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Abstract

We seek to semantically describe a set of im-
ages, capturing both the attributes of single im-
ages and the variations within the set. Our
procedure is analogous to Principle Compo-
nent Analysis, in which the role of projec-
tion vectors is replaced with generated phrases.
First, a centroid phrase that has the largest av-
erage semantic similarity to the images in the
set is generated, where both the computation
of the similarity and the generation are based
on pretrained vision-language models. Then,
the phrase that generates the highest variation
among the similarity scores is generated, us-
ing the same models. The next phrase max-
imizes the variance subject to being orthogo-
nal, in the latent space, to the highest-variance
phrase, and the process continues. Our exper-
iments show that our method is able to con-
vincingly capture the essence of image sets
and describe the individual elements in a se-
mantically meaningful way within the context
of the entire set. Our code is available at:
https://github.com/OdedH/textual-pca.

1 Introduction

Given a set of images with a common theme, it
seems to be extremely easy for humans to identify
and describe the common theme. While computer
algorithms can identify in-set and out-of-set images
using anomaly detection methods (Schölkopf et al.,
1999; Golan and El-Yaniv, 2018), describing the
common theme seems more challenging.

Captioning methods (Mao et al., 2014; Li et al.,
2020; Tewel et al., 2022b; Li et al., 2022) are ex-
tremely effective in describing single images. How-
ever, one cannot directly employ such a method
to the mean image representation, in hope of de-
scribing a set of images. Since image captioning
engines are trained to be specific and not to provide
general terms, the resulting captions would not be
generic enough. For example, images of people are
described by image captioning methods as “man”,

“woman”, “child”, etc., and not by generic terms,
such as “person”. To create a representation of an
image set, one has to employ higher-level themes.
Unable to do so, image captioning methods output
non-grammatical phrases, which include, for exam-
ple, phrases such as “cat dog” for sets that contain
both pet species.

Our first contribution is to retool the BLIP (Li
et al., 2022) image captioning tool to perform
the task of image-set captioning. This is done
through modifying the autoregressive process of
BLIP without retraining the underlying network.
WordNet (Miller, 1995) is used to manipulate the
likelihood of words by reducing the likelihood of
hyponyms (specific terms) and increasing the like-
lihood of shared hypernyms (more generic terms).

Once a common theme is generated for the im-
age set, we seek to identify the directions of varia-
tion within the set. This way, we can position the
set elements in the context of the entire set. For
example, staying with the example of images of
persons, the images can vary by pose, age, hair
style, facial expression, etc.

Motivated by the PCA method, we seek to find
the phrase whose visual-language similarity to the
images of the set has the highest variance. Then,
once again following PCA, we recover a phrase
that maximizes the variance among all phrases that
are orthogonal to the first phrase in the textual em-
bedding space.

Our second contribution is, therefore, the ability
to extract different phrases that capture directions
of semantic variability in the image set. This is also
done by retooling BLIP. In this case, the likelihood
of the next token combines three terms: (i) the like-
lihood assigned by BLIP, (ii) a term that maximizes
the variance of the similarity between the resulting
phrase and the images of the input set, and (iii)
an orthogonality term that distances the generated
phrase from the previously found phrases.

Our textual PCA method seems to be highly
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Stanford CarsLSUN - BridgeCelebA

Average sentence: Image of a car parked  
Principal sentence:  ['suv', 'front', 'luxury',
'silver', 'black', 'red', 'used motor']

Average sentence: Image of a bridge view  
Principal sentence:  ['river', 'suspension']

Average sentence: Image of a adult person  
Principal sentence:  ['woman young', 'actress
hair', 'man smiling', 'woman blond', 'woman
actress', 'woman hair', 'woman posing’] 

Figure 1: Examples of our textual PCA. For each dataset, we present an average phrase that describes the image set
and the principal phrases, i.e., phrases that maximize the variance of the image-to-text matching score subject to
being mutually orthogonal in the embedding space.

suitable for describing sets of images in an intu-
itive way that combines the general theme with the
modes of variation. Consider, for example, Fig. 1.
The average phrase clearly depicts that CelebA is
a dataset featuring images of adult persons or that
LSUN-Bridge contains images of bridges. From
the principal phrases we can learn about the traits
of the dataset. For example, hair varies consid-
erably in CelebA, and the LSUN-Bridge images
differ mainly in the type of the bridge (suspension)
or whether it crosses a river.

We evaluate our method on multiple datasets,
including existing image datasets, such as CelebA,
LSUN, and ImageNet, and on sets of images ob-
tained by applying clustering methods to large im-
age collections. We also show that the obtained
projections are more informative than the base-
lines in predicting attributes in CelebA. Finally,
in lineup-type experiments, we show that the pro-
jections we create provide enough information for
users to identify the images out of the set.

2 Related work

Some of the earliest deep learning attempts in im-
age captioning relied on RNNs with attention (Mao
et al., 2014; Klein et al., 2014; Xu et al., 2015),
while more recent approaches apply spatial rea-
soning via graphs (Yao et al., 2018; Kipf and
Welling, 2017), adapt to multi-image process-
ing (Braude et al., 2022), and handle multi-modal
input (Schwartz et al., 2019). Annotations by hu-
mans are used to train most of the current cap-
tioning methods. As human references cannot ac-
count for every possible scene, other approaches
rely more on web-scale unsupervised image-text
datasets (Zhang et al., 2021; Devlin et al., 2018; Li

et al., 2020). In these approaches, smaller datasets
annotated by humans are used as final fine-tuning.
Captions based on human annotations can enhance
correspondence with human annotators. There is,
however, a tendency for them to be repetitive and
not particularly informative.

Recently, several methods that employ web-scale
training data directly have been suggested. The first
method, ZeroCap, employs CLIP (Radford et al.,
2021), a prominent web-scale image-text matching
model, to guide a pre-trained language model, GPT-
2, to caption images (Tewel et al., 2022b,a) without
performing any training (“zero-shot”). MAGIC (Su
et al., 2022), is another zero-shot method for image
captioning that skews the next-token distribution
of a GPT-2 language model to match a given im-
age, based on the CLIP score. Unlike ZeroCap,
no gradient updates are applied. BLIP (Li et al.,
2022) applies conventional training (not zero-shot)
and jointly learns an image-text metric with a con-
trastive loss and a caption decoder head.

Also relevant to our work are causality frame-
works that study concept discovery, such as
TCAV (Kim et al., 2018) and CaCE (Goyal et al.,
2019). By intervening on labeled concepts, these
approaches study causal effects. However, they
require labeled data. Although expertise can be
acquired to identify the underlying structure of a
problem, the process is still contaminated by hu-
man bias. In contrast to these approaches, ours
does not require supervision.

The discovery of visual concepts is also a sub-
ject of research. An intuitive approach involves
clustering according to segmented regions (Ghor-
bani et al., 2019). A Shapley theorem-inspired
method is described in subsequent work (Yeh et al.,
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Figure 2: An overview of our approach to generate principal phrases by modifying BLIP’s caption head. The first
step is to create an average phrase, ’car parked’ that captures the common features of the set of images I. Then,
during the auto-regression process, we consider two types of operators: (i) V for maximizing the variance over the
images, and (ii) O for generating phrases that are orthogonal to the previous phrases (e.g., ‘suv’, ‘red’). The result is
a novel phrase ‘luxury’ that describes the car’s pricing.

2019). In a StyleGAN model, latent variables that
control the semantic properties of images are dis-
entangled (Karras et al., 2019). Consequently, a
disentangled StyleSpace was proposed for finding
the attributes that determine classification (Lang
et al., 2021). Variational auto-encoders can also be
used to reveal concepts used to predict classes (Gat
et al., 2021). These methods involve finding visual
concepts, whereas our approach involves finding
textual concepts that describe visual content. This
shift is not trivial; in existing works, the meaning
of each direction is assigned by human observers,
based on manually inspecting samples, and not all
directions can be easily described.

3 Method

Our approach is analogous to Principal Component
Analysis (PCA), in which the projection directions
are replaced by generated phrases, Fig. 2. PCA
identifies the vectors that best fit the data, in terms
of Euclidean distance between each data point and
its reconstructed vector. It can be equivalently de-
fined as finding directions that maximize the vari-
ance of the projected data. The principal vectors
are, therefore, directions in which data varies, mak-
ing them informative. This makes them highly use-
ful for data analyses and dimensionality reduction.
These vectors are extracted as mutually orthogonal
vectors, in order to capture different directions, and
for the projections to span the entire data set.

While PCA can be applied to embedded image
vectors, we find that it lacks semantic meaning.
In this work, we propose Textual-PCA. Formally,

our goal is to create a average phrase s0 and a
sequence of principal phrases Sl = ⟨s1, . . . sl⟩,
where l is the number of principal phrases. The
phrases are aimed to be a concise set that describes
a set of images I = {x1, . . . , xn}, where n is the
number of images. The phrase s0 captures common
traits in I, and the rest capture different modes of
variability. In the following sections we discuss
how we find fluent principal phrases.

A principal phrase is created by finding a textual
direction that captures semantic variance within an
image set. Throughout our process, we employ the
multi-modal BLIP model (Li et al., 2022), which
provides textual and image encoders (ET and EI ,
respectively), an image-text metric (BLIPM), and
a captioning head (BLIPC).

Given the set of images I, we start the process
with the generation of the average phrase s0. This
phrase captures the common attributes of all images
in the set. As the first step of generating the average
phrase, we average the image representations, x̄ =
1
n

∑
xi∈I EI(xi). We then use x̄ to initialize the

auto-regressive BLIP’s captioning head,

s0t+1 = BLIPC(s
0
t , x̄) , (1)

where s0t is the average phrase of length t.

3.1 Generating the average phrase
In the average phrase, we aim for the most generic
attributes. For instance, we prefer to increase the
potential of the “church” token over the more spe-
cific “cathedral” token, if both of them are top
tokens. However, image captioning models are
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trained on specific captions, and, as a result, tend
to be very specific.

We, therefore, intervene in the BLIP auto-
regressive generation process by manipulating the
likelihood of each token. Based on the WordNet
graph (Miller, 1995), we aggregate specific terms
that have similar meanings into more general terms.

Our algorithm only considers the top 12 most
probable tokens and zero out the rest. This value
was determined early in the development process
and kept unmodified to obtain all results. Caption-
ing models tend to describe items at a certain level
dictated by the training data, i.e., use ‘cat’ and not
‘mammal’ or ‘Persian cat.’ This is probably dic-
tated by the basic level at which items are often
perceived (Rosch et al., 1976). Since the replace-
ment method relies on tokens in the top-tokens list,
the average sentence is more specific (e.g., ‘cat’
and not ‘mammal’). We then iterate across all can-
didate tokens in the order of their likelihood.

For each candidate token t, we consider, among
all other tokens, the set A1 that contains tokens r
such that r is an immediate “is-a” ancestor of t (a
direct hypernym). In this set, we consider the token
r with the higher probability, and add the probabil-
ity assigned to t to the probability associated with
r, while zeroing the probability of t.

If the set A1 is empty, we consider the set A2

that contains tokens r that are direct hyponyms of
t. We add the probabilities of all r ∈ A2 to that of
t, and zero the probabilities of these hyponyms.

Finally, if set A2 is also empty, we consider the
set A3 that contains all tokens r among the tokens
such that t and r have a shared direct hyponym
q. Among the set A3, we select token r with the
highest probability and add token q to the set of
candidate tokens with a probability that sums the
probabilities of both t and r. The probabilities of
these two tokens are then zeroed.

Two concrete examples, based on real images
are: (i) the token t=‘sofa’. A1 and A2 are empty.
Two other probable words in A3={‘chair’, ‘bench’}
share the same hypernym q=‘seat’. The proba-
bility of r=‘chair’ is higher than ’bench’, we up-
date prob(q) = prob(r) + prob(t), prob(r) =
prob(t) = 0, where prob is the likelihood of the
given token. (ii) Another example for the word
t=’salad’, A1={‘dish’}, which is the immediate
hypernym of t. A3={‘pasta’, ‘soup’, ‘curry’...}
those words share the same hypernym ‘dish’ and
are probable tokens. In this scenario, the prob-

ability of the token t=‘salad’ would add to the
likelihood of the token r=‘dish’ from A1, i.e.,
prob(r) = prob(r) + prob(t), and prob(t) = 0.

3.2 Generating the principal phrases
The next principal phrases, which capture variance,
are also generated with the BLIPC auto-regressive
process. We initialize the captioning head again
with x̄. During the auto-regressive process, we
modify the next token potentials with two terms:
(i) V, which maximizes the variance of the gener-
ated phrase with the images, and (ii) O, which is
responsible for maximizing orthogonality with the
previous phrases (WordNet is not used).

Let p̂it,k be the potential of the i-th principle
phrase of length t, t − 1 of which were already
set, to have token k at position t,

p̂it,k ∝ exp(pit,k+λv V(sit,k, I)−λoO(sit,k, S
i−1)),

where pit,k is the original distribution of BLIP’s
captioning head, and sit,k is the i-th principle phrase
after t−1 steps, with token k at location t. λv, λo ∈
R are hyperparameters. We compute p̂it,k only for
the 1000 most likely tokens (those with the highest
pit,k), since the potential of the remaining tokens is
usually close to zero.

We define the variance operator V as the sum of
the BLIP’s matching scores between the token sit,k
and an image in the set x ∈ I minus the average
BLIP’s matching score, i.e.,

V
(
sit,k, I

)
=

∑

x∈I
(BLIPM(sit,k, x)− µ(sit,k))

2,

where µ(sit,k) = 1
n

∑
x∈I BLIPM(sit,k, x), and

BLIPM is a BLIP’s matching score. Prior to calcu-
lating this matching score, we subtract the embed-
ding of the average phrase s0 from the generated
phrase embedding.

The orthogonality term O serves to emphasize
novel phrases that encapsulate the broad set of fac-
tors that define an image set, by encouraging or-
thogonality between the current phrase potential
and all previous phrases in BLIP’s phrase embed-
ding space

O
(
sit,k,Si−1

)
=

∑

sj∈Si−1

ET (s
i
t,k)

⊤ET (s
j), (2)

where ET is BLIP’s textual encoder. This way, the
principle components do not repeat the description
of the set, despite conditioning the generator on the
same mean vector x̄.

3814



avg sentence: animal
principal sentence: ['zebra', 'horse
herd', 'rocky fence', 'brown', 'standing
wildlife', 'zoo horse']

avg sentence: kitten cat
principal sentence: ['kitty', 'dog
sitting', 'dog', 'sleeping', 'cats']

avg sentence: kitten cat
principal sentence: ['kitty', 'sleeping']

800 clusters80 clusters4 clusters

Figure 3: Hierarchical clustering of COCO at different granularity levels. As the clusters get smaller, i.e., with more
clusters, they become more homogenous and the principal phrases become more specific.

Method Named Datasets COCO ImageNet
Most Frequent Words 0.808 ± 0.14 0.835 ± 0.37 0.636 ± 0.16
ZeroCap+PCA (CLIP space) 1.068 ± 0.43 0.885 ± 0.80 0.676 ± 0.30
ZeroCap+KMeans (CLIP space) 1.128 ± 0.47 1.077 ± 1.49 0.586 ± 0.33
MAGIC+PCA (CLIP space) 1.035 ± 0.34 0.891 ± 0.78 0.666 ± 0.26
MAGIC+KMeans (CLIP space) 1.270 ± 0.56 1.049 ± 1.14 0.685 ± 0.36
ZeroCap+PCA (BLIP space) 1.290 ± 0.40 1.001 ± 0.89 0.992 ± 0.33
ZeroCap+KMeans (BLIP space) 1.225 ± 1.13 1.225 ± 1.32 0.712 ± 0.27
MAGIC+PCA (BLIP space) 1.128 ± 0.19 1.004 ± 0.91 0.744 ± 0.31
MAGIC+KMeans (BLIP space) 1.073 ± 0.4 1.051 ± 1.02 0.706 ± 0.43
Ours 1.515 ± 0.65 1.261 ± 1.56 1.095 ± 0.47

Table 1: Variance in the BLIP space, averaged, per image, across all principle phrases. Shown are the mean±
Standard Deviation in each group of image sets.

4 Results

In all experiments, we set the hyperparameter λv =
5 and λo = 10. These values were determined early
on in the development process and kept unmodified
for obtaining all results.

Evaluation is done on datasets covering a vari-
ety of objects and settings (i.e., Named Datasets).
CelebA (Yang et al., 2015) is a large-scale dataset
of faces. LSUN (Yu et al., 2015) contains ten differ-
ent scene categories, from which we use the images
of bridges, churches, and kitchens. The Stanford
cars dataset contains different types of vehicles.

The first 20 categories of ImageNet (Deng et al.,
2009) were also used.

We also employ sets that were obtained by hier-
archically clustering COCO (Lin et al., 2014) with
an agglomerative algorithm in the CLIP embedding
space. We cluster until we obtain 80 clusters. This
number was selected since there is a small hinge
around 80 in the graph depicting the number of

clusters vs. the clustering error. Second, with 80
clusters, large enough clusters are starting to form.
Fig. 3 demonstrates the level of specificity obtained
for three levels of clustering. With 4 clusters, one
can see a cluster of animals; with 80 clusters, a clus-
ter of cats exists, and with 800 clusters, a subset of
the cats with less variation is obtained. Notably, to
describe datasets with varying themes, clustering
as a first step is a practical technique.

For computational efficiency, from large datasets,
such as CelebA or LSUN and some COCO clusters,
we sampled 500 images (each) as the working set.
baselines Our baselines consider sets of vectors
in the embedding space of BLIP and then transcribe
these into phrases. The sets of vectors are obtained
by one of two methods, which are applied to the
set of all embedding vectors extracted, using the
image encoder, for a given set of images.

The first method is PCA, which uses Singular
Value Decomposition, and the second method is co-
sine k-means clustering, which was selected since
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COCO - Horses LSUN - ChurchCOCO - Baseball

Ours: average: Image of a church
principal sentence:  [cathedral',
'old stone', 'view', 'clock', 'steep
buildings', 'outside view', 'old']
ZeroCap+PCA:['confederate',
'westminster crash', 'new moscow
sunset', 'swiss countryside', 'river',
'paris', 'cell']
ZeroCap+Kmean: ['woman',
'cathedral', 'church'] 
Magic+Kmeans: ['people looking',
'view', 'street'] 
Magic+PCA: ['view', 'white', 'old',
'table', 'brown', 'men hold', 'many
airplanes'] 

Ours: average: Image of a horse
stable  
principal sentence:  ['horses',
'riding', 'jockey', 'saddle']  
ZeroCap+PCA:  ['ponies',
'belgian', 'palestinian', 'male',
'forest', 'conference']
ZeroCap+Kmean:  ['horse', 'new
horse']  
Magic+Kmeans: ['men running',
'someone using', 'large', 'woman
riding', 'someone riding'] 
Magic+PCA: ['woman riding', 'men
running', 'people holding', 'person
jumping', 'man running', 'white
flowers', 'men walking'] 

Ours: average: Image of a batter
position   
principal sentence:  ['baseball',
'first baseball', 'major baseball',
'pitcher baseball', 'home', 'baseball
catcher'] 
ZeroCap+PCA: ['crossbow',
'stadium', 'car', 'night', 'night
chicago', 'red white', 'red']
ZeroCap+Kmean: ['baseball',
'player hitting'] 
Magic+Kmeans: ['person
swinging', 'man throwing', 'man
swinging', 'person playing'] 
Magic+PCA: ['men sitting', 'group
sitting', 'people walk', 'woman
lying', 'woman', 'men preparing',
'two children']

COCO - Street

Ours: average: Image of a people
pedestrian
principal sentence:  [umbrella',
'sitting', 'street city', 'man walking',
'umbrella street', 'street sidewalk'] 
ZeroCap+PCA: ['man', 'storm',
'pilot', 'feminist', 'family', 'bus']
ZeroCap+Kmean: ['rain', 'person',
'pedestrian'] 
Magic+Kmeans: ['walking', 'man',
'laying', 'men outside', 'man
walking', 'people sit']
Magic+PCA: ['men sitting', 'group
sitting', 'people walk', 'woman
lying', 'woman', 'men preparing',
'two children'] 

Figure 4: Four image sets: COCO-horses, COCO-baseball, and COCO-Street (names were assigned by us) obtained
by clustering COCO, a large visual dataset, and LSUN-Church. For each image set we present the average phrase and
principal phrases generated by our method (underlined). For comparison, we present four baselines: ZeroCap+PCA,
ZeroCap+KMeans, MAGIC+PCA, and MAGIC+KMeans, obtained in BLIP space.

embedding methods have a norm of one. In the
case of k-means, the centroids of each cluster are
used as the extracted components.

Note that K-means and PCA are related with
relaxation assumptions (Zha et al., 2001).

Turning these sets of principle vectors into
phrases is done through either the ZeroCap
method (Tewel et al., 2022b) or using MAGIC (Su
et al., 2022). Since our method operates in the
BLIP encoding space, we created a version of both
ZeroCap and MAGIC that are BLIP-based. The re-
sults of the unmodified baselines when using CLIP
embedding space are also presented.

We also attempted to use BLIP’s captioning head
to generate text from the principal vectors. How-
ever, despite considerable effort, the generation
collapsed into the model’s default caption. This is
most likely due to the sensitivity of the captioning
head to distribution changes, i.e., the distribution
of PCA vectors differs considerably from the en-
coding of single images that BLIP was trained on.

We further evaluate a naive baseline of most fre-
quent words. We used BLIP captioning head to gen-
erate captions for the images in the set. Then, we
created phrases based on the most frequent words.

Method CLIP space BLIP space
ZeroCap+PCA 0.840 0.846
ZeroCap+KMeans 0.813 0.823
MAGIC+PCA 0.849 0.840
MAGIC+KMeans 0.852 0.829
Ours 0.858 0.862

Table 2: Test accuracy scores for predicting annotated
attributes of CelebA dataset, using a simple MLP over
the projected values (similarities between the principle
phrases and the image).

Quantitative Results
Given a set of principal phrases S, and a set of

images I, the variability score measures

|S|−1|I|−1
∑

s∈S

∑

x∈I
(ET (s)

⊤EI(x)− µs)
2, (3)

where µs = |I|−1
∑

x∈I(ET (s)
⊤EI(x)).

The results are presented in Tab. 1. We find
that our approach outperforms all baselines. Note
that since PCA in the embedding space maximizes
the variance there, any variance lost is a result of
translating the principal directions into coherent
phrases and back into BLIP space vectors.
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Stanford Cars CelebA LSUN - Church LSUN - Kitchen

red

black

silver

suv
luxury

front

used
motor

woman
actress

woman hair
woman
posing

woman
young

woman
blond

man smiling
actress hair

steep buildings
view

clock

outside
view

old stone
old

cathedral

island

modern

galley

white

Figure 5: Sample radar plots, in which the value of the projection to the principle phrases are depicted. In blue we
show positive correlation and in red negative correlation.

In addition to measuring variance, we also ask to
test to what extent principal phrases capture natural
traits of the dataset. To this aim, we use the CelebA
dataset, a dataset of portrait images of celebrities,
since attribute labels for it are available. In CelebA,
40 facial traits are annotated (e.g. hair color, eye-
glasses). These are attributes containing semantic
information that is not explicitly exposed at the
phrase generation stage.

We consider the generated principal phrases Sm

for each method m, and embed those phrases back
into BLIP, i.e., for each s ∈ Sm, we compute
ET (s). Similarly to PCA, we project each image
x of the image set I by computing ET (s)

⊤EI(x).
Aggregating over all s ∈ Sm, we represent each
image x as one vector for each method m. Using
basic MLPs with one hidden layer, we then predict
the CelebA datasets attributes from these vectors.

Prediction accuracy on the CelebA test set is re-
ported in Tab. 2. Evidently, our approach achieves
a higher test accuracy score than all baselines.
Qualitative results Sample results for our
method can be found in Fig. 1,3. The baselines are
not shown, but they are not competitive. Fig. 4 pro-
vides our results for additional datasets, as well as
those of the baseline methods. Comparing the most
frequent words baseline on the Cars dataset, our
method (variance score of 0.963) extracts: ’suv’,
’front’, ’luxury’, ’silver’, ’black’, ’red’, ’used mo-
tor’. Most frequent words (variance score of 0.643)
extracts: ’parked’, ’car’, ’front’, ’lot’, ’parking’,
’black’, ’red’. Shown are the results on COCO
clusters, which are less homogenous than human-
created datasets, as well as on the LSUN-Church
dataset. Evidently, the average phrase and the prin-

cipal phrases produced by our method are related
to the theme of the dataset.

Our method extracts multiple relevant attributes.
It characterized Churches by structural attributes,
such as having a clock or steeple, by their age, or by
purpose (the cathedrals attribute). Interestingly, in
the horse-related cluster, there is a quantity-related
term, horses. In COCO-Baseball the phrases refer
to the role of the person (‘baseball pitcher’, ‘base-
ball catcher’) the league (‘major baseball’) and the
location (‘first baseball’ or ‘home’).

The baselines ZeroCap+KMeans and
MAGIC+KMeans give a very general de-
scription that is similar to an average phrase,
while ZeroCap+PCA and MAGIC+PCA return
phrases that are not related to the image set.
For example, in COCO-horses, ZeroCap+PCA
produces ‘conference’ as a principal phrase and
MAGIC+PCA ‘white flowers’.

For COCO-Street, all methods identify that
many images present a rainy scene and most re-
late to ‘street’ or ’pedestrian’. The baselines give
a more general description of the set, while our
method extracts the specific modes of variation.
For example, instead of the general term ‘rainy’,
we note if an ‘umbrella’ is present in the photo.
User study To evaluate the usefulness of the
principal phrases in describing images in the con-
text of their image set, we conduct a user study in
the form of a lineup. For this, we employ a novel
radar plot, which marks both positive and negative
projections onto the principal phrases, see Fig. 5.

Each user is given a series of radar plots created
by the various methods. For each radar plot, the
user is asked to select the matching image out of
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Answered Of those answered

Method Correct Incorrect

ZeroCap+PCA 0.25 0.33 0.67
MAGIC+PCA 0.63 0.07 0.93
Ours 0.98 0.83 0.17

Table 3: Lineup results for matching radar plots with
images. Users could decide not to make a choice. The
1st numerical column contains the ratio of questions that
the users chose to answer. The other columns depict the
success rate out of the answered queries.

Image 1 Image 2 Image 3 Image 4 I don't know

The following radar plot corresponds to which image?

Observe the following Images:

Figure 6: An example query from the lineup user study.

four options, or to check the option “I cannot tell”,
see Fig. 6. The n = 20 users were first trained
using sample radar plots created manually.

We compare our method to the two strongest
baselines ZeroCap+PCA and MAGIC+PCA, both
in BLIP space. The results, listed in Tab.3, show
that in almost all cases, the users were willing to
identify the matching images for our method, while
for other methods, they were more reluctant to do
so. Out of the choices made, users were able to
select the correct image in far more cases for our
method than for the baselines.
Ablation and parameter sensitivity When gen-
erating the average phrase, we aim to generate a
general description of the dataset. In order to do
so, we use WordNet to aggregate terms to a more
general term, as explained 3. Without WordNet,
the method produces specific phrases that tend to
contain recurrent terms, which are less preferable
when describing a dataset, as can be seen in Tab. 4.

The orthogonality coefficient controls the
amount of orthogonality between the principal
phrases. If we set λo = 0, the first principal phrase,
which maximizes variance, will be repeated over
and over, as we empirically confirmed (there is

Dataset w/o WordNet w/ WordNet

CelebA woman man adult person
Stanford Cars car suv car parked
COCO-Horses horse horses horse stable
LSUN-Church church cathedral church

Table 4: Average phrases when using or not using Word-
net for aggregating terms. We omit the prompt “Image
of a”.
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Figure 7: Hyperparameter sensitivity. (a) The effect of
the hyperparameter λo on the mean orthogonality score
of the image sets. (b) The effect of the hyperparameter
λv on the mean variance score of the image sets.

stochasticity in the method).
If we set it to a very large number, for exam-

ple λo = 1000, we still receive our original first
principal phrase, since the orthogonality of one
phrase to itself is 0. However, the following phrases
lose all connection to the image set in favor of be-
ing orthogonal. For example, for LSUN church
we will get: [’cathedral’, ’johns like’, ’overlook
sculptures’, ’floppy flags’, ’daytime narrow’, ’sofia
framed’, ’gravel’]. For Stanford cars, instead of
[’suv’, ’front’, ’luxury’, ’silver’, ’black’, ’red’,
’used motor’] we get [’suv’, ’old monroe’, ’frank-
furt’, ’kidney seller’, ’asphalt’, ’poles purple’].

In Fig. 7(a) we quantify how changing λo effects
the orthogonality score (Eq. 2). This is shown for
the mean score over all datasets discussed in Sec. 4
(Named Datasets, COCO, ImageNet). In these
experiments λv is fixed at the default value, and λo

varies from its default value of 10. As can be seen,
for a wide range of λo values, the orthogonality
score is relatively stable.

The coefficient λv controls the emphasis on max-
imizing the variance. If we set λv = 0 we are left
with two other constraints: describing the image
set, which is done with BLIP’s caption head, and
an orthogonality constraint. Therefore, in this case,
we obtain meaningful attributes that produce some-
what less variance. As an example, for Stanford
Cars, instead of the attributes that maximize and are
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sorted by variance, [’suv’, ’front’, ’luxury’, ’silver’,
’black’, ’red’, ’used motor’] we get [’silver’, ’front’,
’luxury used’]. Similarly, for CelebA, instead of
[’woman young’, ’actress hair’, ’man smiling’,
’woman blond’, ’woman actress’, ’woman hair’,
’woman posing’], we get [’hair hairs’, ’young pre-
miere’, ’man woman’, ’press’, ’hollywood photo’,
’young’, ’man’]. If we set λv to a very large num-
ber, λv = 1000, it will produce the same principal
phrase that maximizes variance, since it will over-
come orthogonality. For Stanford Cars we now get
[’suv truck’] and for CelebA [’female’].

Fig. 7(b) shows how changing λv effects the
variance score calculated by Eq. 3. The results
are shown for the mean score over all datasets dis-
cussed in 4 (Named Datasets, COCO, ImageNet).
Despite varying the coefficient over a wide range
(the default value we use is 5), the variance re-
mains in a narrow band that outperforms the base-
line methods. This includes the case of λv = 0
discussed above. We, therefore, conclude that hav-
ing a related text and orthogonal phrases already
lead to the desired PCA effect. Adding the variance
maximization term further improves results.

5 Discussion and limitations

We identify a few ways in which our results could
be extended. First, similarly to other generative
tasks, evaluation of the results is not straightfor-
ward. Since describing an image set in a way
that encompasses both the common theme and the
modes of variation is a novel task, there is no estab-
lished methodology for this evaluation. We believe
that the lineup experiments presented demonstrate
that humans are able to relate the obtained pro-
jections to the images. Given more resources to
train human annotators, it would be interesting to
obtain human phrases for both the theme and the
variation and evaluate the degree to which these
would match the method’s results. Second, our
method could help create more informative image
captions by including the information of the radar
plots we present within the generated text. This
way, a rich and descriptive captioning, which ad-
dresses the common variations from in-set images
with a common theme, would be created.

Finally, there is no reason not to apply our
method to sets of phrases or paragraphs, by replac-
ing CLIP with a summarization engine, such as
those based on transformers (Vaswani et al., 2017).
Distancing ourselves even further from the current

work, we note that with the advent of powerful im-
age generation engines (Ramesh et al., 2021) the
role that images and text play in our work could be
reversed. Images can visually capture the common
theme of a set of phrases or paragraphs as well as
their modes of variation.

6 Conclusions

Dimensionality reduction methods capture the most
significant information of the input vectors using
a smaller set of variables. However, these modes
are free from semantic constraints and often mix
multiple attributes, due to correlations that exist
in the data. In this work, we follow in the foot-
steps of PCA, perhaps the most widely used dimen-
sionality reduction method, and propose a method
for extracting orthogonal semantic directions that
describe a set of images in the latent space of a
vision-language model. First, the “centroid” phrase,
which describes the main theme of the set is ex-
tracted. Then, the directions with the highest vari-
ability in the vision-language similarity to the im-
ages of the set are extracted.

Our solution combines the BLIP image cap-
tioning model with information derived from the
WordNet graph. An extensive set of experiments
demonstrates that the obtained list of semantically-
orthogonal phrases accurately describes the set of
images given as input.
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