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Abstract
Argument mining (AM) is a challenging task as
it requires recognizing the complex argumen-
tation structures involving multiple subtasks.
To handle all subtasks of AM in an end-to-end
fashion, previous works generally transform
AM into a dependency parsing task. However,
such methods largely require complex pre- and
post-processing to realize the task transforma-
tion. In this paper, we investigate the end-
to-end AM task from a novel perspective by
proposing a generative framework, in which
the expected outputs of AM are framed as a
simple target sequence. Then, we employ a pre-
trained sequence-to-sequence language model
with a constrained pointer mechanism (CPM)
to model the clues for all the subtasks of AM in
the light of the target sequence. Furthermore,
we devise a reconstructed positional encoding
(RPE) to alleviate the order biases induced by
the autoregressive generation paradigm. Exper-
imental results show that our proposed frame-
work achieves new state-of-the-art performance
on two AM benchmarks.1

1 Introduction

As a fundamental task of computational argumen-
tation, argument mining (AM) has drawn much re-
search attention recently (Schaefer and Stede, 2021;
Vecchi et al., 2021; Lawrence and Reed, 2019). The
ultimate goal of AM is to analyze and understand
argumentative text, so as to obtain structured ar-
gumentation knowledge that can support a diverse
range of downstream tasks, such as argument per-
suasiveness prediction (Li et al., 2020; Huang et al.,
2021), automated essay scoring (Ghosh et al., 2016;
Nguyen and Litman, 2018; Song et al., 2020), ar-
gument generation (Hua et al., 2019; Slonim et al.,
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1Code is available at https://github.com/HITSZ-HLT/
GMAM.

I believe cloning is beneficial . For example , cloned

organs can help patients .

Claim

Support

Premise

[ 𝟑, 𝟓, 𝑪𝒍𝒂𝒊𝒎, 𝟏𝟎, 𝟏𝟒, 𝑷𝒓𝒆𝒎𝒊𝒔𝒆, 𝑺𝒖𝒑𝒑𝒐𝒓𝒕 ]

Target Sequence:

Argumentative Text:

Figure 1: A simplified example of AM task. Two
argument components are marked in green and blue,
respectively, where the former is a Claim and the latter
is a Premise. In addition, there is a Support relation
from the Premise to the Claim. Our proposed target
sequence corresponding to this example is shown at the
bottom.

2021; Khatib et al., 2021), text summarization (Fab-
bri et al., 2021; Bar-Haim et al., 2020), etc.

Given a piece of argumentative text as input, an
end-to-end AM system needs to identify both the
argument components (ACs) and the argumenta-
tive relations (ARs) between them. An example is
shown in Figure 1. Specifically, AM generally com-
prises four fine-grained subtasks (Eger et al., 2017):
1) component segmentation detects the boundaries
of fine-grained argumentative segments, which are
known as ACs; 2) component classification classi-
fies the ACs into the categories defined by argumen-
tation schemes; 3) relation detection determines
whether there is an AR between two ACs; 4) rela-
tion classification further classifies the types of the
ARs. Following Persing and Ng (2016) and Ye and
Teufel (2021), we refer the first two subtasks as
argument component identification (ACI), and the
last two subtasks as argumentative relation identi-
fication (ARI). The end-to-end AM task is highly
challenging as it is difficult to solve all the AM
subtasks synchronously in a unified framework.
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Most previous work focuses on only a subset of
the four fine-grained subtasks (Niculae et al., 2017;
Reimers et al., 2019; Jo et al., 2019; Morio et al.,
2020; Lenz et al., 2020; Ruiz-Dolz et al., 2021; Bao
et al., 2021). However, only a limited number of
studies are devoted to the end-to-end AM scenario
(Persing and Ng, 2016; Eger et al., 2017; Ye and
Teufel, 2021). Recent research efforts formulate the
end-to-end AM as a dependency parsing task and
apply existing dependency parsers to solve it (Ye
and Teufel, 2021; Dozat and Manning, 2018). Such
methods, however, require not only a tedious pre-
processing process to transform the argumentation
structure into an elaborately-designed dependency
graph, but also a complex post-processing process
to ensure that each dependency of the predicted out-
put is completely consistent with that in the desired
dependency graph of the AM task. Thus, devel-
oping an elegant, simple, and effective framework
for the end-to-end AM task is still an important
challenge of great significance.

Inspired by the recent success of the genera-
tive methods for information extraction (Yan et al.,
2021b; Zhang et al., 2022), we propose to address
the end-to-end AM task via a unified generative
framework. We first devise a target sequence to
express the outputs of all the subtasks of AM. An
example is shown in Figure 1. Subsequently, the
pre-trained BART (Lewis et al., 2020) model is
adopted to model the dependencies between the
target sequence and the input argumentative text
through the pointer mechanism. Further, we in-
troduce a reconstructed positional encoding (RPE)
scheme in the BART decoder to alleviate the or-
der biases induced by the autoregressive genera-
tion paradigm. In addition, considering the long
length of the ACs and the pattern of the target se-
quence, we present a constrained pointer mecha-
nism (CPM), which is manifested as an auxiliary
task at the training time and as a constrained decod-
ing method at the inference time. This constrained
pointer mechanism can help the model to generate
more accurate AC boundaries and fewer invalid
target sequences. Compared to the previous depen-
dency parsing-based method, it is more straightfor-
ward and easier to formalize the end-to-end AM
task into a generation task. Also, in our proposed
method, the predicted target sequence can be easily
converted to the expected outputs of AM without
complex post-processing.

We conduct extensive experiments on two AM

benchmarks of different structures to show the su-
periority of our method. Experimental results show
that our proposed method achieves substantial im-
provements over several strong baselines, yielding
the state-of-the-art performance on both benchmark
datasets. In addition, we carry out further analysis
to show that the proposed RPE and CPM can sig-
nificantly reduce the errors in the generated target
sequence, thus leading to performance improve-
ments.

2 Related Work

2.1 Argument Mining

AM traditionally involves four fine-grained sub-
tasks. Early work usually exclusively studies a par-
ticular subtask, such as component segmentation
(Moens et al., 2007; Florou et al., 2013; Goudas
et al., 2014), component classification (Palau and
Moens, 2009; Stab and Gurevych, 2014; Lippi
and Torroni, 2015; Nguyen and Litman, 2015),
relation detection (Palau and Moens, 2009; Stab
and Gurevych, 2014), and relation classification
(Ghosh et al., 2014; Boltuzic and Snajder, 2014;
Peldszus, 2014; Cocarascu and Toni, 2017).

Recently, there has been a trend to study the joint
modeling of multiple subtasks of AM. However,
most work only addresses a subset of the four fine-
grained subtasks of AM, instead of performing an
end-to-end approach. For joint modeling compo-
nent segmentation and component classification,
Chernodub et al. (2019) built a neural sequence
labeling model, while Wang et al. (2020) proposed
a multi-scale model to recognize different types
of ACs at corresponding levels. Since component
segmentation is a token-level task while other three
subtasks are at segment-level (Ye and Teufel, 2021),
it is difficult to model them jointly. Thus, some pre-
vious studies ignore the component segmentation
task and only jointly model the other three subtasks.
Kuribayashi et al. (2019) explored the application
of span representation in AM. Morio et al. (2020)
incorporated task-specific parameterization and bi-
affine attention for improving non-tree AM. Many
other works further ignore the relation classifica-
tion task. Potash et al. (2017) employed a pointer
network with the attention mechanism for struc-
tural prediction. Niculae et al. (2017) presented a
factor graph model to impose structure constraints.
Bao et al. (2021) proposed a transition-based neural
network to construct argumentation graphs.

Compared to the studies above, there have been
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relatively fewer researches on end-to-end AM. Pers-
ing and Ng (2016) performed joint inference in
an Integer Linear Programming (ILP) framework.
Eger et al. (2017) formalized the end-to-end AM
task into multiple other tasks, including sequence
labeling, end-to-end relation extraction, and de-
pendency parsing. However, sequence labeling-
based methods try to predict the distance between
ACs by token-level classification, which is hard
to learn and the results are suboptimal. The rela-
tion extraction-based models solve ACI and ARI
sequentially but may result in poor performance
due to error propagation. Although Ye and Teufel
(2021) further extended the dependency parsing
approach of Eger et al. (2017) and achieved promis-
ing performance, it requires tedious pre- and post-
processing (e.g. label refinement, removing invalid
or multiple edges).

2.2 Generative Methods for IE
With superior development of pre-training tech-
niques, there has been a rising trend of adopting
generative models to solve information extraction
(IE) tasks, such as aspect-based sentiment analy-
sis (Zhang et al., 2021b,a), named entity recogni-
tion (Ren et al., 2021; Cui et al., 2021; Zhang et al.,
2022), event argument extraction (Li et al., 2021),
etc.

Closely related to our work, some recent stud-
ies incorporate the pre-trained generative models
with the pointer mechanism to better address IE
tasks. Yan et al. (2021a) formalized all the subtasks
of aspect-based sentiment analysis into generation
tasks, and employed the pre-trained BART (Lewis
et al., 2020) with the pointer mechanism to address
them in a unified framework. Similarly, Yan et al.
(2021b) explored solving multiple NER subtasks
with pre-trained BART.

2.3 Pointer Mechanism
Pointer mechanism (Vinyals et al., 2015) aims to
solve the problem of generating an output sequence
that contains elements from the input sequence,
which is usually based on a sequence-to-sequence
model with the attention mechanism (Bahdanau
et al., 2015). It has been applied to various tasks
including dependency parsing (Ma et al., 2018;
Liu et al., 2019; Fernández-González and Gómez-
Rodríguez, 2020), named entity recognition (Yan
et al., 2021b; Fei et al., 2021; Yang and Tu, 2022),
text summarization (Miao and Blunsom, 2016; See
et al., 2017; Paulus et al., 2018), etc.

In this paper, we modify the traditional pointer
mechanism by imposing task-specific constraints
to make it more suitable for the generative model
for the end-to-end AM.

3 Task Formulation

Formally, for the end-to-end AM, the in-
put is a piece of argumentative text X =
[w1, w2, . . . , wnx ] with nx tokens. The first goal
is to extract a set of ACs A = {ai|ai =

(si, ei, ci)}|A|
i=1, where ai is the i-th AC, si and

ei respectively denote its start and end indexes,
ci represents its category label, such as “Claim”,
“Premise”, etc. The second goal is to output a set of
ARs R = {(asci , atci , ri)}

|R|
i=1, where asci ∈ A and

atci ∈ A denote the source and target ACs, ri is the
AR category label, such as “Support”, “Attack”, etc.
Here, we denote the AC and AR category label lists
as Lc = [lc1, l

c
2, . . . , l

c
nc
] and Lr = [lr1, l

r
2, . . . , l

r
nr
],

where lci /lri is the i-th AC/AR category label, nc/nr

is the number of all the possible AC/AR category
labels.

To solve the end-to-end AM through a gener-
ative framework, we need to formulate it as a
sequence-to-sequence generation task with X as
the input source sequence. Also, the expected AM
outputs A and R are transformed as the target se-
quence Y = [T1, T2, . . . , T|R|], where the tuple
Ti = [stci , e

tc
i , c

tc
i , s

sc
i , esci , csci , ri] represents the i-

th AR in R. For the i-th AR, ssci /esci and stci /etci
respectively denote the start/end indexes of the
source and the target ACs, csci and ctci are their
AC category labels.

Example. In Figure 1, there is only one AR,
so the target sequence is Y = [T1] =
[3, 5, Claim, 10, 14, P remise, Support]. Also,
the AC and AR category label lists for this example
are Lc = [MajorClaim,Claim, Premise] and
Lr = [Support, Attack], respectively.

4 Method

Inspired by Yan et al. (2021a,b), we utilize a BART-
based generative framework as our basic model,
which takes X as input and generates the target
sequence Y with the vanilla pointer mechanism.
Since ACs are much longer and have more am-
biguous boundaries than named entities (Yan et al.,
2021b) or aspect term (Yan et al., 2021a), it is more
challenging to solve the end-to-end AM task by
a generative framework. Hence, we introduce a
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constrained pointer mechanism (CPM) to help the
model generate more accurate AC boundaries and
fewer invalid predictions. Further, we propose a re-
constructed positional encoding (RPE) to alleviate
the order biases introduced by the autoregressive
paradigm in the basic model.

4.1 Basic Model
First, we feed X into the BART encoder to derive
the hidden representations of the source sequence:

He = BART_Encoder(X) (1)

where He ∈ Rnx×d, and d is the hidden dimension
of BART.

Then, the BART decoder incorporates He and
the previous decoder outputs Y<t to predict the
current output. The hidden state of the last decoder
layer at the time step t is:

hd
t = BART_Decoder(He, Y<t) (2)

where hd
t ∈ Rd. Note that, during this procedure,

each start/end index (i.e. ssci , esci , stci or etci ) in Y<t

needs to be mapped to its corresponding token in
X first.

Vanilla Pointer Mechanism At time step t, the
vanilla pointer mechanism selects tokens from the
input X through a pointer distribution P̄t ∈ Rnx

over all the positions of X . In this way, the
start/end indexes in the target sequence Y can be
generated. However, we also expect the model
to generate AC and AR category labels. Hence,
we expand the pointer distribution P̄t as Pt ∈
Rnx+nc+nr by combining P̄t with the distributions
over all the possible AC and AR category labels.

More precisely, by feeding X , Lc and Lr into
the embedding layer of BART, we could obtain
the token embedding matrix E ∈ Rnx×d, the AC
category embedding matrix Lc ∈ Rnc×d and the
AR category embedding matrix Lr ∈ Rnr×d.

Following Yan et al. (2021a), the encoder out-
put matrix He is combined with E to produce the
representation matrix for the pointer mechanism:

H̄e = α(MLPm(He)) + (1− α)E (3)

where α is a hyper-parameter, MLPm is a multi-
layer perceptron. Subsequently, the expanded
pointer distribution Pt at the time step t can be
derived by:

Hp = [H̄e;Lc;Lr] (4)

Pt = Softmax(Hphd
t ) (5)

where Pt ∈ Rnx+nc+nr , and ; denotes the ma-
trix concatenation operation in the first dimension.
With Pt, the probability P (Yt|Y<t, X) of generat-
ing the i-th element of the target sequence Y can
be obtained.

Finally, this model is optimized with the negative
log-likelihood loss:

Lb = −
|Y |∑

t=1

logP (Yt|Y<t, X) (6)

4.2 Constrained Pointer Mechanism
We refer to each position in Pt ∈ Rnx+nc+nr as a
pointer index. The pointer indexes in range Ix =
[1, nx] are token indexes, while the pointer indexes
in range Ic = [nx + 1, nx + nc] and Ir = [nx +
nc + 1, nx + nc + nr] are the AC category indexes
and AR category indexes, respectively.

In each decoding time step, the vanilla pointer
mechanism selects an index directly based on
Pt, which is not reasonable because the valid
pointer indexes for each time step are not iden-
tical. To be specific, regarding the i-th tuple
Ti = [stci , e

tc
i , c

tc
i , s

sc
i , esci , csci , ri] in the target se-

quence Y , when predicting the target AC’s end in-
dex etci from its pointer distribution, all the pointer
indexes less than the decoded start index stci are
invalid, since the end index must be greater than
the start index. Also, the pointer indexes in range
Ic and Ir are also invalid, since esci must be a token
index within range Ix.

To address this issue, we define the following
three constraints:

• (1) When decoding an end index, it should be
greater than its corresponding start index.

• (2) When decoding the start and end index of
a source AC, they can not overlap with the
target AC.

• (3) The valid pointer indexes must be con-
sistent with the type of the expected output
for the current time step. For example, when
decoding the AR category label ri, only the
pointer indexes in range Ir (i.e. AR category
indexes) are valid.

To introduce these constraints to the basic model,
we further define a proxy distribution Qt ∈
Rnx+nc+nr for the decoding time step t to sim-
ulate the real pointer distribution with constraints,
where the values of the valid and invalid pointer
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indexes are set to 1 and 0, respectively. To illus-
trate, for the example shown in Figure 1, the proxy
distribution of each element in the target sequence
is shown in Table 1.

With the proxy distribution Qt, we can easily
incorporate the aforementioned three constraints
into both the training and inference stages. Note
that, during training, Qt is constructed from the
ground truth target sequence. During inference,
it is constructed from the generated sequence in
previous time steps.

Incorporating Constraints in Training. During
training, we regard Qt as the labels of an auxiliary
binary classification task to steer the model in a
multi-task learning manner. This auxiliary task
can provide the model with supervision signals of
whether each pointer index is valid, making it less
likely to predict invalid results.

Concretely, we first calculate the probabilities of
the binary classification task:

H̄p = MLPa([H
e;Lc;Lr]) (7)

Pa
t = Sigmoid(H̄phd

t ) (8)

where Pa
t ∈ Rnx+nc+nr . The training objective

function for this auxiliary task is:

La =−
|Y |∑

t=1

nx+nc+nr∑

i=1

[Qt,ilog(P
a
t,i)+

(1−Qt,i)log(1−Pa
t,i)]

(9)

where Pa
t,i and Qt,i are the i-th elements in Pa

t

and Qt, respectively.
During training, we combine La with the loss

function of the basic model Lb as the joint training
objective.

Incorporating Constraints in Inference. How-
ever, although incorporating constraints in train-
ing with multi-task learning can reduce the invalid
predictions, it can not avoid this issue completely.
Thus, during inference, we impose hard constraints
to ensure that the prediction at each time step is
valid.

More precisely, we directly regard Qt as binary
masks to set the probabilities of all the invalid
pointer indexes to zero by Hadamard product:

P̂t = Qt ⊙Pt (10)

where P̂t ∈ Rnx+nc+nr is the constrained pointer
distribution. Finally, we use this constrained
pointer distribution instead of Pt to predict the
target sequence.

PD TS Ix Ic Ir

Q1 3 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] [0,0,0] [0,0]
Q2 5 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1] [0,0,0] [0,0]
Q3 C. [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [1,1,1] [0,0]
Q4 10 [1,1,0,0,0,1,1,1,1,1,1,1,1,1,1] [0,0,0] [0,0]
Q5 14 [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1] [0,0,0] [0,0]
Q6 P. [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [1,1,1] [0,0]
Q7 S. [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0] [1,1]

Table 1: Proxy distributions (PD) for the example
given in Figure 1, whose target sequence (TS) is
[3, 5, Claim, 10, 14, P remise, Support]. Ix, Ic and
Ir respectively denote the range of the token indexes,
AC category indexes and the AR category indexes. C.,
P. and S. are the abbreviations for Claim, Premise and
Support.

4.3 Reconstructed Positional Encoding
Similar to the findings in Zhang et al. (2022), we

argue that there are order biases in the basic model
described in Section 4.1 due to the autoregressive
generation paradigm. In particular, the order of
tuples in the target sequence Y is fixed, but there
are actually no order relations among these tuples.
Therefore, when the basic model generates the tar-
get sequence, the tuples that have been generated
can have undesired effects on the tuples that are cur-
rently being generated. Intuitively, the positional
encoding (PE) of BART’s decoder is closely related
to the order biases, since it represents the order in-
formation of the target sequence. Thus, to alleviate
this issue, we propose to replace the original PE
scheme in the BART decoder with a reconstructed
positional encoding (RPE) scheme.

Original PE of BART’s decoder. We denote the
original position index for the target sequence Y
as Y p = [1, 2, . . . , |Y |], where each position index
will be transformed into a positional embedding
vector by the BART’s embedding layer.

Reconstruction of Original PE. We substitute
the original position indexes Y p with Ŷ p =
[T p

1 , T
p
2 , . . . , T

p
|S|], where T p

i = [1, 1, 2, 1, 1, 2, 2]2

represent the position index sequence of the i-th
tuple Ti = [stci , e

tc
i , c

tc
i , s

sc
i , esci , csci , ri] in the tar-

get sequence. The rationale behind this design is
two-fold: 1) From the intra-tuple perspective, for
each tuple, we set an identical position index for all
span-related elements (i.e. ssci , esci , stci and etci ) and
another identical position index for all category-
related elements (i.e. csci , ctci and ri). This enables

2We explore multiple reconstruction methods in our exper-
iments and find that this strategy yields the best results. See
Section 6.4 for details.
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the model to better learn the difference between
the two kinds of elements. 2) From the inter-tuple
perspective, unlike the original positional encoding
scheme where each tuple has a unique position in-
dex sequence, we assign an identical position index
sequence (i.e. [1, 1, 2, 1, 1, 2, 2]) to all tuples. In
this way, the order information among different
tuples existing in the original positional encoding
scheme can be eliminated, thus reducing the effect
caused by the order bias.

5 Experimental Setups

5.1 Datasets

We evaluate our proposed model on two public AM
benchmarks, that is, Argument Annotated Essays
(AAE) (Stab and Gurevych, 2017) and Consumer
Debt Collection Practices (CDCP) (Niculae et al.,
2017).

The AAE benchmark consists of 402 persua-
sive essays annotated with three types ACs (Ma-
jorClaim, Claim, Premise) and four types of ARs
(Support, Attack, For, Against). Note that, in our ex-
periments, we respectively convert For and Against
to Support and Attack according to the stance polar-
ity.3 The AC and AR category label lists of AAE
are Lc = [MajorClaim,Claim, Premise] and
Lr = [Support, Attack]. Each essay in AAE con-
tains several paragraphs, and there are 1,833 para-
graphs in total (369 paragraphs are reserved for
testing). Moreover, AAE is a tree structured bench-
mark, where ACs and ARs are constrained to form
one or more directed trees within each paragraph.

The CDCP benchmark consists of 731 argu-
mentative user comments about rule proposals,
and 150 of them are held out for testing. In this
benchmark, there are five types of ACs and two
types of ARs with the category label lists Lc =
[Fact, Testimony, V alue, Policy,Reference]
and Lr = [Reason,Evidence]. Unlike the
AAE benchmark, CDCP is a non-tree structured
benchmark, where ACs and ARs in a comment can
form a directed graph.

5.2 Baselines

We compare our proposed model with following
baselines:

3Since For/Against only exists between Claim and Ma-
jorClaim, the predicted Support/Attack between Claim and
MajorClaim can be easily reconverted to For/Against by post-
processing.

• ILP: A feature-based approach which jointly
optimizes the subtasks of AM by Integer
Linear Programming (ILP) (Persing and Ng,
2016; Eger et al., 2017).

• LSTM-Parser: A neural dependency parser-
based on stack LSTM, which is proposed by
Dyer et al. (2015) and is applied to the end-to-
end AM task in Eger et al. (2017).

• LSTM-ER: An end-to-end relation extrac-
tion model combining both tree-structured and
sequential LSTM (Miwa and Bansal, 2016),
which is adapted for extracting argument struc-
ture by Eger et al. (2017).

• BiPAM: Another dependency parsing-based
model for end-to-end AM, which is based on a
biaffine neural network (Ye and Teufel, 2021).
Note that, this model use BERT-Base (Devlin
et al., 2019) as base model, which have a simi-
lar number of parameters with the BART-Base
model we adopted.

• BiPAM-syn: The BiPAM model enhanced by
explicit syntactic information produced by the
Stanford syntactic dependency parser (Man-
ning et al., 2014), which is the current state-
of-the-art method.

• BART-B: The basic model described in Sec-
tion 4.1, which is similar to the model in (Yan
et al., 2021a).

5.3 Evaluation Metrics
Following previous works (Persing and Ng, 2016;
Eger et al., 2017; Ye and Teufel, 2021), we employ
micro F1 score to evaluate both the ACI (C-F1)
and ARI (R-F1) task.

More precisely, for ACI, the true positive for
calculating the C-F1 score is defined as the number
of the predicted ACs that exactly match a gold
standard AC, i.e., their boundaries and AC category
labels are exactly the same. Similarly, for ARI,
the true positive for calculating the R-F1 score is
defined as the number of the predicted ARs that
exactly match a gold standard AR, i.e., their source
ACs, target ACs, and AR category labels are all
identical.

5.4 Implementation Details
Following Ye and Teufel (2021), for the AAE
benchmark, we train our model on the paragraph
level since most ARs are within a single paragraph.
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Dataset Methods C-F1 R-F1

AAE

ILP 62.61 34.74
LSTM-Parser 58.86 35.63
LSTM-ER 70.83 45.52
BiPAM 72.90 45.90
BiPAM-syn 73.50 46.40
BART-B 73.61 47.93
Ours 75.94 50.08

CDCP
BiPAM* 41.15 10.34
BART-B 56.15 13.76
Ours 57.72 16.57

Table 2: Experimental results with baselines. The best
scores are in bold. * denotes our implementations.

For both AAE and CDCP benchmarks, we ran-
domly choose 15% of the training set for valida-
tion. All experiments are conducted ten times with
different random initializations, and the average
scores are reported. Notably, there are few isolated
ACs that are not involved in any AR. For such ACs,
we introduce a special “none” token to construct a
pseudo tuple. For example, if the Claim in Figure
1 is an isolated AC, then its corresponding pseudo
tuple is [3, 5, Claim, none, none, none, none].

We use the pre-trained BART-Base as the base
model. The learning rate is set to 5e-5 and 8e-
5 for AAE and CDCP benchmarks, respectively.
AdamW (Loshchilov and Hutter, 2019) is used for
optimization with (β1 = 0.9, β2 = 0.999, ϵ = 1e−
8). We use a warm-up strategy with the warm-up
ratio set to 0.01. Each MLP contains 2 layers with
a hidden size of 768. Moreover, the dropout rate is
set to 0.3 and the batch size is set to 32. Following
Yan et al. (2021a), the hyperparameter α is set to
0.5, and beam search is used for decoding during
inference with a beam size of 4. We train our model
75 epochs and select the best checkpoint base on
the average of C-F1 and R-F1 on the validation set.

6 Results and Analysis

6.1 Main Results

Table 2 shows the overall performance of the base-
lines and our proposed model. Our model sig-
nificantly (p < 0.01) outperforms the BiPAM-syn
model by at least 2.44% and 3.68% on the C-F1
and R-F1 scores, respectively, achieving state-of-
the-art performance on the AAE benchmark. On
the CDCP benchmark, our model also outperforms
the BiPAM by a large margin (p < 0.01) . Also, the

Dataset Methods C-F1 R-F1
Ours 75.94 50.08

w/o RPE 74.27 48.22
AAE w/o CPMT 75.39 49.27

w/o CPMI 75.33 49.36
w/o CPM 74.07 48.28

Ours 57.72 16.57
w/o RPE 58.13 15.11

CDCP w/o CPMT 57.11 15.14
w/o CPMI 56.06 15.70
w/o CPM 55.95 14.67

Table 3: The results of ablation experiments. RPE
denotes the reconstructed positional encoding strategy.
CPMT and CPMI are the abbreviation for the con-
strained pointer mechanism in training and inference
stage, respectively.

basic BART model with the vanilla pointer mech-
anism (BART-B) can already surpass the current
state-of-the-art model, BiPAM-syn, indicating that
it might be more appropriate to formalize the end-
to-end AM task as a generation task instead of
a dependency parsing task. The performance of
BART-B can be further improved by introducing
our proposed RPE and CPM. In addition, it is worth
noting that both LSTM-ER and BiPAM-syn are en-
hanced with explicit syntactic information, while
our model does not require any other information
except the input text and is still able to achieve
significantly better results.

6.2 Ablation Study

We perform ablation experiments to reveal the ef-
fect of each module in our model on both the AAE
and CDCP benchmarks. The results are shown in
Table 3. Overall, all of our proposed strategies can
bring performance improvements. In particular, ap-
plying the RPE to our generative model contributes
about 1.86% and 1.46% R-F1 scores on AAE and
CDCP, respectively, showing the effectiveness of
our proposed RPE for alleviating the order biases.
Surprisingly, RPM can slightly decrease the C-F1
score on CDCP. One big factor for this is that some
samples in CDCP contain too many ARs, resulting
in very long target sequences, and RPM may be
unfavorable to capture such long-term dependency.
Also, we can observe that, in both the training and
inference stages, CPM contributes significantly on
the model performance. Concretely, either remov-
ing CPMT or CPMI causes performance degrada-
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Methods AAE CDCP

Length Order Overlap Length Order Overlap
Ours 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

w/o CPMI 0.5% 1.9% 3.3% 1.3% 5.2% 11.2%
w/o CPM 0.9% 3.1% 4.5% 2.3% 5.4% 12.3%
w/o CPM RPE 0.2% 5.9% 7.2% 1.5% 6.8% 13.6%

Table 4: Invalid predictions analysis on the test set.

ID RPE AAE CDCP

C-F1 R-F1 C-F1 R-F1
1 [1,1,2,1,1,2,2] 75.94 50.08 57.71 16.46
2 [1,1,2,1,1,2,3] 75.38 49.66 58.18 16.23
3 [1,2,3,4,5,6,7] 75.84 49.16 57.29 15.03
4 [1,2,3,1,2,3,3] 75.32 49.01 57.77 16.36
5 [1,2,3,1,2,3,4] 75.33 48.91 58.42 16.04
6 iden. 74.83 48.78 56.43 15.31
7 iden. w/ dist. 74.93 48.82 56.61 16.03
8 original 74.07 48.22 58.13 15.11

Table 5: Effect of different RPE. Here, “original” de-
notes using original positional encoding of BART de-
coder. “iden.” denotes the positional embedding of
each token in the target sequence is identical. “iden. w/
dist.” denotes that the positional embeddings are identi-
cal within each tuple, but distinct among tuples. Each
list in row 1-5 indicates the position index sequence for
each tuple, which is identical among tuples.

tion. Further, removing both of them (w/o CPM)
results in further decreases, showing that CPMT
and CMPI can collaborate properly with each other
to gain more performance improvement.

6.3 Invalid Predictions Analysis

According to Yan et al. (2021a,b), adapting gen-
erative models to IE tasks suffers from the issue
of invalid prediction, since the generation of the
target sequences is not fully controllable. Thus,
to better demonstrate why our proposed RPE and
CPM work, we carry out a detailed analysis of the
invalid predictions. For our end-to-end AM task,
we define three types of invalid predictions: 1) In-
valid Length: The length of a valid tuple should
be 7. 2) Invalid Order: In each tuple, the start
index of an AC must be smaller than its end index.
3) Invalid Overlap: The predicted source and tar-
get AC spans in each tuple should not overlap with
each other.

For each predicted target sequence in the test
set, we consider it as an invalid prediction if it
contains one of the aforementioned invalid types.
The percentage of each type of invalid prediction is

shown in Table 4. Our proposed model can avoid
all the invalid predictions because of the hard con-
straints imposed by CPMI. Compared to removing
both CPMI and CPMT (w/o CPM), only applying
constraints by multi-task learning during training
(w/o CPMI) results in fewer invalid predictions.
By comparing (w/o CPM) and (w/o CPM & RPE),
we discover that our proposed RPE can reduce the
invalid order and invalid overlap predictions. We
argue that the order biases can disrupt the decoding
process, causing the model to produce more invalid
predictions, whereas RPE can alleviate this issue.
However, RPE can increase the invalid length pre-
dictions, probably because the original PE with
strong order biases is more favorable for control-
ling the prediction length.

6.4 Effect of Different RPE

To find an appropriate positional encoding scheme
for the decoder of our model, we explored various
methods. As shown in Table 5, we can conclude
that it is better to assign one same position index
to all span-related elements (i.e. ssci , esci , stci and
etci ), and set another position index to all category-
related elements (i.e. csci , ctci and ri) (row 1). This
is due to the fact that the span-related elements
and the category-related elements have intrinsically
different meanings, where the former are used to
recognize the locations and boundaries of ACs, and
the latter are used to identify the categories of ACs
and ARs. This fact can also be confirmed in row
3 and row 6, where setting distinct or identical
position index for all elements both decreases the
performance. In addition, using different position
index patterns among tuples (row 7 and row 8) does
not work well, which further confirms the negative
effect caused by the order biases between tuples.
Not surprisingly, keeping the original PE of BART
(row 8) achieves the worst results due to the order
biases. We use [1, 1, 2, 1, 1, 2, 2] as our final RPM
since it yields the best R-F1 scores on both AAE
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and CDCP.

7 Conclusion

In this paper, we transform the end-to-end AM task
into a generation task and apply the pre-trained
BART model with a pointer mechanism to solve
it. To better adapt this generative model to the end-
to-end AM task, we replace the original positional
encoding of the BART decoder with our proposed
reconstructed positional encoding. On the other
hand, we present a constrained pointer mechanism
to further improve our model, which is achieved by
multi-task learning during training and constrained
decoding during inference. The extensive exper-
imental results and detailed analysis demonstrate
the superiority of our proposed method.

Limitations

Although our proposed reconstructed positional
encoding can alleviate the order biases problem,
it may not be eliminated completely because the
order of the target sequence is still fixed during
training. Therefore, for future work, we plan to ex-
plore better approaches to address the order biases
issue.

In addition, our model has the problem of gener-
ating repetitive tuples. Although this does not af-
fect the performance, it can increase the inference
time. Therefore, we will also investigate methods
to mitigate the repetitive generation problem in
future work.
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