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Abstract

Recently proposed dialogue state tracking
(DST) approaches predict the dialogue state
of a target turn sequentially based on the pre-
vious dialogue state. During the training time,
the ground-truth previous dialogue state is uti-
lized as the historical context. However, only
the previously predicted dialogue state can be
used in inference. This discrepancy might lead
to error propagation, i.e., mistakes made by
the model in the current turn are likely to be
carried over to the following turns. To solve
this problem, we propose Correctable Dialogue
State Tracking (Correctable-DST). Specifically,
it consists of three stages: (1) a Predictive
State Simulator is exploited to generate a pre-
viously "predicted" dialogue state based on
the ground-truth previous dialogue state dur-
ing training; (2) a Slot Detector is proposed to
determine the slots with an incorrect value in
the previously "predicted" state and the slots
whose values are to be updated in the current
turn; (3) a State Generator takes the name of
the above-selected slots as a prompt to generate
the current state. Empirical results show that
our method achieves 67.51%, 68.24%, 70.30%,
71.38%, and 81.27% joint goal accuracy on
MultiWOZ 2.0-2.4 datasets, respectively, and
achieves a new state-of-the-art performance
with significant improvements.

1 Introduction

Dialogue state tracking is the core module of a task-
oriented dialogue system. It extracts the user’s goal
in each turn and represents the dialogue state as a
set of (slot, value) pairs. Its performance will affect
the decision prediction of the dialogue system.

Traditional neural network-based DST casts
the prediction of slot values into a classification
task(Mrkšić et al., 2017; Liu and Lane, 2017;
Zhong et al., 2018; Ren et al., 2018; Nouri and

† Corresponding author.

Hosseini-Asl, 2018), requiring a predefined ontol-
ogy which includes all candidate slot-value pairs.
However, some undefined slot values (Xu and Hu,
2018) will appear in real scenarios. Therefore,
current DST research focuses mainly on open vo-
cabulary DST(Chao and Lane, 2019; Hosseini-Asl
et al., 2020; Heck et al., 2020; Ham et al., 2020;
Feng et al., 2021; Lin et al., 2021; Su et al., 2022),
where the value of each slot is generated or ex-
tracted based on the dialogue history to resolve scal-
ability and generalization issues of the predefined
ontology-based approach, but these approaches of-
ten lack efficiency because they predict the dia-
logue state from scratch at every dialogue turn.

Some approaches utilize the dialogue state of the
previous turn as a compact representation of the
dialogue history and, based on that, generate the
slot values to improve efficiency. Kim et al. (2020);
Zeng and Nie (2020a) decompose the DST into
two tasks: state operation prediction and value gen-
eration. But the performance of the state operation
prediction will affect the performance of DST(Kim
et al., 2020). Therefore, Chen et al. (2020); Lin
et al. (2020); Yang et al. (2021); Tian et al. (2021)
proposed to jointly model state operation predic-
tion and value generation in an implicit way, and
the dialogue state tracking is re-transformed into
a single causal language model. Although these
methods also work reasonably well, they suffer
from error propagation (Zhao et al., 2021). Figure
1 illustrates the same errors that will appear in later
dialogue turns, and dialogue state errors can be
divided into three types (Quan and Xiong, 2020):
(1) over prediction, which means the predicted di-
alogue state contains some redundant slot values.
For example, the redundant slot value in the 5th
turn state is "wandlebury country park"; (2) par-
tial prediction, which means the predicted dialogue
state lacks some slot values. The slot value "hotel"
is missing in the state of the 1st turn; (3) erroneous
prediction, which means the slot value of the pre-
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User Sys
Hello, i am looking for a hotel in the
south that is moderate priced.

I cannot find any hotel, but i did find a
guesthouse called aylesbray lodge guest house.

I would prefer a hotel. It should have a 4 star 
rating. Can you check again , please?

Unfortunately all we have is
the aylesbray lodge guest house.

Okay , do you have any hotel with 
a 3 star rating instead ? 

Can i help more today ?

Yes, i am also looking for info 
on wandlebury country park

Ground Trouth Dialogue States (Training) Predicted Dialogue States (Inference)
hotel area=south,pricerange=moderate, 
  type=hotel

hotel  area=south,pricerange=moderate, 
  type=hotel, stars=4 

hotel  area=south,pricerange=moderate, 
  type=hotel, stars=3 

hotel  area=south,pricerange=moderate, 
      type=hotel, stars=3, ... ,book stay=2
attraction  name=wandlebury country park

hotel area=south,pricerange=moderate

hotel  area=south,pricerange=moderate, 
  stars=4 

hotel  area=south,pricerange=moderate, 
  stars=4 

 hotel  area=south,pricerange=moderate, 
      type=hotel, stars=4, ... ,book stay=2 
 attraction name=wandlebury country park 
restaurant name=wandlebury country park 

Figure 1: An example of dialogue state tracking is based on the recurrent state context representation. "User" and
"Sys" represent user utterance and system response, respectively. Green indicates partial prediction, yellow indicates
erroneous prediction, and orange indicates over prediction.

dicted state is not equal to that of the real dialogue
state. In the 3rd turn, the value of hotel-stars is
predicted to "4".

There are two factors contributing to the error
propagation problem: (1) historical context mis-
match between training and inference. Using the
dialogue state of the previous turn as a compressed
representation of the dialogue history, i.e., histori-
cal context, that is fed to the model is reasonable
during training because the dialogue state of the
previous turn is always correct. However, in the
inference time, the previously predicted dialogue
state may contain incorrect slot values; (2) these
models cannot determine and correct errors in the
previously predicted dialogue state. Because these
models do not use the complete dialogue history as
the input, they cannot compare the consistency of
information between the previous dialogue history
and the previously predicted dialogue state.

Based on the above, we propose a Correctable
Dialogue State Tracking (Correctable-DST) model,
as illustrated in Figure 2. We use the Predictive
State Simulator to generate a pseudo "predicted"
dialogue state, i.e., one that randomly inserts and
deletes slot values based on the ground-truth di-
alogue state of the previous turn to alleviate the
historical context mismatch. Then, the Slot De-
tector judges the slots with redundant value and
missing value in the previously "predicted" dia-
logue state. Finally, when generating the current
turn state, the name of the above slots is used as
the prompt information fed to the State Generator,
thus enhancing the ability of the model to correct
the overprediction and partial prediction. In addi-
tion, the Slot Detector also predicts the slots whose
value needs to be updated compared with the previ-
ous turn. Then it returns the slot’s name to the State

Generator to improve the model’s update ability,
thus reducing the error propagation caused by the
erroneous prediction. Dialogue history is also used
as an input to the model, which is a prerequisite for
enabling the model to determine and correct errors
in the previous dialogue state.

We evaluate the effectiveness of our model on
MultiWOZ 2.0-2.4 datasets. Experimental results
show that our model reaches 67.51%, 68.24%,
70.30%, 71.38% and 81.27% joint goal accu-
racy, outperforming previous strong baselines by
+10.58%, +7.51%, +9.81%, +5.51% and +6.64%,
respectively. Furthermore, a series of subsequent
ablation studies were conducted to demonstrate the
effectiveness of the proposed method. Our contri-
butions are as follows:

(1) We propose a Predictive State Simulator to
mitigate the historical context mismatch between
training and inference by simulating the dialogue
state predicted at the previous turn in the inference.

(2) We use the output slot by the Slot Detec-
tor as the prompt information when predicting the
state of the current turn, which can not only help
the model correct the errors in the previously "pre-
dicted" dialogue state but also reduce the current
erroneous prediction.

(3) Experimental results on MultiWOZ 2.0-2.4
datasets show that our proposed Correctable-DST
achieves new state-of-the-art performance.

2 Proposed Approach

Figure 2 illustrates the architecture of Correctable-
DST, which includes Predictive State Simulator,
Slot Detector, and State Generator. In this section,
we elaborate on each module of this approach.

A dialogue can be represented as X =
{(R1, U1), (R2, U2), · · · , (RT , UT )} with T turns
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hotel  area=south,
  type=hotel，
 name=nusha

Model

hotel  area=south,
 name=nusha 

attraction name=nusha

hotel  area=south,
 name=nusha 

attraction name=nusha

Preprocessing

Model

Training

Inference

Context Encoder

Slot-Word Attention Slot-Word Attention

Slot Self-Attention

Slot Active
Prediction

State Transition
Prediction

Decoder

State Error
Prediction

Predictive State
Simulator

Slot Encoder Slot Encoder

Context Encoder

State GeneratorSlot Detector

Slot
Information

Figure 2: The overview of the proposed Correctable-DST. The model first generates previously "predicted" dialogue
state B̂t−1 that may contain errors by Predictive State Simulator in training time, then Slot Detector obtains slot
information Sover

t−1 , Slack
t−1 , and Supdate

t−1 . Finally, the name of the above slot information is used as the prompt
information fed to the State Generator.

where Rt represents system response and Ut rep-
resents user utterance at turn t. We define the dia-
logue state at turn t as Bt = {(Sj , V

t
j ) | 1 ≤ j ≤

J} where V t
j is the corresponding value of the slot

Sj , and J represents the size of a set of predefined
slots. Following (Ren et al., 2018), to represent
domain and slot information, the term "slot" refers
to the concatenation of domain and slot names, e.g.,
" <restaurant-name>".

2.1 Predictive State Simulator

The idea of the Predictive State Simulator is to gen-
erate previously "predicted" dialogue state B̂t−1

that may contain errors, as shown in the upper part
of Figure 2.

We define two slot-level simulation strategies:
(1) randomly deleting the slot value from the
ground-truth previous dialogue state to simulate
partial predictions. Specifically, if the slot value is
not "none," the slot value is deleted with a proba-
bility of β. (2) Randomly insert a slot value to the
ground-truth previous dialogue state to simulate
over prediction. Specifically, if the slot value is
"none", it will be replaced with the slot value that
is not "none" in the ground-truth previous dialogue

state with a probability of β. This tackle is inspired
by our observation of SOM-DST (Kim et al., 2020)
prediction results, where the redundant slot value
is usually the value of other slots in the dialogue
state.

2.2 Slot Detector

The slot detector is used to determine the slot with
the incorrect value in the previously "predicted"
dialogue state and the slot with the updated value
of the current turn.
Slot Encoder The name of the slot Sj(1 ⩽ j ⩽ J)
is fed into BERT to generate a slot vector:

c
Sj

[CLS] = BERTfixed ([CLS] ⊕ Sj ⊕ [SEP]) , (1)

where BERTfixed represents the pre-trained BERT
without fine tuning. cSj

[CLS] ∈ Rd is the output of
[CLS] token from the slot Sj . d is the hidden size.
Context Encoder The full dialogue history and
previously "predicted" dialogue state are used as
a part of the context encoder input. By com-
paring whether the dialogue history information
and the previously "predicted" dialogue state in-
formation are consistent or not, the errors in the
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previously "predicted" dialogue state are deter-
mined. The inputs to the context encoder consists
of the dialogue utterances Dt = Rt ⊕ Ut at turn
t, the dialogue history Ht = D1 ⊕ D2 ⊕ · · · ⊕
Dt−1 and the previously "predicted" dialogue state
B̂t−1 =

⊕
(Sj ,V

t−1
j )∈B̂t−1,V

t−1
j ̸=none,1≤j≤J Sj ⊕

V t−1
j , where ⊕ is the operation of sequence con-

catenation. All the sub-sequences are concate-
nated with special segment tokens, i.e., Xt =
[CLS]⊕Ht⊕[EOB]⊕B̂t−1⊕[EOT]⊕Dt⊕[SEP],
to calculate the context vector Ct:

Ct = ContextEncoder (Xt) , (2)

where Ct ∈ Rd×|Xt| is the hidden states of the
context encoder, |Xt| is the input sequence length.
Slot Word Attention We employ a multi-head at-
tention mechanism (Vaswani et al., 2017) to extract
content specific to each slot Sj(1 ≤ j ≤ J) based
on the outputs of the context and slot encoders:

c
Sj

t = MultiHead(c
Sj

[CLS],Ct,Ct), (3)

where c
Sj

t ∈ Rd represents the slot-specific vector
of j-th slot.
Slot Self-Attention We adopt a slot self-attention
to learn the dependencies among the slots, which
contains a stack of N identical layers, and each
layer consists of a multi-head self-attention mech-
anism and a position-wise feed-forward network
(FFN). Let C̃

S
1 = [cS1

t , cS2
t , . . . , cSJ

t ] ∈ Rd×J , the
n-th layer’s computations are:

C̄
S
n = MultiHead(C̃

S
n−1, C̃

S
n−1, C̃

S
n−1),(4)

C̃
S
n = FFN(ReLU(FFN(C̄

S
n))). (5)

The final slot-specific vectors C̃
S
N are the outputs

of the last layer, and C̃
S
N = [cS1

t , cS2
t , . . . , cSJ

t ] ∈
Rd×J , where c

Sj

t is the final slot-specific vector of
the j-th slot.
Auxiliary Classification Task We introduce two
auxiliary binary classification tasks that are to be
trained with DST model jointly: (1) slot activation
prediction, to predict the activated slot in the previ-
ous turn; (2) state transition prediction, to predict
whether the value of a slot is updated or not com-
pared with the previous dialogue turn. Both tasks
read the final slot-specific vectors C̃

S
N as the in-

puts. We define activation probability P active
St−1
j

and

transition probability P update
St
j

as:

P active
St−1
j

= Sigmoid(W active(c
Sj

N,t)
⊤), (6)

P update
St
j

= Sigmoid(W update(c
Sj

N,t)
⊤), (7)

where W active ∈ R1×d and W update ∈ R1×d are
linear layers. P active

St−1
j

represents the probability

that the slot j was activated in the previous turn.
P update
St
j

is the probability that the slot needs to

update the value in the current turn. The two prob-
abilities are used to calculate an activation loss LA

t

and a transition loss LU
t :

LA
t = − 1

J

J∑

j=1

yAt−1,j · logP active
St−1
j

+ (1− yAt−1,j) logP
active
St−1
j

, (8)

LU
t = − 1

J

J∑

j=1

yUt,j · logP update
St
j

+ (1− yUt,j) logP
update
St
j

, (9)

where yAt−1,j and yUt,j are 0-1 valued ground-truth
activation label and transition label of the j-th slot,
respectively.
Threshold-based Slot Detection The two probabil-
ities in Equation (6) and (7) are then used to detect
two slot sets: Sactive

t−1 and Supdate
t . We define the

slots activated in turn t − 1 as Sactive
t−1 = {St−1

j |
P active
St−1
j

⩾ α, 1 ⩽ j ⩽ J}, and the slots that updat-

ing value in turn t as Supdate
t = {St

j | P update
St
j

⩾
α, 1 ⩽ j ⩽ J}. α is the threshold for classification.
According to the slots activated Sactive

t−1 , the error in
the previous dialogue state is indirectly determined
as follows:

Ŝt−1 = {St−1
j | (St−1

j , V t−1
j ) ∈ B̂t−1,

V t−1
j ̸= none, 1 ⩽ j ⩽ J}, (10)

Sover
t−1 = Ŝt−1 − Ŝt−1 ∩ Sactive

t−1 , (11)

Slack
t−1 = Sactive

t−1 − Ŝt−1 ∩ Sactive
t−1 , (12)

where Ŝt−1 is the activated slots, Sover
t−1 is the over-

predicted slots and Slack
t−1 is the lack-predicted slots

in the previously "predicted" dialogue state B̂t−1.
The three types of slot information Sover

t−1 , Slack
t−1

and Supdate
t will be used as prompt information

when generating dialogue state.

879



2.3 State Generator
Figure 2 describes the State Generator with a gen-
eral encoder-decoder architecture. The context en-
coder in the State Generator shares parameters with
the context encoder in the Slot Detector. When
generating the dialogue state Bt, the context en-
coder additionally encodes the over-predicted slots
Sover
t−1 and lack-predicted slots Slack

t−1 in the previ-
ously "predicted" dialogue state to help the model
recover from earlier errors. Slots that require up-
dated values Supdate

t are encoded to reduce erro-
neous prediction in the current turn. Then, all the
sub-sequences are concatenated with special seg-
ment tokens, i.e., X̂t = [CLS] ⊕ Ht ⊕ [EOB] ⊕
B̂t−1 ⊕ [EOT]⊕Dt ⊕ [EOO]⊕Sover

t−1 ⊕ [EOL]⊕
Slack
t−1 ⊕ [EOU] ⊕ Supdate

t ⊕ [SEP], as the input to
the context encoder:

Ĉt = ContextEncoder(X̂t), (13)

where Ĉt ∈ Rd×|X̂t| represents the slot informa-
tion augmented context vector, and |X̂t| denotes
the input sequence length. Then the decoder gener-
ates the user state:

b̃lt = Decoder(B1:l−1
t | Ĉt), (14)

Bt = {blt | blt = argmax(P (blt))}, (15)

P (blt) = Wvocab · b̃lt, (16)

where B1:l−1
t = {b1t , · · · , bl−1

t }, l ∈ [1, |Bt|], and
|Bt| denotes the state sequence length. Wvocab ∈
Rd×Nvocab is a linear layer projecting the hidden
state feature space to Nvocab dimensional vocabu-
lary space. The decoder gradually generates words
over time until the end of generating [EOS], which
is a special word that ends generation. Then it
updates the dialogue state Bt by extracting the slot-
value pairs from Bt. Equation 16 is used to calcu-
late the cross entropy state loss:

LB
t = − 1

|Bt|

|Bt|∑

l=1

(
yBt,l

)⊤
logP

(
blt

)
, (17)

where yBt,l is the ground-truth token whose state
needs to be generated at the l-th decoding step.

2.4 Optimization
We optimize the entire model parameters by jointly
minimizing the sum of the three loss functions in
Equation (8), (9) and (17)

Lt = LA
t + LU

t + LB
t . (18)

3 Experiments

3.1 Datasets

The proposed model is evaluated on the MultiWOZ
(Budzianowski et al., 2018) benchmark. Since
there is annotation noise on MultiWOZ 2.0, some
researchers have continuously revised the annota-
tions and have released 4 variants of the dataset,
namely MultiWOZ 2.1-2.4 (Eric et al., 2020; Zang
et al., 2020; Han et al., 2021; Ye et al., 2021a). The
processed dataset contains 5 domains, 17 slots, 30
(domain, slot) pairs, and over 4500 values.

3.2 Metrics

We use joint goal accuracy and final joint goal ac-
curacy as our evaluation metrics. The joint goal
accuracy is a measures the percentage of correct
in all the dialogue turns. A turn is considered as
correct only when all the values of slots are cor-
rectly predicted. The final joint goal accuracy is the
proportion of examples (dialogues) where the pre-
dicted dialogue state of last turn exactly matches
the ground-truth dialogue state of last turn.

3.3 Settings

We employ the BERT (Devlin et al., 2019) as the
slot encoder to extract the slot vector, whose pa-
rameters are frozen during the training time. The
BART (Lewis et al., 2020) was used as the state
generator. For the slot-word attention and slot self-
attention, we set the number of attention heads to
4. For the slot self-attention, we set the transformer
layers to 6. We use the AdamW optimizer. The
learning rate was set to 4e-5 for the BART and 1e-4
for the rests. The training batch size was set to
16 and the dropout (Srivastava et al., 2014) prob-
ability was set to 0.1. The threshold α was set to
0.5, and the β was set to 0.06. We report the mean
results over multiple random seeds to reduce statis-
tical errors. We use the data pre-processing script
provided by Wu et al. (2019) for data preparation
and data post-processing scripts are used to process
the resulting sequence of dialogue states. We use
the same hyperparameter configurations for all the
experiments on MultiWOZ 2.0-2.4.

3.4 Baselines

We compare our approach with the following ex-
isting baselines, which are divided into two cat-
egories: (1) models that require a predefined on-
tology: SST (Chen et al., 2020) predicts dialogue
states from dialogue utterances and schema graphs
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DH PDS MultiWOZ(%)
2.0 2.1 2.2 2.3 2.4

Predefined ontology
DST-Picklist Full History × 54.39 53.30 - - -
SST Previous Turn ✓ 51.17 55.23 - - -
STAR Full History ✓ 52.26⋆/54.53 54.08⋆/56.36 60.49⋆ 65.87⋆ 74.63⋆/73.62♢

DSS-DST Full History × 56.93 60.73 58.04 - -
Open-vocabulary
TRADE Full History × 48.62 45.60 45.4 ♠ 49.2♣ 55.05♢

TripPy Full History × - 55.29 - 63.0♣ 59.62♢

SOM-DST Previous Turn ✓ 52.61⋆/51.38 52.47⋆/52.57 53.27⋆ 55.69⋆/55.5♣ 67.54⋆/66.78♢

MinTL Previous u Turns ✓ 51.41⋆/52.1 52.92⋆/53.62 55.82⋆ 56.95⋆ 67.56⋆

TransformerDST Previous Turn ✓ 53.71⋆/54.64 55.56⋆/55.35 55.64⋆ 57.17⋆ 69.74⋆

SimpleTOD Full History × - 55.76 54.02‡ 51.3♣ -
Seq2seq-DU Full History × - 56.1 54.40 - -
UBAR Full History ✓ 52.59 56.2 - - -
PPTOD Full History × 53.89 57.45 - - -
AGDST No ✓ - - 57.26‡ - -

CorrectableDST Full History ✓ 67.51 68.24 70.30 71.38 81.27
(±0.48) (±0.41) (±0.43) (±0.53) (±0.55)

Table 1: Joint goal accuracy (%) on the test set of MultiWOZ. DH: dialogue history. PDS: previous dialogue state.
⋆ means our reproduction results using a source code. ♠: the results borrowed from Zang et al. (2020). ‡: the
results borrowed from Tian et al. (2021). ♣: results are cited from the 2.3 websites https://github.com/lexmen
318/MultiWOz-coref. ♢: the results borrowed from (Ye et al., 2021a). "-" indicates no public number is available. ⋆
means our reproduction results using a source code.

which contain slot relations in edges; DS-Picklist
(Zhang et al., 2020) assumes a full ontology which
is available and treats all domain-slot pairs as cat-
egorical slots; STAR (Ye et al., 2021b) propose a
slot self-attention mechanism that can learn the slot
correlations automatically. DSS-DST (Guo et al.,
2021) propose a Dual Slot Selector which deter-
mines each slot whether to update the slot value
or to inherit the slot value from the previous turn.
(2) Models that can predict unseen values: TRADE
(Wu et al., 2019) decodes the value for each slot
using a copy-based GRU decoder; TripPy (Heck
et al., 2020) makes use of three copy mechanisms
to fill slots with values; SOM-DST (Kim et al.,
2020) considers dialogue state as explicit fixed-
sized memory and propose a selectively overwrit-
ing mechanism; MinTL (Lin et al., 2020) introduce
Levenshtein belief spans, that allow efficient di-
alogue state tracking with a minimal generation
length; Transformer-DST (Zeng and Nie, 2020a)
propose a purely Transformer-based framework,
where a single BERT works as both the encoder
and the decoder; SimpleTOD (Hosseini-Asl et al.,
2020) uses a single, causal language model trained
on all sub-tasks recast as a single sequence predic-
tion problem; Seq2seq-DU (Feng et al., 2021) for-
malizes DST as a sequence-to-sequence problem;
UBAR (Yang et al., 2021) is acquired by fine-tuning
the large pretrained unidirectional language model
GPT-2 on the sequence of the entire dialogue ses-

sion; PPTOD (Su et al., 2022) learn the primary
TOD task completion skills from heterogeneous
dialogue corpora. AGDST (Tian et al., 2021) learn
more robust dialogue state tracking by amending
the errors that exist in the primitive dialogue state.

3.5 Main Results

The results from our model and other baselines on
the MultiWOZ 2.0-2.4 test sets are shown in Table
1. Our approach achieves state-of-the-art perfor-
mance on these datasets with joint goal accuracy
of 67.51%, 68.24%, 70.30%, 71.38%, and 81.27%.
Compared to previous strong baselines, our ap-
proach achieves 10.58%, 7.51%, 9.81%, 5.51%,
and 6.64% measurable performance promotion on
MultiWOZ 2.0-2.4, respectively. Particularly, the
joint goal accuracy on MultiWOZ 2.4 is beyond
80%. Similar (Kim et al., 2020; Lin et al., 2020;
Zeng and Nie, 2020a; Ye et al., 2021b), thanks to
MultiWOZ 2.4, which fines all the annotations in
the validation set and test set on MultiWOZ 2.1,
our model achieves higher joint goal accuracy on
MultiWOZ 2.4 than on MultiWOZ 2.0-2.3.

As mentioned above, some approaches that pre-
dict the dialogue state of the target turn in sequence
based on the previous dialogue state will suffer
from the negative impact of error propagation. So
we adopt a more stringent evaluation metric to
measure the performance of the model, i.e., fi-
nal joint goal accuracy. The final joint goal ac-
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Model MultiWOZ(%)
2.0 2.1 2.2 2.3 2.4

SOM-DST⋆ 39.34 36.04 38.64 38.44 55.00
MinTL(BartLarge)⋆ 38.70 39.04 41.04 40.24 56.96
Transformer-DST⋆ 39.69 40.27 41.54 41.30 58.40
STAR⋆ 38.93 40.94 48.14 56.15 66.46
Correctable-DST 60.36 57.86 61.66 58.26 74.17

Table 2: Final joint goal accuracy(%) on the MultiWOZ
2.0-2.4 test set. ⋆ means our reproduction results using
the source code.

curacy of our model and other baselines on the
test sets of MultiWOZ 2.0-2.4 is shown in Table 2.
Our approach obtains 60.36% , 57.86%, 61.66%,
58.26% and 74.77% final joint goal accuracy, re-
spectively, which has a significant improvement
(20.67%, 16.92%, 13.52%, 2.11% and 7.71%) over
the previous best results. The results demonstrate
that our approach can effectively mitigate the error
propagation problem.

3.6 Ablation Study

We evaluate the effectiveness of the proposed pre-
dictive state simulator and the additional encoding
of slot information when generating dialogue state
on the MultiWOZ 2.4, as shown in Table 3.

Model Joint Acc (%)
basic model 77.38

+ Predictive State Simulator 79.15 (+1.77)
+ Slot Information 81.27 (+2.12)

Table 3: Ablation study of the Predictive State Simulator
and the Slot Information on the MultiWOZ 2.4 test set
in joint goal accuracy.

Our basic model is a multi-task model, which
jointly trains the slot activation prediction, the state
transition prediction and the dialogue state gener-
ation. The results show that our basic model also
achieves good performance, attributed to the multi-
task framework and the use of the BART. Still, we
do not consider this to be our contribution. When
we use the Predictive State Simulator, it will in-
crease the joint goal accuracy by 1.77%. It has
been proved that the Predictive State Simulator is
used in training to simulate the predicted dialogue
state in inference so that the model can adapt to the
noise in inference. Based on using the Predictive
State Simulator, we encode additional slot infor-
mation to generate a dialogue state, and the results
increased by 2.12%. This demonstrates the impor-
tance of slot information as prompt information
when generating the current turn dialogue state.

3.6.1 Ablation on Predictive State Simulator
As aforementioned, we consider that over-
prediction and partial-prediction make the histor-
ical context mismatched between training and in-
ference, which eventually leads to the problem of
error propagation. To verify this, we evaluate the
mentioned random insertion and deletion strate-
gies to generate a previously "predicted" dialogue
state. As shown in Table 4, we observe that ran-
domly inserting a slot value to the ground-truth
previous dialogue state results in a 1.14% improve-
ment, and randomly deleting a slot value from the
ground truth previous dialogue state shows a gain
of 0.58%. When we use both, the joint goal accu-
racy is increased by 1.77%.

Model Joint Acc(%)
basic model 77.38

+ insert 78.52 (+1.14)
+ delete 77.96 (+0.58)
+ both 79.15 (+1.77)

Table 4: The ablation study of the two approaches of
predictive state simulator on the MultiWOZ2.4 test set
with joint goal accuracy.

Table 5 shows the performance of the model
using different simulation probability β. We can
see that, as expected, the performance of the model
starts to grow when β is increased. However, the
performance of the model decreases slightly when
β is further increased. We believe that increasing β
to a certain extent can increase the training samples’
diversity and improve the model’s robustness. On
the other hand, the appropriate β can minimize the
historical context difference between the training
and reasoning processes.

β Joint Acc(%)
0 77.38

0.03 78.58
0.06 81.27
0.09 80.25
0.12 79.30

Table 5: Simulation probability analysis on the Multi-
WOZ2.4 test set with joint goal accuracy.

3.6.2 Ablation on Slot Information
When generating a dialogue state, we use three
types of slot information as a part of the input se-
quence. We conduct an ablation study to explore
the effectiveness of different slot information, as
shown in Table 6. The results show that the joint
goal accuracy of the model is increased by 1.93%
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when the over-predicted slots Sover
t−1 is fed to the

model. When the under-predicted slots Slack
t−1 is fed

to the model, the joint goal accuracy of the model is
increased by 0.33%. We guess that the slot informa-
tion Sover

t−1 and Slack
t−1 can help the model correctly

the errors in the previously predicted dialogue state
because they point out the wrong slot in the pre-
viously predicted dialogue state. Similarly, the
slots value update information Supdate

t is fed to
the model, the joint goal accuracy of the model
is increased by 1.47%, which means it can help
the model update the dialogue state to mitigate his-
torical context mismatches caused by erroneous
prediction in the future.

Model Joint Acc(%)
basic model + predictive state simulator 79.15

+ over-predicted slots 81.08
+ lack-predicted slots 79.48
+ slots that updating value 80.62
+ above all 81.27

Table 6: The ablation study of three slot information on
the MultiWOZ2.4 with joint goal accuracy.

3.7 Error Analysis
In this section, the errors made by the model on
MultiWOZ 2.4 are analyzed. We counted the pro-
portion of the three error types for the dialogue
state. About 65% of the errors were due to partial
prediction, 13% were due to over prediction, and
22% were due to erroneous prediction. Out of these,
40% of partial prediction, 62% of over prediction,
and 33% of erroneous prediction will eventually be
corrected by our model. Note that there are no an-
notation errors in the MultiWOZ2.4 test set. Statis-
tics show that although we do not design a particu-
lar scheme to correct erroneous prediction, it also
shows comparable performance. Then we further
observed the experimental results and found that
the common mistakes in the generative model, e.g.
express by holiday inn cambridge is predicted
to cafe by holiday inn cambridge, accounted for
more than 90% of the erroneous prediction, and
only the common mistakes in the generative model
were corrected.

4 Related Work

Traditional DST models formulate DST as a value
classification task for each slot, assuming all values
are available (Liu and Lane, 2017; Zhong et al.,
2018; Nouri and Hosseini-Asl, 2018). In practice,
this is a limiting assumption because there are a

large number of possible values in real life, and it is
impractical to enumerate all possible values. There-
fore, the current research work mainly focuses on
the open vocabulary DST(Chao and Lane, 2019;
Hosseini-Asl et al., 2020; Heck et al., 2020; Ham
et al., 2020; Feng et al., 2021; Lin et al., 2021; Su
et al., 2022), where the value of each slot is gen-
erated or extracted based on the dialogue history.
Kim et al. (2020) handle this problem by decom-
posing DST into two sub-tasks: state operation pre-
diction and value generation. At each turn, whether
the value in the previous dialogue state is modified
or not or how to modify the value is determined by
the discrete operations predicted by the state opera-
tion. Many recent works (Zeng and Nie, 2020a,b)
follow this approach. Besides, some works (Chen
et al., 2020; Lin et al., 2020; Yang et al., 2021)
put forward jointly model state operation predic-
tion and value generation in an implicit way, which
means the current turn of dialogue and the pre-
vious dialogue state are used as input sequences,
and the dialogue state tracking is re-transformed
into a single causal language model. In addition,
some task-oriented pre-training models have been
proposed, Hosseini-Asl et al. (2020) used a single,
causal language model trained on all sub-tasks re-
cast as a single sequence prediction problem. Su
et al. (2022) introduced a new dialogue multi-task
pre-training strategy that allows the model to learn
the primary TOD task completion skills from het-
erogeneous dialogue corpora. Feng et al. (2021)
formalizes DST as a sequence-to-sequence prob-
lem. Yang et al. (2021) is acquired by fine-tuning
the large pretrained unidirectional language model
GPT-2 on the sequence of the entire Dialogue ses-
sion.

Due to some methods (Kim et al., 2020; Zeng
and Nie, 2020a; Chen et al., 2020; Lin et al., 2020;
Yang et al., 2021) suffer from error propagation
(Zhao et al., 2021). Tian et al. (2021) propose
an amendable generation method which improves
the output dialogue state through a two-pass de-
coding process, this is similar to automatic post-
editing methods in the field of machine transla-
tion(do Carmo et al., 2021), there has first been a
decoder producing the primitive output, to which it
adds a second decoder, creating an improved ver-
sion of that output. But the DST model improved
by "two-pass decoding" may still produce wrong
output, and the error will be propagated when pre-
dicting the subsequent states.
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5 Conclusion

In this paper, we propose a new correctable dia-
logue state tracking approach. This approach gen-
erate the previous "predicted" dialogue state dur-
ing training through the Predictive State Simulator.
Then, the Slot Detector outputs the slot informa-
tion. Finally, the State Decoder will correct the
errors in the previously "predicted" dialogue state
according to the slot information and reduce the
current erroneous prediction to alleviate the error
propagation problem. Experimental results show
that our model achieves the state-of-the-art per-
formance of 67.51%, 68.24%, 70.30%, 71.38%,
and 81.27% achieving significant improvements
(10.58%, 7.51%, 9.81%, 5.51%, and 6.64%) joint
goal accuracy over the previous best results on the
MultiWOZ 2.0-2.4.

Limitations

The first limitation of our approach is that the
model is less efficient. As mentioned above, we
need to judge and correct the errors in the previ-
ously predicted dialogue state depending on the
dialogue history, which inevitably leads to too long
a historical context for the input model, and the slot
detector and the state generator need to encode the
historical context.

The second limitation is that our model cannot
detect erroneous predictions. We have tried simu-
lating erroneous prediction with a predictive state
simulator, and then designing a classification task
in the slot detector to detect slots where the real
slot value is not equal to the predicted slot value,
but this did not have an advantage. We conjecture
that simple classification tasks may fail to detect
such finer-grained value-level errors.
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A Data Statistics

The MultiWOZ dataset includes 8,438 multi-turn
dialogues in training set with an average of 13.5
turns per dialogue. For the test and validation set,
each includes 1,000 multi-turn dialogues with an
average of 14.7 turns per dialogue. The average
number of domains per dialogue is 1.8 for train-
ing, validation, and test sets. In fact, the Multi-
WOZ dataset includes a total of 35 (domain, slot)
pairs across 7 domains. However, Only 5 domains
(restaurant, hotel, attraction, taxi, train) are used in
our experiment because the other 2 domains (hos-
pital, police) only appear in the training set. The
statistics of dialogue in these 5 domains are shown
in Table 7.

attraction hotel restaurant taxi train

slot
area
name
type

area
bookday
bookpeople
bookstay
internet
name
parking
pricerange
stars
type

area
bookday
bookpeople
booktime
food
name
pricerange

arriveby
departure
destination
leaveat

arriveby
bookpeople
day
departure
destination
leaveat

train 3,381 3,103 2,717 3,813 1,654
val 416 484 401 438 207
test 394 494 395 437 195

Table 7: The dataset statistics of MultiWOZ 2.0-2.4.

B Accuracy per Slot on MultiWOZ 2.4
Test Set

Table 8 shows the accuracy per slot on MultiWOZ
2.4 test set.

C Sample Prediction Output

Tables 9 and 10 shows the prediction output in
all turns for 2 example dialogues: MUL0842 and
SNG1026.

Domain-Slot Our Model
attraction-area 98.71
attraction-name 97.98
attraction-type 99.04
hotel-area 98.59
hotel-book day 99.70
hotel-book people 99.62
hotel-book stay 99.78
hotel-internet 98.64
hotel-name 97.07
hotel-parking 98.62
hotel-price range 99.01
hotel-stars 99.17
hotel-type 98.72
restaurant-area 99.42
restaurant-book day 99.82
restaurant-book people 99.70
restaurant-book time 99.66
restaurant-food 98.78
restaurant-name 98.28
restaurant-price range 99.42
taxi-arrive by 100
taxi-departure 99.16
taxi-destination 99.55
taxi-leave at 100
train-arrive by 100
train-book people 99.89
train-day 99.33
train-departure 99.73
train-destination 99.95
train-leave at 100

Table 8: The detailed results of accuracy (%) per slot on
MultiWOZ 2.4 test set.
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Turn 1
User: can you help me find a place to eat ? i am looking for somewhere in the east with a moderate price .
Ground-truth Dialogue State: (restaurant-pricerange, moderate),(restaurant-area, east)
Prcdictcd Dialogue Statc: (restaurant-pricerange, moderate),(restaurant-area, east)

Turn 2

System:
there is the curry prince and rajmahal restuarants serving indian food . then there is the
pizza hut fen ditton serving italian food . which would you like more information on ?

User: i think i would like to try rajmahal . could you book me a table for 1 on monday at 16:15 ?

Ground-truth Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),

Prcdictcd Dialogue Statc:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),

Turn 3

System:
your reservation has been booked . your reference number is q9drq55j . please be aware
that your table will only be reserved until 16:30 . can i provide any more assistance ?

User: i am also looking for things to do in the same general area as the restaurant .

Ground-truth Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-area, east)

Predicted Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-area, east)

Turn 4

System; sure , are you interested in museums , sports , parks , entertainment , swimming or boating ?
User: are there any cinemas ? if there is not what about something that has to do with multiple sports ?

Ground-truth Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, cinema|multiple sports),(attraction-area, east)

Predicted Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple),(attraction-area, east)

Turn 5

System: there are not any cinemas in the general area , but what types of sports are you interested in ?
User: all of them . what s there ?

Ground-truth Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-area, east)

Predicted Dialogue State:
(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-area, east)

Turn 6

System:
the cherry hinton village centre is the only 1 located there , their address is colville road ,
cherry hinton . anything else i can help you with ?

User: can i please get the phone number

Ground-truth Dialogue State:

(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-name, cherry hinton village centre),
(attraction-area, east)

Predicted Dialogue State:

(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-name, cherry hinton village centre),
(attraction-area, east)

Turn 7

System: yes , the phone number is 01223576412 . how else can i help ?
User: that will be all , thank you very much for all of your help .

Ground-truth Dialogue State:

(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-name, cherry hinton village centre),
(attraction-area, east)

Predicted Dialogue State:

(restaurant-book day, monday),(restaurant-book people, 1),(restaurant-book time, 16:15),
(restaurant-pricerange, moderate),(restaurant-name, rajmahal),(restaurant-area, east),
(attraction-type, multiple sports),(attraction-name, cherry hinton village centre),
(attraction-area, east)

Table 9: Full set of predicted dialogue states for dialogue ID MUL0842 in MultiWOZ2.4.
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Turn 1
User: can you help me find a moderate price place to stay that include -s free parking ?
Ground-truth Dialogue State: (hotel-parking, yes),(hotel-pricerange, moderate)
Prcdictcd Dialogue Statc: (hotel-parking, yes),(hotel-pricerange, moderate)

Turn 2

System: acorn guest house has free parking and is moderate -ly priced . would you like more information ?
User: does it also have free wifi and does it have 2 stars ?

Ground-truth Dialogue State:
(hotel-name, acorn guest house),(hotel-parking, yes),(hotel-pricerange, moderate),
(hotel-stars, 2),(hotel-internet, yes)

Prcdictcd Dialogue Statc:
(hotel-name, acorn guest house),(hotel-parking, yes),(hotel-pricerange, moderate),
(hotel-stars, 2)

Turn 3

System: no it does not . but the ashley hotel has 2 stars and free parking . it is a moderate also .
User: is there somewhere with both free wifi and parking ?
Ground-truth Dialogue State: (hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),(hotel-internet, yes)
Predicted Dialogue State: (hotel-name, yes),(hotel-pricerange, moderate),(hotel-stars, 2),(hotel-internet, yes)

Turn 4

System; yes . the ashley hotel has both free wifi and parking . would you like to make a reservation ?
User: i am not quite ready to make a reservation yet , but could you please get the address for me ?

Ground-truth Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Predicted Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Turn 5

System: the ashley hotel is located at 74 chesterton road . would you like any other information about it ?
User: yes , do you have their postcode please ?

Ground-truth Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Predicted Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Turn 6

System: the postcode is cb41er . can i help you with anything else ?
User: what part of town is the ashley located ?

Ground-truth Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Predicted Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Turn 7

System: they are located in the north .
User: perfect , thank you . that is all i need . bye .

Ground-truth Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Predicted Dialogue State:
(hotel-name, ashley hotel),(hotel-parking, yes),(hotel-pricerange, moderate),(hotel-stars, 2),
(hotel-internet, yes)

Table 10: Full set of predicted dialogue states for dialogue ID SNG1026 in MultiWOZ2.4.
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