
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1170–1185
December 7-11, 2022 ©2022 Association for Computational Linguistics

Multilingual Machine Translation with Hyper-Adapters

Christos Baziotis⋆†▽ Mikel Artetxe△ James Cross△ Shruti Bhosale⋆△
▽ Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
△ Meta AI Research, Menlo Park, CA, USA

Abstract

Multilingual machine translation suffers from
negative interference across languages. A com-
mon solution is to relax parameter sharing with
language-specific modules like adapters. How-
ever, adapters of related languages are unable
to transfer information, and their total number
of parameters becomes prohibitively expen-
sive as the number of languages grows. In this
work, we overcome these drawbacks using
hyper-adapters—hyper-networks that generate
adapters from language and layer embeddings.
While past work had poor results when scal-
ing hyper-networks, we propose a rescaling fix
that significantly improves convergence and
enables training larger hyper-networks. We
find that hyper-adapters are more parameter
efficient than regular adapters, reaching the
same performance with up to 12 times less
parameters. When using the same number
of parameters and FLOPS, our approach con-
sistently outperforms regular adapters. Also,
hyper-adapters converge faster than alterna-
tive approaches and scale better than regular
dense networks. Our analysis shows that hyper-
adapters learn to encode language relatedness,
enabling positive transfer across languages.

1 Introduction

Multilingual neural machine translation (MNMT)
models (Ha et al., 2016; Johnson et al., 2017) re-
duce operational costs and scale to a large number
of language pairs (Aharoni et al., 2019) by using a
shared representation space. This approach benefits
low-resource languages through positive transfer
from related languages, but introduces a transfer-
interference trade-off (Arivazhagan et al., 2019)—
as the number of languages grows, the performance
in more resource-rich languages starts to drop.
Prior work shows that constrained model capacity
prevents models from representing all languages

⋆Correspondence to c.baziotis@ed.ac.uk or shru@fb.com
†Work done during an internship at Meta AI

Adapter

Feed-Forward

Self-Attention

Transformer Encoder

N

Adapter

Feed-Forward

Self-Attention

Transformer Decoder

N

Cross-Attention
Hyper-Network

zh

ko
ja

bg
ru uk

en
defr

it es

dec6

dec3

dec1
enc1

enc6

enc4
enc2

source target layer

“[2en] Chinese source sentence”

“English target sentence”

Figure 1: We inject language(-pair)-specific adapters in
MNMT, by generating them from a hyper-network.

equally well (Arivazhagan et al., 2019). While
naively increasing capacity is certain to improve
performance (Arivazhagan et al., 2019; Zhang et al.,
2020), it comes with large computational costs.

A common remedy for the capacity bottle-
neck is to relax the information sharing with lan-
guage-specific parameters (Blackwood et al., 2018;
Sachan and Neubig, 2018; Wang et al., 2019; Tan
et al., 2019; Zhang et al., 2020; Fan et al., 2021).
Adapter modules (Rebuffi et al., 2017) have been
successfully employed in various natural language
processing tasks to address similar capacity-related
issues (Houlsby et al., 2019; Pfeiffer et al., 2020).
In MNMT, adapters have been used to adapt (via
finetuning) pretrained generic models to specific
language-pairs or domains(Bapna and Firat, 2019),
to improve zero-shot performance (Philip et al.,
2020), or to reduce interference (Zhu et al., 2021).

However, using regular language(-pair) adapters
has certain limitations. First, they can be very
parameter-inefficient. While each adapter layer
might be small, the total number of layers is propor-
tional to the number of languages. This quickly be-
comes very costly, in particular in massively multi-
lingual settings. In addition, there is no information
sharing between the adapters of related languages.
For instance, an adapter for Nepali cannot benefit
from the more abundant Hindi data, which prevents
positive transfer between the two languages.

1170

mailto:c.baziotis@ed.ac.uk
mailto:shru@fb.com

In this work, we train MNMT models with
extra language-specific modules generated by a
hyper-network (Ha et al., 2017). We use adapters
for the language-specific modules, dubbed hyper-
adapters, but it is trivial to replace them with any
other architecture. Hyper-adapters (Figure 1) are
a function of jointly trained language and layer
embeddings. This approach naturally encodes lan-
guage relatedness and enables knowledge transfer
between related languages. It also substantially
improves parameter efficiency, as the number of
hyper-adapter parameters is invariant to the num-
ber of languages. We also address optimization
obstacles (Sung et al., 2021) overlooked by prior
work (Karimi Mahabadi et al., 2021; Ansell et al.,
2021), and propose a rescaling fix that improves
convergence and enables us to successfully scale
to large hyper-networks.

We present experiments on a large multilingual
translation benchmark. Unlike prior work (Bapna
and Firat, 2019; Philip et al., 2020) that finetunes
adapters for language-specific adaptation, we train
regular- and hyper-adapters jointly with the main
network. We show that with the same parame-
ter budget and FLOPS, hyper-adapters are con-
sistently better than other regular adapter vari-
ants. We also match the performance of regular
adapters with hyper-adapters up to 12 times smaller.
Hyper-adapters, also converge faster than other ap-
proaches and improve scalability, as small dense
networks with hyper-adapters yield similar results
to larger regular dense networks. Our analysis re-
veals that hyper-adapters do indeed exploit lan-
guage similarity, unlike regular adapters. By com-
paring models on benchmarks with artificially con-
structed properties, we find that the gains of hyper-
adapters grow as the redundancy (e.g., language
similarities) in the training data increases.

Our main contributions are:

1. We present a novel approach that injects
language-specific parameters in MNMT, by
generating them from a hyper-network. We
also successfully train large hyper-networks by
addressing unresolved optimization obstacles.

2. We present multilingual translation experi-
ments. Hyper-adapters consistently outperform
regular adapters with the same parameter count
or match the results of much larger (up to 12x)
regular adapters. They also converge faster and
scale better than other methods.

3. We present an analysis using a series of probes.

We verify that hyper-adapters encode language
relatedness, unlike regular adapters. We also
find that the gains of hyper-adapters are propor-
tional to the redundancy in the training data.

2 Background: Multilingual NMT

In this work, we train universal MNMT models fol-
lowing Johnson et al. (2017). We prepend a special
token ⟨2XX⟩ to the source and target sequences,
that denotes the target language. Given a source
sentence x = ⟨x1, x2, ..., x|x|⟩, a target sequence
y = ⟨y1, y2, ..., y|y|⟩ and a target language token t,
we train our models as follows:

H = encoder([t,x])

S = decoder([t,y,H])

We use the Transformer architecture (Vaswani et al.,
2017) as the backbone of all our models.

2.1 Language-Specific Parameters

With universal MNMT, the issue of negative inter-
ference between unrelated languages emerges, and
high-resource language directions are bottlenecked
by constrained model capacity (Arivazhagan et al.,
2019). A common solution is to extend model ca-
pacity with language-specific modules (Blackwood
et al., 2018; Sachan and Neubig, 2018; Vázquez
et al., 2019; Wang et al., 2019; Lin et al., 2021;
Zhang et al., 2020; Fan et al., 2021).

Adapters In this work, we incorporate language-
specific parameters using adapter modules, as they
are generic and widely adopted by the community
for multilingual or multi-task problems. We follow
the formulation of Bapna and Firat (2019); Philip
et al. (2020), and inject one adapter block after each
Transformer layer, followed by a residual connec-
tion. Let zi ∈ Rdz be the output of the i-th encoder
or decoder layer, where dz is the embedding dimen-
sion of the Transformer model. First, we feed zi to
a LayerNorm sublayer z̄i = LNi(zi|β, γ). Next,
we transform z̄i by applying a down-projection
Di ∈ Rdz×db , followed by a non-linearity ϕ, an
up-projection Ui ∈ Rdb×dz , and a residual connec-
tion, where db is the bottleneck dimensionality of
the adapter. Formally, each adapter is defined as:

adapteri(zi) = Ui(ϕ(Di LNi(zi))) + zi

In this work, we use ReLU as the non-linearity ϕ.

1171

Adapter Variants In MNMT, prior work has
used adapters for language(-pair) adaptation, via
finetuning. In our work, we consider two variants
but train the adapters jointly with the main network.
Preliminary experiments also showed that jointly
training adapters with the main networks yields
better results than finetuning adapters. The first
variant is language-pair adapters (Bapna and Firat,
2019), which uses a different adapter module per
language pair in each encoder and decoder layer.
This approach is effective, but it quickly becomes
prohibitively expensive in a multi-parallel setting1,
as the number of adapter layers scales quadrati-
cally with the number of languages. Next, we
consider (monolingual) language adapters (Philip
et al., 2020), which use one adapter per language.
Specifically, during xx→yy translation, we activate
the adapters for the xx (source) language in the en-
coder and the yy (target) language in the decoder.
Thus, they require fewer adapter layers while also
they generalize to unseen translation directions.

3 Hyper-Adapters

We propose to use a hyper-network (Ha et al.,
2017), a network that generates the weights of an-
other network, to produce the weights of all adapter
modules, dubbed hyper-adapters. As shown in Fig-
ure 2, we use a single hyper-network to generate
adapters for all languages and layers by condition-
ing on (s, t, l) tuples, where s and t denote the
source and target language and l denotes the en-
coder or decoder layer-id (e.g., enc3). Unlike reg-
ular adapters, our approach enables information
sharing across languages and layers, and the hyper-
network can learn to optimally allocate its capacity
across them. Our hyper-network has 3 components:

Input We first embed (s, t, l). We use a shared
matrix for the source and target language embed-
dings, and a separate matrix for the layer-id embed-
dings for all encoder and decoder layers.

Encoder The language and layer embeddings are
given as input to the hyper-network encoder. First,
we concatenate the embeddings and project them
with Win, followed by a non-linearity ϕ2, to obtain
the hyper-network hidden representation h ∈ Rdh :

h = ϕ(Win [s∥t∥l]) (1)

1Multi-parallel refers to a fully many-to-many setting, un-
like the English-centric setting that is {en→X ∪ X→en}.

2In this work we use ReLU.

FeedForward

LayerNorm

Activation

FeedForward

N

Headup

FeedForward

h

Headdown

h

+

Hyper-Network
lts Language embeddings

Layer embeddings

En
co

de
r

Activation z

z!

LayerNorm

+

Hyper-Adapter

Activation

b

FeedForward-down

FeedForward-up

db

reshape

dz

Figure 2: We feed source language, target language and
layer-id embeddings into a shared hyper-network, to
generate adapters weights for all languages and layers.

where ∥ denotes the concatenation operation. We
then pass h through N residual blocks, to encode
high-level interactions between the input features:

enc(hi+1) = W2(ϕ(W1 LN(hi))) + hi (2)

where W1 ∈ Rdh×dh and W2 ∈ Rdh×dh are the
trainable weights of each residual block.

Projections We feed the final representation h
to separate projection heads to obtain (by reshap-
ing their outputs) each weight matrix of a hyper-
adapter. Specifically, we use Hup ∈ Rdh×(dbdz)

to generate the weights for each up-projection
U ∈ Rdb×dz , Hdown ∈ Rdh×(dzdb) to generate the
weights for each down-projection D ∈ Rdm×db .
We also generate the LayerNorm parameters γ ∈
Rdz and β ∈ Rdz , with the projection heads Hγ ∈
Rdh×dz and Hβ ∈ Rdh×dz , respectively.

3.1 Unlocking Large Hyper-networks
Prior work (Karimi Mahabadi et al., 2021; Ansell
et al., 2021) in natural language understanding
(NLU) has used the equivalent of small values of
dh and only considered finetuning. Sung et al.
(2021, Fig. 4), recently found that scaling up hyper-
networks (Karimi Mahabadi et al., 2021) leads to
poor results, which they attributed to unknown op-
timization issues. In preliminary experiments, we
found similar issues when using larger dh values
(i.e., increasing the hyper-network size). We found
that the issues were more pronounced when train-
ing hyper-adapters jointly with the main network

1172

from scratch, and speculate that this is a harder op-
timization problem than training them with a pre-
trained and frozen main network. Next, we identify
the cause of this problem and propose a simple fix
that allows us to effectively scale hyper-adapters.

Figure 3 shows the training loss curve as we
vary dh. We find that increasing the hyper-network
size by increasing dh leads to worse instead of
better performance and also makes training very
unstable. In Figure 4, we plot the average standard
deviation (SD) of the Transformer layer activations
during training, and find that for small dh, the
activations stay within a healthy range, but as we
increase dh, the activations start to grow fast. After
a certain point, the network fails to recover and the
activations grow to extreme values.

To solve this issue, we scale down the gener-
ated adapter weights by 1√

dh
, and generate the

adapter weights as W̃ = reshape(H h√
dh

). Note that,
each component of the generated adapter matrix
W̃ is the dot-product of h and the corresponding
column of a given projection head H . Thus, the
generated weights’ SD is proportional to dh. The
motivation is similar to the scaled dot-product in
Transformer’s self-attention. Once we apply the
rescaling fix, the activations stay within a healthy
range (Figure 4), and increasing dh improves con-
vergence as expected (Figure 3). Note that, in this
work we consider variants with dh > 512, and the
rescaling fix is crucial to unlocking these variants.

3.2 Parameter Efficiency and FLOPS

Given N languages, language adapters introduce
N new modules, whereas language-pair adapters
introduce N2 new modules in a multi-parallel set-
ting or 2N modules in an English-centric many-to-
many setting. By contrast, the number of extra pa-
rameters in hyper-adapters is invariant to both the
number of languages and layers. Most of the param-
eters are in the projection heads. Intuitively, each
row of a head’s weight matrix is equivalent to a (flat-
tened) adapter weight matrix. The number of rows
in each head is equal to the hidden size dh, thus dh

controls its capacity. Therefore, to reduce the mem-
ory needs compared to language adapters we must
use dh < N , and dh < 2N for English-centric
language-pair adapters (details in Appendix B.3).

In terms of computational cost, all adapter and
hyper-adapter variants yield models with the same
FLOPS. This is because, at test time, we acti-
vate only the main network and the corresponding

0 5000 10000 15000 20000
steps

4.5

5.0

5.5

6.0

6.5

7.0

7.5

lo
ss

64d
128d
256d
512d
512d+rescale

Figure 3: Effect of increasing dh on training. Without
rescaling the weights, as we use bigger hyper-networks,
training becomes unstable and the loss increases.

0 5000 10000 15000 20000
steps

102

104

106

108
ac

tiv
at

io
n

st
dd

ev
 (l

og
 s

ca
le

)

64d
128d
256d

512d
512d+rescale

Figure 4: Transformer layer activations as we vary dh.

adapters, with both regular and hyper-adapters hav-
ing identical architecture and size. During training,
hyper-adapters incur an additional cost for gener-
ating the adapter parameters. However, this cost
is negligible in practice, as it is run only once per
batch for each language pair. At test time, the gen-
erated weights can be precomputed and cached.

4 Experimental Setup

Data We present results on ML50 (Tang et al.,
2020), a multilingual translation dataset with 230M
sentences between English and 50 other typolog-
ically diverse languages with data from different
domains, and is larger than comparable publicly
available MNMT datasets (e.g., 4x larger than
OPUS100; Zhang et al. 2020). We concatenate
the En→X and X→En directions, and group lan-
guages based on the amount of their training data
into HIGH (≥1M, 14 languages), MED (≥100K, 17
languages) and LOW (<100K, 19 languages). We
use SentencePiece3 (Kudo and Richardson, 2018)

1173

Model
Params En→X X→En

Mean
Total Extra All High Med Low All High Med Low

Transformer-base 90M - 16.8 20.2 14.3 16.6 23.9 25.3 23.0 23.6 20.3

+lang-adapters 171M 81M 18.1 21.0 15.5 18.3 25.2 26.6 24.8 24.4 21.6
+pair-adapters 250M 159M 18.3 21.5 16.0 18.1 24.7 25.9 24.5 23.8 21.5

+hyper-adapters (17%) 104M 14M 17.9 21.5 15.4 17.5 24.9 26.3 24.1 24.5 21.4
+hyper-adapters (33%) 118M 27M 18.5 22.0 16.0 18.2 25.3 26.6 24.5 25.0 21.9
+hyper-adapters (100%) 173M 83M 19.0 22.2 16.6 18.9 25.7 26.9 25.3 25.0 22.3

Table 1: Results with Transformer-base models and (hyper-)adapter bottleneck size of 128.

to obtain a joint vocabulary of 90k symbols. We
explored smaller and larger vocabularies but em-
pirically found that 90k strikes a good balance be-
tween the number of parameters and translation
quality. Finally, we filter out pairs with more than
250 tokens or with a length ratio over 2.5.

Sampling To obtain a more balanced data dis-
tribution we use temperature-based sampling (Ari-
vazhagan et al., 2019). Assuming that pL is the
probability that a sentence belongs to language L,
we sample sentences for L with a probability pro-
portional to p

1/T
L , where T is a temperature parame-

ter. Larger values of T lead to more even sampling
across languages. During preprocessing, we train
SentencePiece with T=5. During training, we set
T=2 as we observed that with larger values, mod-
els overfit on low-resource languages.

Model Configuration We use the Transformer-
Base architecture (Vaswani et al., 2017) in most of
our experiments, which has 6 encoder and decoder
layers, embedding size of 512, feed-forward filter
size of 2048, 8 attention heads, and 0.1 dropout. To
verify the effectiveness of our approach with more
large-scale models, we also consider an experiment
with the Transformer-Big configuration, which uses
embedding size of 1024, feed-forward filter size of
4096, 16 attention heads, and 0.3 dropout. In all
models, we tie the encoder-decoder embeddings
and the decoder output projections (Press and Wolf,
2017; Inan et al., 2017). All models are imple-
mented in Fairseq (Ott et al., 2019).

Optimization We use Adam (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98, and ϵ =
10−6 and regularize models with label smooth-
ing (Szegedy et al., 2016) with α = 0.1. We train
Transformer-Base models with a learning rate of
0.004 for 360k steps, and Transformer-Big mod-
els with a learning rate of 0.001 for 220k, using a

3We use the unigram model with coverage 0.99995.

linear warm-up of 8k steps, followed by inverted
squared decay. All models are optimized with large
batches of 256k tokens (8k × 32 V100 GPUs). The
training time for all models is similar, ranging from
4 to 5 days, with adapter variants being slightly
slower than their dense counterparts.

Evaluation During training, we evaluate models
every 20k steps and select the checkpoint with the
best validation loss, aggregated across languages.
At test time, we use beam search of size 5. We
evaluate all models using BLEU (Papineni et al.,
2002) computed with SacreBLEU4 (Post, 2018).

Baselines We compare with strong baselines
that incorporate language-specific parameters into
MNMT. We consider two adapter variants that
yield significant improvements over dense MNMT
models, namely (monolingual) language adapters
and language-pair adapters and set their bottle-
neck size to 128. Given that ML50 contains 51
languages in total, language adapters require 612
adapter modules (51× 12), whereas language-pair
adapters require 1224 (i.e., twice as many).

Hyper-adapter Settings We use our proposed
hyper-network to generate hyper-adapters with
identical architecture as their regular adapter coun-
terparts. We consider three hyper-network vari-
ants in our experiments: base (dh = 612), small
(dh = 204) and tiny (dh = 102). They contain
roughly 100%, 33%, and 17% of the parameters of
language adapters5, respectively. We set the size of
the language and layer embeddings to 50 and use 2
layers in the hyper-network encoder.

5 Results

Main Results Table 1 shows our main results.
All the reported results are from single runs,
as MNMT training is computationally expensive.

4BLEU+case.mixed+lang.S-T+numrefs.1+smooth.exp+tok.13a+v1.5.1
5Or 50%, 17% and 8% w.r.t. language-pair adapters

1174

Model
Params En→X X→En

Mean
Total Extra All High Med Low All High Med Low

Transformer-Big 269M - 18.5 21.2 15.7 19.1 25.7 26.6 25.0 25.7 22.1

+lang-adapters 591M 323M 19.6 22.3 17.0 20.0 27.3 28.1 27.0 27.1 23.5
+pair-adapters 902M 633M 20.0 22.9 17.5 20.3 27.0 28.2 27.0 26.3 23.5

+hyper-adapters (tiny) 323M 54M 19.7 22.4 16.8 20.4 27.4 28.0 26.7 27.6 23.5
+hyper-adapters (small) 377M 108M 20.0 22.8 17.2 20.5 27.5 28.3 26.9 27.4 23.7
+hyper-adapters (base) 594M 325M 20.3 22.9 17.6 20.9 27.4 28.3 27.1 27.2 23.9

Table 2: BLEU (↑) scores of the Transformer-big models with (hyper-)adapter bottleneck size of 256.

However, the results are averaged across 50 lan-
guages and 100 translation directions, which makes
them robust to noise. For completeness, we include
the non-aggregate results in the appendix (§ C).

Consistent with prior work on fine-tuning
adapters for MNMT, we find that adding language(-
pair) adapters brings substantial improvements
across the board (Bapna and Firat, 2019; Philip
et al., 2020). However, the dense (Transformer-
Base) baseline has fewer parameters and FLOPS
than all adapter variants.

Hyper-adapters-base consistently outperforms
both regular adapter variants in all directions, while
having the same parameter count as lang-adapters
and half the parameter count of pair-adapters. We
also find that our smaller variants yield very com-
petitive results to regular adapters while being more
parameter efficient. Hyper-adapters-small outper-
forms both regular adapter variants with fewer pa-
rameters, and hyper-adapters-tiny yields compara-
ble results with only 1/6th and 1/12th of the capac-
ity of lang-adapters and pair-adapters, respectively.

In the En→X directions, hyper-adapters-base
outperforms lang-adapters by 0.9 BLEU and pair-
adapters by 0.7 BLEU. Interestingly, we see gains
even in high-resource settings up to +1.2 BLEU, al-
though regular adapters have dedicated capacity for
these language(-pairs). In X→En, hyper-adapter-
base has smaller improvements on medium- and
high-resource languages, but we observe improve-
ments of +1.2 BLEU on low-resource languages.
We hypothesize that the lower improvements on
X→En compared to En→X are partly due to lan-
guage specific capacity being more valuable when
decoding into many different languages.

Regular Adapters We discover interesting trade-
offs between the regular adapter variants. Pair-
adapters are better in En→X, which suggests that
it is beneficial to have dedicated capacity for en-
coding the source-side of each En→X pair. By

50K 100K 150K 200K 250K 300K 350K
steps

4.45

4.50

4.55

4.60

4.65

4.70

4.75

va
lid

at
io

n
lo

ss

lang-adapter
pair-adapter
hyper-adapter

Figure 5: Validation losses of adapter variants. We mark
when each variant reaches the best loss of lang-adapters.

contrast, language-adapters are stronger in X→En.
We believe this is because the (single) decoder-
side English adapter benefits from observing all the
target-side English data, unlike the separate X-En
adapters that see only the target-side English data
of each pair. However, hyper-adapters enjoy the
best of both approaches, while being more efficient.

Convergence In Figure 5, we compare the vali-
dation loss curves of each adapter variant with our
hyper-adapters-base variant, which has the same
size as lang-adapters. We mark the point at which
each variant reaches the best loss of lang-adapters.
First, we observe that hyper-adapters converge to
the best lang-adapters loss at half the number of
steps (87K-vs-174K). This shows that assuming
a fixed parameter budget, hyper-adapters can sig-
nificantly reduce training time. We also find that
regular adapters suffer from overfitting, in particu-
lar pair-adapters. We suspect this is because using
the same capacity for all languages is suboptimal.
Bapna and Firat (2019) proposed to use bottleneck
sizes proportional to the available training data of
a given language pair, which requires tuning. By
contrast, hyper-adapters automatically learn to al-
locate their available capacity as needed.

1175

Model Org Sim Dist Acc ↑
+lang-adapters 34.1 19.0 6.5 0.56
+pair-adapters 33.7 18.0 5.6 0.53
+hyper-adapters (base) 34.8 21.7 4.9 0.62

Table 3: BLEU (↑) scores of models on the X→En
adapter relatedness probe. Org, Sim, Dist, refer to using
the original, similar, and distant source languages, re-
spectively, while Acc denotes the ratio Sim/Org.

Large-Scale Models We also evaluate models us-
ing the Transformer-Big architecture. In these ex-
periments, we set the bottleneck size in all adapter
and hyper-adapter variants to 256. We report re-
sults in Table 2. Overall, we observe similar trends
across models as with the Transformer-Base archi-
tecture, although the gains of hyper-adapters are
smaller. We believe this is because we only scale
up the main network, while keeping constant the
amount of training data. Therefore, this mitigates
the negative interference by reducing the capacity
bottleneck, and leaves less room for improvement
for language-specific modules, like hyper-adapters.

To our surprise, we find that hyper-adapter-base
with the Transformer-Base architecture (Table 2)
achieves comparable results with the Transformer-
Big baseline, while having significantly fewer pa-
rameters (173M-vs-269M) and a smaller compu-
tation cost. This suggests that hyper-adapters are
more effective for addressing negative interference
than naively scaling up dense networks.

6 Analysis

This section investigates why hyper-adapters out-
perform regular adapters. Specifically, we focus on
how well each adapter variant encodes language re-
latedness and how it is affected by the redundancy
in the training data (i.e., similarities between the
data of different languages). We also explore how
modifications in the hyper-network architecture af-
fect the final model performance.

6.1 (Hyper-)Adapter Language Relatedness
We design a probe (Table 3), that explicitly com-
pares the ability of regular-vs-hyper adapters to en-
code language relatedness. At test time, instead of
using the adapters of the original source language,
we activate the adapters of another similar, or dis-
tant, language.6 We focus on X→En, as we found
that changing the target language produced very
low BLEU scores, making comparisons unreliable.

6For hyper-adapters, we change the source language-id s.

Model
Original Artificial

Param BLEU Param BLEU (∆)

Transformer-Base 90M 23.9 90M 23.7 (-0.2)
+lang-adapters 114M 24.7 167M 23.8 (-0.9)
+pair-adapters 135M 24.8 240M 23.9 (-0.9)
+hyper-adapters 114M 24.9 114M 24.9 (-0.0)

Table 4: BLEU (↑) scores on the original-vs-artificial
ML15 splits.

We select 4 low-resource languages which have
a similar high-resource neighbour in our dataset,
namely {af→nl, pt→es, gl→pt, uk→ru}. Also,
we consider replacement with “zh”, which is high-
resource but distant to all 4 source languages.

When using related languages, hyper-adapters
suffer less than regular-adapters, as they recover
more (62%) of their original BLEU. Pair-adapters
yield worse results than lang-adapters, presumably
due to having weaker target-side (X-En) adapters.
When using an unrelated language, hyper-adapters
suffer the most. These findings further support that
our hyper-networks encode language relatedness.

6.2 The Role of Data Redundancy

We have hypothesized that our hyper-network ex-
ploits similarities (i.e., redundancies) in the data, to
produce similar adapters for similar languages and
avoid encoding redundant features. This implies
that hyper-adapters would “degenerate” into regu-
lar adapters if the training data contained only dis-
tant languages. To test this hypothesis, we create
two different splits out of ML50, with and without
similar languages. First, we select 14 (+English)
relatively unrelated languages and create ML157.
Then, we create another version of ML15, that em-
ulates a dataset with similar languages. We split
the data of each language into smaller parts (e.g.,
fr1, fr2, . . . , frN) which we treat as different lan-
guages, which results in 47 artificial languages.

Table 4 shows the results. We observe that in the
original ML15 version, regular- and hyper-adapters
achieve similar results. In contrast, in the frag-
mented ML15 version, regular adapters suffer sig-
nificantly as they cannot share information, un-
like hyper-adapters that are unaffected. These find-
ings show that the gains of hyper-adapters are pro-
portional to the redundancies in the training data.
Thus, we expect that the gap between regular- and
hyper-adapter will grow as the number of related
languages (or their data) grows. Note that, as the ar-
tificial ML15 has more languages, regular adapters

1176

af

ar

az

bn

cs

de

es
et

fa

fi

fr

gl

gu

he

hi

hr

id

it
iu

ja

ka

kk

km

ko

lt

lv

mk

ml

mn

mr

my

ne

nl

pl

ps
pt

ro

ru

si

sl

sv

ta

te

th

tr

uk

ur

vi xh

zh

Afro-Asiatic
Austro-Asiatic
Balto-Slavic
Dravidian
Germanic
Indo-Aryan

Romance
Sino-Tibetan+Kra-Dai
Other
Turkic
Uralic

Figure 6: Plot of hyper-network language embeddings.

Model En→X X→En Mean

Linear 17.3 24.4 20.8
Non-Linear 18.2 25.0 21.6
Non-Linear + 2 ResBlocks 18.5 25.2 21.8

Table 5: Comparison of encoding methods with
Transformer-base models trained for 160K steps.

require more layers and thus more parameters.

6.3 Hyper-Network Embeddings

In Figure 6, we visualize the language embed-
dings of our hyper-adapters-tiny variant using
UMAP (McInnes et al., 2018). We observe that
the hyper-network embeds languages that belong
to the same family close to each other. This is an-
other piece of evidence that hyper-adapters encode
language relatedness.

6.4 Hyper-Network Encoder

In Table 5, we compare different methods for en-
coding the hyper-network inputs (s, t, l) for ob-
taining the hyper-network output representations h
(i.e., before generating the hyper-adapter weights).
We find that using only one linear layer is subop-
timal, and stacking multiple non-linear layers is
important. Specifically, adding a non-linearity to
Eq. 1 (we used ReLU) improves performance, and
stacking more layers helps even further (Eq. 2). We
speculate this allows the input features to better in-
teract with each other. In preliminary experiments,

7The languages of ML15 are {en, fr, zh, hi, lt, iu, et, ro, nl,
it, ar, tr, km, vi, uk}. We include more details in Appendix A.

Model Supervised Zero-Shot

En→X X→En Direct Pivot

Transformer-Base 16.2 23.1 12.3 16.5
+lang-adapters 17.9 24.9 13.1 18.8

+ hyper-adapters (base)

enc=(s, t) dec=(s, t) 18.5 25.1 1.7 19.4

enc=(s, t) dec=(t) 18.6 25.2 8.7 19.6
+ dropout=0.1 18.3 25.0 11.4 19.3
+ dropout=0.2 18.1 25.0 11.7 18.8

enc=(s) dec=(t) 17.8 25.2 13.8 19.1
+ dropout=0.1 17.7 25.1 13.7 18.7
+ dropout=0.2 17.5 24.8 12.9 18.8

Table 6: Effect of different hyper-network input combi-
nations on zero-shot translation. The layer embedding l
is always used and is omitted for brevity.

we found that stacking more than 2 layers did not
produce consistent improvements.

6.5 Zero-Shot Translation

In this analysis (Figure 6), we investigate the zero-
shot capabilities of different hyper-adapter variants.
Specifically, we mask either the source or target lan-
guage in the hyper-network’s input (s, t, l) when
generating the encoder or decoder hyper-adapters.
We train models for 160k steps to reduce train-
ing time. This means that hyper-adapter haven’t
fully converged (Figure 5), unlike regular adapters.
However, we are interested in comparing different
hyper-adapter variants to each other and include
lang-adapters only for context.

Test Data To compute the zero-shot results we
use the 15 translation combinations between Ara-
bic, Chinese, Dutch, French, German, and Russian,
following the setup of Zhang et al. (2020). We
use the devtest splits from the FLORES-200 multi-
parallel evaluation benchmark (Goyal et al., 2022;
NLLB-Team et al., 2022). Each test set contains
3001 sentences from Wikipedia articles. We evalu-
ate models both in direct zero-shot (i.e., X→Y) and
pivot zero-shot through English (i.e., X→En→Y).
Note that pair-adapters cannot do direct zero-shot
translation by definition.

Results Hyper-adapters fail at direct zero-shot
translation when using both s and t in the hyper-
network for both the encoder and decoder hyper-
adapters. Masking s in decoder hyper-adapters
yields a significant boost, which is further increased
by masking t in encoder hyper-adapters. This
reveals a trade-off between supervised and zero-

1177

shot translation. Removing the target language
information from encoder hyper-adapters harms
En→X translation, which is reflected in the pivot-
based zero-shot translation. However, removing the
source language information from decoder hyper-
adapters has no effect on supervised translation, al-
though it improves zero-shot. These results suggest
that the “enc=(s, t) dec=(s, t)” variant behaves
similar to language-pair adapters, which cannot do
zero-shot, whereas the “enc=(s) dec=(t)” variant
behaves similar to language-adapters. In our ex-
periments, we use the “enc=(s, t) dec=(t)” variant,
which strikes a good balance.

We also explore adding dropout inside the hyper-
network layers, to produce more robust represen-
tations h, but not in the generated hyper-adapters.
We observe small negative effects in the supervised
setting, but mixed results in the zero-shot setting.
In particular, in the “enc=(s, t) dec=(t)” variant,
dropout significantly improves zero-shot. These re-
sults suggest that there is room for improvement in
this direction, but we leave this for future work.

7 Related Work

Platanios et al. (2018) explored an idea similar to
hyper-networks in MNMT with the so-called “con-
textual parameter generation” to promote informa-
tion sharing across languages, by generating the
weights of an RNN-based (Bahdanau et al., 2015)
MNMT model from language embeddings. By con-
trast, we consider a hybrid approach that generates
only a few (language-specific) modules, instead of
generating all the layers of a Transformer model,
which introduces a large computational overhead.

Another approach is combining hyper-networks
with pretrained models. In NLU, Karimi Mahabadi
et al. (2021) generate task-specific adapters from
task embeddings. Tay et al. (2021) use a hyper-
network to learn grid-wise projections for different
tasks. Ye and Ren (2021) extend text-to-text Trans-
formers (Raffel et al., 2020) to unseen tasks by gen-
erating adapters from task descriptions.

In multilingual dependency parsing, Üstün et al.
(2020) generate adapters for the biaffine atten-
tion from language representations in linguistic
databases. Ansell et al. (2021) also use linguistic
databases for cross-lingual NLU, and extend Pfeif-
fer et al. (2020) by generating language adapters
for unseen languages. In concurrent work, (Üstün
et al., 2022) consider a conceptually similar ap-
proach to our work for multi-task multilingual

transfer in NLU tasks.
Unlike prior work, (1) we identify and solve opti-

mization issues overlooked by other hyper-network-
based methods, (2) we train regular- and hyper-
adapters jointly with the main network instead of
using them for finetuning, and (3) we focus on
NMT, which is a more complex generation task in-
stead of the relatively simpler NLU tasks.

8 Conclusion

In this work, we extend the capacity of MNMT
models with hyper-adapters, which are language-
specific adapter modules generated from a hyper-
network. By resolving optimization issues not ad-
dressed by prior work, we successfully train large
hyper-networks from scratch jointly with the rest
of the main network on MNMT (§3.1).

We show that hyper-adapters consistently outper-
form other regular adapter variants across transla-
tion directions and model sizes (§5), while improv-
ing parameter efficiency. We also observe compu-
tational efficiency gains, as a smaller Transformer-
Base model with hyper-adapters gives similar re-
sults to the dense Transformer-Big model, which
is computationally more expensive and requires
more parameters. Besides improvements in transla-
tion quality, hyper-adapters achieve faster training
convergence as shown in §5. Our analysis shows
that, unlike regular adapters, hyper-networks en-
able positive transfer across the hyper-adapters of
similar languages, by encoding language related-
ness (§6.1,6.3) and exploiting redundancies (i.e.,
language similarities) in the training data (§6.2).
Finally, by manipulating the input of the hyper-
network we discover that there is a trade-off be-
tween the zero-shot and supervised translation per-
formance of hyper-adapters (§6.5).

Limitations

Modeling As mentioned in Section 3.2, one
limitation of hyper-adapters, compared to regular
adapters, is that they introduce a small computa-
tional overhead during training. Specifically, in
each batch, we need to do one pass through the
hyper-network to generate the hyper-adapter pa-
rameters. This cost is proportional to the size of the
hyper-network and the total number of transformer
layers (and thus the hyper-adapter layers to gener-
ate). In this work, we found that this cost was neg-
ligible, as the number of total transformer layers is
small (12) and 2-layer deep hyper-network was suf-

1178

ficient to obtain good results. Besides, the parame-
ter generation cost only affects training time. Once
the training is completed we can pre-generate and
cache all the hyper-adapter modules, thus obtain-
ing identical inference cost with regular adapters.

Data In our experiments, we use only the ML50
dataset, which is relatively larger than those used
in prior works. However, ML50 contains only
English-centric parallel data and real-world multi-
lingual datasets can be much larger, noisy, and di-
verse (NLLB-Team et al., 2022; Bapna et al., 2022).

Acknowledgments

We thank Angela Fan, Myle Ott, Vedanuj Goswami,
and Naman Goyal for all their help and advice
during this project.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3874–3884,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
Korhonen. 2021. MAD-G: Multilingual adapter gen-
eration for efficient cross-lingual transfer. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4762–4781, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
International Conference on Learning Representa-
tions, San Diego, CA, USA.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
rat, Daan van Esch, Aditya Siddhant, Mengmeng Niu,
Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey,
et al. 2022. Building machine translation systems
for the next thousand languages. arXiv preprint
arXiv:2205.03983.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Graeme Blackwood, Miguel Ballesteros, and Todd
Ward. 2018. Multilingual neural machine translation
with task-specific attention. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3112–3122, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Oscar Chang, Lampros Flokas, and Hod Lipson. 2020.
Principled weight initialization for hypernetworks.
In International Conference on Learning Representa-
tions.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, Naman Goyal, Tom Birch, Vitaliy
Liptchinsky, Sergey Edunov, Michael Auli, and Ar-
mand Joulin. 2021. Beyond english-centric multilin-
gual machine translation. Journal of Machine Learn-
ing Research, 22(107):1–48.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 9 of Proceedings of Machine Learning
Research, pages 249–256, Chia Laguna Resort, Sar-
dinia, Italy. PMLR.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine transla-
tion with universal encoder and decoder. In Inter-
national Workshop on Spoken Language Translation
(IWSLT), Seattle, USA.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifica-
tion. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026–
1034.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea

1179

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.18653/v1/2021.findings-emnlp.410
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://aclanthology.org/C18-1263
https://aclanthology.org/C18-1263
https://openreview.net/forum?id=H1lma24tPB
http://jmlr.org/papers/v22/20-1307.html
http://jmlr.org/papers/v22/20-1307.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://openreview.net/forum?id=rkpACe1lx

Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proceed-
ings of the International Conference on Learning
Representations.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
Multilingual Neural Machine Translation System:
Enabling Zero-Shot Translation. Transactions of the
Association for Computational Linguistics, 5:339–
351.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576, Online. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations, San Diego, CA, USA.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Zehui Lin, Liwei Wu, Mingxuan Wang, and Lei Li.
2021. Learning language specific sub-network for
multilingual machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 293–305, Online.
Association for Computational Linguistics.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold approx-
imation and projection. Journal of Open Source Soft-
ware, 3(29):861.

NLLB-Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau

Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 311–318.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Jerin Philip, Alexandre Berard, Matthias Gallé, and Lau-
rent Besacier. 2020. Monolingual adapters for zero-
shot neural machine translation. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 4465–
4470, Online. Association for Computational Lin-
guistics.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Gra-
ham Neubig, and Tom Mitchell. 2018. Contextual
parameter generation for universal neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 425–435, Brussels, Belgium. Association
for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163, Valencia,
Spain. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

1180

https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/2021.acl-long.25
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025

Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Devendra Sachan and Graham Neubig. 2018. Parame-
ter sharing methods for multilingual self-attentional
translation models. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers,
pages 261–271, Brussels, Belgium. Association for
Computational Linguistics.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2021.
Vl-adapter: Parameter-efficient transfer learning
for vision-and-language tasks. arXiv preprint
arXiv:2112.06825.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and
Tie-Yan Liu. 2019. Multilingual neural machine
translation with language clustering. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 963–973, Hong
Kong, China. Association for Computational Linguis-
tics.

Y. Tang, C. Tran, Xian Li, Peng-Jen Chen, Naman
Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela
Fan. 2020. Multilingual translation with extensi-
ble multilingual pretraining and finetuning. ArXiv,
abs/2008.00401.

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, and Da-
Cheng Juan. 2021. Hypergrid transformers: Towards
a single model for multiple tasks. In International
Conference on Learning Representations.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, Gertjan
van Noord, and Sebastian Ruder. 2022. Hyper-x:
A unified hypernetwork for multi-task multilingual
transfer. arXiv preprint arXiv:2205.12148.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Raúl Vázquez, Alessandro Raganato, Jörg Tiedemann,
and Mathias Creutz. 2019. Multilingual NMT with a
language-independent attention bridge. In Proceed-
ings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019), pages 33–39, Florence,
Italy. Association for Computational Linguistics.

Xinyi Wang, Hieu Pham, Philip Arthur, and Graham
Neubig. 2019. Multilingual neural machine transla-
tion with soft decoupled encoding. In International
Conference on Learning Representations.

Qinyuan Ye and Xiang Ren. 2021. Learning to gener-
ate task-specific adapters from task description. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 646–653,
Online. Association for Computational Linguistics.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Linguis-
tics.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingx-
uan Wang, and Lei Li. 2021. Counter-interference
adapter for multilingual machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 2812–2823, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

1181

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/D19-1089
https://doi.org/10.18653/v1/D19-1089
https://openreview.net/forum?id=hiq1rHO8pNT
https://openreview.net/forum?id=hiq1rHO8pNT
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W19-4305
https://doi.org/10.18653/v1/W19-4305
https://openreview.net/forum?id=Skeke3C5Fm
https://openreview.net/forum?id=Skeke3C5Fm
https://doi.org/10.18653/v1/2021.acl-short.82
https://doi.org/10.18653/v1/2021.acl-short.82
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2021.findings-emnlp.240
https://doi.org/10.18653/v1/2021.findings-emnlp.240

Language Sentences # Splits

fr_XX 38,507,539 5
zh_CN 11,173,646 5
hi_IN 1,450,114 5
lt_LT 1,402,892 5
iu_CA 1,109,076 5
et_EE 1,064,974 5
ro_RO 600,019 5
nl_XX 232,038 2
it_IT 226,385 2
ar_AR 225,678 2
tr_TR 203,702 2
km_KH 183,934 2
vi_VN 127,117 1
uk_UA 104,021 1

Table 7: Statistics of the Ml15 dataset, include the num-
ber of splits per language in the artificial version.

A ML15 Dataset

In Table 7, we show the statistics of the ML15
dataset. It includes 14 (+English) medium- to high-
resource languages from ML50, that are relatively
distant from each other. We also create another
version of this dataset, in which we split each lan-
guage into smaller parts and consider each one of
them as a different language. We aim to have ap-
proximately 100k sentences per split with at most
5 splits per language, to prevent the number of arti-
ficial languages from becoming too large.

In Figure 7, we visualize the hyper-network lan-
guage embeddings of the model trained on the frag-
mented version of ML15 with the artificial lan-
guages. The plot clearly demonstrates that the
hyper-network is able to capture the fact that all
the artificial splits of a given language are similar
to each other. Based on that, it is able to avoid re-
learning the same features, while also exploiting
the all the available (related) data to learn to gener-
ate more powerful hyper-adapters.

B Hyper-Network Architecture

B.1 Initialization
Classical weight initialization methods (Glorot and
Bengio, 2010; He et al., 2015), when used to ini-
tialize a hyper-network, fail to produce weights for
the main network on the correct scale. We explore
a simple and generic solution to properly initialize
each hyper-network head.

First, we initialize a given projection head H
with a regular initialization method. Then, we also
randomly initialize another (temporary) weight ma-
trix, with the same dimensions as the adapter ma-

ar1
ar2

et1
et2

et3
et4

et5

fr1
fr2

fr3fr4

fr5

hi1
hi2

hi3
hi4

hi5

it1
it2

iu1
iu2

iu3iu4
iu5

km1
km2

lt1lt2lt3
lt4

lt5

nl1nl2

ro1
ro2ro3

ro4 ro5

tr1tr2

uk1

vi1

zh1

zh2
zh3 zh4zh5

Afro-Asiatic
Austro-Asiatic
Balto-Slavic
Dravidian
Germanic
Indo-Aryan

Romance
Sino-Tibetan+Kra-Dai
Other
Turkic
Uralic

Figure 7: Plot of hyper-network language embeddings
trained on the fragmented version of ML15 with the
artificial languages.

trix we want to generate from H , and compute its
standard deviation σa. Recall that, we want H
to generate adapter weights in the target scale of
σa. Next, we feed a random input (s, t, l) into the
hyper-network, generate the hyper-adapter weight
matrix, and compute its standard deviation σh. Fi-
nally, we re-scale the original weights of H as

H ′ = H ⊙ σa

σh

which ensures that the next time the projection head
H will generate a weight matrix, it will have values
within the desired scale. In our experiments, we
found that this hyper-network aware initialization
was helpful only when not using our proposed re-
scaling (§ 3.1). However, once we employ the re-
scaling, all models converge to the same results
regardless of initialization.

Chang et al. (2020) first pointed out the impor-
tance of properly initialing a hyper-network. How-
ever, while their proposed initialization is princi-
pled, it requires to be computed analytically for
each source→target layer mapping. By contrast,
our method simply initializes a target layer and nu-
merically adjusts the weights of the hyper-network,
which works for arbitrary layer architectures.

B.2 LayerNorm Generation

In regular LayerNorm, we initialize the scaling
parameters γ with 1 and the shifting parameters
β with 0. However, when we generate γ̃, β̃ from

1182

Model
Params En→X X→En

Mean
Total Extra All High Med Low All High Med Low

Transformer-Base 90M - 41.7 45.3 40.6 40.1 47.8 53.0 46.8 44.7 44.7

+lang-adapters 171M 81M 43.1 46.2 42.0 41.8 49.2 54.4 48.7 45.8 46.1
+pair-adapters 250M 159M 43.6 46.8 42.9 42.0 48.9 54.2 48.7 45.3 46.3

+hyper-adapters (tiny) 104M 14M 42.7 46.5 41.5 40.9 48.6 53.9 47.7 45.6 45.7
+hyper-adapters (small) 118M 27M 43.5 46.9 42.4 41.9 48.9 54.2 48.0 45.8 46.2
+hyper-adapters (base) 173M 83M 44.2 47.2 43.3 42.8 49.4 54.3 48.8 46.3 46.8

Table 8: ChrF (↑) scores of the Transformer-base models with (hyper-)adapter bottleneck size of 128.

the hyper-network, their values (initially) will be
zero-mean as they are the activations of a randomly
initialized projection. This can cause convergence
issues, because if the values of γ̃ are close to zero,
then the inputs z would be scaled down close to
zero, thus slowing down convergence. To address
this issue, we increment the generated weights for
γ̃ by +1, to ensure that they have the desired scale:

LN(zi|γ̃, β̃) =
zi − µzi

σzi

⊙ (γ̃+1) + β̃

where 1 denotes a vector of ones.

B.3 Parameter Efficiency

In this section, we discuss the parameter efficiency
of each (hyper-)adapter variant in greater detail.
For brevity, we ignore the (negligible) LayerNorm
parameters.

Regular Adapters Each adapter block has an up-
and a down-projection with equal parameters and
total capacity Cblock = dzdb + dbdz = 2dzdb. Lan-
guage adapters add Clang = N · L · Cblock new pa-
rameters into an MNMT model, where N is the
number of languages and L the number of (en-
coder+decoder) layers. Language-pair adapters, in-
troduce Cpair = N2 · L · Cblock new parameters in
a multi-parallel many-to-many setting, or Cpair =
2N · L · Cblock = 2 · Clang new parameters in an
English-centric8 many-to-many setting.

Hyper-Adapters A benefit of hyper-adapters, is
that their number of parameters is invariant to both
the number of languages N and layers L. Most of
the parameters are in the projection heads of the
hyper-network. Intuitively, each row of a head’s
weight matrix is equivalent to a (flattened) adapter
weight matrix. The number of rows in a head
is equal to hidden size dh of the hyper-network.

8Concatenation of English→X and X→English directions.

Therefore, dh controls the hyper-network capacity:

Chyper = dh(dzdb)︸ ︷︷ ︸
Head-down

+dh(dbdz)︸ ︷︷ ︸
Head-up

= dh · Cblock

For example, in a dataset with N = 50 languages
with a Transformer model with total L = 12 layers,
language adapters introduce 600 adapter blocks. If
we set dh = 600, then hyper-adapters introduce the
same number of parameters, whereas using dh <
N · L yields parameter savings. The parameter
savings with respect to language adapters are dh

N ·L ,
and to English-centric pair-adapters are dh

2N ·L . The
hyper-network embeddings and encoder contain a
comparatively negligible amount of parameters.

C Additional Results

This section contains additional results for the main
experiments in Section 5 with the Transformer-
Base models. Table 8 shows results measured with
ChrF (Popović, 2015). Overall, we observe that
the results are consistent with the BLEU scores
reported in Table 1 in the main paper. In Tables 9
and 10, we report the non-aggregated BLEU scores
for the en→X and X→en pairs, respectively.

1183

Language Transformer-Base
+adapters

lang pair hyper (base) hyper (base) hyper (base)

en→af 17.1 16.1 15.7 16.2 15.6 15.4
en→ar 11.5 13.4 14.0 12.5 13.3 14.0
en→az 6.8 7.1 7.3 7.9 8.1 7.5
en→bn 11.2 13.0 12.5 11.0 11.9 12.5
en→cs 19.6 20.6 20.7 20.8 20.8 21.2
en→de 34.3 35.2 36.0 36.1 36.6 36.8
en→es 26.6 28.9 28.5 28.6 29.1 29.3
en→et 15.8 16.8 17.5 17.0 17.1 17.8
en→fa 14.3 15.2 15.8 14.9 15.2 16.2
en→fi 16.8 17.7 18.7 17.8 18.9 18.9
en→fr 34.1 34.4 35.1 35.0 35.4 35.2
en→gl 25.0 26.0 23.3 25.8 26.8 26.3
en→gu 0.4 0.4 0.3 0.2 0.1 0.2
en→he 22.6 25.2 26.5 24.1 25.4 27.2
en→hi 14.9 15.8 16.9 16.5 16.7 17.1
en→hr 25.0 28.1 28.5 27.0 28.4 29.2
en→id 29.6 32.4 32.3 31.5 32.5 33.2
en→it 30.1 32.0 32.7 31.8 32.9 34.3
en→iu 14.3 14.5 14.9 14.5 14.6 15.1
en→ja 14.4 14.5 14.5 15.0 14.5 15.6
en→ka 11.0 12.5 11.5 11.5 12.1 12.9
en→kk 4.5 4.7 4.9 3.8 5.0 5.2
en→km 0.0 0.1 0.1 0.0 0.1 0.1
en→ko 5.2 6.0 6.0 5.6 5.9 6.3
en→lt 11.2 12.2 11.9 12.0 12.6 12.6
en→lv 13.9 14.7 15.5 15.2 15.6 16.1
en→mk 23.9 25.8 24.8 24.1 25.6 26.7
en→ml 4.7 4.9 5.8 4.9 4.9 5.7
en→mn 6.7 8.0 7.3 7.8 7.7 8.2
en→mr 9.0 12.0 11.4 10.2 11.4 11.8
en→my 21.5 22.4 21.9 21.9 22.5 23.0
en→ne 6.1 5.9 5.4 6.2 6.4 5.8
en→nl 26.5 29.4 29.8 28.5 29.6 30.6
en→pl 19.8 20.6 20.6 20.8 21.4 21.4
en→ps 6.1 6.5 7.0 6.6 6.6 7.6
en→pt 34.4 37.8 37.6 36.7 38.2 39.0
en→ro 22.1 23.7 24.2 23.5 24.2 24.5
en→ru 22.4 23.1 23.7 24.0 24.4 24.1
en→si 0.8 1.7 2.0 1.0 1.5 2.4
en→sl 19.2 20.8 20.5 20.5 21.4 21.8
en→sv 30.5 34.9 35.6 33.3 34.8 35.9
en→ta 6.3 6.6 6.8 6.4 6.9 7.0
en→te 21.5 24.1 25.9 21.9 22.8 23.9
en→th 16.8 18.6 19.2 17.4 18.3 19.7
en→tr 14.1 15.5 16.5 15.5 16.2 16.8
en→uk 20.3 21.6 21.2 21.5 21.9 22.3
en→ur 13.9 17.9 18.7 14.6 16.5 18.9
en→vi 27.1 28.6 29.2 28.3 28.6 30.0
en→xh 12.4 12.7 12.2 12.8 12.8 12.9
en→zh 24.1 25.6 25.9 25.7 26.4 26.5

Table 9: BLUE (↑) scores of the Transformer-base models on the en→X pairs of ML50.

1184

Language Transformer-Base
+adapters

lang pair hyper (base) hyper (base) hyper (base)

a→en 27.4 26.0 26.0 30.3 29.1 27.5
ar→en 29.8 32.7 32.6 31.1 31.9 33.0
az→en 15.1 15.1 14.7 15.8 16.1 15.3
bn→en 17.6 17.9 16.5 19.6 18.8 19.9
cs→en 26.5 27.3 26.4 27.5 27.5 27.5
de→en 35.6 37.1 36.6 36.4 36.7 37.4
es→en 29.1 30.5 27.5 29.1 29.6 29.0
et→en 22.8 24.2 23.1 24.0 24.3 24.8
fa→en 27.3 30.5 29.3 28.2 28.6 30.6
fi→en 22.7 24.9 23.9 24.2 24.8 25.1
fr→en 33.9 34.6 34.0 34.8 34.9 35.0
gl→en 34.7 33.7 33.5 35.9 35.7 34.5
gu→en 2.3 1.1 0.9 2.4 2.3 2.2
he→en 35.4 38.6 37.9 36.1 36.8 38.4
hi→en 20.5 20.9 20.4 21.4 21.2 21.8
hr→en 37.0 40.1 39.6 38.5 38.9 39.9
id→en 31.5 34.9 34.5 33.1 33.7 34.7
it→en 36.9 39.5 39.2 38.2 39.0 39.9
iu→en 24.5 26.7 26.4 25.1 25.7 27.3
ja→en 14.4 15.6 15.2 15.6 15.6 15.8
ka→en 23.2 23.3 21.5 23.0 23.6 23.6
kk→en 13.3 12.8 12.1 12.5 13.4 13.3
km→en 6.3 6.7 5.7 6.3 6.0 7.3
ko→en 15.6 17.2 16.9 16.5 16.3 17.4
lt→en 25.7 28.0 27.6 26.9 27.1 27.8
lv→en 17.9 19.1 19.0 19.0 19.2 19.2
mk→en 35.6 37.0 36.1 36.9 36.8 37.0
ml→en 13.5 16.0 15.7 14.0 14.5 15.5
mn→en 10.5 11.0 11.3 10.8 11.9 11.6
mr→en 12.8 13.1 12.3 13.7 13.7 14.0
my→en 24.6 25.5 24.2 25.7 25.6 26.2
ne→en 15.7 13.9 13.6 15.8 15.3 14.2
nl→en 32.9 35.1 34.8 33.9 34.3 35.4
pl→en 25.9 26.4 26.1 26.7 27.2 26.7
ps→en 11.0 10.8 13.2 12.2 12.4 12.8
pt→en 42.4 44.8 44.1 44.0 44.3 45.2
ro→en 31.5 34.1 33.5 32.9 33.7 34.8
ru→en 34.2 35.2 34.8 34.5 35.1 35.3
si→en 8.4 10.4 10.0 8.8 9.3 10.3
sl→en 28.1 28.4 28.7 29.6 28.9 29.8
sv→en 39.9 43.2 42.6 41.2 42.3 43.1
ta→en 15.1 16.0 15.6 16.2 16.2 15.9
te→en 30.3 33.8 32.8 30.9 31.7 33.8
th→en 23.8 25.8 24.8 24.2 24.7 25.5
tr→en 18.4 20.4 20.2 19.5 19.6 20.3
uk→en 30.0 31.6 31.2 30.7 31.3 32.0
ur→en 22.4 24.6 24.5 22.3 23.8 25.0
vi→en 26.4 28.1 27.8 27.5 27.8 28.0
xh→en 12.2 11.7 11.5 12.0 12.6 12.6

Table 10: BLUE (↑) scores of the Transformer-base models on the X→en pairs of ML50.

1185

