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Abstract

Inducing semantic representations directly
from speech signals is a highly challenging task
but has many useful applications in speech min-
ing and spoken language understanding. This
study tackles the unsupervised learning of se-
mantic representations for spoken utterances.
Through converting speech signals into hidden
units generated from acoustic unit discovery,
we propose WavEmbed, a multimodal sequen-
tial autoencoder that predicts hidden units from
a dense representation of speech. Secondly,
we also propose S-HuBERT to induce mean-
ing through knowledge distillation, in which
a sentence embedding model is first trained
on hidden units and passes its knowledge to
a speech encoder through contrastive learning.
The best performing model achieves a moderate
correlation (0.5∼0.6) with human judgments,
without relying on any labels or transcriptions.
Furthermore, these models can also be easily
extended to leverage textual transcriptions of
speech to learn much better speech embeddings
that are strongly correlated with human annota-
tions. Our proposed methods are applicable to
the development of purely data-driven systems
for speech mining, indexing and search.

1 Introduction

In Spoken Language Understanding (SLU), a goal
is to understand the semantic content of spoken
utterances. Traditionally, research in speech pro-
cessing focus on tasks that process the low-level
sensory information in speech, such as automatic
speech processing (ASR), under the assumption
that language understanding can be handled by
NLP modules after speech is transcribed (Wang
et al., 2005; De Mori et al., 2008; Serdyuk et al.,
2018). Yet speech-based semantic representations
allow us to bypass texts in some scenarios, not only
simplifying the pipeline and but also beneficial for
certain domains without much transcribed data or
some languages without writing systems.

For speech processing, the spoken term detec-
tion tasks such as keyword detection (e.g., Mamou
et al., 2007; Miller et al., 2007; Can and Saraclar,
2011; Wang et al., 2018) and query-by-example
search (e.g., Hazen et al., 2009; Parada et al., 2009;
Chen et al., 2015) focus on the exact matching of
audio terms in speech databases. Yet the speech-
to-speech search enabled by spoken sentence em-
beddings can further expand our capacity to search
speech in meaning rather than only in form. This
capacity marks a significant advancement in the ma-
chine’s capacity to perform speech mining, voice
search and indexing and spoken information re-
trieval (Duquenne et al., 2021).

While learning textual sentence similarity is a
classic task in NLP (e.g., Agirre et al., 2012, 2015,
2016; Cer et al., 2017), the task is still relatively
unexplored in speech research. The main challenge
in learning spoken sentence embeddings lies in the
lack of labeled data for supervised learning. Given
the costs associated by creating semantic ratings,
it is important to explore unsupervised methods
to induce semantic representations directly from
speech signals.

In this study, we present two approaches to
tackle the challenge of inducing semantic repre-
sentations directly from speech signals without any
semantic labeling. The first model, Waveform Em-
bedding Transformer (WavEmbed) (Figure 1), is
a multimodal sequential autoencoder that encodes
a speech signal into a bottleneck vector and re-
constructs a sequence of ‘hidden units’, which are
generated using unsupervised acoustic unit dis-
covery. The second model, Sentence HuBERT
(S-HuBERT), learns the semantic representation
through aligning with a frozen unsupervised text
embedding model, which is trained with the hidden
units (Figure 2). We make the following contribu-
tions.

• We propose simple yet effective unsuper-
vised methods to learn spoken sentence rep-
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Figure 1: The architecture of WavEmbed. WavEmbed first projects a speech signal into a fixed-dimensional vector
representation, and then decodes it back to discrete acoustic units, which are generated through clustering on the
hidden states from the sixth layer of the (frozen) pretrained HuBERT model. The learned fixed-dimensional vector
encodes semantic information in the latent space. No texts are required in this training loop. However, if text
transcripts are available, the decoder targets can also be textual sequences.

Figure 2: Illustration of S-HuBERT. An unsupervised
text embedding model is first trained on either hidden
units or textual transcripts. Then it is used as a teacher
model to transfer semantic knowledge to a speech en-
coder through contrastive model distillation.

resentations. Our best performing unsuper-
vised model achieves moderate Spearman’s
rank correlations (0.5∼0.6) with human judge-
ments without relying on any labels or text
transcriptions.

• Our proposed methods can be easily extended
to speech-text pairs to enhance performance.
With text transcriptions, the performance can
further be increased to 0.7∼0.8 in terms of
Spearman’s correlation. We made extensive
comparisons and analyses of model perfor-
mance under different conditions.

• We have also created a speech dataset for
evaluating spoken sentence similarities, which
were rated by multiple human raters and en-
compassed various speech accents to measure
the robustness of models.

Our code, data and pretrained checkpoints nec-
essary for replicating the experiments are avail-

able at https://github.com/lingjzhu/
spoken_sent_embedding.

2 Background

Self-supervised speech modeling Most speech
technologies including ASR and text-to-speech syn-
thesis (TTS) nowadays heavily rely on the availabil-
ity of text transcripts. Yet such textual resources
can sometimes be hard to collect for many lan-
guages, some of which might not have writing
systems. Many efforts have since been made to
explore effective methods to learn speech repre-
sentations directly from speech signals, such as
the ZeroSpeech Workshop (Versteegh et al., 2015;
Dunbar et al., 2017, 2019, 2020, 2021).

Recently, large-scale self-supervised models in-
cluding CPC (Oord et al., 2018), Wav2Vec (Schnei-
der et al., 2019), Wav2Vec2 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021) and WavLM (Chen
et al., 2021) have learned effective speech repre-
sentations that can benefit a wide range of down-
stream speech tasks (Yang et al., 2021). In par-
ticular, Hsu et al. (2021) proposed using cluster-
ing algorithm to cluster hidden states of HuBERT
into hidden units, which were then used to cre-
ate training masks. These clusters were shown
to encode rich phonemic information (Hsu et al.,
2021; Baevski et al., 2021). Later it is found that
discretizing speech into ‘hidden units’ allows the
application of NLP algorithms to process speech
via the proxy of these discrete hidden units, without
the need of actual textual transcriptions (‘textless
NLP’) (Lakhotia et al., 2021; Nguyen et al., 2022).
This discovery has greatly benefited a variety of
tasks, some of which were traditionally not per-
formed with speech, including unsupervised ASR
(Baevski et al., 2021), spoken language modeling
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(Ao et al., 2022; Hsu et al., 2021; Wu et al., 2022;
Nguyen et al., 2022), speech resynthesis (Polyak
et al., 2021), spoken language generation (Lakhotia
et al., 2021; Kharitonov et al., 2022b), speech-to-
speech translation (Lee et al., 2021; Popuri et al.,
2022; Lee et al., 2022; Wu et al., 2022), and spoken
named entity recognition (Wu et al., 2022). Follow-
ing these prior studies, our work also falls in the
domain of ‘textless NLP’.

Unsupervised sentence embeddings Learning
semantic sentence embedding has been extensively
studied in NLP community, such as Skip-Thought
vectors (Kiros et al., 2015), InferSent (Conneau
et al., 2017), Universal Sentence Encoder (Cer
et al., 2018), and SBERT (Reimers and Gurevych,
2019). Recently, unsupervised sentence embed-
dings have considerably narrowed the performance
gap between unsupervised and supervised methods.
Contrastive learning has been utilized to learn a vec-
tor space in which semantically similar sentences
are close to each other, such as DeCLUTR (Giorgi
et al., 2021), SimCSE (Gao et al., 2021), TransEn-
coder (Liu et al., 2021) and DiffCSE (Chuang et al.,
2022). Another approach relies on autoencoders to
compress a sentence into a latent vector represen-
tation and then reconstruct the original sentence,
such as VGVAE (Chen et al., 2019) and TSDAE
(Wang et al., 2021).

Most unsupervised methods are based on tex-
tual sentences. In speech, current studies tend to
center on acoustic word embeddings (e.g., Kamper
et al., 2016; Settle and Livescu, 2016; Settle et al.,
2017; Holzenberger et al., 2018; Kamper, 2019).
Despite the progress, learning sentence-level em-
beddings for speechstill remains under-explored.
In SUPERB benchmark for evaluating speech rep-
resentations (Yang et al., 2021), spoken sentence
similarity ranking is not yet listed as a downstream
task. In recent works, it has been shown that spo-
ken sentence semantic similarities can be learned
via the visually grounded speech models (Merkx
et al., 2021). Multilingual spoken sentence embed-
dings can also be learned by using supervised mul-
tilingual text models as teacher models (Duquenne
et al., 2021; Khurana et al., 2022). These methods
more or less relied on labeled data such as speech-
image pairs or multilingual sentence pairs. How-
ever, we propose unsupervised methods to induce
semantic embeddings from speech signals only, and
our methods can also utilize textual transcriptions
to improve performance if they are available.

3 Method

Task formulation The current task is to en-
code spoken utterances into low dimensional dense
vectors such that semantically similar utterances
are close to each other in the learned latent
space. Given a speech signal x ∈ R1×N =
[x1, x2, . . . , xN ], our goal is to learn a neural net-
work function fenc that converts x to a fixed-
dimensional vector z ∈ Rd = fenc(x), such that
z encodes the semantic content of the original
signal x. For a certain semantically similar pair
{z, z+} and a semantically dissimilar pair {z, z−}
(as determined by human raters), it is expected
that sim(z, z+) > sim(z, z−), where sim() is a
similarity scoring function.

It is further assumed that some forms of tran-
scriptions of the original speech signal exist. Usu-
ally, a transcription of x take the form of a textual
sequence y ∈ R1×M = [y1, y2, . . . , yM ], N > M .
Such data are sometimes available as most speech
datasets for ASR and TTS are organized as pairs
of speech and texts. However, in most scenarios
the textual transcriptions are not available or too
costly to create. In these cases, the transcriptions
can be in the form of pseudo-units ŷ ∈ R1×L =
[ŷ1, ŷ2, . . . , ŷL], N > L, which could be generated
by an unsupervised system for acoustic unit dis-
covery. During training, these transcripts are used
as the targets for the proxy tasks. However, in in-
ference, the pretrained model can directly project
speech into semantic embeddings.

3.1 Discretizing speech signals

Acoustic unit discovery refers to the task of seg-
menting speech signals into discrete word-like or
phone-like units (e.g., Lee and Glass, 2012; Lee
et al., 2015; Ondel et al., 2016; Kamper, 2019; van
Niekerk et al., 2020). Annotating speech signals
can sometimes be prohibitively costly for many
languages and application domains. Unsupervised
discovery of acoustic units can be used as a proxy
of transcriptions to train speech systems, if the
discovered acoustic units are consistent representa-
tions of speech. In our approach, acoustic units are
treated as ‘pseudo-texts" to bootstrap the learning
of semantic representations.

We used pretrained speech transformer, Hu-
BERT, to discretize speech signals into ‘hidden
units’, which were proposed in Baevski et al. (2021)
and Lakhotia et al. (2021). After passing speech
signals into HuBERT, the hidden states of the sixth
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layer were extracted and a k-means clustering algo-
rithm was applied on the hidden states to quantize
them into discrete clusters. The sequence of cluster
indexes, after deduplication by merging consecu-
tive same indexes, are the hidden units representing
the original speech (see Figure 1). The discrete
hidden units remove certain paralinguistic and non-
linguistic variations such as speaker voice traits
and background noises, so they can be considered
a normalized representations of the speech content
(though many phonetic variations are still present)
(Lee et al., 2021).

We used the textless-lib (Kharitonov
et al., 2022a) to convert speech signals
into discrete hidden units. We selected
hubert-base-ls960 as the base speech
encoder and set the number of clusters to 50,
100 and 200. After speech were discretized
into sequences of hidden units, sentence-piece
tokenizers (Kudo and Richardson, 2018) were
trained on them to shorten the sequence length
(see Appendix A). There is evidence showing that
re-tokenzing hidden units are generally beneficial
for language modeling and downstream tasks (Ren
et al., 2022; Wu et al., 2022).

3.2 S-HuBERT

The first approach, S-HuBERT, is to transfer the
knowledge of a well-learned text embedding model
to a speech embedding model (Duquenne et al.,
2021; Khurana et al., 2022), in which pretrained
supervised textual embeddings are adopted as the
teacher models and speech models are trained to
align with the text embeddings in the same latent
space.

Here we also extend this approach to the unsu-
pervised learning domain. The proposed utilizes
an unsupervised sentence embedding model with
transcriptions, and then transfers the knowledge of
a textual sentence embedding model to an acoustic
sentence embedding model (S-HuBERT) by lever-
aging the correspondence between speech and its
transcriptions. In the absence of textual transcrip-
tions, the hidden units can be processed as pseudo-
texts to induce unsupervised meaning embeddings.

We mainly investigate two approaches to train
unsupervised (pseudo-)text embedding models,
namely, SimCSE (Gao et al., 2021) and TSDAE
(Wang et al., 2021). If these two types of models
are trained with hidden units, they are referred to as
Hu-SimCSE and Hu-TSDAE respectively, in order

to distinguish them from the text-based models.

SimCSE The unsupervised SimCSE (Gao et al.,
2021) is a contrastive learning framework for tex-
tual sentence embeddings. It takes a sentence as
input and uses the same sentence as the target with
only the dropout noises. As pretrained transformers
such as BERT and RoBERTa apply a dropout mask
of 10%, the same sentence will result in slightly dif-
ferent hidden states in multiple passes and can be
treated as positive pairs in contrastive learning. We
trained SimCSE models to induce sentence mean-
ing from text transcripts before transferring the
knowledge to a speech model. For modeling hid-
den units, we first pretrained a BERT model on
hidden units, which were converted from the whole
speech corpus. Then Hu-SimCSE was initiated
with the pretrained hidden-unit BERT for training.

TSDAE Transformer-based Sequential Denois-
ing AutoEncoder (TSDAE) is a denoising encoder-
decoder model that encodes a corrupted text se-
quence into a dense vector and decodes the origi-
nal text sequence. We trained text-based TSDAE
models following as closely as possible the set-
tings specified by Wang et al. (2021). However,
slightly different hyperparameters were adopted
for Hu-TSDAE. In the original TSDAE, tokens in
the input sequence are randomly deleted with a
ratio of 0.6. We found that deleting tokens in the
input hidden units significantly hurt performance
Instead, using the same uncorrupted sequence of
hidden units as both inputs and targets achieved
much better performance in our hyperparameter
tuning experiments (see Appendix D.1).

Language modeling on discrete units Both Sim-
CSE and TSDAE models were intialized with pre-
trained transformer checkpoints. In addition to
publicly available text-based pretrained mdoels,
we also pretrained hidden-unit based pretrained
transformers. Given a corpus of hidden units con-
verted from raw speech, transformer-based lan-
guage models were pretrained to learn the statisti-
cal regularities in sequences of hidden units. We
adopted the same model architecture as BERT (De-
vlin et al., 2019) (bert-base-uncased) and
used the masked language modeling task with a
masking rate of 15%. However, the next sentence
prediction task was discarded, because it was not
found to significantly affect the model performance
(Liu et al., 2019; Lan et al., 2019).
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Knowledge distillation We transferred the
knowledge from a pretrained textual sentence em-
bedding model (SimCSE or TSDAE) into a speech
embedding model through teacher-student training
(Duquenne et al., 2021). Here the teacher model
was pretrained text embedding model whereas the
student model was the pretrained speech model,
HuBERT (Hsu et al., 2021).

We used contrastive learning for training S-
HuBERT (Sun et al., 2020; Wu et al., 2021; Ye
et al., 2022). Given a speech embedding zi and its
corresponding (pseudo-)text embedding z̃+

i with
in-batch negative samples, the InfoNCE loss (Oord
et al., 2018) is computed as

LinfoNCE = − log
esim(zi,z̃

+
i )/τ

∑N
j=1 e

sim(zi,z̃
+
j )/τ

(1)

where τ is the temperature parameter and sim()
is the cosine similarity function sim(z1, z2) =
zT
1 z2/||z1|| · ||z2||. τ was set to 0.05 in all experi-

ments. In order to keep a large number of negative
samples, we maintained a dynamic memory bank
of negative samples (He et al., 2020). In each itera-
tion, textual representations in the last mini-batch
are enqueued into the memory bank, whereas the
oldest textual representations in the bank are de-
queued. The text model is frozen throughout train-
ing. A comparison of InfoNCE and MSE loss is
available at Table 14 in Appendix D.3.

3.3 WavEmbed
The WavEmbed is a sequential autoencoder (Vin-
cent et al., 2010; Hill et al., 2016; Wang et al.,
2021), which encodes a speech signal x into a
fixed-dimensional vector z and decodes the vec-
tor representation z using only the encoded vector.
The vector z is used as the semantic representa-
tion. The decoded discrete representations can
be actual texts y or sequences of hidden acous-
tic units ŷ. The proposed method is inspired by
the TSDAE (Wang et al., 2021), which learns ef-
fective unsupervised sentence embeddings through
a denoising encoder-decoder model that encodes a
corrupted text sequence into a dense vector and de-
codes the uncorrupted one. WavEmbed generalizes
the original TSDAE to acoustic signals and can
learn semantic representations of speech through
reconstructing not only the texts but also the hidden
acoustic units discovered unsupervisedly.

Yet WavEmbed differs from TSDAE in some as-
pects. TSDAE’s encoder and decoder components

are all text-based, whereas WavEmbed utilizes a
speech encoder. TSDAE relies on the denoising
reconstruction as a proxy task, in which the model
is trained to recover the original sentence from the
embedding of the corrupted sentence (word dele-
tion with a ratio of 0.6). However, WavEmbed
reconstructs a discrete sequence from the embed-
ding of a corresponding spoken sentence but no
corruptions except the standard dropout is applied
to the speech signal. In addition, WavEmbed uses
self-attention pooling to pool the encoder hidden
states rather than the average pooling in TSDAE, as
self-attention pooling is more effective than mean
or max pooling for sentence-level speech emebd-
dings (see Khurana et al., 2022, and Table 14 in
Appendix D.3).

The encoder fenc consists of two parts, a pre-
trained speech transformer fS for speech feature
extraction and a self-attention pooling layer for
pooling. Let H ∈ RT×d = [h1,h2, . . . ,hT ] be
the hidden states of a speech transformer model fS
given a speech signal x. The self-attention pooling
operation (Safari et al., 2020) can be computed as:

H = fS(x) (2)

z = Softmax(WHT )H (3)

where W ∈ Rd is a learnable parameter during
training. Given a semantic representation z of
speech signal x, the autoregressive decoder fdec
predicts the hidden units ŷ that correspond to the
content of the speech signal x.

ŷ = fdec(z) (4)

The encoder-decoder model is trained with the stan-
dard negative log likelihood loss.

L =−
L∑

1

logP (ŷl|z, ŷl−1, . . . , ŷ1)

=−
L∑

1

logP (ŷl|fenc(x), ŷl−1, . . . , ŷ1)

(5)

The WavEmbed is trained to predict discrete acous-
tic units ŷ based on the speech signals x. However,
when textual transcripts for speech signals are avail-
able, the prediction targets can also be replaced
with textual sequences y to enhance the learning
of semantic content. Once the model is trained,
the decoder is discarded, leaving only the speech
encoder for extracting the semantic embeddings.
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4 Data

Training data We used the trianing set of
the 1700-hour English subset of Common Voice
(Ardila et al., 2020) for training all speech encoders,
which can be assessed through the HuggingFace
Datasets library (Lhoest et al., 2021). Speech
signals were all downsampled from 44.1kHz to
16kHz to be compatible with HuBERT. To avoid
memory issues, we limited the maximal length of
speech to be 10 seconds, which only excluded less
than 1% of data.

Common Voice spoken sentence similarity
Given that there is few evaluation data for spo-
ken sentence similarities, we created the Common
Voice Spoken Sentence Similarity (CVS) dataset
based on the test set of the English subset of Com-
mon Voice, which contains a wide range of accents.
Following the criteria of annotating STS test data
(Agirre et al., 2016), four proficient English users
independently rated the similarity of 1149 sentence
pairs on a scale of 0 to 5 (not similar to most simi-
lar). The average Spearman’s rank correlation be-
tween the four raters reached 0.937. The annotated
data was randomly partitioned into the develop-
ment set (40% , 459 sentence pairs) and the test set
(60%, 690 sentence pairs). Score distributions and
additional details are provided in Appendix B.

Spoken STS Additionally, we used the Spoken
STS data collected by Merkx et al. (2021) for eval-
uation, which is publicly available online1. The
Spoken STS include synthetic and natural record-
ings of sentences in the Semantic Textual Simi-
larity (STS) dataset, covering benchmarks from
STS12 to STS16 (Agirre et al., 2012, 2013, 2014,
2015, 2016). The STS datasets include paired sen-
tences with human labelled similarity scores. The
synthetic speech data contain all sentence pairs in
STS datasets, which were synthesized via Google’s
Wavenet using six voices (three males and three
females) with a US accent. The natural speech data
contains 638 pairs of randomly selected sentences
evenly distributed across the STS datasets. These
sentences were produced by four speaker (2 fe-
males and 2 males) with a North American accent.
The synthetic and natural speech was only used
as the test set. None of our models had seen any
STS sentences during training. During evaluation,
for each sentence pair, we averaged the similarity

1https://easy.dans.knaw.nl/ui/
datasets/id/easy-dataset:237533

scores for all possible combinations of speakers to
derive the final score.

5 Experiments

Three different types of transcriptions were com-
pared in this study, namely, (ground truth) text
transcripts, text transcripts recognized by an ASR
model, and hidden units. ASR transcripts were
additionally considered because for some lan-
guages ASR systems can be used to assist the
development of speech retrieval. We used the
hubert-large-ls960-ft (Hsu et al., 2021)
via HuggingFace Hub to transcribe the Common
Voice English subset to texts.

For WavEmbed models, we trained multi-
ple variants based on texts, ASR transcriptions
and hidden units. The audio encoder was ini-
tiated with the hubert-base-ls960 check-
point. The decoder was also initiated with pre-
trained weights according to their outputs, in-
cluding bert-base-uncased, gpt2-base,
roberta-base, as well as pretrained transform-
ers for hidden units on different vocabulary sizes.

For S-HuBERT, we first trained SimCSE and TS-
DAE on Common Voice texts, ASR transcriptions
and hidden units, all of which were also initiated
with pretrained weights according to respective in-
puts. Specifically for SimCSE, additionally four
existing model checkpoints from Gao et al. (2021)
were adopted without any training nor fine-tuning.
Then the HuBERT base model with a self-attention
pooling layer and a projection head on top was fine-
tuned to aligned with the semantic embeddings of
the text models in the same latent space. For Hu-
SimCSE and Hu-TSDAE, we only selected the best
performing models to perform model distillation.

Given that there are several different models
implemented here, detailed hyperparameter set-
tings are given at Appendix C. The implementa-
tion of transformers was modified based on the
transformers library (Wolf et al., 2020) and
the sentence_transformer library (Reimers
and Gurevych, 2019). All our models were trained
on a single A40 GPU with 48GB of memory. Un-
less otherwise stated, all models were initialized
with pretrained models, as pretrained weights were
found to improve downstream performance (see
Rothe et al., 2020, and Table 15 in Appendix D.4).
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Models Synthetic speech Natural Speech

STS12 STS13 STS14 STS15 STS16 STS CVS-dev CVS-test
A. Unsupervised textual sentence embeddings (evaluated on texts)

TSDAE 55.2 67.4 62.4 74.3 73.0 - - -
TSDAE-CV-text 51.3 67.3 60.6 71.5 74.9 65.5 90.7 89.5
TSDAE-ASR-text 50.8 67.9 58.5 70.2 74.6 64.6 90.0 88.5

B. Unsupervised spoken sentence embeddings (trained with texts)

WavEmbed (BERT decoder) 48.8 53.8 52.7 66.1 63.6 55.4 78.4 78.7
WavEmbed (RoBERTa decoder) 52.1 56.1 54.7 68.4 66.1 58.6 78.1 79.3

C. Unsupervised spoken sentence embeddings (trained with ASR transcripts)

WavEmbed (BERT decoder) 52.1 55.9 55.6 68.0 66.2 57.9 77.5 79.5
WavEmbed (RoBERTa decoder) 49.3 53.0 52.2 64.9 64.0 54.6 77.9 78.1

D. Unsupervised spoken sentence embeddings (trained with hidden units)

HuBERT - Avg. Last hidden states 47.3 49.5 44.1 58.3 49.2 33.2 1.5 4.4

WavEmbed - 50 C 44.0 51.5 47.6 62.7 56.3 49.8 62.6 59.8
WavEmbed - 100 C 45.3 53.4 50.3 63.3 59.7 50.0 65.6 61.2
WavEmbed - 200 C 43.8 49.9 48.7 63.5 58.4 47.4 64.8 59.2

WavEmbed - 100 C - 1000 V 45.2 49.7 47.1 61.8 58.1 45.7 67.8 60.9
WavEmbed - 100 C - 3000 V 44.3 50.1 47.1 61.4 57.3 45.5 68.4 61.0
WavEmbed - 100 C - 5000 V 43.8 48.9 45.9 60.9 57.5 44.8 67.9 61.0
WavEmbed - 100 C - 8000 V 43.1 48.8 45.7 60.3 58.8 43.5 68.9 61.1
WavEmbed - 100 C - 12000 V 43.3 47.6 44.4 60.3 57.5 42.8 66.0 60.2

Table 1: Evaluations based on the Spearman’s rank correlation (×100). The italicized blue fonts suggest that results
were directly taken from Wang et al. (2021). The bold numbers indicate the best performance within each subsection.
Note. C → number of clusters; V → size of vocabulary; CV-text → Common Voice texts.

6 Results and discussions

In general, we show that semantic representa-
tions can be learned directly from acoustic signals
through the proxy of hidden units. Here we sum-
marize the main results and the ablation analyses
(see Appendix D for additional results).

The self-reconstruction approach is more effec-
tive in modeling hidden units than contrastive
learning. In general, the WavEmbed method is
far more effective than S-HuBERT when transcrip-
tions are not available. The WavEmbed models
with hidden-unit targets all achieve moderate cor-
relation with human judgments (Table 1 D), as
compared to the weak correlations with humans
for the S-HuBERT from Hu-SimCSE (Table 2 E).
Even for directly modeling on hidden units without
audio, the self-reconstruction based Hu-TSDAE
far outperform the contrastive learning based Hu-
SimCSE in terms of Spearman correlations. Gao
et al. (2021) noted that SimCSE depends heavily on
a good pretrained LM. Yet our hidden unit-based
BERT is trained on a relatively small corpus with-
out a sentence-level task, which presumably is the

reason why the performance of Hu-SimCSE is sub-
optimal.

Re-tokenizing hidden units does not always help.
Ren et al. (2022) and Wu et al. (2022) found that
re-tokenizing hidden units can improve the perfor-
mance of downstream tasks, yet our findings here
are inconclusive. For WavEmbed (Table 1 D), re-
tokenizing hidden units does not improve model
performance. However, for Hu-SimCSE and Hu-
TSDAE, the results are almost contrary. Using sen-
tence piece units learned from the raw hidden units
tends to improve Spearman correlation in these
hidden unit-based models (see Table 12 and 13 in
Appendix D.2).

Supervised training with texts is the most ef-
fective method. This holds even if supervised
data are in another modality. In Table 2 C, it is
apparent that transferring weights of supervised
embedding models to S-HuBERT achieves the best
evaluation performance across all evaluation bench-
marks. This result may suggest that, given well
trained supervised text models, the need for cre-
ated labeled speech data might not be very critical.
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Models Synthetic speech Natural Speech

STS12 STS13 STS14 STS15 STS16 STS CVS-dev CVS-test
A. Supervised text embeddings

SimCSE-sup-BERT 75.3 84.7 80.2 85.4 80.8 81.4 92.9 92.3
SimCSE-sup-RoBERTa 76.5 85.2 81.0 86.0 82.6 80.2 91.2 90.9

B. Unsupervised text embeddings

SimCSE-unsup-BERT 68.4 82.4 74.4 80.9 78.6 77.6 89.6 89.0
SimCSE-unsup-RoBERTa 70.2 81.8 73.2 81.4 80.7 77.7 88.0 87.3
SimCSE-unsup-BERT-CV-text 61.2 77.9 69.9 77.6 76.8 73.1 89.7 87.7
SimCSE-unsup-BERT-ASR-text 57.7 69.0 64.2 74.5 68.7 66.5 85.5 86.1

C. Supervised text embeddings → spoken sentence embeddings

S-HuBERT (SimCSE-sup-BERT) 57.3 63.9 62.6 72.6 67.6 64.5 81.1 79.7
S-HuBERT (SimCSE-sup-RoBERTa) 61.5 68.0 65.1 75.2 70.8 69.0 81.3 81.9

D. Unsupervised text embeddings → spoken sentence embeddings

S-HuBERT (SimCSE-unsup-BERT) 53.0 59.6 58.5 67.8 65.4 60.5 80.0 80.8
S-HuBERT (SimCSE-unsup-RoBERTa) 60.8 70.8 65.9 76.5 72.8 70.1 79.8 81.6
S-HuBERT (TSDAE-CV-text) 38.6 43.6 45.6 55.4 54.6 45.4 77.8 76.2
S-HuBERT (TSDAE-ASR-text) 43.1 47.0 48.0 58.7 55.9 48.0 79.5 75.6

E. Unsupervised hidden-unit embeddings → spoken sentence embeddings

S-HuBERT (Hu-SimCSE-100 C-8000 V) 37.4 36.8 32.3 44.5 39.6 26.6 35.2 34.6
S-HuBERT (Hu-TSDAE-100 C-1000 V) 47.8 53.8 51.6 63.8 60.4 50.3 61.5 55.3

Table 2: Evaluations based on the Spearman’s rank correlation (×100). The italicized blue font suggests that results
or checkpoints were directly taken from Gao et al. (2021). Models in parentheses are teacher models whereas models
outside parentheses are student models. The bold numbers indicate the best performance within each subsection.
Note. C → number of clusters; V → vocabulary size; CV-text → Common Voice texts.

Training with text transcripts are better than
with pseudo-units. In both Table 1 and 2, a com-
parison between text-based and hidden unit-based
models clearly shows that text-based WavEmbed or
S-HuBERT outperformed their hidden unit-based
counterparts by a very large margin (ranging from
5∼40 in absolute points). Compared with texts,
hidden units are noisy representations of the speech
content, such that speaker identities were still de-
tectable from hidden units converted from speech
(Kharitonov et al., 2022a). Such content-irrelevant
information introduces many noises into model
training, therefore leading to sub-optimal perfor-
mance. WavEmbed and Hu-TSDAE are more ro-
bust to local noises, as they force the speech embed-
ding to capture the global property of the sentence
through self-reconstruction (Wang et al., 2021).

In order to measure the quality of the learned
embeddings, we compute the metrics for alignment
and uniformity proposed by Wang and Isola (2020),
which are as follows.

ℓalign ≜ E
x,x+∼Ppos

||f(x)− f(x+)||2 (6)

Figure 3: ℓalign − ℓuniform plot. All SimCSE models
and the WavEmbed decoder were based on RoBERTa-
base. The bracketed number indicates Spearman correla-
tion (×100). Low ℓalign and low ℓuniform are desirable
qualities of embeddings.

ℓuniform ≜ log E
x,y

i.i.d∼Pdata

e−2||f(x)−f(y)||2 (7)

where x+ refers to a positive sample for x and
Ppos is the set of positive samples. The analysis
was based on the CVS test set. Sentence pairs
with a score ≥ 4 were treated as positive pairs for
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Equation 6. All possible combinations of sentence
pairs were used to compute Equation 7. Figure 3
shows the ℓalign-ℓuniform plot for different models
(Wang and Isola, 2020; Gao et al., 2021). Lower
ℓalign suggests that positive instances are closer
to each other in the embedding space, whereas
lower ℓuniform indicates that random representa-
tions are more uniformly scattered, both of which
imply a good embedding space. Text-based Sim-
CSE models have both low ℓalign and low ℓuniform.
For speech based WavEmbed and S-HuBERT, they
tend to have low ℓuniform but high ℓalign, so dis-
tances between positive samples are relatively far
from each other. The average last hidden states
of HuBERT has a very low ℓuniform, suggesting
that different embeddings are not well separated. It
seems to perform well on STS (Table 1 D), because
STS datasets were recorded from limited speakers
and it might be using similarities of voice traits
(see the first row of Table 6), which also explains
why this method fails on the CVS dataset that con-
tains a diversity of speakers . Generally speaking,
for speech models not trained with texts, spoken
utterances from the same speaker are always less
separated than utterances from different speakers
(see Figure 6 and 7 in Appendix E).

ASR transcripts can be a good proxy for ground
truth transcripts. Modern ASR systems can
achieve very low word error rate (WER) on certain
high resource languages. Our experiments with
recognized texts of Common Voice audio indicates
that they are slightly inferior to the ground truth
transcriptions in performance but the gap is pretty
narrow (see Table 1. B and C; Table 2. B). In
the absence of texts, it is possible to utilize ASR
systems to quickly create training data for speech
retrieval models. This option currently might only
work well for a few high resource languages such
as English, Chinese and Spanish. The recent ad-
vancement in unsupervised ASR (Baevski et al.,
2021; Liu et al., 2022) or multilingual ASR (Li
et al., 2022), however, might make it possible to
extend the proposed methods to more low resource
languages.

WavEmbed and S-HuBERT are useful in dif-
ferent scenarios. Our results have shown that
WavEmbed works better when only speech sig-
nals are available, whereas S-HuBERT can lever-
age more powerful text models if transcripts are
provided. Furthermore, since S-HuBERT aligns

speech embeddings with text embeddings in a com-
mon semantic space, it is also capable of perform-
ing cross-modal semantic retrieval between speech
and texts.

7 Conclusions and future directions

In summary, we investigated two unsupervised ap-
proaches, WavEmbed and S-HuBERT, to induce
semantic embeddings from speech signals, which
are significantly correlated with human judgements
of semantic similarities. We experimented these
approaches with different settings and found that
performance can be improved through leveraging
transcribed texts, even when the transcriptions were
from slightly inaccurate ASR systems. We be-
lieve that our study is an essential step towards
direct speech-to-speech search and simplifying the
pipeline of SLU.

Currently, the proposed methods do not depend
on any specific features of certain languages, and
therefore should also work for other languages.
However, it remains unclear how language specific
properties can affect the actual performance. In
the future, we plan to extend our methods to other
languages than English.

Generally speaking, spoken sentence similarity
task is more challenging than its text counterparts,
because speech has far more variability than texts,
which can be caused by various physiological, psy-
chological and social factors (e.g., vocal tract mor-
phology, gender, accents and emotional states).
It remains to be explored how these variabilities
(some of which are related to expressing mean-
ing) can be taken into account in computational
models. Speech conveys information beyond its
textual content. For example, prosody can reverse
the meaning of a sentence from being non-ironic
to ironic. While we only focus on the semantic
similarity of textual content in speech, we also en-
vision that spoken sentence similarity tasks in the
future should include non-textual features such as
prosody and emotion.
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Limitations

Our study is still limited in several ways. First,
there is still a large gap between unsupervised learn-
ing from speech and unsupervised methods with
texts. Part of the reason is that the performance is
bounded by the relatively inaccurate acoustic unit
discovery method that still retains many paralin-
guistic information such as voice traits (Lee et al.,
2021). One potential future direction to overcome
this limitation is to develop better unsupervised
acoustic unit discovery systems.

Secondly, our proposed methods still require a
large amount of data to pre-train and train, mak-
ing it still difficult to extend this method to low
resources. Large-scale pretrained models such as
HuBERT, BERT and RoBERTa are only available
for a limited number of languages that can offer
huge data for pretraining. It is paramount to in-
vestigate data efficient methods that can work on
low resource languages. Multilingual pretrained
models such as XLS-R (Babu et al., 2021) might be
a potential base model for low resource languages,
but more work should be done.

Given that transformers have a complexity of
log(n2), it might not be the optimal model for
processing speech, which often have very long se-
quence length. In our experiments, we also notice
that training and finetuning HuBERT on speech
is very inefficient. An important future direction
is to search for better model architectures that are
optimized for processing long sequences of speech.
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A Sentence-piece Tokenizers

All tokenizers for hidden units were trained
with the open-source package SentencePiece2.
They were trained on the whole Common Voice
English training set, which was transcribed into
hidden units with cluster numbers of 50, 100, and
200. The vocabulary sizes were {1000, 3000, 5000,
8000, 12000, 20000} for each cluster number. We
used the arguments in Table 3, otherwise default
arguments were kept.

Arguments Value

model_type BPE
hard_vocab_limit true
split_by_whitespace false
pad_id 0
bos_id 1
eos_id 2
unk_id 3
bos_piece [CLS]
eos_piece [SEP]
unk_piece [UNK]
pad_piece [PAD]
user_defined_symbols [MASK]

Table 3: Arguments for training sentence-piece tokeniz-
ers on hidden units.

B Common Voice Sentence Similarity

The Common Voice Spoken Sentence Similarity
dataset was created based on the test set of the
English subset of Common Voice. To get the sim-
ilarity of every pair of sentences in the original
test set, we used two pretrained SimCSE models,
that is, sup-simcse-roberta-large and
sup-simcse-bert-large-uncased3.

The similarity scores were averaged across two
models, and divided into ten equal intervals be-
tween 0 and 1. Then 120 sentence pairs were ran-
domly sampled from each interval, resulted in 1200
sentence pairs. Some pairs were removed due to
low quality, leaving 1149 pairs in the final data.
Four proficient English users independently rated
the sentence pairs based on the textual content on
a scale from 0-5, where 0 implies completely ir-
relevant and 5 means completely the same. We

2https://github.com/google/
sentencepiece

3https://github.com/princeton-nlp/
SimCSE
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Figure 4: Pairwise Spearman’s rank correlations be-
tween all four human raters. Sentence similarity ratings
are highly consistent across human raters.

tried to make this dataset similar to those in STS
SemEval tasks and followd their annotation crite-
ria. The instructions were the same as the Figure 2
in Agirre et al. (2012) and sample rated sentences
were from the Table 1 of Agirre et al. (2016). The
final similarity scores were averaged across four
human raters. The rated data was partitioned into
the development set and the test set with a 40/60
split. The distributions of similarity scores in these
two sets are provided in Figure 5.

C Hyperparameters

C.1 BERT on hidden units

We trained 15 BERT models on hidden units from
scratch. The detailed hyperparameters are given in
Table 4, which were the same for all models. The
number of clusters ranged from {50, 100, 200}.
A BERT model was trained for each number of
clusters. For hidden units of 100 and 200 clusters,
they were further tokenized into vocabulary sizes
of {1000, 3000, 5000, 8000, 12000, 20000} respec-
tively. Then a BERT model was trained for each
vocabulary size, resulting in 15 in total. Each took
about 3.5∼6 hours to train.

C.2 WavEmbed

For WavEmbed models, we apply the same hyper-
parameters in Table 5.

C.3 Hu-TSDAE

Table 6 presents the hyperparameters for all Hu-
TSDAE models, which were trained for the follow-
ing vocabulary sizes {50, 100, 200, 1000, 3000,
5000, 8000, 12000}. For vocabulary sizes larger
than 200, they were learned from the hidden units
with 100 clusters.
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Figure 5: Distribution of ratings in Common Voice Spo-
ken Sentence Similarity dataset.

Hyparameters Value

Epoch 5
Total update steps ∼8k
Optimizer AdamW
Initial learning rate 1e-4
Effective batch size 512
FP 16 True
Masking probability 15%
Weight Initialization random init.
Training task MLM
Loss Cross-entropy loss
Checkpointing Keep last
GPU A40
Time 3.5∼6 hours

Table 4: Hyperparameters for training BERT on hidden
units.
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Hyparameters Value

Epoch 1
Total update steps ∼13.5k
Optimizer AdamW
Initial learning rate 5e-4
Effective batch size 64
FP 16 False
Encoder initialization HuBERT
Decoder initialization Pretrained weights
Training task Autoregressive LM
Loss Cross-entropy loss
Checkpointing Keep best
GPU A40
Time ∼22 hours

Table 5: Hyperparameters for training WavEmbed mod-
els.

Hyparameters Value

Epoch 3
Total update steps ∼10.4k
Optimizer AdamW
Initial learning rate 3e-5
Effective batch size 256
FP 16 False
Encoder initialization Pretrained weights
Decoder initialization Same as encoder
Training task Autoregressive LM
Loss Cross-entropy loss
Checkpointing Keep best
GPU A40
Time 6∼10.5 hours

Table 6: Hyperparameters for training Hu-TSDAE mod-
els.

Hyparameters Value

Epoch 1
Optimizer AdamW
FP 16 False
Encoder initialization Pretrained weights
Training task Contrastive learning
Loss InfoNCE loss
Checkpointing Keep best
Early stoping true
GPU A40
Time 5∼28 minutes

Table 7: Hyperparameters for training Hu-SimCSE mod-
els.

C.4 Hu-SimCSE

The general configurations were specified in Ta-
ble 7 and 8. For Hu-SimCSE models, the training
was highly unstable. The loss dropped to a very
low value in about 20 steps. Most models usually
reached the best validation performance in less than
200 iterations, and then the performance began to
drop severely. So early stoping was applied when
the validation performance dropped for more than
80 steps. In our experiments, Hu-SimCSE mod-
els was highly sensitive to hyperparameters, so we
tuned hyperparamers by carrying out grid search
if effective batch size ∈ {64, 128, 256, 512}, num-
ber of in-batch negative samples ∈ {63,127} and
learning rate ∈ {5e-5,1e-5}. τ was set to 0.05 for
all experiments.

C.5 S-HuBERT

The hyperparameters for S-HuBERT were shown
in Table 9. The text encoder was pretrained text
embeddings including Hu-SimCSE, Hu-TSDAE,
SimCSE, and TSDAE. The weights of text encoder
were frozen throughout training.

C.6 Unsupervised text embeddings: SimCSE
and TSDAE

For both SimCSE and TSDAE, we trained both text-
based models using sentence_transformer
library (Reimers and Gurevych, 2019), as it
provides a easy-to-use interface. They were
trained on the full texts of Common Voice
English training subset. Models were ini-
tialized with either bert-base-uncased or
roberta-base-uncased. The following hy-
perparameters were used during model pretraining.
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Models Clusters Vocab. Effective batch size Learning rate Num. Negatives

Hu-SimCSE 50 50 128 5e-5 63
Hu-SimCSE 100 100 128 5e-5 63
Hu-SimCSE 200 200 128 5e-5 63

Hu-SimCSE 100 1000 256 5e-5 127
Hu-SimCSE 100 3000 64 5e-5 63
Hu-SimCSE 100 5000 256 5e-5 127
Hu-SimCSE 100 8000 256 5e-5 63
Hu-SimCSE 100 12000 256 5e-5 127
Hu-SimCSE 100 20000 256 5e-5 127

Hu-SimCSE 200 1000 128 5e-5 63
Hu-SimCSE 200 3000 512 5e-5 127
Hu-SimCSE 200 5000 128 5e-5 127
Hu-SimCSE 200 8000 256 5e-5 127
Hu-SimCSE 200 12000 256 5e-5 127
Hu-SimCSE 200 20000 128 5e-5 63

Table 8: Final hyperparameters for Hu-SimCSE models.

Hyparameters Value

Epoch 1
Total update steps ∼4k
Optimizer AdamW
Initial learning rate 1e-4
Effective batch size 192
Temperature 0.05
Memory bank 256
FP 16 False
Speech Encoder HuBERT
Text Encoder Pretrained weights
Training task Contrastive learning
Loss InfoNCE
Checkpointing Keep best
GPU A40
Time ∼21 hours

Table 9: Hyperparameters for S-HuBERT.

• Epoch: 2 (for SimCSE) or 3 (for TSDAE)

• Initial learning rate: 1e-4

• Effective batch size: 64

Otherwise we used the default settings in
sentence_transformer for hyperparame-
ters not mentioned above.

In our experiments, it shows that using
bert-base-uncased as initial model perform
better (see Table 1, Table 2, and Table 10).

D Ablation analysis

D.1 Deletion ratio of Hu-TSDAE
In the original implementation of TSDAE, the input
data were subject to random deletion with a ratio of
0.6, as this augmentation led to the best evaluation
performance (Wang et al., 2021). However, we
found that training TSDAE on hidden units did
not benefit from random deletion. In Table 11, the
Spearman’s rank correlation was the highest when
no deletion was applied.

D.2 Impact of hidden units
The impact of vocabulary sizes on the validation
performance was illustrated in Table 12 and 13.
The vocabularies were induced from the whole
Common Voice English corpus of hidden units. All
models were tested on the CVS development set,
which was also discretized into hidden units.

Both tables suggest that re-tokenizing hidden
units into a higher level of sub-word units gener-
ally improve performance for directly modeling
hidden units without speech involved. Generally
speaking, smaller vocabulary size usually leads to
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Models Synthetic speech Natural Speech

STS12 STS13 STS14 STS15 STS16 STS CVS-dev CVS-test
Unsupervised text embeddings

SimCSE-unsup-RoBERTa (CV text) 52.7 70.0 63.2 72.2 72.8 66.6 86.5 86.9
SimCSE-unsup-RoBERTa (ASR text) 53.4 67.0 62.2 72.7 71.8 67.5 86.9 87.1
TSDAE-RoBERTa (CV text) 45.0 59.2 54.7 65.3 70.9 57.1 88.0 86.7
TSDAE-RoBERTa (ASR text) 44.9 61.1 55.7 68.2 72.8 60.5 88.2 86.8

Table 10: Evaluation results based on the Spearman’s rank correlation. All models (e.g., HuBERT, RoBERTa,
BERT) refer to the 12-layer base models.

Deletion ratio CVS-dev

0 52.7
0.1 49.2
0.2 42.9
0.3 40.5
0.4 29.4
0.5 23.7
0.6 18.2

Table 11: The impact of deletion rate on the Spearman’s
rank correlations (×100) of CVS-dev evaluation. Here
the base model was the Hu-TSDAE model, which was
trained on pseudo-texts with 100 clusters, which were
further tokenized to 8000 vocabulary tokens.

Models Clusters Vocab. Size CVS-dev

Hu-TSDAE 50 50 49.9
Hu-TSDAE 100 100 55.8
Hu-TSDAE 200 200 56.9

Hu-TSDAE 100 1000 58.4
Hu-TSDAE 100 3000 57.5
Hu-TSDAE 100 5000 56.9
Hu-TSDAE 100 8000 54.3
Hu-TSDAE 100 12000 52.8

Table 12: For Hu-TSDAE models, the impact of the
number of hidden-unit clusters and the vocabulary size
on the Spearman’s correlation (×100). Results were
based on the hidden-unit transcriptions of CVS develop-
ment set.

higher performance for Hu-TSDAE, as 1000 is the
best vocabulary size. However, for Hu-SimCSE,
having a vocabulary size that is not too large nor
too small is more beneficial for training (8000 was
the optimal size in our experiments).

D.3 Pooling methods and loss functions

Here we compared how different pooling meth-
ods and loss functions can impact model perfor-
mance. For loss functions, we compared InfoNCE
and mean square errors (MSE), both of which are

Models Clusters Vocab. Size CVS-dev

Hu-SimCSE 50 50 30.7
Hu-SimCSE 100 100 31.9
Hu-SimCSE 200 200 31.9

Hu-SimCSE 100 1000 35.2
Hu-SimCSE 100 3000 37.1
Hu-SimCSE 100 5000 37.3
Hu-SimCSE 100 8000 42.5
Hu-SimCSE 100 12000 35.6
Hu-SimCSE 100 20000 36.8

Hu-SimCSE 200 1000 36.8
Hu-SimCSE 200 3000 34.5
Hu-SimCSE 200 5000 36.1
Hu-SimCSE 200 8000 39.4
Hu-SimCSE 200 12000 38.5
Hu-SimCSE 200 20000 33.7

Table 13: For Hu-SimCSE models, the impact of the
number of hidden units and the vocabulary size on the
evaluation Spearman’s rank correlation (×100). Results
were based on the hidden-unit transcriptions of CVS
development set.

commonly used for knowledge distillation.

For pooling methods, Khurana et al. (2022) has
shown that self-attention pooling is better than
mean or max pooling, so we did not repeat the
same experiments here.

Two pooling methods for HuBERT models were
compared: self-attention pooling and CLS pool-
ing. The CLS pooling was proposed by Duquenne
et al. (2021), in which a CLS token (a vector of
ones) is inserted before speech feature extractors
before feeding them into the transformer part of
HuBERT. Then the last hidden state of the CLS to-
ken, or the first embedding of the last hidden states,
was used as the representation of the whole speech
signal. This is similar to pretrained text transform-
ers like BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Here we inserted a learnable
embedding for the CLS token at the beginning of
the sequence. Results in Table 14 suggest that self-
attention pooling and the InfoNCE loss work best.
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Models Pooling Loss STS CVS-dev CVS-test

S-HuBERT (SimCSE-unsup-RoBERTa) CLS MSE 68.6 79.5 77.9
S-HuBERT (SimCSE-unsup-RoBERTa) Self-attention MSE 68.6 80.7 80.3
S-HuBERT (SimCSE-unsup-RoBERTa) CLS InfoNCE 67.8 80.0 79.1
S-HuBERT (SimCSE-unsup-RoBERTa) Self-attention InfoNCE 70.2 79.8 81.6

Table 14: Impact of different combination of pooling methods and loss functions on evaluation performance. The
italicized blue font suggests that results or checkpoints were directly taken from Gao et al. (2021). Models in
parentheses are teacher models whereas models outside parentheses are student models.

Models Encoder Init. Decoder Init. STS CVS-dev CVS-test

WavEmbed HuBERT-base-ls960 GPT-2-base 52.4 76.5 77.4
WavEmbed HuBERT-base-ls960 BERT-base-uncased 55.4 78.4 78.7
WavEmbed HuBERT-base-ls960 RoBERTa-base 58.6 78.1 79.4
WavEmbed HuBERT-base-ls960 Random 37.5 74.6 76
WavEmbed Random Random 28.9 60.4 53.4

WavEmbed - 100 C HuBERT-base-ls960 BERT pretrained on hidden units 50.0 65.6 61.2
WavEmbed - 100 C HuBERT-base-ls960 Random 46.8 67.5 61.9

Table 15: Impact of weight initialization on the performance of WavEmbed. These results show that initializing
with pretrained weights is important for improving performance.

D.4 Weight initialization
Here we compared how initalizing with pretrained
weights affect model performance. For WavEmbed,
we initialized the WavEmbed decoder with differ-
ent model weights, including pretrained weights or
random weights. When initializing a decoder with
encocders such as BERT and RoBERTa, all cross-
attention layers were reinitialized. Despite this,
initializing the decoder with pretrained weights
can help improve the performance, as shown in
Table 15.

E Visualizing predictions

Details predictions of selected models were shown
at Figure 6 and 7.
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Figure 6: Plots of predicted semantic similarity scores by different WavEmbed models against ground truth scores.
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Figure 7: Plots of predicted semantic similarity scores by different S-HuBERT models against ground truth scores.
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