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Abstract
Existing textual adversarial attacks usually uti-
lize the gradient or prediction confidence to
generate adversarial examples, making it hard
to be deployed in real-world applications. To
this end, we consider a rarely investigated but
more rigorous setting, namely hard-label at-
tack, in which the attacker can only access the
prediction label. In particular, we find we can
learn the importance of different words via the
change on prediction label caused by word sub-
stitutions on the adversarial examples. Based
on this observation, we propose a novel adver-
sarial attack, termed Text Hard-label attacker
(TextHacker). TextHacker randomly perturbs
lots of words to craft an adversarial example.
Then, TextHacker adopts a hybrid local search
algorithm with the estimation of word impor-
tance from the attack history to minimize the
adversarial perturbation. Extensive evaluations
for text classification and textual entailment
show that TextHacker significantly outperforms
existing hard-label attacks regarding the at-
tack performance as well as adversary qual-
ity. Code is available at https://github.com/JHL-
HUST/TextHacker.

1 Introduction

Despite the unprecedented success of Deep Neural
Networks (DNNs), they are known to be vulnerable
to adversarial examples (Szegedy et al., 2014), in
which imperceptible modification on the correctly
classified samples could mislead the model. Ad-
versarial examples bring critical security threats to
the widely adopted deep learning based systems, at-
tracting enormous attention on adversarial attacks
and defenses in various domains, e.g. Computer
Vision (CV) (Szegedy et al., 2014; Goodfellow
et al., 2015; Madry et al., 2018; Wang et al., 2021a)
and Natural Language Processing (NLP) (Papernot
et al., 2016; Liang et al., 2018; Ren et al., 2019;
Wang et al., 2022; Yang et al., 2022), etc.

∗The first two authors contributed equally.
† Corresponding author.

Compared with adversarial attacks in CV, textual
adversarial attacks are more challenging due to the
discrete input space and lexicality, semantics and
fluency constraints. Recently, various textual adver-
sarial attacks have been proposed, including white-
box attacks (Ebrahimi et al., 2018; Li et al., 2019;
Wang et al., 2021c), score-based attacks (Alzan-
tot et al., 2018; Zang et al., 2020b) and hard-label
attacks (Saxena, 2020; Maheshwary et al., 2021).
Among these methods, hard-label attacks that only
obtain the prediction label are more realistic in real-
world applications but also more challenging.

Existing white-box attacks (Li et al., 2019; Wang
et al., 2021c) and score-based attacks (Ren et al.,
2019; Yang et al., 2020) usually evaluate the word
importance using either the gradient or change on
logits after modifying the given word to craft ad-
versarial examples. In contrast, due to the limited
information (i.e., only the prediction labels) for
hard-label attacks, it is hard to estimate the word
importance, leading to relatively low effectiveness
and efficiency on existing hard-label attacks (Ma-
heshwary et al., 2021; Ye et al., 2022).

Zang et al. (2020a) have shown that estimating
the word importance by reinforcement learning al-
gorithm via the prediction confidence exhibits good
attack performance for score-based attacks, but per-
forms poorly for hard-label attacks. We speculate
that it cannot effectively estimate the word impor-
tance via the prediction label since most of the
times the label does not change when turning be-
nign samples into adversaries. It inspires us to in-
vestigate the problem: How to effectively estimate
the word importance using the prediction label? In
contrast, Wang et al. (2021b) show that replacing
some words with synonyms could easily convert ad-
versarial examples into benign samples. Thus, we
could obtain abundant and useful information (i.e.,
changes of prediction label) for word importance
estimation by word substitutions on the adversarial
examples during the attack process. Such learned
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word importance could in turn guide us to min-
imize the word perturbation between adversarial
examples and original samples.

Based on the above observation, we propose a
novel adversarial attack, named Text Hard-label
attacker (TextHacker). TextHacker contains two
stages, namely adversary initialization and pertur-
bation optimization. At the adversary initializa-
tion stage, we substitute each word in the input
text with its synonym iteratively till we find an
adversarial example. At the perturbation optimiza-
tion stage, TextHacker highlights the importance
of each word based on the prediction label of the
initialized adversarial example after synonym sub-
stitutions. Then TextHacker adopts the hybrid local
search algorithm with local search (Aarts et al.,
2003) as well as recombination (Radcliffe, 1993)
to optimize the adversarial perturbation using such
word importance, and simultaneously updates the
word importance based on the model output.

To validate the effectiveness of the proposed
method, we compare TextHacker with two hard-
label attacks (Maheshwary et al., 2021; Ye
et al., 2022) and two evolutionary score-based at-
tacks (Alzantot et al., 2018; Zang et al., 2020b)
for text classification and textual entailment. Em-
pirical evaluations demonstrate that TextHacker
significantly outperforms the baselines under the
same amount of queries, achieving higher average
attack success rate with lower perturbation rate and
generating higher-quality adversarial examples.

2 Related Work

This section briefly introduces the textual adversar-
ial attacks and hybrid local search algorithm.

2.1 Textual Adversarial Attacks

Existing textual adversarial attacks fall into two
settings: a) white-box attacks (Liang et al., 2018;
Li et al., 2019; Zhang et al., 2019; Meng and Wat-
tenhofer, 2020; Wang et al., 2021c) allow full ac-
cess to the target model, e.g. architecture, parame-
ters, loss function, gradient, output, etc. b) black-
box attacks only allow access to the model out-
put. Black-box attacks could be further split into
two categories, in which score-based attacks (Gao
et al., 2018; Alzantot et al., 2018; Ren et al., 2019;
Jin et al., 2020; Zang et al., 2020a,b; Garg and Ra-
makrishnan, 2020) could access the output logits
(i.e., prediction confidences) while hard-label at-
tacks (Saxena, 2020; Maheshwary et al., 2021; Ye

et al., 2022) could only utilize the prediction labels.
Intuitively, hard-label attacks are much harder

but more applicable in the real world and gain in-
creasing interests. TextDecepter (Saxena, 2020)
hierarchically identifies the significant sentence
among the input text and the critical word in the
chosen sentence for attack. Hard label black-box at-
tack (HLBB) (Maheshwary et al., 2021) initializes
an adversarial example via multiple random syn-
onym substitutions and adopts a genetic algorithm
to minimize the adversarial perturbation between
the initialized adversarial example and original text.
TextHoaxer (Ye et al., 2022) randomly initializes
an adversarial example and optimizes the pertur-
bation matrix in the continuous embedding space
to maximize the semantic similarity and minimize
the number of perturbed word between the current
adversarial example and the original text.

Existing hard-label attacks access the prediction
labels which are only used to evaluate adversar-
ial examples without exploiting more information
about the victim model. In this work, we learn the
importance of each word w.r.t. the model based
on the attack history, which is used to enhance the
effectiveness of the attack.

2.2 Hybrid Local Search Algorithm

Hybrid local search algorithm is a popular popu-
lation based framework, which is effective on typ-
ical combinatorial optimization problems (Galin-
ier and Hao, 1999). It usually contains two key
components, i.e., local search and recombination.
Given a population containing multiple initial so-
lutions, the local search operator searches for a
better one from the neighborhood of each solution
to approach the local optima. The recombination
operator crossovers the existing solutions to ac-
cept non-improved solutions so that it could jump
out of the local optima. Then it adopts the fixed
number of top solutions for the next iteration. Com-
pared to other evolutionary algorithms, e.g. genetic
algorithm (Anderson and Ferris, 1994), particle
swarm optimization (Kennedy and Eberhart, 1995),
etc., hybrid local search algorithm balances the lo-
cal and global exploitation that helps explore the
search space with much higher efficiency.

In this work, we follow the two-stage attack strat-
egy in HLBB (Maheshwary et al., 2021). At the
optimization stage, we utilize the word importance
learned from the attack history to guide the local
search and recombination. Thus, our method can
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focus on more critical words in the neighborhood
which helps us find the optimal adversarial example
from the whole search space more efficiently.

3 Methodology

In this section, we first introduce the preliminary,
symbols and definitions in TextHacker, then pro-
vide a detailed description of the proposed method.

3.1 Preliminary
Given the input space X containing all the input
texts and the output space Y = {y1, y2, . . . , yk}, a
text classifier f ∶X → Y predicts the label f(x) for
any input text x = ⟨w1,w2, . . . ,wn⟩ ∈ X , in which
f(x) is expected to be equal to its ground-truth la-
bel ytrue ∈ Y . The adversary typically adds an im-
perceptible perturbation on the correctly classified
input text x to craft a textual adversarial example
xadv that misleads classifier f :

f(xadv) ≠ f(x) = ytrue, s.t. d(xadv, x) < ϵ,
where d(⋅, ⋅) is a distance metric (e.g. the ℓp-norm
distance or perturbation rate) that measures the dis-
tance between the benign sample and adversarial
example, and ϵ is a hyper-parameter for the max-
imum magnitude of perturbation. We adopt the
perturbation rate as the distance metric:

d(xadv, x) = 1

n

n∑
i=11(wadv

i ≠ wi),
where 1(⋅) is the indicator function and wi ∈ x,
wadv
i ∈ xadv. Given a correctly classified text x,

we could reformulate the adversarial attack as min-
imizing the perturbation between benign sample
and adversarial example while keeping adversarial:

argmin
xadv

d(xadv, x) s.t. f(xadv) ≠ f(x). (1)

In this work, we propose a novel hard-label at-
tack, named TextHacker, to craft textual adversarial
examples by only accessing the prediction label
f(x) for any input sample x.

3.2 Symbols and Definitions
• Candidate set C(wi). For each word wi ∈ x,

we construct the candidate set C(wi) = {ŵ0
i , ŵ

1
i ,

. . . , ŵm
i } containing the word wi (ŵ0

i = wi) and
its top m nearest synonyms in the counter-fitted
embedding space (Mrkšić et al., 2016). All the
substitutions would be constrained in this set.

• Weight table W . We construct a weight tableW , a matrix with the shape of (n,m + 1), in
which each item Wi,j represents the word im-
portance of ŵj

i ∈ C(wi) and Wi,∶ = ∑m
j=0Wi,j

denotes the position importance of word wi ∈ x.
The weight tableW could guide the hybrid local
search algorithm to determine the substitution at
each iteration, which is initialized with all 0s.

• δ-neighborhood Nδ(x). Given an input sample
x, we define its δ-neighborhood as the set of texts
in the input space X with at most δ different
words from the sample x:

Nδ(x) = {xk ∣ n∑
i=11(wk

i ≠ wi) ≤ δ, xk ∈ X},
where wk

i ∈ xk,wi ∈ x and δ is the maximum
radius of the neighborhood. The neighborhood
Nδ(x) reflects the search space for local search
on input sample x.

• Fitness function F (x′). Given an input sample
x′ and benign text x, we could define the fitness
function as:

F (x′) = 1(f(x′) ≠ f(x)) ⋅ (1 − d(x′, x)). (2)

The fitness function could evaluate the quality of
adversarial example to construct the next genera-
tion for TextHacker.

3.3 The Proposed TextHacker Algorithm
As illustrated in Figure 1, TextHacker contains two
stages, i.e., adversary initialization to initialize an
adversarial example and perturbation optimization
to minimize the adversarial perturbation. In gen-
eral, there are four operators used in TextHacker,
namely WordSubstitution for adversary initializa-
tion, LocalSearch, WeightUpdate and Recombina-
tion for the hybrid local search algorithm at the per-
turbation optimization stage. The details of these
operators are summarized as follows:

• WordSubstitution(xt,C): Given an input text xt
at t-th iteration with the candidate set C of each
word wi ∈ xt, we randomly substitute each word
wi ∈ xt with a candidate word ŵj

i ∈ C(wi) to
craft a new text xt+1. WordSubstitution aims to
search for an adversarial example in the entire
search space by random word substitutions.

• LocalSearch(xadvt ,C,W): As shown in Fig-
ure 2, for an adversarial example xadvt at t-th
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Figure 1: The overall framework of the proposed TextHacker algorithm. At the adversary initialization stage, for
a given input text x, after generating the candidate set for each word wi ∈ x, we randomly substitute each word with
its candidate words till we obtain an adversarial example xadv

1 . At the perturbation optimization stage, we first
utilize local search to construct an initial population P0. Subsequently, we iteratively adopt recombination as well
as local search to maximize the fitness function, and update the weight table after each local search.

iteration with the candidate set C and weight ta-
bleW , we randomly sample several (at most δ)
less important words ŵjt

i ∈ xadvt with the proba-
bility pi from all the perturbed words in xadvt :

pi = 1 − σ(Wi,∶)∑n
i=1 [1 − σ(Wi,∶)] ,

where σ(x) = 1/(1+e−x) is the sigmoid function.
The coarse-grained learning strategies in Weigh-
tUpdate could easily make the gap between the
word importance too large, resulting in probabil-
ity distortion and getting stuck during the candi-
date word selection. To solve this problem, we
utilize the sigmoid function with the saturation
characteristic to reduce the excessive gap and
make the probability more reasonable. Then, we
substitute each chosen word ŵjt

i with the original
word ŵ0

i or with an arbitrary word ŵjt+1
i ∈ C(wi)

using the probability pi,jt+1 equally to generate a
new sample xadvt+1 :

pi,jt+1 = σ(Wi,jt+1)∑m
jt+1=0 σ(Wi,jt+1) .

We accept xadvt+1 if it is still adversarial, otherwise
we return the input adversarial example xadvt . Lo-
calSearch greedily substitutes unimportant word
with the original word or critical word using the
weight table to search for better adversarial ex-
ample from the δ-neighborhood of xadvt .

• WeightUpdate(xadvt , xadvt+1 , f,W): Given an ad-
versarial example xadvt at t-th iteration with the
generated adversary xadvt+1 by local search, we up-
date the word importance of each operated word

U
nselected

 

U
nperturbed

Probability

Probability

 
Update

Weight table

-1.0 8.0 2.5

0.5 -2.5 6.0

0.0 1.0 4.0

 

Figure 2: The overview of the LocalSearch and Weigh-
tUpdate. For an adversary xadv

t , we sample several
words with probability pi based on the weight table.
Then, we substitute each sampled word with original
word or its candidate word with probability pi,j to gen-
erate a new text xadv

t+1 . Finally, we use the prediction
label of the new text xadv

t+1 to update the weight table.

ŵjt
i ∈ xadvt and ŵjt+1

i ∈ xadvt+1 , and the position
importance of wi using the following rules:

Rule I: For each replaced word ŵjt+1
i , if xadvt+1

is still adversarial, it has positive impact on the
adversary generation. So we increase its weightWi,jt+1 , and vice versa.

Rule II: For each operated position i, if xadvt+1 is
still adversarial, it has little impact on the ad-
versary generation. So we decrease the position
weightWi,∶, and vice versa.

Specifically, if xadvt+1 is still adversarial, we assign
the positive reward r to each replaced word ŵjt+1

i
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using Rule I, and reward −2r to each ŵjt
i to de-

crease the weight summationWi,∶ = ∑m
j=0Wi,j

in each operated position i using Rule II:

W ′i,jt+1 =Wi,jt+1 + r, W ′i,jt =Wi,jt − 2r,
where r is the predefined reward value andW ′
is the weight table after this update. Otherwise,
we assign the reward −r to each ŵjt+1

i and 2r to
each ŵjt

i . WeightUpdate highlights the impor-
tant words and positions by assigning different
reward for each operated word, which helps the
LocalSearch select more critical positions and
synonyms to substitute.

• Recombination(Pt,W): For the t-th genera-
tion population Pt that contains multiple ad-
versarial examples, we combine two randomly
sampled texts xa = ⟨wa

1 ,w
a
2 , . . . ,w

a
n⟩ ∈ Pt and

xb = ⟨wb
1,w

b
2, . . . ,w

b
n⟩ ∈ Pt to construct a recom-

bined text xc = ⟨wc
1,w

c
2, . . . ,w

c
n⟩, where each

word wc
i is randomly sampled from {wa

i ,w
b
i}

based on their weights in the weight tableW . We
repeat the operation ∣Pt∣/2 times, and then return
all the recombined texts. Recombination crafts
non-improved solutions by randomly mixing two
adversarial examples, which globally changes the
text to avoid poor local optima.

In summary, as shown in Figure 1, at the ad-
versary initialization stage, for an input text x, we
adopt WordSubstituion iteratively to search for an
adversarial example. At the perturbation optimiza-
tion stage, we initialize the weight table W and
adopt the hybrid local search algorithm to mini-
mize the adversary perturbation. Specifically, we
first utilize the LocalSearch to construct an initial
population. At each iteration, we adopt Recombi-
nation and LocalSearch to generate several adver-
sarial examples using the weight tableW . Then we
utilize the fitness function in Equation (2) to filter
adversarial examples for the next generation. Af-
ter the adversary optimization, the adversary with
the highest fitness would be regarded as the final
adversarial example. The overall algorithm of Tex-
tHacker is summarized in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments
on eight benchmark datasets and four models to
validate the effectiveness of TextHacker.

Algorithm 1: The TextHacker Algorithm
Input: Input sample x, target classifier f , query

budget T , reward r, population size S,
maximum number of local search N

Output: Attack result and adversarial example
1 ▷ Adversary Initialization
2 Construct the candidate set C(wi) for each wi ∈ x
3 x1 = x, xadv

1 = None
4 for t = 1→ T do
5 xt+1 =WordSubstituion(xt,C)
6 if f(xt+1) ≠ f(x) then
7 xadv

1 = xt+1; break

8 if xadv
1 is None then

9 return False, None ▷ Initialization fails

10 ▷ Perturbation Optimization
11 Initialize the weight tableW with all 0s
12 xadv

i+1 =LocalSearch(xadv
i ,C,W)

13 P1 = {xadv
1 ,⋯, xadv

i ,⋯, xadv
S }

14 t = t + S − 1; g = 1
15 while t ≤ T do
16 Pg = Pg ∪ {Recombination(Pg,W)}
17 for each text xadv

g ∈ Pg do
18 With xadv

1 = xadv
g for i = 1→ N :

19 xadv
i+1 = LocalSearch(xadv

i ,C,W);
20 WeightUpdate(xadv

i , xadv
i+1 , f,W)

21 Pg = Pg ∪ {xadv
N+1}

22 t = t +N
23 Construct Pg+1 with the top S fitness in Pg

based on Equation (2)
24 Record global optima xbest with the highest

fitness
25 g = g + 1
26 return True, xbest ▷ Attack succeeds

4.1 Experimental Setup

Datasets. We adopt five widely investigated
datasets, i.e., AG’s News (Zhang et al., 2015),
IMDB (Maas et al., 2011), MR (Pang and Lee,
2005), Yelp (Zhang et al., 2015), and Yahoo! An-
swers (Zhang et al., 2015) for text classification.
For textual entailment, we select SNLI (Bowman
et al., 2015) and MulitNLI (Williams et al., 2018),
where MulitNLI includes matched version (MNLI)
and mismatched version (MNLIm).

Baselines. We take the hard-label attacks
HLBB (Maheshwary et al., 2021) and Tex-
tHoaxer (Ye et al., 2022) as our baselines. Since
there are only few hard-label attacks proposed
recently, we also adopt two evolutionary score-
based attacks, i.e., GA (Alzantot et al., 2018) and
PSO (Zang et al., 2020b) for reference, which extra
utilize the prediction confidence for attack.

Victim Models. We adopt WordCNN (Kim,
2014), WordLSTM (Hochreiter and Schmidhu-
ber, 1997), and BERT base-uncased (Devlin et al.,
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Model Attack
AG’s News IMDB MR Yelp Yahoo! Answers

Succ. Pert. Succ. Pert. Succ. Pert. Succ. Pert. Succ. Pert.

BERT

GA 40.5 13.4 50.9 5.0 65.6 10.9 36.6 8.6 64.2 7.6
PSO 45.8 12.1 60.3 3.7 74.4 10.7 47.9 7.5 64.7 6.6
HLBB 54.7 13.4 77.0 4.8 65.8 11.4 57.1 8.2 82.0 7.7
TextHoaxer 52.0 12.8 78.8 5.1 67.1 11.1 58.3 8.5 83.1 7.6
TextHacker 63.2 11.9 81.5 3.4 73.1 11.4 63.2 6.7 87.2 6.3

Word
CNN

GA 70.0 12.1 59.6 5.9 72.9 11.1 44.4 9.0 62.0 8.7
PSO 83.5 10.4 55.6 4.2 80.7 10.7 45.6 7.4 52.7 7.0
HLBB 74.0 11.7 74.0 4.2 71.1 11.2 67.1 7.6 78.7 7.8
TextHoaxer 73.5 11.5 76.5 4.6 71.1 10.7 68.1 8.0 78.6 7.8
TextHacker 81.7 10.2 77.8 3.0 78.3 11.1 75.4 6.4 84.5 6.3

Word
LSTM

GA 45.5 12.4 50.8 5.7 67.2 11.2 40.7 8.1 51.2 8.6
PSO 54.2 11.6 42.5 4.5 73.0 10.9 44.5 6.7 43.3 7.3
HLBB 56.8 12.7 72.1 4.1 68.3 11.2 61.0 6.6 70.8 8.3
TextHoaxer 56.5 12.3 73.5 4.5 67.9 10.7 61.8 6.7 70.1 8.1
TextHacker 64.7 11.2 76.2 3.0 75.2 11.2 65.4 5.5 75.5 6.9

Table 1: Attack success rate (Succ., %) ↑, perturbation rate (Pert., %) ↓ of various attacks on three models using five
datasets for text classification under the query budget of 2,000. ↑ denotes the higher the better. ↓ denotes the lower
the better. We bold the highest attack success rate and lowest perturbation rate among the hard-label attacks.

2019) models for text classification and BERT base-
uncased model for textual entailment.

Evaluation Settings. For TextHacker, we set
the neighborhood size δ = 5, reward r = 0.5, popu-
lation size S = 4, maximum number of local search
N = 8. The parameter studies are given in Ap-
pendix A. For a fair comparison, we adjust the
population size and adopt the same values for other
parameters as in their original papers to achieve
better performance for the score-based attacks of
GA and PSO. All the evaluations are conducted on
1,000 randomly sampled texts from the correspond-
ing testset. We set the synonym number m = 4.
The attack succeeds if the perturbation rate of the
generated adversarial example is smaller than 25%
to ensure the semantic constraints of the adversar-
ial examples. As the task complexity varies across
datasets, we set different query budget T (i.e., the
maximum query number to the victim model) for
different tasks (2,000 for text classification and 500
for textual entailment). The results are averaged on
five runs to eliminate randomness.

4.2 Evaluation on Attack Effectiveness

We first conduct evaluations for text classification
using five datasets on three models under the same
query budget of 2,000. The results, including at-
tack success rate and perturbation rate, are sum-
marized in Table 1. We could observe that Tex-
tHacker consistently achieves higher attack success
rate with lower perturbation rate across almost all
the datasets and victim models than the hard-label

Attack
SNLI MNLI MNLIm

Succ. Pert. Succ. Pert. Succ. Pert.

GA 67.2 14.6 67.6 12.6 66.9 12.2
PSO 70.7 15.0 72.0 12.9 70.8 12.4
HLBB 57.2 14.0 58.3 12.2 58.6 11.8
TextHoaxer 61.0 14.1 64.0 12.4 63.8 12.0
TextHacker 70.3 15.0 68.3 12.8 69.0 12.4

Table 2: Attack success rate (Succ., %) ↑, perturbation
rate (Pert., %) ↓ of TextHacker and the baselines on
BERT using three datasets for textual entailment under
the query budget of 500.

attacks. Even for the score-based attacks of GA
and PSO, TextHacker exhibits better attack perfor-
mance on most datasets and victim models.

To further validate the effectiveness of the pro-
posed TextHacker, we also conduct evaluations
on BERT for three textual entailment tasks. As
shown in Table 2, under the same query budget
of 500, TextHacker outperforms HLBB by a clear
margin of 10.0%-13.1% and TextHoaxer by 4.3%-
9.3% on three datasets with similar perturbation
rate. Compared with the score-based attacks, Tex-
tHacker achieves lower attack success rate than
PSO, but still gains better attack success rate than
GA. It is acceptable since GA and PSO extra utilize
the changes on prediction confidence introduced
by synonym substitution, making the attack much
easier than the hard-label attacks.

In conclusion, under the same query budgets, the
proposed TextHacker exhibits much better attack
performance than existing hard-label attacks, for
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Figure 3: Attack success rate (%) ↑ of various attacks on
BERT using IMDB dataset under various query budgets.

either text classification or textual entailment, and
achieves comparable or even better attack perfor-
mance than the advanced score-based attacks.

4.3 Evaluation on Attack Efficiency

In practice, the victim could block the attack by
simply denying the access if they detect overload
access within a short period. Hence, the attack effi-
ciency, which often refers to the query budget for
victim model, plays a key role in evaluating the
effectiveness of black-box attacks. On the other
hand, the query budget significantly affects the at-
tack performance of the algorithm. Thus, a good
attack should exhibit consistent and superior attack
performance under various query budgets.

We report the attack success rate of TextHacker
and the baselines under various query budgets on
BERT using IMDB dataset in Figure 3. TextHacker,
HLBB and TextHoaxer exhibit remarkably higher
attack success rate than GA and PSO under the lim-
ited query budget (≤ 2,000). We further analyze
why GA and PSO perform poorly under the limited
query budget in Appendix B. When we continue to
increase the query budget, the attack success rate
of GA and PSO starts to increase rapidly but is still
lower than that of TextHacker, which maintains
stable and effective performance. In general, Tex-
tHacker consistently exhibits better attack perfor-
mance under various query budgets, which further
demonstrates the superiority of TextHacker.

4.4 Evaluation on Adversary Quality

Adversarial examples should be indistinguishable
from benign samples for humans but mislead the
model prediction. Hence, textual adversarial exam-
ples should maintain the original meaning without

Attack Succ. Pert. Sim. Gram.

GA 50.9 5.0 79.3 0.9
PSO 60.3 3.7 81.8 0.7
HLBB 77.0 4.8 84.9 0.6
TextHoaxer 78.8 5.1 85.8 0.6
TextHacker 81.5 3.4 82.3 0.4

Table 3: Attack success rate (Succ., %) ↑, perturbation
rate (Pert., %) ↓, average semantic similarity (Sim., %)↑, grammatical error increase rate (Gram., %) ↓ of Tex-
tHacker and the baselines on BERT using IMDB dataset
under the query budget of 2,000.

apparent typos or grammatical errors. Though ex-
isting word-level attacks adopt synonym substitu-
tion to maintain semantic consistency, it is still
possible to introduce grammatical error and se-
mantic inconsistency. Apart from the perturbation
rate, we further evaluate the semantic similarity
and grammatical error increase rate using the Uni-
versal Sequence Encoder (USE) (Cer et al., 2018)
and Language-Tool1, respectively.

We compare TextHacker with the baselines on
BERT using IMDB dataset and summarize the re-
sults in Table 3. With the lowest perturbation rate,
TextHacker exhibits better semantic similarity than
the score-based attacks of GA and PSO but is lower
than HLBB and TextHoaxer, which consider the
semantic similarity of synonyms using the USE
tool during the attack. However, USE tool is time-
consuming and computationally expensive, result-
ing in HLBB and TextHoaxer running slower than
TextHacker as shown in Table 4, and their CPU
occupancy rate is seven times that of TextHacker.
Also, TextHacker achieves the lowest grammati-
cal error increase rate compared with the baselines.
The human evaluation in Appendix C shows that
the adversarial examples generated by TextHacker
are of high quality and difficult to be detected by
humans. These evaluations demonstrate the high
lexicality, semantic similarity and fluency of the
generated adversarial examples of TextHacker.

4.5 Evaluation on Real-world Applications
With the rapid development and broad applica-
tion of DNNs, numerous companies have deployed
many commercial Application Programming In-
terfaces (APIs) for various tasks, e.g. sentiment
analysis, named entity recognition, etc. The user
can obtain the prediction label by calling the ser-
vice API, making it possible for hard-label attack-
ers to attack. To validate the attack effectiveness

1https://www.languagetool.org/
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A gripping movie, played with performance that are all understated and touching.
A gripping films, played with representations that sunt all devaluted and touching.

Original Text.      Label: Positive
Adversarial Text.  Label: Negative

Weight Table Word Importance Table

Figure 4: Visualization of the weight table in TextHacker and the word importance table from the victim model,
representing the word importance of nouns, verbs, adjectives, adverbs, and their candidate words in the original text.
The original words are highlighted in Cyan, with each row representing the candidate words. The substituted words
are highlighted in Red with marker ★. A darker color indicates a more important word.

Attack Succ. Pert. Sim. Gram. Time

HLBB 65.0 5.7 82.1 0.5 8.7
TextHoaxer 65.0 5.2 82.2 0.4 9.3
TextHacker 75.0 3.1 80.9 0.3 5.7

Table 4: Attack success rate (Succ., %) ↑, perturbation
rate (Pert., %) ↓, average semantic similarity (Sim., %)↑, grammatical error increase rate (Gram., %) ↓, and
running time per attack (Time, in minutes) ↓ of various
hard-label attacks on Amazon Cloud APIs under the
query budget of 2,000.

of TextHacker in the real world, we evaluate the
attack performance of TextHacker, HLBB, and Tex-
tHoaxer on Amazon Cloud sentiment analysis API2.
Besides, attacks that run faster in the real world are
more available and convenient. So we also report
the average running time per attack. Due to the
high cost of commercial APIs, we sample 20 texts
from IMDB dataset for the test. As shown in Ta-
ble 4, TextHacker achieves higher attack success
rate, generates higher quality adversarial examples
and runs faster than HLBB and TextHoaxer when
facing real world APIs under tight query budget.

4.6 Visualization of Weight Table
Existing attacks (Ren et al., 2019; Jin et al., 2020)
usually take the model’s output changes to different
words as the word importance and perturb the top
important words to generate adversarial examples.
In this work, the weight table plays such a role,
which learns the word importance from the attack
history. Thus, the precise estimation of model’s
behavior is the key to generating better adversar-
ial examples. To further explore TextHacker, we
conduct comparison and visualization to analyze

2https://aws.amazon.com/

Attack Succ. Pert. Sim. Gram.

Weight table 22.4 11.9 71.5 1.3
Hybrid local search 79.6 6.2 77.5 0.7
TextHacker 81.5 3.4 82.3 0.4

Table 5: Ablation study on the hybrid local search algo-
rithm and weight table in TextHacker on BERT using
IMDB dataset under the query budget of 2,000.

the difference between the weight table and the
word importance table from the model. We gen-
erate the adversarial example of one benign text
sampled from MR dataset by TextHacker. For the
word importance table, we calculate the word im-
portance of each word by the prediction confidence
difference after replacing the original word with
the candidate word on BERT. We map the values
in the learned weight table and word importance
table into [-1, 1] and illustrate their heatmaps in
Figure 4. More case studies are presented in Ap-
pendix D. We find that the weight table is consis-
tent with the word importance table for the most
important words. It helps TextHacker optimize the
adversarial perturbation more efficiently and hold
on the most important words for better adversarial
example. This is important and challenging in the
hard-label attack setting, which also explains the
superiority of TextHacker.

4.7 Ablation Study

To study the impact of different components of Tex-
tHacker, we conduct a series of ablation studies on
BERT using IMDB dataset under the query budget
of 2,000.

The impact of weight table and hybrid local
search. We design two variants to evaluate the
impact of various components in TextHacker. a)
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Attack Succ. Pert. Sim. Gram.

Local search→Mutation 79.1 6.1 77.5 0.7
Recombination→ Crossover 81.3 3.7 81.9 0.4
TextHacker 81.5 3.4 82.3 0.4

Table 6: Ablation study on the hybrid local search in
TextHacker and genetic algorithm in HLBB on BERT
using IMDB dataset under the query budget of 2,000.

Attack Succ. Pert. Sim. Gram.

Random-search 80.2 5.3 77.8 0.7
Random-flip 81.0 5.3 76.4 0.7
TextHacker 81.5 3.4 82.3 0.4

Table 7: Ablation study on the hybrid local search in
TextHacker and alternative strategies on BERT using
IMDB dataset under the query budget of 2,000.

weight table: we remove the hybrid local search
and greedily substitute the sampled word with its
synonyms iteratively based on the weight table.
b) Hybrid local search: we utilize the hybrid lo-
cal search to search for better adversaries without
weight table. The experiments in Table 5 show the
effectiveness and rationality of different compo-
nents in TextHacker.

Hybrid local search vs. genetic algorithms.
Genetic algorithm in HLBB is inefficient in explor-
ing the search space compared to the hybrid local
search algorithm in TextHacker that balances the
local and global exploitation. Compared with ran-
dom synonym substitutions on mutation in HLBB,
the local search replaces more critical words using
word importance, making it reach the local optima
faster. To further illustrate their differences, we re-
place local search with mutation and recombination
with crossover respectively. The experiments in Ta-
ble 6 demonstrate that the first change drops the
success rate by 2.4% and increases the perturbation
rate by 2.7%. The second change drops the success
rate by 0.2% and increases the perturbation rate by
0.3%. This study validates the better performance
of local search and recombination.

Local search vs. alternative strategies. We
replace the local search with two alternative strate-
gies, namely random-search that randomly substi-
tutes the sampled word with its synonyms, and
random-flip that directly substitutes the sampled
word with the original word. The experiments
in Table 7 demonstrate that local search achieves
better attack performance than random-search and
random-flip, showing the superiority of the local
search in TextHacker.

5 Conclusion

In this work, we propose a new text hard-label at-
tack called TextHacker. TextHacker captures the
words that have higher impact on the adversarial
example via the changes on prediction label. By
incorporating the learned word importance into
the search process of the hybrid local search, Tex-
tHacker can reduce the adversarial perturbation
between the adversarial example and benign text
more efficiently to generate more natural adversar-
ial examples. Extensive evaluations for two typi-
cal NLP tasks, namely text classification and tex-
tual entailment, using various datasets and models
demonstrate that TextHacker achieves higher attack
success rate and lower perturbation rate than exist-
ing hard-label attacks and generates higher-quality
adversarial examples. We believe that TextHacker
could shed new light on more precise estimation of
the word importance and inspire more researches
on hard-label attacks.

Limitations

As shown in Table 3, adversarial examples gener-
ated by TextHacker have a slightly lower semantic
similarity than HLBB and TextHoaxer from the
automatic metric perspective. However, the quality
(i.e., lexicality, semantic similarity and fluency) of
adversarial examples depend not only on semantic
similarity evaluation, but also on perturbation rate,
grammatical error rate, human evaluation, etc. In
our experiments, the quality in Table 3 and human
evaluation experiment in Appendix C have demon-
strated the higher quality and the harder detection
by humans of the adversarial example generated by
our TextHacker. In addition, the semantic similarity
metric is usually measured by the USE tool which
will lead to high computing resource occupancy
and slow running speed of the attack algorithm,
as described in Section 4.4. However, a faster and
less resource-intensive attack attack is usually more
suitable and convenient in the real world. Consid-
ering semantic similarity alone may not be a good
choice for generating high quality adversarial ex-
amples. Hence, this limitation is acceptable.
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A Parameter Study

To gain more insights into the effectiveness of
our TextHacker, we conduct a series of parameter
studies to explore the impact of hyper-parameters
for the neighborhood size δ, population size S,
and maximum number of local search N in Tex-
tHacker. We conduct parameter studies on BERT
using IMDB dataset to determine the best hyper-
parameters and use the same hyper-parameters on
all other datasets.

On the neighborhood size. In Figure 5a, we
study the impact of the neighborhood size δ. The
small δ would restrict the search scope of local
search, making it difficult to find the local optimal
solution from the vast search space, resulting in
low attack success rate and high perturbation rate
under limited query budgets. As δ increases, the
attack success rate increases and the perturbation
rate decreases until δ = 5. When we continually
increase δ, the vast search scope of local search
makes it difficult to converge to local optima, re-
sulting in an increase in perturbation rate. Thus,
we set δ = 5 in our experiments.

On the population size. As shown in Figure 5b,
we study the impact of population size S. When
S = 1, the hybrid local search algorithm degrades
to the non-population-based algorithm which ex-
hibits high perturbation rate. With the increment
on the value of S, the perturbation rate decreases
until S = 4. When we continually increase S, the
local search operator costs many queries for each
candidate solution in the population. This limits the
number of iterations of the overall algorithm under
tight query budget, leading to low attack success
rate and high perturbation rate. Thus, we set S = 4
in our experiments.

On the maximum number of local search. We
finally study the impact of maximum number of lo-
cal search N , as shown in Figure 5c. When N = 2,
the recombination operator is performed for every
two steps of the local search operator. It is difficult
for local search operator to thoroughly explore the
neighborhood space, resulting in low attack suc-
cess rate and high perturbation rate. When N is too
large, there are too few recombination operations
under tight budgets, making TextHacker insuffi-
cient to explore the entire search space, leading to
unstable performance. Therefore, we adopt an in-
termediate value N = 8 to balance the local search
and recombination in our experiments.

Attack
S = 4 S = 30

Succ. Pert. Succ. Pert.

GA 88.2 9.4 35.5 3.4
PSO 75.6 6.4 47.3 2.8
HLBB 65.3 4.5 77.0 4.8
TextHacker 81.5 3.4 80.6 4.7

Table 8: Attack success rate (Succ., %) ↑, perturbation
rate (Pert., %) ↓ of TextHacker and the baselines on
BERT using IMDB dataset under the query budget of
2,000 when the population size S = 4 and S = 30.

B Why Do Population-based Baselines
Perform Poor?

To further analyze why the baselines perform
poorly under tight budgets, we show the perfor-
mance of our TextHacker and the population-based
baselines on BERT using IMDB dataset under the
same population size S = 4 and S = 30 (com-
monly used in GA, PSO and HLBB). Note that
TextHoaxer is a non-population-based algorithm
and is not considered in this experiment. As shown
in Table 8, when S = 4, the low population size
makes it difficult to seriously explore the search
space and find the optimal adversarial example for
GA and PSO, resulting in high perturbation rate.
When S = 30, GA and PSO cost too many queries
in each iteration. Thus, tight budget makes it dif-
ficult for them to fully explore the entire search
space to find adversarial examples, resulting in low
attack success rate. In contrast, the adversary ini-
tialization by random walks ensures high attack
success rate of TextHacker and HLBB even under
tight budgets. And the word importance learned
by attack history helps TextHacker explore more
efficiently and obtain lower perturbation rate.

C Human Evaluation

Human beings are very sensitive and subjective
to texts. Even minor synonym substitutions may
change the feeling of people, resulting in differ-
ent evaluations. Therefore, human evaluation is
also necessary to evaluate the quality of adversarial
examples. We perform the human evaluation on
20 benign texts and the corresponding adversar-
ial examples generated by TextHacker, HLBB and
TextHoaxer on BERT using MR dataset. Note that
the texts in the MR dataset are shorter, averaging
only 20 words per sentence, making it easier for
humans to detect the adversarial examples. We
invite 20 volunteers to label the adversarial exam-
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(a) Parameter study for various δ.
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(b) Parameter study for various S.
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Figure 5: The attack success rate (%) ↑ and perturbation rate (%) ↓ of TextHacker on BERT using IMDB dataset,
when varying the neighborhood size δ, population size S or maximum number of local search N .

ples, i.e., positive or negative, and score for the
similarity between the benign sample and its ad-
versarial example from 1 (very similar) to 5 (very
different). The survey results show that 84.5% of
the adversarial examples on TextHacker (vs. 79.0%
on HLBB and 81.5% on TextHoaxer) are labeled
the same as the original samples, and the average
similarity score is 1.9 (vs. 2.4 on HLBB and 2.1 on
TextHoaxer). It demonstrates that the adversarial
examples generated by TextHacker are of higher
quality and harder to be detected by humans than
that of HLBB and TextHoaxer.

D More Visualizations of Weight Table

Here we present more case studies as the extension
of Section 4.6 in Figure 6, 7, 8, and the adversarial
examples generated by various hard-label attacks in
Table 9, 10, 11. These visualizations further verify
the consistency between the weight table and the
word importance table, proving the effectiveness
of the learned weight table in TextHacker.
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Both lead performances are oscar size quaid is utterly fearless as the tortured husband living a painful
lie, and moore wonderfully underplays the long suffering heroine with an unflappable 50s dignity
somewhere between jane wyman and june cleaver.

Both lead performances are oscar size quaid is utterly fearless as the tortured husband living a painful
lie, and moore marvellously underplays the long suffers heroine with an unflappable 50s decency
somewhere between jane wyman and june cleaver.

Original Text.      Label: Positive

Adversarial Text.  Label: Negative

Weight Table Word Importance Table

 

Figure 6: Visualization of the weight table in TextHacker and the word importance table from the victim model,
representing the word importance of nouns, verbs, adjectives, adverbs, and their candidate words in the original text
as shown in Table 9. The original words are highlighted in Cyan, with each row representing the candidate words.
The substituted words are highlighted in Red with marker ★. A darker color indicates a more important word.

Attack Original Text & Adversarial Example Prediction

Original Text
Both lead performances are oscar size quaid is utterly fearless as the tortured husband living a
painful lie, and moore wonderfully underplays the long suffering heroine with an unflappable
50s dignity somewhere between jane wyman and june cleaver.

Positive

HLBB

Both lead (leaded) performances are oscar size quaid is utterly fearless (brave) as the
tortured (tortures) husband (hubby) living a painful (agonizing) lie, and moore wonderfully
underplays the long suffering (suffer) heroine (smack) with an unflappable 50s dignity
(decency) somewhere between jane wyman and june cleaver.

Negative

TextHoaxer

Both lead performances are oscar size quaid is utterly fearless as the tortured (tortures)
husband (hubby) living a painful (agonizing) lie, and moore wonderfully underplays the long
suffering (suffers) heroine (smack) with an unflappable (easygoing) 50s dignity somewhere
(nowhere) between jane wyman and june cleaver.

Negative

TextHacker

Both lead performances are oscar size quaid is utterly fearless as the tortured husband living
a painful lie, and moore wonderfully (marvellously) underplays the long suffering (suffers)
heroine with an unflappable 50s dignity (decency) somewhere between jane wyman and june
cleaver.

Negative

Table 9: The original text from MR dataset and the adversarial example generated by various hard-label attacks
(HLBB, TextHoaxer and TextHacker) on BERT. We highlight the words replaced by the attacks in Red. The
corresponding original words are highlighted in Cyan.
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Skulls on your symbian phone? don't panic! petaling jaya : virus experts at british software security
firm sophos plc have advised customers not to panic, following media reports of a trojan horse which
infects cellphones.

Frantz on your symbian phone? don't panic! petaling jaya : virus experts at british software insurance
firm sophos plc have advised customers not to panic, following media reports of a troy horse which
injury cellphones.

Original Text.      Label: Business

Adversarial Text.  Label: Sports

Weight Table Word Importance Table

 

Figure 7: Visualization of the weight table in TextHacker and the word importance table from the victim model,
representing the word importance of nouns, verbs, adjectives, adverbs, and their candidate words in the original text
as shown in Table 10. The original words are highlighted in Cyan, with each row representing the candidate words.
The substituted words are highlighted in Red with marker ★. A darker color indicates a more important word.

Attack Original Text & Adversarial Example Prediction

Original Text
Skulls on your symbian phone? don’t panic! petaling jaya : virus experts at british software
security firm sophos plc have advised customers not to panic, following media reports of a
trojan horse which infects cellphones.

Business

HLBB
Skulls on your symbian phone? don’t panic! petaling jaya : virus (infection) experts at british
software (sw) security firm sophos plc have advised customers not to panic, following media
reports of a trojan (spartans) horse which infects (injury) cellphones (telephones).

Sports

TextHoaxer
Skulls on your symbian phone? don’t panic! petaling jaya (gaya) : virus experts at british
software (sw) security (insurance) firm (resolute) sophos plc have advised customers not to
panic, following media reports of a trojan (spartans) horse which infects cellphones.

Sports

TextHacker
Skulls (Frantz) on your symbian phone? don’t panic! petaling jaya : virus experts at british
software security (insurance) firm sophos plc have advised customers not to panic, following
media reports of a trojan (troy) horse which infects (injury) cellphones.

Sports

Table 10: The original text from AG’s News dataset and the adversarial example generated by various hard-label
attacks (HLBB, TextHoaxer and TextHacker) on BERT. We highlight the words replaced by the attacks in Red. The
corresponding original words are highlighted in Cyan.
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What movie is the saying odoyle rules in ??  I think it might have been billy madison 
but I’m not sure. Yes you’re right Billy Madison.

Original Text.      Label: Entertainment & Music

Adversarial Text.  Label: Education & Reference

Weight Table Word Importance Table

 

What filmmaking is the saying odoyle regulation in ??  I think it might have been billy
madison but I’m not sure. Yes you’re right Billy Madison.

Figure 8: Visualization of the weight table in TextHacker and the word importance table from the victim model,
representing the word importance of nouns, verbs, adjectives, adverbs, and their candidate words in the original text
as shown in Table 11. The original words are highlighted in Cyan, with each row representing the candidate words.
The substituted words are highlighted in Red with marker ★. A darker color indicates a more important word.

Attack Original Text & Adversarial Example Prediction

Original Text What movie is the saying odoyle rules in ?? I think it might have been billy
madison but I’m not sure. Yes you’re right Billy Madison. Entertainment & Music

HLBB
What movie (filmmaking) is the saying (proverb) odoyle rules in ?? I think it
might have been billy madison but I’m not (no) sure (secure). Yes you’re right
Billy Madison.

Education & Reference

TextHoaxer
What movie (filmmaking) is the saying (proverb) odoyle rules in ?? I think it
might (perhaps) have (ha) been (undergone) billy madison but I’m not sure.
Yes you’re right Billy Madison.

Education & Reference

TextHacker What movie (filmmaking) is the saying odoyle rules (regulation) in ?? I think it
might have been billy madison but I’m not sure. Yes you’re right Billy Madison. Education & Reference

Table 11: The original text from Yahoo! Answers dataset and the adversarial example generated by various
hard-label attacks (HLBB, TextHoaxer and TextHacker) on BERT. We highlight the words replaced by the attacks
in Red. The corresponding original words are highlighted in Cyan.
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