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Abstract

We introduce a new Slovak masked language
model called SlovakBERT. This is to our best
knowledge the first paper discussing Slovak
transformers-based language models. We eval-
uate our model on several NLP tasks and
achieve state-of-the-art results. This evalua-
tion is likewise the first attempt to establish a
benchmark for Slovak language models. We
publish the masked language model, as well as
the fine-tuned models for part-of-speech tag-
ging, sentiment analysis and semantic textual
similarity.

1 Introduction

Fine-tuning pre-trained large-scale language mod-
els (LMs) is the dominant paradigm of current NLP.
LMs proved to be a versatile technology that can
help to improve performance for an array of NLP
tasks, such as parsing, machine translation, text
summarization, sentiment analysis, semantic simi-
larity etc. The state-of-the-art performance makes
LMs attractive for any language community that
wants to develop its NLP capabilities. In this paper,
we concern ourselves with the Slovak language and
address the lack of language models, as well as the
lack of established evaluation standards for this
language.

In this paper, we introduce a new Slovak-only
transformers-based language model called Slovak-
BERT1. Although several multilingual models al-
ready support Slovak, we believe that developing
Slovak-only models is still important, as it can lead
to better results and more compute and memory-
wise efficient processing of the Slovak language.
SlovakBERT has RoBERTa architecture (Liu et al.,
2019) and it was trained with a Web-crawled cor-
pus.

Since no standard evaluation benchmark for Slo-
vak exists, we created our own set of tests mainly

1Available at https://github.com/gerulata/
slovakbert

from pre-existing datasets. We believe that our
evaluation methodology might serve as a standard
benchmark for the Slovak language in the future.
We evaluate SlovakBERT with this benchmark and
we also compare it to other available (mainly mul-
tilingual) LMs and other existing approaches. The
tasks we use for evaluation are: part-of-speech tag-
ging, semantic textual similarity, sentiment analysis
and document classification. We also publish the
best-performing models for selected tasks. These
might be used by other Slovak researchers or NLP
practitioners in the future as strong baselines.

Our main contributions in this paper are:

• We published a Slovak-only LM trained on a
Web corpus.

• We established an evaluation methodology for
the Slovak language and we apply it on our
model, as well as on other LMs.

• We published several fine-tuned models based
on our LM, namely a part-of-speech tagger,
a sentiment analysis model and a sentence
embedding model.

• We published several additional datasets for
multiple tasks, namely sentiment analysis test
sets and semantic similarity translated datasets
(including a manually translated test set).

The rest of this paper is structured as follows: In
Section 2 we discuss related work about language
models and their language mutations. In Section 3
we describe the corpus crawling efforts and how
we train SlovakBERT with the resulting corpus. In
Section 4 we evaluate the model with four NLP
tasks.

2 Related Work

2.1 Language Models

LMs today are commonly based on self-attention
layers called transformers (Vaswani et al., 2017).
Despite the common architecture, the models might
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differ in the details of their implementation, as well
as in the task they are trained with (Xia et al., 2020).
Perhaps the most common task is the so-called
masked language modeling (Devlin et al., 2019a),
where randomly selected parts of text are masked
and the model is expected to fill these parts with
the original tokens. Masked language models are
useful mainly as backbones for further fine-tuning.
Another approach is to train generative autoregres-
sive models (Radford et al., 2019), which always
predict the next word in a sequence, which can
be used for various text generation tasks. Variants
of LMs exist that attempt to make them more ef-
ficient (Clark et al., 2020; Jiao et al., 2020), able
to handle longer sentences (Beltagy et al., 2020) or
fulfill various other requirements.

2.2 Availability in Different Languages
English is the most commonly used language in
NLP and a de facto standard for experimental
work. Most of the proposed LM variants are in-
deed trained and evaluated only on English. Other
languages usually have at most only a few LMs
trained, usually with a very safe choice of model
architecture (e.g. BERT or RoBERTa). Languages
with available native models are, to name only a
few, French (Martin et al., 2020), Dutch (Delobelle
et al., 2020), Greek (Koutsikakis et al., 2020), Ara-
bic (Antoun et al., 2020), Czech (Sido et al., 2021)
or Polish (Dadas et al., 2020).

There is no Slovak-specific large-scale LM avail-
able so far. There is a Slovak version of WikiB-
ERT model (Pyysalo et al., 2021), but it is trained
only on texts from Wikipedia, which is not a large
enough corpus for proper language modeling at this
scale. The limitations of this model will be shown
in the results as well.

2.3 Multilingual Language Models
Multilingual LMs are sometimes proposed as an al-
ternative to training language-specific LMs. These
LMs can handle more than one language, in prac-
tice often more than 100. Training them is more ef-
ficient than training separate models for all the lan-
guages. Additionally, cross-lingual transfer learn-
ing might improve the performance with the lan-
guages being able to learn from each other. This is
especially beneficial for low-resource languages.

The first large-scale multilingual LM is
MBERT (Devlin et al., 2019a) trained on 104 lan-
guages. The authors observed that by simply expos-
ing the model to data from multiple languages, the

model was able to discover the multilingual signal
and it spontaneously developed interesting cross-
lingual capabilities, i.e. sentences from different
languages with similar meanings also have simi-
lar representations. Other models explicitly use
multilingual supervision, e.g. dictionaries, parallel
corpora or machine translation systems (Conneau
and Lample, 2019; Huang et al., 2019). XLM-
R (Conneau et al., 2020) pushed the performance
of multilingual LMs even further by increasing the
scale of training by using Web-crawled data and a
larger amount of compute.

3 Training

In this section, we describe our own Slovak masked
language model – SlovakBERT, the data that were
used for training, the architecture of the model and
how it was trained.

3.1 Data

We used a combination of available corpora and
our own Web-crawled corpus as our training data.
The available corpora we used were: Wikipedia
(326MB of text), Open Subtitles (415MB) and OS-
CAR 2019 corpus (4.6GB). We crawled .sk top-
level domain webpages, applied language detection
and extracted the title and the main content of each
page as clean text without HTML tags (17.4GB).
The text was then processed with the following
steps:

• URL and email addresses were replaced with
special tokens.

• Elongated punctuation was reduced, i.e. if
there were sequences of the same punctuation
mark, these were reduced to one mark (e.g. --
to -).

• Markdown syntax was deleted.
• All text content in braces {.} was eliminated

to reduce the amount of markup and program-
ming language text.

We segmented the resulting corpus into sen-
tences and removed duplicates to get 181.6M
unique sentences. In total, the final corpus has
19.35GB of text.

3.2 Model Architecture and Training

The model itself is a RoBERTa model (Liu et al.,
2019). The details of the architecture are shown
in Table 1 in the SlovakBERT column. We use
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BPE (Sennrich et al., 2016) tokenizer with the vo-
cabulary size of 50264. The model was trained
for 300k training steps (≈70 epochs) with a batch
size of 512. Each epoch consists of approximately
4277 training steps. Samples were limited to a
maximum of 512 tokens and for each sample, we
fit as many full sentences as possible. We used
Adam optimization algorithm (Kingma and Ba,
2015) with 5×10−4 learning rate and 10k warmup
steps. Dropout (dropout rate 0.1) and weight decay
(λ = 0.01) were used for regularization. We used
fairseq (Ott et al., 2019) library for training,
which took approximately 248 hours on 4 NVIDIA
A100 GPUs. We used 16-bit float precision.

4 Evaluation

In this section, we describe the evaluation method-
ology and results for SlovakBERT and other LMs.
We conducted the evaluation on four different tasks:
part-of-speech tagging, semantic textual similarity,
sentiment analysis and document classification. For
each task, we introduce the dataset that is used, var-
ious baseline solutions, the LM-based approach we
took and the final results for the task. For some
tasks (part-of-speech tagging and semantic textual
similarity) we also performed layer-wise model
analysis.

4.1 Evaluated Language Models

We evaluate and compare several LMs that support
Slovak language to some extent:

XLM-R (Conneau et al., 2020) - XLM-R is a
suite of multilingual RoBERTa-style LMs. The
models support 100 languages, including Slovak.
Training data are based on CommonCrawl Web-
crawled corpus. The Slovak part has 23.2 GB (3.5B
tokens). The XLM-R models differ in their size,
ranging from Base model with 270M parameters
to XXL model with 10.7B parameters.

MBERT (Devlin et al., 2019b) - MBERT is a
multilingual version of the original BERT model
trained with Wikipedia-based corpus containing
104 languages. The authors do not mention the
amount of data for each language, but considering
the size of Slovak Wikipedia, we assume that the
Slovak part has tens of millions of tokens.

WikiBERT (Pyysalo et al., 2021) - WikiBERT
is a series of monolingual BERT-style models
trained on dumps of Wikipedia. The Slovak model

was trained with 39M tokens.

Note that both XLM-R and MBERT models
were trained in a cross-lingually unsupervised man-
ner, i.e. no additional signal about how sentences
or words from different languages relate to each
other was provided. The models were trained with
a multilingual corpora only, although language bal-
ancing was performed.

In Table 1 we provide basic quantitative mea-
sures for all the models. We compare their ar-
chitecture and training data, and we also measure
tokenization productivity (how many tokens are
generated from given text) on Universal Depen-
dencies (Nivre et al., 2020) train set. We show the
average length of tokens for each model. Longer
tokens are considered to be better because they can
be more semantically meaningful and also because
they are more computationally efficient. We also
show how many unique tokens were used (effective
vocabulary) for the tokenization of this particular
dataset. Multilingual LMs have a smaller portion
of their vocabulary used since they contain many
tokens useful mainly for other languages, but not
for Slovak. These tokens are effectively redundant
for Slovak text processing.

4.2 Part-of-Speech Tagging

The goal of part-of-speech (POS) tagging is to as-
sign a certain POS tag to each word. This task
mainly evaluates the syntactic capabilities of the
models.

4.2.1 Data
We use Slovak Dependency Treebank from Uni-
versal Dependencies dataset (Zeman, 2017; Nivre
et al., 2020) (UD). It contains annotations for both
Universal (UPOS, 17 tags) and Slovak-specific
(XPOS, 19 tags) POS tagsets. XPOS uses a more
complicated system and it encodes not only POS
tags, but also other morphological categories in the
label. In this work, we only use the first letter from
each XPOS label, which corresponds to a typical
POS tag. The tagsets and their relations are shown
in Table 8.

4.2.2 Previous work
Since Slovak is an official part of the UD dataset,
systems that attempt to cover multiple or all UD
languages often support Slovak as well. The follow-
ing systems were trained on UD data and support
both UPOS and XPOS tagsets:
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Model SlovakBERT XLM-R-Base XLM-R-Large MBERT WikiBERT
Architecture RoBERTa RoBERTa BERT BERT
Num. layers 12 12 24 12 12
Num. attention head 12 12 16 12 12
Hidden size 768 768 1024 768 768
Num. parameters 125M 278M 560M 178M 102M
Languages 1 100 100 104 1
Training dataset size (tokens) 4.6B 167B n/a 39M
Slovak dataset size (tokens) 4.6B 3.2B 25-50M 39M
Vocabulary size 50K 250K 120K 20K

Universal Dependencies train set tokenization
Average token length (chars) 3.23 2.84 2.40 2.70
Average word length (tokens) 1.43 1.63 1.93 1.71
Effective vocabulary 16.6K 9.6K 6.7K 5.8K
Effective vocabulary (%) 33.05 3.86 5.62 29.10

Table 1: Basic statistics about the evaluated LMs.

UDPipe 2 (Straka, 2018) - A deep learning
model based on multilayer bidirectional LSTM
architecture with pre-trained Slovak word embed-
dings. The model supports multiple languages, but
the models themselves are monolingual.

Stanza (Qi et al., 2020) - Stanza is a very similar
model to UDPipe, it is also based on multilayer
bidirectional LSTM with pre-trained word embed-
dings.

Trankit (Nguyen et al., 2021) - Trankit is
based on adapter-style fine-tuning (Bapna and
Firat, 2019) of XLM-R-Base. The adapters are
fine-tuned for specific languages and they are able
to handle multiple tasks at the same time.

4.2.3 Our Fine-Tuning

We use a standard setup for fine-tuning the LMs
for token classification. The final layer of an LM
that is used to predict the masked tokens is dis-
carded. A classifier linear layer with dropout and
softmax activation function is used in its place to
generate a probability vector for each token. The
loss function for the batch of samples is defined
as an average cross-entropy across all the tokens.
Note that there is a discrepancy between what we
perceive as words and what the models use as to-
kens. Some words might be tokenized into multiple
tokens. In that case, we only make the prediction
on the first token, and the final classifier layer is not
applied to the subsequent tokens for this word. We
use Hugging Face Transformers library
for LM fine-tuning.

Model UPOS XPOS
UDPipe 2.0 92.83 94.74
UDPipe 2.6 97.30 97.87
Stanza 96.03 97.29
Trankit 97.85 98.03
WikiBERT 94.41 96.54
MBERT 97.50 98.03
XLM-R-Base 97.61 98.23
XLM-R-Large 97.96 98.34
SlovakBERT 97.84 98.37

Table 2: Results for POS tagging (accuracy).

4.2.4 Results
We have performed a random hyperparameter
search with SlovakBERT. The range of individual
hyperparameters is shown in Table 6. We have
found out that weight decay is a beneficial regu-
larization technique, while label smoothing proved
itself to be inappropriate for our case. Other hy-
perparameters showed to have very little reliable
effect, apart from the learning rate, which proved to
be very sensitive. We have not repeated this tuning
for other LMs, instead, we only tuned the learning
rate. We have found out that it is appropriate to use
a learning rate of 1× 10−5 for all the models, but
XLM-R-Large. XLM-R-Large, the biggest model
we tested, needs a smaller learning rate of 1×10−6.

The results for POS tagging are shown in Ta-
ble 2. We report accuracy for both XPOS and
UPOS tagsets. WikiBERT seems to be the worst-
performing LM, probably because of its small train-
ing set. SlovakBERT seems to be on par with larger
XLM-R-Large. Other models lag behind slightly.
From the existing solutions, only transformers-
based Trankit seems to be able to keep up.

We measured the POS performance for Slovak-
BERT checkpoints (a checkpoint was made each
1000 steps) as well to see how soon the model ac-
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Figure 1: Analysis of POS tagging learning dynamics.
Left: Accuracy after fine-tuning the different check-
points. Right: Accuracy of probes on all the layers of
different checkpoints. Each line represents one check-
point and its results on all the layers.

quired basic morphosyntactic capabilities. We can
see in Figure 1, that the model was saturated w.r.t
POS performance quite soon, after approximately
15k steps (≈3.5 epochs). We stopped the analysis
after the first 125k steps (≈30 epochs) since the
results seemed to be stable.

4.2.5 Probing

We performed probing by training linear classi-
fier on representations from individual layers of
frozen models (Belinkov et al., 2017). We show
the performance of these probes for all the layers
for checkpoints from SlovakBERT training in Fig-
ure 1. The probing is done on models that are not
fine-tuned for POS tagging. Layer-wise, the perfor-
mance peaks quite soon at layer 6 and then plateaus.
The last layers even have degraded performance.
The results are in accord with the current under-
standing of how LMs work, i.e. that they process
text in a bottom-up manner and the morphosyn-
tactic information needed for POS tagging is be-
ing processed mainly in the middle layers (Tenney
et al., 2019). We can also see that the performance
for individual layers peaks quite soon during the
training, with a slight lag for earlier layers.

4.3 Semantic Textual Similarity

Semantic textual similarity (STS) is an NLP task
where similarity between pairs of sentences is mea-
sured. In our work, we train the LMs to generate
sentence embeddings and then we measure how
much the cosine similarity between embeddings
correlates with the ground truth labels provided by
human annotators. We can use the resulting mod-
els to generate universal sentence embeddings for
Slovak.

4.3.1 Data
Currently, there is no native Slovak STS dataset.
We decided to machine translate existing English
datasets STSbenchmark (Cer et al., 2017) and
SICK (Marelli et al., 2014) into Slovak. These
datasets use a ⟨0, 5⟩ scale that expresses the simi-
larity of two sentences. The meaning of individual
steps on this scale is shown in Table 9. We used
M2M100 (1.2B parameters variant) machine trans-
lation system (Fan et al., 2021). The test set from
STSbenchmark was manually translated by the au-
thors. These translations were used for evaluation
only and are published as well.

4.3.2 Previous Work
No Slovak-specific sentence embedding model has
been published yet. We use a naive solution based
on Slovak word embeddings and several available
multilingual models for comparison:

fastText (Bojanowski et al., 2017) - We use pre-
trained Slovak fastText word embeddings to gener-
ate representations for individual words. The sen-
tence representation is an average of all its words.
This represents a very naive baseline since it com-
pletely omits the word order.

LASER (Artetxe and Schwenk, 2019) - LASER
is a model trained to generate multilingual sentence
embeddings. It is based on an encoder-decoder
LSTM machine translation system that is trained
with 93 languages. The encoder is shared across
all the languages and as such, it is able to generate
multilingual representations.

LaBSE (Feng et al., 2020) - LaBSE is an
MBERT model fine-tuned with parallel corpus to
produce multilingual sentence representations.

XLM-REN (Reimers and Gurevych, 2020) -
XLM-R model fine-tuned with English STS-related
data (SNLI, MNLI and STSbenchmark datasets).
This is a zero-shot cross-lingual learning setup,
i.e. no Slovak data are used and only English fine-
tuning is done.

4.3.3 Our Fine-Tuning
We use a setup similar to (Reimers and Gurevych,
2020). A pre-trained LM is used to initialize a
Siamese network. Both branches of the network
are identical LMs with a mean-pooling layer at
the top that generates the final sentence embed-
dings. The embeddings from the two sentences are
compared using cosine similarity. The network is
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Translation
Model Manual M2M100
fastText 0.366 0.383
LASER 0.706 0.711
LaBSE 0.730 0.739
XLM-REN 0.804 0.801
WikiBERT 0.652 0.673
MBERT 0.726 0.734
XLM-R-Base 0.785 0.791
XLM-R-Large 0.794 0.790
SlovakBERT 0.793 0.799

Table 3: Spearman correlation between cosine similarity
of generated representations and desired similarities on
STSbenchmark dataset translated to Slovak.

trained as a regression model, i.e. the final com-
puted similarity is compared with the ground truth
similarity with mean squared error loss function.
We use SentenceTransformers library for
the fine-tuning.

4.3.4 Results
We compare the systems using Spearman correla-
tion between the cosine similarity of the generated
sentence representations and the ground truth data.
The original STS datasets are using ⟨0, 5⟩ scale.
We normalize these scores to ⟨0, 1⟩ range so that
they can be directly compared to the cosine simi-
larities. We performed a hyperparameter search in
this case as well. Again, we have found out that
the results are quite stable across various hyper-
parameter values, with the learning rate being the
most sensitive hyperparameter. The details of the
hyperparameter tuning are shown in Table 7. We
show the main results in Table 3.

We can see that the results are fairly similar to
POS tagging w.r.t. how the LMs are relatively or-
dered. The existing solutions are worse, except
for XLM-REN trained with English data, which
is actually the best-performing model in our ex-
periments. It seems that their model fine-tuned
with real data without machine-translation-induced
noise works better, even if it has to perform the
inference cross-lingually on Slovak data. We have
found out that manual translation of the test set did
not yield significantly different results compared
to machine translation, despite the fact that most
of the machine-translated samples were quite noisy
according to our manual inspection. This shows
that we can measure how good STS systems are
even with noisy machine-translated data.

We also experimented with Slovak-translated
NLI data in a way where the model was first fine-
tuned on the NLI task and then the final STS fine-
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Figure 2: Analysis of STS learning dynamics. Left:
Spearman correlation after fine-tuning with various
checkpoints. Right: Spearman correlation on all the
layers with selected checkpoints. Each line represents
one checkpoint and its results on all the layers.

tuning was performed. However, we were not able
to outperform the purely STS fine-tuning with this
approach and the results remained virtually the
same. This result is in contrast with the usual case
for English training, where the NLI data regularly
improve the results (Reimers and Gurevych, 2019).
We theorize that this effect might be caused by
noisy machine translation.

Figure 2 shows the learning dynamics of STS.
On the left, we can see that the performance takes
much longer to plateau than in the case of POS.
This shows that the model needs longer time to
learn about semantics. Still, we can see that the
performance ultimately stabilizes just below 0.8
score.

We also performed a layer-wise analysis, where
we analyzed which layers have the most viable
representations for this task. We conducted the
mean-pooling at different layers and ignored all
the subsequent layers. We can see that the best-
performing layers are actually the last layers of the
model.

4.4 Sentiment Analysis
The goal of sentiment analysis is to identify the
affective sentiment of a given text. It requires se-
mantic analysis of the text, as well as a certain
amount of emotional understanding.

4.4.1 Data
We use a Twitter-based dataset (Mozetič et al.,
2016) annotated on a scale with three values: nega-
tive, neutral and positive. Some of the tweets have
already been removed since the dataset was created.
Therefore, we work with a subset of the original
dataset.

We cleaned the data by removing URLs, retweet
prefixes, hashtags, user mentions, quotes, asterisks,
redundant whitespaces and trailing punctuation.
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We have also deduplicated the samples, as there
were cases of identical samples (i.e. retweets) or
very similar samples (i.e. automatically generated
tweets). These duplicates had in some cases differ-
ent labels. After the deduplication, we were left
with 41084 tweets with 11160 negative samples,
6668 neutral samples and 23256 positive samples.

Additionally, we have also manually annotated a
series of test sets containing reviews from various
domains: accommodation, books, cars, games, mo-
biles and movies. Each domain has approximately
100 manually labeled samples. These are published
along with this paper. They serve to check how
well the model behavior transfers to other domains.
This dataset is called Reviews in the results below,
while the original Twitter-based dataset is called
Twitter.

4.4.2 Previous Work and Baselines
The original paper introducing the Twitter dataset
introduced an array of traditional classifiers (Naive
Bayes and 5 SVM variants) to solve the task. The
authors report macro-F1 score for positive and neg-
ative classes only. Additionally, unlike us, they
worked with the whole dataset. Approximately
10K tweets have been deleted since the dataset was
introduced. (Pecar et al., 2019) use the same ver-
sion of the dataset as we do. They use approaches
based on word embeddings and ELMO (Peters
et al., 2018) to solve the task. Note that both pub-
lished works use cross-validation, but no canonical
dataset split is provided in either of them.

There are several existing approaches we use for
comparison:

NLP4SK2 - A rule-based sentiment analysis sys-
tem for Slovak that is available online

Amazon - We also translated the Slovak data
into English and used Amazon’s commercial
sentiment analysis API and tested its performance
on our test sets.

We implemented several baseline classifiers that
were trained with the same training data as the LMs
in our experiments:

TF-IDF linear classifier - A perceptron trained
with SGD algorithm. The text is represented with
TF-IDF using N-grams as basic text units.

2http://arl6.library.sk/nlp4sk/webapi/
analyza-sentimentu

fastText classifier - We used the built-in fastText
classifier with and without pre-trained Slovak word
embedding models.

Our STS embedding linear classifier - A
perceptron trained with SGD algorithm. The text is
represented using the sentence embedding model
we have trained for STS.

We performed a random search hyperparameter
optimization for all the approaches.

4.4.3 Our Fine-Tuning
We fine-tuned the LMs as classifiers with 3 classes.
The topmost layer of an LM is discarded and in-
stead, a multilayer perceptron classifier with one
hidden layer and dropout is applied to the repre-
sentation of the first token. The categorical cross-
entropy loss function is used as the loss function.
The class with the highest probability coming from
the softmax function is selected as the predicted
label during inference. We use Hugging Face
Transformers library for fine-tuning.

4.4.4 Results
We report macro-F1 scores for all three classes as
our main performance measure. The LMs were
trained on the Twitter dataset. We calculate the av-
erage F1 from our Reviews dataset as an additional
measure.

Again, we have performed a hyperparameter op-
timization of SlovakBERT. The results are similar
to results from POS tagging and STS. We have
found out that the learning rate is the most sen-
sitive hyperparameter and that a small amount of
weight decay is a beneficial regularization. The
main results are shown in Table 4. We can see that
we were able to obtain better results than the re-
sults that had been reported previously. However,
the comparison is not perfect, as we use slightly
different datasets for the aforementioned reasons.

The LMs are ordered in performance similarly
to how they are ordered in the two previous tasks.
SlovakBERT seems to be among the best perform-
ing models, along with the larger XLM-R-Large.
The LMs were also able to successfully transfer
their sentiment knowledge to new domains and
they achieve up to 0.617 macro-F1 in the reviews
as well. However, both Amazon commercial sen-
timent API and NLP4SK have even better scores,
even though their performance on Twitter data was
not very impressive. This is probably caused by the
underlying training data they use in their systems,
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Model Twitter F1 Reviews F1
3-class 2-class 3-class

(Mozetič et al., 2016)* - 0.682 -
(Pecar et al., 2019)* 0.669 - -
Amazon 0.502 0.472 0.766
NLP4SK 0.489 0.468 0.815
TF-IDF 0.571 0.603 0.412
fastText 0.591 0.622 0.416
fastText w/ emb. 0.606 0.631 0.426
STS embeddings 0.581 0.597 0.582
WikiBERT 0.580 0.597 0.398
MBERT 0.587 0.622 0.453
XLM-R-Base 0.620 0.651 0.518
XLM-R-Large 0.655 0.716 0.617
SlovakBERT 0.672 0.705 0.583

Table 4: Macro-F1 scores for sentiment analysis task.
The 2-class F1 score for Twitter is calculated only from
positive and negative classes – a methodology intro-
duced in the original dataset paper. *Indicates different
evaluation sets.

which might match our Reviews datasets more than
the tweets used for our fine-tuning.

4.5 Document Classification

The final task which we evaluate our LMs on is a
classification of documents into 5 news categories.
The goal of this task is to ascertain how well LMs
handle common classification problems. We use
a Slovak Categorized News Corpus (Hladek et al.,
2014) that contains 4.7K news articles classified
into 6 classes: Sports, Politics, Culture, Economy,
Health and World. We do not use the Culture cate-
gory, since it contains a significantly smaller num-
ber of samples.

Unfortunately, no existing work has used this
dataset for document classification, so there are no
existing results publicly available. We use the same
set of baselines and LM fine-tuning as in the case
of sentiment analysis since both these tasks are
text classification tasks, see Section 4.4 for more
details.

4.5.1 Results
The main results from our experiment are shown
in Table 5. We can see that the LMs are again the
best-performing approach. In this case, the results
are quite similar with SlovakBERT being the best
by a narrow margin. The baselines achieved sig-
nificantly worse results. Note that our sentence
embedding model has the worst results on this task,
while it had competitive performance in sentiment
classification. We theorize, that the sentence em-
bedding model was trained on sentences and is,
therefore, less capable of handling longer texts,

Model F1
TF-IDF 0.953
fastText 0.963
fastText w/ emb. 0.963
STS embeddings 0.935
WikiBERT 0.935
MBERT 0.985
XLM-R-Base 0.987
XLM-R-Large 0.985
Our model 0.990

Table 5: Macro-F1 scores for document classification
task.

typical for the dataset used here.

5 Conclusions

We have trained and published SlovakBERT – a
new large-scale transformers-based Slovak masked
language model using 19.35GB of Web-crawled
Slovak text. We proposed an evaluation bench-
mark with multiple tasks for Slovak language and
evaluated several models. We conclude, that Slo-
vakBERT achieves state-of-the-art results on this
benchmark, but multilingual language models are
still competitive, especially larger but computation-
ally less efficient models such as XLM-R-Large.
We also release fine-tuned models for the Slovak
community.

The lack of evaluation benchmarks is still an
issue for many mid-resource languages, i.e. lan-
guages that have a sizeable corpus of text available
on the Web, but do not have annotated natural lan-
guage understanding datasets available. Our work
was limited by this as well, as we were forced to
use datasets created by machine translation (in case
of STS), noisy datasets (in case of sentiment analy-
sis), or datasets with almost saturated performance
(in case of document classification). Creating new
high-quality datasets for the evaluation of Slovak
is our future work.

6 Limitations

Limited performance evaluation. As we have
already noted in Section 5, the lack of annotated
data limits our ability to properly evaluate the per-
formance of SlovakBERT. The existing datasets
have some issues:

• UD for POS tagging. The performance for
POS tagging seems already saturated.

• Sentiment analysis. The training data for sen-
timent analysis are quite noisy and many sam-
ples are misclassified. The data are also based
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on Twitter and as such, they are not easily ac-
cessible and the number of samples available
is constantly decreasing. This is a threat to the
replicability of our results.

• Semantic textual similarity. We use translated
English STS data for training. The translation
itself is a noisy process. The data are also
US-centric in their nature and they might not
exactly match the needs of Slovak speakers.

• Document classification. The performance for
this task is saturated as well.

We addressed some issues by manually creating
evaluation sets for both sentiment analysis and se-
mantic textual similarity. In the future, it would
be appropriate to develop new datasets for higher-
level NLP tasks, such as natural language inference
or question answering.

Limited ethical evaluation. For similar reasons
as above, there is no evaluation of bias in the
Slovak-processing language models. As of now,
it is not clear how biased the models are, since eval-
uation benchmarks were not yet designed for the
Slovak language. We made note of this issue in the
Ethical Consideration section as well.

7 Ethical Consideration

SlovakBERT was trained using a Web-crawled cor-
pus. This is a common practice in current NLP,
yet, it raises some ethical concerns. Models trained
with huge poorly documented corpora might en-
code in them various societal biases. The Slovak
texts written on the Web are not representative of all
Slovak users. Certain demographic groups might
be underrepresented and the model might not re-
flect them accordingly. We do not study these ef-
fects in this work and we do not recommend using
our model for sensitive applications without fur-
ther analysis. Unfortunately, there are no datasets,
benchmarks, or other resources able to measure
these effects in the Slovak language as of yet.
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A Hyperparameter Values

Hyperparameter Range Selected
Learning rate [10−7, 10−3] 10−5

Batch size {8, 16, 32, 64, 128} 32
Warmup steps {0, 500, 1000, 2000} 1000
Weight decay [0, 0.1] 0.05
Label smoothing [0, 0.2] 0
Learning rate scheduler Various3 linear

Table 6: Hyperparameters used for POS tagging. Adam
was used as an optimization algorithm.

Hyperparameter Range Selected
Learning rate [10−7, 10−3] 10−5

Batch size {8, 16, 32, 64, 128} 32
Warmup steps {0, 500, 1000, 2000} 1000
Weight decay [0, 0.2] 0.15
Learning rate scheduler Various4 cosine with hard restarts

Table 7: Hyperparameters used for STS tagging. Adam
was used as an optimization algorithm.

3See the list of schedulers supported by Hugging Face
Transformers library.

4See the list of schedulers supported by the Sentence Trans-
formers library.
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B Tagging Schemata

XPOS UPOS
Tag Description Tag Description
A adjective ADJ adjectiveG participle
E preposition ADP adposition
D adverb ADV adverb
Y conditional morpheme AUX auxiliary
V verb VERB verb

O conjuction CCONJ coordinating conjunction
SCONJ subordinating conjunction

P pronoun DET determiner

PRON pronounR reflexive pronoun
J interjection INTJ interjection

S noun NOUN noun
PROPN proper noun

N numeral NUM numeral0 digit
T particle PART particle
Z punctuation PUNCT punctuation
W abbreviation

X otherQ unidentifiable
# non-word element
% citation in foreign language

SYM symbol

Table 8: Slovak POS tagsets and their mapping (Zeman,
2017).

Label Meaning
0 The two sentences are completely dissimilar.
1 The two sentences are not equivalent, but are on the same topic.
2 The two sentences are not equivalent, but share some details.
3 The two sentences are roughly equivalent, but some important information

differs.
4 The two sentences are mostly equivalent, but some unimportant details differ.
5 The two sentences are completely equivalent, as they mean the same thing.

Table 9: Annotation schema for STS datasets (Marelli
et al., 2014).
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