
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 480–490
December 7-11, 2022 ©2022 Association for Computational Linguistics

A Good Neighbor, A Found Treasure:
Mining Treasured Neighbors for Knowledge Graph Entity Typing

Zhuoran Jin1,2, Pengfei Cao1,2, Yubo Chen1,2, Kang Liu1,2,3, Jun Zhao1,2

1 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
2 National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China

3 Beijing Academy of Artificial Intelligence, Beijing, China
{zhuoran.jin, pengfei.cao, yubo.chen, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

The task of knowledge graph entity typing
(KGET) aims to infer the missing types for
entities in knowledge graphs. Some pioneer-
ing work has proved that neighbor informa-
tion is essential for the task. However, existing
methods only leverage the one-hop neighbor
information of the central entity, ignoring the
multi-hop neighbor information that can pro-
vide valuable clues for inference. Besides, we
also observe that there are co-occurrence rela-
tions between types, which is very helpful in al-
leviating the false-negative problem. In this pa-
per, we propose a novel method called Mining
Treasured Neighbors (MiNer) to make use of
these two characteristics. Firstly, we devise a
Neighbor Information Aggregation module to
aggregate the neighbor information. Then, we
propose an Entity Type Inference module to mit-
igate the adverse impact of the irrelevant neigh-
bor information. Finally, a Type Co-occurrence
Regularization module is designed to prevent
the model from overfitting the false-negative
examples caused by missing types. Experimen-
tal results on two widely used datasets indicate
that our approach significantly outperforms pre-
vious state-of-the-art methods.1

1 Introduction

Knowledge graphs (KGs) store huge amounts of
structured data in the form of triples, i.e., (head
entity, relation, tail entity). Each entity in KGs
is labeled with one or more types. As shown in
Figure 1, the entity Einstein not only belongs to
Scientist type, but also Physicist type. The entity
type information is very important and can benefit
many natural language processing (NLP) applica-
tions, such as entity linking (Chen et al., 2018),
relation extraction (Vashishth et al., 2018), knowl-
edge graph embedding (Xie et al., 2016) and text
generation (Dong et al., 2021).

1https://github.com/jinzhuoran/MiNer/

Newton

EinsteinEngland

Leibniz

Calculus

Englander

Mathematician

Physicist

Scientist

Mathematics

Invent

Invent

Entity Type Relation Existing Type Missing Type

Figure 1: An example of a KG fragment. Large brown
circles denote entities and small red circles denote types.
Brown solid lines denote relations between entities, red
solid lines denote existing types of entities and red dot-
ted lines denote missing types of entities.

Unfortunately, KGs usually suffer from entity
type incompleteness problems. More specifically,
one entity may have multiple types, while the anno-
tated entity type information is usually incomplete.
Take Figure 1 as an example, the entity Newton
should be labeled with Scientist, Mathematician,
Physicist and Englander types. However, only the
Scientist type is annotated in the KG. According to
the statistics on the FB15k (Moon et al., 2017), 10%
of entities have the /music/artist type, but missing
the /people/person type, which indicates the type
incompleteness problem is not negligible. There-
fore, we focus on knowledge graph entity typing
(KGET), which aims to infer the missing types
from existing types for entities in KGs.

Great efforts have been devoted to tackling the
KGET task, which can be mainly divided into
embedding-based methods (Moon et al., 2017;
Zhao et al., 2020) and graph neural network-based
methods (Pan et al., 2021; Zhuo et al., 2022).
Embedding-based methods focus on learning low-
dimensional vector representations of entities, rela-

480

https://github.com/jinzhuoran/MiNer/

tions and entity types, then predict missing types
based on a scoring function. Although embedding-
based methods are simple and intuitive, they ignore
the rich neighbor information of entities. By con-
trast, graph neural network-based methods effec-
tively leverage the neighbor information by model-
ing it as the graph-structured data to infer the miss-
ing types, which has shown to be the most effec-
tive for the KGET task (Pan et al., 2021). Despite
these successful efforts, existing methods ignore
the Multi-hop Neighbor Information, and Type Co-
occurrence Information, which is very important
for the KGET task.

Multi-hop neighbor information can provide
more valuable clues for inference. For example
in Figure 1, based on the one-hop neighbor in-
formation alone, it is difficult to predict the en-
tity Newton has Mathematician type. Fortunately,
multi-hop neighbor information can provide more
conclusive clues. For instance, there are facts that
Newton and Leibniz (two-hop neighbor) both in-
vent Calculus, and Leibniz has Mathematician type.
Combining the two, the model can easily conclude
Newton has Mathematician type. Nevertheless, ag-
gregating multi-hop neighbors may bring irrelevant
information. As shown in Figure 1, only the triple
(Newton, Born in, England) plays a decisive role
in inferring the Englander type for Newton, while
others contribute less. Therefore, the first chal-
lenging problem is how to mine treasured neighbor
information for inference.

Type co-occurrence information can facilitate
alleviating the false-negative problem. Some entity
types should have been stored in KGs, but they
are not marked. Most existing methods simply
treat them as negative samples. Therefore, they
face a serious false-negative problem that affects
model performance. We observe a rich amount
of type co-occurrence information in KGs, which
can be used to address the false-negative problem.
For instance, both Scientist type and Physicist type
often go hand in hand. However, Scientist type
and Actor type rarely belong to the same entity.
If the model makes use of the prior knowledge, it
can alleviate the memorization of false labels and
accurately predict the missing types. Therefore, the
second challenging problem is how to leverage the
type co-occurrence information.

In this paper, we propose a novel method termed
as Mining Treasured Neighbors (MiNer) to ad-
dress aforementioned problems. The proposed

method consists of three modules: Neighbor Infor-
mation Aggregation module, Entity Type Inference
module and Type Co-occurrence Regularization
module. First, the Neighbor Information Aggrega-
tion module aims to aggregate more neighbor infor-
mation, including one-hop neighbor information
and multi-hop neighbor information. This module
can generalize to any number of hops. To mitigate
the adverse impact of the irrelevant neighbor in-
formation, the Entity Type Inference module mines
the valuable neighbor information for central en-
tities via two ways: type-specific local inference
and type-agnostic global inference. In addition, we
leverage the type co-occurrence information to alle-
viate the memorization of the false labels. We pro-
pose Type Co-occurrence Regularization module to
correct false negative examples caused by missing
types. Experimental results on two widely used
datasets indicate that our approach significantly
outperforms previous state-of-the-art methods.

Our contributions are summarized as follows:

• We propose a novel method called MiNer, de-
signed to aggregate both one-hop and multi-
hop neighbors, then mine valuable informa-
tion for missing type inference.

• We notice the strong correlations between dif-
ferent types and propose type co-occurrence
regularization to mitigate the impact of the
false-negative problem.

• We conduct thorough experiments with ab-
lation studies on two widely used datasets,
demonstrating our approach significantly out-
performs previous state-of-the-art methods.

2 Related Work

Knowledge graph entity typing (KGET) is an es-
sential sub-task of knowledge graph completion
(KGC) that has been researched for decades. Exist-
ing approaches for the task can be mainly divided
into embedding-based methods and graph neural
network-based methods.

Embedding-based Methods. The entities with
known types can be treated as as special triples
with a unique relation “Has type”, e.g., (Newton,
Has type, Physicist). In this way, the KGET can
be formulated as a link prediction task. Existing
knowledge graph embedding (KGE) methods (Bor-
des et al., 2013; Wang et al., 2014; Trouillon et al.,
2016; Sun et al., 2019; Chao et al., 2021) can be

481

used to infer the missing types of Newton by com-
pleting the triple (Newton, Has type, ?).

Although using KGE methods can address the
KGET task to some degree, it lacks the diversity of
relation types. Therefore, Moon et al. (2017) pro-
pose the ETE model to tackle this problem. ETE
first learns entity embeddings and relation embed-
dings with a KGE model on KGs that do not have
entity types, then trains the embedding of each en-
tity to be closer to the embedding of its type. For
better expressing and reasoning capability, Zhao
et al. (2020) propose the ConnectE model, which
considers both local entity typing information and
global triple knowledge in KGs. ConnectE first
uses TransE (Bordes et al., 2013) to obtain the
entity embeddings, then infers the missing types
according to two inference mechanisms. One is
E2T mechanism that focuses on mapping entities
from entity space to entity types space. Another
is TRT mechanism, which is based on the assump-
tion that the relation can remain unchanged when
replacing the entities in the triple with their types.

Graph Neural Network-based Methods. Al-
though embedding-based methods are simple and
intuitive, they ignore the rich neighbor information.
Graph neural network (GNN) has been proved to
be quite successful in modeling graph-structured
data. Considering that KG is also a kind of graph-
structured data, existing GNN methods, such as R-
GCN (Schlichtkrull et al., 2018), GAT (Veličković
et al., 2018), WGCN (Shang et al., 2019) and
CompGCN (Vashishth et al., 2020), can be used to
aggregate the neighbor information better.

Pan et al. (2021) argue this may introduce irrel-
evant information as noise and affect the perfor-
mance of entity typing. Pan et al. (2021) propose
the CET, which fully utilizes the neighbor infor-
mation according to N2T mechanism and Agg2T
mechanism. N2T mechanism can independently
use each neighbor to infer the missing types of
central entities. Agg2T mechanism is designed
to aggregate neighbors to infer the missing types.
Zhuo et al. (2022) present the AttEt to capture the
different weight distribution of the fine-grained en-
tity types on each neighbor.

Despite the vast progress that the KGET task
has made in recent years, existing methods only
leverage the one-hop neighbor information, and
ignore the multi-hop neighbor information and type
co-occurrence information that is very important
for the KGET task.

Other Methods. Zhao et al. (2022) propose a
multiplex relational graph attention network as the
encoder to learn embeddings and then use Con-
nectE as the decoder to make entity type inference.
There are also some methods (Neelakantan and
Chang, 2015; Jin et al., 2018, 2019) that use addi-
tional information (i.e., entity name, text descrip-
tion, and property) to infer the missing types.

3 Task Definition

Formally, we consider a KG G containing the
triples in the form of (e, r, ẽ) and the entity type
information in the form of (e, t), where e, ẽ ∈ E ,
r ∈ R, t ∈ T , and E ,R, T are the entity set, rela-
tion set and entity type set, respectively. One entity
may have multiple types, while the annotated entity
type is usually incomplete. The neighborhoods of
entities can provide more valuable and richer infor-
mation for inferring missing types. Following the
setting of Pan et al. (2021), we also regard the ex-
isting types of each entity as its one-hop neighbors.
Therefore, this paper aims to infer the missing types
by considering the neighbor information (i.e., one-
hop neighbor information and multi-hop neighbor
information) of entities.

4 Method

Our approach is shown in Figure 2, which con-
sists of three primary components: (1) Neighbor
Information Aggregation, which aggregates the in-
formation from one-hop neighbors and multi-hop
neighbors; (2) Entity Type Inference, which mines
valuable neighbor information for inferring miss-
ing types; and (3) Type Co-occurrence Regular-
ization, which prevents the model from overfitting
false-negative samples by using type co-occurrence
information. We will detail these three modules as
follows.

4.1 Neighbor Information Aggregation
As mentioned above, it is not enough to solely
use one-hop neighbors, multi-hop neighbors are
also important. Neighbor information aggregation
module aims to aggregate the two kinds of neighbor
information.

One-hop Neighbor Aggregation. The one-hop
neighbors of an entity are the most straightfor-
ward treasure for inferring the entity types. We
first unify the one-hop outgoing neighbors and in-
coming neighbors as the one-hop neighbors of the
central entity. Then, we follow the translational

482

Neighbor Information Aggregation

One-hop Neighbor Information

Multi-hop Neighbor Information

Type-specific Local Inference

Entity Type Inference

Type-agnostic Global Inference

Type Co-occurrence Regularization

R

R

Co-occurrence Matrix

Memory Bank

…

Figure 2: The main architecture of MiNer, consists of three primary modules. The blue circle denotes the central
entity, the green circles denote the one-hop neighbors, the yellow circles denotes the multi-hop neighbors.

assumption of TransE (Bordes et al., 2013) to ob-
tain the one-hop neighbor information. We choose
TransE for its simplicity and efficiency. Formally,
for the central entity e, its representation aggre-
gated from one-hop neighbor (r, ẽ)2 can be com-
puted as follows:

h(r,ẽ),1 = ẽ− I(r), (1)

where (e, r, ẽ) is a triple in the KG G. ẽ and r
denote the representations of the entity ẽ and rela-
tion r, respectively. I(·) is a function that equals
to 1 if (e, r, ẽ) ∈ G, or equals to −1 if (ẽ, r, e) ∈ G.
h(r,ẽ),1 ∈ Rd is the representation aggregated from
the one-hop neighbor (r, ẽ).

Multi-hop Neighbor Aggregation. In addition
to one-hop neighbors, we also consider multi-hop
neighbors, which can provide valuable inference
evidence. For multi-hop neighbor aggregation, the
main idea is: we iteratively represent the (n− 1)-
hop neighbors by the n-hop neighbors and then rep-
resent the central entity by its one-hop neighbors.
We first take two-hop neighbors as an example to
illustrate the aggregation process, and then gener-
alize it to the case of more hops. Formally, for the
central entity e, its representation aggregated from
its two-hop neighbor can be computed as follows:

h(r,ẽ),2 = M2(ẽ)− I(r), (2)

where h(r,ẽ),2 ∈ Rd is the representation aggre-
gated from two-hops neighbor via the one-hop

2For outgoing neighbors (i.e., (e, r, ẽ)) and incoming
neighbors (i.e., (ẽ, r, e)), we both denote (r, ẽ) as the one-
hop neighbor of the central entity e.

neighbor (r, ẽ). M2(·) is used to compute the one-
hop neighbor representation via two-hop neighbor
representations of the central entity. Its calculation
can be defined as follows:

M2(e) =
1

|N (e)|
∑

(ri,ẽi)∈N (e)

(ẽi − I(ri)), (3)

where N (e) denotes the one-hop neighbors of the
entity e. To generalize our method, we consider
aggregating the multi-hop neighbor information
within h (h ≥ 3) hops, which can be computed as
follows:

h(r,ẽ),h = Mh(ẽ)− I(r),

Mh(e) =
1

|N (e)|
∑

(ri,ẽi)∈N (e)

(ρ1 (ẽi)− Ii(ri)),

ρj(e) = αje+
1− αj

|N (e)|
∑

(ri,ẽi)∈N (e)

(ρj+1(ẽi)− Ii(ri)),

(4)

where Mh(·) denotes to aggregate the h-hop neigh-
bor information, ρj(·) is calculated by the skip
connection of j-hop neighbors and (j + 1)-hop
neighbors, and ρj(e) = e when j = h− 2.

4.2 Entity Type Inference
In fact, different neighbors have different effects on
different types of the central entity. For example,
the Englander type of Newton can only be indicated
by a few neighbors (i.e., England), and most of the
neighbors (i.e., Einstein and Leibniz) are irrelevant.
Therefore, we need to mitigate the adverse effect of
the useless neighbor information. Inspired by the
class-specific residual attention (CSRA) (Zhu and
Wu, 2021) that captures different spatial regions
occupied by objects from different categories, we

483

propose the entity type inference module to capture
the accurate and useful neighbor features. We first
use the non-linear classifier to compute the score
vector si for i-th neighbor (ri, ẽi):

si = W (σ(hi)), (5)

where W ∈ R|T |×d is the weight matrix. |T | is the
total number of entity types. σ(·) is the activation
function (e.g., ReLU). hi = [h1i , h

2
i , . . . , h

d
i]
T ∈

Rd is the hidden representation of the central
entity aggregated from the i-th neighbor, si =

[s1i , s
2
i , . . . , s

|T |
i]T ∈ R|T | is the score vector of

the i-th neighbor, sji indicates the probability score
for inferring j-th type based on the neighbor (ri, ẽi).
According to the score vector for each neighbor,
we predict the central entity types by type-specific
local inference and type-agnostic global inference.

Type-specific Local Inference. Since different
neighbors have different effects on different types
of central entity, we devise a type-specific atten-
tion. Formally, for the central entity e, we define
the type-specific attention weight aji for its i-th
neighbor (ri, ẽi) and j-th type as:

aji =
exp

(
sji/T

)

∑
(rk,ẽk)∈N (e) exp

(
sjk/T

) , (6)

where T is the temperature controlling the weight’s
sharpness, aji indicates the importance of i-th neigh-
bor for inferring j-th type. Then, we can compute
the type-specific local score of j-th type:

nj =
∑

(rk,ẽk)∈N (e)

ajis
j
k. (7)

Therefore, we can represent the type-specific lo-
cal score vector for the central entity e as n =
[n1, n2, . . . , n|T |]T .

Type-agnostic Global Inference. If two entities
have similar types, their hidden representations
should be close. It is necessary to represent the
entities well in semantic space. According to the
vanilla GCN (Kipf and Welling, 2017), we encode
the central entity e as the average pooling of the
hidden representations of its neighbors. Therefore,
the type-agnostic score can be computed as follows:

g =
1

|N (e)|
∑

(rk,ẽk)∈N (e)

sk, (8)

where g means the type-agnostic global score vec-
tor of the entity e.

Type Probability Prediction. We combine the
type-specific local score and type-agnostic global
score together to get the mixed score u:

u = β1n+ β2g, (9)

where β1 and β2 are hyper-parameters for balance.
According to CSRA (Zhu and Wu, 2021), we use
the multi-head attention mechanism to compute the
final score f :

f =
H∑

i=1

uTi , (10)

where H is the number of attention heads, uTi is
the mixed score at temperature Ti. We predict the
type probability p = [p1, . . . , p|T |]T ∈ R|T | based
on both one-hop and multi-hop neighbors:

p = ϕ(λf1 + (1− λ)fh), (11)

where f1 ∈ R|T | means the one-hop neighbors’
final score and fh ∈ R|T | means the multi-hop
neighbors’ final score, λ is a hyper-parameter, ϕ
denotes the sigmoid activation function.

4.3 Type Co-occurrence Regularization
As mentioned above, the type co-occurrence infor-
mation is the overlooked treasure. Meanwhile, due
to the missing of partial entity types, simply regard-
ing these missing types as negative types will lead
to false-negative samples in the training data. Ac-
cording to early learning phenomenon (Arpit et al.,
2017), the model will first fit the training data with
clean labels during an early learning phase, then
memorize the training data with false labels. In-
spired by early learning regularization (Liu et al.,
2020), we propose type co-occurrence regulariza-
tion, which leverages the type co-occurrence statis-
tical information to alleviate the memorization of
the false labels:

RTCR =
1

|E|

|E|∑

i=1

log (1− ⟨S(pi(k)), ti(k)⟩) , (12)

where pi(k) ∈ R|T | and ti(k) ∈ R|T | denote the
i-th entity’s prediction probability and target prob-
ability at iteration k of training respectively. ⟨·, ·⟩
is the inner product function, S(·) is the softmax
function. The target can be set as:

ti(k) =ω
(
γkS(Cpi(k)) + (1− γk)S(pi(k))

)

+ (1− ω)ti(k − 1),
(13)

484

where C ∈ R|T |×|T | is the type co-occurrence
matrix, 0 < ω < 1 is the momentum, 0 < γ < 1 is
the multiplication factor. For those negative types
((e, t) /∈ G) with high confidence to be positive, we
directly correct them to positive (Li et al., 2021).

4.4 Optimization

For training, we adopt false-negative aware (FNA)
loss function (Pan et al., 2021):

LFNA =−
∑

(ei,tj)/∈G
µ1

(
pji − (pji)

2
)
log

(
1− pji

)

−
∑

(ei,tj)∈G
log pji ,

(14)

where pji denotes the prediction probability of the
i-th entity’s j-th type, µ1 is a hyper-parameter used
to control the overall weight of negative samples.
The FNA loss function will assign lower weight to
those negative examples with too large or too small
relevance scores. By combining LFNA and LTCR,
we can get the final optimization goal:

L = LFNA + µ2RTCR, (15)

where µ2 is the hyper-parameter.

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets. We evaluate our proposed method on
two real-world KGs, including FB15k (Bordes
et al., 2013) and YAGO43k (Moon et al., 2017)
which are subsets of Freebase (Bollacker et al.,
2008) and YAGO (Suchanek et al., 2007), respec-
tively. Two entity typing datasets FB15kET and
YAGO43kET (Moon et al., 2017) provide entity
type instances by mapping entities from FB15k
and YAGO43k into their entity types. The statistics
of the two datasets are shown in the Appendix A.

Evaluation Metrics. For each test sample, we
first calculate the relevance score between the en-
tity and every type. Then, we rank these scores in
ascending order. For a fair comparison with pre-
vious work (Zhao et al., 2020), we also adopt the
filtered setting (Bordes et al., 2013) to remove all
the known types in the training, validation, and test
sets, before calculating score ranking. Following
state-of-the-art baselines (Zhao et al., 2020; Pan
et al., 2021; Zhuo et al., 2022), we adopt Mean
Rank (MR), Mean Reciprocal Rank (MRR) and
Hits@{1,3,10} as evaluation metrics.

5.2 Implementation Details

Our implementation is based on DGL3 and Py-
torch4. We use the Adam algorithm (Kingma and
Ba, 2015) to optimize model parameters. The learn-
ing rate is initialized as 1e-3. The embedding di-
mension is set to 100, the same as previous methods
to ensure fairness. All experiments are conducted
with NVIDIA GeForce RTX 3090 GPUs. We se-
lect the best model leading to the highest MRR
on the validation set. The best-performance hyper-
parameter settings are listed in the Appendix B.

5.3 Baselines

We compare our approach MiNer with previous
state-of-the-art methods, which can be divided into
two categories:

Embedding-based methods: Firstly, we com-
pare our method with classical knowledge graph
embedding methods, including TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016) and
RotatE (Sun et al., 2019). Then we compare with
two methods proposed specifically for the KGET
task, including ETE (Moon et al., 2017) and Con-
nectE (Zhao et al., 2020).

Graph neural network-based methods: We
also compare our method with more competitive
graph neural network-based methods, including R-
GCN (Schlichtkrull et al., 2018), CET (Pan et al.,
2021), AttEt (Zhuo et al., 2022) and ConnectE-
MRGAT (Zhao et al., 2022).

5.4 Overall Results

The performance of all the methods on the
FB15kET and YAGO43kET datasets is shown in
Table 1. We note the following key observations
throughout our experiments:

(1) Our method outperforms all the baselines by
a large margin on the two datasets. For example,
compared with the state-of-the-art model CET (Pan
et al., 2021), our method MiNer achieves 3.1% and
1.8% improvements of MRR on the FB15kET and
YAGO43kET, respectively. It indicates that our
proposed method is very effective for this task.

(2) Compared with the embedding-based meth-
ods, graph neural network-based methods achieve
better performance. This suggests that the neigh-
bor information is important for the task. However,
most graph neural network-based methods only uti-

3https://github.com/dmlc/dgl/
4https://pytorch.org/

485

https://github.com/dmlc/dgl/
https://pytorch.org/

Model FB15kET YAGO43kET
MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

Embedding-based Methods
TransE 0.618 18 0.504 0.686 0.835 0.427 393 0.304 0.497 0.663
ComplEx 0.595 20 0.463 0.680 0.841 0.435 631 0.316 0.504 0.658
RotatE 0.632 18 0.523 0.699 0.840 0.462 316 0.339 0.537 0.695
ETE 0.500 - 0.385 0.553 0.719 0.230 - 0.137 0.263 0.422
ConnectE 0.590 - 0.496 0.643 0.799 0.280 - 0.160 0.309 0.479

Graph Neural Network-based Methods
R-GCN (h = 1) 0.679 20 0.597 0.722 0.843 0.372 397 0.281 0.409 0.549
R-GCN (h = 2) 0.664 29 0.580 0.709 0.830 0.360 587 0.273 0.392 0.532
MRGAT (h = 2) 0.630 - 0.562 0.663 0.804 0.320 - 0.243 0.343 0.482
AttEt (h = 1) 0.620 - 0.517 0.677 0.821 0.350 - 0.244 0.413 0.565
CET (h = 1) 0.697 19 0.613 0.745 0.856 0.503 250 0.398 0.567 0.696

Our Method
MiNer 0.728 15 0.654 0.768 0.875 0.521 223 0.412 0.589 0.714

Table 1: Experimental results on the FB15kET and YAGO43kET datasets. Bold denotes best results. The results of
the baselines are taken from corresponding original papers. h denotes the number of hops.

Setting FB15kET YAGO43kET
MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

Baseline (w/o Neighbor Information)
RotatE 0.632 18 0.523 0.699 0.840 0.462 316 0.339 0.537 0.695

Our Method
One-hop Neighbor 0.716 18 0.637 0.761 0.865 0.512 245 0.402 0.580 0.710

Multi-hop Nieghbor
h = 2 0.724 15 0.647 0.766 0.873 0.499 285 0.387 0.572 0.701
h = 3 0.721 17 0.644 0.764 0.873 0.499 266 0.386 0.571 0.702
h = 4 0.726 16 0.652 0.766 0.871 0.502 272 0.390 0.573 0.701

One-hop Neighbor
+

Mult-hop Nieghbor

h = 2 0.726 15 0.653 0.764 0.871 0.521 223 0.412 0.589 0.714
h = 3 0.726 16 0.651 0.766 0.872 0.520 224 0.411 0.589 0.713
h = 4 0.728 15 0.654 0.768 0.875 0.518 245 0.409 0.587 0.711

Table 2: Experimental results by using different neighbors on the FB15kET and YAGO43kET datasets.

lize one-hop neighbor information, ignoring multi-
hop neighbor information.

(3) Traditional graph neural networks can ag-
gregate multi-hop neighbor information. However,
two-layer R-GCN performs worse than the one-
layer R-GCN. The reason may be that simple infor-
mation aggregations introduce a lot of noise. By
contrast, our method can effectively mitigate the
impact of irrelevant information.

5.5 Effectiveness of Neighbor Information
Aggregation

We validate the effectiveness of neighbor infor-
mation aggregation module from both one-hop
neighbors and multi-hop neighbors. The results
are shown in Table 2, we can observe that:

(1) Both one-hop and multi-hop neighbor infor-
mation contribute to inferring the missing types.
The performance improvement of using the multi-

hop neighbors is more evident than that of using
the one-hop neighbors. We guess that the multi-
hop neighbors can provide more clues for inference.
Moreover, simultaneously using these two kinds of
neighbors can further improve the performance.

(2) For the FB15kET dataset, the performance
is best when the hops number h = 4, while the
hops number h = 2 is enough for the YAGO43kET
dataset. This phenomenon may be attributed to the
fact that the graph of FB15kET is more sparse than
the graph of YAGO43kET. In fact, our MiNer can
work under multiple hops numbers, but too many
hops will lead to the over-smoothing problem.

5.6 Effectiveness of Entity Type Inference

We verify the effectiveness of entity type infer-
ence module from both type-specific local infer-
ence and type-agnostic global inference. The re-
sults are shown in Table 3. We have two important

486

Setting FB15kET YAGO43kET
MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

Baseline (w/o Type Inference)
R-GCN 0.679 20 0.597 0.722 0.843 0.372 397 0.281 0.409 0.549

Our Method
Local 0.685 19 0.606 0.724 0.843 0.504 265 0.392 0.575 0.704
Global 0.684 19 0.603 0.726 0.845 0.399 319 0.302 0.442 0.584

Local

+

Global

H = 2 0.727 15 0.652 0.767 0.873 0.516 211 0.407 0.586 0.711
H = 3 0.727 15 0.653 0.768 0.874 0.516 232 0.408 0.582 0.710
H = 4 0.727 15 0.652 0.769 0.874 0.512 231 0.403 0.581 0.706
H = 5 0.728 15 0.654 0.768 0.875 0.521 223 0.412 0.589 0.714
H = 6 0.726 15 0.652 0.767 0.873 0.516 221 0.408 0.584 0.712

Table 3: Experimental results by using different inference methods on the FB15kET and YAGO43kET datasets.
“Local” and “Global” refer to “type-specific local inference” and “type-agnostic global inference”. H denotes the
number of heads.

2 3 4
Number of Hops

0.720

0.722

0.724

0.726

0.728

0.730

M
R

R

0.7223

0.7234

0.7251

0.7262 0.7261

MiNer
MiNer

w/o TCR

0.728

Figure 3: MRR scores for different number of hops
settings on the FB15kET dataset.

observations:
(1) For the FB15kET dataset, type-specific lo-

cal inference and type-agnostic global inference
work equally well. For the YAGO43kET dataset,
type-specific local inference performs better than
type-agnostic global inference. This empirically
confirms that type-specific local inference works
well with more entity types.

(2) Simultaneously using these two kinds of in-
ference can further improve performance. Mean-
while, the multi-head attention mechanism plays
an important role, especially when the number of
attention heads H = 5.

5.7 Effectiveness of Type Co-occurrence
Regularization

We validate the effectiveness of type co-occurrence
regularization (TCR) module. The results are
shown in Figure 3. Overall, we can observe that:

(1) TCR can further improve the performance of
our method. This is because TCR can alleviate the
memorization of the false-negative types.

(2) TCR works well under the different number

Type Golden One-hop Multi-hop One+Multi-hop

/award_winner 0 0.693 0.033 0.106
/legal/topic 0 0.283 0.538 0.457
/film/actor 0 0.067 0.003 0.007
/athletics/topic 1 0.995 0.393 0.780
/naval_combatant 1 0.381 0.698 0.608
/fictional_setting 1 0.752 0.691 0.710

Table 4: Prediction probabilities of the entity
/m/0f8l9c (France) for some types. “1” or “0” indi-
cates the entity is with or without this type.

of hops settings, which indicates that the module is
not sensitive to the number of hops.

5.8 Case Study

We conduct a case study to verify the effectiveness
of our method. Table 4 shows some prediction
results for the entity /m/0f8l9c, which refers to
France. We can observe that one-hop neighbors
and multi-hop neighbors are both critical. Take
/award_winner type as an example, only using
one-hop neighbor information makes the wrong
inference (i.e., it predicts that /m/0f8l9c has this
type with higher probability), while our method can
make the correct inference based on the multi-hop
neighbor information. It proves that the multi-hop
neighbor information is essential for the task.

6 Conclusion

In this paper, we propose a novel method called
MiNer to mine treasured neighbors. First, MiNer
aggregates one-hop neighbor and multi-hop neigh-
bor information. Then, MiNer predicts the entity
types by type-specific local inference and type-
agnostic global inference. Finally, we use type
co-occurrence regularization to prevent our model
from overfitting the false-negative samples. Experi-

487

mental results on two widely used datasets indicate
that our approach significantly outperforms previ-
ous state-of-the-art methods.

Limitations

Although our approach has worked well, there are
still some limitations to be resolved in the future.
The primary limitation is how to perform more ef-
ficient inference on the KGs? Our method needs
to aggregate all the candidate neighbors, then mine
the treasured neighbors for inferring entity types.
We call this kind of method Post-mining. Post-
mining methods will introduce some unrelated in-
formation when aggregating neighbors. However,
Pre-mining methods can select valuable neighbors
during the aggregation stage. Pre-mining methods
are computationally efficient, but designing a rea-
sonable criteria to choose neighbors is non-trivial.
We will investigate it in the future work.

Acknowledgements

We thank the anonymous reviewers for their con-
structive comments. This work is supported by
the National Key Research and Development Pro-
gram of China (No. 2020AAA0106400), the Na-
tional Natural Science Foundation of China (No.
62176257, 61976211, 61922085). This work is
also supported by the Strategic Priority Research
Program of Chinese Academy of Sciences (Grant
No. XDA27020200), the Youth Innovation Promo-
tion Association CAS, and Yunnan Provincial Ma-
jor Science and Technology Special Plan Projects
(No.202103AA080015).

References
Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,

David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. 2017. A closer look at memo-
rization in deep networks. In Proceedings of the 34th
International Conference on Machine Learning.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of Advances in Neural
Information Processing Systems.

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.
2021. PairRE: Knowledge graph embeddings via
paired relation vectors. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers).

Shuang Chen, Jinpeng Wang, Feng Jiang, and Chin-Yew
Lin. 2018. Improving entity linking by modeling
latent entity type information. In Proceedings of the
AAAI Conference on Artificial Intelligence.

Xiangyu Dong, Wenhao Yu, Chenguang Zhu, and Meng
Jiang. 2021. Injecting entity types into entity-guided
text generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Hailong Jin, Lei Hou, Juanzi Li, and Tiansi Dong. 2018.
Attributed and predictive entity embedding for fine-
grained entity typing in knowledge bases. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics.

Hailong Jin, Lei Hou, Juanzi Li, and Tiansi Dong.
2019. Fine-grained entity typing via hierarchical
multi graph convolutional networks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Rep-
resentations.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of International Confer-
ence on Learning Representations.

Changchun Li, Ximing Li, Lei Feng, and Jihong
Ouyang. 2021. Who is your right mixup partner
in positive and unlabeled learning. In Proceedings
of International Conference on Learning Representa-
tions.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and
Carlos Fernandez-Granda. 2020. Early-learning reg-
ularization prevents memorization of noisy labels.
In Proceedings of Advances in Neural Information
Processing Systems.

Changsung Moon, Paul Jones, and Nagiza F Samatova.
2017. Learning entity type embeddings for knowl-
edge graph completion. In Proceedings of the 2017
ACM on conference on information and knowledge
management.

Arvind Neelakantan and Ming-Wei Chang. 2015. Infer-
ring missing entity type instances for knowledge base
completion: New dataset and methods. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

488

https://proceedings.mlr.press/v70/arpit17a.html
https://proceedings.mlr.press/v70/arpit17a.html
https://dl.acm.org/doi/abs/10.1145/1376616.1376746?casa_token=u7NyyEYU_z8AAAAA:F-26JXUPwGJTHDZtDHh_DfyfdVNML7rEVn_NLILAfeKlJ4JLwnjja33b3zYvMaY3rcCK_Do34tfRgg
https://dl.acm.org/doi/abs/10.1145/1376616.1376746?casa_token=u7NyyEYU_z8AAAAA:F-26JXUPwGJTHDZtDHh_DfyfdVNML7rEVn_NLILAfeKlJ4JLwnjja33b3zYvMaY3rcCK_Do34tfRgg
https://dl.acm.org/doi/abs/10.1145/1376616.1376746?casa_token=u7NyyEYU_z8AAAAA:F-26JXUPwGJTHDZtDHh_DfyfdVNML7rEVn_NLILAfeKlJ4JLwnjja33b3zYvMaY3rcCK_Do34tfRgg
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://aclanthology.org/2021.acl-long.336
https://aclanthology.org/2021.acl-long.336
https://ojs.aaai.org/index.php/AAAI/article/view/6251
https://ojs.aaai.org/index.php/AAAI/article/view/6251
https://aclanthology.org/2021.emnlp-main.56
https://aclanthology.org/2021.emnlp-main.56
https://aclanthology.org/C18-1024
https://aclanthology.org/C18-1024
https://aclanthology.org/D19-1502
https://aclanthology.org/D19-1502
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=NH29920YEmj
https://openreview.net/forum?id=NH29920YEmj
https://proceedings.neurips.cc/paper/2020/file/ea89621bee7c88b2c5be6681c8ef4906-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ea89621bee7c88b2c5be6681c8ef4906-Paper.pdf
https://dl.acm.org/doi/abs/10.1145/3132847.3133095?casa_token=Qr-q16R7Y7QAAAAA:_YAUCo4ljYn4BNPN7X1htwJJMfik7s12Z11fSctrx-DeZ26UMqp9NrRWrt0QAZ1tJJ1f26pXFj4gKg
https://dl.acm.org/doi/abs/10.1145/3132847.3133095?casa_token=Qr-q16R7Y7QAAAAA:_YAUCo4ljYn4BNPN7X1htwJJMfik7s12Z11fSctrx-DeZ26UMqp9NrRWrt0QAZ1tJJ1f26pXFj4gKg
https://aclanthology.org/N15-1054
https://aclanthology.org/N15-1054
https://aclanthology.org/N15-1054

Weiran Pan, Wei Wei, and Xian-Ling Mao. 2021.
Context-aware entity typing in knowledge graphs.
In Findings of the Association for Computational
Linguistics: EMNLP 2021.

Michael Sejr Schlichtkrull, Thomas N Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In European semantic web
conference.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong
He, and Bowen Zhou. 2019. End-to-end structure-
aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In Proceedings
of International Conference on Learning Representa-
tions.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
Reside: Improving distantly-supervised neural rela-
tion extraction using side information. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016.
Representation learning of knowledge graphs with hi-
erarchical types. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence (IJCAI-16).

Yu Zhao, Anxiang Zhang, Ruobing Xie, Kang Liu, and
Xiaojie Wang. 2020. Connecting embeddings for
knowledge graph entity typing. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics.

Yu Zhao, Han Zhou, Anxiang Zhang, Ruobing Xie,
Qing Li, and Fuzhen Zhuang. 2022. Connecting
embeddings based on multiplex relational graph at-
tention networks for knowledge graph entity typing.
IEEE Transactions on Knowledge and Data Engi-
neering.

Ke Zhu and Jianxin Wu. 2021. Residual attention: A
simple but effective method for multi-label recogni-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.

Jianhuan Zhuo, Qiannan Zhu, Yinliang Yue, Yuhong
Zhao, and Weisi Han. 2022. A neighborhood-
attention fine-grained entity typing for knowledge
graph completion. In Proceedings of the Fifteenth
ACM International Conference on Web Search and
Data Mining.

489

https://aclanthology.org/2021.findings-emnlp.193
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_38
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_38
https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://dl.acm.org/doi/abs/10.1145/1242572.1242667?casa_token=Ohn3lNaFamAAAAAA:0AvZjBzN8cL-cQAq0073nrLym3hpZgMKwXhoZNVDQq0HSVTDxm9pX-OnR2w4BzHqiBtYbEN6XEc-3Q
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://proceedings.mlr.press/v48/trouillon16.html
https://proceedings.mlr.press/v48/trouillon16.html
https://aclanthology.org/D18-1157
https://aclanthology.org/D18-1157
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=rJXMpikCZ
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://www.ijcai.org/Proceedings/16/Papers/421.pdf
https://www.ijcai.org/Proceedings/16/Papers/421.pdf
https://aclanthology.org/2020.acl-main.572
https://aclanthology.org/2020.acl-main.572
https://ieeexplore.ieee.org/abstract/document/9677939
https://ieeexplore.ieee.org/abstract/document/9677939
https://ieeexplore.ieee.org/abstract/document/9677939
https://openaccess.thecvf.com/content/ICCV2021/html/Zhu_Residual_Attention_A_Simple_but_Effective_Method_for_Multi-Label_Recognition_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Zhu_Residual_Attention_A_Simple_but_Effective_Method_for_Multi-Label_Recognition_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Zhu_Residual_Attention_A_Simple_but_Effective_Method_for_Multi-Label_Recognition_ICCV_2021_paper.html
https://dl.acm.org/doi/abs/10.1145/3488560.3498395
https://dl.acm.org/doi/abs/10.1145/3488560.3498395
https://dl.acm.org/doi/abs/10.1145/3488560.3498395

A Statistics of Datasets

The statistics of the FB15kET and YAGO43kET
datasets are shown in the Table 5.

Statistics FB15kET YAGO43kET

#Entity (|E|) 14,951 42,334
#Relation (|R|) 1,345 37
#Type (|T |) 3,584 45,182
#Tuple (|G|) 483,142 331,686
#Train 136,618 375,853
#Valid 15,848 43,111
#Test 15,847 43,119

Table 5: Statistics of FB15kET and YAGO43kET.

B Hyper-parameter Settings

Parameters FB15kET Settings YAGO43kET Settings

α {0.2, 0.3, 0.4, 0.5} {0.6, 0.7, 0.8, 0.9}
β1 {0.5, 1.0, 1.5} {0.5, 1.0, 1.5}
β2 {0.5, 1.0, 1.5} {0.5, 1.0, 1.5}
λ {0.3, 0.6, 0.9} {0.3, 0.6, 0.9}
h {2, 3, 4} {2, 3, 4}
H {2, 3, 4, 5, 6} {2, 3, 4, 5, 6}
γ {0.3, 0.5, 0.7} {0.3, 0.5, 0.7}
ω {0.5, 0.7, 0.9} {0.5, 0.7, 0.9}
µ2 {1, 2, 3} {1, 2, 3}

Table 6: The hyper-parameter settings of the FB15kET
and YAGO43kET datasets.

As shown in Table 6, α denotes the weight of
skip connection, β1 denotes the weight of type-
specific local score, β2 denotes the weight of type-
agnostic global score, λ denotes the weight of one-
hop neighbors, h denotes the number of hops, H
denotes the number of heads, γ denotes the mo-
mentum, ω denotes the multiplicition factor and µ2

denotes the weight of regularization.

490

