
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5999–6010
December 7-11, 2022 ©2022 Association for Computational Linguistics

Partitioned Gradient Matching based Data Subset Selection
for Compute-Efficient & Robust ASR Training

Ashish Mittal1,2,†, Durga Sivasubramanian2,† , Rishabh Iyer3,
Preethi Jyothi2, Ganesh Ramakrishnan2

1 IBM Research, India
2 Indian Institute of Technology Bombay, Mumbai, India

3 The University of Texas at Dallas, Dallas, USA

Abstract

Training state-of-the-art ASR systems such as
RNN-T often have a high associated financial
and environmental cost. Training with a sub-
set of training data could mitigate this prob-
lem if the subset selected could achieve per-
formance on-par with training with the entire
dataset. Although there are many data sub-
set selection (DSS) algorithms, direct applica-
tion to the RNN-T is difficult, especially the
DSS algorithms that are adaptive and use learn-
ing dynamics such as gradients, since RNN-
T tends to have gradients with a significantly
larger memory footprint. In this paper we pro-
pose Partitioned Gradient Matching (PGM)
a novel distributable DSS algorithm, suitable
for massive datasets like those used to train
RNN-T. Through extensive experiments on
Librispeech 100H and Librispeech 960H, we
show that PGM achieves between 3× to 6×
speedup with only a very small accuracy degra-
dation (under 1% absolute WER difference).
In addition, we demonstrate similar results for
PGM even in settings where the training data
is corrupted with noise.

1 Introduction

Owing to their simplicity in directly mapping an
acoustic input sequence to a output sequence of
characters, or words, or even word-pieces, neu-
ral end-to-end methods (Graves et al., 2006, 2013;
Chan et al., 2016; Vaswani et al., 2017; He et al.,
2019) have become ubiquitous. The most common
end-to-end architectures include (i) Connection-
ist Temporal Classification (CTC) models (Graves
et al., 2006; Gulati et al., 2020), (ii) Attention-
based Encoder-Decoder models (AED) (Chan et al.,
2016; Watanabe et al., 2017) and (iii) Sequence
Transduction models (Graves, 2012) such as RNN-
Ts (Graves et al., 2013). Due to their streaming
and low-latency properties, sequence transduction

†Equal contribution. Correspondence to:
arakeshk@in.ibm.com, durgas@cse.iitb.ac.in

architectures such as RNN-T (Graves et al., 2013;
Sainath et al., 2020; Saon et al., 2021) are becom-
ing state-of-the-art for modeling the ASR problem.

These successes in the ASR have come at a cost,
as most of the practical RNN-T models are trained
on thousands of hours of labeled datasets (Rao
et al., 2017; Zhao et al., 2021). Model training
on these massive datasets leads to significantly in-
creased training time, energy requirements, and
consequently the carbon footprint (Sharir et al.,
2020; Strubell et al., 2019; Schwartz et al., 2020;
Parcollet and Ravanelli, 2021). As per Parcollet
et al. (Parcollet and Ravanelli, 2021), training an
RNN-T model on Librispeech 960H (Panayotov
et al., 2015) emits more than 10kg CO2 if trained
in France, which becomes much worse for develop-
ing countries. This is exacerbated due to the many
more training runs required for hyper-parameter
tuning. This warrants a need for greener training
strategies that rely on significantly lower resources
while still achieving state-of-the-art results.

One way to make ASR training more efficient
is to train on a subset of the training data, which
ensures minimum performance loss (Killamsetty
et al., 2021a; Wei et al., 2014; Kaushal et al., 2019;
Coleman et al., 2020; Har-Peled and Mazumdar,
2004; Clarkson, 2010; Mirzasoleiman et al., 2020;
Killamsetty et al., 2021b; Liu et al., 2017). Since
training on a subset reduces end-to-end time, the
hyperparameter tuning time is also reduced. While
greedy subset selection algorithms employ various
criteria to identify the appropriate subset of training
points, the process of forming the subsets remains
sequential. However, for a large scale speech cor-
pus such as Librispeech (Panayotov et al., 2015)
this requirement may be difficult to meet. In this
work, we propose a Partitioned Gradient Match-
ing (PGM) approach, which scales well with huge
datasets used in ASR and takes advantage of dis-
tributed setups. To the best of our knowledge, this
is the first such study performed for ASR systems.

5999

1.1 Contributions of this work

The PGM Algorithm: We present PGM a data
subset selection algorithm which constructs par-
tial subsets from data partitions of the original
dataset. This circumvents the need to load the en-
tire dataset at a time into the memory, which is
otherwise prohibitively expensive for ASR systems
such as RNN-T(see Section 3).
PGM is a distributable Algorithm: Training with
a subset of the training data is beneficial only when
the cost of selecting a subset is also less. There-
fore, for subset selection algorithms to scale to
larger datasets used in speech recognition, they
must work across multiple GPUs, since training for
ASR systems can then be distributed. In Section 4,
we present PGM which is more suitable for ASR
systems, more specifically for RNN-T.
Trade-off between efficiency and accuracy: A
subset selection algorithm has to counter the con-
trasting goals of efficiency and accuracy. We per-
form extensive experiments to demonstrate the
trade-off between efficiency and accuracy for PGM
and provide a general recipe for a user to control
the trade-off.
Effectiveness of PGM in a Noisy ASR setting: A
subset selection algorithm should work well when
the training data is corrupted with noise. In this
work, we show the efficacy of PGM, even when a
fraction of the labeled dataset is augmented with
noise across varying signal-to-noise ratios.

2 Background: RNN Transducer

The RNN-T model (Graves et al., 2013;
Graves, 2012) maps an input acoustic sig-
nal (x1, x2, . . . , xT) to an output sequence
(y1, y2, . . . , yU), where each output symbol yi ∈
M, and M is the vocabulary. An RNN-T
model consists of three components - (i) Tran-
scription Network - which maps an acoustic sig-
nal (x1, x2, . . . , xT) to an encoded representation
(h1, h2, . . . , hT), T being the length of the acous-
tic signal and xi being a W dimensional feature
representation, (ii) Prediction Network - which is a
language model that maps the previously emitted
non-blank tokens y<U = y1, y2, . . . , yu−1 to an
output space gU for the next output token. (iii) Joint
Network - that combines the Transcription Network
representation ht and Prediction Network represen-
tation gu to produce zt,u using a feed-forward net-
work J and ⊕ as a combination operator (typically
a sum).

ht = TranscriptionNetwork(x, t) (1)

gu = PredictionNetwork(y, u) (2)

During the training, the output probability
Prnnt(yt,u) over the output sequence y is marginal-
ized over all possible alignments using an efficient
forward-backward algorithm to compute the log-
likelihood. The training objective is to minimize
the Negative Log Likelihood of the target sequence.

Prnnt(yt,u|y<u, xt) = softmax(J(ht ⊕ gu))
(3)

L = −lnPr(y|x) (4)

For inference, the decoding algorithms (Graves,
2012; Saon et al., 2020) attempt to find the best
(t, u) and their corresponding output sequence y
using a beam search. In this work, we use the
gradients of the joint network layer (J) for PGM,
since the linear layer helps in fusing the audio(ht)
and the text(gu) representations.

3 Limitations of existing subset selection
algorithms

An approach to the selection of a subset of points
from the entire dataset is to rank points based on
their suitability. This ranking can be done either
via a some static metric such as diversity or repre-
sentation among features (Wei et al., 2014; Kaushal
et al., 2019) or via a dynamic metric using instance-
wise loss gradients1 to construct the subset greed-
ily (Mirzasoleiman et al., 2020; Killamsetty et al.,
2021b,a). In the latter case, ranking and re-ranking
happens using instance-wise loss gradients. Specif-
ically, during the selection process, loss gradients
of the entire set of instances have to be available in
the memory in order to perform greedy selection,
since otherwise, subset selection time would be
prohibitively large owing to disk reads, etc.

As keeping all the loss gradients in the memory
would be resource intensive, we employ the fol-
lowing approximations, which have been also pre-
viously employed by (Mirzasoleiman et al., 2020;
Killamsetty et al., 2021b,a), viz., (i) only last layer
gradients are used and (ii) subsets are constructed
for each class. The latter technique is not relevant
in ASR systems since ASR requires sequential de-
coding into a large size vocabulary. Similar to the

1gradient associated with an instance (x, y) as opposed to
mean mini-batch loss gradient used in training the model

6000

SGD

GPU 1

GPU 2

GPU G

SGD

GPU 1

GPU 2

GPU G

SGD

GPU 1

GPU 2

GPU G
GPU G

GPU 1

GPU 2

Figure 1: As PGM is a adaptive DSS algorithm, PGM is invoked after for every R epochs training RNN-T using
stochastic gradient descent. At every time step, using the latest set of parameters, PGM forms partial subsets via
Gradient Matching (GM) across GPUs. These partial subsets are combined and used for the next R epochs of
RNN-T training. This is repeated until the final set of parameters is obtained.

last layer approximation, for the RNN-T model,
we use the gradients of the joint network layer
(J) which performs the important task of fusing
speech (ht) and text (gu) features for sequence
transduction. In Table 1 we present the mem-
ory footprint of the last layer gradient obtained
while training ResNet18 (He et al., 2016) using
CIFAR10 (Krizhevsky, 2009) and gradients of the
joint network layer of RNN-T using Librispeech
100H. We compare against training ResNet18 using
CIFAR10, since most of these subset selection algo-
rithms are applied to image classification settings.
In the first column of the table 1, we present the
memory footprint of single instance’s loss gradient.
Clearly, the loss gradients used to train RNN-T
have a much higher footprint than the ones used in
image classification setting. The CIFAR10 dataset
has 50,000 instances and Librispeech 100H has
20539. In the second column, we present the total
memory required to store all the instance-wise loss
gradients. The memory requirement for RNN-T’s
loss gradients prohibitively huge. Thus, storing
all the instance-wise loss gradients at once is not
feasible for RNN-T systems.

Killamsetty et al. (2021a) propose another tech-
nique, viz., the PerBatch version, wherein one se-

Dataset
Single Total Per

Gradient size Batch
size (MB) (GB) size (GB)

CIFAR10 0.0215 1.049 0.0082

Librispeech 100H 4.096 111 28

Table 1: Memory footprint of last layer gradient ob-
tained while training ResNet18 using CIFAR10 and
gradients of the joint network layer of RNN-T using
Librispeech 100H. We use a batch size of 128 for CI-
FAR10 and 4 for Librispeech 100H.

lects mini-batches (like used in SGD) instead of in-
dividual instances. Reduction in memory by using
this technique is also not much for ASR systems
such as RNN-T, since batch size used here is often
small. For example, the batch size employed for
the CIFAR10 dataset is typically of 128, as pro-
posed by (He et al., 2016) whereas the batch size
is 4 for Librispeech 100H as used in the Speech-
Brain (Ravanelli et al., 2021) Librispeech RNN-T
recipe. We present the memory required to store all
the batch-wise loss gradients in the third column
of Table 1. Although this requirement may seem
satisfiable with some high end computing resource,
however shown are the memory requirements to

6001

store the instance-wise loss gradients only. If we
add other memory needs such as space to store
RNN-T model and space to process features and
gradient computations, effectively one needs much
larger GPU memory that the figures presented in
Table 1. These memory issues become even more
pronounced while performing subset selection with
Librispeech 960H.

Another problem with the existing subset selec-
tion algorithms is that they are sequential in na-
ture. This doesn’t allow the selection algorithm
to enjoy the speedup achieved using state of the
art techniques such as parallelizing across multiple
GPUs etc. This may cause the subset selection al-
gorithm to be a bottleneck while training RNN-T
with datasets of the scale of Librispeech. Therefore,
there is a need to design an data subset algorithm
that doesn’t need all the loss gradient to form a
subset and could be distributed across GPUs.

4 Partitioned Gradient Matching
Algorithm

Let U = {(xi, yi)}Ni=1 denote the set of training
examples, and V = {(xj , yj)}Mj=1, the validation
set. Let θ denote the ASR system’s parameters
with θt as the ASR system’s parameters at the tth

epoch. The training loss associated with the ith

instance is denoted by Li
T (θ) = LT (xi, yi, θ) =

− lnPr(yi|xi). We denote the validation loss by
LV = −∑

i∈V lnPr(yi|xi). Let the training data
be divided into D partitions, i.e., U = d1∪d2∪· · ·∪
dD where each partition comprises of N

D instances.
Let B be the batch size, bn = N/B be the total
number of mini-batches and bk = k/B the number
of batches to be selected.

Let Ldp

T be the training loss associated
with a data partition dp and ∇θL

dp

T =

{∇θL
dpB1
T (θt), · · · ,∇θL

dpBl
T (θt)} denote the set

of mini-batch gradients associated with the data
partition dp, where l = bn

D . Let Lbn
T denote the set

of mini-batch gradients. For each data partition dp,
we wish to perform gradient matching (GM), by
optimising the following problem,

argmin
X t

dp
⊆dp,|X t

dp
|≤ bk

D

min
wt

dp

Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt)

where,

Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt) = λ∥wt
dp∥2+

∥
∑

i∈X t
dp

wt
idp∇θL

dpBi
T −∇θL

dp

T (θt)∥ (5)

This selects a subset of batches X t
dp and asso-

ciated weights wt
dp , such that the weighted sum

of loss gradients associated with each instance in
the subset are the best approximation of the loss
gradient of the entire data partition dp while hon-
oring the budget constraints. We perform gradient
matching on mini-batch wise loss gradients only as
it helps in reducing the memory needs. Similarly,
we can define gradient matching problem with loss
associated with the validation set as,

argmin
X t

dp
⊆dp,|X t

dp
|≤ bk

D

min
wt

dp

Eλ(w
t
dp ,X t

dp , LV ,∇θL
dp

T , θt)

where,

Eλ(w
t
dp ,X t

dp , LV ,∇θL
dp

T , θt) = λ∥wt
dp∥2+

∥
∑

i∈X t
dp

wt
idp∇θL

dpBi
T −∇θLV (θ

t)∥ (6)

The optimization problem given in Eq.(5) is
weakly submodular (Killamsetty et al., 2021a;
Natarajan, 1995). Hence, we can effectively solve
it using a greedy algorithm with approximation
guarantees – we use orthogonal matching pursuit
(OMP) algorithm (Elenberg et al., 2018) to find
the subset and their associated weights. We also
add to Eq.(5) an l2 regularization component to
discourage large weight assignments to any of the
instances selected in the subset, thereby preventing
the model from overfitting on some samples.

The complete algorithm is presented in Algo-
rithm 1. In the algorithm, ‘Val’ is a boolean flag
that indicates whether to match the subset loss gra-
dient with validation set loss gradient like in noisy
settings (‘Val=True’) or with training set loss gra-
dient (‘Val=False’). Depending on the choice of
the loss gradient, we perform gradient matching
with Ldp

T , current model parameters θt, budget bk
D ,

and a stopping criterion ϵ. We describe gradient
matching in details in Algorithm 2. Once the appro-
priate batch for selection is determined, we form
Xf adding all the samples constituting the selected
mini-batch. The model is then trained using the
mini-batch SGD. We randomly shuffle elements in
the subset X t, divide them up into mini-batches
of size B, and run mini-batch SGD with instance
weights.

The complete block diagram of PGM is pre-
sented in Figure 1. As the subset selection process
is dependant on the model parameters, we repeat
the subset selection every R epochs. For each data

6002

Algorithm 1 PGM: Partitioned Gradient Matching

Require: Train set: U = d1∪d2∪· · ·∪dD consist-
ing of D partitions; validation set: V ; initial sub-
set: X 0; subset size: bk; TOL: ϵ; initial params:
θ0; learning rate: α; total epochs: T , selection
interval: R, Validation Flag: Val, Batchsize: B
for epochs t in 1, · · · , T do

if (t mod R == 0) then
X t = ϕ,wt = []
for data partition p in d1, · · · , dD do

if Val then
X t
d,w

t
d = GM(LV ,∇θL

dp

T , θt, bkD , ϵ)
else

X t
d,w

t
d = GM(Ldp

T ,∇θL
dp

T , θt, bkD , ϵ)
end if
X t = X t ∪ X t

d

Extend wt with wt
d

end for
else
X t = X t−1

end if
θt+1 = BatchSGD(X t,wt, α,B)

end for
Output final model parameters θT

partition dp, we perform gradient matching (GM)
individually and obtain partial subsets X t

dp , sequen-
tially, one after another. However in the presence
of multi-GPU settings, since the gradient matching
within a a data partition can be performed indepen-
dently from gradient matching in other data par-
titions, the gradient matchings could be executed
in parallel. This allows one to take advantage of
multi-GPU settings which is critical to efficiently
process large datasets typically used to train RNN-
T. In Figure 1, we illustrate parallelization of PGM
on the system with G GPUs. Here, every G partial
subsets are obtained in parallel and this process is
repeated D

G times.

4.1 Connection to existing work

In this section we discuss the connection of PGM
with GRAD-MATCHPB (Killamsetty et al., 2021a)
where subset is selected via solving the following
problem,

argmin
X t⊆U ,|X t|≤bk

min
wt

Eλ(w
t,X t, L, Lbn

T , θt)

where

Algorithm 2 Gradient Matching (GM)

Require: Loss of the entire dataset(train or vali-
dation) : L, set of mini-batch gradients ∇θL

B
T ,

current parameters θt, budget k, TOL: ϵ;
X = ϕ,Xf = ϕ, r = ∇θL
for |X | ≤ k or Eλ(w,X , L,∇θL

B
T , θ

t) > ϵ do
Pick a element j in ∇θL

B
T which a maximum

alignment with r
X = X ∪ j
Xf = X∪ {set of instances in the batch j}
Update w = minw Eλ(w,X , L,∇θL

B
T , θ

t)
Update r = r − Eλ(w,X , L,∇θL

B
T , θ

t)
end for
Return Xf , w

Eλ(w
t,X t,L, Lbn

T , θt) = λ∥wt∥2+
∥
∑

i∈X t

wt
i∇θL

Bi
T (θt)−∇θL(θ

t)∥

Lbn
T denotes the set of all mini-batch gradients,

defined as Lbn
T = ∇θL

d1

T ∪∇θL
d2

T ∪ · · · ∪ ∇θL
dD

T

and L is either the training loss of the entire dataset
LT defined as LT = E(Ldp

T) or LV depending on
what sort matching we seek for. The problem tries
to find subset and it associated weights so that the
gradients of the mini-batches best approximate the
either gradient associated with the full dataset or
the validation set. We show that GRAD-MATCHPB
is lower bound to PGM, that is

E(Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt))

≥ Eλ(w
t,X t, LT , L

bn
T , θt))

and
E(Eλ(w

t
dp ,X t

dp , LV ,∇θL
dp

T , θt))

≥ Eλ(w
t,X t, LV , L

bn
T , θt))

For the proof, we refer the reader to Appendix A.

5 Experiments

Datasets We perform all our experiments on the
Librispeech dataset (Panayotov et al., 2015). We
present results on the medium-scale Librispeech
100H as well as on the large-scale Librispeech
960H datasets.

Along with the standard Librispeech benchmark,
we also perform experiments on noisy Librispeech,
where the speech is augmented with noise across
varying signal-to-noise ratios (up to 15db) on a
fraction of the training data. We refer to this dataset

6003

Speed Up

R
el

at
iv

e
Te

st
 E

rr
or

0

20

40

60

80

1.0 1.5 2.0 2.5 3.0

PGM Random-Subset LargeOnly LargeSmall

Figure 2: Relative Test Error(↓) vs. Speed Up(↑) for
subset selection methods on Librispeech 100H

TEST-CLEAN test set.

Subset Size

W
E

R

8

10

12

14

16

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PGM Random-Subset LargeOnly LargeSmall

Figure 3: Word Error Rate (WER) on the TEST-CLEAN
test set of Librispeech 100H for all the methods.

as Librispeech-noise, where up to 30% examples
in the original dataset are augmented with noise
across varying signal-to-noise ratios.

Architecture. We perform all our experiments
on the Speechbrain’s(Ravanelli et al., 2021) Lib-
rispeech transducer recipe. The transcription net-
work of the RNN-T consists of a CRDNN encoder
which has 2 CNN blocks followed by 4 layers of
bi-LSTMs and subsequently followed by 2 DNN
layers. The prediction network consists of an em-
bedding layer followed by a single layer GRU unit.
A joint network is a single linear layer that projects
1024 dimensional representations to output a vocab-
ulary of 1000 BPE. The decoding is done through
a time-synchronous decoding algorithm (Graves,
2012; Hannun et al., 2019) with a beam size of
4. The decoding involves an external transformer
language model trained on the Librispeech cor-
pus (Kannan et al., 2018; Hrinchuk et al., 2020;
Wolf et al., 2019).

Training Details. For the training, we employ a
learning rate of 2.0 with an annealing factor of 0.8
for the relative improvement of 0.0025 on valida-
tion loss (sometimes referred to as newbob sched-
uler). The training on Librispeech 100H is per-
formed on two A100 40GB GPUs with the effec-
tive batch size of 8, whereas for Librispeech 960H,
we employ two A100 80GB GPUs with an effec-
tive batch size of 24. All the training is done for
30 epochs. In all our experiments, the PGM al-
gorithm is invoked after every 5th epoch (R = 5)
after performing warm-start (training on full data)
for 7 and 2 epochs on Librispeech 100H and Lib-
rispeech 960H datasets respectively. The results for
each setting are averaged over 3 runs with different
random seeds.

PGM Details. For doing the subset selection

with PGM, we use the gradients of the Joint Net-
work parameters, which we believe would have
the maximum information concentrated for the se-
quence. We freeze the rest of the network while
we compute the gradient of the Joint Network of
the RNN-T. We use D = 7 and D = 50 (data par-
titions) to obtain subsets using the PGM algorithm
over gradients of training data for Librispeech
100H and 960H datasets respectively. Subset selec-
tion is performed using training set loss gradients
in experiments performed using Librispeech 100H
(Figures 2,3) and Librispeech 960H (table 2). For
experiments with Librispeech-noise (Table 3) we
employ the validation gradients for performing the
subset selection, since we are also concerned with
robustness in the presence of noise.

Baselines. We compare the results obtained us-
ing the PGM method against three intuitive base-
lines - (i) Random-Subset baseline, in which the
subset of the dataset is obtained by choosing points
with uniform probability. (ii) LargeOnly - For each
subset, we employ only the largest utterances based
on duration. (iii) LargeSmall - For each subset
size, half of the subset is filled with smallest utter-
ances and the other half with the largest utterances
based on duration, to remove the length bias of the
LargeOnly baseline.

5.1 Results

To compare the efficacy of the PGM, we com-
pare the word error rate (WER), relative test error,
and speed-up compared to training with the entire
dataset. We compute these metrics for both the
Librispeech 100H and Librispeech 960H bench-
marks. Additionally, we also, present energy ratios
vs. relative test error rate tradeoff on Librispeech
100H.

6004

Subset Method WER (Rel. Test Error) (↓) Speed Up (↑)
TEST-CLEAN TEST-OTHER

100% - 4.21 (0.0) 11.59 (0.0) -

10%
Random-Subset 5.87 (39.43%) 15.39 (32.79%) 6.25
PGM 5.71 (35.63%) 14.66 (26.49%) 4.43

20%
Random-Subset 5.08 (20.67%) 13.89 (19.84%) 3.95
PGM 5.01 (19%) 12.78 (10.27%) 3.30

30%
Random-Subset 4.62 (12.65%) 12.65 (9.74%) 2.89
PGM 4.58 (8.79%) 12.45 (7.42) 2.64

Table 2: Results showing WER (Relative Test Error) and Speed Up on TEST-CLEAN and
TEST-OTHER test splits of Librispeech 960H.

Subset Noise = 10% Noise = 20% Noise = 30%
Random-Subset PGM Random-Subset PGM Random-Subset PGM

100H

100% 10.59 11.16 11.39
10% 11.79 11.86 11.64 11.67 11.96 11.82
20% 11.53 10.8 11.27 11.12 11.39 11.25
30% 11.33 10.7 11.74 11.42 12.05 11.17

960H

100% 4.52 4.65 4.68
10% 6.5 6.28 6.44 6.54 6.58 6.43
20% 5.61 5.58 5.44 5.65 5.84 5.5
30% 4.99 4.97 5.16 5.02 5.62 5.17

Table 3: Results showing WER on TEST-CLEAN test set of Librispeech 100H trained using noisy
Librispeech dataset using PGM and Random-Subset.

In Figure 2, we present the comparison of WER
for PGM against various baselines for various sub-
set sizes of the full dataset. With just 20% of
the subset size, the PGM method yields a WER
of 10.66 as opposed to 10.08 obtained by train-
ing on the full dataset. For Librispeech 100H,
PGM consistently outperforms all the baseline,
thus illustrating the effect of selecting subsets us-
ing the gradient matching algorithm. Also note,
Random-Subset baseline is consistently better than
other heuristic based baselines such LargeOnly
and LargeSmall. In Figure 3, we plot the speed
up against the Relative Test Error for Librispeech
100H. While Random-Subset baseline is observed
to attain higher speed up in comparison to the PGM
because of the simple selection strategy, Random-
Subset baseline also incurs higher relative test error
in comparison to the PGM.

In Figure 4, we present the plot of relative test
error w.r.t energy efficiency for the full training
setting. We use pyJoules2 for measuring the energy
consumed by GPU cores. We show that with PGM,
the training time is halved and energy efficiency is
doubled while incurring the relative test error of

2https://pypi.org/project/pyJoules/

Figure 4: Energy Ratio(↑) vs. Relative Test Error(↓) for
PGM and Random-Subset on Librispeech 100H.

less than 5% as compared to the training on the
entire dataset. For higher speedups, where there
is a degradation in the WER, the loss is relatively
better for PGM as compared to the baseline. We
do not show the energy efficiency for LargeOnly
and LargeSmall baselines as their relative test error
is consistently poor as compared to the Random
Subset baseline as shown in Figure 3.

For the ASR task we recommend using at least
30% of the dataset for training the model or using

6005

Random-Subset PGM
Overlap Index 20.2% 6.37%
Noise Overlap Index 0.82% 0.83%

Table 4: Overlap Indices - measures the overlap be-
tween consecutive subsets for PGM and Random-Subset
methods.

Subset Size WS = 2 epochs WS= 3 epochs
10% 5.71 5.3
20% 5.01 4.82
30% 4.58 4.54

Table 5: Effect of warm-start (WS) on WER for PGM
on TEST-CLEAN test set for Librispeech 960H

Subset Size nGPU = 1 nGPU=2 nGPU=2
LR = 1.0 LR = 1.0 LR = 2.0

0.1 11.26 13.99 11.32
0.2 10.6 12.58 10.66
0.3 10.4 11.58 10.46

Table 6: Effect of Learning Rate on WER for PGM on
TEST-CLEAN test set of Librispeech 100H.

more warm-start epochs as described in Section 5.2.
In Table 2, we present comparison of the PGM
method with the baseline for the Librispeech 960H
dataset on both the TEST-CLEAN and TEST-OTHER

test sets. As shown in the Table, with just 30%
of the training data, PGM is within 10% of the
relative test error (1% of absolute error difference)
when compared against training on the full data,
thus yielding a speedup of 2.64. Similar results
hold on the challenging TEST-OTHER test set of
the Librispeech which shows the better generaliza-
tion of PGM in comparison to the Random-Subset
baseline.

Results on Librispeech-noise: We augment ran-
domly selected signals from the dataset with noise
across varying signal-to-noise ratios to mimic a
more practical setting where subset selection algo-
rithms need to address the noise while selecting use-
ful subsets. We show the results on the Librispeech-
noise 100H and 960H datasets for different subsets
in Table 3. PGM consistently outperforms the
Random-Subset baseline for different subsets with
lower relative test error when compared against the
full training and still yields significant speed up to
reduce training time and maintain robustness.

5.2 Ablation Study

Next, we do an ablation study to understand the
effect of learning rate on PGM for Librispeech
100H dataset. Since, the goal of subset selection
algorithms is to reduce the training data for train-
ing, the older recipes (especially learning rate) on
full training data do not work as-is for the PGM
because of the distributed nature of the training.

In Table 6, we show the effect of learning rate
on multi-gpu training of the PGM method. The
recipe for single GPU borrowed as-is for the multi-
gpu training setting, performed poorly because the
number of gradient updates in the distributed set-
ting halved. To overcome this barrier, we doubled
the learning rate to take larger steps and reach con-
vergence within the same number of epochs.

We perform some ablation studies to understand
why subsets selected by PGM tend to outperform
a relatively simple Random-Subset baseline. We
compute the following two metrics:

Overlap Index (OI): This is the fraction of com-
mon points selected in the last two subset selection
rounds with the subset size. This metric computes
the diversity of the points being selected by the
methods in the subsequent subset selection rounds.

Noise Overlap Index (NOI): This is the frac-
tion of noise points selected by the subset selec-
tion methods divided by the total number of noisy
points. Both the metrics are computed by averag-
ing the index for all the runs with the same subset
selection method.

As shown in Table 4, PGM selects more di-
verse points across different subset selection rounds
which explains the better generalization of the
TEST-OTHER test set. At the same time, both the
methods select a similar amount of noisy points
during the subset selection indicating that PGM se-
lects more diverse points from the non-noisy points.

Finally, we study the effect of warm-start on the
performance of the PGM algorithm. Since it is an
adaptive data selection algorithm, PGM needs a
good starting point for computing reasonable esti-
mates of the gradients for subset selection. Table
5 shows the effect of warm-start epoch ablation on
the TEST-CLEAN test set for Librispeech 960H. As
we increase the warm start, the performance of the
PGM algorithm improves at the cost of speed up.

5.3 Comparing PGM and GRAD-MATCHPB

Running GRAD-MATCHPB for Librispeech is pro-
hibitively expensive since the amount of memory

6006

Subset-Size Random-Subset LargeSmall LargeOnly GRAD-MATCHPB PGM
0.1 16.64 17.98 17.27 16.14 16.23
0.2 16.43 17.23 16.35 15.89 16.03
0.3 16.28 16.35 16.22 15.79 15.95

Table 7: Comparison of WER obtained with Random-Subset, LargeSmall, LargeOnly,GRAD-MATCHPB and PGM
on TIMIT Phone recognition dataset.

required to store all the gradients would exceed the
memory size of available commercial GPUs as de-
scribed in Section 3. To address this, we compare
Phone Error (PER) on the TIMIT Phone recog-
nition dataset (Garofolo, 1993) (containing 3680
utterances with 630 speakers) for all the methods.

Table 7 shows WER obtained with PGM, GRAD-
MATCHPB Random-Subset and other subset selec-
tion baselines such as LargeSmall, LargeOnly. For
PGM we use data partitioning D = 2. We see
that the WER of PGM is slightly higher than that
of GRAD-MATCHPB, as the error term that PGM
minimises is a upper bound of error term minimised
by GRAD-MATCHPB as discussed in section 4.1.
However, PGM’s WER is very close to that of
GRAD-MATCHPB, indicating that the partitioning
doesn’t deteriorate the bounds while allowing to
scale for larger datasets and utilize multiple GPUs
which allows PGM to enjoy better speedups over
GRAD-MATCHPB.

Statistical Significance: WER reductions using
PGM compared to the Random-Subset baseline
are statistically significant at p < 0.001 using a
matched pairs test.3

6 Conclusion

We propose PGM, a distributable data subset se-
lection algorithm which avoids the need to load
the entire dataset at a time, by constructing par-
tial subsets from smaller data partitions. PGM
is an adaptive subset selection algorithm that im-
proves the training time of the ASR models while
maintaining low relative test error as compared
to the ASR model trained with the entire dataset.
This speed-up improves the efficiency of the train-
ing process and subsequently reduces the carbon
footprint of training such models. Our approach
performs consistently better than Random-Subset
baseline whilst providing good speed up, and ro-
bustness in the presence of noise. Although we
test the method on the RNN-T model, we believe

3https://github.com/talhanai/wer-sigtest

that similar results could be obtained for other ASR
models and we leave that as future work.

Limitations

In this paper we investigate the usefulness of sub-
set selection algorithms for the ASR task for the
first time on a popular RNN-Transducer ASR ar-
chitecture which typically consumes vast volume
(∼40000 hours of labelled audio and more) of train-
ing data. At such industrial scale, the overhead of
PGM for gradient matching over the entire training
set would limit the utility of the algorithm. These
practical considerations warrant more careful de-
sign of the subset selection algorithms so as to scale
well with such huge workloads. We also limit our
results to the RNN-T architecture and believe that
the results also hold for other less popular archi-
tecture by taking gradients of the last few layers.
While we show the efficient training for the ASR
task, we believe a similar study should be carried
out for the self-supervised pre-training approaches.

Ethics Statement

In this work we present a gradient matching based
data subset selection algorithm for compute effi-
cient and robust ASR model training. Since we do
not modify any existing speech architecture or pro-
pose new benchmarks, but provide a mechanism
for faster training of such models, we see no new
ethical concerns arising from our work.

7 Acknowledgements

Durga Sivasubramanian is supported by the Prime
Minister’s Research Fellowship. The authors grate-
fully acknowledge the support from IBM Research,
specifically the IBM AI Horizon Networks-IIT
Bombay initiative. Ganesh Ramakrishnan is grate-
ful to the IIT Bombay Institute Chair Professorship
for their support and sponsorship. Rishabh Iyer
acknowledges support from NSF Grant Number
IIS-2106937, a gift from Google Research, and an
Adobe Data Science Research award.

6007

References
William Chan, Navdeep Jaitly, Quoc Le, and Oriol

Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP),
pages 4960–4964. IEEE.

Kenneth L Clarkson. 2010. Coresets, sparse greedy
approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1–30.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2020. Selection
via proxy: Efficient data selection for deep learning.

Ethan R Elenberg, Rajiv Khanna, Alexandros G Di-
makis, Sahand Negahban, et al. 2018. Restricted
strong convexity implies weak submodularity. The
Annals of Statistics, 46(6B):3539–3568.

John S Garofolo. 1993. Timit acoustic phonetic con-
tinuous speech corpus. Linguistic Data Consortium,
1993.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. Ieee.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. arXiv preprint
arXiv:2005.08100.

Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Col-
lobert. 2019. Sequence-to-sequence speech recogni-
tion with time-depth separable convolutions. arXiv
preprint arXiv:1904.02619.

Sariel Har-Peled and Soham Mazumdar. 2004. On core-
sets for k-means and k-median clustering. In Pro-
ceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 291–300.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Rybach,
Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.
2019. Streaming end-to-end speech recognition for
mobile devices. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6381–6385. IEEE.

Oleksii Hrinchuk, Mariya Popova, and Boris Gins-
burg. 2020. Correction of automatic speech recogni-
tion with transformer sequence-to-sequence model.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7074–7078. IEEE.

Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar. 2018.
An analysis of incorporating an external language
model into a sequence-to-sequence model. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5828.
IEEE.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan
Mahadev, Khoshrav Doctor, and Ganesh Ramakrish-
nan. 2019. Learning from less data: A unified data
subset selection and active learning framework for
computer vision. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
1289–1299. IEEE.

Krishnateja Killamsetty, Durga S, Ganesh Ramakrish-
nan, Abir De, and Rishabh Iyer. 2021a. Grad-match:
Gradient matching based data subset selection for
efficient deep model training. In Proceedings of the
38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning
Research, pages 5464–5474. PMLR.

Krishnateja Killamsetty, Durga Sivasubramanian,
Ganesh Ramakrishnan, and Rishabh Iyer. 2021b.
Glister: Generalization based data subset selection
for efficient and robust learning. In AAAI.

Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images. Technical report.

Yuzong Liu, Rishabh Iyer, Katrin Kirchhoff, and Jeff
Bilmes. 2017. Svitchboard-ii and fisver-i: Crafting
high quality and low complexity conversational en-
glish speech corpora using submodular function op-
timization. Computer Speech & Language, 42:122–
142.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
2020. Coresets for data-efficient training of machine
learning models.

Balas Kausik Natarajan. 1995. Sparse approximate solu-
tions to linear systems. SIAM journal on computing,
24(2):227–234.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech

6008

http://arxiv.org/abs/1906.11829
http://arxiv.org/abs/1906.11829
http://arxiv.org/abs/1906.01827
http://arxiv.org/abs/1906.01827

and signal processing (ICASSP), pages 5206–5210.
IEEE.

Titouan Parcollet and Mirco Ravanelli. 2021. The
energy and carbon footprint of training end-to-end
speech recognizers. Interspeech.

Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar.
2017. Exploring architectures, data and units for
streaming end-to-end speech recognition with rnn-
transducer. In 2017 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
193–199. IEEE.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. Speechbrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Tara N Sainath, Yanzhang He, Bo Li, Arun Narayanan,
Ruoming Pang, Antoine Bruguier, Shuo-yiin Chang,
Wei Li, Raziel Alvarez, Zhifeng Chen, et al. 2020.
A streaming on-device end-to-end model surpassing
server-side conventional model quality and latency.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6059–6063. IEEE.

George Saon, Zoltán Tüske, and Kartik Audhkhasi.
2020. Alignment-length synchronous decoding for
rnn transducer. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7804–7808. IEEE.

George Saon, Zoltán Tüske, Daniel Bolanos, and Brian
Kingsbury. 2021. Advancing rnn transducer technol-
ogy for speech recognition. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5654–5658.
IEEE.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM, 63(12):54–63.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R
Hershey, and Tomoki Hayashi. 2017. Hybrid
ctc/attention architecture for end-to-end speech recog-
nition. IEEE Journal of Selected Topics in Signal
Processing, 11(8):1240–1253.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2014. Fast
multi-stage submodular maximization. In Interna-
tional conference on machine learning, pages 1494–
1502. PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Rui Zhao, Jian Xue, Jinyu Li, Wenning Wei, Lei
He, and Yifan Gong. 2021. On addressing practi-
cal challenges for rnn-transducer. arXiv preprint
arXiv:2105.00858.

6009

A Connections between PGM and
GRAD-MATCHPB

Lemma 1 (triangle inequality). Let v1, ..., vτ be τ
vectors in Rd. Then the following is true:

∥
τ∑

i=1

vi∥ ≥
τ∑

i=1

∥vi∥ (7)

Corollary 1 Following inequality holds between
the objectives of PGM and GRAD-MATCHPB

E(Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt))

≥ Eλ(w
t,X t, LT , L

bn
T , θt))

and

E(Eλ(w
t
dp ,X t

dp , LV ,∇θL
dp

T , θt))

≥ Eλ(w
t,X t, LV , L

bn
T , θt))

Proof.
Using the triangle inequality,

D∑

i=p

(∥
∑

i∈X t
dp

wt
idp∇θL

dpBi
T −∇θL

dp

T (θt)∥

+ λ∥wt
dp∥2)

≥ ∥
D∑

i=p

(
∑

i∈X t
dp

wt
idp∇θL

dpBi
T −∇θL

dp

T (θt))∥

+ λ∥
D∑

i=p

wt
dp∥2

We divide both sides by D,

1

D

D∑

i=p

(∥
∑

i∈X t
dp

wt
idp∇θL

dpBi
T −∇θL

dp

T (θt)∥

+ λ∥wt
dp∥2)

≥ ∥
D∑

i=p

(
∑

i∈X t
dp

wt
idp

D
∇θL

dpBi
T)

−
∑D

i=p(∇θL
dp

T (θt))

D
∥+ λ∥

∑D
i=pw

t
dp

D
∥2

E(Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt))

≥ ∥
D∑

i=p

(
∑

i∈X t
dp

wt
idp

D
∇θL

dpBi
T)

−
∑D

i=p(∇θL
dp

T (θt))

D
∥+ λ∥

∑D
i=pw

t
dp

D
∥2

Since LT = E(Ldp

T) and there-

fore E(
∑D

i=p(
∑

i∈X t
dp

wt
idp

D ∇θL
dpBi
T)) =

∑
i∈X t wt

i∇θL
Bi
T (θt) as they are obtained

via gradient matching,

E(Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt))

≥ ∥
∑

i∈X t

wt
i∇θL

Bi
T (θt)−∇θLT (θ

t)∥

+ λ∥wt∥2

E(Eλ(w
t
dp ,X t

dp , L
dp

T ,∇θL
dp

T , θt))

≥ Eλ(w
t,X t, LT , L

bn
T , θt))

6010

