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Abstract
The surge of pre-training has witnessed the
rapid development of document understanding
recently. Pre-training and fine-tuning frame-
work has been effectively used to tackle texts
in various formats, including plain texts, doc-
ument texts, and web texts. Despite achieving
promising performance, existing pre-trained
models usually target one specific document
format at one time, making it difficult to com-
bine knowledge from multiple document for-
mats. To address this, we propose XDoc, a
unified pre-trained model which deals with
different document formats in a single model.
For parameter efficiency, we share backbone
parameters for different formats such as the
word embedding layer and the Transformer lay-
ers. Meanwhile, we introduce adaptive layers
with lightweight parameters to enhance the dis-
tinction across different formats. Experimen-
tal results have demonstrated that with only
36.7% parameters, XDoc achieves compara-
ble or even better performance on a variety
of downstream tasks compared with the indi-
vidual pre-trained models, which is cost ef-
fective for real-world deployment. The code
and pre-trained models are publicly available
at https://aka.ms/xdoc.

1 Introduction

Document understanding has undoubtedly been an
important research topic as documents play an es-
sential role in message delivery in our daily lives
(Cui et al., 2021). During the past several years, the
flourishing blossom of deep learning has witnessed
the rapid development of document understanding
in various formats, ranging from plain texts (Devlin
et al., 2018; Liu et al., 2019; Dong et al., 2019),
document texts (Xu et al., 2020, 2021a; Huang
et al., 2022), and web texts (Chen et al., 2021; Li
et al., 2022a; Wang et al., 2022b). Recently, pre-
training techniques have been the de facto standard
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Figure 1: Pre-trained models for different document
formats. Most of the structures are similar (word em-
bedding, 1D position embedding, and Transformer lay-
ers) while only a small proportion of the structures (2D
position and XPaths embedding) are different.

for document understanding, where the model is
first pre-trained in a self-supervised manner (e.g.
using masked language modeling as the pretext
task (Devlin et al., 2018)) with large-scale corpus,
then fine-tuned on a series of downstream tasks
like question-answering (Rajpurkar et al., 2016;
Mathew et al., 2021), key information extraction
(Jaume et al., 2019; Xu et al., 2022) and many
others. Albeit achieving impressive performance
on specific tasks, existing pre-trained models are
far from flexible as they can only tackle texts in
a single format (e.g. LayoutLM (Xu et al., 2020)
is designed for tackling document texts and is not
suitable for web texts). This makes it difficult to
combine knowledge from multiple document for-
mats. Meanwhile, the category of pre-trained mod-
els will keep increasing if more formats (e.g. Word
and PowerPoint) are further studied in academia.

Among different pre-trained models for docu-
ment understanding, it is observed that many pre-
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Figure 2: Illustrations of three document formats. For each format, the corresponding meta-information is shown in
the dash boxes. Please note that the text content and 1D position are common attributes across three formats while
2D position and XPath strings (marked as red) are specific for document and web texts respectively.

trained models share a similar architecture, such
as a word embedding layer, a 1D position em-
bedding layer, and Transformer layers (see Fig-
ure 1). In contrast, there are also different parts
serving as prior knowledge for a specific format
(e.g. two-dimensional coordinates for document
texts and XPaths for web texts). Intuitively, we
find that the parameters of different parts are far
less than the parameters of the shared backbones.
For instance, LayoutLMBASE (Xu et al., 2020)
based on RoBERTa (Liu et al., 2019) consists of
131M parameters while the 2D position embedding
layer only contains 3M parameters (2.3%). Simi-
larly, MarkupLMBASE (Li et al., 2022a) based on
RoBERTa has 138M parameters while the XPath
embedding layer only contains 11M parameters
(8.0%). Therefore, it is indispensable to design a
unified pre-trained model for various text formats
while sharing backbone parameters to make models
more compact.

To this end, we propose XDoc, a unified architec-
ture with multiple input heads designed for various
categories of documents. For the sake of parameter
efficiency, we share the backbone network archi-
tecture across different formats, including the word
embedding layer, the 1D position embedding layer,
and dense Transformer layers. Considering that
the different parts only take up a small proportion
in XDoc, we introduce adaptive layers to make
the representation learning for different formats
more robust. We collect the large-scale training
samples for different document formats, and lever-
age masked language modeling to pre-train XDoc.
Specifically, we use three widely-used document
formats for experiments, including plain, docu-
ment, and web texts (see Figure 2 for more details).
To verify the model accuracy, we select the GLUE

benchmark (Wang et al., 2019) and SQuAD (Ra-
jpurkar et al., 2016, 2018) to evaluate plain text
understanding, FUNSD (Jaume et al., 2019) and
DocVQA (Mathew et al., 2021) to evaluate doc-
ument understanding, and WebSRC (Chen et al.,
2021) for web text understanding. Experimental
results have demonstrated that XDoc achieves com-
parable or even better performance on these tasks
while maintaining the parameter efficacy.

The contributions of this paper are summarized
as follows:

• We propose XDoc, a unified pre-trained model
that tackles texts in various formats in pursuit
of parameter efficiency.

• Pre-trained with only masked language mod-
eling task, XDoc achieves comparable or even
better accuracy on various downstream tasks.

• The code and pre-trained models are publicly
available at https://aka.ms/xdoc.

2 XDoc

In this section, we first introduce the architecture of
XDoc and details of the embedding used for each
document format, then introduce the objectives for
pre-training the XDoc model.

2.1 Model Architecture
As is demonstrated in Figure 3, XDoc is capable
of tackling texts in various formats (plain, docu-
ment, and web texts) in one model. For any input
sequences, XDoc learns to embed them using a
shared backbone and additional embedding layers
when other prior knowledge is available. In de-
tail, for any input text T , XDoc first tokenizes it
into subwords s = s1:L using WordPiece, where
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Figure 3: XDoc tackles multiple formats in one model while sharing most parameters including 1D position
embedding, word embedding, and dense Transformer layers. An optional embedding layer and adaptive layer are
utilized for specific prior knowledge such as 2D position for document texts and XPaths for web texts (no additional
prior for plain texts). We demonstrate the dataflow for document texts and use dash lines for other formats.

L denotes the maximum length. Subsequently, for
each subword si with index i, it is first fed to a
word embedding layer and we denote the output as
WordEmb(si). Then it is added with a learnable
1D position embedding 1DEmb(i). Since the word
embedding and 1D position embedding layers are
indispensable for Transformer-based models, we
attempt to share the parameters across different
formats. Based on this, we will detail the overall
embedding for each document format in the next.

Overall embedding for plain texts As there is
no additional prior knowledge for plain texts, we
simply add up the word embedding and 1D position
embedding to construct the input for Transformer
layers following (Devlin et al., 2018; Liu et al.,
2019). For each word sPi , where i is the index
and “P” denotes “Plain”, the overall embedding
Emb(sPi ) can be calculated as follows:

Emb(sPi ) = WordEmb(sPi ) + 1DEmb(i) (1)

Overall embedding for document texts Differ-
ent from the plain texts, the visually rich docu-
ment texts are usually organized with 2-D layouts,
where the coordinates of each text box play cru-
cial roles in understanding. Hence, the 2D position
should be necessarily taken into account during pre-
training. Concretely, for a given subword sDi (“D”
is the abbreviation of “Document”), we denote the
2D position as boxDi = (li, ri, ti, bi, wi, hi), where
l, r, t, b, w, h denote left, right, top, and bottom
coordinates, width and height of the text box, re-

spectively. For example, as illustrated in Figure
2(b), l, r, t, b, w, h of the text “PERSONAL” is set
to 240, 275, 80, 100, 35, and 20, respectively. Con-
sidering that most parameters are shared across
different formats, we introduce an adaptive layer
to enhance the distinction of specific prior infor-
mation. The adaptive layer is simply implemented
with a lightweight Linear-ReLU-Linear sequence
and we will discuss the effectiveness in Section 3.4.
Following (Xu et al., 2020, 2021a), we add up all
the embedding to construct the overall embedding
Emb(sDi ) as follows:

Emb(sDi ) = WordEmb(sDi ) + 1DEmb(i)

+ DocAdaptive[2DEmb(boxDi )]
(2)

2DEmb(boxDi ) = LeftEmb(li) + RightEmb(ri)

+ TopEmb(ti) + BottomEmb(bi)

+WidthEmb(wi) + HeightEmb(hi)
(3)

where “LeftEmb” denotes the embedding layer of
the left coordinates (other embedding layers follow
the same naming conventions). Please note that
the adaptive layer is not shared across different
formats and “DocAdaptive” is specifically used
for document texts.

Overall embedding for web texts Since the 2-D
layout of each website is not fixed and it highly
depends on the resolution of rendering devices, we
only employ XPath as the prior knowledge follow-
ing (Li et al., 2022a). Concretely, for each subword
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sWi (“W” is the abbreviation of “Web”), its XPath
xpathWi can be represented with a tag sequence
and a subscript sequence. Taking the text “Acura”
in Figure 2(c) as an instance, its original XPath
expression is /html/body/div/a/div/div/span[2]. Fol-
lowing MarkupLM (Li et al., 2022a), we construct
the tag sequence as [html, body, div, a, div, div,
span], representing the tag order from the root to
the current node. In addition, the subscript se-
quence is set to [0, 0, 0, 0, 0, 0, 2], where each
subscript denotes the index of a node when multiple
nodes have the same tag name under a parent node
(More explanations are shown in Appendix A). We
add the tag embedding and subscript embedding to
get the XPath embedding XPathEmb(xpathWi ).
The overall embedding can be calculated as:

Emb(sWi ) = WordEmb(sWi ) + 1DEmb(i)

+WebAdaptive[XPathEmb(xpathWi )]
(4)

Similarly, we leverage an adaptive layer “We-
bAdaptive” for better pre-training. Further, the
overall embedding is fed to shared Transformer
layers to obtain the contextual representations.

2.2 Pre-training Objectives
We employ masked language modeling (MLM) as
the pre-training task following (Devlin et al., 2018;
Liu et al., 2019; Xu et al., 2020). More specifically,
we randomly mask 15% of the input tokens, where
80% tokens are converted to a special [MASK]
token, 10% tokens are randomly replaced with
other tokens, and 10% tokens remain unchanged.
Through pre-training, the model needs to maximize
the probability of the masked tokens according to
the contextual representations.

3 Experiments

In this section, we first introduce the model con-
figuration and detail the hyperparameters in XDoc,
then introduce the pre-training strategies of XDoc.
Next, we demonstrate the experimental results on
a wide range of downstream tasks. At last, we ver-
ify the effectiveness of some designs in XDoc and
have a discussion.

3.1 Model Configurations
The proposed XDoc is initialized with
RoBERTaBASE, containing 12 Transformer
layers, 768 hidden units, and 12 attention heads.
The maximum length of each input sequence is

set to 512 with a [CLS] token and a [SEP] token
padding at the beginning and the end, respectively.
The input sequence whose length exceeds 512 will
be truncated, while the sequence shorter than 512
will be padded with [PAD] tokens.

3.2 Pre-training XDoc

Large quantities of corpus play an essential role in
learning better representations during pre-training
(Liu et al., 2019). Specifically, we utilize three
categories of datasets for pre-training, which are
detailed as follows.

Pre-training data for plain texts. We follow
(Liu et al., 2019) to leverage five English-language
corpora for pre-training, including BOOKCORPUS

(Zhu et al., 2015), English WIKIPEDIA1, CC-NEWS

(Nagel, 2016), OPENWEBTEXT (Aaron Gokaslan,
2019), and STORIES (Trinh and Le, 2018), totaling
213,713 files for pre-training.

Pre-training data for document texts. We lever-
age the large-scale scanned document image data
IIT-CDIP Test Collection 1.0 (Lewis et al., 2006)
following (Xu et al., 2020, 2021a; Huang et al.,
2022). This dataset contains 42 million document
pages, each of which is processed by OCR tools
Tesseract2 to yield the text contents and locations.
For a fair comparison with previous works, we only
use 11 million of them for pre-training. Please note
that we follow LayoutLMv3 (Huang et al., 2022)
to utilize the segment-level layout positions, where
words in a segment share the same 2D-position.

Pre-training data for web texts. Following
MarkupLM (Li et al., 2022a), we take advantage
of the large-scale dataset Common Crawl3, which
contains petabytes of web pages in raw formats.
Specifically, text contents and HTML tags are both
available for each web page. According to (Li et al.,
2022a), the authors first filtered Common Crawl
with fastText (Bojanowski et al., 2017) to remove
non-English pages, then only kept common tags
for saving disk storage, resulting in 24 million web
pages for pre-training.

Specifically, we do not use any data augmenta-
tion or ensemble strategies for pre-training. We
leverage AdamW optimizer (Loshchilov and Hut-
ter, 2019) with learning rate 5e-5 and epsilon 1e-8.
Moreover, we linearly warm up in the first 5% steps.

1https://www.wikipedia.org/
2https://github.com/tesseract-ocr/tesseract
3https://commoncrawl.org/
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# Model Pre-train Downstream Tasks

P D W MNLI-m QNLI SST-2 MRPC SQuAD1.1 / 2.0 FUNSD DocVQA WebSRC

1 RoBERTa ✓ 87.6 92.8 94.8 90.2 92.2∗ / 83.4∗ - - -
2 LayoutLM ✓ - - - - - 79.3 69.2 -
3 MarkupLM ✓ - - - - - - - 74.5

4 XDoc100K ✓ 87.0 93.0 95.2 90.1 91.9 / 83.4 70.1 64.5 58.5
5 XDoc100K ✓ 86.7 91.3 94.5 89.9 91.4 / 82.9 87.3 69.4 58.6
6 XDoc100K ✓ 86.5 92.0 94.6 90.1 91.4 / 83.1 71.6 63.6 64.8
7 XDoc100K ✓ ✓ 87.2 92.7 94.9 90.2 91.9 / 83.5 85.7 69.1 57.5
8 XDoc100K ✓ ✓ 86.4 91.6 95.3 91.0 91.7 / 83.5 85.7 69.5 65.0
9 XDoc100K ✓ ✓ 86.8 92.3 95.1 90.6 91.6 / 83.0 70.0 64.7 64.8
10 XDoc100K ✓ ✓ ✓ 86.2 92.8 95.2 91.3 91.7 / 83.0 86.4 68.3 67.0

11 XDoc500K ✓ ✓ ✓ 86.6 92.2 95.2 89.9 91.7 / 83.1 89.1 72.6 73.3
12 XDoc1M ✓ ✓ ✓ 86.8 92.3 95.3 91.1 92.0 / 83.5 89.4 72.7 74.8

Table 1: Results on downstream tasks for various document formats. P, D, and W denote whether XDoc is pre-trained
with plain, document, and web texts, respectively. Compared with methods designed for a specific format (#1∼#3),
XDoc achieves comparable or even better performance. Accuracy is used for MNLI-m, QNLI, and SST-2 for
evaluation. F1 score is used for MRPC, SQuAD, FUNSD, and WebSRC. ANLS is used for DocVQA. Digits
marked with ∗ denote that we re-implement the results since the original paper did not report them.

Experiments are conducted with 32 NVIDIA Tesla
V100 GPUs with 32GB memory. For those experi-
ments pre-trained for 100K steps, we set the batch
size to 128, while using all plain text datasets, the
subset of document text (1 million), and web text
(1 million) datasets for pre-training. Besides, we
set the batch size to 512 and leverage all datasets
for experiments pre-trained for 500K and 1M steps.
FP16 is used during pre-training for accelerating
and saving GPU memory. Within each batch, we
equally sample documents in different formats for
pre-training (see more discussions in Appendix B).

3.3 Fine-tuning on Downstream Tasks

In this subsection, we utilize a wide range of down-
stream datasets to validate the ability of pre-trained
XDoc in different formats. Specifically, for the
plain texts, we leverage the widely-used GLUE
benchmark (Wang et al., 2019) and SQuAD (Ra-
jpurkar et al., 2016, 2018). For document texts,
we use the form understanding dataset FUNSD
(Jaume et al., 2019) and question-answering dataset
DocVQA (Mathew et al., 2021). For web texts,
we utilize the question-answering dataset WebSRC
(Chen et al., 2021). In the following, we will first
introduce the downstream datasets in each format,
then demonstrate the experimental results in detail.

3.3.1 Fine-tuning on Tasks for Plain texts
Fine-tuning on GLUE benchmark We evalu-
ate XDoc on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019),

which contains 9 datasets in total for evaluating nat-
ural language understanding systems. Specifically,
4 datasets four of them, including MNLI-m, QNLI,
SST-2, and MRPC, are used for evaluation. We
fine-tune XDoc for 10 epochs with a learning rate
of 2e-5 and a batch size 16. The linear warmup is
used for the first 100 steps. We utilize accuracy as
the evaluation metric for MNLI-m, QNLI, SST-2,
and F1 score for MRPC.

The experimental results are shown in Table 1
and we leverage RoBERTaBASE (Liu et al., 2019)
as the baseline (#1). According to #4, we notice
that after pre-training with plain texts, the perfor-
mance of XDoc is almost consistent with the base-
line. It is intuitive since XDoc is initialized with
RoBERTaBASE and the continued training will
not affect the performance. Interestingly, we notice
that if XDoc is pre-trained without plain texts (refer
to #5, #6, and #8), the performance is still on par
with the baseline, indicating that the knowledge of
plain texts will not be easily forgotten when XDoc
is pre-trained using other formats.

Fine-tuning on SQUAD V1.1 and V2.0 We
further employ the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016, 2018) for
evaluation. SQuAD contains two versions: SQuAD
V1.1 and SQuAD V2.0. For V1.1, given a question,
the answer can always be retrieved in the paragraph.
By contrast, for V2.0, there are some questions that
can not be answered, which is more challenging
compared with V1.1. Specifically, XDoc is fine-
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tuned with 2 epochs for V1.1 and 4 epochs for V2.0.
We set the batch size to 16 and the learning rate to
3e-5. We use the F1 score as the evaluation metric.

We also utilize RoBERTaBASE (Liu et al., 2019)
as the baseline (#1). As is demonstrated in Table 1,
we notice that the performance does not fluctuate
much under various pre-training settings (#4∼#12).
Similar to the experiment results on the GLUE
benchmark, XDoc is capable of achieving compa-
rable performance when pre-trained in all formats
(refer to #10∼#12).

3.3.2 Fine-tuning on Task for Document texts
Fine-tuning on FUNSD We utilize the receipt
understanding dataset FUNSD (Jaume et al., 2019)
to verify the ability of XDoc. Deriving from the
RVL-CDIP dataset (Harley et al., 2015), FUNSD
contains 199 noisy scanned documents (149 sam-
ples for training and 50 for test) with 9,709 se-
mantic entities and 31,485 words. Specifically, we
focus on the entity labeling task, i.e. labeling “ques-
tion”, “answer”, “header”, or “other” in the given
receipt. Concretely, we fine-tune XDoc for 1000
steps with the a batch size 64 and a learning rate
5e-5. We utilize linear warmup for the first 100
steps. The coordinates are normalized by the size
of images following (Xu et al., 2020). F1 score is
adopted as the evaluation metric.

For a fair comparison, we choose
LayoutLMBASE (#2) (Xu et al., 2020) as
the baseline, which exploits the layout and text
knowledge for tackling visually rich document
understanding. Through the experimental results,
we observe that XDoc can outperform the baseline
by a large margin if document texts are used during
pre-training. According to #10, the performance
can be boosted by 7.1% if all formats are used
for pre-training. Besides, we notice that the
performance can be boosted further when XDoc is
trained for more steps (further increase by 3.0%
according to #12). In contrast, it is observed that
the performance will heavily deteriorate if the
document texts are absent during pre-training
(decrease by 9.3% according to #9).

Fine-tuning on DocVQA For further vali-
dating the ability of XDoc on document texts,
we utilize the document question-answering
dataset DocVQA (Mathew et al., 2021),
which contains 10,194/1,286/1,287 images
with 39,463/5,349/5,188 questions for train-
ing/validation/test sets, respectively. We follow

LayoutLMv2 (Xu et al., 2021a) to employ
Microsoft Read API to produce OCR results and
find the given answers heuristically. We evaluate
XDoc on the evaluation set and the final scores are
obtained by submitting the results to the official
website4. We fine-tune XDoc for 10 epochs with a
batch size 16 and a learning rate 2e-5. The linear
warmup strategy is used for the first 10% steps.
Following (Xu et al., 2020), we normalize the
coordinates by the size of images. We use Average
Normalized Levenshtein Similarity (ANLS) as the
evaluation metric.

As LayoutLMBASE (Xu et al., 2020) did not re-
port the results on DocVQA, we borrow the ANLS
score from LayoutLMv2 (Xu et al., 2021a). Sim-
ilar to the experimental results on FUNSD, we
observe that the performance of XDoc highly de-
pends on the participation of document texts during
pre-training. For example, if XDoc is pre-trained
without document texts, the performance drops by
4.7%, 5.6%, and 4.5% according to #4, #6, and
#9. When pre-training with 100K steps using all
formats, XDoc obtains comparable performance
(refer to #10). Furthermore, XDoc outperforms
the baseline when training with more training steps
(refer to #11 and #12).

3.3.3 Fine-tuning on Task for Web Texts
Fine-tuning on WebSRC We employ the
Web-based Structural Reading Comprehension
dataset (WebSRC) (Chen et al., 2021) to ver-
ify the ability of XDoc on web texts. It con-
tains 440K question-answer pairs collected from
6.5K web pages. The HTML source code,
screenshots, and metadata are available in this
dataset. The training/validation/test parts consist of
307,315/52,826/40,357 question-answer pairs. The
answer is either a text span in the given web page
or yes/no. We fine-tune XDoc for 5 epochs with
a batch size 16, a learning rate 5e-5, and a linear
warmup rate 0.1. F1 score is used as the metric.

We use MarkupLMBASE (Li et al., 2022a) as
the baseline (#3). When XDoc is only pre-trained
for 100K steps, we notice that the performance is
subpar compared with the baseline. It is intuitive
since MarkupLM is pre-trained with three pretext
tasks, including masked language modeling, node
relation prediction, and title-page matching. Inter-
estingly, we observe that when training for more
steps (#12), the performance of XDoc surpasses

4https://rrc.cvc.uab.es/?ch=17
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Init MNLI-m FUNSD WebSRC Avg

Scratch 75.4 78.8 29.2 61.1
RoBERTa 86.2 86.4 57.5 76.7

Table 2: Results on the initialization of XDoc.

Layers MNLI-m FUNSD WebSRC Avg

0 86.4 85.0 54.7 75.4
1 86.2 86.4 57.5 76.7
2 86.7 84.8 55.0 75.5
3 86.4 86.1 55.7 76.1

1† 86.4 84.8 57.3 76.2

Table 3: Results on the symmetry and number of adap-
tive layers. † means that the document and web branches
share the same adaptive layers.

the baseline. Similarly, it is observed that the per-
formance will drop heavily if web texts are absent
during pre-training (refer to #4, #5, and #7).

3.4 Discussions

In this subsection, we conduct experiments to vali-
date the effectiveness of the components or training
strategies in XDoc. Unless specified otherwise, all
experiments are pre-trained with 3M data (1M for
each format) for 100K steps. Moreover, we discuss
the parameter and time efficiency.

The initialization of XDoc We try to randomly
initialize the parameters of XDoc with normal dis-
tribution and the results are demonstrated in Table
2. We observe that XDoc trained from scratch
performs worse on downstream tasks, e.g. the per-
formance drops by 10.8% for MNLI-m, 7.6% for
FUNSD, and 28.3% for WebSRC. Therefore, we
choose to initialize XDoc with RoBERTaBASE for
better pre-training.

The symmetry and number of adaptive layers
We utilize adaptive layers, which are implemented
by a sequence of Linear and ReLU layers, to en-
hance the representations of different parts such as
the 2D position and XPath embedding. Here we
attempt to explore the symmetry and the number of
adaptive layers. In detail, “symmetry” means the
document and web branches share the same adap-
tive layers. Additionally, we denote the number of
layers as the number of ReLU layers (e.g. Layers=2
means Linear-ReLU-Linear-ReLU-Linear and Lay-
ers=0 means no adaptive layers are used). As is
demonstrated in Table 3, we notice that the average

performance reaches the best if only one adaptive
layer is used. Moreover, if we apply different adap-
tive layers to the document and web branches, the
average performance can be boosted by 0.5% com-
pared with the counterpart (76.2%).

Parameter efficiency We demonstrate some
analysis of parameters in Table 4. We observe
that the word embedding and Transformer layers
contain most of the parameters (124M), e.g. oc-
cupy 96.9%, 94.7%, and 89.2% of all the param-
eters for RoBERTaBASE, LayoutLMBASE, and
MarkupLMBASE, respectively. By sharing the
word embedding, 1D position embedding, and
Transformer layers across multiple text formats,
the proposed XDoc is efficient in terms of parame-
ter usage. In detail, the total amount of parameters
is 398M for three single models, while XDoc only
contains 146M parameters (146M/398M≈36.7%)
but can be used for downstream tasks in multiple
formats. Besides, the newly introduced adaptive
layers only contain 4M parameters, which is almost
negligible for the whole model (2.7%).

Time efficiency Apart from the newly introduced
adaptive layer, the architecture of XDoc is similar
to those models targeting one specific document
format. Since the adaptive layer is lightweight, it
will not take much time overhead. For example,
when conducting inference on the DocVQA dataset,
it costs 45 ms for a batch while the adaptive layer
only consumes negligible 0.8 ms (1.8%). Hence,
XDoc is efficient in terms of the time cost.

4 Related Work

In this section, we review the pre-trained methods
for document understanding, ranging from plain,
document, and web texts, respectively.

Pre-trained methods for plain texts The un-
derstanding of plain texts through pre-training has
been extensively studied during the last decade (De-
vlin et al., 2018; Yang et al., 2019; Bao et al., 2020;
Liu et al., 2019; Lewis et al., 2020; Lan et al., 2019;
Jiang et al., 2020; He et al., 2021; Dong et al., 2019;
Lample and Conneau, 2019; Lin et al., 2021). For
example, GPT (Radford et al., 2019; Brown et al.,
2020) utilizes Transformer (Vaswani et al., 2017) to
conduct single-director masked-word prediction in
an unsupervised manner. Besides, BERT (Devlin
et al., 2018) utilizes two self-supervised tasks, in-
cluding mask language modeling and next sentence
prediction to obtain the robust representations of
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Methods
Word 1D Position Transformer 2D Position XPath Adaptive Total
39M 4M 85M 3M 11M 4M

RoBERTa ✓ ✓ ✓ - - - 128M
LayoutLM ✓ ✓ ✓ ✓ - - 131M
MarkupLM ✓ ✓ ✓ - ✓ - 139M

XDoc ✓ ✓ ✓ ✓ ✓ ✓ 146M

Table 4: Analysis of the parameter efficiency. XDoc shares most parameters across different formats, including
word embedding, 1D position embedding, and Transformer layers. We omit some layers that contain negligible
parameters such as segment embedding layers and LayerNorm layers. All the comparison models are in base size.

words based on Transformer. SpanBERT (Joshi
et al., 2020) and ERNIE (Zhang et al., 2019) try
to mask consecutive text spans so as to construct
a more challenging pre-train task. In (Dong et al.,
2019), the authors used different kinds of attention
masks to enable one-direction and bi-direction at-
tending. XLNet (Yang et al., 2019) introduces gen-
eralized autoregressive pre-training framework that
utilizes a permutation language modeling objective.
ELECTRA (Clark et al., 2020) first samples some
candidates for the masked words and then uses a
discriminator to predict whether a given token is
replaced.

Pre-trained methods for document texts Bene-
fiting from the public large-scale document dataset
(Lewis et al., 2006), pre-training has become the de
facto standard for analyzing document texts (Zhang
et al., 2020; Wang et al., 2021; Li et al., 2021b; Xu
et al., 2021b; Li et al., 2022b; Appalaraju et al.,
2021; Garncarek et al., 2021; Gu et al., 2022b,a;
Wu et al., 2021; Wang et al., 2022a). LayoutLM
(Xu et al., 2020) makes the first attempt to com-
bine the Layout knowledge during pre-training
to obtain robust contextual features for document
texts. Based on LayoutLM, LayoutXLM (Xu et al.,
2021b) utilizes multilingual document text datasets
for pre-training. StructuralLM (Li et al., 2021a)
jointly utilizes cell and layout information from
scanned documents to make the representations
more robust. LayoutLMv2 (Xu et al., 2021a) in-
troduces a multi-modal architecture by combining
additional image tokens in the Transformer. BROS
(Hong et al., 2022) utilizes the token-masking and
area-masking strategies for tackling information
extraction tasks. XYLayoutLM (Gu et al., 2022b)
proposes an Augmented XY-Cut algorithm to ex-
ploit proper reading orders during pre-training. Re-
cently, LayoutLMv3 (Huang et al., 2022) pre-trains
the text branch and image branch simultaneously

using Mask Language Modeling and Mask Image
Modeling tasks, which makes it a robust model for
tackling text-centric and image-centric tasks.

Pre-trained methods for web texts Compared
with plain and document text analysis, the under-
standing of web texts is less studied and is more
challenging since the layout of each website is not
fixed (i.e. depending on the resolution of devices).
MarkupLM (Li et al., 2022a) takes the first attempt
to incorporate web-based knowledge during pre-
training while utilitzing three pretext tasks, includ-
ing masked language modeling, node relation pre-
diction, and title-page matching. Further, based on
MarkupLM, DoM-LM (Deng et al., 2022) intro-
duces a new pre-training task predicting masked
HTML node. WebFormer (Wang et al., 2022b) si-
multaneously feeds text features and image features
to the multi-modal Transformer while constructing
rich attention patterns between these tokens.

Generally, although the mentioned methods
show impressive performance in one specific for-
mat, they can not be transferred to tackle other
formats. To mitigate this problem, the proposed
XDoc is a scalable and flexible framework that is
friendly to a wide range of formats, thus bringing
much convenience for people.

5 Conclusion and Future Work

In this paper, we propose XDoc, a unified frame-
work that can tackle multiple document formats
(e.g. plain, document, and web texts) in one model.
For parameter efficiency, XDoc shares most param-
eters, including the word embedding, 1D position
embedding, and Transformer layers, across differ-
ent document formats. The experimental results
show that with only 36.7% parameters, XDoc can
achieve comparable or even better performance
on downstream tasks spanning various document
formats. For future work, we will consider exploit-
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ing the image features during pre-training to tackle
image-centric tasks and designing more unified pre-
training tasks for various document formats.

Limitations

As XDoc only leverages the text and layout infor-
mation for pre-training, it is not suitable to tackle
some image-centric tasks such as page object detec-
tion. For example, we can append some image to-
kens in Transformers (for plain text, we can simply
use [PAD] tokens since there are no image features)
and conduct cross-attention with text tokens. Be-
sides, XDoc only uses masked language modeling
as the only pre-training task in this version. For fu-
ture work, we will consider designing more unified
pre-training tasks for various document formats.
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A Details of XPath embedding

As is illustrated in Figure 4, each web page can be
represented as a DOM (Document Object Model)
tree based on the corresponding HTML source
code. In addition, XPath is a query language for se-
lecting nodes based on the DOM tree. For example,
the XPath of the text “Tom” can be represented as
“/html/body/div/span[2]”, where the texts denote
the order of tag name traversed from the root node
and the subscripts stand for the index of a node
when more than one nodes have the same tag name
under a parent node. For those tags without sub-
scripts, we simply set the subscripts to 0. Following
MarkupLM, we filter some unimportant tags and
only reserve some common tags such as <html>,
<body>, <div>, <span>, <li>, <a>, etc.

To construct the XPath embedding for a given
subword sWi , we first denote its XPath as xpathWi
= [(tag1, sub1), (tag2, sub2), ..., (tagD, subD)],
where D means the maximum depth of the se-
quence, while tagj and subj denotes the tag name
and subscript at the j-th depth, respectively. For
example, we represent the XPath of the text “Tom”
as [(html, 0), (body, 0), (div, 0), (span, 2)]. Sub-
sequently, for each pair (tagj , subj) at depth j, we
calculate its embedding tsj by adding up the tag
embedding and subscript embedding:

tsj = TagEmbj(tagj) + SubEmbj(subj) (5)

Please note that the embedding layer of tags and
subscripts vary across different depths. Finally, we
concatenate the embedding of all pairs to construct
the XPath embedding:

XPathEmb(xpathWi ) = [ts1; ts2; ...; tsD]
(6)

Figure 4: Illustrations of the way to construct XPath
based on the corresponding HTML source code. Some
examples of XPath are indicated using red arrows.

B Balance of Pre-training Data

We attempt to use different sampling ratios for dif-
ferent formats during pre-training and the experi-
mental results are shown in Table 5. For example,
“3:1:1” denotes that there are approximately 60%
plain texts, 20% document texts, and 20% web
texts in a batch. We notice that the average per-
formance reaches the best (76.7%) if we use the
balanced sampling strategy. Interestingly, we ob-
serve that the sampling ratio with respect to one
specific format does not positively correlate with
the performance. For instance, when “P:D:W” is
set to 1:1:3, the performance on WebSRC is the
worst (55.4%) among all experiments.

P:D:W MNLI-m FUNSD WebSRC Avg

1:1:1 86.2 86.4 57.5 76.7
3:1:1 86.7 83.8 56.7 75.7
1:3:1 86.7 84.8 56.6 76.0
1:1:3 87.1 83.7 55.4 75.4

Table 5: Results on the balance of pre-training datasets.
P:D:W denotes the ratio of plain, document, and web
texts in a batch, respectively.
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