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Abstract

Modern Review Helpfulness Prediction sys-
tems are dependent upon multiple modalities,
typically texts and images. Unfortunately,
those contemporary approaches pay scarce at-
tention to polish representations of cross-modal
relations and tend to suffer from inferior opti-
mization. This might cause harm to model’s
predictions in numerous cases. To overcome
the aforementioned issues, we propose Multi-
modal Contrastive Learning for Multimodal
Review Helpfulness Prediction (MRHP) prob-
lem, concentrating on mutual information be-
tween input modalities to explicitly elaborate
cross-modal relations. In addition, we intro-
duce Adaptive Weighting scheme for our con-
trastive learning approach in order to increase
flexibility in optimization. Lastly, we propose
Multimodal Interaction module to address the
unalignment nature of multimodal data, thereby
assisting the model in producing more reason-
able multimodal representations. Experimental
results show that our method outperforms prior
baselines and achieves state-of-the-art results
on two publicly available benchmark datasets
for MRHP problem.

1 Introduction

Current e-commerce sites such as Amazon, Ebay,
etc., construct review platforms to collect user feed-
back concerning their products. These platforms
play a fundamental role in online transactions since
they help future consumers collect useful reviews
which assist them in deciding whether to make
the purchase or not. Unfortunately, nowadays the
number of user-generated reviews is overwhelming,
raising doubts related to the relevance and verac-
ity of reviews. Therefore, there is a need to verify
the quality of reviews before publishing them to
prospective customers. As a result, this inspires a
recent surge of interest targeting the Review Help-
fulness Prediction (RHP) problem.

∗Corresponding Author

Product Information
The Cooks Standard 6-Quart Stainless Steel Stockpot
with Lid is made with 18/10 stainless steel with an
aluminum disc layered in the bottom. The aluminum
disc bottom provides even heat distribution and prevents
hot spots. Tempered glass lid with steam hole vent
makes viewing food easy. Stainless steel riveted handles
offer durability. Induction compatible. Works on gas,
electric, glass, ceramic, etc. Oven safe to 500F, glass lid
to 350F. Dishwasher safe.

Review 1
I needed a stainless steel pot for canning my tomatoes. I
learned the hard way that you have to use a non-reactive
pot or else your end result will be inedible (I thought I
was using stainless steel but quickly realized it wasnt) I
headed to Amazon and came across this Cooks Standard
SS Cookpot with cover and bought it after reading the
reviews. I have had it for just under a year and it still
looks just as good as the day I bought it. I couldn’t be
happier with my purchase! Oh, and by the way, this one
actually is stainless steel unlike the other pot I bought
that said it was and wasn’t.

Review 2
I ordered it on May 21st. What a waste of time and
money.

Review 1 Review 2

Label score 4 1
MCR score 0.168 3.637

Our Model score 4.651 0.743

Table 1: Example of unreasonable predictions in the
Multimodal Review Helpfulness Prediction task.

Two principal groups of early efforts focus on
purely textual data. The first group follows feature
engineering techniques, retrieving argument-based
features (Liu et al., 2017), lexical features (Kr-
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ishnamoorthy, 2015), and semantic features (Kim
et al., 2006), as input to their classifier. Inherently,
their methods are labor-intensive and vulnerable to
the typical issues of conventional machine learning
methods. Instead of relying on manual features,
the second group leverages deep neural models, for
instance, RNN (Alsmadi et al., 2020) and CNN
(Chen et al., 2018), to learn rich features automat-
ically. Nonetheless, their approach is ineffective
because the helpfulness of a review is not only
contingent upon textual information but also other
modalities.

To cope with the above issues, recent works (Liu
et al., 2021b; Han et al., 2022) proposed to utilize
multi-modality via the Multi-perspective Coherent
Reasoning (MCR) model. Hypothesizing that a
review is helpful if it exhibits coherent text and
images with the product information, those works
take into account both textual and visual modality
of the inputs, then estimate their coherence level
to discern whether the reviews are helpful or un-
helpful. However, the MCR model contains a detri-
mental drawback. Particularly, it aims to maximize
the scores sp of positive (helpful) product-review
pairs while minimizing those sn of negative (un-
helpful) pairs. Hence, it was assumed that follow-
ing the aforementioned manner would project fea-
tures with similar semantics to stay close and those
with disparate ones to be distant apart. Unfortu-
nately, in multimodal learning, this was shown not
to be the case, causing the model to learn ad-hoc
representations (Zolfaghari et al., 2021). This is
one reason leading to unreasonable predictions of
MCR in Table 1. As it can be seen, even though
Review 1 closely relates to the product of “6-Quart
Stainless Steel Stockpot”, the model classifies it as
unhelpful. In addition, the target of Review 2’s text
content is vague because it does not specifically
correspond to the “Stockpot”. In fact, it can be
used for any product. Moreover, the image does
not clearly show any hint of the “Stockpot” as well.
Despite such vagueness, the output of MCR for
Review 2 is still helpful.

As a remedy to this problem, we propose Cross-
modal Contrastive Learning to mine the mutual
information of cross-modal relations in the input
to capture more sensible representations. Nonethe-
less, plainly applying symmetric gradient pattern,
which is similar to MCR that they assign equivalent
penalty to sn and sp, is inflexible. In cases that sp is
small and sn is already negatively skewed, or both

sp and sn are positively skewed, it is irrational to
assign equivalent penalties to both sp and sn. Last
but not least, MCR directly leverages Coherent
Reasoning, repeatedly enforcing alignment among
modalities in the input. This ignores the unaligned
nature of multimodal input, for example, images
might only refer to a particular section in the text,
hence do not completely align with the textual con-
tent. In consequence, strictly forming alignment
can make the model learn inefficient multimodal
representations (Tsai et al., 2019).

To overcome the above problems, we propose
an adaptive scheme to accomplish the flexibility in
the optimization of our contrastive learning stage.
Finally, we propose to adopt a multimodal attention
module that reinforces one modality’s high-level
features with low-level ones of other modalities.
This not only relaxes the alignment assumption but
also informs one modality of information of others,
encouraging refined representation learning.

In sum, our contributions are three-fold:

• We propose an Adaptive Cross-modal Con-
trastive Learning for Review Helpfulness Pre-
diction task by polishing cross-modal relation
representations.

• We propose a Multimodal Interaction module
which correlates modalities’ features without
depending upon the alignment assumption.

• We conducted extensive experiments on two
datasets for the RHP problem and found that
our method outperforms other baselines which
are both textual-only and multimodal, and ob-
tains state-of-the-art results on those bench-
marks.

2 Model Architecture

In this section we delineate the overall architecture
of our MRHP model. Particular modules of our
system are depicted in Figure 1.

2.1 Problem Definition

Given a product item p, which consists of a de-
scription T p and images Ip, and a set of reviews
R = {r1, . . . , rN}, where each review is com-
posed of user-generated text T r

i and images Iri ,
RHP model’s task is to generate the scores

si = f(p, ri), 1 ≤ i ≤ N (1)
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Figure 1: Diagram of our Multimodal Review Helpfulness Prediction model.

where N is the number of reviews for product p and
f is the scoring function of the RHP model. Em-
pirically, each score estimated by f indicates the
helpfulness level of each review, and the ground-
truth is the descending sort order of helpfulness
scores.

2.2 Encoding Modules

Our model accepts product description T p, product
images Ip, review text T r

i , and review images Iri
as input. The encoding process of those elements
is described as follows.
Text Encoding Product description and review text
are sequences of words. Each sequence is indexed
into the word embedding layer and then passed into
the respective LSTM layer for product or review.

Kp = LSTMp(Wemb(T
p)) (2)

Kr = LSTMr(Wemb(T
r)) (3)

where Kp ∈ Rlp×d, Kr ∈ Rlr×d, lp and lr are
the sequence lengths of product and review text
respectively, and d is the hidden size.
Image Encoding We follow Anderson et al. (2018)
to take detected objects as embeddings of the im-
age. In particular, a pre-trained Faster R-CNN
is applied to extract ROI features for m objects
{a1,a2, . . . ,am} from the product and review im-
ages. Subsequently, we encode extracted features
using the self-attention module (SelfAttn) (Vaswani

et al., 2017)

A = SelfAttn({a1,a2, ...,am}) (4)

where A ∈ Rm×d and d is the hidden size. Here
we use Ap and Ar to indicate product and review
image features, respectively.

2.3 Multimodal Interaction Module
We consider two components γ, η with their inputs
Xγ , Xη, where η is the concatenation of input el-
ements apart from the one in γ. For instance, if
γ = Kp, then η = [Kr, Ap, Ar], where [., .] indi-
cates the concatenation operation. We define each
cross-modal attention block to have three compo-
nents Q, K, and V :

Qγ = Xγ ·WQγ (5)

Kη = Xη ·WKη (6)

Vη = Xη ·WVη (7)

where WQγ ∈ Rdγ×dk , WKη ∈ Rdη×dk , and
WVη ∈ Rdη×dv are weight matrices. The inter-
action between γ and η is computed in the cross-
attention manner

Zγ = CMγ(Xγ , Xη) = softmax

(
Qγ ·KT

η√
dk

)
· Vη

(8)

Our full module comprises D layers of the above-
mentioned attention block, as indicated in the right
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part of Figure 1. Theoretically, the computation is
carried out as follows

Qγ [0] = Xγ (9)

T [i] = CMγ [i](LN(Qγ [i− 1]),LN(Xη)) (10)

Uγ [i] = T [i] +Qγ [i− 1] (11)

Qγ [i] = GeLU(Linear(Uγ [i])) (12)

where LN denotes layer normalization operator. We
iteratively estimate cross-modal features for prod-
uct text, product images, review text, and review
images with a view to obtaining Hp, V p, Hr, and
V r.

Hp = Qp
k[D], V p = Qp

a[D] (13)

Hr = Qr
k[D], V r = Qr

a[D] (14)

After our cross-modal interaction module, we
proceed to pass features to undertake relation fu-
sion in three paths: intra-modal, inter-modal, and
intra-review.
Intra-modal Fusion The intra-modal alignment
is calculated for two relation kinds: (1) product
text - review text and (2) product image - review
image. Firstly, we learn alignment among intra-
modal features via self-attention modules

H intraM = SelfAttn([Hp, Hr]) (15)

V intraM = SelfAttn([V p, V r]) (16)

Then intra-modal hidden representations are fed to
a CNN, and continuously a max-pooling layer to
attain salient entries

zintraM = MaxPool(CNN([H intraM, V intraM]))
(17)

Inter-modal Fusion Similar to intra-modal align-
ment, inter-modal one is calculated for two types
of relations as well: (1) product text - review im-
age and (2) product image - review text. The first
step is also to relate feature components using self-
attention modules

Hprd_txt - rvw_img = SelfAttn([Hp, V r]) (18)

Hprd_img - rvw_txt = SelfAttn([V p, Hr]) (19)

We adopt a mean-pool layer to aggregate inter-
modal features and then concatenate the pooled
vectors to construct the final inter-modal represen-

tation

Iprd_txt - rev_img = MeanPool(Hprd_txt - rvw_img)
(20)

Iprd_img - rev_txt = MeanPool(Hprd_img - rvw_txt)
(21)

zinterM = [Iprd_txt - rvw_img, Iprd_img - rvw_txt] (22)

Intra-review Fusion The estimation of intra-
review module completely mimics the inter-modal
manner. The only discrimination is that the esti-
mation is taken upon two different relations: (1)
product text - product image and (2) review text -
review image.

Hprd_txt - prd_img = SelfAttn([Hp, V p]) (23)

H rvw_txt - rev_img = SelfAttn([Hr, V r]) (24)

Gprd_txt - prd_img = MeanPool(Hprd_txt - prd_img)
(25)

Grvw_txt - rvw_img = MeanPool(H rvw_txt - rvw_img)
(26)

zintraR = [Gprd_txt - prd_img, Grvw_txt - rvw_img] (27)

Finally, we concatenate intra-modal, inter-modal,
and intra-review output, and then feed the concate-
nated vector to the linear layer to obtain the ranking
score:

zfinal = [zintraM, zinterM, zintraR] (28)

f(p, ri) = Linear(zfinal) (29)

3 Training Strategies

3.1 Adaptive Cross-modal Contrastive
Learning

In this section, we explain the formulation and
adaptive pattern along with its derivation of our
Cross-modal Contrastive Learning.
Cross-modal Contrastive Learning First of all,
we extract hidden states of helpful product-review
pairs. Second of all, hidden features are max-
pooled to extract meaningful entries.

hp = MaxPool(Hp), hr = MaxPool(Hr) (30)

vp = MaxPool(V p), vr = MaxPool(V r) (31)

We formulate our contrastive learning framework
taking positive and negative pairs from the above-
mentioned cross-modal features. In our framework,
we hypothesize that pairs established by modalities
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of the same sample are positive, whereas those
formed by modalities of distinct ones are negative.

LCE = −
B∑

i=1

sim(t1i , t
2
i )+

B∑

j=1,k=1,j ̸=k

sim(t1j , t
2
k)

(32)
where t1, t2 ∈ {hp,hr,vp,vr}, and B denotes
the batch size in the training process.
Adaptive Weighting The standard contrastive ob-
jective suffers from inflexible optimization due to
irrational gradient assignment to positive and nega-
tive pairs. As a result, to tackle the problem, we pro-
pose the Adaptive Weighting Strategy for our con-
trastive framework. Initially, we introduce weights
ϵp and ϵn to represent distances from the optimum,
then integrate them into positive and negative terms
of our loss.

LAdaptiveCE = −
B∑

i=1

ϵpi · sim(t1i , t
2
i )

+

B∑

j=1,k=1,j ̸=k

ϵnj,k · sim(t1j , t
2
k)

(33)

where ϵpi = [op − sim(t1i , t
2
i )]+ and ϵnj,k =

[sim(t1j , t
2
k)− on]+. Investigating the intuition to

determine the values for op and on, we continue
to conduct derivation and arrive in the following
theorem

Theorem 1 Adaptive Contrastive Loss (33) has
the hyperspherical form:

LAdaptiveCE =
B∑

i=1

(
sim(t1i , t

2
i )−

op

2

)2

+

B∑

j=1,k=1,j ̸=k

(
sim(t1j , t

2
k)−

on

2

)2

− C,

whereC > 0

We provide the proof for Theorem (1) in the Ap-
pendix section. As a consequence, theoretically the
contrastive objective arrives in the optimum when
sim(t1i , t

2
i ) = op

2 and sim(t1j , t
2
k) = on

2 . Based
upon this observation, in our experiments we set
op = 2 and on = 0.

3.2 Training Objective

For the Review Helpfulness Prediction problem,
the model’s parameters are updated according to

the pairwise ranking loss as follows

Lranking =
∑

i

max(0, β − f(pi, r
+) + f(pi, r

−))

(34)
where r+and r− are random reviews in which r+

possesses a higher helpfulness level than r−. We
jointly combine the contrastive goal with the rank-
ing objective of the Review Helpfulness Prediction
problem to train our model

L = LAdaptiveCE + Lranking (35)

4 Experiments

Dataset Split Category (Product / Review)
Clothing Electronics. Home

Lazada
Train & Dev 8K/130K 5K/52K 4K/16K
Test 2K/32K 1K/13K 1K/13K

Amazon
Train & Dev 16K/349K 13K/325K 18K/462K
Test 4K/87K 3K/80K 5K/111K

Table 2: Statistics of MRHP datasets.

4.1 Datasets
We evaluate our methods on two publicly avail-
able benchmark datasets for MRHP task: Lazada-
MRHP and Amazon-MRHP.
Lazada-MRHP (Liu et al., 2021b) consists of prod-
uct items and artificial reviews on Lazada.com, an
e-commerce platform in Southest Asia. All of the
texts in the dataset are expressed in Indonesian.
Amazon-MRHP (Liu et al., 2021b) is collected
from Amazon.com, the large-scale international
e-commerce platform. Product information and
associated reviews are in English and extracted
between 2016 and 2018.

Both datasets comprise 3 categories: (i) Cloth-
ing, Shoes & Jewelry (Clothing), (ii) Electronics
(Electronics), and (iii) Home & Kitchen (Home).
We present the statistics of them in Table 2.

4.2 Implementation Details
We use a 1-layer LSTM with hidden dimension
size of 128. We initialize our word embedding
with fastText embedding (Bojanowski et al., 2017)
for Lazada-MRHP dataset and 300-dimensional
GloVe pretrained word vectors (Pennington et al.,
2014) for Amazon-MRHP dataset. We set our mul-
timodal attention module to have D = 5 attention
layers. For the visual modality, we extract 2048-
dimensional ROI features from each image and
encode them into 128-dimensional vectors. Our
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Type Method Clothing Electronics Home
MAP N@3 N@5 MAP N@3 N@5 MAP N@3 N@5

Text-only

BiMPM 60.0 52.4 57.7 74.4 67.3 72.2 70.6 64.7 69.1
EG-CNN 60.4 51.7 57.5 73.5 66.3 70.8 70.7 63.4 68.5
Conv-KNRM 62.1 54.3 59.9 74.1 67.1 71.9 71.4 65.7 70.5
PRH-Net 62.1 54.9 59.9 74.3 67.0 72.2 71.6 65.2 70.0

Multimodal

SSE-Cross 66.1 59.7 64.8 76.0 68.9 73.8 72.2 66.0 71.0
DR-Net 66.5 60.7 65.3 76.1 69.2 74.0 72.4 66.3 71.4
MCR 68.8 62.3 67.0 76.8 70.7 75.0 73.8 67.0 72.2
Our Model 70.3 64.7 69.0 78.2 72.4 76.5 75.2 68.8 73.7

Table 3: Helpfulness Prediction results on Lazada-MRHP dataset.

Type Method Clothing Electronics Home
MAP N@3 N@5 MAP N@3 N@5 MAP N@3 N@5

Text-only

BiMPM 57.7 41.8 46.0 52.3 40.5 44.1 56.6 43.6 47.6
EG-CNN 56.4 40.6 44.7 51.5 39.4 42.1 55.3 42.4 46.7
Conv-KNRM 57.2 41.2 45.6 52.6 40.5 44.2 57.4 44.5 48.4
PRH-Net 58.3 42.2 46.5 52.4 40.1 43.9 57.1 44.3 48.1

Multimodal

SSE-Cross 65.0 56.0 59.1 53.7 43.8 47.2 60.8 51.0 54.0
DR-Net 65.2 56.1 59.2 53.9 44.2 47.5 61.2 51.8 54.6
MCR 66.4 57.3 60.2 54.4 45.0 48.1 62.6 53.5 56.6
Our Model 67.4 58.6 61.6 56.5 47.6 50.8 63.5 54.6 57.8

Table 4: Helpfulness Prediction results on Amazon-MRHP dataset.

entire model is trained end-to-end with Adam opti-
mizer (Kingma and Ba, 2014) and batch size of 32.
For the training objective, we set the value of the
margin in the ranking loss to be 1.

4.3 Baselines
We compare our proposed architecture against the
following baselines:

• BiMPM (Wang et al., 2017): a ranking model
which encodes input sentences in two direc-
tions to ascertain the matching result.

• Conv-KNRM (Dai et al., 2018): a CNN-
based model which encodes n-gram of multi-
ple lengths and uses kernel pooling to generate
the final ranking score.

• EG-CNN (Chen et al., 2018): a CNN-based
model targeting data scarcity and OOV prob-
lem in RHP task via taking advantage of
character-based representations and domain
discriminators.

• PRH-Net (Fan et al., 2019): a baseline to
predict helpfulness of a review by taking into

consideration both product text and product
metadata.

• DR-Net (Xu et al., 2020): a cross-modality
approach that models contrast in associated
contexts by leveraging decomposition and re-
lation modules.

• SSE-Cross (Abavisani et al., 2020): multi-
modal model to fuse different modalities with
stochastic shared embeddings.

• MCR (Liu et al., 2021b): a baseline model
focusing on coherent reasoning.

4.4 Automatic Evaluation
In Table 3 and 4, we follow previous work (Liu
et al., 2021b) to report Mean Average Preci-
sion (MAP), Normalized Discounted Cumulative
Gain (NDCG@N) (Järvelin and Kekäläinen, 2017)
where N = 3 and N = 5. As it can be seen, multi-
modal approaches achieve better performance than
text-only ones.

For Lazada-MRHP dataset, we achieve an ab-
solute improvement of NDCG@3 of 2.4 points in
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Dataset Clothing Electronics Home
MAP N@3 N@5 MAP N@3 N@5 MAP N@3 N@5

Lazada 4.48 · 10−2 1.55 · 10−2 3.93 · 10−2 4.54 · 10−3 1.05 · 10−4 2.63 · 10−3 1.09 · 10−3 3.40 · 10−2 3.68 · 10−3

Amazon 3.45 · 10−2 4.22 · 10−2 1.86 · 10−2 4.37 · 10−3 2.81 · 10−2 3.04 · 10−2 2.04 · 10−3 3.30 · 10−3 6.50 · 10−3

Table 5: Significance test of the results of our model against MCR model.

Clothing, NDCG@5 of 1.5 points in Electronics,
and MAP of 1.4 points in Home over the previ-
ous best method, which is MCR. In addition, our
model also obtains better results than the best text-
only RHP model, which is PRH-Net, with a gain of
NDCG@3 of 9.8 points in Clothing, NDCG@5 of
4.3 points in Electronics, and MAP of 3.6 points in
Home. Those results prove that our method can pro-
duce reasonable rankings for associated reviews.

For Amazon dataset, which is written in English,
our model outperforms MCR on all 3 categories, by
NDCG@5 of 1.4 points in Clothing, 2.7 points in
Electronics, and 1.2 points in Home, respectively.
These results have verified that our interaction mod-
ule and optimization approach can come up with
more useful multimodal fusion than previous state-
of-the-art baselines, not only in English context but
other language one as well.

We also perform significance tests to evaluate
the statistical significance of our improvement on
two datasets Amazon-MRHP and Lazada-MRHP,
and note p-values in Table 5. As shown in the table,
all of the p-values are smaller than 0.05, verifying
the statistical significance in the enhancement of
our method against prior best MRHP model, MCR
(Liu et al., 2021b).

4.5 Case Study

In Table 1, we introduce an example of one prod-
uct item and two reviews extracted from Electron-
ics category of Amazon-MRHP dataset. Whereas
MCR fails to predict relevant helpfulness scores,
our model successfully produces sensible rankings
for both of them. We hypothesize that our Multi-
modal Interaction module learns more meaningful
representations and Adaptive Contrastive Learning
framework acquires more logical hidden states of
relations among input elements. Thus, our model
is able to generate more rational outcomes.

4.6 Ablation Study

In this section, we proceed to study the impact of
(1) Adaptive Contrastive Learning framework and
(2) Cross-modal Interaction module.

Adaptive Contrastive Learning It is worth not-
ing from Table 6 that plainly integrating con-
trastive learning brings less enhancement to the
performance, with the improvement of NDCG@3
dropping 0.53 points in Lazada-MRHP dataset,
NDCG@5 waning 0.84 points in Amazon-MRHP
dataset. Furthermore, completely removing con-
trastive objective hurts performance, as NDCG@3
score decreasing 0.77 points in Lazada-MRHP,
and MAP score declining 1.06 points in Amazon-
MRHP. We hypothesize that the model loses the
ability to learn efficient representations for cross-
modal relations.
Cross-modal Interaction In this ablation, we elim-
inate the cross-modal interaction module. As
shown in Table 6, without the module, the improve-
ment is downgraded, for instance, N@3 drops 1.89
points in Lazada-MRHP dataset, MAP shrinks 1.39
points in Amazon-MRHP dataset. It is hypothe-
sized that without the module, the model is rigidly
dependent upon the alignment nature among multi-
modal input elements, which brings about insensi-
ble modeling because in most cases, cross-modal
elements are irrelevant to be bijectively mapped
together.

Dataset Model MAP N@3 N@5

Lazada

Our Model 78.15 72.43 76.49
- w/o Adaptive Weighting 77.90 71.90 75.97
- w/o Contrastive Objective 77.69 71.66 75.85
- w/o Cross-modal Module 77.32 70.54 74.86

Amazon

Our Model 56.49 47.62 50.79
- w/o Adaptive Weighting 56.03 46.98 49.95
- w/o Contrastive Objective 55.43 46.30 49.02
- w/o Cross-modal Module 55.10 45.67 48.50

Table 6: Ablation study in Electronics category of
Lazada-MRHP and Amazon-MRHP datasets.

4.7 Impact of Contrastive Learning on
Cross-modal Relations

Despite improved performances, it remains a
quandary that whether the enhancement stems from
more meaningful representations of input samples,
which we hypothesize as a significant benefit of
our contrastive learning framework. For deeper
investigation, we decide to statistically measure
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Label Model Intra-modal Inter-modal Intra-review
CS L2 CS L2 CS L2

1
MCR 0.785 ± 0.002 3.852 ± 0.067 0.843 ± 0.002 11.719 ± 0.001 0.845 ± 0.002 14.631 ± 0.001
Our Model 0.875 ± 0.002 6.545 ± 0.007 0.957 ± 0.002 13.934 ± 0.027 0.953 ± 0.002 15.160 ± 0.036

4
MCR 0.533 ± 0.004 1.014 ± 0.051 0.712 ± 0.010 9.476 ± 0.001 0.617 ± 0.001 8.519 ± 0.001
Our Model 0.433 ± 0.001 0.981 ± 0.005 0.564 ± 0.001 4.179 ± 0.017 0.538 ± 0.001 3.827 ± 0.020

Table 7: Intra-modal, Inter-modal, and Intra-review distances in Home category of Lazada-MRHP dataset.

Label Model Intra-modal Inter-modal Intra-review
CS L2 CS L2 CS L2

1
MCR 0.785 ± 0.006 8.532 ± 0.292 0.686 ± 0.001 9.696 ± 0.300 0.880 ± 0.002 9.620 ± 0.217
Our Model 0.971 ± 0.001 10.663 ± 0.770 0.976 ± 0.001 13.234 ± 0.493 0.970 ± 0.001 12.222 ± 0.431

4
MCR 0.697 ± 0.009 3.045 ± 0.139 0.624 ± 0.001 3.179 ± 0.830 0.781 ± 0.001 5.098 ± 0.636
Our Model 0.571 +- 0.001 1.572 +- 0.037 0.488 +- 0.001 1.460 +- 0.008 0.487 +- 0.001 3.555 +- 0.001

Table 8: Intra-modal, Inter-modal, and Intra-review distances in Home category of Amazon-MRHP dataset.

distances among input samples using standard dis-
tance functions. Table 7 and 8 reveal the results
of our experiment. In particular, we estimate the
cosine distance (CS) and L2 distance (L2) between
tokens of (1) product text - review text and product
image - review image (intra-modal), (2) product
text - review image and product image - review text
(inter-modal), and (3) product text - product im-
age and review text - review image (intra-review),
then calculate the mean value of all samples. As it
can be seen, our frameworks are more efficient in
attracting elements of helpful pairs and repelling
those of unhelpful pairs.

5 Related Work

5.1 Review Helpfulness Prediction
Past works that pursue Review Helpfulness Predic-
tion (RHP) dilemma follow text-only approaches.
In general, they extract salient information, for in-
stance lexical (Krishnamoorthy, 2015), argument
(Liu et al., 2017), and emotional features (Martin
and Pu, 2014) from reviews. Subsequently, these
features are fed to a standard classifier such as
Random Forest (Louppe, 2014) in order to pro-
duce the output score. Inspired by the meteoric
development of computation resources, contempo-
rary approaches seek to take advantage of deep
learning techniques to tackle the RHP problem.
For instance, Wang et al. (2017) propose multi-
perspective matching between review and product
information via applying attention mechanism. Fur-
thermore, Chen et al. (2018); Dai et al. (2018) adapt
CNN models to learn textual representations in var-
ious views.

In reality, review content are not only determined
by texts but also other modalities. As a conse-
quence, Fan et al. (2019) integrate metadata in-
formation of the target product into the prediction
model. Abavisani et al. (2020) filter out uninforma-
tive signals before fusing various modalities. More-
over, Liu et al. (2021b) perform coherent reasoning
to ascertain the matching level between product
and numerous review items.

5.2 Contrastive Estimation

Different from architectural techniques such as
Knowledge Distillation (Hinton et al., 2015; Hahn
and Choi, 2019; Nguyen and Luu, 2022) or Vari-
ational AutoEncoder (Zhao et al., 2020; Nguyen
et al., 2021; Nguyen and Luu, 2021; Wang et al.,
2019), Contrastive Learning has been introduced as
a representation-based but universal mechanism to
enhance natural language processing performance.
Proposed by Chopra et al. (2005), Contrastive
Learning has been widely adopted in myriad prob-
lems of Natural Language Processing (NLP).

As an approach to polish text representations,
Gao et al. (2021); Zhang et al. (2021); Liu et al.
(2021a); Nguyen and Luu (2021) employ con-
trastive loss to advance sentence embeddings and
topic representations. For downstream tasks, Cao
and Wang (2021) propose negative sampling strate-
gies to generate noisy output so that the model can
learn to distinguish correct summaries from incor-
rect ones in Document Summarization. For Spoken
Question Answering (SQA), You et al. (2021) intro-
duce augmentation algorithms in their contrastive
learning stage so as to capture noisy-invariant rep-

10092



resentations of utterances. Additionally, Ke et al.
(2021) inherit the formulation of the contrastive
objective to construct distillation loss which trans-
fers knowledge of the previous task to the current
one. Their proposals are to improve tasks in the
Aspect Sentiment Classification domain. Unfortu-
nately, despite the surge of interest in exercising
contrastive learning for NLP, research works to
adapt the method to the MRHP task have been
scant.

6 Conclusion

In this paper, we propose methods to polish rep-
resentation learning for the Multimodal Review
Helpfulness Prediction task. In particular, we aim
to advance cross-modal relation representations by
learning mutual information through contrastive
learning. In order to further enhance our frame-
work, we propose an adaptive weighting strategy
to encourage flexibility in optimization. Moreover,
we integrate a cross-modal interaction module to
loose the model’s reliance on unalignment nature
among modalities, continuing to refine multimodal
representations. Our framework is able to outper-
form prior baselines and achieve state-of-the-art
results on the MRHP problem.

7 Limitations

Despite the novelty and benefits of our method
for Multimodal Review Helpfulness Prediction
(MRHP) problem, it does include some drawbacks.
Firstly, even though empirical results demonstrate
that our approach not only works in English con-
texts, we have not conducted the verification in
multilingual circumstances, in which product or
review texts are written in different languages. If
a model is corroborated to work efficiaciously in
such contexts, it is capable of providing myriad
benefits for practical implementation, for example,
e-commerce applications can leverage such one
single model for multiple cross-lingual scenarios.
Furthermore, our work can also be extended to
other domains. For instance, in movie assessment,
we need to determine whether the review suits the
material in the film, or visual scenes in the com-
ment are consistent with the textual content. These
would form our prospective future directions.

Secondly, in the MRHP problem, there are sev-
eral relationships that contrastive learning could
exploit to burnish the performance. In particular,
performing contrastive discrimination between two

sets of reviews is able to furnish the model with
useful set-based representations, which consolidate
general knowledge for better helpfulness predic-
tion. Similar insights are applicable for two sets
of product information. At the moment, we leave
such promising perspectives for future work.
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A Hyperspherical Form of Adaptive Contrastive Loss

We have the initial formulation of the adaptive contrastive loss

LAdaptiveCE = −
B∑

i=1

ϵpi · sim(t1i , t
2
i ) +

B∑

j=1,k=1,j ̸=k

ϵnj,k · sim(t1j , t
2
k) (36)

We first substitute ϵpi = [op − sim(t1i , t
2
i )]+ and ϵnj,k = [sim(t1j , t

2
k)− on]+ into the above equation,

LAdaptiveCE =
B∑

i=1

sim(t1i , t
2
i )

2 − op · sim(t1i , t
2
i ) +

B∑

j=1,k=1,j ̸=k

sim(t1i , t
2
i )

2 − on · sim(t1j , t
2
k) (37)

=

B∑

i=1

(
sim(t1i , t

2
i )−

op

2

)2

+

B∑

j=1,k=1,j ̸=k

(
sim(t1j , t

2
k)−

on

2

)2

− C (38)

where C =
(
op

2

)2
+
(
on

2

)2. Now we obtain the spherical form of our contrastive loss.
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