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Abstract

Vision-and-dialog navigation is a recent bench-
mark for evaluating the AI capabilities of
perception, interaction, and decision making.
While existing methods developed for this
benchmark have demonstrated great successes,
they mostly rely on large datasets, where data
collection can be a challenge, and the learned
policies are not adaptive to domain changes.
In this paper, we focus on a new problem,
referred to as goal-oriented vision-and-dialog
navigation (GVDN), where an agent uses re-
inforcement learning techniques to compute
dialog-navigation policies from trial and error.
A robot conducts visual navigation to locate
target objects, and can talk to a remote human
operator as needed. Our remote human is able
to provide guidance on navigation only if the
robot correctly conveys its location through di-
alog. Experiments have been conducted using
photo-realistic simulation environments. Re-
sults suggest that, our agent outperforms com-
petitive baselines in success rate.

1 Introduction

Embodied mobile robots in human spaces need
navigation capabilities to move from one place to
another, while at the same time interacting with
people. While many sensory modalities have been
applied to robot navigation, vision is particularly at-
tractive due to the significant achievements (Mnih
et al., 2015; Silver et al., 2016; Levine et al., 2016;
Mnih et al., 2016a; Schulman et al., 2017). As
a result, researchers have studied the problem of
vision-based robot navigation to demonstrate and
evaluate a robot’s simultaneous capabilities of per-
ception and decision making (Bonin-Font et al.,
2008; Zhu et al., 2017). When we further incorpo-
rate people into the loop, dialog systems (Lu et al.,
2019; Gašić et al., 2013; Young et al., 2013; Yin
and Wang, 2021; Liang et al., 2020; Chen et al.,
2018; Ni et al., 2021; Li et al., 2020; Cao et al.,
2020; Zhang et al., 2022) become important for

human-robot communication (Zhang and Stone,
2015; Amiri et al., 2019; Tellex et al., 2020). Given
the importance of robot interaction with both peo-
ple and the environment, researchers have devel-
oped the “vision-and-dialog navigation” (VDN)
benchmark, where a robot visually perceives an en-
vironment, talks to people using natural language,
and makes decisions for navigation (Thomason
et al., 2020; Nguyen and Daumé III, 2019; An-
derson et al., 2018; Gu et al., 2022).

Existing VDN research focuses on training
robots to follow language instructions, which de-
scribe the unambiguous or ambiguous goal and how
to reach the goal (MacMahon et al., 2006; Chen
and Mooney, 2011; Blukis et al., 2018; Fried et al.,
2018; Ma et al., 2019b,a). Current VDN tasks have
been modeled as sequence-to-sequence translation
problems, and tackled using different supervised
learning methods in the literature, e.g., Wang et al.
(2018, 2020); Hao et al. (2020). Those methods re-
quire massive amounts of labeled data of robots per-
forming dialog and navigation tasks collected from
crowd-sourcing platforms. First, data collection is
very expensive. A second issue is that solutions
computed using those datasets are usually domain-
dependent, and tend to soon become less applicable
or outdated due to unforeseen domain changes. As
a result, there is a need of computing VDN poli-
cies from the experience of interacting with both
people and the environments (Nguyen et al., 2019;
Nguyen and Daumé III, 2019; Thomason et al.,
2020). To this end, we propose the Goal-oriented
Vision-and-Dialog Navigation (GVDN) task, as
a new benchmark, where a robot learns policies
for vision-based perception, control for navigation,
and dialog-based interaction. This new benchmark
(GVDN) is our first contribution.

A GVDN agent must clearly communicate its
current location in dialog, so as to get useful guid-
ance for navigation from a human operator. Some
areas are more confusing than the others for navi-
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Sure, anytime!
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图：robot主要由两个策略模块构成：central policy和dialog policy，其中central policy负责和环境进行交互学习，同时有能力激活dialog policy，使其和operator进行对话，并期望获取下一步建议的动作；dialog 
policy负责和operator的交互，通过多论对话，期望从operator处拿到建议，并将下一步动作反馈给central policy以帮助其导航到目标

Great, I see a sofa in front of me. 
Do you need more information?

Yes, please.

Now I know where you are. 
You can turn right, go straight…Next actions = {right, forward}

Target

Hi, I am looking for towel for you,but I am lost. 
Could you give me some advice to help me get there?

… …
Well, I also see a TV. Is that good enough?

Figure 1: Our GVDN framework includes two agents for overall coordination and dialog respectively. A central
agent learns navigation policies, and decides when to initiate a conversation. A dialog agent, as its name indicates,
helps the robot making decisions on what dialog actions to take, and which object to tell human. After a dialog is
concluded, the remote human provides the robot with a sequence of navigation actions, whose usefulness depends
on whether the dialog is successfully performed or not.

gation, and the robot might find the guidance more
useful when it is less experienced in navigation.
Those factors together make it necessary for the
robot to figure out when, where, and how a dialog
is performed. Our second contribution is a novel
GVDN approach that includes two reinforcement
learning (RL) agents for overall coordination and
dialog respectively, as shown in Figure 1.

We have implemented and evaluated our GVDN
approach using Matterport3D (Chang et al., 2017).
We evaluated our robot system based on its perfor-
mance on the success rate and accumulative reward
in GVDN tasks. Compared with visual navigation
baselines (Zhu et al., 2017) with and without a dia-
log system, we demonstrated the superiority of our
RL-based approach on GVDN tasks.

2 Methodology

In GVDN tasks, a robot needs to compute a policy
to navigate to a predefined target object within an
indoor environment. A remote operator can help
the robot by suggesting navigation actions via natu-
ral language. The remote operator is helpful only if
the robot can correctly communicate its current lo-
cation; otherwise, the suggested navigation actions
will be misleading due to the operator’s wrong be-
lief about the robot’s location. At the beginning
of each task, the robot is given as input a single
target word token WT . Given the robot’s initial
pose which includes the spatial position along with
heading and elevation angles, the robot observes an
initial RGB image, and the utterance of the opera-
tor. At each turn, the robot is expected to choose
either a locomotive action to execute in the home
environment or a dialog action to the operator for
help to get closer to the target poses.

The locomotive action set Aloc consists of five
actions corresponding to left, right, up, down, and

forward. The forward action is defined to always
move to the reachable viewpoint that is closest
to the centre of the robot’s visual field. The left,
right, up and down actions are defined to move the
camera by 30 degrees. The dialog actions Adial

include inform, request, ok, unknown, and greeting.
The inform action is to tell the operator objects
which the robot has seen.

The challenge of GVDN tasks comes from the
combination of two action spaces, referring to
Aloc ∪ Adial. The large action space brings dif-
ficulties in naively learning from trial and error. To
address this challenge, we exploit the main idea
of hierarchical reinforcement learning for action
space decomposition.

Algorithm Overview: Our GVDN framework
includes two interdependent agents, namely a cen-
tral agent, and a dialog agent. The central agent
gives the commands to an action executor and the
dialog agent. When the action executor receives
locomotive actions in Aloc, it will execute it in the
environment. When the dialog agent receives a dia-
log activation action, it collects environment infor-
mation and begins a dialog with the operator. The
dialog agent aims to get commands (a sequence of
navigation actions) from the operator which leads
the robot to the target. To complete this sub-task,
the dialog agent needs to learn to select a dialog
action in Adial in each turn of the dialog. Thus,
the original action space is decomposed. The ac-
tion space of the central agent is denoted as Acent

shown in Equation 1.
Acent = Anav ∪ {dialog activation} (1)

The dialog activation action is dispatched to the
dialog agent to execute. The action space of the
dialog agent is inherited from Adial.

The central agent chooses locomotive actions
to enable the robot to navigate towards the target
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Algorithm 1 Our GVDN algorithm
1: InitializeQcent(s, a; θQc) of the central agent agentCent

and Qdial(s, a; θQd) of the dialog agent agentDial

2: Initialize experience replay buffers BC and BD for the
interaction of the central agent and the dialog agent

3: while a new target WT arrives do
4: Initialize action sequence Actsh from the operator,

and collect initial state, s
5: while s /∈ term do // Start an interaction with the 3D

environment
6: Select a← CentralFunc(Qcent, s,WT , Acts

h)
of the central agent

7: if a is dialog action then
8: Actsh ← DialogInteract2(Qdial, s, B

D)
// Start a dialog interaction with the operator

9: else
10: Execute a in the 3D environment
11: end if
12: Collect next state s′, and reward r, then add

(s, a, r, s′) to BC

13: s← s′

14: end while
15: Randomly sample a batch from BC , and update

agentCent via DQN
16: Randomly sample a batch from BD , and update

agentDial via DQN
17: end while

poses. Otherwise, the central agent queries the di-
alog agent and expects next suggested commands
that help lead the robot from the current pose to the
target. Before beginning an episode of dialog, the
dialog agent collects necessary information of the
environment from the central agent. The informa-
tion contains the current objects around the robot,
which may be requested by the operator. At the end
of each dialog, the central agent will get the next
commands from the operator if the dialog was suc-
cessful. Otherwise, nothing is transferred from the
dialog agent to the central agent. Once the central
agent has received the suggested commands from
the dialog agent, it dispatches them to the action
executor to execute. The two agents collaborate as
above, until the robot arrives at the target poses.

Our GVDN Algorithm: Our GVDN robot is
mainly composed of the central agent and the di-
alog agent that are respectively learned from the
interactions with the 3D environment and the op-
erator. Algorithm 1 shows the learning process of
our GVDN algorithm. Algorithm 1 starts with an
initialization of the two agents’ experience replay
buffers (BC and BD respectively), the value func-
tion Qcent(s, a; θQc) of the central agent, and the
value function Qdial(s, a; θQd) of the dialog agent.
Before the start of each episode, action sequence
Actsh is initialized as empty for storing the next
actions from dialogs. In the while loop (starting

Algorithm 2 DialogInteract
Input: scent, state from the central agent; Qdial(·) for the
dialog agent; BD replay buffer to store the dialog tuples
Output: Acts, locomotive action sequence to be executed
1: Initialize the next action sequences Acts← ∅
2: Collect initial dialog state, s
3: while s /∈ term do
4: Select a ← argmaxa′Qdialog(s, a

′; θQd), and exe-
cute a

5: Collect next state s′, and reward r
6: Add dialog turn d = (s, a, r, s′) to BD

7: s← s′

8: end while
9: Extract Acts from the dialog history

10: return Acts

in Line 5), the central agent chooses action a to
execute, interacts with the 3D environment, and
stores the real experience in BC . If a is a dialog
activation action, the dialog agent is activated to
interact with the operator, and pass the next action
sequence Actsh to the central agent (in Line 8). At
the end of each episode, we use DQN to update
both θQc and θQd

The Dialog Agent directly interacts with the op-
erator, where the interaction (invoked in Algo-
rithm 1) is presented in Algorithm 2. In addition to
the value function Qdial(s, a; θQd) and the replay
buffer BD for the dialog agent, there is parameter
scent for navigation state. Algorithm 2 starts with
an initialization of the next action sequence Acts.
The dialog agent interacts with the operator while
collecting and saving experience inBD. At the end
of each dialog episode, the dialog agent extracts
the next action from the dialog history. The output
of Algorithm 2, Acts, is returned to Algorithm 1
to guide the central agent’s navigation actions.

3 Experiments

Experiments have been conducted in a realistic
3D indoor simulation platform, called Matter-
port3D (Anderson et al., 2018), which allows an
embodied agent to virtually move throughout a
scene by adopting poses coinciding with panoramic
viewpoints. Each panoramic viewpoint is com-
prised of 18 images captured from a single 3D
position. We manually add action noise into the
simulated robot’s navigation behaviors, i.e., there
is 0.1 probability that the robot fails to execute
selected actions and keeps still.

We conduct experiments in two house environ-
ments, referred to as house-I and house-II. House-
I includes 20 viewpoints, 8 rooms, and 200 objects;
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(a) House-I

0 0.25m 0.5m 0.75m 1m 1.25m 1.5m 1.75m
training frames

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Nav-DQN
Nav-RBD-DQN
GVDN-D
Nav-A2C
Nav-RBD-A2C
GVDN-A

(b) House-II

Figure 2: Learning curves of success rate on the GVDN task in the house-I (left) and house-II (right). Six robots:
Nav-DQN (One-step Q), Nav-RBD-DQN, GVDN-D, Nav-A2C, Nav-RBD-A2C, and GVDN-A.

House-II is bigger and includes 50 viewpoints, 15
rooms, and 274 objects.1

Task Specification: We on average select 4 ob-
jects as target sets and annotate the target locations
and poses in each house environment. The start
pose of the robot is randomly selected, which is
no more than 15 steps from the target locations.
If acting optimally, the average number of actions
to reach the target from the starting position is 11.
When the robot arrives at the target pose in < 50
steps, it will receive reward 10 (otherwise -5).

3.1 Case Illustration

Before presenting statistical results, we use an ex-
ample GVDN task to illustrate the interaction be-
tween the robot and the environment, and the in-
teraction between the robot and human, as shown
in Figure 3. The goal of the GVDN task is to navi-
gate to a predefined target object. In the example,
the target object is a unique “statue”. The begin-
ning pose of the robot is shown in the first frame
(in the top left corner of Figure 3). On the first
step, the robot decided to turn left, and got a new
observation of the second frame. Then, the robot
made serial decisions and came downstairs at the
pose shown in the sixth frame. Then, the robot de-
cided to talk to the operator for advice. The dialog
between the operator and the robot started with a
request from the robot. Before the operator pro-
vides its suggested commands, the robot responded
to the operator with what it had seen. At the end
of the dialog, the robot successfully got the next
commands. Following the suggested commands,
the robot arrived at the pose shown in the ninth
frame. The robot made decisions on its own until it
arrived at the target pose and saw the object in the
twelfth frame.

1The environment IDs of house-I and house-II are
8194nk5LbLH and JF19kD82Mey respectively.

3.2 Baselines

We have selected four competitive baselines for
GVDN tasks, which use either DQN or A2C. Nav-
DQN has a DQN-based navigation policy, i.e., One-
step Q (Zhu et al., 2017). Nav-A2C is the same as
Nav-DQN, except that DQN is replaced by single-
threaded A3C (Mnih et al., 2016b), also called
A2C. Nav-RBD-DQN uses a DQN-based visual
navigation policy and a rule-based dialog (RBD)
approach for dialog management (Nguyen et al.,
2019), where language-based assistance is always-
on, and provided in a predefined pattern. Nav-
RBD-A2C is the same as Nav-RBD-DQN, except
that DQN is replaced by A2C.

There are two configurations of our proposed
GVDN approach. GVDN-D uses a DQN-based
navigation policy and a DQN-based dialog policy,
and GVDN-A is the counterpart of GVDN-D that
replaces DQN with A2C for policy learning.

3.3 Hypothesis and Result

For each of the six models, we have conducted
three "runs", where each run includes 1,750,000
navigation frames. In each run, after every 5000
training frames, we let the robots interact with the
3D environment 100 times and compute the success
rate over the 100 navigation interactions. Each data
point in the figures is an average over the three
success rates collected from the three runs.

Success Rate: Figure 2 presents the quantitative
comparisons between both configurations of our
GVDN method and the four baselines. Figure 2(a)
shows that GVDN-A (the blue line) performed con-
sistently better than the four baselines, which sup-
ports our key hypothesis. In addition, GVDN-D
(the red line) and GVDN-A (the blue line) are re-
spectively learning faster than Nav-RBD-DQN (the
yellow line) and Nav-RBD-A2C (the grey solid
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Dialog

I am confused where to go. 
Let me ask the operator for 
help!

Hi, I need help. 
Where to go next!

Well, in view of your 
description, I suggest 
you turn right next.

I see a bookrack, a 
sofa...

Ok, I need to know where 
are you now. 
What do you see now?

Target: the statue

The operator
 with the global map

The robot

…...

Turn right

Thanks, I will turn right

Turn right

Start position

Turn left Go forward Down Go forward Up Dialog

…

Sure, Anytime!

Well, I see a bookshelf around me. 
Is that good enough?

Ok, I have seen a stair. 
Do you need more information?

Well, I know where you are now. 
Next, you can turn right, and go forward. 

I also see a sofa. 
Could you give me some advice now?

Turn rightGo forwardGo forward

Turn right Down Succeed!

Yes, please.

1 2

Human

3 4 5 6

789

121110

Hi, I am looking for the statue for you, but I am lost.  
Could you give me some advice to help me get there?

Yes, please.

Figure 3: An example of a GVDN task: Given a target object (the statue), the robot starts to select actions from
the start pose to the target pose. With the different heading and elevation of the robot, the robot can go forward
to different poses, including upstairs and downstairs. The robot can also choose to talk to the human for help and
receive the next commands to make progress, if it accesses them successfully through dialog (after the sixth frame).
At the twelfth frame, the robot finally arrives and sees what it seeks for, the statue.
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Figure 4: The average number of the successful dialogs
robots made in the training phase

line). We conclude that the learned dialog policy
accelerates the training process, when compared to
the rule-based dialog policy.

To test the robustness of our method we use a big-
ger house environment, house-II, with the same set-
tings, where we receive similar observations from
Figure 2(b). We also observe that the learning rates
of all methods in house-II are lower than the learn-
ing rates in house-I, which indicates that bigger
domains are more difficult for GVDN agents.

Dialog Results: To further figure out to what
degree the learned dialog policy influences the
number of the successful dialogs the robot made,
we conduct experiments with both rule-based and
learned dialog policies in two houses of different
sizes. Figure 4 shows the average number of suc-
cessful dialogs during learning phases of Nav-RBD-
A2C and GVDN-A in both house-I and house-II.

At the early 125,000 training frames in house-I,
GVDN-A made a few more successful dialogs
than Nav-RBD-A2C. In house-II, during the first
100,000 training frames, GVDN-A succeeded in
making more successful dialogs than Nav-RBD-
A2C. Thus, the learned dialog policy can enable
the robot to get more suggested commands to make
progress than the rule-based dialog policy, in both
houses. After 750,000 training frames, the suc-
cessful dialogs decrease in all four experiments,
which denotes the robots relied less on suggested
commands from the human. During the later train-
ing phase, the robots in house-II make a few more
successful dialogs than the ones in house-I, which
denotes help from the human is still needed in big-
ger environments. We conclude that the learned
dialog policies can enable the robot to get more
suggested commands in both house-I and house-II.

4 Conclusion
In this work, we focus on goal-oriented vision-
and-dialog navigation (GVDN), where an agent
is not provided with any data, and needs to learn
navigation-dialog policies from trial and error to-
ward achieving long-term goals. Our GVDN algo-
rithm enables robots to learn from the simultaneous
experiences of interacting with the environment
via navigation, and interacting with the human via
dialog. Our GVDN algorithm outperforms com-
petitive baselines that are incapable of performing
dialog actions or use rule-based dialog systems in
success rate and task completion efficiency.
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Limitations

The current conversations are only about landmark
objects and their locations. There is great potential
of improving the work by introducing other types
of dialog actions, such as describing the semantic
information of room types and their functionalities.
Our method works mostly for home environments,
while other types of environments (such as streets,
shopping malls, and hospitals) might introduce new
challenges and opportunities.

Another direction for future work is to incorpo-
rate robot motion control into the loop, while cur-
rently our robot is teleported between viewpoints.
The current conversations are only about landmark
objects and their locations. There is great potential
of improving the work by introducing other types
of dialog actions, such as describing the semantic
information of room types and their functionalities.
The experiments were performed in home environ-
ments, while other types of environments (such
as offices, shopping malls, and hospitals) might
introduce new challenges and opportunities.

Ethics Statement

The described research intends to enable robots
to learn from the simultaneous trial-and-error ex-
periences of interacting with an environment via
navigation behaviors, and interacting with a remote
human via dialog behaviors. Data used to train
the robot was collected from the simulation of a
mobile robot interacting with a 3D indoor environ-
ment, and a remote human operator. There is the
great potential of applying our developed approach
to utilizing additional information extracted from
human-robot dialog scenarios, and interacting with
different types of human users (simulated or real
ones). Finally, the observations and conclusion
from this research are expected to generalize in
other platforms and the real world.
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A Appendix

A.1 Algorithm Instantiation
For completeness, we include some details about
the central agent, including state space, the reward
design, and the policy learning.

State Space: To navigate to the target location,
the central agent assumes it operates over a Markov
Decision Process (MDP). In each step, the cen-
tral agent observes image o taken by the robot’s
RGB camera in its first person view. For each
image observation o, we use a ResNet-152 CNN
pretrained on ImageNet to extract a mean-pooled
feature vector. Given a target, we use a pre-trained
word2vector model to encode the target word WT .
The image observation and word vector are then
concatenated together to form the state:

scent = ResNet( o )⊕Word2Vec(WT ) (2)

where ⊕ denotes concatenation.

Reward: Only when the robot successfully lo-
cates the target object (i.e., standing in front of
and facing the target), will the central agent re-
ceive a big bonus. It will receive a penalty when
it fails in target search in the max number of steps.
When executing actions in the 3D environment,
there exists a small time penalty rnav to encourage
shorter trajectories. When the dialog agent cor-
rectly communicates its current location, a large
bonus is provided to encourage the dialog agent
to learn to improve its dialog management skills.
When the central agent chooses dialog activation
actions, the immediate reward depends on the per-
formance of the dialog agent. A successful dialog
produces a reward that is four times of that from an
unsuccessful one. This setting is for encouraging
the central agent to interact with the dialog agent
when dialog quality is high. At the same time, it
should be noted a rational central agent is able to
find that interacting with a dialog agent is relatively
less useful when it becomes better at selecting nav-
igation actions.

Central Policy: Due to the state space being con-
tinuous, the approximated value function of the cen-
tral agent is implemented using a three-layer fully
connected neural network, Qcent(scent, a; θQc), pa-
rameterized by θQc. We improve the value function
by adjusting θQc to minimize the mean-squared
loss function. Besides the value function to make
decisions, the central agent deterministically follow

the advised actions (when available) in the action
sequence −→a from the central agent instead of the
output of the value function Qcent:

a←
{

argmaxa′Qcent(scent, a
′; θQc)

−→a = ∅
−→a −→a 6= ∅

(3)
Note that the advised actions in Actsh are not al-
ways optimal in terms of taking the shortest route
towards the target. The quality of the dialog policy
influences the correctness of the suggested action
sequence. In some ways, this is a sort of explo-
ration strategy of the central learning agent.

Dialog Policy: Before starting a dialog with the
operator, the dialog agent should access environ-
ment information from the central agent, i.e. the
visible object set Objs around the robot. The dia-
log agent concatenates the one-hot vector of Objs
into the dialog state s. In each dialog turn, the dia-
log agent chooses a dialog action in Adial to speak
to the human, based on the current dialog state. At
the end of the dialog, if the robot accesses the next
action sequence, the dialog is considered success-
ful. We model the dialog policy with a three-layer
fully connected neural network, Qdial(s, a; θQd),
parameterized by θQd. We improve the dialog pol-
icy θQd by adjusting θc via DQN to minimize the
mean-squared loss function.

A.2 Implementation Details

The central agent is implemented using Deep
Q-Network (DQN) and Advantage Actor-Critic
(A2C). We use a ResNet-152 (He et al., 2016)
CNN pretrained on ImageNet to extract a mean-
pooled feature vector with 2049 dimensions. We
use GloVe (Pennington et al., 2014) model to get
word representations with 50 dimensions. The
DQN network of the central agent includes one
hidden layer with 100 hidden nodes, and its output
layer includes 6 units corresponding to 6 navigation
actions. We set the discount factor γ = 0.9. The
experience buffer size is 8000. The network pa-
rameters are updated every 20 navigation episodes,
while the target network parameters are updated
every 200 navigation episodes. The network ar-
chitecture of the actor and critic models are MLPs
with a hidden layer of 64 units. The input and out-
put size of the network are the same as the DQN
model. The number of forward steps in A2C is 5.
The learning rate is set 0.00005. The number of
suggested commands passed by the central agent
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Figure 5: Total cost of navigation steps and dialog
steps in house-I with the models: Nav-DQN (One-step
Q), Nav-RBD-DQN, GVDN-D, Nav-A2C, Nav-RBD-
A2C, and GVDN-A

is no more than 3. These tuples are also stored in a
replay buffer for training.

The dialog agent is implemented using DQN.
The dialog DQN includes one hidden layer with 60
hidden nodes and ReLU activation, and its output
layer of 42 units corresponds to 42 feasible dialog
actions. We set the discount factor γ = 0.9 The
buffer size is 8000, and we use uniform sampling
in experience replay. The target value function is
updated after every 200 dialog episodes. In each
epoch, the dialog policy is refined using one-step
16-tuple-minibatch updates. The learning rate is set
to 0.0001. All neural network parameters are ran-
domly initialized, and optimized using RMSProp.
The experiments were performed using a desktop
machine equipped with a RTX 3080 GPU and 32G
memory.

Simulated Human Operator: In our GVDN
setting, we construct a rule-based simulator to
simulate the operator that responds to robot re-
quests. The operator has the global map of the
house environment, but does not know the location
of the robot. Based on the objects around the robot,
the operator can infer which room the robot is in
through dialog, and give the next command to the
robot. In each dialog episode, the operator keeps a
candidate region list. After the robot tells the oper-
ator which object it has seen each turn, the operator
will delete the region which excludes the object.
Note that the number of regions in the candidate
region list may be empty or more than one at the
end of the dialog, in which case the operator won’t
plan the route. Once getting only one candidate
region, the operator begins planning the shortest
path to the target. Then the operator gives the next
commands to the robot.

0 0.25m 0.5m 0.75m 1m 1.25m 1.5m 1.75m
training frames

40

60

80

100

120

to
ta

l c
os

t

Nav-DQN
Nav-RBD-DQN
GVDN-D
Nav-A2C
Nav-RBD-A2C
GVDN-A

Figure 6: Total cost of navigation steps and dialog
steps in house-II with the models: Nav-DQN (One-step
Q), Nav-RBD-DQN, GVDN-D, Nav-A2C, Nav-RBD-
A2C, and GVDN-A

Dialog Simulation: We use TC-bot (Li et al.,
2017, 2016) for human-robot dialog simulation,
and set “language level” as semantic. A dia-
log action consists of 8 dialog acts and 43 slots.
The dialog actions include request_next_act, in-
form, thanks, greeting, OK, not_clear, closing, and
you_just_said. An inform dialog action of sofa can
be like INFORM(’sofa’). The max dialog turns
are set 20. The dialog is considered successful
only when the robot acquires the next commands
from the operator, where the robot will receive a
big bonus 40, otherwise, -20. In each dialog turn,
the robot receives a small punishment, -1, so as to
encourage shorter dialogs.

Total Cost: To further analyze the efficiency of
our method in terms of total cost, we consider the
weighted average of both navigation and dialog
steps in each episode. When the robot remains
still, we consider the cost to be one unit. Thus,
one dialog interaction costs one unit. We consider
a navigation step as costing 2 units, because we
assume physical movements are more expensive
than language actions. Figure 5 shows that GVDN-
D (the red line) has a lower cost than Nav-DQN
(the grey dotted line) and Nav-RBD-DQN (the yel-
low line). Similarly, GVDN-A (the blue line) and
Nav-RBD-A2C (the grey solid line) has lower cost
than Nav-A2C (the green line). We conclude that
our GVDN algorithm enables robots to learn more
efficiently than the baselines.

To test our GVDN method in bigger environ-
ments, we experimented it in house-II. Figure 6
displays similar results as house-I, which shows
the robustness of our GVDN method. Note that the
total cost of each method in Figure 6, which is a
bigger house, is higher than those in Figure 5.
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