
Supplemental Material:
Monolingual Phrase Alignment on Parse Forests

Yuki Arase1? and Junichi Tsujii?2
1Osaka University, Japan

?Artificial Intelligence Research Center (AIRC), AIST, Japan
2NaCTeM, School of Computer Science, University of Manchester, UK

arase@ist.osaka-u.ac.jp, j-tsujii@aist.go.jp

A Theorems and Proofs

This section provides a formal derivation of theo-
rems in Sec. 3.2 and Sec. 3.3.

Since l/ds(·) and r/ds(·) in Definition 3.1 are
sets, the same aligned pair may have more than
one support of descendant alignments. Let us as-
sume that an alignment hi = 〈τ si , τ ti 〉 is supported
by more than one pair of descendant alignments
in ∆L. By the Consistency condition, all sup-
ports of a pair should belong to the same type
(i.e., either ⇒ or R

=⇒). Without a loss of gener-
ality, we can assume that all supports of a pair are
⇒. That is, ∆L ⊇ ({〈hm,hn〉} ⇒ hi), where
hm = 〈τ sm, τ tm〉 and hn = 〈τ sn, τ tn〉. Since all sup-
ports of hi are⇒, τ sm ∈ l/ds(τ si )∧τ tm ∈ l/ds(τ ti )
and τ sn ∈ r/ds(τ si ) ∧ τ tn ∈ r/ds(τ ti ) are satisfied.
Let us denote Hm = {hm} and Hn = {hn}. In
the following, we use⇒ for the two types of sup-
port (⇒ and R

=⇒).
The Monotonous and Maximum Set conditions

allow ∆L to be further restricted so that each of
aligned pairs in HL has only one support. Theo-
rem 3.1 shows the existence of the maximum pair
that satisfies:

Lemma A.1. 〈hM ,hN 〉 ⇒ hi is in ∆L.

For each hm ∈ Hm and hn ∈ Hn, if all support
relations from ∆L are removed except for the ones
by the maximum pairs or the pre-terminal align-
ments, the resultant set ∆′L satisfies:

Lemma A.2. {hp
∗7−→ hq} ∈ ∆L ↔ {hp

∗7−→
hq} ∈ ∆′L.

In ∆′L, each aligned pair in HL has only one
support. Lemma A.2 implies that ∆′L preserves
the relationship of ∗7−→ among the aligned pairs in
∆L. Therefore, removing the other support rela-
tions does not affect the set of aligned pairs, HL.
With these lemmas, Theorem 3.2 can be derived.

Below we prove the theorems and lemmas in
order of their logical relations. First, Theorem 3.1
is proved as follows.

Proof. Let us assume ∃〈l(τ si ), τ t〉 ∈ Hm.
τ sm ∈ l/ds(τ si ) for ∀〈τ sm, τ tm〉 ∈ Hm. Thus,
∀〈τ sm, τ tm〉 ∈ Hm, τ

t
m ∈ ds(τ t) (Monotonous

condition). This means hM = 〈l(τ si ), τ t〉. If
@〈l(τ si ), ·〉 ∈ Hm, either ∀〈τ sm, τ tm〉 ∈ Hm, τ

s
m ∈

l/l/ds(τ si ) or ∀〈τ sm, τ tm〉 ∈ Hm, τ
s
m ∈ l/r/ds(τ si )

should be satisfied. Otherwise, there would be
a pair of alignments that support 〈l(τ si ), ·〉, and
by the condition of the Maximum set, the pair
should be in Hm. Without a loss of generality, we
can assume ∀〈τ sm, τ tm〉 ∈ Hm, τ

s
m ∈ l/l/ds(τ si ).

Then we can repeat the above argument; if
∃〈l/l(τ si ), τ t〉 ∈ Hm,hM = 〈l/l(τ si ), τ t〉. Other-
wise, either ∀〈τ sm, τ tm〉 ∈ Hm, τ

s
m ∈ l/l/l/ds(τ si )

or ∀〈τ sm, τ tm〉 ∈ Hm, τ
s
m ∈ l/l/r/ds(τ si ). Since

the process will trace a tree downward, it termi-
nates at the pre-terminals.

Lemma A.1 is obvious. In Lemma A.2, the suf-
ficient condition is due to the definition. The nec-
essary condition can be proved as follows.

Proof. {hp
∗7−→ hq} ∈ ∆L can be ex-

panded as (〈hp, ·〉 ⇒ hp+1), . . . , (〈hj ,hk〉 ⇒
hl), . . . , (〈hq−1, ·〉 ⇒ hq). For each 〈hj ,hk〉 ⇒
hl, there exist the maximum pairs 〈hJ ,hK〉 ⇒
hl ∈ ∆L where hj ≤ hJ and hk ≤ hK
(Lemma A.1). ∆′L contains all maximum pairs,
thus 〈hJ ,hK〉 ⇒ hl ∈ ∆′L. Since hj

∗7−→ hJ and
hk

∗7−→ hK (Same-Tree condition), the chain rela-
tionship is retained in ∆′L.

Theorem 3.2 is obvious from the definition of
∆′L and Lemma A.2.



𝜏𝜏𝑚𝑚𝑡𝑡

𝜏𝜏𝑖𝑖𝑡𝑡

𝜏𝜏𝑛𝑛𝑡𝑡

𝑙𝑙(𝜏𝜏𝑖𝑖𝑡𝑡) 𝑟𝑟(𝜏𝜏𝑖𝑖𝑡𝑡)

𝑙𝑙/𝑟𝑟(𝜏𝜏𝑖𝑖𝑡𝑡)𝑙𝑙/𝑙𝑙(𝜏𝜏𝑖𝑖𝑡𝑡)

𝐿𝐿𝐿𝐿𝐿𝐿 𝜏𝜏𝑚𝑚𝑡𝑡 𝜏𝜏𝑛𝑛𝑡𝑡 = 𝜏𝜏𝑖𝑖𝑡𝑡,𝛽𝛽𝑚𝑚,𝑖𝑖
𝑡𝑡 𝛽𝛽𝑛𝑛,𝑖𝑖

𝑡𝑡

𝐿𝐿𝑑𝑑 𝜏𝜏𝑖𝑖𝑡𝑡 =

{⋯ 𝜏𝜏𝑚𝑚𝑡𝑡 ,𝛽𝛽𝑚𝑚,𝑙𝑙/𝑙𝑙 𝜏𝜏𝑖𝑖
𝑡𝑡 𝑃𝑃𝑟𝑟(𝑙𝑙/𝑟𝑟 𝜏𝜏𝑖𝑖𝑡𝑡 , 𝜏𝜏∅ ) ⋯ }

𝛽𝛽𝑚𝑚,𝑙𝑙(𝜏𝜏𝑖𝑖
𝑡𝑡)

𝑅𝑅𝑑𝑑 𝜏𝜏𝑖𝑖𝑡𝑡 = {⋯ 𝜏𝜏𝑛𝑛𝑡𝑡 ,𝛽𝛽𝑛𝑛,𝑟𝑟 𝜏𝜏𝑖𝑖
𝑡𝑡 ⋯ }

𝐿𝐿𝑑𝑑 𝑙𝑙(𝜏𝜏𝑖𝑖𝑡𝑡) = {⋯ 𝜏𝜏𝑚𝑚𝑡𝑡 ,𝛽𝛽𝑚𝑚,𝑙𝑙/𝑙𝑙 𝜏𝜏𝑖𝑖
𝑡𝑡 ⋯ }

𝛾𝛾𝑚𝑚,𝑛𝑛,𝑖𝑖
𝑡𝑡

Figure 1: Bottom-up computation of Lca[τm][τn]

B Pseudo-code of Phrase Alignment

Algorithm B.1 depicts the pseudo-code of our
alignment algorithm, which uses pre-computed
Ltd[·], Rtd[·], and Lcat[·][·] for the target-side tree.
On the other hand, Lsd[·], Rsd[·], and Lcas[·][·] for
the source-side tree are computed on the fly for ef-
ficiency.
Lcat[τ tm][τ tn] stores a tuple 〈τ ti , γtm,n,i〉 where

τ ti = lca(τ tm, τ
t
n)1. Ltd[τ

t
i ] maintains a set of tu-

ples of 〈τ tm, βtm,i〉, which means that τ tm is the left-
descendant of τ ti and that the path from τ tm to τ ti
via l(τ ti ) has βtm,i as the probability. Rtd[τ

t
i ] stores

the same information for the right-descendants.
When τ tm and τ tn are a left and right descendant of
τ ti , respectively, τ ti is the LCA of τ tm and τ tn with
γtm,n,i = βtm,iβ

t
n,i. L

t
d[τ

t
i ] and Rtd[τ

t
i ] can be com-

puted easily from those of the child phrases, i.e.,
l(τ ti ) and r(τ ti ), by tracing a tree in a bottom-up
manner (Fig. 1).

Using these, Algorithm B.1 computes an ar-
ray A[·] as well as Lsd[·], Rsd[·], and Lcas[·][·] for
phrases in the source-side parse tree by tracing a
tree in a bottom-up manner. It should be noted
that only paths from descendant phrases already
aligned are computed in line 14 to 20. Paths from
non-aligned phrases do not contribute to the cre-
ation of new aligned pairs.

When τ sm and τ sn in hm and hn are the left and
right descendants of τ si (i.e., 〈τ sm, ·〉 and 〈τ sn, ·〉 in
Lsd[τ

s
i ] and Rsd[τ

s
i ], respectively), τ si is the LCA

of τ sm and τ sn to be aligned with the LCA of τ tm
and τ tn. By retrieving τ tm and τ tn from A[τ sm] and
A[τ sn], respectively, and their LCA (i.e., τ ti ) from
Lcat[τ tm][τ tn], Algorithm B.1 creates hi, which is

1In the case of forests, we store the set of tuples because
the same pair of phrases may have more than one LCA and
the same LCA can be reached via more than one paths.

Algorithm B.1 Pseudo-Code of Phrase Alignment
1: set A[τ s]← ∅ for all τ s

2: for all 〈ws, wt〉 ∈W do
3: Find τ s and τ t covering ws and wt

4: α = Pr(τ
s, τ t)

5: PACK(〈τ s, τ t〉, 〈α, ∅〉, A)
6: for all τ si do . Trace source tree from the

bottom to the top
7: if τ si is a pre-terminal phrase then
8: Lsd[τ

s
i ]← ∅, Rsd[τ si ]← ∅

9: else
10: if A[l(τ si )] 6= ∅ then
11: Lsd[τ

s
i ]← 〈l(τ si ), 1〉

12: else
13: Lsd[τ

s
i ]← ∅

14: for all 〈τ sj , βsj,l(τsi )〉 ∈ L
s
d[l(τ

s
i )] do

15: Lsd[τ
s
i ]← Lsd[τ

s
i ]∪

16: 〈τ sj , βsj,l(τsi )Pr(l/r(τ
s
i ), τ∅)〉

17: for all 〈τ sj , βsj,l(τsi )〉 ∈ R
s
d[l(τ

s
i )] do

18: Lsd[τ
s
i ]← Lsd[τ

s
i ]∪

19: 〈τ sj , βsj,l(τsi )Pr(l/l(τ
s
i ), τ∅)〉

20: *Do equivalent process for Lsd[r(τ
s
i )] and

Rsd[r(τ
s
i )] to compute Rsd[τ

s
i ]

21: for all 〈τ sm, βsm,i〉 ∈ Lsd[τ si ] do
22: for all 〈τ sn, βsn,i〉 ∈ Rsd[τ si ] do
23: Lcas[τ sm][τ sn]
24: ← Lcas[τ sm][τ sn] ∪ 〈τ si , βsm,iβsn,i〉
25: ALIGN(τ sm, τ

s
n, τ

s
i , β

s
m,iβ

s
n,i, A)

26: function ALIGN(τ sm, τ
s
n, τ

s
i , γ

s, A)
27: for all hm = 〈τ sm, τ tm〉 ∈ A[τ sm] do
28: for all hn = 〈τ sn, τ tn〉 ∈ A[τ sn] do
29: 〈τ ti , γt〉 ← Lcat[τ tm][τ tn]
30: α = maxα(hm) maxα(hn)γsγtPr(τ

s
i , τ

t
i )

31: PACK(〈τ si , τ ti 〉, 〈α, 〈hm,hn〉〉, A)

32: function PACK(〈τ s, τ t〉, 〈α, 〈hm,hn〉〉, A)
33: if 〈τ s, τ t〉 ∈ A[τ s] then
34: A[τ s]← A[τ s] ∪ 〈α, 〈hm,hn〉〉 . Merge

supports and their inside probability
35: else
36: A[τ s]← (〈τ s, τ t〉, 〈α, 〈hm,hn〉〉)

added to A[τ si ]. Since both A[τ sm] and A[τ sn] are
sets of competing aligned pairs, more than one τ tm
and τ tn are generally retrieved. Because different
pairs of τ tm and τ tn have their own LCA’s (i.e., τ ti ),
different alignments are constructed. The inside



probability of each of these new pairs can be com-
puted from αm of hm in A[τ sm] and αn of hn in
A[τ sn] as well as γsm,n,i in Lcas[τ sm][τ sn] and γtm,n,i
in Lcat[τ tm][τ tn] in Algorithm B.1, line 30. The
function maxα(·) determines αm and αn as:

max
αj∈{〈αj ,〈hl,hr〉〉}

αj .

C Pseudo-code for Non-compositional
Alignment

Algorithm C.1 is the pseudo-code of the non-
compositional alignment. The following notations
are used: [τm]i and [τn]j represent the phrases
of τm and τn with the i-th and j-th sets of
supporting alignments, respectively. Ψ[τm]i =

{ψ[τm]i

k },Ψ[τn]j = {ψ[τn]j

k } are the sets of aligned
phrases in [τm]i and [τn]j , respectively. Φ[τm]i =

{φ[τm]i

l },Φ[τn]j = {φ[τn]
j

l } are the sets of null-
alignments in [τm]i and [τn]j , respectively.

Algorithm C.1 takes two arguments, τm and τn,
and checks whether there are supporting align-
ments by which [τm]i and [τn]j are compatible.
The function returns a set of tuples {〈Ψk,Φk〉}.
If the returned set is empty, τm and τn are incom-
patible. More precisely, their alignments with the
source phrases are incompatible in the sense that
no pair of their supporting alignments make their
null-alignments and aligned phrases compatible.
They fail to create a new non-monotonic align-
ment pair.

In Algorithm C.1, Sp(·) enumerates differ-
ent supporting alignments. Let us consider that
Sp(ψ

[τm]i

l ) = {[ψ[τm]i

l ]k}. ψ
[τm]i

l is one of the
target phrases inside τm, which is aligned with
a phrase in the source by the i-th support set of
alignment 〈·, τm〉. On the other hand, [ψ

[τm]i

l ]k

denotes the same phrase, but it has its own in-
ternal structure in terms of aligned phrases and
null-alignments. The internal structure is deter-
mined by the k-th support set of 〈·, ψ[τm]i

l 〉. Since
a tuple of 〈Ψ[τn]j ,Φ[τn]j 〉 determines the internal
structure of [τn]j , we can treat a tuple of 〈Ψ,Φ〉,
where Ψ and Φ are sets of aligned phrases and
null-alignments in τn, in the same way as [τn]j .
The functions of DOWN and COMPATIBILITY in
Algorithm C.1 use this property.

In Algorithm C.1, line 29, the MERGE function
merges two sets of tuples. TRACE(τn, ψ) returns
a set of tuples {〈Ψl,Φl〉}, where all phrases in Ψl

and Φl are descendants of ψ. We can create a new

Algorithm C.1 Pseudo-code of non-
compositional alignment

1: function TRACE(τn, τm) . τn ∈ ds(τm)
2: V ← ∅
3: if τm is a pre-terminal phrase then
4: return ∅;
5: for all [τm]i ∈ Sp(τm) do
6: if τn ∈ ds(φ) for ∃φ ∈ Φ[τm]i then
7: V ← V ∪ 〈Ψ[τm]i ∪ τn, (Φ[τm]i \ φ)∪

GAP(τn, φ) 〉
8: else if τn ∈ ds(ψ) for ∃ψ ∈ Ψ[τm]i then
9: V ← V ∪ TRACE(τn, ψ)

10: else
11: for all [τn]j do
12: V ← V ∪ DOWN([τn]j , [τm]i)
13: return V ;

14: function DOWN([τn]j , [τm]i)
15: V ← [τm]i

16: for all ψl ∈ Ψ[τn]j do
17: V ← COMPATIBILITY(ψl, V )
18: if V is empty then
19: return ∅
20: return V ;

21: function COMPATIBILITY(τn, C)
22: V ← ∅
23: for all 〈Ψk,Φk〉 ∈ C do
24: if τn ∈ ds(φ) for ∃φ ∈ Φk then
25: V ← V ∪ 〈Ψk ∪ τn, (Φ

k \ φ)∪
GAP(τn, φ)〉

26: else if τn ∈ ds(ψ) for ∃ψ ∈ Ψk then
27: V ′ ← TRACE(τn, ψ)
28: if V ′ 6= ∅ then
29: V ← V ∪ MERGE(〈Ψk,Φk〉, V ′)
30: else
31: for all [τn]j do
32: V ← V ∪ DOWN([τn]j , 〈Ψk,Φk〉)
33: return V

set of tuples by merging 〈Ψk,Φk〉 with them, that
is, {〈Ψl ∪ (Ψk \ {ψ}),Φl ∪ Φk〉}.

When TRACE(τ tm, τ
t
n) in Algorithm C.1 returns

a set of {〈Ψk,Φk〉}, all ψl ∈ Ψk are aligned with
phrases in the source and their inside probabilities
are stored in A . We can compute the inside prob-
ability for each 〈Ψk,Φk〉. A new alignment pair
〈τ si , τ ti (= τ tm)〉 where τ si = lca(τ sm, τ

s
n) and their

supports {〈Ψk,Φk〉}with their inside probabilities
is stored in A.



11

77
79
81
83
85
87
89
91
93
95

0 500 1000 1500 2000
Mini-batch size

R
ec

al
l, 

Pr
ec

., 
U

A
S 

(%
)

Recall
Precision
UAS

Figure 2: Effect of mini-batch size on EM training

D Evaluation Details

D.1 Detailed Statistics on Results

Table 1 shows results on the development and test
sets with p-values in significance testing. The
significance test is conducted by comparing each
method to the proposed method.

D.2 Effect of Forest Size

We investigated the effect of the size of parse
forests. To obtain forests of a larger size, the
parameters in Enju (Ninomiya et al., 2005) are
changed, increasing the average number of nodes
in a forest of the entire training corpus from 339
to 520. The hyper-parameters are set to the ones
with the best performance in the development set
as shown in Table 1: µn = 1.0, µc = 3.0, µp =
0.7, µb = 150, µg = 5 (µb = 50 during EM train-
ing). EM is conducted with the entire training cor-
pus with a mini-batch size of 500 due to memory
consumption using larger forests.

Consequently, the recall and precision of the
alignment quality are 84.06% and 79.25%, while
UAS is 93.34%, where a significant difference is
not observed compared to the model trained on the
previous set of (smaller) forests using the same
mini-batch size of 500 (p-values are 0.07, 0.27,
and 1.00 for recall, precision, and UAS, respec-
tively). Larger forests show more potential to im-
prove the recall of the alignment quality, a larger
µb may be necessary to effectively make use of
such large forests where more alignment candi-
dates are observed.

D.3 Effect of Mini-Batch Size

We also investigated the effect of the mini-batch
size in EM training using the entire training cor-
pus (41K pairs). The hyper-parameters were set to
µn = 1.0, µc = 3.0, µp = 0.7, µb = 150, µg = 5

(again, µb = 50 during EM training).
Fig. 2 shows the recall, precision, and UAS as

functions of the mini-batch size. They are fairly
stable against not only the mini-batch size but
also the amount of training corpus (recall that the
model using mini-batch size of 200 is trained on
2K samples). This demonstrates that our method
can be trained with a moderate amount of data.

D.4 Example Alignments
Table 2 and Table 3 show the phrase alignment re-
sults by our method, where near-duplicate align-
ments due to the hierarchy in phrase structures
(e.g., alignments of parent and child phrases with
only a single token difference) are omitted for clar-
ity. Table 2 uses a simpler example where mono-
tonic phrase alignment works, while the one in
Table 3 requires non-compositional alignment to
align divergent structures in source and target.

References
Takashi Ninomiya, Yoshimasa Tsuruoka, Yusuke

Miyao, and Jun’ichi Tsujii. 2005. Efficacy of beam
thresholding, unification filtering and hybrid pars-
ing in probabilistic HPSG parsing. In Proceed-
ings of the International Workshop on Parsing Tech-
nology (IWPT), pages 103–114, Vancouver, British
Columbia.

http://www.aclweb.org/anthology/W/W05/W05-1511
http://www.aclweb.org/anthology/W/W05/W05-1511
http://www.aclweb.org/anthology/W/W05/W05-1511


Method UAS (Dev) Recall Prec. UAS (Test)
Human – 90.65 88.21 –

Proposed 92.79 83.64 78.91 93.49

Monotonic 93.04 82.86∗(p = 0.01) 77.97∗(p = 0.03) 93.49

w/o EM 93.17 81.33∗(p = 0.02) 75.09∗(p = 0.01) 92.91∗(p = 0.00)

1-best tree – 80.11∗(p = 0.00) 73.26∗(p = 0.00) 93.56 (p = 1.00)

Table 1: Evaluation results on development and test sets with p-values in significance testing

Source Target
The four female doctors in the team have be-
come the first Chinese women aid workers to
carry out a mission outside the country

The four female doctors in the team have be-
come China ’s first female rescue workers to
carry out a mission overseas

The four female doctors in the team The four female doctors in the team
have become the first Chinese women aid
workers to carry out a mission outside the
country

have become China ’s first female rescue work-
ers to carry out a mission overseas

become the first Chinese women aid workers become China ’s first female rescue workers
the first Chinese women aid workers China ’s first female rescue workers
women aid workers female rescue workers
to carry out a mission outside the country to carry out a mission overseas
a mission outside the country a mission overseas
outside the country overseas

Table 2: Example of monotonic phrase alignments

Source Target
The 26-year AkshayVishal of Secunderabad
was shot two days ago in Arkansas by uniden-
tified persons

An unidentified assailant shot 26-year-old Ak-
shay Vishal of Secunderabad two days ago in
the state of Arkansas

The 26-year AkshayVishal of Secunderabad 26-year-old Akshay Vishal of Secunderabad
was shot two days ago in Arkansas by uniden-
tified persons

shot 26-year-old Akshay Vishal of Secunder-
abad two days ago in the state of Arkansas

shot two days ago shot 26-year-old Akshay Vishal of Secunder-
abad two days ago

in Arkansas by unidentified persons in the state of Arkansas

Table 3: Example of phrase alignments with non-compositional alignment


