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A Parallel WordRank

Given number of p workers, we partition words
W into p parts {W(1),W(2), · · · ,W(p)} such that
they are mutually exclusive, exhaustive and approx-
imately equal-sized. This partition on W induces
a partition on U, Ω and Ξ as follows: U(q) :=
{uw}w∈W(q) , Ω(q) := {(w, c) ∈ Ω}w∈W(q) , and
Ξ(q) :=

{
ξ(w,c)

}
(w,c)∈Ω(q) for 1 ≤ q ≤ p. When the

algorithm starts, U(q), Ω(q) and Ξ(q) are distributed
to worker q.

At the beginning of each outer iteration,
an approximately equal-sized partition {C(1),
C(2), · · · , C(p)} on the context set C is sampled;
note that this is independent of the partition on
words W . This induces a partition on context
vectors V(1),V(2), · · · ,V(p) defined as follows:
V(q) := {vc}c∈C(q) for each q. Then, each V(q) is
distributed to each worker q. Now we define

J
(q)

(U(q),V(q),Ξ(q)) =
∑

(w,c)∈Ω∩(W(q)×C(q))

∑

c′∈C(q)\{c}
j(w, c, c′), (15)

where j(w, c, c′) was defined in (14). Note that
j(w, c, c′) in the above equation only accesses uw,
vc and vc′ which belong to no sets other than U(q)

and V(q), therefore worker q can run stochastic
gradient descent updates on (15) for a predefined
amount of time without having to communicate with
other workers. The pseudo-code is illustrated in Al-
gorithm 2.

Considering that the scope of each worker is al-
ways confined to a rather narrow set of observa-
tions Ω ∩

(
W(q) × C(q)

)
, it is somewhat surprising

that Gemulla et al. (2011) proved that such an opti-
mization scheme, which they call stratified stochas-
tic gradient descent (SSGD), converges to the same
local optimum a vanilla SGD would converge to.
This is due to the fact that

E
[
J

(1)
(U(1),V(1),Ξ(1)) + J

(2)
(U(2),V(2),Ξ(2))+

· · ·+J (p)
(U(p),V(p),Ξ(p))

]
≈ J(U,V,Ξ), (16)

if the expectation is taken over the sampling of the
partitions of C. This implies that the bias in each
iteration due to narrowness of the scope will be
washed out in a long run; this observation leads to
the proof of convergence in Gemulla et al. (2011) us-
ing standard theoretical results from Yin and Kush-
ner (2003).

Algorithm 2 Distributed WordRank algorithm.
η: step size
repeat
//Start outer iteration
Sample a partition over contexts C(1), · · ·, C(q)

//Step 1:Update U,V in parall.
for all machine q ∈ {1, · · · , p} do in parallel

Fetch all vc ∈ V(q)

repeat
Sample (w, c) uniformly from Ω(q) ∩(
W(q)×C(q)

)

Sample c′ uniformly from C(q) \ {c}
//following three updates
are done simultaneously
uw ← uw − η · rw,c · ρ′(ξ−1

w,c) ·
`′ (〈uw,vc−vc′〉) · (vc−vc′)
vc ← vc − η · rw,c · ρ′(ξ−1

w,c) ·
`′ (〈uw,vc−vc′〉) · uw
vc′ ← vc′ + η · rw,c · ρ′(ξ−1

w,c) ·
`′ (〈uw,vc−vc′〉) · uw

until predefined time limit is exceeded
end for
//Step 2: Update Ξ in parallel
for all machine q ∈ {1, · · · , p} do in parallel

Fetch all vc ∈ V
for w ∈ W(q) do

for c ∈ C do
ξw,c=α/

(∑
c′∈C\{c} ` (〈uw,vc−vc′〉)+β

)

end for
end for

end for
until U, V and Ξ are converged



Corpus Size WS-353 (Word Similarity) Google (Word Analogy)
word2vec GloVe WordRank word2vec GloVe WordRank

17M 66.8 47.8 70.4 39.2 30.4 44.5
32M 64.1 47.8 68.4 42.3 30.9 52.1
64M 67.5 55.0 70.8 53.5 42.0 59.9
128M 70.7 54.5 72.8 59.8 50.4 65.1
256M 72.0 59.5 72.4 67.6 60.3 68.6
512M 72.3 64.5 74.1 70.6 66.4 70.6
1.0B 73.3 68.3 74.0 70.4 68.7 70.8
1.6B 71.8 69.5 74.1 72.1 70.4 71.7
7.2B 73.4 70.9 75.2/77.41 75.12 75.62 76.02,3

1 When ρ0 is used, corresponding to setting ξ=1 in training and no ξ update
2 Use 3CosMul instead of regular 3CosAdd for evaluation
3 Use uw instead of default uw + vc as word representation for evaluation

Table 4: Performance of word2vec, GloVe and WordRank on datasets with increasing sizes; evaluated on WS-353 word similarity

benchmark and Google word analogy benchmark.

B Additional Experimental Details

Table 4 is the tabular view of the data plotted in Fig-
ure 2 to provide additional experimental details.


