tional hyperparameter controlling the amount of
negative samples is needed. WeaNF-M aims to
model intersecting probabilities directly. Most in-
tersections occur too rarely to model a reasonable
density. Thus we decided to only take co-occures
into account which occur more often than a certain
threshold. See appendix A.3 to get a feeling for the
correlations in the used datasets.

4 Experiments

In order to analyze the proposed models experi-
ments on multiple standard weakly supervised clas-

sification problems are performed. In the follow-
ing, we introduce datasets, baselines and training
details.

4.1 Datasets
Within our experiments, we use five classification
tasks. Table 2 gives an overview over some key
statistics. Note that these might differ slightly com-
pared to other papers due to the removal of dupli-
cates. For a more detailed overview of our prepro-
cessing steps, see appendix A.1.

The first dataset is IMDb (Internet Movie
Database) and the accompanying sentiment analy-
sis task (Maas et al., 2011). The goal is to classify
whether a movie review describes a positive or a
negative sentiment. We use 10 positive and 10 nega-
tive keywords as labeling functions. See Appendix
A.2 for a detailed description.

The second dataset is the Spouse dataset (Cor-
ney et al., 2016). The task is to classify whether
a text holds a spouse relation, e.g. "Mary is mar-
ried to Tom". Here, 90% of the samples belong
to the no-relation class, so we use macro-F1 score
to evaluate the performance. As the third dataset
another binary classification problem is given by
the YouTube Spam (Alberto et al., 2015) dataset.
The model has to decide whether a YouTube com-
ment is spam or not. For both, the Spouse and
the YouTube dataset, the labeling functions are
provided by the Snorkel framework (Ratner et al.,
2017).

The SMS Spam detection dataset (Almeida et al.,
2011), we abbreviate by SMS, also asks for spam
but in the private messaging domain. The dataset is
quite skewed, so once again macro-F1 score is used.
Lastly, a multi-class dataset, namely TREC-6 (Li
and Roth, 2002), is used. The task is to classify
questions into six categories, namely Abbreviation,
Entity, Description, Human and Location. The la-
beling functions provided by (Awasthi et al., 2020)
are used for the SMS and the TREC dataset. We

273

IMDb Spouse(F1) YouTube SMS (F1) Trec

MV 56.84 49.87 81.66 56.1 61.2
MV + MLP 73.20 29.96 92.58 92.41 53.27
DP + MLP 67.79 57.05 88.79 84.40 43.00
WeaNF-S 73.06 52.28 89.08 86.71 67.4
WeaNF-I 74.08 57.96 89.08 93.54 67.8
WeaNF-N (NoisyOr) 72.96 54.60 90.83 79.63 54.8
WeaNF-N (Union) 71.98 50.83 91.70 83.48 60.2
WeaNF-M (Max) 70.16 55.16 85.15 88.23 49.8
WeaNF-M (Simplex) 63.53 56.91 86.03 76.29 25.4

Table 3: Comparison of baselines to our model variants. The numbers reflect accuracies, or F1-scores, where
explicitly mentioned. Names in parenthesis describe the aggregation mechanism.

took the preprocessed versions of the data available
within the Knodle weak supervision programming
framework (Sedova et al., 2021).

4.2 Baselines
Three baselines are used. While there are many
weak supervision systems, most use additional
knowledge to improve performance. Examples
are class balance (Chatterjee et al., 2019), semi-
supervised learning with very little labels (Awasthi
et al., 2020; Karamanolakis et al., 2021) or multi-
task learning (Ratner et al., 2018). To ensure a
fair comparison, only baselines are used that solely
take input data and labeling function matches into
account. First we use majority voting (MV) which
takes the label where the most rules match. For in-
stances where multiple classes have an equal vote
or where no labeling function matches, a random
vote is taken. Secondly, a multi-layer perceptron
(MLP) is trained on top of the labels provided by
majority vote. The third baseline uses the data
programming (DP) paradigm. More explicitly, we
use the model introduced by Ratner et al. (2018)
implemented in the Snorkel (Ratner et al., 2017)
programming framework. It performs a two-step
approach to learning. Firstly, a generative model is
trained to learn the most likely correlation between
labeling functions and unknown true labels. Sec-
ondly, a discriminative model uses the labels of the
generative model to train a final model. The same
MLP as for second baseline is used for the final
model.

4.3 Training Details
Text input embeddings are created with the Sen-
tenceTransformers library (Reimers and Gurevych,
2019) using the bert-base-nli-mean-tokens model.

They serve as input to the baselines and the nor-
malizing flows. Hyperparameter search is per-
formed via grid search over learning rates of
{1e− 5, 1e− 4}, weight decay of {1e− 2, 1e− 3}
and epochs in {30, 50, 100, 300, 450}, and label
embedding dimension in 10, 15, 20 times the num-
ber of classes. Additionally, the number of layers
is in {6, 8}, and the negative sampling value for
WeaNF is in {2, 3}. The full set up ran 30 hours
on a single GPU on a DGX 1 server.

5 Analysis

The analysis is divided into three parts. Firstly, a
general discussion of the results is given. Secondly,
an analysis of the densities predicted by WeaNF-N
is shown and lastly, a qualitative analysis is per-
formed.

5.1 Overall Findings

Table 3 exposes the main evaluation. The horizon-
tal line separates the baselines from our models.
For WeaNF-N and WeaNF-M, no iterative schemes
were trained. This enables a direct comparison to
the standard model WeaNF-I.

Interestingly, the combination of Snorkel and
MLP’s is often not performing competitively. In
the IMDb data set there is barely any correlation
between labeling functions, complicating Snorkel’s
approach. The large number of labeling functions
e.g. Trec, SMS, could also complicate correlation
based approaches. Appendix A.3 shows correlation
graphs.

As indicated by the bold numbers, the WeaNF-I
is the best performing model. Only on the YouTube
dataset, an iterative scheme could not improve
the results. Related to this observation, in Ren

274

Labeling Function Example Dataset P (x|λ) Label (λ) Gold Prediction

won .* claim ...won ... call ... SMS ↑ Spam Spam Spam
.* I’ll .* sorry, I’ll call later SMS ↑ No Spam No Spam No Spam
.* i .* i just saw ron burgundy captaining a party

boat so yeah
SMS ↓ No Spam No Spam No Spam

(explain|what) .* mean .* What does the abbreviation SOS mean ? Trec ↑ DESCR ABBR DESCR
(explain|what) .* mean .* What are Quaaludes ? Trec ↑ DESCR DESCR DESCR
who.* Who was the first man to ... Pacific Ocean

?
Trec ↓ HUMAN HUMAN HUMAN

check .* out .* Check out this video on YouTube: YouTube ↑ Spam Spam Spam
#words < 5 subscribe my YouTube ↑ Spam Spam No Spam
.* song .* This Song will never get old YouTube ↓ No Spam No Spam No Spam
.* dreadful .* ...horrible performance annoying IMDb ↑ NEG NEG NEG
.* hilarious .* ...liked the movie...funny catch-

phrase...WORST...low grade...
IMDb ↑ POS NEG POS

.* disappointing .* don’t understand stereotype ... goofy .. IMDb ↓ NEG NEG POS

.* (husband|wife) .* ...Jill.. she and her husband... Spouse ↑ Spouses Spouses Spouses

.* married .* ... asked me to marry him and I said yes! Spouse ↑ Spouses No Spouses Spouses
family word Clearly excited, Coleen said: ’It’s my el-

dest son Shane and Emma.
Spouse ↓ No Spouses No Spouses No Spouses

Table 4: Examples selected from the 10 most likely (↑) and 10 most unlikely (↓) combinations of sentences and
labeling functions, using the density P (x|λ) provided by WeaNF-I. Labeling function matches are bold. We
observe that the flow often generalizes to unmatched examples. We slightly simplified some rules and shortened
some texts in order to fit the page size.

IMDb Spouse YouTube SMS Trec

Acc 72.38 74.04 78.17 88.71 72.63
P 5.93 5.1 38.95 23.3 13.65
R 37.53 39.31 55.01 44.34 61.07
F1 10.25 9.02 45.61 30.55 22.31
Cov 4.31 5.74 19.31 3.01 4.39

Table 5: Evaluation of the labeling function prediction
P (λ|x). Precision, Recall and F1 score are computed
via the weighted average of the statistics of all label-
ing functions. Coverage is computed as #matches/#all
possible matches.

et al. (2020) the authors achieve promising results
using iterative discriminative modeling for semi-
supervised weak supervision.

WeaNF-N outperforms the standard model in
three out of five datasets. We observe that these
are the datasets with a large amount of labeling
functions. Possibly, this biases the model towards
a high value of P (x|¬λ) which confuses the pre-
diction.

The simplex aggregation scheme only outper-
forms the maximum aggregation on two out of five
datasets. We infer that the probability density over
the labeling function input space is not smooth
enough. Ideally, the simplex method should always
have a high confidence in the prediction of a label-
ing function λ if its confident on the non-mixed
embedding λ which is what Max is doing.

5.2 Density Analysis

We divide into a global analysis and a local, i.e.
a per-labeling function, analysis. Table 5 pro-

Dataset Labeling Fct. Cov(%) Prec Recall

IMDb *boring* 5.8 13.12 26.87
Spouse family word 9. 0 16.53 35.96
YouTube *song* 23.58 56.72 70.73
SMS won *call* 0.81 66.67 1.0
Trec how.*much 2.4 60.0 75.0

Table 6: Statistics for the labeling functions obtaining
the highest F1 score for the prediction P (λ|x), using
the WeaNF (NoisyOr) model.

Dataset Labeling Fct. Cov(%) Prec Recall

IMDb *imaginative* 0.42 0.77 52.38
Spouse spouse keyword 14.5 0 0
YouTube person entity 2.62 6.45 33.33
SMS I .* miss 0.6 0 0
Trec what is .* name 2.2 2.26 100

Table 7: Same as table 6, but here the labeling functions
obtaining the lowest F1 score are shown. Only those
are taken into account which occur more often than 10
times in the test set.

275

vides some global statistics, table 6 and 7 subse-
quently show statistics related to the best and worst
performing labeling function estimations. In the
local analysis a labeling function is predicted if
P (λ|x) ≥ 0.5. The WeaNF-N model is used be-
cause it is the only model with direct access to
P (λ|x).

It is important to mention that in the local anal-
ysis, a perfect prediction of the matching labeling
function is not wanted, as this would mean that
there is no generalization. Thus, a low precision
might be necessary for generalization, and a the
recall would indicate how much of the original se-
mantic or syntactic meaning of a labeling function
is retained.

Interestingly, while the overall performance of
WeaNF-N is competitive on the IMDb and the
Spouse data sets, it is failing to predict the cor-
rect labeling function. One explanation might be
that these are the data sets where the texts are sub-
stantially longer which might be complicated to
model for normalizing flows. In table 7 typically
the worst performing approximation of labeling
function matches seems to be due to low coverage.
An exception is the the Spouse labeling function.

5.3 Qualitative Analysis

In table 4 a number of examples are shown. We
manually inspected samples with a very high or
low density value. Note that density values re-
lated to P (x|λ), λ ∈ Ty are functions f tak-
ing arbitrary values which only have to satisfy
Ex:λ(x)=y[f(x)] = 1.

We observed the phenomenon that either the
same labeling functions take the highest density
values P (x|λ) or that a single sample often has a
high likelihood for multiple labeling functions. In
the table 4 one can find examples where the learned
flows were able to generalize from the original
labeling functions. For example, for the IMDb
dataset, it detects the meaning "funny" even though
the exact keyword is "hilarious".

6 Conclusion

This work explores the novel use of normalizing
flows for weak supervision. The approach is di-
vided into two logical steps. In the first step, nor-
malizing flows are employed to learn a probability
distribution over the input space related to a label-
ing function. Secondly, principles from basic prob-
ability calculus are used to aggregate the learned

densities and make them usable for classification
tasks. Motivated by aspects of weakly supervised
learning, such as labeling function overlap or cov-
erage, multiple models are derived each of which
uses the information present in the latent space
differently. We show competitive results on five
weakly supervised classification tasks. Our anal-
ysis shows that the flow-based representations of
labeling functions successfully generalize to sam-
ples otherwise not covered by labeling functions.

Acknowledgements

This research was funded by the WWTF through
the project ”Knowledge-infused Deep Learning for
Natural Language Processing” (WWTF Vienna Re-
search Group VRG19-008), and by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) - RO 5127/2-1.

References
T C Alberto, J V Lochter, and T A Almeida. 2015.

TubeSpam: Comment Spam Filtering on YouTube.
In 2015 IEEE 14th International Conference on Ma-
chine Learning and Applications (ICMLA), pages
138–143.

Enrique Alfonseca, Katja Filippova, Jean-Yves Delort,
and Guillermo Garrido. 2012. Pattern Learning for
Relation Extraction with a Hierarchical Topic Model.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 54–59, Jeju Island, Korea.
Association for Computational Linguistics.

Tiago A Almeida, J M G Hidalgo, and A Yamakami.
2011. Contributions to the study of SMS spam filter-
ing: new collection and results. In DocEng ’11.

Andrei Atanov, Alexandra Volokhova, Arsenii
Ashukha, Ivan Sosnovik, and Dmitry Vetrov.
2020. Semi-Conditional Normalizing Flows for
Semi-Supervised Learning.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal,
and Sunita Sarawagi. 2020. Learning from Rules
Generalizing Labeled Exemplars.

Stephen H Bach, Bryan Dawei He, Alexander Ratner,
and Christopher Ré. 2017. Learning the Structure
of Generative Models without Labeled Data. CoRR,
abs/1703.0.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,

276

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners.

Oishik Chatterjee, Ganesh Ramakrishnan, and Sunita
Sarawagi. 2019. Data Programming using Continu-
ous and Quality-Guided Labeling Functions. CoRR,
abs/1911.0.

D Corney, M-Dyaa Albakour, Miguel Martinez-
Alvarez, and Samir Moussa. 2016. What do a Mil-
lion News Articles Look like? In NewsIR@ECIR.

Mark Craven and Johan Kumlien. 1999. Constructing
Biological Knowledge Bases by Extracting Informa-
tion from Text Sources. In Proceedings of the Sev-
enth International Conference on Intelligent Systems
for Molecular Biology, pages 77–86. AAAI Press.

A P Dempster, N M Laird, and D B Rubin. 1977. Max-
imum likelihood from incomplete data via the EM
algorithm. JOURNAL OF THE ROYAL STATISTI-
CAL SOCIETY, SERIES B, 39(1):1–38.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. 2017. Density estimation using Real NVP.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks.

Pavel Izmailov, Polina Kirichenko, Marc Finzi, and
Andrew Gordon Wilson. 2019. Semi-Supervised
Learning with Normalizing Flows.

Giannis Karamanolakis, Subhabrata Mukherjee, Guo-
qing Zheng, and Ahmed Hassan Awadallah. 2021.
Self-Training with Weak Supervision.

Katherine Keith, Abram Handler, Michael Pinkham,
Cara Magliozzi, Joshua McDuffie, and Brendan
O’Connor. 2017. Identifying civilians killed by po-
lice with distantly supervised entity-event extraction.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1547–1557, Copenhagen, Denmark. Association for
Computational Linguistics.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang,
and Jun Zhu. 2021. Implicit Normalizing Flows. In
International Conference on Learning Representa-
tions.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning Word Vectors for Sentiment Analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003–1011, Suntec, Singapore. Association
for Computational Linguistics.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. 2021. Normalizing Flows for Probabilis-
tic Modeling and Inference.

Alexander Ratner, Stephen H Bach, Henry R Ehren-
berg, Jason Alan Fries, Sen Wu, and Christopher Ré.
2017. Snorkel: Rapid Training Data Creation with
Weak Supervision. CoRR, abs/1711.1.

Alexander Ratner, Braden Hancock, Jared Dunnmon,
Frederic Sala, Shreyash Pandey, and Christopher Ré.
2018. Training Complex Models with Multi-Task
Weak Supervision.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Wendi Ren, Yinghao Li, Hanting Su, David Kartchner,
Cassie Mitchell, and Chao Zhang. 2020. Denois-
ing Multi-Source Weak Supervision for Neural Text
Classification. Findings of the Association for Com-
putational Linguistics: EMNLP 2020.

Danilo Jimenez Rezende and Shakir Mohamed. 2016.
Variational Inference with Normalizing Flows.

Anastasiia Sedova, Andreas Stephan, Marina Speran-
skaya, and Benjamin Roth. 2021. Knodle: Modular
Weakly Supervised Learning with PyTorch.

Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa.
2012. Reducing Wrong Labels in Distant Supervi-
sion for Relation Extraction. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
721–729, Jeju Island, Korea. Association for Com-
putational Linguistics.

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal,
Laurent Dinh, and Ben Poole. 2019. Discrete Flows:
Invertible Generative Models of Discrete Data.

Paroma Varma, Frederic Sala, Ann He, Alexander Rat-
ner, and Christopher Ré. 2019. Learning Depen-
dency Structures for Weak Supervision Models.

277

positive negative

beautiful poor
pleasure disappointing

recommendation senseless
dazzling second-rate

fascinating silly
hilarious boring
surprising tiresome
interesting uninteresting
imaginative dreadful

original outdated

Table 8: Keywords used to create rules for the IMDb
dataset.

Zachary M Ziegler and Alexander M Rush. 2019. La-
tent Normalizing Flows for Discrete Sequences.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer Learning for Low-Resource
Neural Machine Translation.

A Additional Data Description

A.1 Preprocessing

A few steps were performed, to create a unified
data format. The crucial difference to other pa-
pers is that we removed duplicated samples. There
were two cases. Either there were very little du-
plicates or the duplication occurred because of the
programmatic data generation, thus not resembling
the real data generating process. Most notably, in
the spouse data set 60% of all data points are du-
plicates. Furthermore, we only used rules which
occurred more often than a certain threshold as it
is impossible to learn densities on only a handful
of examples. The threshold is In order to have un-
biased baselines, we ran the baseline experiments
on the full set of rules and the reduced set of rules
and took the best performing number.

A.2 IMDb rules

The labeling functions for the IMDb dataset are
defined by keywords. We manually chose the key-
words. We defined them in such a way that their
meaning has rather little semantic overlap. The
keywords are shown in table 8.

A.3 Labeling Function Correlations

In order to use labeling functions for weakly super-
vised learning, it is important to know the correla-
tion of labeling functions to i) derive methods to

combine them and ii) help to understand phenom-
ena of the model predictions.

Thus we decided to add correlation plots. More
specifically, we use the Pearson Correlation coeffi-
cient.

B Additional Implementationial Details

B.1 Architecture
As mentioned in section 3, the backbone of our flow
is RealNVP architecture, which we introduced in
section 2. With sticking to the notation in formula
2 the network layers to approximate the functions
s and t are shown below

1 s = nn.Sequential(
2 nn.Linear(dim, hidden_dim),
3 nn.LeakyReLU(),
4 nn.BatchNorm1d(hidden_dim),
5 nn.Dropout(0.3),
6 nn.Linear(hidden_dim, dim),
7 nn.Tanh()
8)
9 t = nn.Sequential(

10 nn.Linear(dim, hidden_dim),
11 nn.LeakyReLU(),
12 nn.BatchNorm1d(hidden_dim),
13 nn.Dropout(0.3),
14 nn.Linear(hidden_dim, dim),
15 nn.Tanh()
16)

Hyperparameters are the depth, i.e. number of
stacked layers, and the hidden dimension.

B.2 WeaNF-M Sampling
For the mixed model WeaNF-M the sampling pro-
cess becomes rather complicated.

Next up, the code to produce the convex combi-
nation α1, . . . , αt is shown. The input tensor takes
values in {0, 1} and has shape b × t where b is
the batch size and t the number of labeling func-
tions.Note that some mass is put on every labeling
functions. We realized that this bias imrpoves per-
formance.

1 def weight_batch(self, batch_y: torch.Tensor):
2 """Returns weighting array forming convex sum.
3 Shape: (batch_dim, num_rules)
4 """
5 batch_y = batch_y.float()
6 batch_y += 0.1 * torch.ones(batch_y.shape)
7 batch_y = batch_y * torch.rand(batch_y.shape)
8 row_sum = batch_y.sum(axis=1, keepdims=True)
9 nbatch_y = batch_y / row_sum

10 return nbatch_y

278

(a) IMDb (b) Spouse

(c) YouTube (d) SMS

(e) Trec

279

Author Index

Abdessaied, Adnen, 143
Adel, Heike, 184
Aguilar, Gustavo, 91
Alexander Kühn, Marc, 156
Alt, Christoph, 46
Amin, Saadullah, 111
Artetxe, Mikel, 20
Assylbekov, Zhenisbek, 39

Bae, Kyunghoon, 121
Balagansky, Nikita, 213
Baral, Chitta, 221
Bielawski, Romain, 29
Binder, Arne, 46
Birch, Alexandra, 1
Bobrowski, Omer, 173
Bulling, Andreas, 143

Cahyawijaya, Samuel, 60
Chen, Yuxuan, 46
Choi, Jooyoung, 121
Chung, Willy, 60

Devillers, Benjamin, 29
Dikeoulias, Ioannis, 111
Dras, Mark, 78
Dredze, Mark, 236

Emma Zhang, Wei, 78

F. Liu, Nelson, 100
Fung, Pascale, 60

Gavrilov, Daniil, 213
Goldberg, Yoav, 67
Gonen, Hila, 67
Groh, Georg, 156
Guo, Chenlei, 91

H. Gad-Elrab, Mohamed, 184
Haim Meirom, Shaked, 173
Hennig, Leonhard, 46
Huber, Lukas, 156

Jang, Hansol, 121
Johnson, Christian, 167
Jun, Changwook, 121

Kim, Hyun, 121

Liu, Na, 78
Lovenia, Holy, 60

Ma, Chengyuan, 91
Mach, Thomas, 39
Meshgi, Kourosh, 9
Mikkelsen, Jonas, 46
Milchevski, Dragan, 184
Min, Kyungkoo, 121
Min, Zeng, 60
Mishra, Swaroop, 221
Mofijul Islam, Md, 91
Mosca, Edoardo, 156

Neumann, Günter, 111
Nguyen, Dong, 249
Niculae, Vlad, 227
Nurmukhamedov, Sultan, 39

Ponnusamy, Pragaash, 91
Potts, Christopher, 100

Ravfogel, Shauli, 67
Read, Jesse, 133
Reid, Machel, 20
Roth, Benjamin, 269

Sadat Mirzaei, Maryam, 9
Sannigrahi, Sonal, 133
Schraagen, Marijn, 249
Sekine, Satoshi, 9
Sennrich, Rico, 1
Sheverdin, Arsen, 39
Sim, Myoseop, 121
Soliman, Hassan, 184
Solomon Mathialagan, Clint, 91
Song, Junshuai, 191
Sood, Ekta, 143
Stephan, Andreas, 269
Strötgen, Jannik, 184
Su, Dan, 60

Tang, Mengyun, 191
Tokarchuk, Evgeniia, 227

Valerio Miceli Barone, Antonio, 1

280

Van De Cruys, Tim, 29
Van Durme, Benjamin, 236
Vanrullen, Rufin, 29
Varshney, Neeraj, 221

Wartena, Christian, 204
Wegmann, Anna, 249
Wilie, Bryan, 60
Wu, Shijie, 236

Wu, Zhengxuan, 100

Yang, Yong, 191

Zhang, Jiangshan, 191
Zhu, Jifeng, 191

281

