
Supplemental Material for ConStance: Modeling Annotation

Contexts to Improve Stance Classification

This document provides more details on the annotation study we developed (Appendix A), of
the EM algorithm we briefly cover in the main text (Appendix B), a brief description of how we
debugged this algorithm (Appendix C) and a description of how hyperparameters were set using
a test set (Appendix D).

A More Details on Annotation Study

Figure 1 presents an overview of our study design. Outlined in black on the top left is an
example of one of the questions posed to annotators. Each question developed consists of three
main parts: a target, the text of a particular tweet, and a set of additional information about the
tweet’s author. At a high level, we first selected a set of tweet/target pairs. We then produced
six questions for each tweet/target pair, one for each type of additional information/context we
considered.

We initially selected a set of 480 tweet/target pairs to annotate, split evenly between the two
targets. The 240 tweets for each target were selected by choosing 40 tweets from each possible
combination of these two tweet-level properties (2 “tweet originality” types x 3 “target mention”
types). After an initial investigation of results, we observed that the sample contained relatively
few tweets from Republican users. To address this issue we sampled an additional 82 tweets
from Republican users, for a final sample size of 562 tweets. These tweets imbalanced the sample
design—they were no longer evenly distributed across the original categories—but they ensured
sufficient counts for Republican users, which we believed might be useful for our analyses.

As a final point, we replace all URLs in both the tweets to be labeled and tweets shown in
the additional information portion of the questions with the text “{{link}}”. This decision was
made in order to maintain control over the amount of information seen by annotators; if the links
were left visible, annotators would vary in whether or not they clicked through. However, since
URL information (e.g. domain name, page title, page content) provides useful information to the
annotator, obscuring the links artificially increased the task’s difficulty.

B Derivation of EM Algorithm

Figure 2 provides a graphical overview of the model; both it and Table 1 are reproduced from
the main paper for convenience. Below, we outline the derivation of the EM algorithm used for
inference.

The model’s incomplete data likelihood function, Eq. (1), describes the joint probability,
across all items, of Yi, all values of Sc

i , and all values of Rca
i assuming Xi is known and fixed.

1

Partial Profile Info

Full Profile Info

Political Affiliation

Previous Tweets

Previous Political Tweets

No Information

Figure 1: In the black box is a single annotation question. The green box displays where the
target is given, the orange box where the tweet text is displayed and the blue box where any
additional information is given. The six information conditions are shown in the blue boxes.

Uppercase denotes random variables; lowercase, specific values. In line (2), we substitute in the
equivalent model parameters.

p(D|θ,X) =
N∏
i=1

V∑
y

p(Yi = y|xi,M)

Ci∏
c

V∑
s

p(Sc
i = s|y, γ)

Ac
i∏
a

p(rcai |s, α) (1)

=
N∏
i=1

V∑
y

My(xi)

Ci∏
c

V∑
s

γcys

Ac
i∏
a

αa
sr (2)

To derive EM for this model, we treat the latent variables as a block, moving their joint
distribution into a single term. A given tweet has a latent value yi and a latent vector si containing

one entry per context: si = (s1i , . . . , s
Ci
i). Returning to (1), we move the term p(Sc

i = s|y, γ) left,
outside the product over Ci contexts, explicitly representing each component sci of si and summing
over its latent values. With all of si in scope at once, we can rearrange the latent variables into

2

Xi Yi Si
c Ri

ca

! "ℳ
C A

Ai
c annotatorsCi contexts

N items

Classifier

True label

Item feature
vector

Figure 2: Graphical model for ConStance.

Var. Meaning
Xi Feature vector of item i
Yi Latent true label of item i
Sc
i Latent context-specific label of item i after noise

from context c
Rca

i Label given by annotator a to item i in context c

V Set of values for labels and annotations: {−1, 0, 1}
N # of items, indexed by i
C Set of contexts, indexed by c
A Set of annotators, indexed by a

M Learned classifier
γc V × V parameter matrix for context c
αa V × V parameter matrix for annotator a

D All observed data: all values of Xi and Rca
i

Z All latent variables: all values of Yi and Si

θ All model parameters: M, γ, α

Ti All latent variables for item i: (Yi, Si)
τi(ys) Current estimate of all latent values for item i:

p(Yi = y, Si = s | D, θ)

Table 1: Model variables.

a single term.

p(D|θ) =

N∏
i=1

V∑
y

p(yi = y|xi,M)

 V∑
s1i

. . .

V∑
s
Ci
i

 Ci∏
c

p(sci = s|yi, γ)

Ac
i∏
a

p(rcai |sci , α)

=
N∏
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 p(yi = y|xi,M)p(si = s|yi, γ)

Ci∏
c

Ac
i∏
a

p(rcai |sci , α)

=
N∏
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 p(yi = y, si = s | xi,M, γ)

Ci∏
c

Ac
i∏
a

p(rcai |sci , α)

Next we introduce an indicator variable Ti(ys) ∈ {0, 1} representing a configuration of latent
variable assignments (yi, si) ∈ Z. We define Ti(ys) = 1 when tweet i has the specific configuration
(yi = y, si = s). This gives:

p(D|θ) =
N∏
i=1

V∑
y

 V∑
s1i

. . .

V∑
s
Ci
i

 p(Ti(ys) | xi,M, γ)

Ci∏
c

Ac
i∏
a

p(rcai |sci , α)

During the E step, we will use analogous variables τi(ys) ∈ [0, 1] to represent the conditional
probabilities of Ti(ys).

Below, we derive the E-step and the M-step. For clarity, we first express the complete-
data likelihood function (and the complete data log-likelihood) and the expected complete log-
likelihood, which we then use to determine solutions for the E-step and the M-step.

3

Complete data likelihood function

Here, we assume that we have the observed values of every Ti(ys). The Ti(ys) in the exponent is
an observed 0 or 1, while the p(Ti(ys) = 1 | . . .) is still a prior probability to compute. (That prior
does use its parent variables xi, but importantly, doesn’t use rcai .)

p(D, Z | θ) =

N∏
i=1

V∏
y

 V∏
s1i=1

. . .

V∏
s
Ci
i =1


p(Ti(ys) = 1 | xi,M, γ)

Ci∏
c

Ac
i∏
a

p(rcai |sci , α)

Ti(ys)

Complete data log-likelihood

`(D, Z|θ) =

N∑
i=1

V∑
y

 V∑
s1i

. . .

V∑
s
Ci
i

Ti(ys)

log p(Ti(ys) = 1 | xi,M, γ) +

Ci∑
c

Ac
i∑
a

log p(rcai |sci , α)



Expected value of the complete data log-likelihood

EZ [`(D, Z|θ)] =

N∑
i=1

V∑
y

 V∑
s1i

. . .

V∑
s
Ci
i

EZ [Ti(ys)]

log p(Ti(ys) = 1 | xi,M, γ) +

Ci∑
c

Ac
i∑
a

log p(rcai |sci , α)



=
N∑
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 τi(ys)

log p(Ti(ys) = 1 | xi,M, γ) +

Ci∑
c

Ac
i∑
a

log p(rcai |sci , α)



In the E step, we update the values τ .

B.1 E step

Here, we need an expected value for the latent variables conditioned on observed variables and
θ. Define:

τi(ys) = p(Ti(ys) = 1 | D, θ)
= p(yi = y, si = s | ri, xi,M, γ, α)

Using Bayes’ rule, we have that the update for τi(ys) is:

=
p(ri | yi = y, si = s, xi,M, γ, α)p(yi = y, si = s | xi,M, γ, α)

p(ri | xi,M, γ, α)

=
p(yi = y, si = s | xi,M, γ)p(ri | si = s, α)

p(ri | xi,M, γ, α)

=
p(yi = y | xi,M)p(si = s | yi = y, γ)p(ri | si = s, α)∑V

y′=1

(∑V
s′1i
. . .
∑V

s′
Ci
i

)
p(yi = y′ | xi,M)p(si = s′ | yi = y′, γ)p(ri | si = s′, α)

.

4

The numerator is simply the likelihood of a fully observed instance (a tweet and its labels,
with the specified setting of latent variables), while the denominator ensures that the distribution
sums to 1.

B.2 M step for γ

Recall that:

EZ [`(D, Z|θ)] =
N∑
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 τi(ys)

log p(Ti(ys) | xi,M, γ) +

Ci∑
c

Ac
i∑
a

log p(rcai |sci , α)



=
N∑
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 τi(ys)

logMy(xi) + (

Ci∑
c

log γcys) +

Ci∑
c

Ac
i∑
a

logαa
sr

 . (3)

Recall that γcys denotes the matrix entry describing p(sci = s | yi = y). We have a constraint

that
∑V

s′ γ
c
ys′ = 1. (That is, within the cth matrix of γ, row y must sum to 1.) Collect terms from

EZ [`(D, Z|θ)] that depend on a particular matrix entry γcys into one expression J(γcys), together
with the Lagrange multiplier term from the constraint.

J(γcys) =

 N∑
i=1

V∑
y′

(
V∑
s′1i

. . .
V∑

s′
Ci
i

)

Ci∑
c′

τiy′s′ log γc
′

y′s′

− λ(
V∑
s′

γcys′ − 1)

=

 N∑
i=1

(

V∑
s′1i

. . .

V∑
s′

Ci
i

)τi(ys′) log γcys′

− λ(γcys)

From the summations over c′ and y′, only the term with the desired c and y depends on γcys. In
the summations over the values of s, only the cth summation pertains to γcys (i.e., γcys appears
only when s′ci = s). However, the other components of s′ are latent variables whose probability
we need to sum over.

=

 N∑
i=1

(
V∑
s′1i

. . . [except component c] . . .
V∑

s′
Ci
i

)τi(ys′) log γcys

− λ(γcys)

= log γcys

 N∑
i=1

(
V∑
s′1i

. . . [except component c] . . .
V∑

s′
Ci
i

)τi(ys)′

− λ(γcys)

= log γcys (Weighted number of tweets with yi = y and sci = s)− λ(γcys)

δ`

δγcys
= J ′(γcys) =

(Weighted number of tweets with yi = y and sci = s)

γcys
− λ

5

Note that “weighted” always means “weighted using the current assignment probabilities
τi(ys).”

Set J ′(γcys) to 0 to get:

γcys =
(Weighted number of tweets with yi = y and sci = s)

λ
.

Go back to the constraint equation and plug in expression above for each γ:

V∑
s′

γcys′ = 1

V∑
s′

(
(Weighted number of tweets with yi = y and sci = s′)

λ
) = 1

λ = (Weighted number of tweets with yi = y (and any value for sci)))

So,

γcys =
(Weighted number of tweets with yi = y and sci = s)

(Weighted number of tweets with yi = y (and any value for sci)
.

B.3 M step for α

Recall that αa
sr is the matrix entry describing p(rcai = r | sci = s)—that is, the probability that

the ath annotator writes r when the tweet (as they saw it in context c) had a context-specific
label of sci = s. Note that each annotation rcai takes place in a particular known context c, but
α does not depend on c. To keep track—while we move terms around—of the context associated
with each annotation, we re-expand log p(rcai |sci , α) to αa

srδ(s
c
i = s).

Referring back to Eq. (3), collect terms that depend on αa
sr. Also add the normalization

constraint that
∑V

r′ α
a
sr′ = 1.

6

ET [`(D, Z|θ)] =
N∑
i=1

V∑
y

 V∑
s1i

. . .
V∑
s
Ci
i

 τiys

logMy(xi) + (

Ci∑
c

log γcys) +

Ci∑
c

Ac
i∑
a

δ(sci = s) logαa
sr



J(αa
sr) =

 N∑
i=1

V∑
y

(
V∑
s′1i

. . .
V∑

s′
Ci
i

)

Ci∑
c

Ac
i∑

a′

τi(ys)δ(s
c
i = s) logαa′

sr

− λ(
V∑
r′

αa
sr′ − 1)

=

 N∑
i=1

V∑
y

Ci∑
c

(

V∑
s′1i

. . .

V∑
s′

Ci
i

)τi(ys)δ(s
c
i = s) logαa

sr

− λ(αa
sr)

=

 N∑
i=1

V∑
y

Ci∑
c

(

V∑
s′1i

. . . [except component c] . . .

V∑
s′

Ci
i

)τi(ys) logαa
sr

− λ(αa
sr)

= logαa
sr

 N∑
i=1

V∑
y

Ci∑
c

(
V∑
s′1i

. . . [except component c] . . .
V∑

s′
Ci
i

)τi(ys)

− λ(αa
sr)

= logαa
sr(Weighted number of annotations with value r by annotator a having sci = s)− λ(αa

sr)

δ`

δαa
sr

= J ′(αa
sr) =

(Weighted number of annotations with value r by annotator a having sci = s)

αa
sr

− λ

Notice that for γ, we were counting tweets in a particular context (and looking at their
configuration of latent variables). For α here, the sum is over tweets + contexts; we are counting
all annotations made by a particular annotator (and looking at the si for the context in which
the annotation took place).

Set J ′(αa
sr) to 0 to get:

αa
sr =

(Weighted number of annotations with value r by annotator a in which sci = s)

λ
.

The constraint equation works just like it did for γ:

V∑
r′

αa
sr′ = 1

1

λ

V∑
r′

(Weighted number of annotations with value r′ by annotator a in which sci = s) = 1

λ = (Weighted number of annotations by annotator a in which sci = s).

Finally,

αa
sr =

(Weighted number of annotations with value r by annotator a in which sci = s)

(Weighted number of annotations by annotator a in which sci = s)
.

7

B.4 Computing labels to use for classifiers

Using Raykar et al.’s suggestion, we decide to test a variety of classifiers. In order to do so, we
must recover EZ [yi = k], the expected likelihood of yi taking on the particular value k. Starting
from τi(ks), which is computed during the E step and is defined as p(yi = k, si = s|D, θ), we
marginalize out si:

EZ [yi = k] = p(yi = k | D, θ) =
V∑
s1i

. . .
V∑
s
Ci
i

τi(ks)

We can then use these probability values to train any multi-class classifier we wish by perform-
ing sampling based on the obtained weights. During model testing and evaluation, we observed
that the number of samples per item did not significantly impact model performance. Therefore,
for all results presented in the paper, we simply fixed the number of samples per item to 10.

C EM Algorithm Debugging

In order to ensure the algorithm, as coded, correctly learns parameters, we take two steps. First,
we ensure that the log-likelihood of the model decreases on every iteration. Second, we developed
simulations to ensure that we can recover known parameters for simulated data. Simulations
suggested that the model was easily able to uncover known parameters for γ across a variety
of tested values and conditions similar to those that generated our data (i.e. with the same
numbers of tweets, context conditions and annotators). However, we observe that the model does
struggle to recover some parameterizations of α; we expect the cause of this is a combination of
the randomness induced by the data generating process and the sheer number of α parameters
in the model (9|A|). Future work might consider how to limit the number of parameters in α by,
e.g., assuming annotators are a mixture over a smaller number of prototypical annotation styles.

D Hyperparameter Optimization

For all hyperparameter tuning, we use a rough grid search approach, testing various settings
on performance on the development set (focusing on both Log-Loss and Average F1). As our
intention was to focus on the impact of different labeling schemes, our goal in hyperparameter
tuning was simply to find reasonable and, more importantly, consistent models that we could use
to address the impact of the labeling structure (and our model ablations). As noted in the paper,
future work will focus on improving our model and

For hyperparameter tuning of the baseline models, we tune parameters for the maximum
depth of the tree and the number of estimators. For our model, our model ablations and each of
the baselines, a maximum depth of 30 and 3000 estimators were used, as results stabilized around
these numbers.

Development and validation differed in that the development data consisted of only registered
Democrats and Republicans, while the validation data also generalized to non-labeled Democrats
and Republicans. Because of this, we allowed the baseline models to “cheat” by setting class
weights for the Random Forest to the ratio of true label counts in the validation data versus the
training data. Note we did not do this for ConStance or its ablations, setting the prior on y via
tuning on the test set.

8

To tune ConStance and the tested ablations, we considered varying the initializations of α
and γ, providing Dirichlet priors on α and γ and by varying a prior on y. In the end, initialization
of α and γ made little difference, we elected not to provide the model with any priors on α or γ.
However, we did set the prior on y to [.495, .01, .495] for the “Trump”, “Neutral” and “Clinton”
labels, respectively. Like the class weights for the baseline Random Forest models, this prior
urged the model away from selecting the “Neutral” option, which was far less prevalent in the
test and validation data than it was in the annotations. This, of course, is because annotating
with full context allowed for a significantly more discriminative take on the support of Twitter
users as compared to the context seen by the AMT workers.

For the ablations, models performed better with a different prior on y ([.45, .1, .45]), we
therefore use this for validation.

9

