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Abstract

State-of-the-art deep-learning-based ap-
proaches to Natural Language Processing
(NLP) are credited with various capabilities
that involve reasoning with natural language
texts. In this paper we carry out a large-scale
empirical study investigating the detection
of formally valid inferences in controlled
fragments of natural language for which the
satisfiability problem becomes increasingly
complex. We find that, while transformer-
based language models perform surprisingly
well in these scenarios, a deeper analysis re-
veals that they appear to overfit to superficial
patterns in the data rather than acquiring the
logical principles governing the reasoning in
these fragments.

1 Introduction

The recent success of neural networks in a range
of tasks connected with logical inference in natu-
ral language is remarkable. Foremost among such
systems are those employing transformer-based lan-
guage models (Vaswani et al., 2017) optimised on
large corpora in an unsupervised manner (Devlin
et al., 2019) and then further fine-tuned on task-
specific datasets (Bowman et al., 2015; Rajpurkar
et al., 2016). However, concerns persist regarding
so-called “data-set artefacts” (Gururangan et al.,
2018; Schlegel et al., 2022, 2020). Have netural
networks really acquired the principles of reason-
ing with natural language, or are they merely re-
sponding to superficial patterns in the data?

In fact, two strands of research may be dis-
cerned in recent work on natural language infer-
ence (NLI). The first formulates the central task
as follows: given a pair of sentences in some nat-
ural language, a premise, P and a hypothesis, H ,
determine whether P (i) entails or (ii) contradicts
(i.e. entails the negation of) H; or (iii) P is neu-
tral with respect to H . For example, the premise
A person rides his bicycle in the sand beside the

Reasoning pattern of interest (e.g. chaining)

1. Every artist is a beekeeper.

2. Every beekeeper is a carpenter.
3. No carpenter is a dentist.

4. Some artist is a dentist.

Is this collection of sentences satisfiable or contradictory?
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Figure 1: Depiction of our approach to evaluate reason-
ing capabilities in neural networks.

ocean is taken to entail the hypothesis A person is
on a beach. The primary issue is the possibility
of learning such a mapping on the basis of some
data set consisting of many such sentence pairs,
each tagged with the a ‘correct’ (i.e. gold standard)
label as determined by human judgement, typically
obtained by crowd-sourcing. Examples include the
RTE dataset (Bentivogli et al., 2009) and the (much
larger) SNLI and MNLI datasets (Bowman et al.,
2015; Williams et al., 2018). Neural-network mod-
els achieve impressive accuracy on this task (Chen
et al., 2017; Devlin et al., 2019). The nature of the
challenge here is (deliberately) mixed: on the one
hand, solving the NLI problem requires a grasp
of the meaning of various closed-class words (a,
not, . . . ) together with an appreciation of the se-
mantics of the grammatical constructions involved.
On the other hand, almost all the entailments or
contradictions encountered rely on common sense
knowledge (for example, that racing a bicycle in-
volves riding it), which it is the job of the system
to acquire. The supposition is that these pieces
of commonsense knowledge mediate the entail-
ment of the hypothesis (or its negation) from the
premise. The logical basis of the inferences, so
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reconstructed, is typically straightforward, amount-
ing to simple syllogism-like inferences; but the me-
diating commonsense knowledge is coded in ‘soft’
form, matching the approximate, probabilistic na-
ture of natural language inference. The operative
notion of inference thus eludes a formal defini-
tion (Sugawara et al., 2018),ultimately resulting in
debatable labels (Schlegel et al., 2020).

Thesecond strand of research investigates the
ability of neural networks to recognize formally
valid entailments in sensu stricto, but nevertheless
couched in fragments of natural language. Exam-
ples include Salvatore et al. (2019); Richardson
et al. (2019); Richardson and Sabharwal (2021) and
Talmor et al. (2020). Here the focus is on learning
the (potentially complex) inferential patterns inher-
ent in the logical syntax of the closed-class words
and grammatical constructions defining the frag-
ment of language under investigation. For example,
the premises Every doctor who is not a philoso-
pher is a baker, John is a doctor and John is not a
baker entail the hypothesis John is a philosopher.
No commonsense knowledge is required here: the
given premises either entail the given hypothesis
formally, or they do not. Since entailment in a
formally defined fragment of language is a matter
of mathematical fact, not human judgement, in-
ferential problems may be constructed artificially,
using random sampling over a grammar, with the
correct answers determined by an automated the-
orem prover (ATP). The question is not whether
neural networks can be trained to mimic human
annotators’ judgements, but rather, whether they
can learn the logical principles governing language
in question. Note that, because it is formal valid-
ity rather than commonsense plausibility that is
at issue here, inference tasks of interest typically
involve not a single premise P , but rather, a col-
lection of premises. Individual sentences seldom
yield any non-trivial formal entailments.

These two strands of research reflect a difference
in motivation. The former aims to understand infer-
ences apparently performed by humans in everyday
linguistic settings—inferences which are necessar-
ily messy and approximate in character. From a
formal point of view, many of the alleged entail-
ments or contradictions are in fact judgements of
probability. Thus, for example the premise Alice
is holding a dog does not, logically speaking, con-
tradict the hypothesis Alice is holding a cat, even
assuming that no dog is a cat; yet such labellings

abound in NLI datasets, reflecting the judgements
made by (and instructions given to) the human an-
notators who generate them. By contrast, the sec-
ond (strictly logical) strand of research is motivated
principally by a desire to understand the rule-based
character of natural language syntax and seman-
tics, and in particular, by the question of whether a
neural network can learn the rules in question.

In this paper, we report on a large-scale empirical
study to investigate whether transformer-based lan-
guage models can learn the logical syntax of natural
language. Specifically, we consider performance
on the problem of determining the satisfiability
(logical consistency) of sets of English sentences
featuring the determiners every, some, no, the nega-
tive adverb not, and relative clauses, in the context
of a vocabulary of count nouns and transitive verbs.
Importantly, the sentences in question are drawn
from various different fragments of English, each
characterized by a particular range of the gram-
matical constructions investigated. In each case,
data sets—both for training and evaluation—are
artificially generated in order to test the system’s
grasp of the underlying logic. Figure 1 illustrates
the approach, giving an example problem instance
for the very simplest of the fragments considered.
We find that state-of-the-art deep learning-based
approaches achieve impressive performance on this
task. However, in-depth analysis of their generali-
sation capabilities reveals a more nuanced pattern,
suggesting a tendency to overfit to the parameters
that control the data generation, rather than learn-
ing the underlying logical principles.

2 Fragments of Language

By a fragment of a natural language, we understand
a collection of sentences forming a naturally delin-
eated subset of that language, and equipped with
a truth-conditional semantics commanding the as-
sent of its native speakers. For example, consider
the fragment of natural language corresponding to
the classical syllogistic given to us by Aristotle
(1989, Book A). In its English-language version, it
consists of the sentence forms

Every p is a q No p is a q

Some p is a q Some p is not a q,

with schematic variables p and q substituted by
common (count) nouns. This fragment, which we
here denote S, can be used to formulate examples
such as the one shown in Figure 1.

For present purposes, we may consider the truth
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conditions of an English sentence to be given by
translation to a formal language such as first-order
logic, in a way which uncontroversially recon-
structs the operative notion of logical entailment.
Thus, for example, the sentence forms S corre-
spond to the respective logical forms ∀x(p(x) →
±q(x)) and ∃x(p(x) ∧±q(x)), where ± indicates
either the presence or absence of negation (¬). An
argument in S is regarded as valid precisely when
the first-order translations of its premises entail—in
the familiar logical sense—the first-order transla-
tion of its conclusion.

Consider now the argument:

Some artist hates no beekeeper; every beekeeper
hates some artist; therefore some artist is not a
beekeeper.

(1)

This argument is again intuitively valid (though this
takes a little thought to see). On the other hand, it
cannot be sensibly cast in the syllogistic, because
it so obviously hinges on intrinsically relational
information. (Observe the alternation of subject
and object of the verb hates in the two premises.) Is
there, then, a larger fragment of English in which it
might be expressed? Take the relational syllogistic,
denotedR, to be the fragment of English obtained
by adding to S the sentence-forms:
Every p rs every/some q Some p rs every/some q

No p rs every/any q Some p does not r every/any q,

where p and q are common count nouns and r a
transitive verb. As with S , so too withR: the truth-
conditions of sentences can be captured by trans-
lation to first-order logic in a way which faithfully
reconstructs the intuitive notion of validity. For
example, “Some artist hates no beekeeper” may
be rendered as ∃x(artist(x) ∧ ∀y(beekeeper(y)→
¬hate(x, y))), and so on. Under these semantics,
argument (1) is confirmed as a valid argument in
the fragmentR.

There are other ways to extend the fragment S,
of course. One (very modest) such extension is
actually featured in the works of Aristotle (1963,
Ch. 10). Let us say that the extended classical
syllogistic, denoted S+, is the fragment of English
which adds to S the sentence-forms

Every non-p is a q Some non-p is a q

No non-p is a q Some non-p is not a q,

corresponding to the first-order formulas
∀x(¬p(x)→ ±q(x)) and ∃x(¬p(x)∧±q(x)). As
we might say, S+ adds ‘noun-level negation’ to S .
Following in the same vein, we can extendR with
noun-level negation, yielding sentences such as

“No non-carpenter admires any non-artist” and so
on. We call this fourth fragment the extended rela-
tional syllogistic, denotedR+. Again, translation
into first-order logic is completely standard.

Let L be a fragment of some natural language.
A set of L-sentences is said to be satisfiable if
there is a structure making the logical translations
of these sentences true. The satisfiability problem
for L, denoted Sat(L), is the problem of determin-
ing whether a given finite set of sentences of L is
satisfiable. Provided L is equipped with a mecha-
nism for sentence negation (as are all the fragments
considered here), any procedure for solving Sat(L)
immediately yields a procedure for recognizing log-
ical entailments in L, since an argument is valid
just in case its premises together with the negation
of its conclusion is not satisfiable. Therefore, we
have no use for the familiar classification of natural
language inference problems as entailment, con-
tradiction and neutral (and still less the four-way
classification of Tian et al. (2021)): the satisfiability
problem is as general as we need. As the fragment
L becomes more expressive, the corresponding sat-
isfiability problem Sat(L) will, in general, become
more increasingly difficult. However, as we shall
see, the details of the resulting trade-off between
expressiveness and ease of inference are rather in-
tricate. The focus of the present paper is whether
neural networks can learn to solve problems such
as Sat(L) for various fragments L such as S, S+,
R andR+.

We remark that the approach taken here is paral-
lel to that taken with respect to the fragments GRL
and RCL in (Richardson and Sabharwal, 2021).
There are two notable differences, however, Firstly,
the fragments considered here are, from a gram-
matical point of view, more basic, and less clearly
a natural language version of propositional logic
clauses. In particular, GRL includes the ‘sentence’
If carrot and not steak then apples; and even the
more natural RCL is limited to the constructions
Every X who is (not) a Y is (not) a Z. To al-
low comparison between this work and the present
study we consider the minimal extension of S by
means of relative clauses, thus allowing the addi-
tional sentence-forms

Every o who is a p is a q No o who is a p is a q

Some o who is a p is a q Some o who is a p is not a q

Denote this fragment by Sr. Similarly, denote by
Srn the same fragment additionally allowing nega-
tive relative clauses, such as “Every o who is not
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a p is a q” and so on. The fragment Srn is actually
an extension of RCL.

An important motivation for the rather more gen-
eral approach taken here is that the satisfiability
problem Sat(L) for various fragments L of English
may be studied from a purely complexity-theoretic
point of view. Thus, for example, it is known
that the problems Sat(S), Sat(S+) and Sat(R) are
NLOGSPACE-complete, while Sat(R+) is EXP-
TIME-complete (Pratt-Hartmann and Moss, 2009).
Similarly, the satisfiability problems for GRL and
RCL are easily seen to be NPTIME-complete, as
is the problem Sat(Srn); by contrast, the problem
Sat(Sr) is PTIME-complete (Pratt-Hartmann, 2014,
Theorem 7). The question naturally arises as to
whether the ability of neural networks to learn to
solve these various satisfiability problems corre-
lates with these complexity-theoretic differences.

Table 1shows all templates used to generate the
datasets for each of the fragments. Code to generate
the datasets, allowing control of the parameters
discussed above, is included in the supplementary
material available on github1.

3 Random problems

In this section we outline the construction of col-
lections of sets of formulas in the fragments S+,
R,R+, Sr and Srn, in which each generated set is
labelled as satisfiable or unsatisfiable. (The frag-
ment S is not interestingly different from S+, and
will not be considered in the experiments reported
here.)These collections are partitioned into training
and evaluation sets, enabling us to test the ability of
neural networks to learn to recognise satisfiability
under a range of conditions.

Any sentence in S+ translates to a formula hav-
ing either of the forms ∀x(±p(x) → ±q(x)) or
∃x(±p(x) ∧ ±q(x)). We may thus generate a
sentence of S+ pseudo-randomly by selecting a
universal sentence with probability pu, a negated
subject with probability ps̄ and a negated object
with probability pō, and then choosing p and q at
random from some collection of n nouns. By car-
rying out this process s times, we obtain a random
set Φ of S+-sentences (|Φ| = s). For definiteness,
we set ps̄ = pō = 0.5 and pu = 0.8. In addi-
tion, we remove any inconsistent sentences, such
as “Some p is not a p.” In choosing the various
parameters, we fix n/s = 0.8, which, as we have
empirically established, keeps the proportion of sat-

1https://github.com/schlevik/nlr

isfiable instances at roughly 50%. Collections of
such problem instances are created for various val-
ues of s. The ratio n/s = 0.8 corresponds (for S+)
roughly to the critical region of SAT problems stud-
ied in (Richardson and Sabharwal, 2021), where
it was shown that learning on data from this re-
gion is more effective than learning from uniformly
sampled data. However, we need to be wary of as-
suming that such instances are difficult—an issue
addressed in Section 4.

For R+, we proceed similarly, generating s
sentences at random over a fixed collection of n
nouns and v transitive verbs. Every sentence in
R+ is either a sentence in S+ or translates to a
formula having one of the forms ∀x(±p(x)→ γ)
or ∃x(±p(x) ∧ γ), where γ is either ∀y(±q(y)→
±r(x, y)) or ∃y(±q(y)∧±r(x, y)). Call sentences
inR+ \S+ relational sentences. We may thus gen-
erate a sentence ofR+ pseudo-randomly by choos-
ing to produce a relational sentence with probabil-
ity pr. If we choose to produce a non-relational sen-
tence (i.e. a sentence in S+), we proceed as above;
otherwise a negated verb is chosen with probabil-
ity pv̄, a universally quantified γ with probability
puu; the other parameters, n, v, pu, ps and po are
interpreted as before. By setting ps̄ = pō = 0, we
guarantee that every generated relational sentence
has a non-negated subject and a non-negated ob-
ject, and hence is a sentence of R. By repeating
this process s times, we obtain an set Φ of sen-
tences in R+ (or R). When generating instances
of Sat(R), we thus set pr = 0.2, ps̄ = pō = 0,
pv̄ = 0.5 and pu = puu = 0.8; in addition, we
fix n/s = 0.6 and v/s = 0.15, which, as we have
empirically established, keeps the ratio of satisfi-
able to non-satisfiable instances at roughly 50%.
Likewise, when generating instances of Sat(R+),
we set ps̄ = pv̄ = 0.5, with the other parameters as
forR; however, we adjust n/s to 0.64 in order to
maintain the ratio of satisfiable to non-satisfiable
instances.

Finally, for fragments with relative clauses, Sr

and Srn, in addition to the parameters introduced
for S+, we control the probability of negated rela-
tive clauses by the parameter pr̄. By setting pr̄ = 0
we guarantee that every generated sentence has an
un-negated relative clause, and hence is a sentence
of Sr. We additionally set pō = 0.5 and pu = 0.8,
and for Srn, we set pr̄ = 0.5. We empirically es-
tablish that setting (n− 0.225)/s = 0.59 yields
a probability of satisfiability of approximately 0.5
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Frag. Templates Example sentence

S+ Every/No (non-)p is a q. Every artist is a beekeeper.
Some (non-)p is (not) a q. Some carpenter is not a dentist.

R
all of S and:
Every/Some p rs every/some q. Every artist chases some beekeeper.
Some p does not r every/any q. Some beekeeper does not chase any artist.
No p rs every/any q. No beekeeper bewitches any artist.

R+

all of S+ and:
Every/Some (non-)p rs every/some (non-)q. Every non-artist chases some beekeeper.
Some (non-)p does not r every/any (non-)q. Some beekeeper does not chase any non-artist.
No (non-)p rs every/any (non-) q. No non-beekeeper bewitches any non-artist.

Sr
Every/Some/No o who is a p is a q. Every artist who is a dentist is a carpenter.
Some o who is a p is not a q. Some dentist who is a hunter is not a spy.

Srn
all of Sr and:
Every/Some/No o who is not a p is a q. Every artist who is a not dentist is a carpenter.
Some o who is a not p is not a q. Some dentist who is a not hunter is not a spy.

Table 1: Templates used to generate the problem instances for all five fragments. Round brackets () denote option-
als, forward slashes / denote alternatives.

for both fragments.

The satisfiability of a generated problem instance
is determined using the Vampire automated theo-
rem prover (ATP) (Kovács and Voronkov, 2013),
which (assuming termination) either reports that the
input set is satisfiable or outputs a proof of a con-
tradiction. We record, for each generated problem
instance, whether it is satisfiable, and, if not, the
number l of lines in the discovered proof of a con-
tradiction (proof length) as well as the number of
input sentences, d, used in that proof. The ATP ter-
minated on all generated problem instances; there
is, however, no general guarantee that the proofs
found are the shortest possible.

Generated sentences are created in the relevant
fragments of English with templates depicted in
Table 1 and realised with dictionaries of nouns
that describe categories for unary predicates (e.g.
“artist”, “beekeeper”) and transitive verbs for binary
predicates (e.g. “admires”, “bewitches”). We use
distinct vocabularies for training and evaluation
data and use words with non-overlapping semantic
fields. Unless stated otherwise, to maintain compa-
rability between the different datasets, we generate
60000 examples for training and 8000 for evaluat-
ing model accuracy. This is achieved by generating
3750 and 500 (for training and evaluation sets, re-
spectively) examples for each number of sentences
s between 15 and 30.

4 Constructed problems

One attractive feature of the fragments S, S+ and
R is that their satisfiable sets of formulas admit
of a simple graph-theoretic characterization. This
gives us an additional means of creating data sets
comprising challenging problem instances.

We illustrate with S . Let a set Φ of S-sentences
be given, and let p1, . . . , pn be the common nouns
(predicates) occurring in Φ. Now let V be the set
of expressions pi(x) or ¬pi(x) (1 ≤ i ≤ n). We
call the elments of V literals and let the variables
` and m range over V . If ` ∈ V , denote by ¯̀ the
opposite literal obtained by adding or removing the
negation sign as appropriate. Now let E be the
set of ordered pairs of literals (`,m) such that Φ
contains a sentence formalized as either ∀x(` →
m) or as ∀x(m̄ → ¯̀). Thus, GΦ = (V,E) is
a directed graph. Write ` ⇒Φ m if there is a
path in GΦ from ` to m. It can be shown (Pratt-
Hartmann and Moss, 2009, Sec. 3) that a set of S-
formulas Φ is satisfiable if and only if Φ contains
no sentence ∃x(`∧m) such that either: (i) `⇒Φ

¯̀;
(ii) m⇒Φ m̄ or (iii) `⇒Φ m̄. Thus, determining
(un)satisfiability in S amounts to detecting certain
forbidden configurations (in this case: paths) in
the directed graph GΦ. We regard the length of
the path (if it exists) as the size of the forbidden
configuration. Satisfiability in S+ is characterized
similarly: we simply have to check that, in addition,
V contains no pair of opposite literals o and ō such
that o⇒ ō and ō⇒ o. Again, if a set of sentences
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of S+ is inconsistent, then it contains a forbidden
configuration having a well-defined size.

This gives us controlled way to generate hard
problem instances. Consider the fragment S+. We
begin by simply constructing a forbidden config-
uration having a given size, d. To obtain an un-
satisfiable problem instance Φ of size s, we then
add s − d random sentences, checking (using a
simple algorithm) that doing so does not create
any smaller forbidden configurations. To obtain a
satisfiable problem instance of size s, we reverse
one of the implications in the forbidden config-
uration, and check that the added s − d random
sentences do not cause an unsatisfiability. In effect,
d is a guaranteed difficulty level; it yields a lower
bound on the proof length required to establish un-
satisfiability. At the same time, the satisfiable and
unsatisfiable instances thus generated are not eas-
ily distinguished by any superficial characteristics.
We denote the problem Sat(S+) constructed as just
described with d in a specified range as Sat(S+

[·,·]).
Thus, for example, in S+

[2,6], unsatisfiable problem
instances have 2 ≤ d ≤ 6.

ForR, the corresponding characterization of un-
satisfiability in terms of forbidden configurations
involves several cases (Pratt-Hartmann and Moss,
2009, Sec. 4). For simplicity, we generate difficult
instances by focusing on just one of these types
of forbidden configuration, which we call an ∀∀-
configuration. We begin by constructing an ∀∀-
configuration of specific size 6d (for d ≥ 1). (Such
a collection of sentences is always unsatisfiable.)
To obtain an unsatisfiable problem instance of size
s, we add s − 6d randomly generated sentences,
again checking that the resulting unsatisfiability is
due entirely to the forbidden configuration. Satisfi-
able instances are then obtained by reversing one of
the implications in the ∀∀-configuration, and check-
ing that this does not lead to unsatisfiability. Denote
the problem Sat(R) constructed as just described
with d in a specified range as Sat(R〈·,·〉). For exam-
ple, in R〈1,2〉, inconsistent problem instances are
inconsistent because of ∀∀-configurations of size 6
or 12.

It is not possible to characterize Sat(R+) in
terms of forbidden configurations in this simple
way. As a substitute, we use the proof-lengths of
the proofs found by the ATP as a rough guide to
difficulty. To generate difficult instances of R+,
therefore, we first generate random instances as
in Sec. 3; we then filter out those unsatisfiable in-

stances with short proof-lengths (as reported by
the ATP), and then remove satisfiable instances at
random to preserve the proportion of satisfiable
instances overall.

5 Experimental Setup

In the following study, we investigate whether
neural networks, and in particular state-of-the-art
transformer-based language models (Devlin et al.,
2019) can learn to perform satisfiability checks
on examples representing the selected fragments.
First, we investigate whether they can do so in
principle, by optimising and evaluating classifiers
on training and evaluation data drawn from the
same distribution. Second, in an attempt to under-
stand whether they reliably learn the underlying
logical principles that govern (un-)satisfiability, we
evaluate their generalisation capabilities on out-of-
distribution evaluation data. We do so by altering
various parameters of the training and evaluation
data generation to control the structure of the gen-
erated problem instances.

More specifically, we cast the problem of de-
termining satisfiability as binary text classification
and conduct experiments with three transformer
based language models, RoBERTa, XLnet and
Electra (Liu et al., 2019; Yang et al., 2019; Clark
et al., 2020a).which are further described in the
Appendix. We employ pre-trained language mod-
els because initial experiments showed that these
tend to converge faster compared to training from
scratch, despite the fact that their pre-training ob-
jectives bears little similarity to the task at hand.
Following Devlin et al. (2019), we represent each
problem in plain English text prepended by the spe-
cial [CLS] token as input to the language model.
The text is embedded using the language model,
and the embedding of the [CLS] token, as output
by the final layer of the language model, is pro-
jected into a two-dimensional space, representing
the odds of the problem being satisfiable. During
inference, we pick the highest logit as the model’s
prediction and during training we minimise the
cross-entropy loss between the logits and the ex-
pected class, thus optimising the parameters of the
language model to produce the expected prediction
conditioned on the input. We keep the choice of
hyper-parameters (detailed in Appendix) consistent
across experiments.
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Problem size S+ R Sr Srn R+

15 ≤ s ≤ 30 76 93 94 80 74
30 ≤ s ≤ 401 64 89 94 82 72
40 ≤ s ≤ 45 63 86 - - 71

Table 2: Accuracy of optimised models trained on ran-
dom examples consisting of 15 to 30 sentences (s) and
evaluated on longer random problem instances.

6 Results and Analysis

We report and analyse the results of the conducted
empirical study. For all results we measure the error
as a confidence interval at α = 0.05, using asymp-
totic normal approximation and omit reportage for
brevity, as all measures are in the range of at most
two percent points. We average results obtained for
all three language models.

Transformers perform well on random exam-
ples in all fragments. To seek evidence for the
first question we train and evaluate separate mod-
els on randomly generated problems instances of
each of the five fragments. The results are reported
the first row of Table 2 and suggest that the mod-
els perform well on randomly generated problems
in all fragments, even on the EXPTIME-complete
R+ fragment. Surprisingly, the obtained accura-
cies do not seem to correspond to the complexity
classes of the elicited fragments. Note that the
results reported in this table are not necessarily
that of the best-performing model; for example, by
training the RoBERTa model longer and on a larger
dataset representing the R+ fragment, we obtain
accuracy scores of up to 81% (from original 79%,
see Table 8 in the Appendix). However, to maintain
comparability and as the difference is marginal, we
use the same training budget for all models opti-
mised on different fragments. The task appears
non-trivial, as a simple LSTM-based classifier was
not able to outperform the majority class baseline
even on the simplest S+ fragment and after explicit
hyper-parameter optimisation.

To investigate whether this performance gener-
alises with the size of the problem instances, we
generate evaluation sets with 30 ≤ s ≤ 45 sen-
tences for longer problems. Note that we are con-
strained to problems of the size of up to 512 tokens,
as a technical constraint of the pre-trained language
model, hence we do not investigate generalisation
capabilities to problems beyond 45 (37 for Sr, Srn)
sentences. The remainder of Table 2 shows that

137 for Sr and Srn to fit transformers’ 512-token limit

models generalise consistently to problems larger
than seen during training, with the notable excep-
tion of the model optimised on S+, which exhibits
the most significant drop of over 10 percent points.

Superficially, Table 2 appears to indicate good
generalisation performance. However, it is impor-
tant to realise that simply increasing the number of
sentences does not make the reasoning problems
harder, as witnessed by the fact that the number of
sentences, d, required to prove contradiction does
not increase: on average, d = 3.50 for examples
with 15 to 30 sentences, and d = 3.58 for prob-
lems with 30 to 45 sentences. Thus, the forbidden
configurations the network is identifying are, for
the most part, small, even for large numbers of sen-
tences. A complimentary analysis in the Appendix
reveals further, that these forbidden configurations
are likely to be common between different frag-
ments.

Transformers are not robust to distribution
shifts. Moving on to the second question, we inves-
tigate whether the optimised models truly pick up
the reasoning patterns as intended or rather over-
fit to their training data as an artefact of the con-
figuration of parameters controlling the stochastic
generation. Approximating the “hardness” of a
problem instance by its proof length l, we find that
for all fragments, the overwhelming majority (rang-
ing from 29% in S to 86% in Srn) of contradictory
examples have short proof lengths of 12 or less,
indicating that random problems are, in fact, unsat-
isfiable for trivial reasons which are easy to show
(See also histogram in Appendix). Thus, we collect
“hard” examples by (over-) generating a large body
of examples and then filtering by proof length and
refer to them as random hard problem instances.
Naturally, in this way we can only capture the hard-
ness of inconsistent examples, therefore the evalua-
tion focuses on those.

When comparing the (out-of-distribution) per-
formance of models on “easy” and “hard” non-
satisfiable problem instances with proof length of
at least 42 (Table 3, second and third rows), on
average, there is a gap of 25 percent points, This
suggests that models in fact overfit to simple prob-
lems that tend to dominate the randomly gener-
ated datasets without picking up the general prin-
ciples governing reasoning in the corresponding
fragments. Models optimised on “hard” training ex-
amples (proof length ≥ 22, complemented with an
equal number of random consistent problems), gen-
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Train l Eval l S+ R Sr Srn R+

l ≥ 6
(easy)

satisfiable 61 87 90 53 58
l ≤ 12 98 99 99 70 98
l ≥ 42 84 74 70 42 70

l ≥ 22
(hard)

satisfiable 57 89 86 50 52
l ≤ 12 68 61 33 61 72
l ≥ 42 100 94 99 96 73

Table 3: Accuracy of models trained on random satis-
fiable and easy/hard insatisfiable examples, and evalu-
ated on random satisfiable and easy/hard insatisfiable
examples with proof length l ≤ 12 and l ≥ 42.

eralise well to even harder problems (proof length
≥ 42, Table 3, last row). This suggests that the
models can learn to classify hard problem instances
when presented explicitly by supplying appropriate
training data. This performance does not carry over
to simpler problems, however, as models optimised
on harder problems exhibit a drop in accuracy when
evaluated on simpler problems, as the penultimate
row of Table 3 shows. In conjunction, these obser-
vations suggest that the models tend to overfit to
patterns in the generated data arising from the pa-
rameterisation of the generation algorithm, rather
than learning to perform satisfiability checking in a
more general sense. In other words, just like a bad
student of logic, they appear to “learn the proofs”
rather than the logical principles behind the proofs
required for successful systematic generalisation.

Transformers seem unable to reliably learn the
distinct reasoning patterns. Finally, as determin-
ing non-satisfiability for the fragments S+ andR
involves detection of one of a handful of forbid-
den configurations, we generate data that exposes
precisely these forbidden configurations.

The four top rows of Table 4 show that models
optimised on random and random hard datasets
in S+ and R pick these patterns up to a vary-
ing degree: while all models perform better than
chance, the evaluation performance drops consid-
erably, when comparing to in-distribution perfor-
mance. In the case of S+, breaking down the per-
formance by chain depth, as shown in Figure 2,
reveals that models optimised on random data per-
form best on examples with chain length two (es-
sentially detecting inconsistencies of the form “All
p are q”, “All q are s”, “Some p are not s”) and fail
to generalise beyond that, while models trained on
random hard data perform best on examples with
chain length five, with their performance deterio-
rating for examples with longer and shorter chains.

Train On Evaluate On Accuracy
S+ S+

[2,6] 65

S+
l≥22 S+

[2,6] 57

R R〈1,2〉 53

Rl≥22 R〈1,2〉 58

S+
[2,6] S+

[2,10] 962

R〈1,2〉 R〈1,3〉 100

S+
[2,6] S+ 542

R〈1,2〉 R 48

S+
[2,6]+R〈1,2〉 R 882

Table 4: Accuracy of model optimised and evaluated on
randomly generated and constructed datasets in S+and
R. The datasets S+l≥22 andRl≥22 have unsatisfiable ex-
amples with at least proof length 22, while S+[·,·],R〈·,·〉
have constructed chains in the bracketed range.

This reinforces the previous point that these mod-
els appear to have learned to identify problems
that have proofs with similar structure to those in
their training data rather than learning to solve the
problem in a more general sense.

When we both optimise and evaluate models on
the constructed datasets, we find that they are ca-
pable of learning these inconsistency patterns well,
and generalise to harder problems unseen during
training: the RoBERTa model optimised on S+

with chain lengths between two and six performs
just as well on evaluation data with chain lengths
of up to 10 (Table 4, row five). However, other
models fail to learn these patterns from constructed
S+ data, suggesting that it is a challenging task.
Similarly, all models optimised onR generalise to
unseen lengths of the ∀∀-configurations (Table 4,
row six). However, even when seemingly learn-
ing these patterns, models fail to reliably transfer
these capabilities beyond the constructed cases, as
evidenced by the poor generalisation performance
when trained on the constructed datasets and evalu-
ated on randomly generated data (Table 4, bottom).
ForR, the bad generalisation capability is expected,
as the constructed dataset does not contain inconsis-
tency patterns other than the ∀∀-configurations (e.g.
examples where only the non-relational statements
are inconsistent). However, this is inconsistent with
the case of S+, as all possible inconsistency pat-
terns are covered in the constructed dataset, yet
the optimised RoBERTa models fail to transfer to
random S+ data.

2Results for RoBERTa only, as other models failed to con-
verge on constructed S+ data.
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Figure 2: Accuracy by chain length for RoBERTa mod-
els optimised on S+ and S+l≤22, evaluated on S+[2,6].

7 Related Work and Conclusion

The work reported in this paper represents a con-
tinuation of various studies carried out on “chal-
lenge sets”, proposed to investigate the ability of
(optimised) neural networks to perform different
kinds of reasoning. Such studies range from mono-
tonicity entailments (Geiger et al., 2020; Yanaka
et al., 2020) to probing lexical knowledge (Glock-
ner et al., 2018) to logical connectives (Salvatore
et al., 2019; Richardson et al., 2019) or verb sym-
metry (Mitra et al., 2020). These studies are related
to ours, in that they seek to isolate capabilities of
interest and perform controlled experiments using
synthetic datasets. They have in common that mod-
els optimised on crowd-sourced datasets, such as
MNLI, (Williams et al., 2018), perform poorly on
the challenge set data exhibiting the elicited phe-
nomenon, but fine-tuning the optimised model on
portions of these data improves the performance.

However, as Rozen et al. (2019) show, good
scores after the fine-tuning probably stem from
the fact that the investigated model has learned to
adapt to the regularities of the challenge set rather
than learning a general notion of the investigated
phenomenon. Our analysis is similar: transformer-
based neural networks perform well on randomly
generated data, but this performance is brittle, and
the models overfit to the problem space as set out
by the dataset generation method. They do not
generalise well to examples outside of that space,
suggesting that they do not generalise systemati-
cally (Fodor and Pylyshyn, 1988), i.e. they struggle
to identify a finite set of rules and to apply them
repeatedly. Similar to our findings, research on
systematic generalisation suggests that neural net-

works tend to generalise without systematicity in
supervised learning scenarios (Johnson et al., 2017;
Lake and Baroni, 2017; Goodwin et al., 2020), al-
though these studies, unlike ours, did not concern
pre-trained models.

One might argue that it is unfair to expect a sta-
tistical model that relies on correlations to learn
patterns that are not obviously present in the data.
However, it seems that such claims are being made
in the literature (Clark et al., 2020b). While we
observe that models optimised on constructed ex-
amples generalise well to harder problems unseen
during training, we also show that this capability
appears not to transfer to examples that are only
superficially different. Thus, in our experiments,
similar to Richardson and Sabharwal (2021), we
find that the optimised models are not able to reli-
ably disentangle and acquire the different reasoning
patterns required to successfully complete the task
of determining satisfiability.

Our study highlights one of the issues with em-
pirically postulating neural networks various capa-
bilities by means of good performance on challenge
sets. They have only negative predictive power
(Gardner et al., 2020): while low performance in-
dicates the lack of a capability, the converse does
not necessarily hold. This can be taken as a moti-
vation to develop formal verification methods for
neural networks (Shi et al., 2020), or investigate
worst-case bounds for different phenomena (Raghu-
nathan et al., 2018; Jia et al., 2019).

Our formulated task naturally allows us to ex-
pand the scope of the controlled experiments: for
example, by increasing the closed-class vocabulary.
Another possible avenue is to focus on improving
the systematic generalisation of neural approaches,
for example by providing the formulas required to
prove that a set of sentences is unsatisfiable as addi-
tional supervision signal, or by relying on modular
or model-based approaches (Andreas et al., 2016;
Lake et al., 2013).

Limitations

The design of the study limits our findings by de-
sign - by removing the need of inducing meaning
postulates (i.e. commonsense reasoning and world
knowledge) we explicitly focus on logico-syntactic
capabilities, analogous to how “reasoning” is de-
fined for symbolic approaches to AI. Arguably, In
“real world” application scenarios, commonsense
reasoning and world knowledge cannot be fully dis-
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connected from the requirement to perform reason-
ing, which allows our inquiry to draw fundamental
conclusions about the capabilities of transformer-
based language models rather than to make recom-
mendations which are of immediate relevance to
practitioners.

Our study also suffers from the inductive
dilemma. We find that multiple transformer-based
language models follow the trends reported in this
paper, specifically that they fail to robustly iden-
tify the reasoning patterns necessary for reliably
determining satisfiability in the elicited fragments.
However, due to the empirical nature of this re-
search, this finding is of course not a guarantee
that some neural architecture (transformer-based or
otherwise) could still perform well, when tested in
our out-of-distribution evaluation settings.
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A Additional Details on the
Experimental Setup

Regarding models, We choose RoBERTa, Electra
and XLnet as representatives of “BERTology” as
they all employ different pretraining objectives to
obtain the contextualised representations. We do
not perform explicit hyperparemeter optimisation
for each of the models for each of the datasets,
as we are not invested in finding a best perform-
ing model, but rather, we are concerned with more
general questions about the learnability of the pre-
sented problems. We find that our obtained results
are similar, and in this regard we expect results to
be similar for other transformer-based approaches,
as their performance stems from the amount of
pre-training data and language model size, rather
than architectural choices (Raffel et al., 2020). Fi-
nally, investigating multiple models (e.g. more
transformer models or hyperparemeter optimisa-
tion) increases the amount of computation and thus
the carbon footprint (Strubell et al., 2019), which
we deem unnecessary given the research questions.

As both data generation and model optimisation
are stochastic processes, we are concerned with
the impact of chance on the results of our experi-
ments. To investigate whether model convergence
is impacted, we optimise five models onR datasets
generated from different random seeds. For model
performance, we evaluate one optimised model on
five different R evaluation sets. The results are
summarised in Table 5: the variance of evaluation
scores is negligible, while for optimisation, the in-
fluence of randomness is more noticeable. The
presented loss variance translates to differences in
accuracy of up to 2 percent points.

B Additional training details

We implement the training and inference in Py-
Torch 1.10.0 (Paszke et al., 2017). We use
the pre-trained language models available in the
transformers2 library. We train the roberta

2https://github.com/huggingface/transformers

Experiment Metric Mean Std. dev.
train stability Loss 0.07696 0.008
eval stability Accuracy 0.953 0.0013

Table 5: Impact of randomness in the data generation
process on model optimisation (first row) and on model
performance (second row).
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Figure 3: Proof length distribution.

model on an Nvidia V100 GPU with 16 GB of
RAM. to keep a consistent set of hyperparamters,
We train the XLNet models on an Nvidia A100
GPU with 80GB of RAM since these models do
not support gradient checkpointing, and the cho-
sen batch size results in large (≥ 16GB) memory
requirements during training.

We fix the random seed to maintain determin-
istic behaviour and the hyper-parameters used for
training all models are

• Batch size: relying on gradient checkpoint-
ing, we are able to set the batch size to 56.

• Learning Rate: We schedule the learning
rate to linearly warm up from zero to 4 · 10−6,
linearly decaying it to zero, as it was found to
perform best across all fragments. We use the
ADAM optimiser with the default parameters
ε = 1 × 10−8, β1 = 0.99 and β2 = 0.999.
Note that this comparatively low learning rate
prohibits us from using mixed precision opti-
misation.

• Train Epochs: We train the models for 6
epochs on all fragments to maintain the same
training budget.

• Maximal sequence length: As the input
length varies for different fragments, we en-
sure that the sequence lengths are set in a way
that allows to embed. In practice this varies
from 288 to 432 tokens. Note that padding in-
put sequences to max length does not impact
the training procedure as the padding tokens
are not attended to when calculating the em-
bedding of the [CLS] input token (nor for
any other input tokens).
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Evaluated on ↓ Trained on→
maj. class S+ R Sr Srn R+

S+ 54 86 61 61 55 70
R 52 79 95 78 54 85
Sr 55 45 48 96 90 49
Srn 53 47 50 78 91 48
R+ 53 73 63 60 55 79

Table 6: Accuracy of RoBERTa models evaluated on
all fragments. Grey results denote generalisation per-
formance to harder fragments.

We find this setting works well for all conducted
experiments, thus we keep the same set of hyper-
parameters to maintain comparability. To replicate
our experiments, please see the separately supplied
code.

C Additional Results

We further investigate whether transformers—
perhaps due to their pre-training—can generalise to
fragments they have not encountered during train-
ing. To that end, we evaluate the models on all
fragments, not only those they have been optimised
on. The results are reported in Table 6 and re-
veal counter-intuitive patterns. Surprisingly, none
of the trained models generalises particularly well
to the simpler S+ fragment (Table 6, first row).
While the results of models trained on the Sr and
Srn fragments could be explained by the different
problem structure (during training, these models
do not encounter sentences as they appear in S+),
the same explanation is not valid for the R and
R+ fragments: problems in these fragments con-
sist of 80% syllogistic statements on average. In
fact, an estimated 90% of the unsatisfiable prob-
lems inR andR+ contain an inconsistency in the
non-relational statements. Therefore, it is reason-
able to expect models optimised onR andR+ to
perform well on S+, which appears not to be the
case. Contrariwise, models optimised on the sim-
pler fragments S+ fragment do generalise well to
the harder fragments R and R+, as one would
expect given their high number of non-relational
inconsistencies. This contradictory evidence sug-
gests that the models struggle to reliably identify
the configurations leading to insatisfiability. An-
other observation that eludes a simple explanation
is the good performance on theR fragment of the
model optimised on Sr, as these fragments are gen-
erated from non-overlapping sentence templates.

Problem size S+ R Sr Srn R+

15 ≤ s ≤ 30 82 96 95 91 82
30 ≤ s ≤ 40 72 92 94 93 77
40 ≤ s ≤ 45 70 89 - - 76

Table 7: Accuracy of optimised Electra models trained
on random examples consisting of 15 to 30 sentences
(s) and evaluated on longer random problem instances.

Problem size S+ R Sr Srn R+

15 ≤ s ≤ 30 86 95 96 91 79
30 ≤ s ≤ 40 62 92 95 94 76
40 ≤ s ≤ 45 61 90 - - 75

Table 8: Accuracy of optimised RoBERTa models
trained on random examples consisting of 15 to 30 sen-
tences (s) and evaluated on longer random problem in-
stances.

Problem size S+ R Sr Srn R+

15 ≤ s ≤ 30 61 89 92 60 62
30 ≤ s ≤ 40 60 83 93 60 63
40 ≤ s ≤ 45 59 80 - - 64

Table 9: Accuracy of optimised XLNet models trained
on random examples consisting of 15 to 30 sentences
(s) and evaluated on longer random problem instances.

Training the model on a combined sample of
12000 problem instances from all fragments results
in accuracy scores of 73%, 89%, 94%, 94% and
74%, for the fragments S+, R, Sr, Srn and R+,
respectively.

The distribution of different proof lengths for
randomly generated data is shown in Figure 3 and
supports the hypothesis that most randomly gener-
ated inconsistent problem instances are “easy” in
the sense that they have short proof lengths that
lead to refutation.

Figure 2 shows the breakdown by chain length
for models optimised on random and random hard
S+ data and evaluated on constructed S+ exam-
ples.

Finally, Tables 7-15 report all performances dis-
cussed in the main paper broken down by model.
We see similar trends across models, with Electra
performing best and XLNet often performing worst.
We caution to over-interpret these differences, as
these could be due to the amount of pre-training
of each architecture and the resulting sensitivity to
hyper-parameters (Lan et al., 2020).
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Train l Eval l S+ R Sr Srn R+

l ≥ 6
(easy)

satisfiable 72 92 91 86 71
l ≤ 12 99 100 100 100 98
l ≥ 42 92 77 79 48 66

l ≥ 22
(hard)

satisfiable 74 92 89 51 65
l ≤ 12 57 64 30 59 64
l ≥ 42 100 95 99 96 79

Table 10: Accuracy of Electra models trained on ran-
dom satisfiable and easy/hard insatisfiable examples,
and evaluated on random satisfiable and easy/hard in-
satisfiable examples.

Train l Eval l S+ R Sr Srn R+

l ≥ 6
(easy)

satisfiable 78 92 92 87 72
l ≤ 12 99 99 99 99 97
l ≥ 42 71 68 64 37 56

l ≥ 22
(hard)

satisfiable 60 90 86 48 53
l ≤ 12 64 63 28 67 72
l ≥ 42 100 94 98 99 75

Table 11: Accuracy of RoBERTa models trained on ran-
dom satisfiable and easy/hard insatisfiable examples,
and evaluated on random satisfiable and easy/hard in-
satisfiable examples.

Train l Eval l S+ R Sr Srn R+

l ≥ 6
(easy)

satisfiable 33 77 87 53 31
l ≤ 12 95 99 99 70 98
l ≥ 42 91 78 68 41 90

l ≥ 22
(hard)

satisfiable 37 85 84 50 38
l ≤ 12 84 55 32 57 81
l ≥ 42 100 93 99 92 67

Table 12: Accuracy of XLNet models trained on ran-
dom satisfiable and easy/hard insatisfiable examples,
and evaluated on random satisfiable and easy/hard in-
satisfiable examples.

Train On Evaluate On Accuracy
S+ S+

[2,6] 70

S+
l≥22 S+

[2,6] 58

R R〈1,2〉 51

Rl≥22 R〈1,2〉 61

S+
[2,6] S+

[2,10] −
R〈1,2〉 R〈1,3〉 100

S+
[2,6] S+ −
R〈1,2〉 R 48

S+
[2,6]+R〈1,2〉 R −

Table 13: Accuracy of Electra models optimised and
evaluated on random and constructed datasets in S+,R.

Train On Evaluate On Accuracy
S+ S+

[2,6] 68

S+
l≥22 S+

[2,6] 58

R R〈1,2〉 57

Rl≥22 R〈1,2〉 58

S+
[2,6] S+

[2,10] 96

R〈1,2〉 R〈1,3〉 100

S+
[2,6] S+ 54

R〈1,2〉 R 48

S+
[2,6]+R〈1,2〉 R 88

Table 14: Accuracy of RoBERTa models optimised and
evaluated on random and constructed datasets in S+,R.

Train On Evaluate On Accuracy
S+ S+

[2,6] 56

S+
l≥22 S+

[2,6] 56

R R〈1,2〉 52

Rl≥22 R〈1,2〉 55

S+
[2,6] S+

[2,10] −
R〈1,2〉 R〈1,3〉 100

S+
[2,6] S+ −
R〈1,2〉 R 48

S+
[2,6]+R〈1,2〉 R −

Table 15: Accuracy of XLNet models optimised and
evaluated on random and constructed datasets in S+,R.

D ∀∀-configurations inR

In the fragmentR, satisfiability is characterized by
a finite number (half a dozen or so) of so-called
forbidden configurations: families of unsatisfiable
sets of formulas, with the instances of each family
characterized by a numerical parameter related to
that instance’s cardinality. It can be shown that
any unsatisfiable set of R-formulas contains an
instance of one of these forbidden configurations.
The ∀∀-configuration is the most complex of these,
and, therefore, the hardest to learn to recognize.
Hard unsatisfiable formula sets in R were con-
structed in the experiments reported here using the
∀∀-configuration. We briefly outline its form here.
We use abbreviated logical notation, writing ∀(p, q)
instead of ∀x(p(x) → q(x)), or ∀(p,∃(q,¬r)) in-
stead of ∀x(p(x)→ ∃y(¬r(x, y) ∧ q(y))), and so
on.

An instance of a ∀∀-configuration with parame-
ter d consists of six sets of d formulas (hence, 6d
in all). The first two lists entail that all ps are o1s
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and all ps are o2s:

∀(p, p1), . . . ,∀(pd−1, o1)

∀(p, p′1), . . . ,∀(p′d−1, o2).

It follows that, if some ps exist, then some o1s
are o2s. The second two lists entail that all qs are
related by r to all o1s and to no o2s:

∀(q, q1), . . . ,∀(qd−2, qd−1),∀(qd−1, ∀(o1, r))

∀(q, q′1), . . . ,∀(q′d−2, q
′
d−1),∀(q′d−1, ∀(o2,¬r)).

It follows that, if some qs exist, then no o1s are o2s.
Hence, these four lists entail that, if some ps exist,
then no qs exist. The final two lists entail that there
are both ps and qs:

∃(u0, u1),∀(u1, ∃(u2,±r)), . . . ,∀(ud−1,∃(p,±r))
∃(u′0, u′1),∀(u′1, ∃(u′2,±r)), . . . ,∀(u′d−1, ∃(q,±r)).
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