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Abstract

A recent line of work in NLP focuses on
the (dis)ability of models to generalise com-
positionally for artificial languages. However,
when considering natural language tasks, the
data involved is not strictly, or locally, compo-
sitional. Quantifying the compositionality of
data is a challenging task, which has been in-
vestigated primarily for short utterances. We
use recursive neural models (Tree-LSTMs)
with bottlenecks that limit the transfer of infor-
mation between nodes. We illustrate that com-
paring data’s representations in models with
and without the bottleneck can be used to pro-
duce a compositionality metric. The procedure
is applied to the evaluation of arithmetic ex-
pressions using synthetic data, and sentiment
classification using natural language data. We
demonstrate that compression through a bot-
tleneck impacts non-compositional examples
disproportionately and then use the bottleneck
compositionality metric (BCM) to distinguish
compositional from non-compositional sam-
ples, yielding a compositionality ranking over
a dataset.

1 Introduction

Compositional generalisation in contemporary
NLP research investigates models’ ability to com-
pose the meanings of expressions from their parts
and is often investigated with artificial languages
(e.g. Lake and Baroni, 2018; Hupkes et al., 2020) or
highly-structured natural language data (e.g. Key-
sers et al., 2019). For such tasks, the local compo-
sitionality definition of Szabó (2012, p. 10) illus-
trates how meaning can be algebraically composed:

“The meaning of a complex expression
is determined by the meanings its con-
stituents have individually and the way
those constituents are combined.”

In natural language, there are fragments whose
meaning can be composed as with arithmetic (e.g.

removing
the ruler

from

the classroom

removing
the pencil

the classroom

locally compositional processing
recursive processing

from

unambiguous example:
interpretation is the same

ambiguous example:
interpretation changes

Figure 1: When processing this phrase, “the ruler” is
interpreted differently when comparing recursive pro-
cessing with local processing. We enforce local pro-
cessing by equipping models with bottlenecks, and our
bottleneck compositionality metric (BCM) then com-
pares inputs’ representations before and after compres-
sion through the bottleneck.

“the cat is in the house”), while others carry con-
textual dependencies (e.g. “the kiwi grows on the
farm”). Can we characterise whether an input’s
meaning arises from strictly local compositions?

Existing work in that direction mostly focuses
on providing a ‘compositionality rating’1 for figura-
tive utterances since figurative language is assumed
to be less compositional (Ramisch et al., 2016; Nan-
dakumar et al., 2019; Reddy et al., 2011). Andreas
(2018) suggests a general-purpose formulation for
measuring the compositionality of examples using
their numerical representations, through the Tree
Reconstruction Error (TRE), expressing the dis-
tance between a model’s representation of an input
and a strictly compositional reconstruction of that
representation. Determining how to compute that
reconstruction is far from trivial.

Inspired by TRE, we use recursive neural net-
works, Tree-LSTMs (Tai et al., 2015), to process
inputs according to their syntactic structure. We
augment Tree-LSTMs with bottlenecks to compute

1We colloquially refer to the ‘compositionality ratings’ of
phrases, but a more appropriate way to express the same would
be to refer to ‘the extent to which the meaning of a phrase
arises from a compositional syntax and semantics’. After all,
compositionality is a property of a language, not of a phrase.
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the task-specific meaning of an input in a more lo-
cally compositional manner. We use these models
to distinguish more compositional examples from
less compositional ones in a bottleneck compo-
sitionality metric (BCM). Figure 1 provides an
intuition for how a bottleneck can provide a met-
ric. For fragments that violate the assumption that
meanings of subexpressions can be computed lo-
cally (on the left side), one could end up with dif-
ferent interpretations when comparing a contex-
tualised interpretation (in blue) with one locally
computed (in green): disambiguating “ruler” re-
quires postponed meaning computation, and thus
local processing is likely to lead to different results
from regular processing. For fragments that are
non-ambiguous (on the right side) the two types
of processing can yield the same interpretation be-
cause the interpretation of “pencil” is likely to be
the same, with or without the context. The bottle-
neck hinders the model in postponing computations
and more strongly impacts non-compositional sam-
ples compared to compositional ones, thus acting
as a metric.

In the remainder of the paper, we firstly discuss
the related work in §2. §3 elaborates on the models
used that either apply a deep variational informa-
tion bottleneck (DVIB) (Alemi et al., 2017) or com-
press representations through increased dropout
or smaller hidden dimensionalities. In §4, we pro-
vide a proof-of-concept in a controlled environment
where non-compositional examples are manually
introduced, after which §5 elaborates on the natural
language example of sentiment analysis. For both
tasks, we (1) demonstrate that compression through
a bottleneck encourages local processing and (2)
show that the bottleneck can act as a metric dis-
tinguishing compositional from less compositional
examples.

2 Related Work

Multi-word expressions The majority of the re-
lated work in the past two decades has discussed
the compositionality of phrases in the context of
figurative language, such as phrasal verbs (“to eat
up”) (McCarthy et al., 2003), noun compounds
(“cloud nine” vs “swimming pool”) (Reddy et al.,
2011; Ramisch et al., 2016; Nandakumar et al.,
2019), verb-noun collocations (“take place” vs
“take a gift”) (Venkatapathy and Joshi, 2005; Mc-
Carthy et al., 2007), and adjective-noun pairs (“nice
house”) (Guevara, 2010; Nandakumar et al., 2019).
Compositionality judgements were obtained from

humans, who indicated to what extent the meaning
of the compound is that of the words when com-
bined literally, and various computational methods
were applied to learn that mapping. Those meth-
ods were initially thesaurus-based (McCarthy et al.,
2003), relied on word vectors from co-occurrence
matrices later on (Reddy et al., 2011), or employed
deep neural networks (Nandakumar et al., 2019).

Compositionality by reconstruction TRE (An-
dreas, 2018) is a task-agnostic metric that evalu-
ates the compositionality of data representations:
TRE(x) = δ(f(x), f̂η(d)). It is the distance be-
tween the representation of x constructed by f
and the compositionally reconstructed variant f̂η(d)
based on the derivation of x (d). When employ-
ing the metric, one should define an appropriate
distance function (δ) and define f̂η parametrised
by η. Andreas illustrates the TRE’s versatility by
instantiating it for three scenarios: to investigate
whether image representations are similar to com-
posed image attributes, whether phrase embeddings
are similar to the vector addition of their compo-
nents, and whether generalisation accuracy in a
reference game positively correlates with TRE.

Bhathena et al. (2020) present two methods
based on TRE to obtain compositionality ratings
for sentiment trees, referred to as tree impurity and
weighted node switching that express the differ-
ence between the sentiment label of the root and
the other nodes in the tree. Zheng and Jiang (2022)
ranked examples of sentiment analysis based on
the extent to which neural models should memorise
examples in order to capture their target correctly.
While different from TRE, memorisation could be
related to non-compositionality in the sense that
non-compositional examples require more memori-
sation, akin to formulaic language requiring mem-
orisation in humans (Wray and Perkins, 2000).

Other instantiations of the TRE are from litera-
ture on language emergence in signalling games,
where the degree of compositionality of that lan-
guage is measured. Korbak et al. (2020) contrast
TRE and six other compositionality metrics for
signalling games where the colour and shape of
an object are communicated. Examples of such
metrics are topographic similarity, positional disen-
tanglement and context independence. These are
not directly related to our work, considering that
they aim to provide a metric for a language rather
than single utterances. Appendix B.2 elaborates on
topographic similarity and the metrics of Bhathena
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et al. (2020) and Zheng and Jiang (2022), compar-
ing them to our metric for sentiment analysis.

Compositional data splits Recent work on com-
positional generalisation using artificial languages
or highly-structured natural language data focuses
on creating data splits that have systematic sepa-
ration of input combinations in train and test data.
The aim is to create test sets that should not be hard
when computing meaning compositionally, but, in
practice, are very challenging. An example compo-
sitionality metric for semantic parsing is maximum
compound divergence (Keysers et al., 2019; Shaw
et al., 2021), that minimises train-test differences
in word distributions while maximising the differ-
ences in compound usage. This only applies to a
data split as a whole, and – differently from the
work at hand – does not rate individual samples.

More recently, Bogin et al. (2022) discussed a
diagnostic metric for semantic parsing, that pre-
dicts model success on examples based on their
local structure. Because models struggle with sys-
tematically assigning the same meaning to subex-
pressions when they re-appear in new syntactic
structures, such structural deviation diagnoses gen-
eralisation failures. Notice that the aim of our work
is different, namely identifying examples that are
not compositional, rather than investigating gener-
alisation failure for compositional examples.

3 Model

The model we employ is the Tree-LSTM (Tai et al.,
2015), which is a generalisation of LSTMs to tree-
structured network topologies. The LSTM com-
putes symbols’ representations by incorporating
previous time steps, visiting symbols in linear or-
der. A sentence representation is simply the final
time step. A Tree-LSTM, instead, uses a tree’s root
node representation as the sentence representation,
and computes the representation of a non-terminal
node using the node’s children.

Equations 1 and 2 illustrate the difference be-
tween the LSTM and an N -ary Tree-LSTM for
the input gate. The LSTM computes the gate’s ac-
tivation for time step t using input vector xt and
previous hidden state ht−1. The Tree-LSTM does
so for node j using the input vector xj and the
hidden states of up to N children of node j.

it = σ(W (i)xt + U (i)ht−1 + b(i)) (1)

ij = σ(W (i)xj +
N∑

`=1

U
(i)
` hj` + b(i)) (2)

In addition to the input gate, the Tree-LSTM’s
specification for non-terminal j (with its kth child
indicated as hjk) involves an output gate oj (equa-
tion analogous to 2), a forget gate fjk (Equation 3),
cell input activation vector uj (equation analogous
to 2, with the σ function replaced by tanh), and
memory cell state cj (Equation 4). Finally, cj feeds
into the computation of hidden state hj (Equa-
tion 5).

fjk = σ(W (f)xj +

N∑

`=1

U
(f)
k` hj` + b(f)) (3)

cj = ij � uj +
N∑

`=1

fj` � cj` (4)

hj = oj � tanh(cj) (5)

We apply a binary Tree-LSTM to compute hidden
state hj and memory cell state cj , that thus uses
separate parameters in the gates for the left and
right child.

Tree-LSTMs process inputs according to their
syntactic structure, which has been associated with
more compositional processing (Socher et al., 2013;
Tai et al., 2015). Yet, although the topology encour-
ages compositional processing, there is no mecha-
nism to explicitly regulate how much information
is passed from children to parent nodes – e.g. given
enough capacity, the hidden representations could
store every input encountered and postpone pro-
cessing until the very end. We add such a mecha-
nism by introducing a bottleneck.

1. Deep Variational Information Bottleneck
The information bottleneck of Alemi et al. (2017)
assumes random variables X and Y for the input
and output, and emits a compressed representation
Z that preserves information about Y , by minimis-
ing the loss LIB in Equation 6. This loss is in-
tractable, which motivates the variational estimate
LV IB provided in Equation 7 (Alemi et al., 2017)
that we use to train the deep variational informa-
tion bottleneck (DVIB) version of our model.

LIB = βI(X,Z)− I(Z, Y ) (6)

LV IB = βE
x

[KL[pθ(z|x), r(z)]]
︸ ︷︷ ︸

information loss

+

E
z∼pθ(z|x)

[−logqφ(y|z)]
︸ ︷︷ ︸

task loss

(7)
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In the information loss, r(z) and pθ(z|x) estimate
the prior and posterior probability over z, respec-
tively. In the task loss, qφ(y|z) is a parametric
approximation of p(y|z). In order to allow an
analytic computation of the KL-divergence, we
consider Gaussian distributions r(z) and pθ(z|x),
namely r(z) = N (z|µ0,Σ0) and pθ(z|x) =
N (z|µ(x),Σ(x)), where µ(x) and µ0 are mean
vectors, and Σ(x) and Σ0 are diagonal covariance
matrices. The reparameterisation trick is used to
estimate the gradients: z = µ(x)+Σ(x)�ε, where
ε ∼ N (0, I).

We sample z once per non-terminal node, and
average the KL terms of all non-terminal nodes,
where x is the hidden state hj or the cell state cj
(that have separate bottlenecks), and µ(x) and Σ(x)
are computed by feeding x to two linear layers. β
regulates the impact of the DVIB, and is gradually
increased during training. During inference, we
use z = µ(x).

2. Dropout bottleneck Binary dropout (Srivas-
tava et al., 2014) is commonly applied when train-
ing neural models, to prevent overfitting. With
a probability p hidden units are set to zero, and
during the evaluation all units are kept, but the acti-
vations are scaled down. Dropout encourages dis-
tributing the most salient information over multiple
neurons, which comes at the cost of idiosyncratic
patterns that networks may memorise otherwise.
We hypothesise that this hurts non-compositional
examples most. We apply dropout to the Tree-
LSTM’s hidden states (hj) and memory cell states
(cj).

3. Hidden dimensionality bottleneck Simi-
larly, decreasing the number of hidden units is
expected to act as a bottleneck. We decrease the
number of hidden units in the Tree-LSTM, keep-
ing the embedding and task classifier dimensions
stable, where possible.

The different bottlenecks have different merits:
whereas the hidden dimensionality and dropout
bottlenecks shine through simplicity, they are rigid
in how they affect the model and apply in the same
way at every node. The DVIB allows for more
flexibility in how compression is achieved through
learnt Σ(x) and by requiring an overall reduction
in the information loss term, without enforcing the
same bottleneck at every node in the tree.

From bottleneck to compositionality metric
BCM compares Tree-LSTMs with and without a

bottleneck. We experiment with two methods, in-
spired by TRE (Andreas, 2018). TRE aims to find
η such that δ(f(x), f̂η(d)) is minimised, for inputs
x, their derivations d, distance function δ, a model
f and its compositional approximation f̂η.

• In the TRE training (BCM-TT) setup, we
include the distance (δ) between the hidden
representations of f and f̂η in the loss when
training f̂η. When training f̂η with TRE train-
ing, f is frozen, and f and f̂η share the final
linear layer of the classification module. In the
arithmetic task, δ is the mean-squared error
(MSE) (i.e. the squared Euclidean distance).
In sentiment analysis, δ is the Cosine distance
function.

• In the post-processing (BCM-PP) setup, we
train the two models separately, extract hid-
den representations and apply canonical cor-
relation analysis (CCA) (Hotelling, 1936)
to minimise the distance between the sets
of hidden representations. Assume matrices
A ∈ RdA×N and B ∈ RdB×N represent-
ing N inputs with dimensionalities dA and
dB . CCA linearly transforms these subspaces
A′ = WA, B′ = V B to maximise the cor-
relations {ρ1, . . . , ρmin(dA,dB)} of the trans-
formed subspaces. We treat the number of
CCA dimensions to use as a hyperparameter.

4 Proof-of-concept: Arithmetic

Given a task, we assign ratings to inputs that ex-
press to what extent their task-dependent meaning
arises in a locally compositional manner. To inves-
tigate the impact of our metric on compositional
and non-compositional examples in a controlled
environment, we first use perfectly compositional
arithmetic expressions and introduce exceptions to
that compositionality manually.

4.1 Data and model training
Math problems have previously been used to exam-
ine neural models’ compositional reasoning (e.g.
Saxton et al., 2018; Hupkes et al., 2018; Russin
et al., 2021). Arithmetic expressions are suited for
our application, in particular since they can be rep-
resented as trees. We use expressions containing
brackets, integers -10 to 10, and + and - operators –
e.g. “( 10 - ( 5 + 3 ))” (using data from Hupkes
et al., 2018). The output is an integer. This is mod-
elled as a regression problem with the MSE loss.
The ‘meaning’ (the numerical value) of a subex-
pression can be locally computed at each node in
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0 in left subtree? 
interpret 0 as 0

0 in right subtree? treat
0 as the 1st leaf node

Figure 2: Illustration of the ‘exceptions’ in the arith-
metic task: the value of “0” depends on its position and
on the value of the leftmost leaf node in the tree.

the tree: there are no contextual dependencies.
In this controlled environment, we introduce ex-

ceptions by making “0” ambiguous. When located
in the subtree headed by the root node’s left child,
it takes on its regular value, but when located in
the right subtree, it takes on the value of the left-
most leaf node of the entire tree (see Figure 2).
The model is thus encouraged to perform non-
compositional processing to keep track of all occur-
rences of “0” and store the first leaf node’s value
throughout the tree. 88% of the training data are the
original arithmetic expressions, and 12% are such
exceptions. We can thus track what happens to the
two categories when we introduce the bottleneck.
The training data consist of 14903 expressions with
1 to 9 numbers. We test on expressions with lengths
5 to 9, using 5000 examples per length. The Tree-
LSTMs trained on this dataset have embeddings
and hidden states of sizes 150 and are trained for
50 epochs with learning rate 2e−4 with AdamW
and a batch size of 32. The base Tree-LSTMs in
all setups use the same architecture, namely the
Tree-LSTM architecture required for the DVIB,
but with β = 0. All results are averaged over mod-
els trained using ten different random seeds. In the
Tree-LSTM, the numbers are leaf nodes and the
labels of non-terminal nodes are the operators.2

4.2 Task performance: Hierarchy without
compositionality?

Figures 3a and 3b visualise the performance for
the regular examples and exceptions, respectively,
when increasing β for the DVIB. The DVIB dis-
proportionately harms the exceptions; when β is
too high the model cannot capture the non-local
dependencies. Appendix A.1 shows how the hid-
den dimensionality and dropout bottlenecks have a
similar effect. Figure 4 and Appendix A.2 provide
insights in the training dynamics of the models: ini-
tially, all models will treat “0” as a regular number,
independent of the bottleneck. Close to conver-

2Appendix C further elaborates on the experimental setup.
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Figure 3: Performance (MSE) on the arithmetic task
for the Tree-LSTM with the DVIB (darker colours cor-
respond to higher β). Exceptions have a contextual de-
pendency and cannot be computed bottom up.
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Figure 4: Training dynamics for the Tree-LSTM with
the DVIB: for all test examples we compute the MSE
over the course of training on the validation set using
(a) the compositional targets, or (b) the targets from the
adapted dataset, of which a subset is not compositional.

gence, models trained with a low β have learnt to
capture the ambiguities, whereas models trained
with a higher β will remain in a more locally com-
positional state.3

Bottlenecks restrict information passed through-
out the tree. To process an arithmetic subexpres-
sion, all that is needed is to pass on its outcome,
not the subexpression itself – e.g. in Figure 2, one
could simply store the value 6 instead of the subex-
pression “2 - -4”. The former represents local
processing and is more efficient (i.e. it requires
storing less information), while the latter leads to
information from the leaf nodes being passed to
non-terminal nodes higher up the tree. Storing in-
formation about the leaf nodes would be required
to cope with the exceptions in the data. That the
model could get close to accurate predictions for
these exceptions in the first place suggests Tree-
LSTMs can process inputs according to the hier-
archical structure without being locally composi-
tional. Increasing compression using bottlenecks
enforces local processing.

3Comparing ‘early’ and ‘late’ models may yield similar
results as comparing base and bottleneck models. Yet, without
labels of which examples are compositional, it is hard to know
when the model transitions from the early to the late stage.
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Figure 5: Rankings of arithmetic examples. (a) shows
the relative position of regular examples and exceptions
in the rankings of all setups, where 0 corresponds to the
start of the ranking and 1 to the end. (b) illustrates the
result of BCM-TT with the DVIB, β = 0.25.

4.3 The Bottleneck Compositionality Metric

The bottleneck Tree-LSTM harms the exceptions
disproportionately in terms of task performance,
and through BCM we can exploit the difference be-
tween the base and bottleneck model to distinguish
compositional from non-compositional examples.
As laid out in §3, we use the TT or PP method
to compare pairs of Tree-LSTMs: the base Tree-
LSTM with β = 0, no dropout and a hidden dimen-
sion of 150 (base model) is paired up with Tree-
LSTMs with the same architecture, but a different
β, a different dropout probability p or a different
hidden dimensionality d (bottleneck model). All
Tree-LSTMs have a classification module that con-
sists of two linear layers, where the first layer maps
the Tree-LSTM’s hidden representation to a vector
of 100 units, and the second layer emits the pre-
dicted value. The 100-dimensional vector is used
to apply the BCM:

• In BCM-PP the vector feeds into the CCA
computation, that compares the hidden repre-
sentation of the base model and the bottleneck
model using their Cosine distance. We rank
examples according to that distance, and use
all CCA directions.

• In BCM-TT, the vector feeds into the TRE
loss component. We train the base model,
freeze that network, and add the MSE of
the hidden representations of the bottleneck
model and the base model to the loss. After
training, the remaining MSE is used to rank
examples.

Both setups have the same output, namely a com-
positionality ranking of examples in a dataset. A
successful ranking would put the exceptions last.

0
2.

5e
-0

5
.0

00
62

5
.0

01
25

.0
02

5
.0

06
25

.0
12

5
.0

25

0.3

0.4

0.5

pe
rfo

rm
an

ce

(a) DVIB

0 .1 .2
5 .5 .6
5

.7
5

.8
5 .9

dropout

sentiment-only baseline

(b) Dropout

15
0

12
5

10
0 75 50 25 10 5

size

BCM-PP
BCM-TT

(c) Hidden dim.

Figure 6: The accuracy (solid) and macro-averaged F1-
scores (dashed) for the SST test set, for base models,
bottleneck models and a sentiment-only baseline.

Figure 5a illustrates the relative position of regular
examples and exceptions for all bottlenecks and
BCM variants, for β = 0.25, p = 0.5 and d = 25.
The change in MSE observed in §4.2 is reflected
in the quality of the ranking, but the success does
not depend on the specific selection of β, p or d, as
long as they are large (β, p) or small enough (d).
Figure 5b illustrates one of the rankings.

Summarising, we illustrated that recursive models
can employ strategies that do not locally compose
the meaning of arithmetic subexpressions but carry
tokens’ identities throughout the tree. We can make
a model more locally compositional using bottle-
necks and can use a model’s hidden states to infer
which examples required non-local processing af-
terwards, acting as our compositionality metric.

5 Sentiment analysis

We apply the metric to the task of sentiment anal-
ysis, for which Moilanen and Pulman (2007, p. 1)
suggest the following notion of compositionality:

“For if the meaning of a sentence is a
function of the meanings of its parts then
the global polarity of a sentence is a func-
tion of the polarities of its parts.”

Sentiment is quasi-compositional: even though the
sentiment of an expression is often a straightfor-
ward function of the sentiment of its parts, there are
exceptions – e.g. consider cases of sarcasm, such
as “I love it when people yell at me first thing in
the morning” (Barnes et al., 2019), which makes it
a suitable testing bed.

5.1 Data and model training

We use the SST-5 subtask from the Stanford Sen-
timent Treebank (SST) (Socher et al., 2013), that
contains sentences from movie reviews collected
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Figure 7: Illustration of the predictions of a sentiment-
only baseline model. We indicate the predicted senti-
ment given two inputs. The labels range from very neg-
ative (‘- -’) to neutral (‘∼’) to very positive (‘++’).

by Pang and Lee (2005). The SST-5 subtask re-
quires classifying sentences into one of five classes
ranging from very negative to very positive. The
standard train, development and test subsets have
8544, 1101 and 2210 examples, respectively. The
sentences were originally parsed with the Stanford
Parser (Klein and Manning, 2003), and the dataset
includes sentiment labels for all nodes of those
parse trees. Typically, labels for all phrases are in-
cluded in training, but the evaluation is conducted
for the root nodes of the test set, only.

Following Tai et al. (2015), we use GloVe word
embeddings (Pennington et al., 2014), that we
freeze across models.4 The Tree-LSTM has 150
hidden units and is trained for 10 epochs with a
learning rate of 2e−4 and the AdamW optimiser.
During each training update, the loss is computed
over all subexpressions of 4 trees. Training is re-
peated with 10 random seeds.5 Figure 6 provides
the performance on the test set for the base and bot-
tleneck models, using the accuracy and the macro-
averaged F1-score. Tai et al. (2015) obtained an
accuracy of 0.497 using frozen embeddings.

In sentiment analysis, as in our pseudo-
arithmetic task, a successful model would often
have to deviate from local processing. After all,
the correct interpretation of a leaf node is often
unknown without access to the context – e.g. in
the case of ambiguous words like “sick” which is
likely to refer to being ill, but could also mean
“awesome”. Being successful at the task thus re-
quires a recursive model to keep track of informa-

4The notion of local compositionality, relied on in this
work, assumes that tokens are not disambiguated, which is
why we refrain from using state-of-the-art contextualised rep-
resentations. The focus of this work is on developing a compo-
sitionality metric rather than on improving sentiment analysis.

5Appendix C further elaborates on the experimental setup.
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Figure 8: Pearson’s r for the predictions of sentiment-
only baselines and bottleneck models (a-c) and Spear-
man’s ρ for the SST validation set compositionality
ranking of the baselines and bottleneck models (d-f),
when varying the number of CCA dimensions used.

tion about (leaf) nodes while recursively processing
the input, and more so for non-compositional ex-
amples than for compositional examples. As with
the arithmetic task, local processing – enforced in
the bottleneck models – should disproportionately
hinder processing of non-compositional examples.

5.2 A sentiment-only baseline

To assert that the bottlenecks make the models
more compositional, we create a sentiment-only
baseline that is given as input not words but their
sentiment, and has a hidden dimensionality d = 25.
Non-compositional patterns that arise from the
composition of certain words rather than the senti-
ment of those words (e.g. “drop dead gorgeous”)
could hardly be captured by that model. As such,
the model exemplifies how sentiment can be com-
puted more compositionally. Figure 7 illustrates the
default sentiment this model predicts for various
input combinations. Its predictions can be charac-
terised by i) predicting positive for positive inputs,
ii) predicting negative for negative inputs, iii) pre-
dicting neutral if one input is neutral, iv) predict-
ing a class in between the input classes or as v)
predicting the same class as its inputs (continuity).

The performance of the model is included in Fig-
ure 6, and Figure 8 (a-c) indicates the Pearson’s
r between the sentiment predictions of bottleneck
models and baseline models. Generally, a higher
β or dropout probability, or a lower hidden dimen-
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Figure 9: Categories of SST examples and their average position on the compositionality ranking visualised for the
BCM-PP with the hidden dimensionality bottleneck and d = 25. Categories in black are assigned by us; categories
in gray are from Barnes et al. (2019). The categories are further explained in the main text and Appendix B.1.
Jittering was applied to better visualise overlapping categories.

sionality, leads to predictions that are more similar
to this sentiment-only model, unless the amount
of regularisation is too extreme, debilitating the
model (e.g. for dropout with probability 0.9).

5.3 The Bottleneck Compositionality Metric

Now we use BCM to obtain a ranking over the SST
dataset. We separate the dataset into four folds,
train on those folds for the base and bottleneck
model, and compute the cosine distances for the
hidden representations of examples in the test sets
(using BCM-PP or BCM-TT). We merge the co-
sine distances for the different folds, averaged over
models trained with 10 random seeds, and order ex-
amples based on the resulting distance. We select
the values for β, dropout and the hidden dimension-
ality, as well as the number of CCA directions to
use, based on rankings computed over the SST val-
idation data. Figure 8 (d-f) illustrates how the rank-
ings of bottleneck models correlate with rankings
constructed using the sentiment-only baseline. We
select 25 directions, β = 0.0025, dropout p = 0.65
and a hidden dimensionality of 25 to compute the
full ranking. Contrary to the arithmetic task, BCM-
TT underperforms compared to BCM-PP.

Different from the arithmetic task, it is unclear
which examples should be at the start or end of
the ranking. Therefore, we examine the relative
position of categories of examples in Figure 9 for
the BCM-PP with the hidden dimensionality bot-
tleneck, and in Appendix B.3 for the remaining
rankings. The categories include the previously in-
troduced ones, augmented with the following four:

• amplification: the root is even more posi-
tive/negative than its top two children;

• attenuation: the root is less positive/negative
than its top two children;

• switch: the children are positive/negative, but
the root node flips that sentiment;

• neutral↔polarised: the inputs are sentiment-
laden, but the root is neutral, or vice versa.

We also include characterisations from Barnes et al.
(2019), who label examples from the SST test set,
for which state-of-the-art sentiment models can-
not seem to predict the correct label, including, for
example, cases where a sentence contains mixed
sentiment, or sentences with idioms, irony or sar-
casm. Appendix B.1 elaborates on the meaning of
the categories. Figure 9 illustrates the relative posi-
tions of our sentiment characterisations and those
of Barnes et al. on that ranking. Patterns associ-
ated with more compositional sentiment process-
ing, such as ‘positive’, ‘negative’ and ‘in between’
lead to hidden representations that are more simi-
lar between the base model and bottleneck models
than the dataset average (the mid point, 0.5). Atyp-
ical patterns like ‘switch’ and ‘neutral↔polarised’,
on the other hand, along with the characterisations
by Barnes et al. lead to less similar hidden repre-
sentations. Appendix B.3 presents the same results
for all six rankings considered, along with example
sentences from across the ranking, to illustrate the
types of sentences encountered among the most
compositional and the least compositional ones.

5.4 Example use cases
Compositionality rankings can be used in multiple
manners, of which we illustrate two below.

When data is scarce: use compositional exam-
ples Assuming that most of natural language is
compositional, one would expect that when limit-
ing the training data, selecting compositional exam-
ples yields the best test performance. To investigate
this, we train models on various training dataset
sizes, and evaluate with the regular test set. The
training data is taken from the start of the ranking
for the ‘compositional’ setup, and from the end
of the ranking for the ‘non-compositional’ setup
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Figure 10: Change in SST test set accuracy (solid) and
macro-averaged F1-score (dashed) as the training set
size increases, for LSTM and Roberta models. The ex-
amples are from the most (in blue) or the least composi-
tional (in green) portion of the ranking from the BCM-
PP metric with the hidden dimensionality bottleneck.

Model Comp. Non-comp. Random
Acc. F1 Acc. F1 Acc. F1

Roberta .546 .535 .516 .487 .565 .549
LSTM .505 .485 .394 .310 .478 .447

Table 1: Performance on the new SST compositionality
splits, generated using the ranking from the BCM-PP
metric with the hidden dimensionality bottleneck.

(excluding test data), while ensuring equal distri-
butions over input lengths and output classes. We
train a two-layer bidirectional LSTM with 300 hid-
den units, and Roberta-base (Liu et al., 2019), us-
ing batch size 4. The models are trained for 10 and
5 epochs, respectively, with learning rates 2e− 4
and 5e− 6. Because the ranking is computed over
full sentences, and not subexpressions, we train the
models on the sentiment labels for the root nodes.
Figure 10 presents the results, consolidating that
when data is scarce, using compositional examples
is beneficial.

Non-compositional examples are challenging
For the same models, Table 1 indicates how perfor-
mance changes if we redistribute train and test data
such that the test set contains the most composi-
tional examples, or the least compositional ones
(keeping length and class distributions similar).
The non-compositional test setup is more challeng-
ing, with an 11 percentage point drop in accuracy
for the LSTM, and a 3 point decrease for Roberta.

In conclusion, applying the BCM to the sentiment
data has confirmed findings previously observed
for the arithmetic toy task. While it is harder to
understand whether the method actually filters out
non-compositional examples, both comparisons to
a sentiment-only baseline, and the average position

of cases for which the composition of sentiment is
known to be challenging (e.g. for ‘mixed’ senti-
ment, ‘comparative’ sentiment or ‘sarcasm’), sug-
gest that compression acts as a compositionality
metric. We also illustrated two ways in which the
resulting ranking can be used.

6 Conclusion

This work presents the Bottleneck Compositional-
ity Metric, a TRE-based metric (Andreas, 2018)
that is task-independent and can be applied to in-
puts of varying lengths: we pair up Tree-LSTMs
where one of them has more compressed repre-
sentations due to a bottleneck (the DVIB, hidden
dimensionality bottleneck or dropout bottleneck),
and use the distance between their hidden represen-
tations as a per-datum metric. The method was ap-
plied to rank examples in datasets from most com-
positional to least compositional, which is of inter-
est due to the growing relevance of compositional
generalisation research in NLP, which assumes the
compositionality of natural language, and encour-
ages models to compose meanings of expressions
rather than to memorise phrases as chunks. We
provided a proof-of-concept using an arithmetic
task but also applied the metric to the much more
noisy domain of sentiment analysis.

The different bottlenecks lead to qualitatively
similar results. This suggests that, while DVIB
might be better motivated (it directly optimises an
estimate of the Shannon information passed across
the network), its alternatives may be preferable in
practice due to their simplicity.

Because natural language itself is not fully com-
positional, graded metrics like the ones we pre-
sented can support future research, such as i) learn-
ing from data according to a compositionality-
based curriculum to improve task performance, ii)
filtering datasets to improve compositional gener-
alisation, or iii) developing more and less compo-
sitional models depending on the desiderata for a
task – e.g. to perform well on sentences with id-
ioms, one may desire a more non-compositional
model. In addition, the formulation of the metric
was general enough to be expanded upon in the
future: one could pair up other models, such as an
LSTM and a Tree-LSTM, or a Transformer and its
recursive variant, as long as one keeps in mind that
the compositional reconstruction itself should not
be too powerful. After all, even Tree-LSTMs could
capture the exceptions in the arithmetic dataset de-
spite their hierarchical inductive bias.
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Limitations

We identify three types of limitations for the work
presented:

• A conceptual limitation is that we work
from a very strict definition of composition-
ality (local compositionality), which essen-
tially equates language with arithmetic. While
overly restrictive, current datasets testing com-
positional generalisation follow this notion.
The framework might be extensible to more
relaxed notions by allowing for token disam-
biguation by using contextualised token em-
beddings and only enforcing a bottleneck on
the amount of further contextual integration
within the model added on top of the token
embeddings.

• In terms of methodological limitations, the
use of only Tree-LSTMs – although well-
motivated from the perspective of composi-
tional processing – is a major limitation. Tree-
LSTMs are most suited for sentence classifica-
tion tasks, limiting the approach’s applicabil-
ity to sequence-to-sequence tasks. Nonethe-
less, the bottlenecks can be integrated in other
types of architectures that process inputs in
a hierarchical manner, such as sequence-to-
sequence models inducing latent source and
target trees (Kim, 2021) to yield an alternative
implementation of the BCM.
Our work also assumes that an input’s tree
structure is known, which might not always
be the case. Therefore, the compositionality
ranking obtained using BCM always depends
on the trees used: what is non-compositional
given one (potentially inadequate) structure
might be more compositional given another
(improved) structure.

• Lastly, the evaluation of our approach is lim-
ited in the natural domain through the absence
of gold labels of the compositionality of ex-
amples in the sentiment analysis task, but for
other tasks that could have been considered,
the same limitation would have applied.

Acknowledgements

We thank Chris Lucas for his contributions to this
project when it was still in an early stage, Kenny
Smith for his comments on the first draft of this
paper, and Matthias Lindemann for excellent sug-
gestions for the camera-ready version. VD is sup-
ported by the UKRI Centre for Doctoral Training

in Natural Language Processing, funded by the
UKRI (grant EP/S022481/1) and the University
of Edinburgh, School of Informatics and School
of Philosophy, Psychology & Language Sciences.
IT acknowledges the support of the European Re-
search Council (ERC StG BroadSem 678254) and
the Dutch National Science Foundation (NWO Vidi
639.022.518).

References

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and
Kevin Murphy. 2017. Deep variational information
bottleneck. In ICLR.

Jacob Andreas. 2018. Measuring compositionality in
representation learning. In International Confer-
ence on Learning Representations.

Jeremy Barnes, Lilja Øvrelid, and Erik Velldal. 2019.
Sentiment analysis is not solved! Assessing and
probing sentiment classification. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
12–23.

Hanoz Bhathena, Angelica Willis, and Nathan Dass.
2020. Evaluating compositionality of sentence rep-
resentation models. In Proceedings of the 5th Work-
shop on Representation Learning for NLP, pages
185–193.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Henry Brighton and Simon Kirby. 2006. Understand-
ing linguistic evolution by visualizing the emergence
of topographic mappings. Artificial life, 12(2):229–
242.

Vitaly Feldman and Chiyuan Zhang. 2020. What neu-
ral networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neu-
ral Information Processing Systems, 33:2881–2891.

Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. In Proceedings of the 2010 Workshop on
GEometrical Models of Natural Language Seman-
tics, pages 33–37. Citeseer.

Harold Hotelling. 1936. Relations between two sets of
variates. Biometrika, 28(3/4):321–377.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? Journal of Ar-
tificial Intellgence Research, 67:757–795.

4370

https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://aclanthology.org/W19-4802/
https://aclanthology.org/W19-4802/
https://www.aclweb.org/anthology/2020.repl4nlp-1.22/
https://www.aclweb.org/anthology/2020.repl4nlp-1.22/
https://arxiv.org/abs/2201.05899
https://arxiv.org/abs/2201.05899
https://direct.mit.edu/artl/article-pdf/12/2/229/1662301/artl.2006.12.2.229.pdf?casa_token=u8MU0QrM9_cAAAAA:LISK2X-F9Lne0dS6kn_L_eyJm1HAhU09JOiFaQzFbjMciqbFPoxVIBIGXSnD0O5_mHyTDori
https://direct.mit.edu/artl/article-pdf/12/2/229/1662301/artl.2006.12.2.229.pdf?casa_token=u8MU0QrM9_cAAAAA:LISK2X-F9Lne0dS6kn_L_eyJm1HAhU09JOiFaQzFbjMciqbFPoxVIBIGXSnD0O5_mHyTDori
https://direct.mit.edu/artl/article-pdf/12/2/229/1662301/artl.2006.12.2.229.pdf?casa_token=u8MU0QrM9_cAAAAA:LISK2X-F9Lne0dS6kn_L_eyJm1HAhU09JOiFaQzFbjMciqbFPoxVIBIGXSnD0O5_mHyTDori
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://www.aclweb.org/anthology/W10-2805/
https://www.aclweb.org/anthology/W10-2805/
https://www.aclweb.org/anthology/W10-2805/
https://doi.org/10.1613/jair.1.11674
https://doi.org/10.1613/jair.1.11674


Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ‘diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. In International Conference on
Learning Representations.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. Advances in Neural Infor-
mation Processing Systems, 34:26302–26317.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st annual meeting of the association for compu-
tational linguistics, pages 423–430.

Tomasz Korbak, Julian Zubek, and Joanna Rączaszek-
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A Bottlenecks for arithmetic

A.1 Performance for other bottlenecks

Figures 11 and 12 display the MSE for models with
the hidden dimensionality bottleneck and dropout
bottleneck.
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Figure 11: Performance on the arithmetic task for the
Tree-LSTM with varying hidden dimensionalities.

5 6 7 8 9
number of leaf nodes

0

2

4

6

8

10

M
SE

dropout
.0
.1
.25
.5
.65
.75
.85
.9

(a) Regular examples

5 6 7 8 9
number of leaf nodes

0

20

40

60

M
SE

dropout
.0
.1
.25
.5
.65
.75
.85
.9

(b) Exceptions

Figure 12: Performance on the arithmetic task for the
Tree-LSTM with varying dropout probabilities.

A.2 Bottleneck training dynamics

The exceptions in the arithmetic task had both a
compositional and non-compositional interpreta-
tion, essentially giving us two sets of targets for
measuring the models’ performance during train-
ing using the validation data. Figures 4 (in the
main paper), 13, and 14 illustrate how early on
during training, the MSE is lowest for the composi-
tional targets for all hyperparameters used for the
bottlenecks: the models overgeneralise the regu-
lar interpretation of “0”, applying it to all inputs.
Later on, the models that have a high β, a high
dropout probability or a small dimension stay in
that ‘compositional state’, whereas the remaining
models learn to capture the ambiguity.

B Sentiment analysis

B.1 Categories of Barnes et al. (2019)

Barnes et al. collect examples from sentiment anal-
ysis datasets that three state-of-the-art classifiers
struggle with, and annotate them for the presence
of 18 (para-)linguistic phenomena. We include the
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Figure 13: Training dynamics for the hidden dimen-
sionality bottleneck.
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Figure 14: Training dynamics for the dropout bottle-
neck.

following categories from the SST test set in the
visualisation of the SST ranking:

1. Negated: phrases or sentences that are
negated, where Barnes et al. identify a pattern
of irrelevant negation throwing models off.

2. Amplified: cases where neutral modifiers act
as strong contextual valence shifters.

3. Strong: very positive or very negative cases.
4. Desirable element: sentiment dominated by

one ‘desirable element’, such as “pool”.
5. Comparative: cases that express sentiment by

comparison (e.g. using “better than”).
6. Idioms: cases containing idioms, for which

the mapping from the words to the sentiment
is often not straightforward.

7. Mixed: mixed positive & negative sentiment.
8. Difficult-vocab: e.g. “engrossing and psycho-

logically resonant suspenser”.
9. World-knowledge: for instance comparisons

between entities, where the entities imply a
certain sentiment.

10. Sarcasm/irony: sarcasm is often present in
negative examples, where the speaker is in-
tending the opposite of what is said.

11. No-sentiment: neutral labelled examples.
12. Morphology: examples with morphological

features that affect sentiment very positively
or very negatively.

B.2 Alternative metrics

Tree impurity score (TIS) Bhathena et al.
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Figure 15: Illustration of how BCM rankings over the
SST data correlate with baseline metrics that ought
to be correlated: topographic similarity, tree impurity
score and memorisation as per Spearman’s ρ.

(2020) propose basic compositionality metrics that
rely on the difference between the label of the root
node, and labels of subexpressions. We report their
tree impurity score (TIS): a simple metric that mea-
sures the absolute difference between the label of
the root node and the average of all labels in a tree.

‘Topographic’ similarity A compositionality
metric from language emergence literature is to-
pographic similarity (Brighton and Kirby, 2006),
that given a set of objects, their meanings and
the associated signals computes the correlation of
the distances between corresponding pairs of sig-
nals and meanings. For instance, Lazaridou et al.
(2018) compare symbolic signals in a referential
game using the Levenshtein edit distance, and com-
pare vector meaning representations through cosine
distance. Topographic similarity assumes that in
a compositional language, similar signals should
yield similar meaning representations. However,
the use of edit distance to directly compare sen-
tences does not readily transfer to sentiment analy-
sis, where one word changed in the input space can
yield a large change in the predicted sentiment.

To approximate topographic similarity of mean-
ings and signals, we instead manipulate the input
in ways that should yield a similar prediction, and
then rate examples based on the change in the pre-
dictions observed. We replace nouns, verbs, adjec-
tives or adverbs with a word that in SST has the
same POS tag and sentiment label. If a change
is observed, the example is more likely to be a
non-compositional example.

We apply this to the base models from the main
paper, by randomly replacing one token that is a
verb, noun, adjective or adverb with a different
token of the same POS tag and sentiment label.
We make 50 such modifications per sentence per
model seed. We record the average change in the
predicted sentiment, and use this as a metric akin
to topographic similarity.
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Figure 16: Illustration of how the BCM rankings over
the SST dataset correlate as per Spearman’s ρ.

Memorisation score Zheng and Jiang (2022)
empirically evaluate the long tail theory posed by
Feldman and Zhang (2020) (who validate their hy-
potheses using computer vision tasks), that states
that for data distributions with a long tail, memo-
risation of training examples is required for near-
optimal performance on the test data. Zheng and
Jiang put this theory to the test for sentiment classi-
fication. The metric of Zheng and Jiang expresses
how the likelihood of the target changes when an
example is down-weighted during training. That
change should be larger for memorised examples.
Intuitively, non-compositionality and memorisa-
tion are related: non-compositional patterns in data
require memorising the atypical interpretation of
words in specific contexts. The metric is expected
to be different from our metric – ours is measured
using test data, while memorisation occurs during
training – but a positive correlation is expected be-
tween the two, nonetheless. Zheng and Jiang use
the binary SST subtask and report their scores on
preprocessed versions of SST sentences. We report
the correlation for the examples for which we could
find matching surface forms only.

Figure 15 indicates how the different BCM rank-
ings correlate with these three alternative metrics.
Surprisingly, TIS negatively correlates with our
rankings, but only weakly. This may be due to
the simplicity of that metric, that ignores the tree
structure and simply averages all sentiment of all
nodes. The devised ‘topographic’ similarity posi-
tively correlates with our rankings, but only up to
ρ = 0.33. The memorisation score has a moderate
correlation with our rankings, of up to ρ = 0.46 for
the BCM-TT. Figure 16 illustrates how the rank-
ings correlate with each other. The figure suggests
that TRE training yields rankings that are still quite
different from the post-processing ones.
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B.3 Additional results for SST rankings
Here, we present further results for the BCM rankings over the SST datasets: firstly, Figure 17 provides
the rankings for the six different BCM setups. They have commonalities, but also differences, e.g. in the
BCM-TT setups the ‘neutral’ sentiment is closer to the end of the ranking.
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(a) BCM-PP, Hidden dimensionality bottleneck
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(b) BCM-PP, DVIB bottleneck
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(c) BCM-PP, Dropout bottleneck
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(d) BCM-TT, Hidden dimensionality bottleneck
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(e) BCM-TT, DVIB bottleneck
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(f) BCM-TT, Dropout bottleneck

Figure 17: Example categories for SST test set examples, and their average position on the compositionality
ranking for the hidden dimensionality bottleneck with d = 25, the dropout bottleneck with p = 0.65 or the DVIB
with β = 0.0025. The categories in black are assigned by us, and the categories in gray are from Barnes et al.
(2019). Jittering was applied to better visualise overlapping categories.
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Secondly, Table 2 provides example sentences from different parts of the rankings, randomly sampled. 0
indicates the most compositional examples, and 1 the least compositional ones.

Relative position Target Sentence

- BCM-PP, Hidden dim. bottleneck
0.07 3 tsai convincingly paints a specifically urban sense of disassociation here .
0.17 0 the film desperately sinks further and further into comedy futility .
0.21 3 a cop story that understands the medium amazingly well .
0.40 3 one scarcely needs the subtitles to enjoy this colorful action farce .
0.42 1 the entire movie is about a boring , sad man being boring and sad .
0.53 2 not everyone will play the dark , challenging tune taught by the piano teacher .
0.66 3 this is the stuff that disney movies are made of .
0.75 3 daughter from danang sticks with its subjects a little longer and tells a deeper story
0.86 2 not kids , who do n’t need the lesson in repugnance .
0.98 0 lacks heart , depth and , most of all , purpose .

- BCM-PP, Dropout bottleneck
0.09 4 it ’s a cool event for the whole family .
0.14 0 done in mostly by a weak script that ca n’t support the epic treatment .
0.20 3 some movies are like a tasty hors-d’oeuvre ; this one is a feast .
0.37 4 my oh my , is this an invigorating , electric movie .
0.41 3 its director ’s most substantial feature for some time .
0.51 4 the modern master of the chase sequence returns with a chase to end all chases
0.62 3 like its bizarre heroine , it irrigates our souls .
0.78 1 sadly , ‘ garth ’ has n’t progressed as nicely as ‘ wayne . ’
0.86 2 you ’re too conscious of the effort it takes to be this spontaneous .
0.95 0 a film of empty , fetishistic violence in which murder is casual and fun .

- BCM-PP, DVIB
0.07 4 highly recommended viewing for its courage , ideas , technical proficiency and great acting .
0.18 3 it manages to squeeze by on angelina jolie ’s surprising flair for self-deprecating comedy .
0.25 1 goes on and on to the point of nausea .
0.38 3 the best part about “ gangs ” was daniel day-lewis .
0.44 2 a dopey movie clothed in excess layers of hipness .
0.51 2 a perplexing example of promise unfulfilled , despite many charming moments .
0.64 0 the entire film is one big excuse to play one lewd scene after another .
0.79 1 the problematic characters and overly convenient plot twists foul up shum ’s good intentions .
0.82 3 the jabs it employs are short , carefully placed and dead-center .
0.92 2 then nadia ’s birthday might not have been such a bad day after all .

- BCM-TT, Hidden dim. bottleneck
0.00 3 the story is smart and entirely charming in intent and execution .
0.02 2 for single digits kidlets stuart little 2 is still a no brainer .
0.17 1 outer-space buffs might love this film , but others will find its pleasures intermittent .
0.29 3 although shot with little style , skins is heartfelt and achingly real .
0.37 3 a knowing look at female friendship , spiked with raw urban humor .
0.50 3 there ’s an energy to y tu mamá también .
0.57 2 a piquant meditation on the things that prevent people from reaching happiness .
0.63 3 too daft by half ... but supremely good natured .
0.71 1 the feature-length stretch ... strains the show ’s concept .
0.88 1 a thriller without thrills and a mystery devoid of urgent questions .
0.97 1 the movie does n’t generate a lot of energy .

- BCM-TT, Dropout bottleneck
0.03 3 an extremely funny , ultimately heartbreaking look at life in contemporary china .
0.14 1 the pretensions – and disposable story – sink the movie .
0.22 4 that rara avis : the intelligent romantic comedy with actual ideas on its mind .
0.39 2 admirable , certainly , but not much fun to watch .
0.50 1 the end result is a film that ’s neither .
0.59 2 throwing it all away for the fleeting joys of love ’s brief moment .
0.63 4 kids should have a stirring time at this beautifully drawn movie .
0.77 3 the obnoxious title character provides the drama that gives added clout to this doc .
0.87 0 stitch is a bad mannered , ugly and destructive little **** .
0.98 0 there is no pleasure in watching a child suffer .

- BCM-TT, DVIB
0.03 4 quite simply , a joy to watch and – especially – to listen to .
0.14 1 a fake street drama that keeps telling you things instead of showing them .
0.22 1 it tries too hard , and overreaches the logic of its own world .
0.34 1 plays less like a coming-of-age romance than an infomercial .
0.48 4 it ’s one of the most honest films ever made about hollywood .
0.52 3 a low-key labor of love that strikes a very resonant chord .
0.69 3 it ’s never laugh-out-loud funny , but it is frequently amusing .
0.71 3 a meditation on faith and madness , frailty is blood-curdling stuff .
0.81 1 a beautifully shot but dull and ankle-deep ‘ epic . ’
0.91 2 it uses the pain and violence of war as background material for color .

Table 2: Examples from across the six rankings, randomly sampled.
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Thirdly, Figure 18 illustrates how training on different subsets of the ranking leads to different
performance on the test set. In general, it is better to train on the compositional examples.
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(a) LSTM, Hidden dim., BCM-PP
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(b) LSTM, dropout, BCM-PP
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(c) LSTM, DVIB, BCM-PP
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(d) LSTM, Hidden dim., BCM-TT
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(e) LSTM, dropout, BCM-TT
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(f) LSTM, DVIB, BCM-TT
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(g) Roberta, Hidden dim., BCM-PP
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(h) Roberta, dropout, BCM-PP
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(i) Roberta, DVIB, BCM-PP
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(j) Roberta, hidden dim., BCM-TT
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(k) Roberta, dropout, BCM-TT
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Figure 18: Change in SST test set accuracy (solid) and macro-averaged F1-score (dashed) as the training set size
increases, for LSTM and Roberta models.
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C Reproducibility details

Visit https://github.com/vernadankers/bottleneck_

compositionality_metric for the code and data. Be-
low we collect an overview of the settings involved
in the model training and model evaluation:

• Model specifications: Following Tai et al.
(2015) we use 150 hidden dimensions, and
300-dimensional word embeddings for the
sentiment analysis task. For consistency, we
adopt the 150 dimensions in the arithmetic
task, as well, but reduce the size of the word
embeddings to 150. The arithmetic base mod-
els have 426k trainable parameters, and the
sentiment base models have 514k trainable
parameters (excluding the frozen word em-
beddings).

• Training procedure: The sentiment and
arithmetic models are trained for 10 and 50
epochs, respectively, based on model conver-
gence. These numbers are fixed across mod-
els, to ensure that when multiple models are
combined in the compositionality metric, they
have been trained for the same amount of time.
For sentiment, a batch size of 4 was used, and
batch sizes {1, 4, 8} were experimented with.
For arithmetic, batch sizes {16, 32, 64} were
experimented with across 5 seeds, where 32
was selected. Selection is based on validation
performance across five seeds and training
speed (e.g. while 1 slightly outperformed 4
for sentiment analysis, we opted for 4 for com-
putational efficiency). For both tasks, learning
rates {0.001, 2e-4, 1e-4} were experimented
with, and 2e-4 was selected based on model
performance on the validation set across 5
seeds. In these hyperparameter trials, the ac-
curacy was used for sentiment analysis and
the MSE was used for the arithmetic task.

• Hidden dimensionality bottleneck: To
increase compression, the dimensionality
should clearly become smaller, so we man-
ually select 8 values to run ranging from 150
(the standard dimension) to 5.

• Dropout bottleneck: For dropout, the closer
to 1, the more compression there is. We manu-
ally select 8 values to run from 0 (the standard
amount) to 0.9.

• DVIB: For DVIB, preliminary experiments
indicated that β > 1 for arithmetic or β > 0.1

for sentiment debilitates the model. We man-
ually selected 8 values to run for β based
on that information. We use the implemen-
tation of Li and Eisner (2019) for the DVIB,
available at: https://github.com/XiangLi1999/

syntactic-VIB.

• Evaluation metrics: The evaluation metric
used for arithmetic is the MSE. The evaluation
metrics for sentiment analysis are the accuracy
of the predicted sentiment class, and the F1-
score, macro-averaged.

• Number of runs & run time: The results for
both tasks are averaged over ten seeds. Train-
ing one model with one seed on CPU lasts
up to 40 minutes for the sentiment analysis
models, and up to 30 minutes for the arith-
metic task. The TRE-training setup typically
takes twice as long. We utilise CPUs from the
icelake partition of the CSD3 cluster.

For the datasets used, the following are relevant
details in terms of their size and preprocessing:

• Arithmetic task: The arithmetic task was
generated using the implementation of Hup-
kes et al. (2018), available at https://github.
com/dieuwkehupkes/processing_arithmetics.
We augment the data with the ambiguous
examples ourselves. The training data consist
of 14903 expressions with 1 to 9 numbers.
We test on expressions with lengths 5 to
9, using 5000 examples per length. 2100
additional examples are used as validation
data, to track the model’s behaviour during
training.

• Stanford Sentiment Treebank: We col-
lect the SST data from the pytreebank
package (https://github.com/JonathanRaiman/
pytreebank). For the (Tree-)LSTM models, we
further preprocess the inputs by lowercasing
the sentences. We use SST-5, that classifies
sentences using five classes ranging from very
negative to very positive. The standard train,
validation and test subsets have 8544, 1101
and 2210 examples, respectively. Each node
in the input trees has its own sentiment label.

For the experiments contained in Section 5.4,
we did not run an extensive hyperparameter search.
Those results are averaged over five seeds, and the
models were trained on one NVIDIA A100-SXM-
80GB, where training one seed lasted up to 15
minutes.
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