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Abstract

Despite their promising results on standard
benchmarks, NLU models are still prone to
make predictions based on shortcuts caused by
unintended bias in the dataset. For example,
an NLI model may use lexical overlap as a
shortcut to make entailment predictions due to
repetitive data generation patterns from anno-
tators, also called annotation artifacts. In this
paper, we propose a causal analysis framework
to help debias NLU models. We show that (1)
by defining causal relationships, we can intro-
spect how much annotation artifacts affect the
outcomes. (2) We can utilize counterfactual
inference to mitigate bias with this knowledge.
We found that viewing a model as a treatment
can mitigate bias more effectively than viewing
annotation artifacts as treatment. (3) In addi-
tion to bias mitigation, we can interpret how
much each debiasing strategy is affected by
annotation artifacts. Our experimental results
show that using counterfactual inference can
improve out-of-distribution performance in all
settings while maintaining high in-distribution
performance. 1

1 Introduction

Mitigating spurious correlations is crucial to the
robustness of any learning method. Although
deep learning models can perform well on con-
ventional natural language understanding (NLU)
benchmarks, researchers have found that these
models leverage superficial patterns to produce cor-
rect predictions rather than learning the underlying
tasks (Gururangan et al., 2018; McCoy et al., 2019).
As a result, these models perform poorly when ap-
plied on out-of-distribution datasets, particularly
on challenge sets that highlight models’ reliance on
spurious patterns by testing them on counterexam-
ples. For example, McCoy et al. (2019) show that

1The work was performed while Kanruethai Masuk was an
intern at VISTEC. The code is available at https://github.
com/c4n/debias_nlu.
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When creating an input sample for the entailment class, an annotatortends to use the same words in the premise to write the hypothesis.This is an example of lexical overlap annotation artifact.
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We use a causal graph to represent how an annotationartifact affects the prediction directly and how an annotation artifactaffects a training input, which in turn affects the prediction.
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Figure 1: (Top) Annotation Process: an annotator uses
a specific strategy to write an input text for a designated
class. (Mid) Causal graph represents causal relations
between an annotation artifact, an input text, and a pre-
diction. (Bottom) Example of counterfactual inference.

natural language inference (NLI) models wrongly
exploit lexical overlap to make predictions for the
entailment class. Consequently, when these mod-
els encounter any sample with high lexical overlap,
their predictions are almost always entailment even
though the sample is non-entailment. The follow-
ing sample is an example of lexical overlap:

(1) Premise: The nurse near the singer walked.
Hypothesis: The singer walked.

While designing a data collection procedure for
bias reduction is promising (Sakaguchi et al., 2020;
Le Bras et al., 2020), creating a new dataset
can be expensive and may also introduce new bi-
ases (Sharma et al., 2018). Therefore, it is impor-
tant to develop learning and inference methods for
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bias mitigation. The main advantage of debiasing
from the model side is that we can mitigate bias
without relying on the quality of data collection.

Early attempts at debiasing rely on intentionally
creating a biased model to identify samples at risk
of eliciting superficial patterns to produce results.
One can then adjust how each training sample in-
fluences the training process accordingly.

Main approaches for NLU debiasing include: (1)
reweighting loss for each training instance (Clark
et al., 2019; Karimi Mahabadi et al., 2020; Ghad-
dar et al., 2021), (2) training a Product-of-Experts
(PoE) between the main model and the biased
model to encourage the main model to ignore bi-
ases (Clark et al., 2019), and (3) self-distillation
where the soft labels from the teacher model are reg-
ularized by the scores from a biased model (Utama
et al., 2020a; Du et al., 2021). These methods are
effective in improving the performance in challenge
sets. However, they cannot be applied to existing
models without retraining. Our method, on the
other hand, can operate at the inference stage and
can be used to debias existing models hosted by a
third party.

Recently, researchers have applied counterfac-
tual inference for debiasing across various tasks in
multiple fields, including computer vision, recom-
mendation, as well as NLP (Niu et al., 2021; Wei
et al., 2021; Wang et al., 2021; Qian et al., 2021;
Nan et al., 2021). Counterfactual inference reduces
bias by capturing its causal effect on predictions.
It then utilizes this knowledge to assess how much
bias it should remove. One common approach is
to apply causal mediation analysis (CMA) to de-
compose effects from biases. This allows them to
remove the direct bias effect from the total bias
effect. Empirical results show that it improves ro-
bustness against biases across various tasks.

In this paper, we explore NLU debiasing from a
causal perspective. Bias in NLU is often a product
of specific annotation strategies to create training
data known as annotation artifacts. As illustrated
in Figure 1, by identifying the causal relationship
between annotation artifacts and prediction out-
comes, we can apply counterfactual inference to
distinguish effects from annotation artifacts. With
this knowledge, we can mitigate unintended effects
caused by annotation artifacts, as well as quantify
how much each debiasing method can prevent the
unintended effect from influencing prediction out-
comes.

Previous causal frameworks for debiasing of-
ten exploit CMA to find the total indirect effect
(TIE), how much a bias affects an outcome indi-
rectly through a mediator. Then, they use the the
argmax of TIE as the prediction. Instead of using
counterfactual inference for only prediction, we
also extend it for bias analysis. The formalization
of spurious correlation with causality allows us to
not only reduce the prediction bias but also gives
a methodological synergy when applying a causal
analysis technique to interpret NLU models. In ad-
dition, we also experiment with a different causal
viewpoint which considers models as treatment in-
stead of bias as treatment.

We benchmark our counterfactual inference
frameworks across three NLU tasks (NLI, fact
verification, and paraphrase detection) on both in-
distribution test sets and challenge sets. Our experi-
mental results show that using counterfactual infer-
ence can significantly improve out-of-distribution
robustness for all tasks. Moreover, the bias anal-
ysis through CMA shows that our counterfactual
inference frameworks have smaller effects from
annotation artifacts.

Our contributions are as follows:

1. We present the problem of annotation artifacts
through a causal perspective and capture the
annotation process with a causal graph.

2. We propose a counterfactual inference frame-
work for NLU, which consistently improves
robustness across multiple NLU tasks.

3. We provide a bias analysis using CMA to
quantify the capability of debiasing methods.

2 Related Work

Earlier debiasing techniques involve reweighting
the cross-entropy losses of bias-sensitive samples.
Samples that can be handled effectively by a bias
model are considered bias-sensitive. In contrast to
the traditional training paradigm where each train-
ing example has the same importance, reweight-
ing assigns different weights to examples based
on their sensitivity to biases. A common way to
reweight is to create a bias model trained on hand-
crafted features (Clark et al., 2019), and assign
a weight to each training sample using the prob-
ability of the correct label from the bias model.
Karimi Mahabadi et al. (2020) extended this idea
by combining scores from multiple bias-only mod-
els. In addition, Karimi Mahabadi et al. (2020)
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introduced a variant of focal loss (Lin et al., 2017)
to leverage predictions from the bias model. Al-
ternatively, Schuster et al. (2019) used n-grams
co-occurrence to calculate the reweighting scores.
However, recent research has been shifting toward
acquiring reweighting scores without using domain
knowledge and hand-crafted features (Utama et al.,
2020b; Ghaddar et al., 2021).

Another prevailing approach is model ensem-
bling. Clark et al. (2019) reinterpreted Product-of-
Experts (PoE) (Hinton, 2002) for NLU debiasing.
They used a bias model to create an ensemble with
the main model with the aim that the main model
learns all the information except the bias. The en-
semble decreases the training loss for a sample that
the bias model correctly predicts when updating
the main model. Sanh et al. (2021) proposed a
domain-knowledge-free approach where the bias
model was a neural network with small parameters.

Utama et al. (2020a) proposed a self-distillation
framework, confidence regularization (Conf-Reg),
that used a bias model to produce confident scaling
scores to calibrate the confidence of the model’s
predictions. Alternatively, Du et al. (2021) calcu-
lated the scaling scores from the local mutual in-
formation and integrated gradient explanation. Al-
though these methods have successfully improved
the robustness on the challenge sets, they can only
be used to train new models. As a result, we cannot
apply it to the existing models without retraining.

Counterfactual Inference: In contrast to tra-
ditional inference techniques in machine learning,
where the argmax of the posterior probability is
the prediction outcome, we can instead base the
prediction on causal effects. Recent debiasing tech-
niques integrate the idea of counterfactual inference
into their frameworks across multiple tasks such as
question answering (Niu and Zhang, 2021), visual
question answering (Niu et al., 2021), text classi-
fication (Qian et al., 2021), recommendation (Wei
et al., 2021; Wang et al., 2021), and information
extraction (Nan et al., 2021).

One dominant technique is based on causal me-
diation analysis (CMA). It involves decomposing
the total effect (TE) into pure direct effect (PDE)
and total indirect effect (TIE). Niu et al. (2021),
Wei et al. (2021), and Wang et al. (2021) make a
prediction by selecting the class with the highest
TIE. TE can also be decomposed into total direct
effect (TDE) and pure indirect effect (PIE). Nan
et al. (2021) utilize TDE to make predictions. Apart

from debiasing, CMA can be used to analyze biases
in transformer language models (Vig et al., 2020;
Finlayson et al., 2021).

Alternatively, Qian et al. (2021) use TE to pre-
dict by calculating TE between a normal input (fac-
tual) and masked/partially masked input (counter-
factual), without decomposing TE.

While reweighting, model ensembling, and self-
distillation are effective NLU debiasing methods;
we can further incorporate the idea of counter-
factual inference to improve the debiasing perfor-
mance further as well as using CMA as a tool to
investigate the ability to debias.

3 Methodology

This section introduces key causal inference con-
cepts used in this paper. First, we show how an
NLU task can be presented via a causal graph to
show causal relationships and implications of the
biases in the causal relationships. Then, we discuss
the causal effect and CMA—the central idea that
we use to decompose effects from biases. We also
discuss a counterfactual inference framework—an
alternative to a standard inference framework that
uses the argmax from the softmax as the predic-
tion. Lastly, we discuss how we can apply CMA to
quantify the bias effect of an annotation artifact.

3.1 Causal Graph: Text as a Mediator

Consider the MNLI dataset creation process: an an-
notator is given a text source premise and asked to
write one hypothesis for each class. Due to the an-
notator’s writing strategy, the annotator tends to use
repetitive patterns to create an input text for each
class. Machine learning models exploit these shal-
low repetitive patterns to make predictions. These
shallow patterns are known as annotation artifacts.
Hence, there is a causal relationship between an
annotation artifact and an input text, where an an-
notation artifact causes an input text. We then use
an input text to make a prediction. This produces a
chain of causal relations.

We employ a causal graph to show causal rela-
tionships between variables as shown in Figure 2.
Each node represents its corresponding variable.
Each directed edge represents a direct effect. A
represents an annotation artifact (e.g., lexical over-
lap, negation phrases). X represents an input text.
Y represents a prediction.

As shown in previous studies (Gururangan et al.,
2018), we can build a model that can predict Y
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Figure 2: Causal graph for the NLI task (a) An annota-
tion artifact A affects a prediction outcome Y . (b) An
annotation artifact creates an input text X . X is then
used to predict Y . We view X as a mediator between A
and Y . (c) We can decompose an effect of A on Y into
direct and indirect effects.

based on biased features alone. The performance of
a biased model is considerably better than random.
Therefore, any changes on A have an effect on Y .
A directed edge from a variable A to a variable Y
(A→ Y ) illustrates that A is a direct cause of Y as
shown in Figure 2a. Since A causes X , and we use
X to predict Y in practice, we can also view X as
a mediator between A and Y (A→ X → Y ).
A indirectly affects Y through an input text X .

Figure 2b shows that learning from annotation ar-
tifacts does not always hold. Sample with 100%
word overlap can also be non-entailment.

In addition, A has two directed edges pointing
toward X and Y (X ← A→ Y ), this represents a
common cause that affects both X and Y causing
a spurious correlation. Figure 2c shows that we
can decouple the total effect of A on Y into direct
and indirect effects. This causal graph allows us
to apply causal mediation analysis to quantify and
reduce the bias from the annotation strategy.

Structural Causal Model From the causal graph
in Figure 2c, we can represent the causal graph
using a structural causal model (SCM):

Xa = x = fX(A = a,NX)

Ya,x = fY (A = a,X = x)
(1)

A capital letter denotes a random variable (e.g., A),
and a lowercase letter denotes an observed value

(e.g., a). Ya,x denotes the prediction output of an in-
dividual sample with an annotation artifact A = a,
and an input text X = x. fX(·) and fY (·) re-
fer to the structural causal equations of X and Y ,
respectively. fX(·) represents an input text gener-
ation/collection process, where an annotator uses
an annotation artifact A = a to create an input
text X = x. fY (·) represents a prediction func-
tion. NX is the noise distribution of X . Hence,
fX can create different input texts with the same
annotation strategy A = a.

We calculate Ya,x by combining the outputs from
a bias model Pb = Fb(a) and a main model Pm =
Fm(x) using the SUM fusion function h (Niu et al.,
2021):

Ya,x = fY (A = a,X = x) ≜ h (Pb, Pm)

= log σ (Pb + Pm)
(2)

We can view A as a treatment variable. Assum-
ing that A = a represents treatment and A = a∗

represents no-treatment. For no-treatment, we re-
place an effect from the treatment with u a constant
uniform distribution instead to represent the fact
that the A = a∗ has no effect over a particular class.
In order to include no-treatment condition into Pb,
we represent Pb as follows.

Pb =

{
Pb = Fb(a) if A = a
Pb = u = 1

K if A = a∗,
(3)

where K denotes the number of classes.
When A is set to a∗, the variable X is also af-

fected: Xa∗ = x∗ = fX(A = a∗). Hence, we
represent Pm as follows.

Pm =

{
Pm = Fm(x) if X = x
Pm = u = 1

K if X = x∗
(4)

Note that both Fb(·) and Fm(·) can be parame-
terized and learned. In this work, Fb(·) is a simple
logistic regression model with only biased features,
while Fm(·) is a deep learning NLU model.

3.2 Causal Mediation Analysis
CMA often decomposes the total effect into two
parts: direct and indirect effects. CMA allows us
to quantify an indirect impact of a treatment on an
outcome via a mediator.

3.2.1 Total Effect
For counterfactual inference, we focus on a causal
effect, which is the difference between the out-
comes of two hypothetical states of the world. For
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example, we can compare two situations of the
treatment variable when A = a and A = a∗ by
computing the total effect (TE) of A:

TEA = Ya,x − Ya∗,x∗ (5)

Ya∗,x∗ represents a situation where A is set to a∗

which results in Xa∗ = x∗ and Ya∗,x∗ . It can be
represented as the following SCM:

Xa∗ = x∗ = fX(A = a∗)

Ya∗,x∗ = fY (A = a∗, X = x∗)
(6)

3.2.2 Decomposing Total Effect
The total effect can be decomposed into the follow-
ing form (Robins and Greenland, 1992):

TE = PDE + TIE (7)

The first component, pure direct effect (PDE),
measures how treatment changes an outcome di-
rectly without acting through a mediator. It is cal-
culated by applying a treatment while holding a
mediator fixed. For the NLI task, PDEA measures
the difference in the entailment prediction Y when
A changes from a∗ to a, while X is set to a fixed
constant value when A = a∗:

PDEA = Ya,x∗ − Ya∗,x∗ (8)

Ya,x∗ represents a situation where X is set to x∗

while we keep A = a as input for fY , it can be
represented as the following SCM:

Xa∗ = x∗ = fX(A = a∗)

Ya,x∗ = fY (A = a,X = x∗)
(9)

The second component, total indirect effect
(TIE), measures how treatment changes Y indi-
rectly through X . We use this measure to examine
how much our model (mediator) allows A to flow
to Y . We calculate TIEA by subtracting PDEA

from Eq. 7.

TIEA = TEA − PDEA = Ya,x − Ya,x∗

(10)
Alternatively, we can view TIEA as the differ-

ence on an outcome Y when we change the input
of X from a∗ to a while keeping everything else
fixed as it would have been when A = a. One can
also view Ya,x as an ensemble between the main
and the bias models, while Ya,x∗ is the bias model
fused with a constant.

3.3 Debiasing with Counterfactual Inference
At inference time, we make predictions based on
causal effects. A prediction output is a class with
the largest causal effect. In this work, we experi-
ment with two causal queries: TIEA and TEmodel.

As shown in Eq. 10, TIEA removes direct ef-
fect from bias by subtraction. Yet, the term Ya,x
in TIEA relies on an ensemble method to fuse
outputs from a bias-only model.

For TEmodel instead of viewing an annotation
artifact as a treatment, we view a model as a treat-
ment instead. From this viewpoint, we construct
a causal query asking the following causal ques-
tion: “what will the prediction be if we use a deep
learning model instead of a bias model?”

TEmodel = YA→X→Y − YA→Y , (11)

where YA→X→Y is when we use the deep learn-
ing model.

Xa = x = fX(A = a)

YA→X→Y = Fm(X = x),
(12)

and YA→Y is when we use the bias model.

YA→Y = Fb(A = a) (13)

This differs from previous counterfactual methods
that mainly use TIE and require an ensemble fu-
sion that can fuse in biases. It also differs from
Qian et al. (2021) by using the bias model as a
counterfactual instead of masked inputs.

In practice, we only need to prepare the bias-only
modelFb in order to apply counterfactual inference
to any existing NLU model Fm without having to
train or finetune Fm.

Sharpness Control We control the strength of
bias removal by using a learnable parameter c. For
TIEA, similar to Niu et al. (2021), we set the no-
treatment constant u to c. For TEmodel, we use c
as a trade-off parameter to readjust the strength of
YA→Y as follows.

TEmodel = YA→X→Y − c ∗ YA→Y (14)

We treat c as a hyperparameter in which we
optimize it on a validation set. This is done by
minimizing the kl-divergence between Ya,x∗ and
Ya,x for TIEA, and between softmax(c ∗ YA→Y )
and YA→X→Y for TEmodel. Higher c suggests
that, on average, YA→Y is less confident relative to
YA→X→Y , and we may give it more weight.
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3.4 Bias Effect Analysis Through CMA

We follow the CMA approach used by Vig et al.
(2020) and Finlayson et al. (2021) for bias inter-
pretation. In contrast to the previous works, we
apply CMA to measure the effect of bias that flows
through the whole model instead of some set of
neurons. To measure the bias in the model, we use
relative probabilities between the bias and anti-bias
classes.

B =
PY (bias)

PY (anti-biasmax)
, (15)

where B > 1 indicates a preference for the bias
class and B < 1 indicates an anti-bias preference.
If there are multiple anti-bias classes, we use the
anti-bias class with the highest probability to rep-
resent an anti-bias probability. PY represents fY
that has been normalized into a probability distri-
bution using the softmax function. We use CMA
to analyze the indirect effect of the known bias
through the mediator on the outcome. By treating
an input text and a model as a single mediation
component, we can measure the effectiveness of
each debiasing strategy. We are interested in how
annotation artifacts affect the outcomes differently
for each debiasing strategy. We examine the av-
erage total indirect effect (ATIE) of the bias class,
which shows the effect of annotation artifacts on
the biased class due to the mediated path.

ATIE = E
[
Ba,x −Ba,x∗

Ba,x∗

]
= E

[
Ba,x

Ba,x∗

]
− 1

(16)
where Ba,x∗ represents a situation when X is set

to x∗ as an input for fY . ATIE > 0 indicates that
the mediated path prefers the biased class. While
ATIE < 0 indicates that the mediated path prefers
the anti-bias class. For a balanced test set, ATIE =
0 indicates no bias, and a good debiasing method
should be able to lower the ATIE.

4 Experiments

Our experiments address the following research
questions: (1) Can we exploit knowledge from
causal relationships to debias NLU tasks? (2)
Do different causal queries lead to different de-
bias performances? (3) Can we measure the im-
pact of annotation artifacts on the prediction out-
comes? We benchmark our method on three En-
glish relation-identification tasks: natural language

inference, fact verification, and paraphrase identi-
fication. NLI represents a generic benchmark for
testing a machine’s ability to identify a relationship
between two texts. The other two tasks benchmark
relationship-identification ability in real-world ap-
plications. Each task contains both standard in-
distribution and challenge datasets to test the gen-
eralization ability. We train all our models only on
the in-distribution datasets and test them on both
standard benchmark datasets and challenge sets.

4.1 Experimental Setup
4.1.1 Datasets
Natural Language Inference We use the MNLI
1.0 dataset (Williams et al., 2018) to train, validate
(MNLI-matched), and test (MNLI-mismatched)
our method. To measure the robustness against
spurious correlations, we use HANS (McCoy et al.,
2019) as a challenge set.

Fact Verification We use the FEVER
dataset (Thorne et al., 2018). We randomly
split 5,000 samples from the original training data
for the validation set. We use FEVER Symmetric
(Schuster et al., 2019) as a challenge set.

Paraphrase Identification We use QQP2 as a
standard benchmark. Since there is no standard
train/test split, we divide the original dataset into
validation and testing data where each of them con-
tains 5,000 pair of sentences. We use PAWS (Zhang
et al., 2019) as a challenge set.

4.1.2 Implementation details
Main Model We apply the debiasing methods
on the BERT base model (uncased) (Devlin et al.,
2019). The model performs well on the three NLU
tasks, but previous studies show that it relies on
superficial clues (e.g., McCoy et al., 2019).

We use the contextualized embedding at the
[CLS] location from the BERT model as an in-
put to the feedforward layer with tanh activation,
then pass the feedforward’s output through the
softmax layer to calculate the prediction. Sim-
ilar to previous studies (Clark et al., 2019), we
train the model for three epochs using AdamW
optimizer (Loshchilov and Hutter, 2019) with the
weight decay of 0.1. For the MNLI training set, we
use the learning rate of 5e-5. For FEVER and QQP
training sets, we follow Utama et al. (2020a,b) and
use the learning rate of 2e-5.

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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We use the slanted triangular learning rate sched-
ule with 0.06 fraction of the steps to increase the
learning rate. The batch size is 32. We also train
with automatic mixed-precision training.

Bias Model We use a simple logistic regression
model with only bias features. For NLI and para-
phrase detection tasks, we use the following bias
features: (1) whether the input text has the sub-
sequence heuristic, (2) whether the input text has
the constituent heuristic, and (3) the lexical over-
lap fraction. For the fact verification task, we ex-
tract the following superficial features: the number
of negation phrases, the top 50 uni-grams and bi-
grams with the highest local mutual information,
the lexical overlap, and the entity overlap fractions
between claim and evidence.

4.1.3 Competitive Methods
In order to compare with previous methods, we
reimplement three popular approaches for NLU de-
biasing: reweighting, product-of-experts, and self-
distillation. We also show that using our counterfac-
tual inference framework on top of these methods
can significantly improve the results on the chal-
lenge sets. In addition, we also include the results
from previous to studies in Table 1 for comparison.

Reweighting We use inverse probability weight-
ing to reweight training samples. We scale the

loss by
1

Fby

which is an inverse of a probability

assigned to the correct label by the bias model.

Product-of-Experts We reimplement Clark et al.
(2019)’s PoE model using our bias model. We
train the main model by creating an ensemble be-
tween the main and the bias models. PoE combines
the two models by calculating the element-wise
product between their prediction outcomes in the
logarithmic space as follows.

p̂ = softmax (log (Fm) + log (Fb)) (17)

Then we calculate the cross-entropy loss by com-
paring p̂ with the ground truth. We only update the
weights of the main model and only use the main
model at inference time.

Self-Distillation We reimplement Utama et al.
(2020a)’s Conf-Reg by using our bias model. Conf-
Reg makes the main model less confident on sam-
ples that the bias model can predict correctly with
high confidence. The scaling function S for dis-
tilling soft labels from the teacher model Ft for

confidence regularization is as follows.

S
(
Ft,Fby

)
j
=

F(1−Fby)
tj

∑K
k=1F

(1−Fby)
tk

(18)

For each label j = 1, . . . , K, we use S
(
Ft,Fby

)

as a soft label for the cross-entropy loss.

4.2 Experimental Results
4.2.1 Effectiveness of Counterfactual

Inference Debias
We investigate whether causal knowledge can be
used to improve NLU robustness via counterfactual
inference. In addition, we compare the effective-
ness of two different causal queries. Table 1 shows
the results on three NLU tasks. Both counterfactual
inference methods can significantly3 improve the
robustness for all out-of-distribution test sets on
top of almost all debiasing methods across multi-
ple tasks. Without any debiasing training methods,
both causal queries alone obtain superior results
than the vanilla baseline. When combined with
a debiasing training method, they can provide su-
perior results over previous NLU debiasing litera-
ture for the NLI and QQP tasks. TIEA inference
improves the performance on all challenge sets
without hurting the performances on the standard
test sets. TEmodel inference further improves the
performances on all challenge sets; however, the
performances on in-distribution test sets are lower.
Nevertheless, we can use TIEA to show the indirect
effects of annotation artifacts that flow through the
model.

It is important to note that both TIEA and
TEmodel can be applied to existing NLU models
without retraining as shown in Appendix A.1.

4.3 Bias Analysis
We conduct fine-grained analysis on HANS. This
challenge set annotates each sample with its sub-
case, which contains information about its lexical
overlap type and grammatical pattern.

Table 2 shows ATIE and accuracy for each class
and for each heuristic. For almost all cases, the
ATIE is positive, indicating that the previous debi-
asing methods still contain a substantial preference
for the bias class (entailment). The only case where
the ATIE is negative for the previous debiasing

3In order to statistically compare debiasing methods, we
use Almost Stochastic Dominance test (Dror et al., 2019) with
the significant level of 0.05.
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MNLI (acc) Fever (acc) QQP (MaF1)
Method

dev-mm HANS dev symm v1 symm v2 dev PAWS
Baseline 84.83 65.55 86.25 57.41 63.85 94.03 31.34
Baseline + TIEA 84.82 66.66* 86.46* 57.82* 64.19* 93.97 31.96*
Baseline + TEmodel 84.78 68.08* 86.47* 58.02* 64.30* 93.81 35.12*
Reweighting 84.84 66.96 82.53 60.73 62.92 93.10 44.16
Reweighting + TIEA 84.84 68.18* 81.87 61.06* 63.32* 93.02 44.92*
Reweighting + TEmodel 84.80 69.47* 81.50 61.37* 63.32* 92.77 49.36*
PoE (Clark et al., 2019) 84.21 69.86 85.45 60.92 65.37 93.23 43.97
PoE + TIEA 84.13 70.94* 85.04 61.51* 65.73* 93.16 45.08*
PoE + TEmodel 83.94 72.24* 84.98 61.70* 65.67* 92.81 50.70*
Conf-Reg (Utama et al., 2020a) 85.10 66.32 86.38 60.08 66.18 92.73 32.69
Conf-Reg + TIEA 85.03 68.23* 85.01 61.12* 66.24* 92.62 35.03*
Conf-Reg + TEmodel 84.92 70.99* 80.74 61.59* 66.26* 91.51 58.50*
Results reported in reference papers
PoE (Clark et al., 2019) 82.97 67.92 - - - - -
Conf-Reg (Utama et al., 2020a) 84.8 69.1 86.4 60.5 66.2 90.45 55.4
Debiased Focal Loss (Karimi Mahabadi et al., 2020) 82.76 71.95 83.07 64.02 - - -
PoE (Sanh et al., 2021) 81.35 68.77 81.97 59.95 - - -

Table 1: Performance results evaluated on in-distribution and out-of-distribution (grey columns) test sets across
3 NLU tasks. We compare the effectiveness of the two causal queries compared to the standard inference. We
report the average scores across five runs on different random seeds. * denotes a significant improvement of a
counterfactual inference over the standard inference method.

methods is the non-entailment class of the lexical
overlap heuristic, in which the non-entailment ac-
curacy is the highest for all methods. The overall
accuracy for each heuristic is correlated with ATIE.
Methods with lower ATIE tend to have higher over-
all accuracy. The two causal queries, TIEA and
TEmodel, can improve accuracy for all heuristics.
Counterfactual inference can greatly reduce ATIE
for all cases. However, measuring ATIE gives a
preference towards TIEA over TEmodel. This is
due to the fact when we fuse the bias and the main
models to create Ya,x for TIEA, the confidence of
a prediction becomes lower.

Comparing to the baseline, all debiasing meth-
ods provide the biggest improvement for the con-
stituent heuristic. The subsequence heuristic is the
most challenging of the three syntactic heuristics.
ATIE remains high even for the non-entailment
samples. Subcases with high error rates are often
syntactically ambiguous, for example, NP/S and
NP/Z. They are known as “garden-path” sentences
that cause reading difficulty even for humans. We
include detailed results for all subcases along with
examples in Appendix A.8.

5 Conclusion

We introduce a counterfactual framework for debi-
asing NLU models. Our framework can improve
robustness across three NLU tasks. It also allows
us to analyze the impact of annotation artifacts.

Class Lexical Overlap Subsequence Constituent
ATIE ACC ATIE ACC ATIE ACC

baseline E 0.2797 97.54 0.3009 99.48 0.3020 99.79
N -0.0879 70.99 0.2301 10.63 0.2142 14.84
overall 0.0959 84.26 0.2655 55.05 0.2581 57.32

reweighting E 0.2854 97.90 0.3031 99.58 0.3026 99.76
N -0.0805 69.77 0.2324 11.03 0.1963 23.74
overall 0.1024 83.83 0.2678 55.31 0.2495 61.75

PoE E 0.2584 94.65 0.2911 98.93 0.2920 99.07
N -0.1053 75.72 0.2101 13.76 0.1590 37.00
overall 0.0766 85.18 0.2506 56.35 0.2255 68.04

Conf-Reg E 0.1872 95.56 0.2193 99.48 0.2189 99.34
N -0.0970 72.77 0.1570 8.18 0.1252 22.60
overall 0.0451 84.16 0.1882 53.83 0.1720 60.97

PoE + TIEA E 0.0202 93.42 0.0233 98.54 0.0235 98.48
N -0.0188 77.66 0.0156 16.22 0.0119 41.32
overall 0.0007 85.54 0.0194 57.38 0.0177 69.90

PoE + TEmodel E 0.0561 91.71 0.0676 98.10 0.0673 97.26
N -0.0723 79.90 0.0391 19.82 0.0232 46.65
overall -0.0081 85.81 0.0534 58.96 0.0452 71.95

Table 2: ATIE and accuracy of each syntactic heuristic
in the HANS dataset. E denotes the entailment class,
and N denotes the non-entailment class.

In contrast to previous debiasing NLU literature
that focuses on reweighting, model-ensemble, and
self-distillation, we present a causal perspective
on this problem that can be combined with previ-
ous methods to enhance the performances further.
Counterfactual inference gives us the flexibility to
apply it to any existing model without changing
its parameters by focusing on the inference stage.
Unlike previous counterfactual inference for debi-
asing literature, where the main focus is using TIE
for inference only, we also used TIE for analysis.
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Moreover, we also provide another causal view-
point by looking at the model as the treatment to
construct a new causal query that outperforms TIE
across multiple challenge sets.

Causality can help us improve the generaliza-
tion and robustness of NLU models. In the future,
we will utilize causality techniques to identify and
remove biases in NLU tasks.

Limitations

The decomposition of the total effect is only guar-
anteed in linear models (Pearl, 2001). However, all
deep learning models are non-linear. Nevertheless,
Vig et al. (2020) found that the sum of direct and
indirect effects in GPT2-small, a non-linear model,
can roughly approximate the total effect.

Our bias effect analysis has a preference toward
low confidence models. One of the risks is that one
could maliciously use our approach to validate bias
models with low confidence predictions.
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A Appendix

A.1 Effect of Counterfactual Inference on
Existing Models

We download existing models from Hugging-
face (Wolf et al., 2020) and apply counterfactual
inference debias directly on these models without
finetuning them further. Table 3 shows that coun-
terfactual inference can consistently improve the
out-of-distribution performance for all three mod-
els without updating their parameters.

A.2 Data Statistics
Table 4 shows data statistics for all the datasets
used in our experiments. It is important to note

dev-mm HANS
ishan/bert-base-uncased-mnli 83.45 56.72
+ TIEA 83.47 58.47
+ TEmodel 83.45 60.57
roberta-large-mnli 88.61 73.13
+ TIEA 88.65 73.96
+ TEmodel 88.63 75.07
facebook/bart-large-mnli 88.52 71.36
+ TIEA 88.44 72.39
+ TEmodel 88.42 73.71

Table 3: Results of the existing NLI models

that the QQP in-distribution test set and the PAWS
challenge set have a considerable imbalance in the
ratio between non-paraphrase and paraphrase pairs.
Hence, we use Macro F1 to report the scores for
the paraphrase identification task.

MNLI
train 392,702
dev-m (validation) 10,000
dev-mm (in-distribution test) 10,000
HANS (challenge set) 30,000

FEVER
train 242,911
validation 5,000
dev (in-distribution test) 16,664
symmetric v1 (challenge set) 717
symmetric v2 (challenge set) 712

QQP
train 394,287
validation 5,000
dev (in-distribution test) 5,000
PAWS (challenge set) 677

Table 4: Number of samples in each dataset used in our
experiments

A.3 Licenses

Datasets: For the MNLI dataset, most of the data
are available under OANC’s license. HANS is
available under the MIT license. These licenses
allow users to freely use, share, and distribute the
datasets under non-restrictive agreements.

Softwares: For all tasks, we use Al-
lenNLP (Gardner et al., 2018) to train all
deep learning models. And we use scikit-learn (Pe-
dregosa et al., 2011) to train the bias models.
These libraries are available under permissive
licenses Apache license 2.0 and BSD license.
These licenses allow both academic and commer-
cial usages. To make our code accessible and
compatible with these licenses, we release our
code under Apache license 2.0.
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A.4 Computing Infrastructure

We train all 110M parameters bert-base-uncased
models on the NVIDIA DGX-1 with 8 Volta V100
GPUs. We train each model on one GPU at a time.
We train four debiasing training methods on three
different tasks, and for each model we train it us-
ing five different random seeds. It requires us ap-
proximately 50 minutes to train one model for one
random seed on the MNLI training set. Hence, we
approximate that it could take at least 50-60 GPU
hours to train all the models needed to replicate
our results. The training times for shallow models
are negligible, since all of them are simple logistic
regression models.

A.5 Counterfactual Inference Visualization

Figure 3 shows how we intervene the causal graph
to create counterfactuals (Ya,x∗ , and Ya∗,x∗) for
calculating causal effects (TE, PDE, and TIE).

 

-

-

-

Figure 3: Graphical interpretation of TE, PDE, and TIE

A.6 Reweighting Techniques Comparison

We use inverse probability weighting (IPW) tech-
nique to reweight the loss function, instead of using
the reweight baseline (Clark et al., 2019) and the
debiased focal loss (Karimi Mahabadi et al., 2020).
Table 5 shows that IPW is superior to the two pre-
vious reweighting techniques. This result gives us
an empirical reason to use IPW over the two other
reweighting methods.

dev-mm HANS
Reweight Baseline 84.88 65.48
(Clark et al., 2019)
Debiased Focal Loss 84.95 65.31
(Karimi Mahabadi et al., 2020)
IPW (Ours) 84.84 66.96

Table 5: Results of different reweighting methods on the
MNLI’s mismatched development set and the HANS
challenge set.

A.7 Effect of Sharpness Control

Table 6 compares the results between counterfac-
tual inference with and without sharpness control.
Sharpness control limits the strength of bias re-
moval. It balances the trade-off between the bias
and the anti-bias performances. Without sharpness
control, the results on the in-distribution test sets
can drop drastically. For example, on FEVER in-
distribution test set, the accuracy of Conf-Reg with
TE inference can drop from 79.22 to 66.83.

A.8 Fine-grained and Qualitative Analyses of
HANS

We utilize ATIE to analyse the baseline BERT-
based model along with the three debiasing tech-
niques. Table 7 shows results for all subcases.
The differences in performances between subcases
are large. Subcases with high error rates are
challenging not only because they contain anno-
tation artifacts, but they are also syntactically am-
biguous. Since the subsequence heuristic has the
lowest accuracy, we examine the three worst per-
forming subsequence subcases (sn_NP/S, sn_NP/Z,
sn_past_participle) and provide qualitative analysis
along with the examples. These subcases contain
“garden-path” sentences. A garden path sentence
contains a group of words with temporary ambi-
guity which can be resolved by reading an entire
sentence.

sn_NP/S

(A1) Premise: The artist believed the scientists
slept.
Hypothesis: The artist believed the scientists.

In example A1, when we only consider “The artist
believed the scientists” part of the premise. We
would conclude that this example is an entailment
class. However, by adding an extra verb “slept” to
the end of the premise, the answer changes from
entailment to non-entailment.
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Method
MNLI Fever QQP
dev-mm HANS dev symm v1 symm v2 dev PAWS

w/ sharpness correction
baseline + TIEA 84.82 66.66 86.46 57.82 64.19 93.97 31.96
Reweighting + TIEA 84.84 68.18 81.87 61.06 63.32 93.02 44.92
PoE + TIEA 84.13 70.94 85.04 61.51 65.73 93.16 45.08
Conf-Reg + TIEA 85.03 68.23 85.01 61.12 66.24 92.62 35.03
wo/ sharpness correction
baseline + TIEA 84.77 ↓ 65.85 ↓ 86.36 ↓ 57.66 ↓ 64.02 ↓ 94.03 ↑ 31.34 ↓
Reweighting + TIEA 84.84 ∼ 67.34 ↓ 82.24 ↑ 60.78 ↓ 63.12 ↓ 93.10 ↑ 44.16 ↓
PoE + TIEA 84.31 ↑ 69.69 ↓ 85.25 ↑ 61.26 ↓ 65.56 ↓ 93.23 ↑ 43.97 ↓
Conf-Reg + TIEA 85.16 ↑ 66.15 ↓ 86.42 ↑ 60.39 ↓ 66.29 ↑ 92.73 ↑ 32.74 ↓
w/ sharpness correction
baseline + TEmodel 84.78 68.08 86.47 58.02 64.30 93.81 35.12
Reweighting + TEmodel 84.80 69.47 81.66 61.28 63.34 92.77 49.36
PoE + TEmodel 83.94 72.24 84.98 61.70 65.67 92.81 50.70
Conf-Reg + TEmodel 84.92 70.99 80.74 61.59 66.26 91.51 58.50
wo/ sharpness correction
baseline + TEmodel 84.12 ↓ 70.46 ↑ 85.96 ↓ 61.31 ↑ 65.90 ↑ 93.41 ↓ 44.44 ↑
Reweighting + TEmodel 84.69 ↓ 71.71 ↑ 73.72 ↓ 62.99 ↑ 62.30 ↓ 91.88 ↓ 55.97 ↑
PoE + TEmodel 83.75 ↓ 73.71 ↑ 79.49 ↓ 62.82 ↑ 64.41 ↓ 91.93 ↓ 56.69 ↑
Conf-Reg + TEmodel 84.53 ↓ 72.49 ↑ 67.41 ↓ 61.42 ↓ 60.76 ↓ 80.52 ↓ 42.21 ↓

Table 6: The effects of sharpness correction compared to the inference performance without the correction. The
vertical arrow (↓, ↑) denotes the performance dropping and increasing when the sharpness correction is removed.

sn_NP/Z

(A2) Premise: After the author paid the actor ran.
Hypothesis: The author paid the actor.

For the premise in example A2, the dependent and
the independent clauses are joined without proper
punctuation causing confusion even for the human.
We hypothesize that by recreating sn_NP/Z with
proper punctuation, the models would have per-
formed better.

sn_past_participle

(A3) Premise: The senators paid in the office
danced.
Hypothesis: The senators paid in the office.

The example A3 contains the main verb/reduce
relative (MV/RR) ambiguity. The word “paid” is a
main verb in the hypothesis. Still, adding “danced”
as a main verb at the end of the premise makes
“paid” in the sentence become a reduced relative
clause for “who were paid.” In other words, "paid"
is a past participle of the premise sentence.

A.9 Definition of Causal Effect
Here we give a definition of causal effect. A causal
effect is the difference between two hypothetical
states of the world. A causal effect can reveal
a comparison between two different treatments.
Given a treatment T (1:treatment , 0: no treatment)

and an outcome Y , for an individual instance, we
say that the treatment T has a causal effect on the
outcome Y , if Y t=1 ̸= Y t=0.

Consider a scenario where one has a headache
and is deciding whether one should buy a drug
to help one feel better (Imbens and Rubin, 2015).
If the headache goes away after taking the drug
(t = 1), we cannot say that the drug has a causal
effect on the headache. What if the headache also
goes away without taking the drug (t = 0)? In this
case, the drug has no causal effect on the headache
Y t=1 = Y t=0. In contrast, the drug has a causal
effect on the headache if the headache does not go
away without taking the drug Y t=1 ̸= Y t=0.
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Baseline Reweight PoE Conf-Reg PoE + TIE PoE + TE
subcase ATIE acc. ATIE acc. ATIE acc. ATIE acc. ATIE acc. ATIE acc.
ce_adverb 0.3134 100.00 0.3141 100.00 0.3094 100.00 0.2305 100.00 0.0248 100.00 0.0729 100.00
ce_after_since_clause 0.3130 100.00 0.3137 100.00 0.3100 100.00 0.2211 100.00 0.0248 100.00 0.0730 100.00
ce_conjunction 0.3127 100.00 0.3133 100.00 0.3079 100.00 0.2252 100.00 0.0246 100.00 0.0722 99.96
ce_embedded_under_since 0.2970 99.30 0.2989 99.56 0.2735 97.96 0.2023 98.18 0.0211 97.02 0.0591 94.66
ce_embedded_under_verb 0.2944 99.68 0.2894 99.26 0.2588 97.40 0.1806 98.52 0.0221 95.36 0.0592 91.68
cn_adverb 0.2316 8.46 0.1933 21.00 0.1220 37.88 0.1135 18.62 0.0146 44.20 0.0278 51.56
cn_after_if_clause 0.3033 0.38 0.3029 0.54 0.2963 0.42 0.2024 1.28 0.0237 0.66 0.0685 1.28
cn_disjunction 0.2860 1.00 0.2657 6.40 0.2078 18.08 0.1713 4.64 0.0162 21.50 0.0406 26.26
cn_embedded_under_if 0.1345 25.26 0.0920 38.84 0.0206 65.84 0.0584 39.02 -0.0018 72.14 -0.0233 80.02
cn_embedded_under_verb 0.1088 39.12 0.0757 51.90 0.0362 62.80 0.0448 49.42 0.0068 68.12 0.0022 74.12
le_around_prepositional_phrase 0.3055 99.84 0.3072 99.84 0.2852 98.88 0.1844 99.50 0.0224 98.56 0.0637 97.94
le_around_relative_clause 0.3011 99.06 0.3025 98.68 0.2833 97.86 0.1885 98.28 0.0225 97.44 0.0638 96.58
le_conjunction 0.2637 93.72 0.2716 94.44 0.2102 84.10 0.1310 83.16 0.0128 81.38 0.0304 77.56
le_passive 0.3113 99.98 0.3111 99.92 0.3103 99.80 0.2626 100.00 0.0245 99.72 0.0724 99.64
le_relative_clause 0.2694 95.10 0.2783 96.62 0.2454 92.62 0.1923 96.84 0.0189 90.02 0.0502 86.84
ln_conjunction -0.0218 82.44 -0.0266 83.72 -0.0583 90.76 -0.0342 87.20 -0.0248 92.52 -0.0925 94.64
ln_passive 0.2427 11.94 0.2526 8.82 0.2132 17.68 0.1791 8.08 0.0120 20.24 0.0290 23.56
ln_preposition -0.0367 86.84 -0.0333 85.70 -0.0511 89.48 -0.0403 89.12 -0.0260 91.22 -0.0960 93.30
ln_relative_clause -0.0170 80.62 -0.0078 77.82 -0.0359 84.74 -0.0286 83.88 -0.0232 87.60 -0.0873 90.60
ln_subject/object_swap -0.0633 93.10 -0.0620 92.78 -0.0786 95.92 -0.0715 95.56 -0.0321 96.72 -0.1146 97.42
se_PP_on_obj 0.3101 99.96 0.3115 100.00 0.2988 99.76 0.2097 100.00 0.0236 99.54 0.0685 99.32
se_adjective 0.3129 100.00 0.3135 100.00 0.3101 100.00 0.2335 100.00 0.0248 100.00 0.0731 100.00
se_conjunction 0.2887 97.44 0.2926 97.92 0.2657 95.16 0.1871 97.40 0.0195 93.62 0.0542 91.90
se_relative_clause_on_obj 0.3113 100.00 0.3128 100.00 0.3017 99.74 0.2133 99.98 0.0238 99.54 0.0696 99.38
se_understood_object 0.3105 100.00 0.3132 100.00 0.3097 100.00 0.2344 100.00 0.0245 99.98 0.0724 99.92
sn_NP/S 0.3049 0.32 0.3046 1.02 0.2889 0.78 0.1962 0.50 0.0234 0.90 0.0665 1.20
sn_NP/Z 0.2895 0.80 0.2944 0.90 0.2548 5.24 0.1724 5.16 0.0180 7.22 0.0492 9.88
sn_PP_on_subject 0.1691 29.88 0.1683 30.50 0.1461 32.74 0.1177 23.42 0.0045 36.36 0.0026 41.34
sn_past_participle 0.2994 1.00 0.2934 2.24 0.2443 6.66 0.1850 1.44 0.0209 8.98 0.0549 13.28
sn_relative_clause_on_subject 0.1941 21.14 0.1966 20.50 0.1723 23.38 0.1499 10.40 0.0111 27.64 0.0225 33.38

Table 7: ATIE and accuracy of each subtask and each debiasing method. The highlighted rows are the three
subsequence subcases with the poorest performances. Note that the first letter of the subcase’s name denotes
its heuristic (lexical overlap, subsequence, constituent). The second letter denotes its ground-truth (entailment,
non-entailment).
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