
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3866–3879
December 7-11, 2022 ©2022 Association for Computational Linguistics

SYGMA: A System for Generalizable and Modular Question Answering
Over Knowledge Bases

Sumit Neelam†, Udit Sharma‡, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi,
Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-Suk Lee, Santosh Srivastava∗,

Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav,
Dinesh Khandelwal, Srinivas Ravishankar∗, Sairam Gurajada∗, Maria Chang,

Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme Lima, Ryan Riegel,
Francois Luus∗, L Venkata Subramaniam

IBM Research

Abstract

Knowledge Base Question Answering (KBQA)
involving complex reasoning is emerging as
an important research direction. However,
most KBQA systems struggle with general-
izability, particularly on two dimensions: (a)
across multiple knowledge bases, where exist-
ing KBQA approaches are typically tuned to a
single knowledge base, and (b) across multiple
reasoning types, where majority of datasets and
systems have primarily focused on multi-hop
reasoning. In this paper, we present SYGMA,
a modular KBQA approach developed with
goal of generalization across multiple knowl-
edge bases and multiple reasoning types. To
facilitate this, SYGMA is designed as two high
level modules: 1) KB-agnostic question under-
standing module that remain common across
KBs, and generates logic representation of the
question with high level reasoning constructs
that are extensible, and 2) KB-specific question
mapping and answering module to address the
KB-specific aspects of the answer extraction.
We evaluated SYGMA on multiple datasets
belonging to distinct knowledge bases (DBpe-
dia and Wikidata) and distinct reasoning types
(multi-hop and temporal). State-of-the-art or
competitive performances achieved on those
datasets demonstrate its generalization capabil-
ity.

1 Introduction

The goal of Knowledge Base Question Answer-
ing (KBQA) systems is to answer natural language
(NL) questions by retrieving and reasoning over
facts in Knowledge Base (KB). KBQA has gained
significant popularity in recent times due to its
practical real-world applications and associated
research challenges (Fu et al., 2020). However,
research in this area has primarily focused so far
on single/multi-hop reasoning on a single knowl-
edge base (Trivedi et al., 2017; Usbeck et al., 2017;

†sumit.neelam@in.ibm.com, ‡udit.sharma@in.ibm.com
*This work was done when authors were at IBM.

Yih et al., 2016). As a result, most of the methods
developed are tuned to a restricted set of reasoning
types on a single knowledge base.

In this paper, we present a modular approach for
KBQA called SYGMA (System for Generalizable
and Modular question Answering over knowledge
bases), that is built on a framework adaptable to
multiple KBs and multiple reasoning types. Such
a system hold promise for many interesting ap-
plications namely: answering complex questions
involving multiple types of reasoning, unifying of
knowledge across multiple KBs, and so on. How-
ever, it poses challenges in terms of: (a) Handling
different representations of information in different
KBs. For example, Figure 1 shows how informa-
tion related to question “Who was roman emperor
before Nero?" is represented in two different KBs.
Wikidata represents properties of facts such as re-
places, temporal and spatial with reification1. On
the other hand, DBpedia manages to represent it as
a simple fact with a relationship to existing entity
nodes. (b) Handling a variety of complex reasoning
types such as temporal and spatial in a common
framework. Table 1 shows examples of questions
that require different types of reasoning. Most of
the research so far has focused on questions in-
volving multi-hop reasoning (Bordes et al., 2015;
Dubey et al., 2019; Berant et al., 2013), with rela-
tively less past work on other types of reasoning.
To our knowledge, there is no past work trying to
handle multiple reasoning types within the same
framework.

In SYGMA, we tackle these challenges through:
(1) a modular design of the system and (2) using λ-
calculus based intermediate representations. Modu-
lar design offers flexibility to isolate sub-tasks that
need adaptation, thus avoiding data-intensive end-
to-end adaptation. Motivated by NSQA (Kapani-
pathi et al., 2021) and ReTraCk (Chen et al., 2021),

1Information about facts are explicitly mapped by making
facts as primitive nodes.

3866

Roman emperorNero
position held

wdt:P39

p:P39

replaces
pq:P1365

Claudius

dbo:predecessor
DBpedia

Wikidata

ps:P39

dbr:
Claudius

Q842606

Q1411stmt

Q1413

dbr:Nero

SPARQL: select ?a where {dbr:Nero dbo:predecessor ?a}

SPARQL: select ?a where { wd:Q1413 p:P39 ?stmt.
?stmt ps:P39 wd:Q842606. ?stmt pq:P1365 ?a }

Figure 1: Nero’s predecessor representation in DBpedia
vs. Wikidata with SPARQL query to retrieve it.

Category Example

Single-hop
Who directed Titanic Movie?
SPARQL: select distinct ?a where {
wd:Q44578 wdt:P57 ?a}

Multi-hop

Which movie is directed by James
Cameron starring Leonardo DiCaprio?
SPARQL: select distinct ?a where
{?a wdt:P57 wd:Q42574.
?a wdt:P161 wd:Q38111. }

Temporal Who was the US President
during cold war? SPARQL: in Figure 3

Table 1: Examples of Single-hop, Multi-hop and Tem-
poral reasoning questions on Wikidata.

we use a pipeline of sub-modules namely: Abstract
Meaning Representation (Banarescu et al., 2013),
Entity Linking, and Relation Linking. λ-calculus
based representation is used as a common frame-
work to represent and handle a variety of reasoning
types and knowledge representation. We demon-
strate the generalizability of SYGMA through ex-
perimental evaluations using a variety of datasets
that include: (a) DBpedia and Wikidata as knowl-
edge bases, and (b) multi-hop and temporal as the
reasoning types.

A summary of our main contributions:

• A modular approach, called SYGMA, for gen-
eralizable KBQA that uses λ-calculus based
intermediate logical representations towards
enabling adaptation to: (a) multiple knowl-
edge bases, specifically DBpedia and Wiki-
data, and (b) multiple reasoning types, multi-
hop and temporal reasoning.

• Experimental results show SYGMA is able
to achieve its generalization goal, also achiev-

ing state-of-the-art performance on WebQSP-
WD, and competitive performance on LC-
QuAD 1.0 and QALD-9 datasets. We also re-
port baseline accuracies on Simple WebQues-
tions (Diefenbach et al., 2017b) and temporal
question answering dataset called TempQA-
WD (Neelam et al., 2022).

2 Related Work

Early work on automatic question answering con-
sidered extracting answers from text (Hirschman
and Gaizauskas, 2001; Voorhees, 2000). Organiz-
ing knowledge in a structured format (unlike un-
structured knowledge in text) started gaining mo-
mentum with focus on semantic web, leading to
creation of large scale KBs such as Freebase (Bol-
lacker et al., 2008), DBpedia (Lehmann et al., 2014)
and Wikidata (Pellissier Tanon et al., 2016). KBQA
has emerged out of these developments, as a nat-
ural language interface to structured knowledge
resources. While early work on KBQA has fo-
cused on simple factoid questions (Yahya et al.,
2012; Bordes et al., 2015), latest advances in NLP
and knowledge representation, has moved the focus
to complex questions (Hu et al., 2018; Luo et al.,
2018).

Among the existing approaches for complex
KBQA, the most successful ones in recent times
are semantic parsing based (Singh et al., 2018; Ka-
panipathi et al., 2021; Zou et al., 2014; Hu et al.,
2021), where a question understanding module is
used to convert natural language questions into
their corresponding logical forms. The logical form
serves to provide a structured way of representing
and executing reasoning needed to answer complex
questions. Different systems use different parsing
techniques for question understanding, for exam-
ple, (Luo et al., 2018) use dependency parsing and
(Kapanipathi et al., 2021) use Abstract Meaning
Representation (AMR). From design point of view,
KBQA systems can be grouped into: (a) end-to-end
trainable (Sorokin and Gurevych, 2018; Jia et al.,
2018a; Saxena et al., 2020, 2021; Jia et al., 2021;
Mavromatis et al., 2021) and (b) modular (Kapani-
pathi et al., 2021; Hu et al., 2021; Zou et al., 2014).
Modular approaches are typically easily adaptable
and interpretable.

With the goal of generalization across multiple
KBs and multiple reasoning types, our approach
SYGMA is designed in a modular fashion. More
over, it also uses AMR parse of the question and

3867

transforms that further into a λ-calculus based
representation. As will be seen later in the pa-
per, these design aspects are aimed at providing
a flexible framework to adapt SYGMA to new
KBs and new reasoning types. In contrast, most
of the past KBQA approaches are tuned to a spe-
cific KB and a specific set of reasoning types. For
example, NSQA (Kapanipathi et al., 2021) and
EDGQA (Hu et al., 2021) are tuned to work only on
DBpedia, whereas GGNN (Sorokin and Gurevych,
2018) is tuned to work on Wikidata. Likewise,
NSQA (Kapanipathi et al., 2021) and EDGQA (Hu
et al., 2021) target only single/multi-hop reason-
ing, whereas TEQUILA (Jia et al., 2018b) and
CronKGQA (Saxena et al., 2021) target only tem-
poral reasoning.

KBQA Datasets: Many question answering
datasets have been built over time to evaluate
KBQA systems: Free917 (Cai and Yates, 2013),
SimpleQuestions (Bordes et al., 2015), WebQues-
tions (Berant et al., 2013), QALD-9 (Usbeck et al.,
2017), LC-QuAD 1.0 (Trivedi et al., 2017), LC-
QuAD 2.0 (Dubey et al., 2019), CRONQUES-
TIONS (Saxena et al., 2021), TimeQuestions (Jia
et al., 2021). Most of these datasets are built with
goal of evaluating a specific KBQA approach. As a
result, these datasets are also typically restricted to
specific KB and reasoning type combinations. For
example, QALD-9 is a dataset build for DBpedia
to evaluate multi-hop reasoning and TempQA-WD
is a dataset to evaluate temporal reasoning on Wiki-
data.

3 SYGMA: System Description

Figure 2 shows overall architecture of SYGMA.
Motivated by Kapanipathi et al. (2021), SYGMA is
designed as a modular system, where multiple sub-
modules performing distinct sub-tasks are stitched
together in a pipeline. Each of these sub-modules
are built independent of each other with sub-task
specific data. Such a design offers greater flexibility
to push ahead our goal of generalization, because
it is possible to isolate those sub-tasks that need
adaptation and restrict adaptation effort only to the
corresponding sub-modules, unlike data-intensive
end-to-end trained systems.
KB Generalization: Towards the goal of KB
generalization, the sub-modules are grouped into
two processing stages, as shown in Figure 2: 1)
KB-Agnostic Question Understanding that trans-
forms Natural Language (NL) question into a KB-

agnostic logical representation of the question, and
2) KB-Specific Question Mapping and Reasoning
that maps the elements of the KB-agnostic logical
representation onto the vocabulary of the KB to
first build a KB-specific logical representation of
the question and then transform that further into a
SPARQL query that when executed over the KB
would fetch the answer. Figure 3 gives an illus-
tration of the outputs generated at different inter-
mediate stages of the pipeline for an example NL
question. Note that, in our effort to achieve gen-
eralization across KBs, it is not possible to avoid
the KB-specific components completely out from
the system. Through above design, all we try to
achieve is to minimize the adaptation effort by
pushing all KB-specific processing towards the end
of the pipeline, so the preceding part of the pipeline
would remain common across all the KBs and the
efforts needed to support new KBs is limited only
to the later part of the pipeline.
Reasoning Type Generalization: Support for
generalization across reasoning types is achieved
through: (1) use of λ-calculus for logical repre-
sentation that captures different reasoning types
as higher order functions, and (2) incorporation of
transformation heuristics within logical representa-
tion modules that spans across both the stages of the
pipeline, as shown in Figure 2. λ-calculus provides
a flexible framework not only to handle a variety of
reasoning types but also to handle representation
differences across KBs. Over that, the transfor-
mation modules incorporate necessary high-level
knowledge about different reasoning constructs
and their transformations that are needed to handle
specifics of the different reasoning types. Note that
we chose to adopt such a neuro-symbolic approach
of combining acquired knowledge with the learned
knowledge in a modular fashion. On this aspect,
we would like to highlight that end-to-end trained
systems do not have any distinctive advantage, be-
cause to acquire such a knowledge through data is
difficult and would need large amount of manual
effort in terms of data collection and labeling, to
cover a wide range of reasoning types.

Before we get into the details of different mod-
ules, next we describe Lambda calculus, the formal-
ism used in our system for logical representation.

3.1 Lambda Calculus

λ-calculus, by definition, is considered the small-
est universal programming language that expresses

3868

Question Understanding (KB-agnostic)

AMR
Parser λ – Expression

Question Mapping & Reasoning (KB-specific)

KB-Specific
λ – Expression

SPARQL
Query

Knowledge
Base (KB)

Input
Question

Answer

KB Agnostic
Transformations

KB Specific
Transformations

Figure 2: Architecture of SYGMA that shows the pipeline with modules and intermediate representations.

Who was the US president during cold war?

𝜆 a. have-org-role-91(h, a, “US president”)
^ interval(hi, h) ^ interval(wi, “Cold War”)
^ overlap(hi, wi)

𝜆 a. wdt:P39(h, a, wd:Q11696) ^ interval(hi, h)
^ interval(wi, wd:Q8683) ^ overlap(hi, wi)

position held US President

Cold war

SELECT DISTINCT ?a WHERE {
?a wdt:P39 wd:Q11696.
?a p:P39 ?e1.
?e1 ps:P39 wd:Q11696.
?e1 pq:P580 ?st1.
?e1 pq:P582 ?et1.
wd:Q8683 wdt:P580 ?st2.
wd:Q8683 wdt:P582 ?et2.

FILTER
(?st1 <= ?et2 && ?st2 <= ?et1)}

λ – Expression

KB λ – Expression

AMR

SPARQL

Figure 3: An illustration of the outputs at the intermediate stages of the pipeline in SYGMA.

any computable function. In this work, we
have adopted Typed λ-Calculus (Zettlemoyer and
Collins, 2012) because it supports addition of new
higher order functions (a requirement in our frame-
work to handle multiple reasoning types). We
use constants, logical connectives (like AND, OR,
NEGATION) and functions (like argmin, argmax,
count) as in (Zettlemoyer and Collins, 2012). Apart
from these, we have also added a few other func-
tions to support different reasoning types. E.g., to
support temporal reasoning, we have added tempo-
ral functions such as interval, overlap, before, after,
and so on. interval is used to represent time interval
associated with an event2. overlap, before and after
are used to represent comparison of time intervals
of events. Below is an example NL question and
its logical form, called λ-expression:

Question: When was Barack Obama born?
Logical Form: λt. born(b,“Barack Obama") ∧

interval(t, b)

Here, b is used to denote event born(b, “Barack
Obama") and interval(t, b) represents the time in-
terval of the event denoted by b. t corresponds to
unknown variable, as given in the expression by λt.

2Note that, in this paper, we call facts that are true for
a specific duration of time as events. For example birth of
Barack Obama is an event.

3.2 KB-Agnostic Question Understanding

The goal here is to represent the semantics of the
question logically in a KB-independent manner,
i.e., to derive intermediate λ-expression of the ques-
tion that is common across all the KBs. This is
achieved in two steps: first the NL question is
mapped onto its Abstract Meaning Representation
(AMR), followed by further mapping onto corre-
sponding λ-expression.

3.2.1 AMR
We use AMR (Abstract Meaning Representation)
(Banarescu et al., 2013) to mediate between NL
questions and their corresponding λ-expressions,
because it provides an efficient intermediate form
to further derive logical representation of the ques-
tion semantics. AMR encodes the meaning of a
sentence into a rooted directed acyclic graph where
nodes represent concepts and edges represent rela-
tions. We adopt an action pointer transformer ar-
chitecture of Zhou et al. (2021) for transition-based
AMR parsing and self-training technique of Lee
et al. (2020, 2022). We used a single AMR parsing
model for all of our experiments which is trained
on the combination of human annotated treebanks
and a synthetic AMR corpus. Human annotated
treebanks include AMR3.0 and 958 questions sen-
tences (250 QALD train + 627 LC-QuAD 1.0 train
+ 81 TempQA-WD) annotated in-house. The syn-

3869

thetic AMR includes around 100k self-trained sen-
tences (∼27k from LC-QuAD 1.0/LC-QuAD 2.0
and ∼70k from SQuAD-2 (Rajpurkar et al., 2018)
training data sets). Figure 3 shows an example
AMR for the question Who was US president dur-
ing cold war? Note that this representation has
encoded cold war event as sub-event under the time
edge. It also explicitly captures the before/after
constraints as part of the time edge. If there are
no constraints appearing under time edge, we treat
that by default as overlap constraint.

3.2.2 KB-Agnostic Lambda Expression
A recursive algorithm is used to transform AMR
into KB-agnostic λ-expression. Starting from root
AMR node, other nodes deep/across the AMR
graph (i.e., linked elements, entity/relation men-
tions) are traversed in a recursive fashion. While
being at each node during the recursion, appropri-
ate transformation heuristics as listed in Table 2
are applied to generate component λ-expression
corresponding to that node. The transformations
heuristics are basically high-level constructs, im-
plemented as functions to map each AMR node
into corresponding component λ-expression, by ap-
plying appropriate rule based on the current AMR
frame and its components. At the end of recursion,
the final λ-expression is generated as a conjunc-
tion of component λ-expressions, together with
a projection variable and the required reasoning
functions. AMR unknown/imperative constructs
are used to identify the projection variable. Trans-
formations as listed in the table includes: templates
for base reasoning, templates covering specific rea-
soning types (e.g., temporal), templates for how
AMR constructs can be used to isolate events and
so on. A complete list of templates is given in
Appendix A. Figure 3 shows an illustrative exam-
ple of λ-expression constructed from AMR of a
sample question. Note that λ-expression nicely
represents semantic decomposition of the question,
i.e., a logical composition of multiple sub-queries
linked together through variables, that when re-
solved satisfying the reasoning constraints would
obtain the answer.

3.3 KB-Specific Question Mapping and
Reasoning

KB-specific segment encompasses a module to
transform KB-agnostic λ-expression into KB-
specific λ-expression and another module to trans-
form that further into a SPARQL. Note that, to

adapt SYGMA to new KBs, these modules need to
be rebuilt for each KB added.

3.3.1 KB-Specific Lambda Expression
KB-specific λ-expression is structurally similar to
the KB-agnostic λ-expression, except that all the
mentions of entities and relations are mapped to
the corresponding KB entities and relations. The
process of such mapping is described below.
Entity Linking: The goal of Entity Linking is
to map entity mentions in the KB-agnostic λ-
expression of the question onto their corresponding
KB entities. We use a recently proposed zero-shot
entity linking approach called BLINK (Wu et al.,
2020). For a question where entity mentions are
already identified, bi-encoder piece of the BLINK
is used to predict top-K entities. For this prediction,
we use a pre-trained model built with entity dictio-
nary of 5.9M English Wikipedia entities with map-
pings to their corresponding Wikidata and DBpedia
entities. More details on the model is described in
(Wu et al., 2020).
Relation Linking: The goal of relation link-
ing is to map the relation mentions in the KB-
agnostic λ-expression onto their corresponding KB-
specific relations. To achieve this, we use state-of-
the-art AMR-based relation linking approach as
in (Naseem et al., 2021). We use their pre-trained
models built for Wikidata and DBpedia. As de-
scribed in (Naseem et al., 2021), this takes ques-
tion text and its AMR graph as the input and re-
turns a ranked list of KB relations. KB-specific
λ-expression is constructed from KB-agnostic λ-
expression by retaining its structure and appropri-
ately modifying the Relation Slots and other details
such as number of relations; their subjects, objects
and surface forms. For the example question "Who
was the US President during cold war?", as in Fig-
ure 3, Wikidata KB relations predicted are (given
in brackets): position held (P39), start time (P580),
end time (P582).

3.3.2 SPARQL Query
This module maps KB-specific λ-expressions into
SPARQL query through a deterministic approach.
λ-expression contains one or more terms such that
each term Ti is comprised of one or more pred-
icates connected via ∧ or ∨. Each construct in
λ-expression is mapped to its equivalent SPARQL
construct as per Table 3. Most of these rules are
generic across KBs, except for a few rules that re-
quire KB-specific predicates during translation. For

3870

Type AMR A = (v/frame . . .) Lambda Expression L = ψ(v)

Base (v/frame :arg0(v0/frame0) . . . :argn(vn/framen)) frame(v, v0, . . . vn) ∧ ψ(v0) ∧ . . . ∧ ψ(vn)
Base (v/frame :arg1(a/amr-unknown) . . . :argn(vn/framen)) λa. ψ(v)

Numerical (v/frame :arg0(v0/frame0 :quant(a/amr-unknown)) . . .
:argn(vn/framen)) count(λv0. ψ(v))

Temporal (v/frame :arg0(v0/frame0) . . . :argn(vn/framen)
:time(a/amr-unknown)) λev. ψ(v) ∧ interval(ev, v)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(b/before :op1(n/nested-frame)))

argmax(λa. ψ(v) , λa. λev. ψ(n) ∧ interval(ev, v)
∧ interval(en, n) ∧ before(ev, en), 0, 1)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(n/nested-frame))

λa. ψ(v) ∧ ψ(n) ∧ interval(ev, v) ∧ interval(en, n)
∧ overlap(ev, en)

Spatial (b/be-located-at-91 :arg0(a/amr-unknown),
:mod(s/south) :op1(n/nested-frame))

λa. ψ(b)∧ ψ(n) ∧ coordinate(cb, b) ∧ coordinate(cn, n)
∧ south(cb, cn)

Table 2: Translation of AMR into KB-agnostic λ-expression

example, table contains rule for handling temporal
reification for Wikidata, in which, start time(P580),
end time(P582), or point in time(P585) connected
to intermediate statement node are used to get the
time interval. This can be altered to support other
temporal KBs. A complete list of rules is given in
Appendix A.

4 Evaluation

4.1 Implementation Details

In our implementation, we use Flow Compiler3

(Chakravarti et al., 2019) to build the pipeline, that
stitches together individual modules exposed as
gRPC services on single virtual machine with 32
cores and 128GB memory. We employ single AMR
and entity linking service across all datasets, and
one service each for DBpedia and Wikidata for re-
lation linking purpose. We use ANTLR4 grammar
to define λ-expressions, that includes rules to cap-
ture basic predicates, logical connectives (like and,
or, not), basic functions (like argmin, argmax, min,
max), temporal functions (like interval, overlap, be-
fore, after, teenager, now, age) and so on. Defined
ANTLR grammar is used to check generated λ-
expression syntax and to parse it as well. Module to
transform KB-Specific λ-expression to SPARQL is
implemented in Java using Apache Jena5 SPARQL
modules, that first creates SPARQL objects and
then generates the final SPARQL query to run on
target KB end-point6. The rest of the modules are
implemented in Python and are exposed as gRPC
services. We use GERBIL7 (Usbeck et al., 2019)

3https://github.com/IBM/flow-compiler
4https://www.antlr.org
5https://jena.apache.org/
6https://query.wikidata.org/
7https://github.com/dice-group/gerbil

to compute performance metrics from pairs of gold
answers and system generated answers (computed
by the pipeline). We use standard performance
metrics typically used for KBQA systems, namely
macro precision, macro recall and F1.

4.2 Datasets

Our choice of datasets for evaluation is driven by
the key goal of our approach, i.e., generalizability
across KBs and reasoning types. In this paper, we
perform evaluation on the following: 1) two differ-
ent KBs: DBpedia and Wikidata8, 2) two different
reasoning types: multi-hop and temporal. Given
there is no previous work (to our knowledge) on
generalizability of KBQA systems, we could not
find any dataset that covers all the evaluation di-
mensions listed above. As a result, we decided to
evaluate our system on multiple datasets, each span-
ning one of the dimensions above. Table 6 lists 5
datasets we use for evaluation. Their details are: 1)
QALD-9 (Usbeck et al., 2017) has 408 training and
150 test questions, 2) LC-QuAD 1.0 (Trivedi et al.,
2017) has 4000 train and 1000 test set questions
3) SWQ-WD (Diefenbach et al., 2017b) has 14894
train and 5622 test set questions, 4) WebQSP-WD
(Sorokin and Gurevych, 2018) has 2880 train and
1033 test set questions, and 5) TempQA-WD has
no train set questions but 175 dev and 664 test ques-
tions. Note that TempQA-WD is a relatively new
dataset and derived from TempQuestions (Jia et al.,
2018a) dataset. We have chosen TempQA-WD
because it is on Wikidata whereas original Tem-
pQuestions is on Freebase. The DBpedia specific
datasets mentioned above (QALD-9 and LC-QuAD
1.0) are on different versions of DBpedia and hence

8We did not consider adapting to Freebase as it is discontin-
ued, hence no longer actively maintained and not up-to-date.

3871

Type Expression/Predicate E SPARQL S = ϕ(E)

λ abstraction λx.T SELECT DISTINCT ?x WHERE { ϕ(T) }
Count expression count(λx.T) SELECT (COUNT(?x) AS ?c) WHERE { ϕ(T) }

Argmax expression argmax(λx.T1, λx.λy. T2, O, L) SELECT DISTINCT ?x WHERE { ϕ(T1) ϕ(T2)
} ORDER BY DESC(?y) LIMIT L OFFSET O

KB Predicate <pred_iri>(i, s/<s_iri>, o/<o_iri>) ?s/<s_iri> <pred_iri> ?o/<o_iri>.
Interval predicate
for reified facts

wdt:PID(i, s/<s_iri>, o/<o_iri>)
∧ interval(e, i)

?s/<s_iri> p:PID ?x. ?x ps:PID ?o/<o_iri>.
?x pq:P580 ?estart. ?x pq:P582 ?eend.

Overlap predicate overlap(e1, e2) FILTER(?e1start <= ?e2end && ?e2start <= ?e1end)
Before predicate before(e1, e2) FILTER(?e1end <= ?e2start)
After predicate after(e1, e2) FILTER(?e1start >= ?e2end)

Table 3: Translation of KB-Specific λ-expression into SPARQL

DataSet → WebQSP-WD SWQ-WD TempQA-WD
System ↓ P R F1 P R F1 P R F1
GGNN 0.27 0.32 0.26 0.32 0.38 0.33 0.08 0.21 0.09
SYGMA 0.32 0.36 0.31 0.42 0.55 0.44 0.32 0.34 0.32

Table 4: SYGMA’s Performance on Wikidata across reasoning types. P-Precision, R-Recall

DataSet → LC-QuAD 1.0 QALD-9
System ↓ P R F1 P R F1
WDAqua 0.22 0.38 0.28 0.26 0.26 0.25
gAnswer n/a n/a n/a 0.29 0.32 0.29
QAMP 0.25 0.50 0.33 n/a n/a n/a
NSQA 0.44 0.45 0.44 0.31 0.32 0.31
EDGQA 0.50 0.56 0.53 0.31 0.40 0.32
SYGMA 0.47 0.48 0.47 0.29 0.30 0.29

Table 5: SYGMA’s Performance on DBpedia. Baseline
numbers are taken from Hu et al. (2021), Kapanipathi
et al. (2021). P-Precision, R-Recall

Datasets Knowledge Base Reasoning

QALD-9 DBpedia Multi-hop
LC-QuAD 1.0 DBpedia Multi-hop
SWQ-WD Freebase, Wikidata Single-hop
WebQSP Freebase, Wikidata Multi-hop
TempQA-WD Freebase, Wikidata Temporal

Table 6: SYGMA relevant KBQA datasets and features

we used the appropriate version of DBpedia as per
the dataset during evaluation. Notice that, we have
performed temporal reasoning on Wikidata only,
because we analysed Wikidata and DBpedia and
found that temporal information is captured struc-
turally well in Wikidata using reification in compar-
ison to DBpedia. Moreover, all the recent temporal
QA datasets are based on Wikidata.

Although LC-QuAD 2.0 dataset is a potential
candidate for evaluation, since it is both on DB-
pedia and Wikidata, we could not use it because

we found some inconsistencies in question texts.
Also, although TimeQuestions (Jia et al., 2021) is
potential candidate dataset, we could not use it as
well for evaluation because of the discrepancies
we noted. This dataset maps only answer entities
to the corresponding Wikidata entities and do not
validate if the answers are up-to-date and if all the
required facts needed to retrieve that answer are
present in the Wikidata KB or not. On the other
hand, we used TempQA-WD for evaluation as it
is manually validated and has SPARQL queries to
refresh the answers. Note that answers to temporal
questions can change over time. To validate the
extent of the discrepancy we compared the answers
for the overlapping set of 743 questions between
TempQA-WD and TimeQuestions, and found that
only 50.9% of the answers matching.

4.3 Baselines

We compare our system with various baselines sys-
tems supporting question answering on DBpedia
and Wikidata. The λ-expression generation and
the transformation heuristics of the baseline system
are tuned with 200 questions from SWQ-WD train
set, 200 from LC-QuAD 1.0 train set, 175 from
TempQA-WD dev set. Evaluation is on test sets of
all five data sets.

EDGQA (Hu et al., 2021) (current state-
of-the-art on both LC-QuAD 1.0 and QALD-
9 datasets), NSQA (Kapanipathi et al., 2021),
WDAqua (Diefenbach et al., 2017a), gAnswer (Zou

3872

et al., 2014) and QAMP (Vakulenko et al., 2019)
systems provides baseline for DBpedia based
datasets. For Wikidata based datasets we use
GGNN (Sorokin and Gurevych, 2018) as the base-
line as it is the only known benchmark for WebQSP-
WD dataset. To evaluate SWQ-WD dataset, we
trained GGNN system on its train data. To evaluate
on TempQA-WD dataset, we trained GGNN on the
combination of train set of WebQSP-WD and the
dev set of TempQA-WD. We used GGNN default
parameters9 for both datasets training.

5 Results & Discussion

Table 4 and 5 show performance comparison of
SYGMA against all the baselines (described in
Section 4.3) on all the datasets (described in Sec-
tion 4.2). We achieve state-of-the-art performance
on all the Wikidata datasets WebQSP-WD, SWQ-
WD and TempQA-WD, while achieving reason-
able performance on DBpedia datasets QALD-9
and LC-QuAD 1.0. SYGMA achieves second best
accuracy on LC-QuAD 1.0. Note that GGNN is the
only comparable baseline for WebQSP-WD dataset.
Performance of GGNN on TempQA-WD dataset
clearly points to the limitation of end-to-end trained
systems, i.e., the requirement of large amount of
training data to adapt to a new reasoning need.

Note that SYGMA is the only system able run
on all the datasets, which indeed demonstrate the
main goal of our work. Although it is not able
to achieve top performance on DBpedia datasets,
generalizability across KBs and reasoning types
with performance comparable to state-of-the-art is
the key distinguishing aspect of SYGMA.

5.1 Ablation Study
We also performed module-level evaluation of
SYGMA and ablation studies as described below.

5.1.1 AMR
Table 7 show the performance of the AMR parser
on the 5 development sets. Evaluation metrics
used are Smatch (standard measure used to mea-
sure AMRs) and Exact Match (% of questions that
match fully with ground truth AMR).

5.1.2 Entity Linking
Table 8 shows independent performance of entity
linking on different datasets. Question level accu-
racy is computed by considering the correctness

9https://github.com/UKPLab/coling2018-graph-neural-
networks-question-answering

Dataset KB Smatch Exact Match

LC-QuAD 1.0 DBpedia 87.6 30.0
QALD-9 DBpedia 89.3 41.8
WebQSP-WD Wikidata 88.0 43.8
SWQ-WD Wikidata 83.0 37.8
TempQA-WD Wikidata 89.6 39.8

Table 7: AMR parser performance on dev sets

of all the entities in each question, whereas men-
tion level accuracy is computed on each mention.
Note that entity linking performance for Wikidata
datasets is low in comparison to DBpedia. This
is because all those datasets are adopted from cor-
responding Freebase dataset and the way entities
are represented in these two KBs is different. Also,
research on entity linking for Wikidata is gaining
momentum only recently.

Dataset KB Accuracy (%)
MentionLevel QuestionLevel

LC-QuAD 1.0 DBpedia 86.8 (91.9) 84.0 (90.5)
QALD-9 DBpedia 89.5 (94.3) 89.8 (93.9)
TempQA-WD Wikidata 74.0 (82.5) 57.1 (69.7)
SWQ-WD Wikidata 72.3 (83.2) 70.1 (81.6)

Table 8: Entity linking performance on dev sets with
gold mentions, Hits@5 scores in parentheses.

A closer look into the results show that accu-
racy on nominal entities (which BLINK is not
trained on) drags down the question level accu-
racy on TempQA-WD dataset. For SWQ-WD
dataset, the question size becomes bottleneck as
that leads to lack of adequate context. For the
question “what is John Steppling’s place of birth?"
taken from SWQ-WD dataset, due to insufficient
context, EL incorrectly links John Steppling to
Wikidata entity Q16150539(playwright) instead of
Q3182525(actor). Also, for TempQA-WD dataset
question “who won best Actor when Alfred Junge
won Best Art Direction?", correct entity for Best Art
Direction is Q22253131(Academy Award), but EL
wrongly returns Q28805401(Guldbagge Award)

5.1.3 Relation Linking
Table 9 shows independent performance of the rela-
tion linking module. Metrics here point to the fact
that relation linking is still a challenging task, espe-
cially in case of multi-hop reasoning and temporal
reasoning, where the query graph is disconnected
across events. Similar to entity linking, relation
linking performance for Wikidata is low in compar-
ison to DBpedia because it is relatively new.

3873

One of the reasons, relation linking suffers is be-
cuase of lack of context, E.g., for SWQ-WD dataset
question “Where is Zenon Grocholewski from?",
correct relation is P27(country of citizenship) for
entity Q189728, but RL returns P19(place of birth)
as output. Further, current relation linking fails to
capture non-temporal reified relation in Wikidata.
Consider TempQA-WD question “who played Will
Scarlett in the 1991 Robin Hood?", Wikidata
stores link between Robin Hood(Q689658) and
Will Scarlet(Q339019) through reification using
relation P161(cast member) and P453(character
role), which are not considered by current module.

Dataset KB Precision Recall F1

LC-QuAD 1.0 DBpedia 0.52 0.50 0.50
QALD-9 DBpedia 0.55 0.53 0.53
TempQA-WD Wikidata 0.43 0.43 0.42
SWQ Wikidata 0.67 0.68 0.67

Table 9: Relation linking performance on dev sets.

Empirical results on individual modules convey
that Entity Linking and Relation Linking perform
relatively better on DBpedia in comparison to Wiki-
data. But it does not reflect on overall performance
on DBpedia based datasets(QALD-9 performance
is relatively low). One of the reasons is AMR per-
formance is low(Exact Match 30%) for LC-QuAD
1.0 compared to Wikidata based datasets(Exact
Match 40%) Additionally, as mentioned earlier,
KB-Agnostic λ module is developed looking at
only LC-QuAD 1.0 dataset from DBpedia, but not
with QALD-9, resulting in partially handling com-
parative and superlative questions.

5.1.4 Pipeline Ablation Study
We also performed pipeline ablation study to ana-
lyze the impact of individual SYGMA modules on
the overall performance, using TempQA-WD dev
set questions and 100 dev set questions from LC-
QuAD 1.0. For this, we manually annotated those
questions with ground truths for all the intermedi-
ate modules. Table 10 shows the results. In the
table, GT-x denote the case where ground truth up
to module x is fed directly into the system. For
example, GT-AMR denotes directly feeding of the
AMR ground truth into λ-expression generation
module. The results show a large jump in accuracy
(in both the datasets) when fed directly with the
ground truth entities (GT-EL) and ground truth rela-
tions (GT-RL). This points to the need for improved
entity/relation linking on both KBs.

TempQA-WD LC-QuAD 1.0

P R F1 P R F1

NO GT 0.47 0.50 0.47 0.50 0.52 0.50
GT-AMR 0.50 0.51 0.50 0.51 0.53 0.51
GT-λ 0.52 0.53 0.52 0.52 0.53 0.52
GT-EL 0.60 0.62 0.60 0.63 0.66 0.64
GT-RL 0.92 0.93 0.92 0.99 0.98 0.98
GT-KB-λ 0.93 0.93 0.93 1.0 0.99 0.99
GT-Sparql 1.0 1.0 1.0 1.0 1.0 1.0

Table 10: Ablation Study on TempQA-WD and LC-
QuAD 1.0 dev sets. P-Precision, R-Recall

6 Conclusion

In this paper, we described SYGMA, a KBQA sys-
tem that generalize across KBs and reasoning types.
The key distinguishing features of our approach are
its modular design and its use of AMR/λ-Calculus
based question understanding and decomposition
module to obtain KB-agnostic logical representa-
tion of the question. It also includes KB-specific
question mapping and reasoning modules and trans-
formation heuristics to handle multiple KBs and
multiple reasoning types. An experimental eval-
uation of SYGMA on datasets spanning multiple
KBs and reasoning types indeed demonstrates its
generalization capabilities. Among many potential
opportunities for future work, we believe improv-
ing the individual performance of relation linking
module is critical and holds promise for signifi-
cantly improving the overall performance.

7 Limitations

Although modular design of our system SYGMA is
a beneficial from the point-of-view of our general-
ization goal, it makes it more sensitive to the per-
formance of the individual modules, because non-
overlapping errors across all the modules can affect
the overall performance. Currently, our system is
using only the top-1 result from entity linking and
relation linking modules, while top-k ranked list
returned from these modules are available. Extend-
ing system to use top-k can potentially improve the
overall accuracy. One of the weak links in our sys-
tem is relation linking module. As shown through
independent evaluation of this module, the perfor-
mance of the overall system can potentially be im-
proved significantly with improved relation linking
alone. Especially, given KBQA efforts on Wikidata
has started only recently, enity linking and relation
linking on Wikidata are still not matured enough
and have good scope for improvement.

3874

References
L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Grif-

fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer,
and N. Schneider. 2013. Abstract meaning represen-
tation for sembanking. In Proceedings of Linguistic
Annotation Workshop 2013.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York,
NY, USA. Association for Computing Machinery.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR,
abs/1506.02075.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 423–433, Sofia, Bul-
garia. Association for Computational Linguistics.

Rishav Chakravarti, Cezar Pendus, Andrzej Sakrajda,
Anthony Ferritto, Lin Pan, Michael Glass, Vittorio
Castelli, J William Murdock, Radu Florian, Salim
Roukos, and Avi Sil. 2019. CFO: A framework for
building production NLP systems. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
31–36, Hong Kong, China. Association for Computa-
tional Linguistics.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 325–336, Online. Association for
Computational Linguistics.

Dennis Diefenbach, Kamal Singh, and Pierre Maret.
2017a. Wdaqua-core0: A question answering com-
ponent for the research community. In Semantic Web
Evaluation Challenge, pages 84–89. Springer.

Dennis Diefenbach, Thomas Pellissier Tanon, Ka-
mal Deep Singh, and Pierre Maret. 2017b. Question
answering benchmarks for wikidata. In Proceedings

of the ISWC 2017 Posters & Demonstrations and
Industry Tracks co-located with 16th International
Semantic Web Conference (ISWC 2017), Vienna, Aus-
tria, October 23rd - to - 25th, 2017.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. LC-QuAD 2.0: A
Large Dataset for Complex Question Answering over
Wikidata and DBpedia, pages 69–78.

Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li,
Haiyang Yu, and Jian Sun. 2020. A survey on
complex question answering over knowledge base:
Recent advances and challenges. arXiv preprint
arXiv:2007.13069.

Lynette Hirschman and Rob Gaizauskas. 2001. Natural
language question answering: The view from here.
Natural Language Engineering, 7:275 – 300.

Sen Hu, Lei Zou, and Xinbo Zhang. 2018. A state-
transition framework to answer complex questions
over knowledge base. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2098–2108, Brussels, Bel-
gium. Association for Computational Linguistics.

Xixin Hu, Yiheng Shu, Xiang Huang, and Yuzhong Qu.
2021. Edg-based question decomposition for com-
plex question answering over knowledge bases. In
The Semantic Web - ISWC 2021 - 20th International
Semantic Web Conference, ISWC 2021, Virtual Event,
October 24-28, 2021, Proceedings, volume 12922 of
Lecture Notes in Computer Science, pages 128–145.
Springer.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jan-
nik Strötgen, and Gerhard Weikum. 2018a. Tem-
pquestions: A benchmark for temporal question an-
swering. In Companion Proceedings of the The Web
Conference 2018, WWW ’18, page 1057–1062, Re-
public and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jan-
nik Strötgen, and Gerhard Weikum. 2018b. Tequila:
Temporal question answering over knowledge bases.
In Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management,
CIKM ’18, page 1807–1810, New York, NY, USA.
Association for Computing Machinery.

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and
Gerhard Weikum. 2021. Complex temporal ques-
tion answering on knowledge graphs. In CIKM ’21:
The 30th ACM International Conference on Infor-
mation and Knowledge Management, Virtual Event,
Queensland, Australia, November 1 - 5, 2021, pages
792–802. ACM.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Rav-
ishankar, Salim Roukos, Alexander Gray, Ramon
Astudillo, Maria Chang, Cristina Cornelio, Saswati
Dana, Achille Fokoue, et al. 2021. Leveraging ab-
stract meaning representation for knowledge base

3875

https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#BordesUCW15
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#BordesUCW15
https://www.aclweb.org/anthology/P13-1042
https://www.aclweb.org/anthology/P13-1042
https://www.aclweb.org/anthology/P13-1042
https://doi.org/10.18653/v1/D19-3006
https://doi.org/10.18653/v1/D19-3006
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
http://ceur-ws.org/Vol-1963/paper555.pdf
http://ceur-ws.org/Vol-1963/paper555.pdf
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1017/S1351324901002807
https://doi.org/10.1017/S1351324901002807
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.1007/978-3-030-88361-4_8
https://doi.org/10.1007/978-3-030-88361-4_8
https://doi.org/10.1145/3184558.3191536
https://doi.org/10.1145/3184558.3191536
https://doi.org/10.1145/3184558.3191536
https://doi.org/10.1145/3269206.3269247
https://doi.org/10.1145/3269206.3269247
https://doi.org/10.1145/3459637.3482416
https://doi.org/10.1145/3459637.3482416

question answering. Findings of the Association for
Computational Linguistics: ACL.

Young-Suk Lee, Ramon Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
Salim Roukos. 2020. Pushing the limits of amr pars-
ing with self-learning. In Findings of the Association
for Computational Linguistics: EMNLP 2020.

Young-Suk Lee, Ramón Astudillo, Hoang Thanh Lam,
Tahira Naseem, Radu Florian, and Salim Roukos.
2022. Maximum bayes smatch ensembel distilla-
tion for amr parsing. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5379–5392.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo Mendes, Sebastian Hell-
mann, Mohamed Morsey, Patrick Van Kleef, SÃ¶ren
Auer, and Christian Bizer. 2014. Dbpedia - a large-
scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, 6.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu.
2018. Knowledge base question answering via encod-
ing of complex query graphs. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2185–2194, Brussels,
Belgium. Association for Computational Linguistics.

Costas Mavromatis, Prasanna Lakkur Subramanyam,
Vassilis N. Ioannidis, Soji Adeshina, Phillip R.
Howard, Tetiana Grinberg, Nagib Hakim, and George
Karypis. 2021. Tempoqr: Temporal question reason-
ing over knowledge graphs.

Tahira Naseem, Srinivas Ravishankar, Nandana Mihin-
dukulasooriya, Ibrahim Abdelaziz, Young-Suk Lee,
Pavan Kapanipathi, Salim Roukos, Alfio Gliozzo,
and Alexander Gray. 2021. A semantics-aware trans-
former model of relation linking for knowledge base
question answering. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 256–262, Online. Association
for Computational Linguistics.

Sumit Neelam, Udit Sharma, Hima Karanam, Sha-
jith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz,
Nandana Mihindukulasooriya, Young-Suk Lee, San-
tosh K. Srivastava, Cezar Pendus, Saswati Dana, Di-
nesh Garg, Achille Fokoue, G. P. Shrivatsa Bhargav,
Dinesh Khandelwal, Srinivas Ravishankar, Sairam
Gurajada, Maria Chang, Rosario Uceda-Sosa, Salim
Roukos, Alexander G. Gray, Guilherme Lima, Ryan
Riegel, Francois P. S. Luus, and L. Venkata Sub-
ramaniam. 2022. A benchmark for generalizable
and interpretable temporal question answering over
knowledge bases. CoRR, abs/2201.05793.

Thomas Pellissier Tanon, Denny Vrandečić, Sebastian
Schaffert, Thomas Steiner, and Lydia Pintscher. 2016.
From freebase to wikidata: The great migration. In

Proceedings of the 25th International Conference
on World Wide Web, WWW ’16, page 1419–1428,
Republic and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784–789. Association
for Computational Linguistics.

Apoorv Saxena, Soumen Chakrabarti, and Partha P.
Talukdar. 2021. Question answering over temporal
knowledge graphs. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 6663–6676. Association for
Computational Linguistics.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4498–
4507, Online. Association for Computational Lin-
guistics.

Kuldeep Singh, Andreas Both, Arun Sethupat, and
Saeedeh Shekarpour. 2018. Frankenstein: a platform
enabling reuse of question answering components. In
European Semantic Web Conference, pages 624–638.
Springer.

Daniil Sorokin and Iryna Gurevych. 2018. Modeling se-
mantics with gated graph neural networks for knowl-
edge base question answering. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3306–3317. Association for Com-
putational Linguistics.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. Lc-quad: A corpus for
complex question answering over knowledge graphs.
In Proceedings of the 16th International Semantic
Web Conference (ISWC), pages 210–218. Springer.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bas-
tian Haarmann, Anastasia Krithara, Michael Röder,
and Giulio Napolitano. 2017. 7th open challenge on
question answering over linked data (QALD-7). In
Semantic Web Evaluation Challenge, pages 59–69.
Springer International Publishing.

Ricardo Usbeck, Michael Röder, Michael Hoff-
mann, Felix Conrads, Jonathan Huthmann, Axel-
Cyrille Ngonga Ngomo, Christian Demmler, and
Christina Unger. 2019. Benchmarking question an-
swering systems. Semantic Web, 10(2):293–304.

Svitlana Vakulenko, Javier Fernández, Axel Polleres,
Maarten de Rijke, and Michael Cochez. 2019. Mes-
sage passing for complex question answering over

3876

https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.18653/v1/D18-1242
https://doi.org/10.18653/v1/D18-1242
https://doi.org/10.48550/ARXIV.2112.05785
https://doi.org/10.48550/ARXIV.2112.05785
https://doi.org/10.18653/v1/2021.acl-short.34
https://doi.org/10.18653/v1/2021.acl-short.34
https://doi.org/10.18653/v1/2021.acl-short.34
http://arxiv.org/abs/2201.05793
http://arxiv.org/abs/2201.05793
http://arxiv.org/abs/2201.05793
https://doi.org/10.1145/2872427.2874809
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/2021.acl-long.520
https://doi.org/10.18653/v1/2021.acl-long.520
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
http://aclweb.org/anthology/C18-1280
http://aclweb.org/anthology/C18-1280
http://aclweb.org/anthology/C18-1280
https://svn.aksw.org/papers/2017/ESWC_2017_QALD/public.pdf
https://svn.aksw.org/papers/2017/ESWC_2017_QALD/public.pdf
https://doi.org/10.3233/SW-180312
https://doi.org/10.3233/SW-180312
https://doi.org/10.1145/3357384.3358026
https://doi.org/10.1145/3357384.3358026

knowledge graphs. In Proceedings of the 28th ACM
International Conference on Information and Knowl-
edge Management (CIKM2019, pages 1431–1440,
Beijing, China. ACM.

Ellen M. Voorhees. 2000. Overview of the TREC-
9 question answering track. In Proceedings of
The Ninth Text REtrieval Conference, TREC 2000,
Gaithersburg, Maryland, USA, November 13-16,
2000, volume 500-249 of NIST Special Publica-
tion. National Institute of Standards and Technology
(NIST).

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
EMNLP, pages 6397–6407.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
Maya Ramanath, Volker Tresp, and Gerhard Weikum.
2012. Natural language questions for the web of
data. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
EMNLP-CoNLL ’12, page 379–390, USA. Associa-
tion for Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Luke S. Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
CoRR, abs/1207.1420.

Jiawei Zhou, Tahira Naseem, Ramon Fernan-
dez Astudillo, and Radu Florian. 2021.
Amr parsing with action-pointer transformer.
https://arxiv.org/abs/2104.14674.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu,
Wenqiang He, and Dongyan Zhao. 2014. Natural
language question answering over rdf: A graph data
driven approach. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’14, page 313–324, New York,
NY, USA. Association for Computing Machinery.

A Appendix

A.1 AMR to Lambda Translation
Table 11 shows the translation rules for transform-
ing AMR frames (high level) into corresponding λ-
expressions. Type denotes where the rule is applied.
We have shown four different types of reasoning
used in the SYGMA. More such transformations
can be added to support additional reasoning types.

These templates rely on the AMR constructs to
derive the required reasoning functions.

• Base Templates: These transformations
capture general multi-hop question mean-
ing in terms of conjunction of different
predicates coming from the AMR graph.
These also include simple projection of vari-
ables that question is expecting to output or
boolean(true/false) output in case of boolean
questions. Second base rule gives an example
of simple projection based on amr-unknown.
If there are no amr-unknown variables then
the question becomes boolean question and
its return type is decided as true/false.

• Numerical Templates: These transforma-
tions capture all the numerical reasoning that
is supported by the system. This category in-
cludes simple count questions, min/max or
argmin/argmax or comparative questions. We
use the AMR modifiers or the frames like
have-degree-91 to derive the required numeri-
cal reasoning to be performed for these type
of questions. For example AMR’s quant mod-
ifier for the unknown variable results in count
operator in λ-expression, which gets trans-
lated to SPARQL count question later in the
pipeline. Following are example questions for
numerical reasoning:

count: How many languages are
spoken in Turkmenistan?

min/max: When did Romney first
run for president?

argmin/argmax: What is the highest
mountain in Italy?

comparative: Is Lake Baikal bigger
than the Great Bear
Lake?

• Temporal Templates: These are the Transfor-
mations that capture the temporal constraints
coming in the question. We rely on AMRs
temporal constructs like time/date-entity etc.
to decide if a question needs any temporal rea-
soning. Depending on additional constraints
on the time edge like before/after/ordinal, we
decide on the kind of reasoning to be per-
formed. In the Table 11, we described all
the temporal constructs that we encountered
while working on the TempQA-WD dataset.

3877

https://doi.org/10.1145/3357384.3358026
http://trec.nist.gov/pubs/trec9/papers/qa_overview.pdf
http://trec.nist.gov/pubs/trec9/papers/qa_overview.pdf
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
http://arxiv.org/abs/1207.1420
http://arxiv.org/abs/1207.1420
http://arxiv.org/abs/1207.1420
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525

Type AMR A = (v/frame . . .) Lambda Expression L = ψ(v)

Base (v/frame :arg0(v0/frame0) . . . :argn(vn/framen)) frame(v, v0, . . . vn) ∧ ψ(v0) ∧ . . . ∧ ψ(vn)
Base (v/frame :arg1(a/amr-unknown) . . . :argn(vn/framen)) λa. ψ(v)

Numerical (v/frame :arg0(v0/frame0 :quant(a/amr-unknown)) . . .
:argn(vn/framen)) count(λv0. ψ(v))

Numerical (v/frame :arg0(a/amr-unknown) ... :argn(vn/framen)
:mod(f/first)) min(λa. ψ(v), 0, 1)

Numerical (v/frame :arg0(a/amr-unknown) ... :argn(vn/framen)
:mod(f/last)) max(λa. ψ(v), 0, 1)

Numerical (v/frame :arg0(v0/frame0:mod(a/amr-unknown)) . . . :argn
(vn/frame :arg1-of(h2/have-quant-91 :arg3(l/most)))) argmax(λv0. ψ(v), λv0. λvn. ψ(vn), 0, 1)

Numerical (v/frame :arg0(v0/frame0:mod(a/amr-unknown)) . . . :argn
(vn/frame :arg1-of(h2/have-quant-91 :arg3(l/least)))) argmin(λv0. ψ(v), λv0. λvn. ψ(vn), 0, 1)

Numerical
(v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen :arg1-of
(h2/have-degree-91 :arg3(m/more) :arg4(vm/framem
:arg1-of(n/nested-frame))))

λa. ψ(v) ∧ ψ(n) ∧ cmp(vn, vm, >)

Numerical
(v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen :arg1-of
(h2/have-degree-91 :arg3(m/less) :arg4(vm/framem
:arg1-of(n/nested-frame))))

λa. ψ(v) ∧ ψ(n) ∧ cmp(vn, vm, <)

Temporal (v/frame :arg0(v0/frame0) . . . :argn(vn/framen)
:time(a/amr-unknown)) λev. ψ(v) ∧ interval(ev, v)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(b/before :op1(n/nested-frame)))

argmax(λa. ψ(v) , λa. λev. ψ(n) ∧ interval(ev, v)
∧ interval(en, n) ∧ before(ev, en), 0, 1)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(a/after :op1(n/nested-frame)))

argmin(λa. ψ(v) , λa. λev. ψ(n) ∧ interval(ev, v)
∧ interval(en, n) ∧ after(ev, en), 0, 1)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(n/nested-frame))

λa. ψ(v) ∧ ψ(n) ∧ interval(ev, v) ∧ interval(en, n)
∧ overlap(ev, en)

Temporal (v/frame :arg0(a/amr-unknown) :argn(vn/framen)
:ord(o/ordinal-entity :value x)) argmin(λa. ψ(v) , λa. λev. interval(ev, v), x+1, 1)

Temporal (v/frame :arg0(a/amr-unknown) :argn(vn/framen)
:ord(o/ordinal-entity :value -1)) argmax(λa. ψ(v) , λa. λev. interval(ev, v), 0, 1)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(n/now))

λa. ψ(v) ∧ interval(ev, v) ∧ interval(en, now())
∧ overlap(ev, en)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(d/date-entity :month mm :day dd :year yyyy))

λa. ψ(v) ∧ interval(en, date(“dd-mm-yyyy”))
∧ interval(ev, v) ∧ overlap(ev, en)

Temporal (v/frame :arg0(a/amr-unknown) . . . :argn(vn/framen)
:time(t/teenager :domain(n/nested-frame)))

λa. ψ(v) ∧ interval(ev, v) ∧ teenager(en, n)
∧ overlap(ev, en)

Spatial (b/be-located-at-91 :arg0(a/amr-unknown),
:mod(s/south) :op1(n/nested-frame))

λa. ψ(b)∧ ψ(n) ∧ coordinate(cb, b) ∧ coordinate(cn, n)
∧ south(cb, cn)

Table 11: AMR to KB-agnostic λ-expression Translation Rules (full rules)

Since we saw teenager being very promi-
nent construct in many question, we explic-
itly added a this as a function to support that
reasoning type. We also use synonyms like
prior/precedes etc. to be treated similar to be-
fore temporal reasoning construct present in
the table. These synonyms are captured as
part of the KB-Agnostic Transformation mod-
ule. Below are different examples of temporal
questions:

overlap: Who was the US president
during the cold war?

before/after: Who was London mayor be-
fore Boris Johnson?

ordinal: Who was the first host of
the tonight show?

• Spatial Templates: We have added a sin-

gle template only to show how special kind
of spatial reasoning queries like north of/
above a certain region or south of /below
a certain region can be extended into our
current framework. Please note that current
SYGMA doesn’t support any of these con-
structs, but can be easily extended in future.

A.2 KB Specific Lambda to SPARQL
translation

Each KB-specific λ-expression construct is
mapped to an equivalent SPARQL construct, as
templates given in Table 12. λ-expressions in our
setup can be broadly grouped into 6 categories:
λ abstraction, argmin, argmax, min, max and,
count expression. Table 12 gives mapping for
each of them. λ abstraction template takes care
of simple multi-hop rules and projection scenar-

3878

Type Expression/Predicate E SPARQL S = ϕ(E)

λ abstraction λx.T SELECT DISTINCT ?x WHERE { ϕ(T) }
Count expression count(λx.T) SELECT (COUNT(?x) AS ?c) WHERE { ϕ(T) }

Argmin expression argmin(λx.T1, λx.λy. T2, O, L) SELECT DISTINCT ?x WHERE { ϕ(T1) ϕ(T2)
} ORDER BY ?y LIMIT L OFFSET O

Argmax expression argmax(λx.T1, λx.λy. T2, O, L) SELECT DISTINCT ?x WHERE { ϕ(T1) ϕ(T2)
} ORDER BY DESC(?y) LIMIT L OFFSET O

Min expression min(λx.T, O, L) SELECT DISTINCT ?x WHERE { ϕ(T)
} ORDER BY (?x) LIMIT L OFFSET O

Max expression max(λx.T, O, L) SELECT DISTINCT ?x WHERE { ϕ(T)
} ORDER BY DESC(?x) LIMIT L OFFSET O

KB Predicate <pred_iri>(i, s/<s_iri>, o/<o_iri>) ?s/<s_iri> <pred_iri> ?o/<o_iri>.
Interval predicate
for reified facts

wdt:PID(i, s/<s_iri>, o/<o_iri>)
∧ interval(e, i)

?s/<s_iri> p:PID ?x. ?x ps:PID ?o/<o_iri>.
?x pq:P580 ?estart. ?x pq:P582 ?eend.

Interval predicate
for non-reified facts

wdt:PID(i, s/<s_iri>, x)
∧ interval(e, i)

?s/<s_iri> wdt:PID ?x.
BIND (?x AS ?estart) BIND (?x AS ?eend)

Now predicate now(e) BIND (now() AS ?estart) BIND (now() AS ?eend)
Overlap predicate overlap(e1, e2) FILTER(?e1start <= ?e2end && ?e2start <= ?e1end)
Before predicate before(e1, e2) FILTER(?e1end <= ?e2start)
After predicate after(e1, e2) FILTER(?e1start >= ?e2end)

Table 12: KB-Specific λ-expression to SPARQL Translation Rules (full rules)

ios while translating to SPARQL. Next set of tem-
plates like min/max/argmin/argmax/count provide
the base numerical reasoning capabilities. These
constructs can be clubbed with other types of rea-
soning. For example, temporal before/after utilize
argmax/argmin on date attribute to get the desired
effect of sorting and picking the desired entity.

λ-expression contains one or more terms such
that each term Ti is comprised of one or more predi-
cates connected via ∧ or ∨. Translation of different
predicates is also present in Table 12. Predicates
used in λ-expression can be broadly categorized
into KB predicate, interval predicate, and temporal
predicate. KB predicate is directly mapped to triple
pattern in SPARQL, whereas the interval predi-
cates create an interval consisting of start time and
end time for a given event. Table 12 has Wikidata
specific rules which can be used for constructing in-
tervals. start time(P580), end time(P582) or point
in time(P585), in the reified events case, are used
for creating the interval. For non-reified events
other temporal properties connected with the en-
tities are used for getting the interval. Teenager
predicate and now make use of date of birth(P569)
and current time(now()) respectively for creating
the interval. Each of the Wikidata specific rules
can be mapped to target KB accordingly. Tempo-
ral predicates include overlap, before, and after
which make use of SPARQL FILTER condition to

filter out the intervals that do not fall under given
conditions.

3879

