
A Appendix: Inappropriate Gaussian
Priors

The majority of work on VAEs propose to
parametrize z — both the prior and approximate
posterior (encoder) — as a multivariate Gaussian
variable. However, the multivariate Gaussian is a
uni-modal distribution and can therefore only rep-
resent one mode in latent space. Furthermore, the
multivariate Gaussian is perfectly symmetric with
a constant kurtosis. These properties are problem-
atic if the latent variables we aim to represent are
inherently multi-modal, or if the latent variables
follow complex, non-linear probability manifolds
(e.g. asymmetric distributions or heavy-tailed dis-
tributions). For example. the frequency of topics
in news articles could be represented by a continu-
ous probability distribution, where each topic has
its own island of probability mass; sports and pol-
itics topics might each be clustered on their own
separate island of probability mass with zero or lit-
tle mass in between them. Due to its uni-modal na-
ture, the Gaussian distribution can never represent
such probability distributions. As another exam-
ple, ambiguity and uncertainty in natural language
conversations could similarly be represented by is-
lands of probability mass; given the question How
do I install Ubuntu on my laptop?, a model might
assign positive probability mass to specific, un-
ambiguous entities like Ubuntu 4.10 and to well-
defined procedures like installation using a DVD.
In particular, certain entities like Ubuntu 4.10 are
now outdated — these entities occur rarely in prac-
tice and should be considered rare events. When
modeling such complex, multi-modal latent dis-
tributions, the mapping from multivariate Gaus-
sian latent variables to outputs — i.e. the condi-
tional distribution Pθ(wn|z) — has to be highly
non-linear in order to compensate for the simplis-
tic Gaussian distribution and capture the natural
latent factors in an intermediate layer of the model.
However, it is difficult to learn such non-linear
mappings when using the variational bound in eq.
(1), as it incurs additional variance from sampling
the latent variable z. Consequently, such models
are likely to converge on solutions that do not cap-
ture salient aspects of the latent variables, which
in turn leads to a poor fit of the output distribution.

B Appendix: Piecewise Constant
Variable Derivations

To train the model using the re-parametrization
trick, we need to generate z = f(�) where � ∼
Uniform(0, 1). To do so, we employ inverse trans-
form sampling (Devroye, 1986), which requires
finding the inverse of the cumulative distribution
function (CDF). We derive the CDF of eq. (2):

φ(z) =
1

K

n�

i=1

1� i

n
≤z

�Ki + 1� i− 1

n
≤z≤

i

n

�

∗
�
z − i− 1

n

�
ai. (3)

Next, we derive its inverse:

φ−1(�) =
n�

i=1

1� 1

K
�i−1

j=0 Kj≤�≤
1

K
�i

j=0 Kj

�

∗

 i− 1

n
+

K

ai

�− 1

K

i−1�

j=0

Kj

(4)

Armed with the inverse CDF, we can now draw a
sample z:

z = φ−1(�), where � ∼ Uniform(0, 1). (5)

In addition to sampling, we need to compute
the Kullback-Leibler (KL) divergence between the
prior and approximate posterior distributions of
the piecewise constant variables. We assume both
the prior and the posterior are piecewise constant
distributions. We use the prior superscript to de-
note prior parameters and the post superscript to
denote posterior parameters (encoder model pa-
rameters). The KL divergence between the prior
and posterior can be computed using a sum of in-
tegrals, where each integral inside the sum corre-
sponds to one constant segment:

KL [Qψ(z|w1, . . . , wN)||Pθ(z)]

=

� 1

0

Qψ(z|w1, . . . , wN) log

�
Qψ(z|w1, . . . , wN)

Pθ(z)

�
dz

(6)

=

n�

i=1

� 1/n

0

apost
i

Kpost log

�
apost
i /Kpost

aprior
i /Kprior

�
dz (7)

=
1

n

n�

i=1

apost
i

Kpost log

�
apost
i /Kpost

aprior
i /Kprior

�
(8)

=
1

n

1

Kpost

n�

i=1

apost
i

�
log(apost

i)− log(aprior
i)

�

+ log(Kprior)− log(Kpost) (9)

In order to improve training, we further trans-
form the piecewise constant latent variables to lie
within the interval [−1, 1] after sampling: z� =
2z−1. This ensures the input to the decoder RNN
has mean zero initially.

C Appendix: NVDM Implementation

The complete NVDM architecture is defined as:

π(W) = f0(E0W + b0),

Enc(W) = f1(E1π(W) + b1),

zGaussian = µpost +
√
σ2,post ⊗ �0,

zPiecewise = φ−1,post(�1),

z = �zGaussian, zPiecewise�,
Dec(w, z) = g(−wTRz),

where ⊗ is the Hadamard product, �◦, ◦� is an
operator that combines the Gaussian and the
Piecewise variables and Dec(w, z) is the decoder
model.5 As a result of using the re-parametrization
trick and choice of prior, we calculate the latent
variable z through the two samples, �0 and �1.
f(◦) is a non-linear activation function, which was
the parametrized linear rectifier (with a learnable
“leak” parameters) for the 20 News-Groups ex-
periments and the softsign function, or f(v) =
v/(1 + |v|), for Reuters and CADE. The decoder
model Dec(z) outputs a probability distribution
over words conditioned on z. In this case, we de-
fine g(◦) as the softmax function (omitting the bias
term c for clarity) computed as:

Dec(w, z) = Pθ(w|z) =
exp (−wTRz)�
w� exp (−wTRz)

,

The decoder’s output is used to calculate the first
term in the variational lower-bound: logPθ(W |z).
The prior and posterior distributions are used to
compute the KL term in the variational lower-
bound. The lower-bound is:

L =EQψ(z|W)

�
N�

i=1

logPθ(wi|z)
�

− KL [Qψ(z|W)||Pθ(z)] ,

where the KL term is the sum of the Gaussian and
piecewise KL-divergence measures:

KL [Q(z|W)||P (z)]

=KLGaussian [Q(z|W)||P (z)]

+ KLPiecewise [Q(z|W)||P (z)] .

5Operations include vector concatenation, summation, or
averaging.

The KL-terms may be interpreted as regularizers
of the parameter updates for the encoder model
(Kingma and Welling, 2014). These terms encour-
age the posterior distributions to be similar to their
corresponding prior distributions, by limiting the
amount of information the encoder model trans-
mits regarding the output.

D Appendix: VHRED Implementation

As described in the model section, the probability
distribution of the generative model factorizes as:

Pθ(w1, . . . ,wN)

=
N�

n=1

Pθ(wn|w<n, zn)Pθ(zn|w<n)

=

N�

n=1

Mn�

m=1

Pθ(wn,m|wn,<m,w<n, zn)Pθ(zn|w<n),

(10)

where θ are the model parameters. VHRED uses
three RNN modules: an encoder RNN, a context
RNN and a decoder RNN. First, each utterance is
encoded into a vector by the encoder RNN:

henc
n,0 = 0, henc

n,m = f enc
θ (henc

n,m−1, wn,m)

∀m = 1, . . . ,Mn,

where f enc
θ is either a GRU or a bidirectional GRU

function. The last hidden state of the encoder
RNN is given as input to the context RNN. The
context RNN uses this state to updates its internal
hidden state:

hcon
0 = 0, hcon

n = f con
θ (hcon

n−1, h
enc
n,Mn

),

where f con
θ is a GRU function taking as input two

vectors. This state conditions the prior distribution
over zn:

Pθ(zn | w<n) = f
prior
θ (zn;h

con
n−1), (11)

where fprior is a PDF parametrized by both θ and
hconn−1. Next, a sample is drawn from this distribu-
tion: zn ∼ Pθ(zn|w<n). The sample and context
state are given as input to the decoder RNN:

hdec
n,0 = 0, hdec

n,m = fdec
θ (hdec

n,m−1, h
con
n−1, zn, wn,m)

∀m = 1, . . . ,Mn,

where fdec
θ is the LSTM gating function taking as

input four vectors. The output distribution is com-
puted by passing hdec

n,m through an MLP f
mlp
θ , an

affine transformation and a softmax function:

Pθ(wn,m+1|wn,≤m,w<n, zn)

=
e(Own,m+1)Tf

mlp
θ (hdec

n,m)

�
w� e(Ow�)Tf

mlp
θ (hdec

n,m)
, (12)

where O ∈ R|V |×d is the word embedding matrix
for the output distribution with embedding dimen-
sionality d ∈ N.

As mentioned in the model section, the approxi-
mate posterior is conditioned on the encoder RNN
state of the next utterance:

Qψ(zn | w≤n) = f
post
ψ (zn;h

con
n−1, h

enc
n,Mn

), (13)

where fpost is a PDF parametrized by ψ and hencn,Mn

(i.e. the future state of the encoder RNN after pro-
cessing wn).

For the Gaussian latent variables, we use the
interpolation gating mechanism described in the
main text for the approximate posterior. We ex-
perimented with other mechanisms for controlling
the gating variables, such as defining αµ and ασ to
be a linear function of the encoder. However, this
did not improve performance in our preliminary
experiments.

E Appendix: Training Details

Piecewise Constant Variable Interpolation We
conducted initial experiments with the interpola-
tion gating mechanism for the approximate pos-
terior of the piecewise constant latent variables.
However, we found that this did not improve per-
formance.

Dialogue Modeling We use the Ubuntu Di-
alogue Corpus v2.0 extracted January, 2016:
http://cs.mcgill.ca/˜jpineau/
datasets/ubuntu-corpus-1.0/.

For the HRED model we found that an addi-
tional rectified linear units layer decreased perfor-
mance on the validation set according to the activ-
ity F1 metric. Hence we test HRED without the
rectified linear units layer. On the other hand, for
all VHRED models we found that the additional
rectified linear units layer improved performance
on the validation set. For P-VHRED, we found
that a final weight of one for the KL divergence
terms performed best on the validation set. For
G-VHRED and H-VHRED, reweighing the KL di-
vergence terms with a final value 0.25 performed
best on the validation set. We conducted prelimi-
nary experiments with n = 3 and n = 5 pieces,

and found that models with n = 3 were easier to
train. Therefore, we use n = 3 pieces for both
P-VHRED and H-VHRED.

For all models, we compute the log-likelihood
and variational lower-bound costs starting from
the second utterance in each dialogue.

F Appendix: Additional Document
Modeling Experiments

Iterative Inference For the document modeling
experiments, our results and conclusions depend
on how tight the variational lower-bound is. As
such, it is in theory possible that some of our mod-
els are performing much better than reported by
the variational lower-bound on the test set. There-
fore, we use a non-parametric iterative inference
procedure to tighten the variational lower-bound,
which aims to learn a separate approximate poste-
rior for each test example. The iterative inference
procedure consists of simple stochastic gradient
descent (no more than 100 steps), with a learning
rate of 0.1 and the same gradient rescaling used
in training. For 20 News-Groups, the iterative in-
ference procedure is stopped on a test example if
the bound does not improve over 10 iterations. For
Reuters and CADE, the iterative inference proce-
dure is stopped if the bound does not improve over
5 iterations. During iterative inference the param-
eters of the model, as the well as the generated
prior, are all fixed. Only the gradients of the varia-
tional lower-bound with respect to generated pos-
terior model parameters (i.e. the mean and vari-
ance of the Gaussian variables, and the piecewise
components, ai) are used to update the posterior
model for each document (using a freshly drawn
sample for each inference iteration step).

Note, this form of inference is expensive and re-
quires additional meta-parameters (e.g. a step-size
and an early-stopping criterion). We remark that a
simpler, and more accurate, approach to inference
might perhaps be to use importance sampling.

The results based on iterative inference are re-
ported in Table 5. As Section 6.1, we find that
H-NVDM outperforms the G-NVDM model. This
confirms our previous conclusions.

In our current examples, it appears that the H-
NVDM with 5 pieces returns more general words.
For example, as evidenced in Table 4, in the case
of “government”, the baseline seems to value the
plural form of the word (which is largely based
on morphology) while the hybrid model actually

G-NVDM H-NVDM-3 H-NVDM-5
governments citizens arms
citizens rights rights
country governments federal
threat civil country
private freedom policy
rights legitimate administration
individuals constitution protect
military private private
freedom court citizens
foreign states military

Table 4: Word query similarity test on 20 News-
Groups: for the query ‘government”.

pulls out meaningful terms such as “federal”, “pol-
icy”, and “administration”.

Approximate Posterior Analysis We present
an additional analysis of the approximate poste-
rior on 20 News-Groups, in order to understand
what the models are capturing. For a test example,
we calculate the squared norm of the gradient of
the KL terms w.r.t. the word embedding inputted
to the approximate posterior model. The higher
the squared norm of the gradients of a word is,
the more influence it will have on the posterior
approximation (encoder model). For every test
example, we count the top 5 words with highest
squared gradients separately for the multivariate
Gaussian and piecewise constant latent variables.6

The results shown in Table 6, illustrate how the
piecewise variables capture different aspects of the
document data. The Gaussian variables were orig-
inally were sensitive to some of the words in the
table. However, in the hybrid model, nearly all
of the temporal words that the Gaussian variables
were once more sensitive to now more strongly
affect the piecewise variables, which themselves
also capture all of the words that were origi-
nally missed This shift in responsibility indicates
that the piecewise constant variables are better
equipped to handle certain latent factors. This ef-
fect appears to be particularly strong in the case of
certain nationality-based adjectives (e.g., “ameri-
can”, “israeli”, etc.). While the G-NVDM could
model multi-modality in the data to some degree,
this work would be primarily done in the model’s
decoder. In the H-NVDM, the piecewise vari-
ables provide an explicit mechanism for captur-
ing modes in the unknown target distribution, so
it makes sense that the model would learn to use
the piecewise variables instead, thus freeing up the

6Our approach is equivalent to counting the top 5 words
with the highest L2 gradient norms.

Gaussian variables to capture other aspects of the
data, as we found was the case with names (e.g.,
“jesus”, “kent”, etc.).

G Appendix: Additional Dialogue
Modeling Experiments

Ubuntu Experiments We present test examples
— dialogue context and model responses gener-
ated using beam search — for the Ubuntu models
in Table 7. The examples qualitatively illustrate
the differences between models. First, we observe
that HRED tends to generate highly generic re-
sponses compared to all the latent variable mod-
els. This supports the quantitative results reported
in the main text, and suggests that modeling the
latent factors through latent variables is critical
for this task. Next, we observe that H-VHRED
tends to generate relevant entities and commands
— such as mount command, xserver-xorg, static ip
address and pulseaudio in examples 1-4. On the
other hand, G-VHRED tends to be better at gen-
erating appropriate verbs — such as list, install,
pastebin and reboot in examples 1-3 and example
5. Qualitatively, P-VHRED model appears to per-
form somewhat worse than both G-VHRED and
H-VHRED. This suggests that the Gaussian latent
variables are important for the Ubuntu task, and
therefore that the best performance may be ob-
tained by combining both Gaussian and piecewise
latent variables together in the H-VHRED model.

Twitter Experiments We also conducted a di-
alogue modeling experiment on a Twitter corpus,
extracted from based on public Twitter conversa-
tions (Ritter et al., 2011). The dataset is split into
training, validation, and test sets, containing re-
spectively 749,060, 93,633 and 9,399 dialogues
each. On average, each dialogue contains about
6 utterances (dialogue turns) and about 94 words.
We pre-processed the tweets using byte-pair en-
coding (Sennrich et al., 2016) with a vocabulary
consisting of 5000 sub-words.

We trained our models with a learning rate of
0.0002 and mini-batches of size 40 or 80.7 As
for the Ubuntu experiments, we used a variant
of truncated back-propagation and apply gradient
clipping. We experiment with G-VHRED and H-
VHRED. Similar to (Serban et al., 2017b), we use
a bidirectional GRU RNN encoder, where the for-
ward and backward RNNs each have 1000 hid-

7We had to vary the mini-batch size to make the training
fit on GPU architectures with low memory.

20-NG Sampled SGD-Inf
LDA 1058 −−
RSM 953 −−
docNADE 896 −−
SBN 909 −−
fDARN 917 −−
NVDM 836 −−
G-NVDM 651 588
H-NVDM-3 607 546
H-NVDM-5 566 496

RCV1 Sampled SGD-Inf
G-NVDM 905 837
H-NVDM-3 865 807
H-NVDM-5 833 781

CADE Sampled SGD-Inf
G-NVDM 339 230
H-NVDM-3 258 193
H-NVDM-5 294 209

Table 5: Comparative test perplexities on various document datasets (50 latent variables). Note that
document probabilities were calculated using 10 samples to estimate the variational lower-bound.

den units. We experiment with context RNN en-
coders with 500 and 1000 hidden units, and find
that that 1000 hidden units reach better perfor-
mance w.r.t. the variational lower-bound on the
validation set. The encoder and context RNNs use
layer normalization (Ba et al., 2016). We exper-
iment with decoder RNNs with 1000, 2000 and
4000 hidden units (LSTM cells), and find that
2000 hidden units reach better performance. For
the G-VHRED model, we experiment with latent
multivariate Gaussian variables with 100 and 300
dimensions, and find that 100 dimensions reach
better performance. For the H-VHRED model,
we experiment with latent multivariate Gaussian
and piecewise constant variables each with 100
and 300 dimensions, and find that 100 dimensions
reach better performance. We drop words in the
decoder with a fixed drop rate of 25% and multi-
ply the KL terms in the variational lower-bound by
a scalar, which starts at zero and linearly increases
to 1 over the first 60,000 training batches. Note,
unlike the Ubuntu experiments, the final weight of
the KL divergence is exactly one (hence the bound
is tight).

Our hypothesis is that the piecewise constant la-
tent variables are able to capture multi-modal as-
pects of the dialogue. Therefore, we evaluate the
models by analyzing what information they have
learned to represent in the latent variables. For
each test dialogue with n utterances, we condition
each model on the first n− 1 utterances and com-
pute the latent posterior distributions using all n
utterances. We then compute the gradients of the
KL terms of the multivariate Gaussian and piece-
wise constant latent variables w.r.t. each word in
the dialogue. Since the words vectors are dis-
crete, we compute the sum of the squared gradi-

ents w.r.t. each word embedding. The higher the
sum of the squared gradients of a word is, the more
influence it will have on the posterior approxima-
tion (encoder model). For every test dialogue, we
count the top 5 words with highest squared gradi-
ents separately for the multivariate Gaussian and
piecewise constant latent variables.8

The results are shown in Table 8. The piece-
wise constant latent variables clearly capture dif-
ferent aspects of the dialogue compared to the
Gaussian latent variables. The piecewise constant
variable approximate posterior encodes words re-
lated to time (e.g. weekdays and times of day) and
events (e.g. parties, concerts, Easter). On the other
hand, the Gaussian variable approximate posterior
encodes words related to sentiment (e.g. laugh-
ter and appreciation) and acronyms, punctuation
marks and emoticons (i.e. smilies). We also con-
duct a similar analysis on the document models
evaluated in Sub-section 6.1, the results of which
may be found in the Appendix.

8Our approach is equivalent to counting the top 5 words
with the highest L2 gradient norms. We also did some exper-
iments using L1 gradient norms, which showed similar pat-
terns.

Word G-NVDM H-NVDM-5
Time-related G-KL G-KL P-KL

months 23 33 40
day 28 32 35
time 55 22 40

century 28 13 19
past 30 18 28
days 37 14 19
ahead 33 20 33
years 44 16 38
today 46 27 71
back 31 30 47
future 20 15 20
order 42 14 26

minute 15 34 40
began 16 5 13
night 49 12 18
hour 18 17 16
early 42 42 69

yesterday 25 26 36
year 60 17 21
week 28 54 58
hours 20 26 31

minutes 40 34 38
months 23 33 40
history 32 18 28

late 41 45 31
moment 23 17 16
season 45 29 37

summer 29 28 31
start 30 14 38

continue 21 32 34
happened 22 27 35

Word G-NVDM H-NVDM-5
Names G-KL G-KL P-KL
henry 33 47 39
tim 32 27 11

mary 26 51 30
james 40 72 30
jesus 28 87 39

george 26 56 29
keith 65 94 61
kent 51 56 15
chris 38 55 28

thomas 19 35 19
hitler 10 14 9
paul 25 52 18
mike 38 76 40
bush 21 20 14

Adjectives G-KL G-KL P-KL
american 50 12 40
german 25 21 22

european 20 17 27
muslim 19 7 23
french 11 17 17

canadian 18 10 16
japanese 16 9 24
jewish 56 37 54
english 19 16 26
islamic 14 18 28
israeli 24 14 18
british 35 15 17
russian 14 19 20

Table 6: Approximate posterior word encodings (20-NG). For P-KL, we bold every case where piecewise
variables showed greater word sensitivity than Gaussian variables w/in the same hybrid model.

Dialogue Context (History) Response
Hi . I am installing ubuntu now in my new laptop . In ” something else
” partitioning , what mount point should I set for a drive which is not
root or not home ... → It ’s up to you , just choose a directory that will
remind you of the contents of that partition . E.G. : if it ’s the Windows
partition , use /windows . → it ’s a new harddrive with full free space
. I bought it without windows preinstalled . I want to create drives in
which I will only store files .. I mean , not root or not home . What
mount point do I set for it ? ” /mount ” is not shown in drop down menu
sorry . I mean /mount I mean , in my desktop , extra drives are mounted
in /media do you understand my problem ? Sorry , English is not my
native language . → I do :) Just use a directory with a meaningful name
and preferably in the root , for example ” /files ”. Choose something
like ” /files ”. → / for root , /home for home , but what mount point for
a file storage partition . wait , let me see if there is a ” /files ” , thank
you .

HRED: No problem .
G-VHRED: It should be in the list of the drive . If you
want to be able to mount it .
P-VHRED: If you want to mount it , you can use the
mount command .
H-VHRED: As far as I know , you can use the ” mount
” command to mount the partitions .

I have a problem installing Ubuntu 12.04 desktop . Tried desktop with
USB -¿ hangs . alternate with usb -¿ hangs . alternate with cd -¿ hangs (
even faster) . I tried using different usb drives . Could someonle please
help me ? → how are you making the usb ? and whats the pc specs .
→ I used Universal usb installer → what exactly does it do when it ’
hangs ’ → Specs : CPU core i7 @ 3.4 Ghz , Sapphire Radeon HD 7800
, 8GB RAM → ATi video ? tried the NOMODESET option yet ? →
nothing at all , I also can’t witch to console using Ctrl + alt + F not yet
Will try that , thanks

HRED: you could try the alternate install cd .
G-VHRED: it might be a problem with your graphics
card . You could also try the alternate install cd and see
if it works .
P-VHRED: try ’ nomodeset ’ or ’ nomodeset ’
H-VHRED: only thing you can do is run the command ’
sudo dpkg-reconfigure xserver-xorg ’ and see if you get
any errors .

anyone know how to add a route in ubuntu ? getting an error on adding
a route , and I’m not sure why → pastebin your command and pronlem
→ <url >

HRED: can you pastebin the output of ” route -n ”
please
G-VHRED: if you want to use pastebin to pastebin the
output of ” sudo route -n ” please pastebin the output of
” route ”
P-VHRED: what is the output of : route -n
H-VHRED: only if you have a static ip address , you
need to specify the ip address of the gateway

Any idea why empathy ’s not playing notification sounds ? Even though
I have ’ em ticked in preferences → restarted it yet ? → yar → check
pulse to see if the application is muted for some reason ? well Sound
settings . → Had sound effects turned off in sound settings , didn’t real-
ize that controlled other applications → Ah yea , ive done it a few time
it ’s annoying My favorite though is recently pulse has been freezing on
my desktop and audio will just not be adjustable for like ... 30 seconds
or so

HRED: I don’t think it ’s a problem with pulseaudio ,
but I’m not sure how to fix it
G-VHRED: Thank you for your help . I will try that .
Thanks for the suggestion .
P-VHRED: I think it ’s a bug with pulseaudio , but I
don’t know how to fix it .
H-VHRED: as far as I can tell , I have a problem with
pulseaudio , but I don’t know how to fix it .

Question about setting up drives : Running 12.04 LTS . I have two drives
. An SSD that holds the OS for booting , and a second drive ” data ” for
all the data , home directories , etc . The data drive is encrypted with
LUKS . With my current setup , whenever I reboot , I get a password
entry screen to decrypt the data drive , where my home directory is .
This works fine . The problem is that if I reboot remotely , I’m stuck as
I can’t enter password . If I keep my home directory on the SSD , there
won’t be enough room . If I use a symbolic link , and the encrypted
drive isn’t mounted , that creates errors and issues . Suggestions ?? →
yes , you can redirect the → Message was cut off ...

HRED: if you want to see the data on the drive , you can
mount it in /etc/fstab
G-VHRED: it should be a good place to do that , but if
you want to do a clean install , you will need to reboot
P-VHRED: it ’s not a problem , it ’s just a bug
H-VHRED: if you want to see the data on the drive ,
you can mount it in /etc/fstab

hey guys , does anyone know why i cannot connect to ssh via my exter-
nal IP ? (connection refused) but ssh -v localhost works fine ? → Have
you forwarded the port on your router to the machine you’re trying to
access ? → It is a work machine , so am not sure of the rules

HRED: You need to forward port 22 to your router to
forward port 22 to the server .
G-VHRED: That ’s odd . What are you trying to do
? Can you pastebin the output of ” sudo netstat ” to ”
pastebin ” please ?
P-VHRED: Can you pastebin the output of ” sudo apt-
get install openssh-server ”?
H-VHRED: Even if it ’s not working , then you need to
set the port forward to your router .

Table 7: Ubuntu model examples. The → token indicates a change of turn.

Word G-VHRED H-VHRED Word G-VHRED H-VHRED
Time-related G-KL G-KL P-KL Event-related G-KL G-KL P-KL

monday 3 5 10 school 9 16 50
tuesday 2 3 7 class 11 16 27

wednesday 4 11 13 game 20 26 41
thursday 2 3 9 movie 12 20 41

friday 9 18 26 club 13 22 28
saturday 6 6 13 party 8 10 32
sunday 2 2 9 wedding 7 13 23

weekend 8 16 32 birthday 12 20 23
today 18 28 56 easter 15 15 23
night 16 31 68 concert 7 16 20

tonight 32 36 47 dance 11 12 21

Word G-VHRED H-VHRED Word G-VHRED H-VHRED
Sentiment
-related G-KL G-KL P-KL Acronyms, Punctuation

Marks & Emoticons G-KL G-KL P-KL
good 72 73 44 lol 394 358 312
love 102 101 38 omg 52 45 19

awesome 26 44 39 . 386 558 1009
cool 14 28 29 ! 648 951 525
haha 132 101 75 ? 507 851 221

hahaha 60 48 24 * 108 54 19
amazing 14 38 33 xd 28 42 26

thank 137 153 29 ♥ 56 42 24

Table 8: Approximate posterior word encoding on Twitter. The numbers are computed by counting
the number of times each word is among the 5 words with the largest sum of squared gradients of the
Gaussian KL divergence (G-KL) and piecewise constant KL divergence (P-KL)

