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Abstract

Pre-trained multilingual models, such as
mBERT, XLM-R and mT5, are used to im-
prove the performance on various tasks in low-
resource languages via cross-lingual transfer.
In this framework, English is usually seen
as the most natural choice for a transfer lan-
guage (for fine-tuning or continued training of
a multilingual pre-trained model), but it has
been revealed recently that this is often not
the best choice. The success of cross-lingual
transfer seems to depend on some properties
of languages, which are currently hard to ex-
plain. Successful transfer often happens be-
tween unrelated languages and it often can-
not be explained by data-dependent factors. In
this study, we show that languages written in
non-Latin and non-alphabetic scripts (mostly
Asian languages) are the best choices for im-
proving performance on the task of Masked
Language Modelling (MLM) in a diverse set of
30 low-resource languages and that the success
of the transfer is well predicted by our novel
measure of Subword Evenness (SuE). Transfer-
ring language models over the languages that
score low on our measure results in the low-
est average perplexity over target low-resource
languages. Our correlation coefficients ob-
tained with three different pre-trained multilin-
gual models are consistently higher than all the
other predictors, including text-based measures
(type-token ratio, entropy) and linguistically
motivated choice (genealogical and typological
proximity).

1 Introduction

Since pre-trained multilingual models became
available, the most common approach to NLP tasks
on low-resource languages has been cross-lingual
transfer learning. After initial tests on cross-lingual
ability within the languages covered by the multi-
lingual models (Pires et al., 2019; Wu and Dredze,
2020; Libovický et al., 2020), a more recent line
of research shows that new languages (not seen in

Figure 1: Best cross-lingual transfer results mentioned
in previous work. The size of each circle is proportional
to the number of mentions of a given transfer-target pair.
English is the best transfer language for European target
languages. For target languages outside of Europe, the
best transfer languages are hard to predict.

the training set) are best processed by continued
training or fine-tuning (depending on the task) of
a pre-trained multilingual model on one transfer
language, even if the transfer language is differ-
ent from the target language. As a matter of fact,
a single transfer language can help improve the
performance on many target languages (Lin et al.,
2019; Lauscher et al., 2020; Turc et al., 2021). This
insight is especially important for low-resource lan-
guages, for which only test data is typically avail-
able. Multilingual models are usually fine-tuned or
(additionally) trained on a high-resource language
and the resulting weights are applied as zero- or
few-shot transfer to a target low-resource language
(Tunstall et al., 2022).

It seems that injecting a bias towards some par-
ticular linguistic traits, while slightly “forgetting”
some others, makes the multilingual models adapt
better to a new language. An evident but hard ques-
tion arises here: Which languages are especially
well-suited to serve as transfer languages for many
low-resource target languages? This is the first
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research question that we address in our study.

Most research on cross-lingual transfer regards
English as the most natural choice for any target
language due to the abundance of training data.
However, more recent studies reveal that other lan-
guages are often better choices. For instance, Rus-
sian turns out to be a good transfer language for
Thai, Arabic, Swahili, and Chinese (Turc et al.,
2021). It is hard to see why this happens as these
languages are neither related nor similar by any
of the known criteria. Our own review of several
studies on cross-lingual transfer, summarized in
Figure 1, shows that English is the best transfer lan-
guage when European languages are the target. For
other target languages, the choice of the transfer
languages is anything but clear. English is rarely
the best choice, while Russian, Chinese, German,
Greek, or Arabic seem to help in many cases.

This observation leads us to the second ques-
tion that we address in our study: Which linguistic
traits should be used to improve the performance
of pre-trained multilingual models? In other words,
what are the traits that make some languages more
suitable for transfer?

To answer these questions, we test language
models on a highly diverse set of low-resource lan-
guages, whose geographical distribution is shown
in Figure 2. We follow the current cross-lingual
transfer learning framework in order to train the
models. We consider three popular multilingual
pre-trained models and 19 high-resource languages
as potential transfer languages. In these experi-
ments, we look for the best transfer languages, but
also, more importantly, for a strong predictor of
the transfer results across all target low-resource
languages.

As a predictor, we propose a novel text-based
measure, Subword Evenness (SuE), a parameter
that describes the differences in the length of sub-
word units (one value per language). The moti-
vation for looking into the properties of subword
units to assess the suitability of a given language
to be a transfer language comes from the fact that
language models are trained over the output of sub-
word tokenization. We know that subword splits
can depend on the properties of a language. For
example, Finnish is known for its regular subword
structure (morphology), which is expected to give
more even subword tokens, while other languages
might have less subword regularity, leading to more
uneven splits. Our measure shows the preference

Figure 2: Distribution of 30 test languages in our study:
highly diverse set in terms of linguistic families (23),
geographic areas (5) and endangerment status (3).

for even splits in a given language. An example
of a relatively even split would be co-work-ing →
set of lengths [2, 4, 3] compared to an uneven split
co-working → set of lengths [2, 7]. A detailed
explanation of the measure is in Section 3.

The main finding of our work is that the prop-
erty of Subword Evenness matters for successful
transfer to diverse non-Indo-European languages.
Transfer languages that score low on our measure
give the lowest average perplexity over target low-
resource languages. Compared to other text-based
statistics and alternative linguistically motivated
choices, our measure is the best predictor of trans-
fer results.

The code and data used for this work
are publicly available in the repository
https://github.com/olgapelloni/subword_evenness.

2 Related Work

The main idea behind cross-lingual transfer learn-
ing is that both similarities and differences be-
tween languages can be exploited for improving
model performances. In early work on multilin-
gual models, similarities between languages were
exploited to increase training data, for instance in
multilingual syntactic parsing (Zeman and Resnik,
2008; Snyder et al., 2009) and pivot-based statisti-
cal machine translation (Paul et al., 2013). Cross-
linguistic differences, as a form of distant supervi-
sion, have been shown to help the disambiguation
of lexical meaning (van der Plas and Tiedemann,
2006) and part-of-speech (POS) tags (Snyder et al.,
2008). Neural models made this idea even more
attractive, leading to many proposals on how to
share some parameters across languages, for in-
stance through cascading and multi-task learning
(p. 218–227, Goldberg, 2017; Ruder, 2017). With
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Transformer-based models (Vaswani et al., 2017),
the transfer approach has proven to be widely appli-
cable and successful, as shown by the 2018 model
ULMFiT (Howard and Ruder, 2018).

Previous analyses of multilingual Transformer-
based models have shown that the representations
produced during training are multilingual but the
language-specific information is preserved (Pires
et al., 2019; Wu and Dredze, 2019; Libovický et al.,
2020; Wang et al., 2020b). Forgetting some of the
language-specific information has been helpful for
the task of question-answering (Yang et al., 2021).
Wu and Dredze (2019) show a positive correlation
between the number of shared tokens and trans-
ferability between languages, but this finding has
not been confirmed in later studies. K et al. (2020)
do not find a strong influence of lexical overlap on
successful language transfer. Pires et al. (2019) add
that the shared tokens help to create cross-lingual
representations, but language transfer success de-
pends more on the structural similarity between
languages.

Studies on low-resource languages demonstrate
how a lack of resources impacts performance (Wu
and Dredze, 2020; Wang et al., 2020a; Goyal et al.,
2021). Ruder et al. (2021) show that the perfor-
mance of XLM-R is lower on low-resource lan-
guages than on high-resource ones. Moreover, per-
formance is lower on languages with non-Latin
scripts, such as Hebrew, Japanese, Thai or Chinese.

The current processing workflows often include
continued training of a multilingual model on a
single high-resource transfer language and then ap-
plying the resulting weights in a few- or zero-shot
manner to many low-resource languages. Focus-
ing on the question of which transfer languages
give good results over multiple target languages,
we count the mentions of the best transfer pairs in
several previous studies (Ruder et al., 2021; Turc
et al., 2021; Vázquez et al., 2021; Hu et al., 2020;
Lauscher et al., 2020; Lin et al., 2019; Paul et al.,
2013). The counts are plotted in Figure 1, showing
an interesting asymmetry between European and
other languages. When European languages are
the target of transfer, English seems to be the best
transfer language. This is in line with the findings
on the XTREME benchmark for evaluating cross-
lingual transfer (Hu et al., 2020), which led the
authors to conclude that English is the most com-
mon and the most universal choice for a transfer
language. Paul et al. (2013) found that English as

a pivot language in statistical machine translation
works well in approximately half of the observed
language pairs (22 Indo-European and Asian lan-
guages). Our review shows that English is not the
best choice when non-European languages are the
target.

One approach to choosing a transfer language is
to rely on structural similarity, which is measured
using grammar features from the URIEL database
(Littell et al., 2017). Lauscher et al. (2020) find that
transfer is better in language pairs that are closer
in the URIEL vector space regarding POS tagging
and syntactic dependency parsing. Other factors,
such as data size, are better predictors on the tasks
of question answering and inference. de Vries et al.
(2022) find that surface string similarity is the best
predictor for POS tagging. Shaitarova and Rinaldi
(2021) develop their own linguistic typology based
on negation constructions, which helps to choose a
better transfer language for negation scope resolu-
tion. Lin et al. (2019) suggest aggregating various
types of linguistic features, including geographic
location. Aggregated measures select better trans-
fer candidates than single features.

We depart from previous research in terms of
both data and methods. We work with a much big-
ger and more diverse sample of languages than any
previous studies. The main methodological novelty
of our work is the proposed text-based parameter,
which captures an interesting subword feature of
good transfer languages.

3 Subword Evenness (SuE) as a Language
Parameter

Defining formal properties of languages relevant
to NLP is still a challenging task. Mielke et al.
(2019), for instance, notice that language model
sentence surprisal scores (aggregated at the level
of a language) differ across languages, but do not
manage to identify any properties of a language
that would predict the surprisal. When it comes
to transfer learning, previous research shows little
agreement on which languages should be chosen
for cross-lingual transfer and why.

The full workflow for calculating the SuE score
(one value per language) is shown in Figure 3. We
first apply a subword tokenization algorithm to split
words in an unsupervised fashion. We then convert
each segmented word W = w1, w2, . . . wn in the
data into a sequence of integers L = l1, l2, . . . ln,
where n is the number of subword segments in
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Figure 3: Extracting our measure of Subword Evenness (SuE).

each word and each integer li represents the length
of the subword segment wi measured in Unicode
characters. We then map each sequence of integers
to a single integer L → UI (unevenness index),
where UI = max(L)−min(L) is the difference
between the maximum length (longest segment)
and the minimum length (shortest segment) in the
sequence. The values of UI are plotted against
the values of word length measured in Unicode
characters (the x-axis in Figure 3), resulting in a
distribution, which then undergoes a Kernel Den-
sity Estimation (KDE)1 analysis for identifying the
shape of the density region.

We aim to describe the whole distribution with a
single parameter by approximating the shape of the
density area with two lines and measuring the angle
between them. The first line (intercepting the x-
axis on the left side in Figure 3) is a natural bound
of the distribution f(x) = x− 2 determined by the
fact that the difference between any two subword
segments cannot be greater than the length of the
whole word. The second line is a linear function
fitted to two points at the edge of the density area:
max(x) and max(y), g(x) = kx+ b. Finally, the
measure of Subword Evenness (Equation 1) is the
upper angle in the triangle formed by these two
lines and the x-axis.

SuE = 180° − | arctan 1| − | arctan k| (1)

For Equation 1, we first calculate the inclination
of each intersecting line using the formula m =
tan(θ), where m is the slope of the line and θ is
the inclination, i.e. the angle between the x-axis
and the line (Larson and Hostetler, 2007, p. 430).
The slope of the first line f(x) equals 1, the slope
of the second line g(x) equals k. In order to get the
value of the inclination θ from tan(θ), we apply the

1KDE is a common method in spatial data science, de-
scribed in more detail by Ripley (2002).

inverse trigonometric function arctan(tan(θ)) =
θ (Larson and Hostetler, 2007, p. 109, 193). We
use absolute values in order to work with the angles
measured in degrees. Once we know the inclination
of both lines (their angles to the x-axis), we can
find the upper angle inside the triangle. Since all
angles in a triangle sum up to 180°, we subtract
both inclinations from 180° to find the upper angle2.
The upper angle shows the preference for Subword
Evenness, thus called SuE. The higher the value of
this angle, the higher the preference towards even
subword splits in longer words.

There are many methods that can be used to per-
form unsupervised subword tokenization. The most
widely used methods are Byte-Pair Encoding (BPE,
Gage, 1994) implemented by Sennrich et al. (2016)
and also in the SentencePiece library (Kudo and
Richardson, 2018), WordPiece (Wu et al., 2016)
and the SentencePiece Unigram model. The out-
put of all these algorithms is highly dependent on
the hyperparameters that determine the size of the
resulting subword vocabulary. However, there are
currently no general criteria to determine the value
of these hyperparameters (Mielke et al., 2021).

We follow the method of Gutierrez-Vasques et al.
(2021), which is motivated by information theoretic
properties of segmented text in many languages:
the BPE algorithm is run until the text redundancy
value reaches its minimum. This criterion is inde-
pendent of any particular NLP task and is cross-
lingually aligned, which is important for our study.
Cross-lingual alignment allows us to normalize, to
a certain degree, the difference in writing systems:
minimum redundancy is reached faster in alpha-
betic scripts and slower in syllabic and logographic
scripts. For reference, we extract the SuE measure
using several other segmentation algorithms and
hyperparameters. These results can be found in
Table 9 in the Appendix.

2The result of the arctan function is measured in radians,
which we convert into degrees.
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4 Data and Experiments

We obtain our training and test data from the Text
Data Diversity Sample (TeDDi, Moran et al., 2022).
The TeDDi corpus contains texts representing the
languages included in the 100-language sample,
published by the World Atlas of Language Struc-
tures (WALS, Haspelmath et al., 2005). This sam-
ple is compiled by experts in linguistic typology
with the goal of representing overall linguistic di-
versity: language families, geographical areas and
typological features. Following this sample, the
TeDDi corpus maximizes linguistic diversity and
also covers different textual genres for languages
with more available resources (Gutenberg Project3,
the Parallel Bible Corpus (Mayer and Cysouw,
2014), the OpenSubtitles corpus (Lison and Tiede-
mann, 2016) and Universal Declaration of Human
Rights4

For the set of transfer languages (training set),
we select 19 languages which contain at least
one million tokens: Basque (eus), English (eng),
Finnish (fin), French (fra), German (deu), Greek
(ell), Hebrew (heb), Hindi (hin), Indonesian (ind),
Japanese (jpn), Korean (kor), Mandarin (cmn), Per-
sian (pes), Russian (rus), Spanish (spa), Tagalog
(tgl), Thai (tha), Turkish (tur), Vietnamese (vie).
We balance the genres when possible and cap the
length of the sampled text to 1M tokens per lan-
guage. We use the scikit-learn library (Pedregosa
et al., 2011) to shuffle each dataset and split it into
train (80%) and validation (20%) sets.

For the set of target languages (test set), we de-
fine the threshold of at least 100K tokens available
per language. There are 30 such languages: Alam-
blak, Amele, Apurina, Arabic (Egyptian), Ara-
pesh (Mountain), Barasano, Burmese, Chamorro,
Daga, Fijian, Georgian, Guarani, Hausa, Jakaltek,
Kewa, Khalkha, Khoekhoe, Lango, Malagasy, Ma-
pudungun, Mixtec (Chalcatongo), Oromo (Harar),
Quechua (Imbabura), Sango, Sanuma, Swahili,
Wichi, Yagua, Yaqui, Yoruba. We fix the size of
the test sets to be 100K tokens per language. The
chosen languages belong to 23 different language
families and are spoken in 5 geographical areas
(Figure 2).

4.1 Pre-trained Models

We work with three popular multilingual Trans-
former models in our experiments: mBERT (De-

3https://www.gutenberg.org/
4http://unicode.org/udhr/.

Model Param Segment Lang Data
mBERT 110M WordPiece 104 Wikipedia

XLM-R 270M SentPiece 100 CCNet

mT5 580M SentPiece 101 mC4

Table 1: Models’ specifications. All models are base
models of the respective model families.

mBERT XLM-R mT5
PPL: 42.90 PPL: 98.08 PPL: 3.02

Lang Gain Lang Gain Lang Gain
jpn -14.13 kor -57.90 rus -0.13

ell -12.14 cmn -55.86 ell -0.10

heb -11.82 heb -55.73 tha -0.08

tha -11.79 jpn -55.58 pes -0.08

rus -11.75 ell -54.28 jpn -0.07

eng -10.20 eng -53.18 eng -0.06

Table 2: Top 5 transfer languages and English (for refer-
ence) with their respective gains (reduction in average
target language model perplexity) compared to the aver-
age baseline perplexity (PPL). The bigger the reduction,
the better. The colours highlight re-occurring languages
across the models.

vlin et al., 2018), XLM-RoBERTa (Conneau et al.,
2019) and mT5 (Xue et al., 2021; Raffel et al.,
2019). The pre-training objectives for all three
models include the Masked Language Modeling
(MLM) objective which is also the objective of our
trained models. These models were pre-trained on
vast amounts of multilingual data such as Com-
monCrawl for XLM-R and mT5 and Wikipedia
for mBERT. We employ the base variants of the
models (Table 1).

Note that we use the pre-trained multilingual
models only as the starting point for our own mono-
lingual training. This is currently the best method
for obtaining high performance on many test lan-
guages.

4.2 Continued Training and Testing

We continue training the three pre-trained mod-
els on our set of transfer languages. We keep the
same hyperparameters for mBERT and XLM-R
and train them for 5 epochs with a learning rate
3e-5 and maximum sequence length 256. In order
to maintain the batch size of 128 with infrastruc-
tural constraints, we set the batch size to 4 and
use gradient accumulation after 32 steps. For mT5,
we use an available T5 architecture from Hugging-
face (Wolf et al., 2019) which allows continued
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(a) mBERT (b) XLM-R (c) mT5

Figure 4: Correlation (Pearson) of our measure SuE and the average perplexity across all test languages in (a)
mBERT (0.4), (b) XLM-R (0.56) and (c) mT5 (0.18). Transfer languages closer to the bottom stand for the best
transfer results.

Lang SuE Lang SuE Lang SuE
cmn 91.14 deu 115.14 fin 118.35

heb 97.94 tgl 115.89 rus 119.61

kor 100.54 fra 116.70 spa 121.27

tha 101.33 eng 118.04 hin 121.33

ell 101.66 vie 118.29 ind 123.49

jpn 101.69 eus 118.15 pes 126.21

tur 105.68

Table 3: Transfer languages with their respective SuE
values in ascending order. Top 5 (lowest SuE) are high-
lighted.

training of the language model in an unsupervised
fashion. We load the mT5-base checkpoint and
continue training following the early stopping ap-
proach as in Turc et al. (2021), where we evaluate
each model every 200 steps and stop training at
2000 steps. Only the best identified checkpoint is
kept as a final model. As a result, mT5 is trained for
approximately the same number of epochs (3–5) as
mBERT and XLM-R, making the results compara-
ble.

All models are re-trained 5 times with 5 different
seeds. Thus, we obtain 285 fine-tuned models (5
models × 19 training languages × 3 architectures)
plus 3 pre-trained models without continued train-
ing as baselines. We test the baseline and additional
trained models on all 30 test languages in a zero-
shot fashion. We evaluate all the models measuring
the perplexity, which is an exponentiated average
of negative log likelihood of a sequence. Lower
perplexity means better performance with the cho-
sen transfer language. We report the average results
across 5 seeds for each language pair.

Only 4 out of 30 target languages5 in our datasets
are included in the pre-training of all three pre-
trained models: Burmese, Georgian, Malagasy,
and Swahili, making our experiments almost com-
pletely zero-shot.

5 Results and Discussion

The first general outcome of our experiments is the
ranking of transfer languages according to the aver-
age perplexity score on the target languages shown
in Table 2. There is considerable overlap between
the three sets of top 5 languages (one set per pre-
trained model).6 In addition, we note that English
is never in the top 5, which confirms observations
from previous work summarized in Figure 1. An
interesting observation regarding these results con-
cerns the scripts: all of the best transfer languages
are written in a non-Latin script, in contrast to the
general preference for Latin scripts (e.g. over 70%
of languages in the TeDDi sample are written in a
Latin script).

The second general outcome is the ranking of
transfer languages according to the SuE measure
shown in Table 3. There is considerable overlap be-
tween the top languages in the two rankings (com-
paring Table 3 with Table 2). To quantify this de-
pendence, we perform correlation tests.

5Two language varieties are not specified exactly in the
models’ documentation, such as Arabic Egyptian and Khalkha.
If we map them to Arabic and Mongolian in the models’
documentation, then we get 6 languages covered.

6The full table of the scores for all the transfer languages
can be found in Appendix B.
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5.1 Transfer language SuE correlates with
average target language perplexity

Figure 4 shows the main finding of our study: a rel-
atively high correlation score between the Subword
Evenness (SuE) measure and the transfer-learning
performance per transfer language, measured as
language model perplexity averaged over all 30
target languages. This correlation means that trans-
ferring from languages with uneven subword splits
(low SuE) leads to better performance (lower per-
plexity) on a diverse set of target languages. In
other words, adding information from languages
whose words are split unevenly to a pre-trained mul-
tilingual model is more helpful for the performance
on many target languages than adding information
from more regular languages whose subwords are
evenly split.

While we find this correlation with all three pre-
trained models, we notice that the coefficients differ.
For instance, the Pearson correlation is 0.56 in the
case of XLM-R, 0.40 for mBERT and only 0.18
for mT5. These differences are well aligned with
the baseline performance and transfer gains. For
example, the baseline perplexity of mT5 is much
lower than the other two models, the gains are con-
sequently smaller and the correlation is weaker.
However, with only three observations, we cannot
know whether this alignment is due to chance.

Another pattern that appears in the plots is the
grouping of languages according to the script, with
non-alphabetic scripts being more associated with
low SuE values. This might point to other potential
explanations for the observed correlation such as,
for instance, the fact that words tend to be shorter in
non-alphabetic scripts leading to smaller angles. To
exclude such factors, we perform tests with several
other measures and compare them with SuE.

5.2 SuE vs. other text-based measures

Table 4 shows the correlation coefficients obtained
with SuE compared to other, simpler text-based
measures. We include the mean word length in this
analysis to see whether the known impact of the
script on the word length may explain the observed
patterns in cross-lingual transfer. As for type-token
ratio (TTR) and unigram entropy, we include them
as indicators of language complexity, which is also
studied in previous work.

While the mean word length indeed shows a
moderate correlation with the transfer performance
(likely due to the differences in scripts), SuE comes

Model P S
All
P

All
S

Sub-

word

Even-

ness

mBERT
0.40
p = .09

0.62
p = .005 0.5

p =
.03

0.77
p =
.0002XLM-R

0.56
p = .01

0.69
p = .002

mT5
0.18
p = .47 0.11

Avg

word

length

mBERT -0.01 0.06
0.13 0.39XLM-R 0.27 0.40

mT5
0.18
p = .47

0.19
p = .43

Type-

token

ratio

mBERT -0.21 -0.23
-0.17 0.04XLM-R -0.12 0.11

mT5 -0.11 -0.16

Uni-

gram

entropy

mBERT -0.15 -0.14
-0.19 -0.08XLM-R -0.21 -0.13

mT5 -0.07 -0.01

Table 4: SuE vs. other text-based measures: Pearson (P)
and Spearman (S) correlation coefficients. P -values are
given for the highest correlation coefficients.

Target Transfer
Avg
PPL
Change

Lang Family
(WALS)

Arabic Hebrew +0.04 Afro-Asiatic
Burmese Mandarin +0.11 Sino-Tibetan

Chamorro Indonesian +7.15 AustronesianTagalog +16.45

Fijian Indonesian +3.14 AustronesianTagalog +5.72
Hausa Hebrew +1.2 Afro-Asiatic
Khalkha Turkish +9.23 Altaic

Malagasy Indonesian +0.17 AustronesianTagalog +0.63
Oromo Hebrew +0.39 Afro-Asiatic

Table 5: Average change in perplexity (across 3 models),
when using a genealogically close language instead of a
language with low SuE (best PPL option among top 5
is chosen). Higher numbers mean worse performance.

out as a much better predictor. TTR and unigram
entropy are only weakly correlated, which can be
seen as an indirect replication of the negative re-
sults of Mielke et al. (2019). It is reasonable to
expect that more complex languages (high TTR
and entropy indicate higher complexity) could be
more helpful for non-Indo-European languages (of-
ten complex themselves), but we do not observe
this. Subword Evenness (SuE) explains the trans-
fer success much better, probably by capturing a
text property that is more relevant to the model’s
performance.
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Target Transfer
Avg
PPL
Change

Feature
(Lang2vec)

Arabic Hebrew +0.04 Syntactic,
Phonological

Persian +0.3 Inventorial

Burmese
Korean +0.12 Syntactic
Thai +0.23 Phonological
English -0.07 Inventorial

Chamorro Tagalog +16.45 Syntactic,
Phonological

Indonesian +7.15 Inventorial

Fijian Tagalog +5.72 Syntactic,
Phonological

Indonesian +3.14 Inventorial

Hausa
Thai +1.22 Syntactic
Vietnamese +1.95 Phonological
Indonesian +2.89 Inventorial

Khalkha
Japanese -1.35 Syntactic
English +7.12 Phonological
Finnish +13.43 Inventorial

Malagasy Tagalog +0.63 Syntactic,
Inventorial

Indonesian +0.17 Phonological

Oromo
Basque +2.04 Syntactic
Vietnamese +2.85 Phonological
Indonesian +2.33 Inventorial

Table 6: Average increase in perplexity (across 3 mod-
els), when using a typologically close language instead
of a language with low SuE (best PPL option among
top 5 is chosen). Higher positive numbers mean worse
performance.

5.3 SuE vs. genealogical and typological
proximity

Other than text-based measures, typical predictors
of transfer learning studied in previous work are
measures of language similarity extracted from lin-
guistic databases. To see how SuE compares with
such measures, we analyse changes in complexity
when SuE is replaced by linguistic measures. We
do not perform correlation tests in these cases be-
cause linguistic measures are not available for all
the languages in our experiments.

Table 5 shows the comparison between SuE and
genealogical proximity. For this comparison, we
look for pairs of languages where both the transfer
and the target language belong to the same family
according to the genealogical hierarchy presented
in WALS (Haspelmath et al., 2005). Since our
corpus maximizes linguistic diversity, most of the
languages in our study do not have such close rela-
tives. Nevertheless, we identify a sub-sample of 8
target languages whose relatives are among transfer
languages. For each of these languages, we check
whether the language model’s perplexity is reduced
more if the related language is used for transfer

compared to one of the SuE top 5 languages (with
lowest SuE), which are not related to the target lan-
guage. The positive scores in Table 5 mean that
at least one of the SuE top 5 languages is always
a better transfer language than the genealogically
closest language in our sample for all the target
languages which are tested.

Table 6 shows the comparison between SuE and
typological proximity for the target languages for
which we could extract reliable feature vectors
from the URIEL database (Littell et al., 2017). To
assess the typological proximity, we use syntactic,
phonological and inventorial features. Again, we
obtain mostly positive scores, meaning that at least
one of the SuE top 5 languages is almost always
a better option than the typologically closest lan-
guage in our sample. There are two cases where
the language chosen according to the typological
proximity performed better: English as a transfer
for Burmese and Japanese as a transfer for Khalkha
(Mongolian). The case of Khalkha is quite special,
since this language appears to be hard to model:
its perplexity is among the highest values across
the three models. On the other hand, Japanese is
actually among the good predictors according to
SuE, just not in the strict top 5 (Table 3). In case of
transfer between English and Burmese, we can see
that the change in perplexity is rather low (-0.07),
and generally English does not appear to be a good
transfer language for any other languages in our
experiments.

Our results show that proximity to the transfer
language in terms of genealogical or typological
properties is often not the best criterion for choos-
ing a good transfer language when working with
low-resource languages. At least one transfer lan-
guage that we identify as most suitable (top 5 low-
est SuE values) gets consistently better (lower) per-
plexity scores than genealogically or typologically
close languages. Sometimes the best transfer lan-
guage overlaps between all three choice methods,
but our measure SuE is still more consistent, and
does not depend on the test low-resource language
and does not need any linguistic annotation (purely
data-driven).

6 Stability of SuE across different
corpora

Additionally, we check how corpus size and change
of data can influence our measure of SuE. A system-
atic study on the corpus dependence would exceed
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lang SuE
(TeDDi 1mio)

SuE
(TeDDi full) diff

eus 118.15 117.05 -1.11
eng 118.04 114.54 -3.51
fin 118.35 115.95 -2.40
fra 116.70 119.61 2.91
deu 115.14 114.25 -0.89
ell 101.66 108.10 6.44
heb 97.94 115.90 17.96
hin 121.33 112.52 -8.81
ind 123.49 116.15 -7.34
jpn 101.69 77.72 -23.97
kor 100.54 77.39 -23.15
cmn 91.14 71.71 -19.42
pes 126.21 109.55 -16.67
rus 119.61 111.63 -7.98
spa 121.27 124.51 3.25
tgl 115.89 109.00 -6.90
tha 101.33 104.25 2.93
tur 105.68 112.24 6.56
vie 118.29 99.36 -18.93

Table 7: Difference in SuE values when measured on 1
mio TeDDi sample and on the full TeDDi corpus.

lang SuE
(TeDDi 1mio)

SuE
(TeDDi full)

SuE
(Aalto)

eng 118.04 114.54 126.14
fin 118.35 115.95 121.19
tur 105.68 112.24 118.07

Table 8: Difference in SuE values when measured on
1 mio TeDDi sample, on the full TeDDi corpus and on
the Aalto corpus.

the scope of this paper, so we provide only several
comparisons here.

We measured SuE on the full TeDDi corpus and
compared the results with the SuE values obtained
on a balanced sample from the TeDDi corpus with
1 million tokens (Table 7). Then, we used the Aalto
MorphoChallenge corpus (Kurimo et al., 2010)7,
which provides large amounts of data in English,
Finnish and Turkish coming mostly from Europarl
(Koehn, 2005) in order to check SuE on data from
a different source. We compare the obtained values
to the two TeDDi versions in Table 8.

Table 7 demonstrates that the differences in lan-
guages with Latin scripts are smaller than in lan-
guages written in non-Latin scripts. Nevertheless,
average difference across all languages is about
5 degrees, which is rather low. The correlation
between the values of the TeDDi sample with 1
million tokens and the full TeDDi is high, we get a
0.7 Pearson coefficient correlation (p-value = .002).

Table 8 shows that fluctuations range between 2

7http://morpho.aalto.fi/events/
morphochallenge2010/

and 12 degrees with no apparent correlation to the
data size.

While these experiments show that the rankings
of SuE values remain generally stable after chang-
ing data source or size, we find that the best predic-
tions are found when using the balanced 1 million
tokens sample from the TeDDi corpus.

7 Conclusion

In this study, we tackled the question of what
languages are preferable for cross-lingual transfer
when modelling diverse low-resource languages,
and what motivates this selection. Our experiments
on the task of masked language modelling (MLM)
with three multilingual pre-trained Transformer-
based models show that there is a small set of gen-
erally good transfer languages: Japanese, Greek,
Hebrew, Thai, and Russian. What is common to
these languages is the fact that all of them are writ-
ten in a non-Latin script. However, the script alone
is not the best general predictor of transfer perfor-
mance. We show that the best predictor of the lan-
guage model perplexity on a wide range of target
low-resource languages is the Subword Evenness
(SuE) score of transfer languages, which we have
presented in this paper. Most of the languages that
repeatedly come out as good transfer languages
have low SuE scores.

Our results are largely in line with the observa-
tions about good transfer languages made in previ-
ous work. In addition to providing new evidence
confirming previous findings on a very diverse sam-
ple of languages (19 transfer and 30 target lan-
guages), we identify the strongest predictor of the
observed performances up to now. The proposed
SuE measure is a better predictor for transfer lan-
guages than other text-based measures (mean word
length, type-token ratio, unigram entropy) as well
as genealogical and typological proximity. With
this finding, we make a further step towards explain-
ing why continued training on transfer languages
is helpful for modelling low-resource languages.
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Limitations

Our focus on low-resource languages limits to a
certain degree the generalization of our findings.
While our data represents a carefully designed lan-
guage sample, the decisions made by the authors
of the sample are arbitrary, which means that our
samples are not random and the finding might
not generalize to all languages. For example, our
sample of target languages does not include any
Indo-European languages, such as Germanic or Ro-
mance low-resource languages. These languages
have been studied before and it has been shown that
the best choice for them is transferring from a ge-
nealogically related rich-resource language (Aepli
and Sennrich, 2021). It might be interesting to see
how our proposed measure would compare with
other measures in these cases, but this would re-
quire a different study design, which we leave for
future work.

Another limitation of our work concerns the data
size thresholds that we use to divide the languages
into low-resource (target) and high-recourse (trans-
fer) languages. In our experiments, the size of
100K tokens is assigned to the low-resource group.
We took this decision taking into account two crite-
ria. First, we wanted to have reasonable models for
comparing the performance and we judged this size
reasonable. Second, we identified this threshold by
checking how many test languages we could still
draw out of the TeDDi sample, and the number of
30 (1/3 of TeDDi’s languages) seems to be a rela-
tively good test size. While this procedure might
leave some of the really low-resource languages
out of our sample, we still cover a wide variety
of languages for which at least some texts (100K
tokens is approximately the size of a shorter novel)
are available.

Finally, our experiments are limited to one task
(masked language modelling) and the results might
not generalize to tasks requiring annotated data.
We note that, despite this limitation, our results are
largely in line with previous work on various tasks.
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A Results with alternative subword tokenization algorithms

Measure Model P S
Avg,
P

Avg,
S

SuE (BPE Gutierrez-Vasques et al. (2021))
mBERT 0.4

0.62
p = .005 0.5

p =
.03

0.77
p =
.0002XLM-R

0.56
p = .01

0.69
p = .002

mT5 0.18 0.11

SuE (BPE Mielke et al. (2019))
mBERT 0.47 0.28

0.44 0.36XLM-R 0.37 0.33

mT5
0.38
p = .11

0.37
p = .12

SuE (Morfessor)
mBERT

0.49
p = .03 0.26

0.49 0.29XLM-R 0.44 0.31

mT5 0.17 0.24

SuE (WordPiece)
mBERT 0.32 0.03

0.3 0.07XLM-R 0.26 0.11

mT5 0.15 0.06

SuE (SentencePiece Model)

mBERT 0.21 0.24
0.15 0.03XLM-R 0.1 0.1

mT5 0.11 0.15

Table 9: Pearson (P) and Spearman (S) correlation coefficients between SuE, measured on different segmentation
outputs (same input as described for the training datasets, Section 4), and the average perplexity values (across all test
languages). P -values are given for the highest correlation coefficients. The method we use (BPE Gutierrez-Vasques
et al. (2021)) gives the highest average correlations (across all 3 models) and the highest results for XLM-R and
mBERT (Spearman), that is why it was chosen as a final segmentation method to base our analysis on. If one aims
at working with mT5 only, the BPE method of Mielke et al. (2019) (more merges), would provide SuE values that
predict the perplexity better. Note, however, that working with the actual segmentation methods used in mBERT
(WordPiece), XLM-R and mT5 (SentencePiece) does not provide good predicitons.
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B Detailed language model perplexity scores

Figure 5: Difference in perplexity compared to pre-trained mBERT. Green means better results (lower perplexity).

Figure 6: Difference in perplexity compared to pre-trained XLM-R. Green means better results (lower perplexity).
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Figure 7: Difference in perplexity compared to pre-trained mT5. Green means better results (lower perplexity).
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C Details on the previous work

Transfer
language

Target language
(+ Source for MT) Task/Dataset Comments References

English

Spanish –>
10 languages
of Americas

NMT
Best model in
the AmericasNLP
shared task

Vazquez et al. 2021

Spanish, German,
Russian
(mBERT, XLM-R)

LAReQA Best performance of
the multilingual
models (top 3);
zero-shot transfer

Ruder et al. 2021German, Spanish,
Polish (mBERT)
German, Polish,
Spanish (XLM-R)

Mewsli-X (EL)

Dutch, Italian,
Portuguese (mBERT)
Italian, Afrikaans,
Dutch (XLM-R)

UD-POS

Spanish, French,
German (mT5) NLI

Slovak, Italian,
Russian (mBERT)
Slovak, Italian,
Finnish (XLM-R)

DEP Smallest
performance drop
compared to
English (top 3);
zero-shot transfer

Lauscher et al. 2020Slovak, Russian,
Italian (mBERT)
Slovak, Russian,
Finnish (XLM-R)

POS

Italian, Finnish,
Slovak (mBERT)
Finnish, Slovak,
Italian (XLM-R)

NER

French, Spanish,
German (mBERT)
Spanish, French,
Bulgarian (XLM-R)

NLI

German, Spanish,
Russian (mBERT)
Spanish, Thai,
Russian (XLM-R)

XQuAD

Dutch, Italian,
Portuguese (mBERT)
Dutch, Portuguese,
Bulgarian (XLM-R)

NER Best performance of
the multilingual
models (top 3);
zero-shot transfer Hu et al. 2020Dutch, Italian,

Spanish (mBERT)
Afrikaans, Dutch,
Russian (XLM-R)

POS

Spanish, French,
German (mBERT)
Spanish, Bulgarian,
German (XLM-R)

NLI

Spanish, French,
German (mBERT)
French, Spanish,
German (XLM-R)

PAWS-X

Spanish
(mBERT, XLM-R) MLQA Best performance of

the multilingual
models (top 1);
zero-shot transfer

Indonesian
(mBERT, XLM-R) TyDiQA

Spanish
(mBERT, XLM-R) XQuAD

203 language pairs Pivot-based MT
Best pivot choice
according
to the BLEU score

Paul et al. 2013
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Chinese

Hindi, Urdu
(mBERT, mT5)
Swahili, Thai
(mT5)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Japanese, Korean
(mBERT, mT5) PAWS-X

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Japanese <–> Korean Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 4.7)

Paul et al. 2013

Turkish
Hindi (mBERT, mT5)
Urdu (mT5) NLI

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Azerbaijani –> English NMT

Best transfer language
for NMT into English
among 54 transfer
options;
concatenated transfer

Lin et al. 2019

Hindi Urdu (mBERT, mT5) NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Telugu –> English EL

Best transfer language
for EL to an English
knowledge database
among
53 transfer options;
zero-shot transfer

Lin et al. 2019

Japanese
Chinese,
Korean (mT5) PAWS-X

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Korean –> 19 languages
6 languages –> Korean
Chinese –> Hindi

Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 2.5)

Paul et al. 2013

Korean

Japanese
(mBERT, mT5),
Chinese (mT5)

PAWS-X
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Japanese –> 9 languages
10 languages –> Japanese Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 1.9)

Paul et al. 2013

Spanish

Hindi (mBERT, mT5)
Urdu, Thai,
Chinese (mBERT)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

English –> 12 languages
French,
Dutch –> English
French,
Italian –> Chinese

Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 0.8)

Paul et al. 2013

Russian
(mBERT, XLM-R)

Automated
negation
detection

Higher accuracy
compared to French,
English (XLM-R)

Shaitarova et al. 2021

Russian

Hindi, Urdu,
Thai (mBERT, mT5)
Swahili, Arabic,
Chinese (mT5)
Bulgarian (mBERT)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Arabic, Thai,
Turkish (mBERT) XQuAD

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021
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German

Hindi, Urdu, Thai
(mBERT, mT5)
Chinese (mBERT)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Greek,
Thai (mBERT) XQuAD

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Greek

Hindi, Thai
(mBERT, mT5)
Swahili, Arabic,
Urdu (mT5)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Bulgarian

Hindi (mBERT, mT5)
Swahili, Turkish, Arabic,
Urdu, Thai, Chinese
(mT5)

NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Vietnamese Thai (mBERT, mT5)
Hindi (mBERT) NLI

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

French Arabic, Urdu,
Chinese (mBERT) NLI

Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Thai Chinese (mT5) NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Urdu Hindi (mT5) NLI
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Arabic
Russian, Bengali,
Finnish, Indonesian,
Korean, Telugu (mT5)

XQuAD
Gain compared to
transfer from English
(>= 3.0 points)

Turc et al. 2021

Hungarian Bengali –> English NMT

Best transfer language
for NMT into English
among 54 transfer
options;
concatenated transfer

Lin et al. 2019

Indonesian Malay –> 20 languages
15 languages –> Malay Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 2.4)

Paul et al. 2013

Portuguese

English <–> Spanish
Italian, Arabic,
Tagalog,
Vietnamese –> English

Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 2.3)

Paul et al. 2013

Malay

Indonesian –>
17 languages
16 languages –>
Indonesian
Chinese –> Russian
Vietnamese –> Chinese

Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 1.8)

Paul et al. 2013

Dutch

Danish,
German –> English
English,
Chinese –> German
Chinese –> Arabic

Pivot-based MT

Gain in BLEU points
compared
to English pivot
(avg 0.6)

Paul et al. 2013

Table 10: Detailed examples of transfer languages which yielded the best results in the previous works.
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