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Abstract

In an effort to study the inductive biases of
language models, numerous studies have at-
tempted to use linguistically motivated tasks
as a proxy of sorts, wherein performance on
these tasks would imply an inductive bias to-
wards a specific linguistic phenomenon. In this
study, we attempt to analyse the inductive bi-
ases of language models with respect to natural
language phenomena in the context of build-
ing multilingual embedding spaces. We sample
corpora from 2 sources in 15 languages and
train language models on pseudo-bilingual vari-
ants of each corpus, created by duplicating each
corpus and shifting token indices for half the
resulting corpus. We evaluate the cross-lingual
capabilities of these LMs, and show that while
correlations with language families tend to be
weak, other corpus-level characteristics, such
as type-token ratio, tend to be more strongly
correlated. Finally, we show that multilingual
spaces can be built, albeit less effectively, even
when additional destructive perturbations are
applied to the training corpora, implying that
(effectively) bag-of-words models also have an
inductive bias that is sufficient for inducing
multilingual spaces.

1 Introduction

A variety of proxies and analytical methods have
been used to study the inductive biases of language
models towards natural language. This work in-
cludes targeted syntactic evaluation (Gulordava
et al., 2018; Linzen et al., 2016), language model
responses to formulaic synthetic languages (Rav-
fogel et al., 2019; White and Cotterell, 2021), as
well as attempts to correlate differences in language
modeling performance to language features over a
wide range of languages (Cotterell et al., 2018).

In this paper, we combine two strands that have,
of late, been fairly active research threads. The first
of these concerns the inductive biases of language
models towards languages that exhibit a specific

grammar; the second addresses the inductive biases
of these models towards multilingualism, which in
this context refers to a model’s ability to build a
multilingual space (rather than distinct monolin-
gual spaces), when trained on corpora consisting
of text in multiple languages.

Prior work in this domain is focused on either
a) quantifying language model performance across
a variety of languages, or b) studying the effects
of different architectural components on the qual-
ity of the induced multilingual space. We attempt
to unite the two strands of research by studying
transformer-based masked language models in an
effort to quantify the extent to which the grammar
of the language being modelled affects the model’s
ability to build a multilingual space. We use Dufter
and Schütze’s (2021) metrics, namely word transla-
tion and sentence retrieval, as a proxy for the utility
of this space. Our main findings are:

• Masked language models are capable of build-
ing multilingual spaces even when destructive
perrturbations, like lemmatisation and shuf-
fling, are applied to the training corpora.

• Multilingual performance is only weakly cor-
related with languages and language families.

• Multilingual performance correlates better
with corpus-level statistics like type-token ra-
tio, and the frequency of hapax legomena.

2 Related Work

Language modelling There has been a consider-
able amount of research addressing inductive biases
that language models may have towards specific
grammatical patterns, or towards natural languages
with specific structures. An early study by Cotterell
et al. (2018) demonstrates, over 21 languages, that
certain languages are harder to model than others;
the authors find that model performance correlates
with the richness of a language’s (inflectional) mor-
phology. Later work by Mielke et al. (2019) shows
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contradictory findings; the authors extend these
experiments to 69 languages and find that morpho-
logical complexity does not correlate as strongly
with performance as simpler factors like vocabulary
size and sentence length do.

Other work involves studying how language
modelling is affected by manually altering cor-
pora. Ravfogel et al. (2019) train RNN-based mod-
els on English, altered to display different word or-
ders and different degrees of morphological agree-
ment; White and Cotterell (2021) generate corpora
of natural language sentences, with constituents
permuted based on Boolean switches, and show
that recurrent language models show little variance
in performance across word orders, compared to
transformers.

Multilingualism Moving beyond monolingual
language modelling, we examine the numerous
works analysing what precisely multilingual lan-
guage models need, in order to form an adequate
multilingual space, which is quantified by measur-
ing a model’s performance on some multilingual
task. Pires et al. (2019) show that subword overlap
tends to improve multilingual alignment, though
overlap is by no means necessary, as languages
with different scripts can exist in the same multi-
lingual space. Deshpande et al. (2021) show that
while structurally similar languages do not neces-
sarily need subword overlap, dissimilar languages
rely heavily on overlap; they also show that well-
aligned non-contextual word embedding spaces al-
low for better transfer.

On the other hand, Artetxe et al. (2020) have
somewhat contradictory results, and show that nei-
ther shared vocabulary items nor joint pre-training
are essential to build a multilingual encoder. K et al.
(2020) and Dufter and Schütze (2021) analyse en-
coders from an architectural point of view. The
former work shows that model depth (and not the
number of attention heads) contributes to transfer
performance, even when the number of parameters
is kept constant. The latter points out that multilin-
gual spaces exist because languages are forced to
share parameters, and that even in the absence of
shared subwords and special tokens, position em-
beddings play a significant role in building these
spaces. Dufter and Schütze (2021) go on to show
that the removal of shared position embeddings
is sufficient to reduce a model’s multilingual per-
formance (as measured on word translation and
sentence retrieval) to approximately random. This,

we show, is not universally the case.

3 Methodology

3.1 General approach

In order to evaluate the quality of our models’ mul-
tilingual spaces, we use word translation and sen-
tence retrieval as proxy tasks; this contrasts with,
for example, Deshpande et al. (2021), who use
(zero-shot) transfer performance instead. We avoid
this largely due to performance constraints: small
models are unlikely to be parameterised enough to
handle transfer.

To create synthetic multilingual (more precisely,
bilingual) corpora, we follow the approach of K
et al. (2020) and Dufter and Schütze (2021). Start-
ing from a monolingual corpus, we shift the vocab-
ulary index for every token in the original corpus
up by the model’s vocabulary size. For instance,
the token convenient, with token index 42, would
have a “mirror” ::convenient, with token index
2090. This effectively gives us a parallel second
half, which has the same structure as the original
language, but a guarantee of no vocabulary overlap.

While this is a somewhat unrealistic simulation
– after all, multilingual models are trained on lan-
guages with different structures – we use our formu-
lation in order to a) have a simplified test bed where
the structure of the language plays a role, but the
structural differences between the two languages
are ignored; and b) to avoid the complexity of the
experimental space from exploding, when each lan-
guage can conceivably be paired with every other
language.

3.2 Data

In an effort to have a reasonably comprehensive
search space of languages, we experiment over two
corpora (Wikipedia and Common Crawl) and fif-
teen languages – namely Arabic, Czech, Danish,
German, English, Spanish, Finnish, French, He-
brew, Italian, Dutch, Polish, Portuguese, Russian
and Swedish. While Indo-European languages are
still rather overrepresented in our data, these lan-
guages exhibit a wide range of head-depedendent
entropies (Levshina, 2019). This is also part of
the reason we avoid completely synthetic corpora:
while it is trivial to generate synthetic corpora
from some descriptive grammar, the stochasticity
and random variation inherent to most natural lan-
guages is harder to synthetically model. Both cor-
pora have been parsed into Universal Dependencies
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Default
he spent most of his childhood in sunamganj with his mother .
david s. mack ( born 1941 ) is an american businessman .
he spent most of his childhood in sunamganj with his mother .
david s. mack ( born 1941 ) is an american businessman .

Lemmatised
the episode be generally well receive .
the software be sell and support only in japan .
the episode be generally well receive .
the software be sell and support only in japan .

Shuffled
most his with in of childhood spent sunamganj . mother his he
s. american . born is david 1941 ) businessman an ( mack
most his with in of childhood spent sunamganj . mother his he
s. american . born is david 1941 ) businessman an ( mack

Corrupted
be generally . receive well episode the
software be the sell in and support . japan only
be generally . receive well episode the
software be the sell in and support . japan only

Table 1: Sample sentences extracted from real corpora, with each of our modifications applied. Note that while the
original and lemmatised corpora are sampled differently, the shuffled and corrupted corpora are modified variants of
the former.

(UD) (Nivre et al., 2016, 2020; de Marneffe et al.,
2021).

From each of the large corpora (Wikipedia and
Common Crawl), we sample five corpora of 20k
sentences for each language, with different random
seeds, and split them into train and validation splits
of 15k and 5k tokens, respectively. We employ a
number of simple heuristics to filter out sentences
that we suspect to be titles, or other noisy text. We
generate two variants of each corpus: one that we
tokenise with a BPE tokeniser, and another that
retains UD-style tokenisation. The motivation be-
hind this is to control for subwords: the absence of
subword tokenisation is harder for our models to
recover from, as they must be able to cluster tokens
that have the same morphological affixes without
explicit access to these affixes.

For our BPE segmented corpora, we use a model
vocabulary of size 2048; this vocabulary is derived
by training a fastBPE tokenizer on the respective
training corpus. For UD-style tokenisation, we
also use a vocab with 2048 unique tokens. We
handle unknown tokens by replacing them with
<unk> tokens; we also filter out sentences that have
over 90% OOV tokens in the process of sentence
selection, to avoid noise. As both our corpora are
fairly noisy, we also apply a set of heuristics to
eliminate corpus noise; for instance, we filter out
sentences based on the number of title-cased tokens
in them, to avoid scraping Wikipedia titles.

3.3 Perturbations

To adequately isolate the effects of word order and
morphology, we apply three modifications to each
combination of tokenisation method and corpus,
giving us a total of 2 ∗ 2 ∗ 4 = 16 corpora per lan-
guage; with 15 languages and 5 seeds, this equates
to 16 ∗ 15 ∗ 5 = 1200 experiments in all.

Original Our original, unmodified corpus, pre-
sented with both UD- and BPE-based tokenisation.

Shuffled We modify our corpus by shuffling ev-
ery sentence at a word level. Note that the shuffling
procedure takes place before BPE segmentation,
similar to Sinha et al. (2021). Ideally, given no
word-order context, our masked language models
should only be able to rely on morphological infor-
mation, or bag-of-words distributions, in order to
build a multilingual space. This also has a similar
effect to removing positional embeddings from the
transformer, as described in Sinha et al. (2021). Po-
sitional embeddings act as an ordering mechanism
in masked language modelling; without them, a
corpus is similar to our shuffled corpus.

Lemmatised We use the LEMMA Universal Depen-
dencies field to generate our corpus, instead of the
usual FORM field. The motivation here is to elimi-
nate all morphological information; the difference
between this and avoiding BPE tokenisation is that
lemmatisation prevents unique word forms from
having separate vocab indices.

Corrupted This corpus is both lemmatised and
shuffled. Given this precondition, and UD-style
tokenisation, there ought to be no information ac-
cessible to our model, beyond bag-of-word lemma
statistics. We therefore expect word translation and
sentence retrieval to be close to 0 in this setting.

3.4 Models and Evaluation
To evaluate our models’ multilingual capabilities,
we first train lower-capacity language models on
each corpus. Each model is trained on the task of
masked language modelling, on the concatenation
of both halves (original and shifted) of a corpus.
We use Dufter and Schütze (2021)’s BERT variant,
which downsizes the original BERT model; we use
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Figure 1: Results for our four perturbations, with and without BPE, with data from Common Crawl (top) and
Wikipedia (bottom). Scores (sentence retrieval on the X-axis, word translation on the Y-axis) are averaged over
layers 0 and 8.

single-headed, 12 layer transformer, with a head
dimensionality of 64 and a feed-forward dimen-
sionality of 256. This allows us to rapidly train
a model on our corpora (in approximately 30–60
minutes per model). We set the random seed of
each model to the same as the random seed used to
generate the corpus we train it on; i.e. the model
with seed 0, for English, is trained on the English
corpus that was generated using a random seed of
0. Models are trained on V100 GPUs, each for
approximately 1 hour.

Finally, we evaluate word translation and sen-
tence retrieval scores for these models by using
the deterministic gold labels, obtained by simply
adding the vocab size (for translation) and by di-

viding the corpus into two halves and generating a
sequential mapping (for retrieval). Note that this
evaluation does not involve fine-tuning language
models: we use the cosine similarity between either
a word or a sentence and its fake parallel, for word
translation and sentence retrieval resepectively. For
word translation, we ensure that non-initial sub-
words are not included in the evaluation; while this
is not ideal, none of our languages are morpho-
logically prefixing, implying that the bulk of the
semantic content is in the initial subword.

4 Results

We present results per language and experiment on
Common Crawl (top) and Wikipedia (bottom) in
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Figure 1. We begin by making a few general ob-
servations before moving on to study correlations
with morphosyntactic and corpus factors.

‘Fails’ are frequent We note, first, that across
most of our experiments, we have several ‘fails’,
where our model effectively has near 0 retrieval and
translation capacity. While this observation in iso-
lation is somewhat meaningless – the model might
have failed to learn effectively, either due to the ran-
dom seed or due to the hyperparameters – the sheer
number of experiments we run for each scenario
makes these results more meaningful, when used
as a comparison between training scenarios, as evi-
dence that a certain scenario is likelier to result in
a fail than another.

BPE makes word translation harder Despite
controlling for non-initial subwords, using BPE
tokenisation results in a drop in translation score
for all our experiments. We hypothesise that this
is due to common word-initial subwords being dis-
tributionally ‘overloaded’; they are more likely to
appear in a wider range of contexts than whole
tokens are, due to the variety in consecutive sub-
words.

Multilingualism is robust to lemmatisation Per-
haps somewhat unsurprisingly, lemmatisation does
not significantly affect model scores, indicating
that our model relies more on word order to build
multilingual spaces. Interestingly, removing BPE
segmentation results in an increase in fails on lem-
matised corpora.

Bag-of-words is enough for (some) experiments
Our most unexpected observation is that for both
shuffling and corrupting, for both BPE and non-
BPE, several experiments do appear to result in
fairly successful retrieval/translation models, of-
ten with an accuracy higher than 50% on either
task. This is surprising, given that a) this appears
to contradict the findings of Dufter and Schütze
(2021) about position embeddings being critical for
multilingual spaces, and b) it implies that a simple
bag-of-words model is enough to build a multilin-
gual space. We attempt, in the following sections,
to tease out what factors might enable this transfer.
It is plausible that some part of this signal stems
from the fact that the shuffling operation was car-
ried out prior to BPE segmentation (Abdou et al.,
2022); we discuss this further in Section 5.4.

5 Analysis

5.1 Clustering

In order to find potential explanations for our re-
sults, we automatically cluster our scores, using
retrieval and translation scores as our cluster met-
rics. To determine whether either languages (given
that we have five experiments per language) or lan-
guage families tend to actually represent logical,
meaningful clusters, we set the number of clusters
to be equivalent to the number of families, and
use the adjusted Rand score (Vinh et al., 2010)
to measure the distance between two clusterings
– clusterings based on language/family, and learnt
clusterings.

We present these results in Table 2. First, clus-
tering by language family shows little to no correla-
tion with score-based clusters. Clusters of corpora
in a single language (‘language-based’ clusters) are
slightly clearer: while similarities are relatively low
for all our BPE-based clusters, when we switch
to UD tokenisation, the default and lemmatised
cases begin to form more typologically relevant
clusters, resembling languages. While these are by
no means perfect overlaps, they are almost twice
as realistic as for BPE-based tokenisation, imply-
ing that there exist language-specific features that
correlate somewhat to the model’s ability to form
multilingual spaces. To investigate these findings
in greater detail, we look for language-specific fea-
tures – both corpus-specific features, and vocabu-
lary features – and look for correlations that might
explain our results.

5.2 Corpus correlations

We analyse our corpora, and measure correlations
of model performance to a range of descriptive
statistics, applied to the corpora that the models
were trained on. For a single ‘performance’ metric,
we follow Dufter and Schütze (2021) in defining
a model’s ML score as the average of its word
translation and sentence retrieval scores, at layers
0 and 7. We measure correlations with:

• The number of training tokens
• The type-token ratio
• The number of one-letter types
• The number of one-letter tokens
• Average type length (in characters);
• Average token length
• Average sentence length
• Frequency of hapax, dis and tris legomena
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Figure 2: Spearman correlations (α = 0.001). Greyed-out values indicate insufficient evidence.

Language Family
BPE UD BPE UD

Default 0.17/0.05 0.35/0.25 0.07/0.05 0.04/0.08
Lemmatised 0.16/0.11 0.38/0.14 0.10/0.04 0.14/0.07

Shuffled 0.15/0.13 0.03/0.01 0.07/0.10 0.02/0.05
Corrupted 0.14/0.12 0.05/0.02 0.13/0.09 0.01/0.02

Table 2: Cluster similarities (adjusted Rand score) between language, or language family clusters, and k-means
clustering, with a random seed of 42. Results on Wikipedia and Common Crawl are separated with a backslash.

We present these statistics in Figure 2. A clear
difference between doing nothing/lemmatising and
shuffling/corrupting leaps out. With UD tokeni-
sation, none of our corpus metrics correlates well
with model performance, while BPE tokenisation
consistently throws out a range of correlations.
There is also a clear difference between Wikipedia
and Common Crawl; in general, we find that corre-
lations tend to be either weaker or less significant
with Common Crawl than with Wikipedia. We hy-
pothesise that this is due to Wikipedia being both
more homogeneous and less noisy as a corpus.

Type-token ratio is a strong predictor For the
default (and, to some extent, lemmatised) models,
we find that type-token ratio has a strong positive
correlation to ML-score (particularly retrieval), im-
plying that lexical diversity enables better transfer.
This is perhaps unsurprising – infrequent types
might act as ‘anchors’, allowing easier transfer
for their surrounding contexts. This is somewhat
backed up by the disappearance of this metric in

shuffled models.

Avg. token length predicts BPE performance
Over our scrambled corpora, for both Wikipedia
and Common Crawl,1 it appears that average token
length correlates strongly to downstream perfor-
mance. The fact that this occurs for BPE tokenisa-
tion and not UD implies that this is likely a proxy
for the number of BPE splits, rather than a realistic
cross-linguistic measure; the more aggressive the
BPE, the poorer the model. This is also somewhat
backed up by the fact that the number of tokens in-
versely correlates to BPE performance; the shorter
the average BPE split, the more the actual number
of tokens in a corpus, for a given language.

Sentence length often correlates negatively
This finding is consistent across all our BPE mod-
els;1 longer sentence lengths (in tokens) imply
poorer multilingual scores. This is likely at least
partially related to the previous observation – the

1While exceptions to these observations exist, they disap-
pear when we use a less restrictive α = 0.005
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(a) Sentence retrieval (b) Word translation

Figure 3: Spearman correlations, with a more relaxed α = 0.01. X-axis indicates vocabulary statistics. Y-axis
indicates tokenisation method. Correlations are on Common Crawl data, with the appropriate metric averaged at
layers 0 and 7.

longer the average token, the less aggressive the
BPE, and the less aggressive the BPE, the shorter
the average sentence.

Hapax/dis/tris ratios Results generally tend to
correlate positively with the ratio of hapax legom-
ena to the total number of tokens, when BPE to-
kenisation is used. This difference is likely due to
the presence of more morphemic hapaxes in BPE-
tokenised models: UD tokenisation is likely to re-
sult in a long tail of rarer morphological forms
of rarer tokens. Curiously, this correlation, albeit
weaker, is reversed for dis and tris legomena.

5.3 Vocabulary correlations
Next, we examine ML score correlations with dif-
ferent properties of the size 2048 UD/BPE vocab-
ulary for each model. Note that as each model is
trained with a unique corpus, each model has a
unique vocabulary. Our features include:

• Average token length; for non-initial word-
pieces, we do not include the length of the
prefix.

• Counting complexity, using UniMorph (Kirov
et al., 2020) to count the number of distinct
morphological features in a given language.

• The frequency of single-letter vocab items.

• The frequency of digits in the vocab.

• The frequency of punctutation in the vocab.

We present these correlations in two heatmaps in
Figures 3a and 3b. Some of our observations back

up the observations in the previous section (eg. to-
ken length correlates inversely with ML score).

Counting complexity is complex Gratifyingly,
the counting complexity metric (Sagot, 2013) ap-
pears to match Cotterell et al. (2018)’s observation,
and is positively correlated with both retrieval and
(to a larger extent) translation. Strangely, how-
ever, this correlation also appears to hold for both
corrupted corpora; this is odd, as these corpora
are lemmatised, implying the absence of inflec-
tional morphology. It is plausible that this effect
is still visible (albeit weakened) due to differences
in the distribution of function words and stems,
when compared with a language with actual dif-
ferences in counting complexity; a language with
strong case-marking, for instance, is likely to have a
very different distribution of adpositions than a lan-
guage without. This finding also backs up Mielke
et al. (2019), who suggest that vocabulary-level
measures may correlate better.

Specific tokens may act as anchors For the task
of word translation, we notice that positive corre-
lations tend to occur with the frequency of non-
initial subwords, the frequency of digits, and the
frequency of single-letter tokens. This effect, visi-
ble across all three categories, might indicate that
these tokens act as anchors, enabling easier transfer
in their contexts.

No clear patterns exist for retrieval We notice
no clear factors contributing to retrieval. While the
number of unused tokens does appear to correlate
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Figure 4: Retrieval/translation scores for (learnt) abso-
lute position, (fixed) sinusoidal position and no position.
English in bold black for easier comparison with Dufter
and Schütze (2021).

in the lemmatised models, this is mild and is likely
to be an effect of the vocab size being effectively
smaller.

5.4 Ablation experiments

While somewhat tangential to our original research
question, we attempted to modify the positional
embedding bias in our model. Dufter and Schütze
(2021) show that positional embeddings are crit-
ical to building a multilingual space; Sinha et al.
(2021) show that positional embeddings are critical
to building monolingual language models, a find-
ing backed up in other work (Abdou et al., 2022;
Papadimitriou et al., 2022), where the authors also
emphasise the importance of meaningful word or-
der. These observations are somewhat contradic-
tory to our findings, where shuffling corpora at a
token-level still allows for successful multilingual
space induction.

To resolve this, we train two additional mod-
els, on a corrupted variant of Common Crawl, pre-
sented in Figure 4. The first of these has its learnt,
absolute position embeddings (Devlin et al., 2019)
replaced with sinusoidal embeddings, as in the orig-
inal transformer paper (Vaswani et al., 2017), and
the other has them removed entirely. While we

would expect to see model performance drop con-
siderably without position embeddings, this is often
not the case at all; there is no real visible difference
in performance across either of the tasks, imply-
ing that certain ‘clues’ are perhaps sufficient to
build a multilingual space, even when a functional
monolingual space might not exist for any of the
languages.

Having said that, we note that English (anno-
tated in black) is not one of the easier languages
to build multilingual spaces for, even with absent
position embeddings; as such, our English results
are more similar to the results reported by Dufter
and Schütze (2021).

6 Conclusion

In this work, we attempted to measure the vari-
ance in the ability of masked language models to
build multilingual spaces with the underlying typol-
ogy of the language. In doing so, we have shown
that these models are capable of building multilin-
gual spaces even when sentences are lemmatised
and scrambled at a token level, showing that mul-
tilingualism can exist even when transformers act,
functionally, like bag-of-words models. This does
not, however, necessarily imply the ability to ef-
fectively model language (Abdou et al., 2022), but
merely the ability to align two disjoint linguistic
spaces.

We have also shown that, on the one hand, the
ability to build a multilingual space is only weakly
correlated to language (given multiple corpora) and
to language family, and that, on the other hand, cer-
tain corpus-level metrics (specifically, type-token
ratios and the presence of hapax legomena) are rela-
tively good predictors of multilingual space quality,
while others (such as the number of tokens or the
average sentence length) are negatively correlated.

Our work is not without its caveats. For one,
a lot of our correlating factors muddy the waters
between what is an inherent property of the lan-
guage itself, and what is a property of the corpus
we use. While we use texts from the same domain
in all our languages, both Wikipedia and Common
Crawl are widely inconsistent across language, un-
less explicitly made comparable (Otero and López,
2010). Further, as discussed earlier, our scenario is
not strictly realistic: first, this is a bilingual setup
meant to approximate a multilingual one; second,
both our languages have exactly the same structure;
third, our language models are very underparame-
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terised relative to full-scale models. It is unlikely
that our observations would hold true in a real-
world scenario; given, however, that our aim was
to study the inductive biases of masked language
models, using full-scale models would defeat the
purpose somewhat, as the sheer volume of training
data would have overridden these biases. Having
said that, we present this work as an attempt to add
to the often conflicting pool of papers attempting to
shed some light on how language models acquire
language.

Limitations

This work has several limitations, some of which
we have addressed. To reiterate, in order to en-
able some degree of cross-linguistic diversity in
this analysis, our bilingual setup is only an approx-
imation of a true multilingual setup. Conversely,
we are limited in the data we have access to: for
inclusion in this study, languages had to have large
and relatively noiseless dependency-parsed corpora
available; as such, we are somewhat biased towards
over-representing Indo-European languages.

Ethical considerations

The research presented in this work is compatible
with the ACL ethics policy; the data we use is a
toy subset of openly available corpora, and our
models are very underparameterised, relative to the
current state-of-the-art. Given the sheer number of
models we train, our main experimental findings
require approximately 1200 GPU hours for training,
approximately equivalent to the amount of time
required to train a full-scale BERT model on the
same V100 GPUs.2
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