
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4532–4552
December 7-11, 2022 ©2022 Association for Computational Linguistics

Less is More: Summary of Long Instructions is Better for
Program Synthesis

Kirby Kuznia∗ Swaroop Mishra∗ Mihir Parmar Chitta Baral

Arizona State University

Abstract
Despite the success of large pre-trained lan-
guage models (LMs) such as Codex, they show
below-par performance on the larger and more
complicated programming related questions.
We show that LMs benefit from the summa-
rized version of complicated questions. Our
findings show that superfluous information of-
ten present in problem description such as hu-
man characters, background stories, and names
(which are included to help humans in under-
standing a task) does not help models in under-
standing a task. To this extent, we create a meta-
dataset from the frequently used APPS dataset
and the newly created CodeContests dataset for
the program synthesis task. Our meta-dataset
consists of human and synthesized summaries
of the long and complicated programming ques-
tions. Experimental results on Codex show that
our proposed approach outperforms baseline
by 8.13% on the APPS dataset and 11.88% on
the CodeContests dataset on average in terms
of strict accuracy. Our analysis shows that sum-
maries significantly improve performance for
introductory (9.86%) and interview (11.48%)
programming questions. However, it shows
improvement by a small margin (∼ 2%) for
competitive programming questions, implying
scope for future research in this direction.1

1 Introduction

Recently, large pre-trained LMs have been proven
pivotal in programming-related tasks (Wang et al.,
2021; Chen et al., 2021; Hendrycks et al., 2021;
Lu et al., 2021; Papineni et al., 2002)2. Program
synthesis aims to generate a code given the natural
language description of a problem. Programming
requirements in these problems vary in terms of
complexity from a 3-5 line simple function to mul-
tiple functions that use advanced data structures.

∗Equal Contribution
1Code and data is available at https://github.com/kurbster/

Prompt-Summarization
2Detailed related work is presented in Appendix A

However, LMs such as Codex show below-par per-
formance on the long and complicated program-
ming questions. We observe that the natural lan-
guage description of the program becomes long
and complicated when there is superfluous infor-
mation (see section 2.1.1). The goal of adding this
information to the description is to make it more
understandable to humans. However, we find that
this information confuses the model in understand-
ing a task3. We propose that removing the excess
information and providing the model with the ex-
act specifications of the problem can improve the
performance of the LMs.

To remove excess information4, we summarize the
descriptions of the program in such a way that it
does not lose important specifications. We use the
APPS dataset (Hendrycks et al., 2021) and Code-
Contests dataset (Li et al., 2022) which are a col-
lection of coding problems from different online
sources and create a meta-dataset consisting of hu-
man and synthesized summaries.

We perform all experiments using the GPT-based
Codex model (Chen et al., 2021) on the proposed
meta-dataset and show that the summarized ver-
sion of complicated questions improves strict ac-
curacy by 8.13% on the APPS dataset and 11.85%
on CodeContests. From our analysis, we can see
significant improvement for introductory (9.86%)
and interview (11.48%) related programming ques-
tions. However, it shows improvement by a small
margin (∼ 2%) for competitive programming ques-
tions. Considering that automatic evaluation of a
program does not reward for partial correctness, we
perform qualitative evaluation on our meta-dataset
and find that original questions often confuse mod-
els in understanding the underlying problem, as
models latch on to some spurious words in the text
(e.g. the word ‘list’ in question makes the model

3See example in Appendix C
4Instructions for creating summaries given in Appendix N

4532

https://github.com/kurbster/Prompt-Summarization
https://github.com/kurbster/Prompt-Summarization

design a list even though the underlying problem is
on graphs). We further analyze model performance
on different types of summaries (i.e., basic, expert,
and synthetic) and provide instruction-design prin-
ciples that can help future research on prompting
in program synthesis.

2 Method

2.1 Dataset
We use the APPS (Hendrycks et al., 2021) and
CodeContests (Li et al., 2022) datasets to create
summaries. We crowd-sourced the creation of hu-
man summaries. The result was 373 human sum-
maries for APPS and 80 summaries for CodeCon-
tests along with and 8663 synthetic summaries us-
ing both datasets. Table 1 shows the statistics of
the generated summaries.

Data Source Difficulty # of Problems

Human

Introductory 145
Interview 123

Competition 105
CodeContests 80

Total 453

Studio21

Introductory 1588
Interview 4551

Competition 1286
CodeContests 80

Total 7505

GPT-3
Introductory 194

Interview 267
Competition 244

CodeContests 80

Total 785

PEGASUS

Introductory 145
Interview 123

Competition 105

Total 373

Table 1: Statistics of the proposed meta-dataset.

2.1.1 Human Generated Summaries
For the APPS and CodeContests human-generated
summaries, the crowd worker reads and under-
stands the original questions, then creates sum-
maries in two steps5. First, we create a basic
summary of the given problem and remove any
information that is repeated and any hypothetical
information without concrete instructions. For ex-
ample, if the problem constructs a fake company or
situation, we replace the fake situation with direct

5Instructions for creating summaries are in Appendix N

instructions. Full example is included in Appendix
C. Second, we create an expert summary of the
problem. To create this, we further summarize
the first summary. This expert summary includes
the absolute minimum information for an expert to
understand the problem. We would not expect a
novice to understand these prompts. An example
of expert summaries is given in Appendix C.3.

2.1.2 Synthetic Summaries
We have generated synthetic summaries of program
descriptions using jumbo (178B), large (7.5B) Stu-
dio21 model (Lieber et al., 2021), GPT-3 Davinci
model (175B) (Brown et al., 2020) and PEGASUS
model (Zhang et al., 2019). To generate a summary,
we provide these models with a few examples in the
in-context learning setup (Brown et al., 2020) from
the human-generated summaries. For the few-shot
examples, we use expert-level summaries.

Studio21 We use five examples with the large
model, and three examples with the jumbo model6.
For both models, we use a temperature of 0.3, and
topP of 1. For the format of our prompt, we use De-
Jargonizer template7 with a change to their header
as shown in Appendix D. We create a total of 7, 505
synthetic summaries using these models.

GPT-3 We use three examples for GPT-3 model.
We empirically set temperature to 0.05, topP to
1, frequency penalty to 0.01, presence penalty to
0.05. To generate prompts, we followed their tl;dr
template8 as shown in Appendix D. We create 785
synthetic summaries using this model.

PEGASUS We use the PEGASUS model (Zhang
et al., 2019) to create program summaries for the
same set of problems that were summarized by
humans. We choose this model because it was
trained specifically for abstractive summarization.

2.2 Model

We use OpenAI Codex to build baselines and the
proposed approach.

Baseline To create a baseline, we have used orig-
inal program descriptions given in the datasets as
prompts for the Codex model.

6Examples are included in Appendix D
7https://studio.ai21.com/
8https://beta.openai.com/playground/p/

default-tldr-summary?model=text-davinci-001

4533

https://studio.ai21.com/
https://beta.openai.com/playground/p/default-tldr-summary?model=text-davinci-001
https://beta.openai.com/playground/p/default-tldr-summary?model=text-davinci-001

Difficulty AP EWPR BWPR

Baseline Basic Expert Baseline Basic Expert Baseline Basic Expert

Introductory 42.96 50.00 50.00 44.20 51.45 51.82 43.23 50.35 50.35
Interview 37.70 41.80 44.26 36.52 45.54 46.96 37.70 41.80 44.26

Competition 4.76 5.71 5.71 4.00 6.00 6.00 4.76 5.71 5.71

Weighted Average 30.47 34.83 35.64 30.31 36.65 37.22 30.43 34.78 35.59

CodeContests 12.50 23.75 25.00 13.33 25.33 26.66 12.82 24.36 25.64

Table 2: Results of baseline and proposed model in terms of Strict Accuracy (SAcc). The first block is from the
APPS dataset. The last block is from the CodeContests dataset. AP: All Problems, EWPR: Either Worst Problem
Removal, BWPR: Both Worst Problem Removal (see explanation in section 3). All results are in %. Weighted
Average is not shown for CodeContests because similar difficulties were not provided (see explanation in 4.1).

Difficulty AP EWPR

Baseline Proposed Baseline Proposed

Introductory 42.96 52.82 44.53 54.74
Interview 37.70 49.18 38.66 50.42

Competition 4.76 6.67 4.81 6.73

Weighted Average 30.47 38.48 31.11 39.44

Table 3: Results when taking the best summary for each
problem. The EWPR baseline is different from Table 2
because a different set of problems have been removed.

Proposed Approach We have used summaries of
original program descriptions given in the datasets
as prompts for the Codex model.

3 Experimental Setup

All the experiments are performed using the
davinci − codex (Chen et al., 2021) model pro-
vided through OpenAI9. At inference time, we use
a modified version of the evaluation code10 pro-
vided by Hendrycks et al. (2021). This evaluation
code has four different outputs for each test case:
(1) -2: the code has a syntax error and can not run,
(2) -1: the code is syntactically correct but has a
run time error, (3) 0: the code runs without any er-
rors but fails the test case, and (4) 1: the code runs
without any error and passes the test case. Similar
to Chen et al. (2021), we implement a timeout for
the code at inference time. If a test case takes more
than 4 seconds to run then we throw an exception
and count that test case as a −1.

Experiments To show effectiveness of the pro-
posed approach, we have performed three different
experiments using human generated summaries:

9Implementation and parameters details in Appendix F
10https://github.com/hendrycks/apps/blob/main/eval/test_

one_solution.py

1. All problems from basic and expert sum-
maries are used at inference time. We term
this experiment All Problems (AP).

2. We eliminate problems that perform worse11

for either basic or expert summaries. We
term this experiment Either Worst Problem
Removal (EWPR).

3. We eliminate problems that perform worse for
both basic and expert summaries. We term
this experiment Both Worst Problem Removal
(BWPR).

Motivation behind EWPR and BWPR If a sum-
mary caused every test case to perform worse then
it’s likely the crowd worker produced a faulty sum-
mary. To mitigate the effect of outliers in the
dataset, we use the EWPR method to remove such
problems. Another hypothesis is that every prob-
lem benefits from some level of summarization
(i.e., basic or expert). To measure this, we use the
BWPR method. From Table 6 results, we identify
that only 1 problem had both summaries (basic and
expert) preform worse.

Metric In (Austin et al., 2021a), they show that
the BLEU metric (Papineni et al., 2002) does not
correlate well with synthesis performance. Thus,
we use Strict Accuracy (SAcc) as our evaluation
metric for all experiments (see Appendix E).

4 Results and Analysis

4.1 Human Generated Summaries

From Table 2, we can observe that both the
summary-based models show on average superior
performance compared to baseline. In particu-
lar, when calculating results for every problem,

11Definition of the worst problem is given in Appendix G

4534

https://github.com/hendrycks/apps/blob/main/eval/test_one_solution.py
https://github.com/hendrycks/apps/blob/main/eval/test_one_solution.py

Model Difficulty AP EWPR

Baseline Proposed Baseline Proposed

GPT-3 Introductory 41.75 38.66 41.11 41.67
Interview 20.30 18.80 18.18 20.66

Competition 2.87 3.28 2.73 3.64

Weighted Average 20.17 18.89 19.14 20.55

Studio21
Introductory 39.53 31.63 39.04 36.36

Interview 12.28 11.00 10.57 12.37
Competition 1.67 1.21 1.38 1.38

Weighted Average 11.53 9.66 10.61 10.98

PEGASUS
Introductory 42.96 34.48 44.26 40.98

Interview 37.70 10.57 14.29 21.56
Competition 4.76 0.00 2.76 0.00

Weighted Average 30.47 16.88 25.50 24.73

Table 4: Results of baseline and proposed approach (All results are in %). Summaries generated by GPT-3, Studio21,
and PEGASUS used for inference from APPS.

Model AP EWPR

Baseline Proposed Baseline Proposed

GPT-3 12.50 10.0 18.75 18.75

Studio21 12.50 8.75 22.5 20.0

Table 5: Results of baseline and proposed approach (All
results are in %). 80 summaries generated by GPT-3
and Studio21 used for inference from CodeContests.

basic and expert summary-based models outper-
form baseline by 4.34% and 5.15% on average for
APPS dataset, respectively. Further analysis shows
that the expert summary-based model shows im-
proved performance by ∼ 1% compared to the
basic summary-based model.

On the CodeContests dataset (Li et al., 2022), we
show an average improvement of 11.88% in terms
of SAcc. For this dataset, we did not separate the
problems by difficulty. This is because the prob-
lems come from different sources and have differ-
ent scales of difficulty. Thus, we did not report the
SAcc when weighted by difficulty in Table 2.

Our analysis shows that many problems where the
basic summary would fail, however, the expert
summary would succeed and vice-versa. Thus,
we choose the best summary for each problem
after evaluating both summaries and then calcu-
late the results for the best summaries. Table 3
shows results when taking the best summary for

each problem for APPS dataset. We observe a
9.86%, 11.48%, and 1.91% increase on SAcc for
introductory, interview, and competition level prob-
lems, respectively.

4.2 Synthetic Summaries

Table 4 and 5 show the results for baseline, syn-
thetic summaries generated by GPT-3, Studio21
and PEGASUS in terms of SAcc for two exper-
iments. For the AP experiment, we can observe
that the performance of the baseline outperforms
synthetic summary-based models. However, the
proposed model shows an average similar perfor-
mance compared to the baseline for the EWPR
experiment. Moreover, Appendix I shows the re-
sults for top 500 and top 1000 summaries from
GPT-3 and Studio21, respectively.

4.3 Analysis

Why does eliminating the worst problems help?
From Tables 2, we can observe that EWPR and
BWPR have improved performance compared to
AP for both human and synthetically generated
summaries. By analyzing the summarized worst
problems, we notice a difference in the summariza-
tion style which shows that these summaries are
outliers and do not match the distribution of the
other summaries. This can cause a problem in syn-
thesizing a good program since the model loses
important information. Hence, we believe that
eliminating the worst problems improves model

4535

Figure 1: (Top plot) Mean frequency of POS for prob-
lems where programs where the generated by both the
original and summarized prompt pass all test cases, and
(Bottom plot) mean frequency of POS for problems
where the summary passes all test cases and the original
did not. The blue bar represents the mean of the entire
dataset. analyzed only the top 11 most occurring POS.
The plot shows that higher number of nouns degrade
model performance.

performance.

Is there any possible bias in the meta-dataset?
Recent studies shows that bias propagates in
human-annotated datasets (Geva et al., 2019; Par-
mar et al., 2022a). Given that our summaries are
also human-generated, there will be some bias in
the dataset. Some details that are critical to one
person can be trivial to others. In the context of
generating expert summaries, assumptions about
expert knowledge can vary. This bias causes drift
in the dataset and hinders the model’s performance.
Similar to Mishra et al. (2021), we can provide a
template for what is expected from the summary
generator to reduce bias.

Why is competition accuracy low? We believe
that these problems require multi-hop reasoning,
even after summarization, which is still a challenge
for language models.

Impact of POS on Accuracy In the top plot
of Figure 1, we observe that frequency of nouns

and propernouns for problems that passed all test
cases is lower than the entire dataset. In the bot-
tom plot, we observe that the frequency for nouns
and propernouns is higher for the original ques-
tion (which had < 100% accuracy on the test cases)
and lower for the summary (which had 100% ac-
curacy on the test cases). Thus, we can see that
number of nouns degrades performance. We also
see in the bottom chart that overuse of punctuation
can be detrimental to performance. From the re-
sults in Figure 1 we see results of nouns affecting
performance along with excessive punctuation. Ad-
ditional detailed analysis is presented in Appendix
B.

5 Conclusion

This paper introduces a summarization-based ap-
proach for efficient program synthesis. Experimen-
tal results show that the proposed approach im-
proves the performance of the Codex model by on
average ∼ 8% across various levels of program-
ming questions provided by the APPS and ∼ 11%
on the CodeContests. Further, this paper proposes a
meta-dataset consisting of ∼ 450 human-generated
basic and expert-level summaries as well as ∼ 8k
synthetically generated summaries by GPT-3 and
Studio21; this can be helpful for future research
on writing better instructions for the program syn-
thesis. We show that program synthesis models
benefit from concise prompts, hence, we believe
that less number of high-quality instances are better
than more low-quality data instances.

Future Extensions The decomposition of
prompts has been shown to improve accuracy
(Mishra et al., 2022; Patel et al., 2022); splitting up
the summarization task the resulting summary can
potentially result in higher accuracy for the Codex
model in future. Additionally, the PEGASUS
model could be used in conjunction with other
models to perform the detailed algorithm outlined
in Appendix N.

Limitations

Our summary-based approach shows improved
performance on program synthesis models, how-
ever, it shows competitive performance on syn-
thetic summaries. We believe that the generation of
high-quality summaries can improve performance,
hence, designing efficient prompts to improve syn-
thetic summaries can be the scope of further re-
search. Furthermore, human-generated summaries

4536

show competitive performance on competition-
level problems. These problems require reason-
ing with multiple logical leaps and knowledge of
advanced algorithms and data structures. Hence,
exploring new techniques for summarization can be
a future research direction. In addition, this work
only analyzes the codex model, hence, exploring
the effect of summarization on other program syn-
thesis models can be interesting.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. 2021a. Pro-
gram synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. 2021b. Pro-
gram synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow. If
you use this software, please cite it using these metadata,
58.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. 2017. Robustfill: Neural program learning
under noisy i/o. In International conference on machine
learning, pages 990–998. PMLR.

Ruifang Ge and Raymond Mooney. 2005. A statistical
semantic parser that integrates syntax and semantics. In
Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), pages 9–
16.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an investiga-
tion of annotator bias in natural language understanding

datasets. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1161–1166,
Hong Kong, China. Association for Computational Lin-
guistics.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh,
et al. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
2022. Competition-level code generation with alpha-
code. arXiv preprint arXiv:2203.07814.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv preprint
arXiv:2102.04664.

Man Luo, Sharad Saxena, Swaroop Mishra, Mihir Par-
mar, and Chitta Baral. 2022. Biotabqa: Instruction
learning for biomedical table question answering. arXiv
preprint arXiv:2207.02419.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2022. Reframing in-
structional prompts to GPTk’s language. In Findings
of the Association for Computational Linguistics: ACL
2022, pages 589–612, Dublin, Ireland. Association for
Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generalization
via natural language crowdsourcing instructions. arXiv
preprint arXiv:2104.08773.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language mod-
els. arXiv preprint arXiv:2112.00114.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
annual meeting of the Association for Computational
Linguistics, pages 311–318.

Mihir Parmar, Swaroop Mishra, Mor Geva, and Chitta
Baral. 2022a. Don’t blame the annotator: Bias already
starts in the annotation instructions. arXiv preprint
arXiv:2205.00415.

4537

https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/2022.findings-acl.50
https://doi.org/10.18653/v1/2022.findings-acl.50

Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man
Luo, Murad Mohammad, and Chitta Baral. 2022b. In-
BoXBART: Get instructions into biomedical multi-task
learning. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 112–128, Seat-
tle, United States. Association for Computational Lin-
guistics.

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and
Chitta Baral. 2022. Is a question decomposition unit all
we need? EMNLP 2022, Abu Dhabi.

Ravsehaj Singh Puri, Swaroop Mishra, Mihir Parmar,
and Chitta Baral. 2022. How many data samples
is an additional instruction worth? arXiv preprint
arXiv:2203.09161.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaf-
fin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al.
2021. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:2110.08207.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

4538

https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777

A Related Work

In the past, there are several methods including
semantic parsing (Ge and Mooney, 2005), deduc-
tive approaches, enumerative and stochastic search,
and constraint solving which have gained atten-
tion for program synthesis (Gulwani et al., 2017).
With the advent of machine/deep learning, Balog
et al. (2016) introduced a neural network based
model for solving programming competition-style
problems. Devlin et al. (2017) used sequence-to-
sequence approach to do program synthesis. Fur-
thermore, Hendrycks et al. (2021) introduced the
APPS dataset for testing the accuracy of large LMs
on program synthesis. Hendrycks et al. (2021)
leveraged the GPT-Neo model (Black et al., 2021)
which they fine-tune for this task using APPS
dataset. CodeT5 model (Wang et al., 2021) uti-
lizes many different training objectives. Recently,
Austin et al. (2021b) explore limitations of large
language models and propose two new benchmarks,
MBPP and MathQA-Python. The Codex model
(Chen et al., 2021) is an advanced code generation
model that powers GitHub’s Copilot. The state
of the art model for program synthesis was intro-
duced by Deepmind called AlphaCode (Li et al.,
2022). They released their dataset CodeContests,
which was used to fine-tune and test their model,
and was used in this paper. Our approach sug-
gesting smaller instructions compliments other ap-
proaches in improving model performance in in-
struction paradigm (Mishra et al., 2021; Wei et al.,
2022; Parmar et al., 2022b; Nye et al., 2021; Puri
et al., 2022; Luo et al., 2022; Wei et al., 2021; Sanh
et al., 2021)

B Additional Analysis

Difficulty of CodeContests The accuracies for
CodeContests is notably lower than the APPS
dataset since this dataset is more challenging, e.g.
the number and complexity of programming op-
erations is relatively higher than APPS. From the
baseline results in Table 2, we can observe that
problems in CodeContests are harder than inter-
view but easier than competition.

Impact of Entities on Accuracy In Figure 2,
we can observe that the total number of entities
num_entities is higher for problems that per-
formed worse. Here, we can see that the original
problems (which failed test cases) had a higher
mean than the dataset and the summaries (which

Figure 2: (Top plot) Mean frequency of the entity labels
for problems where program generated by the original
and summarized prompt pass all test cases, and (Bot-
tom plot) mean frequency of entity labels for problems
where the summary passes all test cases and the original
did not. We analyzed only the top 5 most occurring
entities among all entities we found.

passed all test cases) had a lower number of enti-
ties.

C Example of removing fake information

To see the code produced by the model for this
example, refer to Appendix J. There are more ex-
amples of superfluous information confusing the
model in Appendix O and of made up information
confusing the model in Appendix P.

C.1 Original Prompt

Codefortia is a small island country located some-
where in the West Pacific. It consists of n settle-
ments connected by m bidirectional gravel roads.
Curiously enough, the beliefs of the inhabitants
require the time needed to pass each road to be
equal either to a or b seconds. It’s guaranteed that
one can go between any pair of settlements by
following a sequence of roads.

Codefortia was recently struck by the financial
crisis. Therefore, the king decided to abandon
some of the roads so that:

it will be possible to travel between each pair of
cities using the remaining roads only, the sum of
times required to pass each remaining road will
be minimum possible (in other words, remaining
roads must form minimum spanning tree, using
the time to pass the road as its weight), among
all the plans minimizing the sum of times above,
the time required to travel between the king’s

4539

https://copilot.github.com/

residence (in settlement 1) and the parliament
house (in settlement p) using the remaining roads
only will be minimum possible.

The king, however, forgot where the parliament
house was. For each settlement p = 1, 2, . . . , n,
can you tell what is the minimum time required
to travel between the king’s residence and the
parliament house (located in settlement p) after
some roads are abandoned?

—–Input—–

The first line of the input contains four integers
n, m, a and b (2 ≤ n ≤ 70, n− 1 ≤ m ≤ 200,
1 ≤ a < b ≤ 107) — the number of settlements
and gravel roads in Codefortia, and two possible
travel times. Each of the following lines contains
three integers u, v, c (1 ≤ u, v ≤ n, u ̸= v,
c ∈ {a, b}) denoting a single gravel road between
the settlements u and v, which requires c minutes
to travel.

You can assume that the road network is con-
nected and has no loops or multiedges.

—–Output—–

Output a single line containing n integers. The
p-th of them should denote the minimum possi-
ble time required to travel from 1 to p after the
selected roads are abandoned. Note that for each
p you can abandon a different set of roads.

—–Examples—–

Input
5 5 20 25
1 2 25
2 3 25
3 4 20
4 5 20
5 1 20

Output
0 25 60 40 20

Input
6 7 13 22
1 2 13
2 3 13
1 4 22
3 4 13
4 5 13
5 6 13
6 1 13

Output
0 13 26 39 26 13

—–Note—–

The minimum possible sum of times required to
pass each road in the first example is 85 — exactly
one of the roads with passing time 25 must be
abandoned. Note that after one of these roads is
abandoned, it’s now impossible to travel between
settlements 1 and 3 in time 50.

We can see the author of the problem is trying to

describe a fully-connected graph with n nodes and
m edges each with a weight a or b. Thus, this
paragraph can be summarized as:

C.2 Basic Summary

You are given a graph of n nodes and m bidirec-
tional edges. The cost for each edge is either a or
b. The graph is fully-connected, so you can travel
between any pair of nodes using the edges.

For each node p = 1, 2, . . . , n, you need to re-
move some edges so that: It will be possible to
travel between each pair of nodes using the re-
maining edges only, and the sum of times required
to pass each remaining road will be the minimum
possible. You should output the minimum time
required to travel between node 1 and node p.

—–Input—–

The first line of the input contains four integers
n, m, a and b (2 ≤ n ≤ 70, n− 1 ≤ m ≤ 200,
1 ≤ a < b ≤ 107) — the number of nodes
and edges in the graph, and two possible travel
times. Each of the following lines contains three
integers u, v, c (1 ≤ u, v ≤ n, u ̸= v, c ∈
{a, b}) denoting an edge between the nodes u
and v, which has cost c.

You can assume that the graph is connected and
has no loops or multiedges.

—–Output—–

Output a single line containing n integers. The
p-th of them should denote the minimum possi-
ble post required to travel from 1 to p after the
selected edges are abandoned. Note that for each
p you can abandon a different set of edges.

—–Examples—–

Input
5 5 20 25
1 2 25
2 3 25
3 4 20
4 5 20
5 1 20

Output
0 25 60 40 20

Input
6 7 13 22
1 2 13
2 3 13
1 4 22
3 4 13
4 5 13
5 6 13
6 1 13

Output
0 13 26 39 26 13

4540

C.3 Expert Summary
However, we can assume that an expert would
already know what a minimum spanning tree is.
Thus, we can remove this detailed description of
an MST.

You are given a connected graph of n nodes
and m bidirectional edges. For each node p =
1, 2, . . . , n, you need to find a minimum spanning
tree. Then output the minimum cost required to
travel between node 1 and node p.

—–Input—–

The first line of the input contains four integers
n, m, a and b (2 ≤ n ≤ 70, n− 1 ≤ m ≤ 200,
1 ≤ a < b ≤ 107) — the number of nodes
and edges in the graph, and two possible travel
times. Each of the following lines contains three
integers u, v, c (1 ≤ u, v ≤ n, u ̸= v, c ∈
{a, b}) denoting an edge between the nodes u
and v, which has cost c.

You can assume that the graph is connected and
has no loops or multiedges.

—–Output—–

Output a single line containing n integers. The
p-th of them should denote the minimum possi-
ble post required to travel from 1 to p after the
selected edges are abandoned. Note that for each
p you can abandon a different set of edges.

—–Examples—–

Input
5 5 20 25
1 2 25
2 3 25
3 4 20
4 5 20
5 1 20

Output
0 25 60 40 20

Input
6 7 13 22
1 2 13
2 3 13
1 4 22
3 4 13
4 5 13
5 6 13
6 1 13

Output
0 13 26 39 26 13

D Prompt templates

Studio21 Here is our template for Studio21.
To see examples of summaries produced by Stu-
dio21AI’s model along with the code generated for
those summaries, refer to Appendix K and L.

The following sentences contain computer
science jargon. Rewrite them using simple words.
Jargon: <ORIGINAL>
Simple: <SUMMARY>

Jargon: <ORIGINAL>
Simple: <SUMMARY>

Jargon: <ORIGINAL>
Simple: <SUMMARY>

Jargon: <ORIGINAL>
Simple:

The few-shot examples were chosen randomly
from the human generated expert summaries.

GPT3 Here is our template for GPT3. To see
examples of summaries produced by GPT3 and
the code generated for those summaries refer to
Appendix M.

Summarize the following paragraph: Original:
<ORIGINAL>
Summary: <SUMMARY>

Original: <ORIGINAL>
Summary: <SUMMARY>

Original: <ORIGINAL>
Summary: <SUMMARY>

Original: <ORIGINAL> Summary:

Codex Here is our default template for Codex,
which is used when there is no starter code pro-
vided. When there is starter code provided the
docstring remains the same but the code after the
doc string will be what is provided.

Python3
"""
<PROBLEM DESCRIPTION>
"""
def code():

E Strict Accuracy

Strict Accuracy (SAcc) is the percentage of prob-
lems that passed every test case. The formula to
calculate SAcc is given below:

strict acc :=
problems with 100% accuracy

total number of problems
(1)

Given that, we are only generating one code solu-
tion for each problem our strict accuracy is compa-
rable to (Chen et al., 2021)’s metric raw pass@1.

4541

Summary Difficulty AP EWPR BWPR

Basic
Introductory 145 141 144
Interview 123 113 123
Competition 105 100 105

Expert
Introductory 145 140 144
Interview 123 116 123
Competition 105 100 105

StudioAI21
Introductory 215 187 -
Interview 627 558 -
Competition 659 578 -

GPT3
Introductory 194 180 -
Interview 266 242 -
Competition 244 220 -

Table 6: These are the numbers of problems in each split
of the dataset. For GPT and Studio21 we did not look at
problems that were worse or same for both experiments
because there was insignificant overlap between the two
experiments.

F Codex Configuration

We did a small test with 75 summaries to find our
hyper-parameters for Codex. We set temperature to
0, topP to 1, frequency penalty to 0.2, and presence
penalty to 0. We did not provide few-shot examples
to Codex since we want to see if summarization
only could improve the performance of the Codex
model.

G Worst Problems and Statistics

Using the test case labels as defined in section 3
we defined a test case as getting worse if it’s la-
bel (result) was lower. Then we defined a problem
as worse if every test case had a lower label. Our
methodology behind this was, if we removed prob-
lems that had a worse accuracy, then it would be a
non-trivial result that accuracy improved. Also, if
we removed problems with worse accuracy, then a
problem that originally had all 0 labels (all False
test cases) would score the same if the summary
had all −1 labels (runtime error) or a −2 (syntax
error). So, we removed problems which every test
case performed worse, to see if removing these
outliers would improve results. You can see the
overall breakdown of each split in table 6.

H Average length of Problems and
Solutions

Table 7 represents the statistics for average length
of problems and solutions for original and summa-
rized prompts.

I Abbreviated Synthetic Results

In table 8, we show the results for our synthetic
summaries when taking the top 500 and 1000 sum-
maries for GPT3 and StudioAI21, respectively. In
our initial experiment, this was the amount of prob-
lems we tested for each model. However, in our
final experiment we changed our configurations
and generated more problems. For a comparison,
we took the top performing summaries and and
reported those results.

J Generated Code

In figure 3 is the code that was generated for
the example mentioned in Appendix C and C.3.
Given that the Codex model was prompted with
the def code() : the model did not generate that
function definition or the call to that function. That
was added in afterwards, but everything inside that
function was generated by Codex. The originally
generated code (far left) fails with a −1 because it
did not take in the input correctly. It added in an-
other line p = int(input()), which most likely refers
to the p mentioned in the original text. The expert
summary generated code (middle) fails every test
case. The basic summary generated code (right)
passed 16/19 (84%) test cases and was the only
code to pass at least 1 test case.

K StudioAI21 Generated Code

Below is an example of a competition problem
where StudioAI21 summarized the prompt too
much but Codex was still able to produce viable
code. Here is the original prompt:

Cengiz recently learned Fibonacci numbers and
now he is studying different algorithms to find
them. After getting bored of reading them, he
came with his own new type of numbers that he
named XORinacci numbers. He defined them as
follows: f(0) = a; f(1) = b; f(n) = f(n −
1)⊕ f(n− 2) when n > 1, where ⊕ denotes the
bitwise XOR operation.

You are given three integers a, b, and n, calculate
f(n).

You have to answer for T independent test cases.

—–Input—–

The input contains one or more independent test
cases.

The first line of input contains a single integer T
(1 ≤ T ≤ 103), the number of test cases.

Each of the T following lines contains three space-
separated integers a, b, and n (0 ≤ a, b, n ≤ 109)
respectively.

4542

Experiment Original Len Summary Len Orig Code Len Summary Code Len Code Solution Len

Summary 1147 937 339 349 671

Expert 1147 869 339 343 671

GPT 1386 1011 437 392 748

StudioAI21 1646 1114 602 473 721

Table 7: The average length of the original/summarized prompt and generated code. The average length of the code
solutions is the average len of the solutions provided by the creators of the APPS dataset. A problem could have one
or multiple solutions. The length is reported in characters.

Figure 3: On the far left is the code generated by the original prompt. The middle is the code generated by the
expert summary. The right is the code generated by the basic summary.

Model Difficulty AP EWPR

Baseline Proposed Baseline Proposed

GPT-3 Introductory 41.97 38.86 41.11 41.67
Interview 25.27 27.47 24.86 28.25
Competition 4.80 6.40 4.88 6.50

Weighted Average 26.60 26.60 25.83 27.71

Studio21
Introductory 39.91 31.92 39.25 36.56
Interview 15.97 14.50 13.23 15.47
Competition 2.57 2.57 2.71 2.71

Weighted Average 16.90 14.50 15.10 15.64

Table 8: Results when taking the top 500 GPT problems
and top 1000 Studio problems

—–Output—–

For each test case, output f(n).

—–Example—–
Input
3
3 4 2
4 5 0
325 265 1231232

Output
7
4
76

—–Note—–

In the first example, f(2) = f(0) ⊕ f(1) =
3⊕ 4 = 7.

Here is the summary that StudioAI21 generated:

You are given three integers a, b, and n. Calculate
f(n).

—–Input—–

The input contains one or more independent test
cases.

The first line of input contains a single integer T
(1 ≤ T ≤ 103), the number of test cases.

Each of the T following lines contains three space-
separated integers a, b, and n (0 ≤ a, b, n ≤ 109)
respectively.

—–Output—–

For each test case, output f(n).

—–Example—–
Input
3
3 4 2
4 5 0
325 265 1231232

Output
7
4

4543

76

—–Note—–

In the first example, f(2) = f(0) ⊕ f(1) =
3⊕ 4 = 7.

Because any input/output examples provided by
the prompt are appended to the summary, Codex
was able to figure out the pattern in the problem
and generate code that was almost correct. In figure
4, the solution (left) used the pattern in the problem
and simplify by taking n mod 3. The Studio21
summary code (right) recognizes this pattern but
erroneously does not take the modulus of the num-
ber. The original code (center) also makes the same
mistake by not taking the modulus, but also brute
forces the answer. This shows that the model did
not recognize the pattern in this problem because
of the superfluous details. Even though Studio21
might have summarized too much, the model was
still able to make an improvement and understand
the pattern in the problem more.

L StudioAI21 Generated Code

Here is an example of a summary made by Stu-
dioAI21 where the qualitative aspect of the code
but it still failed. Here is the original prompt:

Given is a tree G with N vertices. The vertices
are numbered 1 through N, and the i-th edge con-
nects Vertex ai and Vertex bi. Consider painting
the edges in G with some number of colors. We
want to paint them so that, for each vertex, the
colors of the edges incident to that vertex are all
different. Among the colorings satisfying the con-
dition above, construct one that uses the minimum
number of colors.

—–Constraints—–
- 2 ≤ N ≤ 105

- 1 ≤ ai < bi ≤ N
- All values in input are integers.
- The given graph is a tree.

—–Input—–
Input is given from Standard Input in the
following format:
N
a1 b1
a2 b2
...
aN−1 bN−1

—–Output—–
Print N lines.
The first line should contain K, the number of
colors used.
The (i+1)-th line (1 ≤ i ≤ N−1) should contain
ci, the integer representing the color of the i-th

edge, where 1 ≤ ci ≤ K must hold.
If there are multiple colorings with the minimum
number of colors that satisfy the condition, print-
ing any of them will be accepted.

—–Sample Input—–
3
1 2
2 3

—–Sample Output—–
2
1
2

Here is the summary that StudioAI21 generated:

You are given a tree with N vertices numbered
from 1 to N. You need to find the minimum
possible number of colors to paint the edges
such that vertices are painted with different color.
—–Constraints—–
- 2 ≤ N ≤ 105

- 1 ≤ ai < bi ≤ N
- All values in input are integers.
- The given graph is a tree.

—–Input—–
Input is given from Standard Input in the
following format:
N
a1 b1
a2 b2
...
aN−1 bN−1

—–Output—–
Print N lines.
The first line should contain K, the number of
colors used.
The (i+1)-th line (1 ≤ i ≤ N−1) should contain
ci, the integer representing the color of the i-th
edge, where 1 ≤ ci ≤ K must hold.
If there are multiple colorings with the minimum
number of colors that satisfy the condition, print-
ing any of them will be accepted.

—–Sample Input—–
3
1 2
2 3

—–Sample Output—–
2
1
2

In 5 the left is the original solution which fails
with a −2 because the runtime of the algorithm is
exponential. Note that it tries to create a list of all
possible edge colorings which is O(2N). The right
is the code produced when using the StudioAI21
summary. You can see that this code is much closer

4544

Figure 4: The left is the code generated using the original prompt. The right is the code generated when using the
StudioAI21 generated summary.

to solving the problem and produces an efficient
algorithm. However, this fails with a −2 because
it tries to print the sum of a boolean (near the end
before the last for loop). Which fails in python
because a bool is not iterable.

Here is a problem where StudioAI21’s summary in-
creased the accuracy to 100%. Here is the original
prompt:

Polycarpus has a sequence, consisting of n non-
negative integers: a1, a2, ..., an.

Let’s define function f(l, r) (l, r are integer, 1 ≤
l ≤ r ≤ n) for sequence a as an operation of bit-
wise OR of all the sequence elements with indexes
from l to r. Formally: f(l, r) = al|al + 1|...|ar.

Polycarpus took a piece of paper and wrote out
the values of function f(l, r) for all l, r (l, r are
integer, 1 ≤ l ≤ r ≤ n). Now he wants to know,
how many distinct values he’s got in the end.

Help Polycarpus, count the number of distinct
values of function f(l, r) for the given sequence a.

Expression x|y means applying the operation of
bitwise OR to numbers x and y. This operation
exists in all modern programming languages, for
example, in language C++ and Java it is marked
as "|", in Pascal — as "or".

—–Input—–

The first line contains integer n (1 ≤ n ≤ 105)
— the number of elements of sequence a. The
second line contains n space-separated integers
a1, a2, ..., an (0 ≤ ai ≤ 106) — the elements of
sequence a.

—–Output—–

Print a single integer — the number of distinct
values of function f(l, r) for the given sequence a.

Please, do not use the lld specifier to read or write
64-bit integers in C++. It is preferred to use cin,
cout streams or the I64d specifier.

—–Examples—–
Input
3
1 2 0

Output
4
Input
10
1 2 3 4 5 6 1 2 9 10

Output
11

—–Note—–

In the first test case Polycarpus will have 6 num-
bers written on the paper: f(1, 1) = 1, f(1, 2) =
3, f(1, 3) = 3, f(2, 2) = 2, f(2, 3) = 2, f(3, 3) = 0.
There are exactly 4 distinct numbers among them:
0, 1, 2, 3.

Here is the summary that StudioAI21 generated.
Not exactly as we would expect as the prompt still
mentions the fictional Polycarpus.

Polycarpus has a sequence, consisting of n non-
negative integers: a1, a2, ..., an. Let’s define
function f(l, r) (l, r are integer, 1 l r n) for se-
quence a as an operation of bitwise OR of all
the sequence elements with indexes from l to r.
Formally: f(l, r) = al|al + 1|...

—–Input—–

The first line contains integer n (1 ≤ n ≤ 105)
— the number of elements of sequence a. The
second line contains n space-separated integers
a1, a2, ..., an (0 ≤ ai ≤ 106) — the elements of
sequence a.

—–Output—–

Print a single integer — the number of distinct
values of function f(l, r) for the given sequence a.

Please, do not use the lld specifier to read or write
64-bit integers in C++. It is preferred to use cin,
cout streams or the I64d specifier.

—–Examples—–
Input
3
1 2 0

Output
4
Input
10

4545

Figure 5: The left is the code generated using the original prompt. The right is the code generated when using the
StudioAI21 generated summary.

1 2 3 4 5 6 1 2 9 10

Output
11

—–Note—–

In the first test case Polycarpus will have 6 num-
bers written on the paper: f(1, 1) = 1, f(1, 2) =
3, f(1, 3) = 3, f(2, 2) = 2, f(2, 3) = 2, f(3, 3) = 0.
There are exactly 4 distinct numbers among them:
0, 1, 2, 3.

In 6 the left is the original solution which gets 77%
accuracy. The right is the summary code which
gets 100% accuracy.

M GPT Generated Summaries

Here are two summaries where GPT perfectly sum-
marized the prompt and gave a concise description
of what the task was. In both cases the original
prompt did not have 100% accuracy but the sum-
marized prompt did have 100% accuracy.

Here is the original prompt for the first question:

Božo is a strange little boy. Every day he tires his
friends with strange questions. Today’s question
is: how many integers in the interval [A,B] are
there such that the sum of their digits is S, and
which is the smallest such number?

Write a program that answers Božo’s question so
that he can get some sleep.

—–Input—–
The input contains three integers A, B and S
(1 ≤ A ≤ B < 1015, 1 ≤ S ≤ 135).

—–Output—–
The first line should contain the number of inte-
gers in the interval with the digit sum equal to
S.

The second line should contain the smallest such
integer.

The input data will guarantee that the first number
is at least 1.

—–Examples—–
Sample Input 1:
1 9 5
Sample Output 1:
1
5

Sample Input 2:
1 100 10
Sample Output 2:
9
19

Here is the summary that GPT Generated:

Write a program that calculates the smallest inte-
ger in the given interval whose sum of digits is
equal to the given sum.

—–Input—–
The input contains three integers A, B and S
(1 ≤ A ≤ B < 1015, 1 ≤ S ≤ 135).

—–Output—–
The first line should contain the number of inte-
gers in the interval with the digit sum equal to
S.

The second line should contain the smallest such
integer.

The input data will guarantee that the first number
is at least 1.

—–Examples—–
Sample Input 1:
1 9 5
Sample Output 1:
1
5

4546

Figure 6: The left is the code generated using the original prompt. The right is the code generated when using the
StudioAI21 generated summary.

Sample Input 2:
1 100 10
Sample Output 2:
9
19

In 7 you can see the original code on the left and
the summary code on the right. There is a subtle
difference but it’s that difference that improved the
problem from 33% accuracy to 100%.

Here is the original prompt for another question.

Professor GukiZ makes a new robot. The robot
are in the point with coordinates (x1, y1) and
should go to the point (x2, y2). In a single step the
robot can change any of its coordinates (maybe
both of them) by one (decrease or increase). So
the robot can move in one of the 8 directions. Find
the minimal number of steps the robot should
make to get the finish position.

—–Input—–

The first line contains two integers x1, y1
(−109 ≤ x1, y1 ≤ 109) — the start position
of the robot.

The second line contains two integers x2, y2
(−109 ≤ x2, y2 ≤ 109) — the finish position
of the robot.

—–Output—–

Print the only integer d — the minimal number of
steps to get the finish position.

—–Examples—–
Input
0 0
4 5

Output
5

Input
3 4
6 1

Output
3

—–Note—–

In the first example robot should increase both
of its coordinates by one four times, so it will be
in position (4, 4). After that robot should sim-
ply increase its y coordinate and get the finish
position.

In the second example robot should simultane-
ously increase x coordinate and decrease y coor-
dinate by one three times.

Here is the summary that GPT3 generated:

The robot can move in one of the 8 directions.
Find the minimal number of steps the robot should
make to get the finish position.

—–Input—–

The first line contains two integers x1, y1
(−109 ≤ x1, y1 ≤ 109) — the start position
of the robot.

The second line contains two integers x2, y2
(−109 ≤ x2, y2 ≤ 109) — the finish position
of the robot.

—–Output—–

Print the only integer d — the minimal number of
steps to get the finish position.

—–Examples—–
Input
0 0
4 5

Output
5

Input
3 4
6 1

Output
3

4547

Figure 7: The left is the code generated using the original prompt. The right is the code generated when using the
GPT3 generated summary.

—–Note—–

In the first example robot should increase both
of its coordinates by one four times, so it will be
in position (4, 4). After that robot should sim-
ply increase its y coordinate and get the finish
position.

In the second example robot should simultane-
ously increase x coordinate and decrease y coor-
dinate by one three times.

In 8 you can see the original code on the left and
the summary code on the right. There is a subtle
difference but it’s that difference that improved the
problem from 20% accuracy to 100%.

N Human Generated Instructions

The section below was given to each crowd worker
as instructions to follow when creating the regular
and expert summaries.

N.1 Summarization
Create a file called summary.txt this will con-
tain your summary of the prompt. It’s recom-
mended that you copy the question.txt file into
the summary.txt file then starting from the top of
the prompt follow the steps and remove words/lines
as necessary.

These are the rough steps for making a summary.
Following these steps will create the most consis-
tency in our dataset. However, you should summa-
rize as you see fit. First, read through the prompt
and understand what it’s asking, then follow these
steps to help create a summary.

1. Directly state what is given in the problem.

• Most problems start by setting the scene,
to help humans understand.

• Start the problems by explicitly telling
the model what the input is.

• You are given . . .

2. Remove any notes given in the prompt.

• They are usually reemphasizing points,
which is redundant and not needed in the
summary.

• This includes the −Notes− section at
the bottom of the file.

• If there is pertinent information given
from a note, include it in the prompt with-
out describing it as a note.

3. Remove any text in parenthesis.

• Most of the text in parenthesis is repeat-
ing the information that precede them.

• If the text in parenthesis provides more
context or information, then remove the
preceding text.

• Keep any parenthesis if it is describing
constraints, such as the minimum and
maximum values for the input etc...

4. Remove any made up people, places, things,
etc...

• These abstractions are made to help hu-
mans understand but confuse the model.

• The prompts often mention things like
Codefortia or Polycarp, try to replace
these with the word you.

• Any text visualizing what the problem is
asking, should be removed.

5. If the Input or Output section reference an
abstraction they should be changed.

4548

Figure 8: The left is the code generated using the original prompt. The right is the code generated when using the
GPT3 generated summary.

• Overall, these sections are fine. How-
ever, if they mentioned something you re-
moved in the previous steps, they should
be changed to reflect that.

• If these sections repeat themselves re-
move any redundancies.

• In most cases these sections will be left
alone.

N.2 Expert Summary

Create a file called expert.txt this will contain
an expert summary of the prompt. It’s recom-
mended that you copy the summary.txt file into
the expert.txt file then starting from the top of
the prompt remove words/lines as necessary. You
should aim for the expert prompt to be 2− 4 lines.

Imagine you are describing the prompt to a se-
nior software engineer. What else could you trim
out? The difference between the original and ex-
pert summary, is the original summary may in-
clude something obvious, whereas the expert so-
lution should be the absolute bare minimum. To
create summary.txt you want to remove super-
fluous details from the original prompt. To create
expert.txt you want to remove details that an ex-
pert would find obvious, from the summary.

For example, in problem 2000 (which is compet-
itive difficulty) the summary mentions ’It will be
possible to travel between each pair of nodes . . . ,
and the sum of times . . . will be the minimum possi-
ble’. This process is describing a minimum span-
ning tree so you can just say ’Find a minimum
spanning tree’.

Also, if the prompt included an example and subse-
quent explanation, that should remain in the sum-
mary but should be removed from the expert sum-
mary. An expert already understands the problem
and does not need any extra explanation. You
should still keep the −Examples− section.

Takeaways

• Removing made up people, places, and things
from the prompt improved the quality of code
generated.

• The optimal summarization depends on the
difficulty of the problem.

• Synthetically generate summaries were close
to maintaining accuracy.

• With more rigorous instructions, human sum-
maries could be made with less noise which
would further improve synthetic summary
generation.

O Superfluous Information Confusing the
Model

Here is an example of an interview level string
problem where the original prompt got 0% and both
human generated summaries got 100% accuracy.
The question wants you to write code that will
return the number of unique character in the given
string.

O.1 Original Prompt

You have initially a string of N characters, de-
noted by A1,A2...AN. You have to print the size
of the largest subsequence of string A such that
all the characters in that subsequence are distinct

4549

ie. no two characters in that subsequence should
be same.

A subsequence of string A is a sequence that can
be derived from A by deleting some elements
and without changing the order of the remaining
elements.

—–Input—– First line contains T, number of test-
cases. Each testcase consists of a single string in
one line. Each character of the string will be a
small alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required
answer in one line.

—–Constraints—–
- 1 ≤ T ≤ 10
- Subtask 1 (20 points):1 ≤ N ≤ 10
- Subtask 2 (80 points):1 ≤ N ≤ 105

—–Example—–
Input:
2
abc
aba

Output: 3
2

—–Explanation—– For first testcase, the whole
string is a subsequence which has all distinct char-
acters.

In second testcase, the we can delete last or first
’a’ to get the required subsequence.

O.2 Basic Summary

You are given N string. You have to identify the
duplicates and print the length of the new string
as a combination of unique characters only.

—–Input—– First line contains T, number of test-
cases. Each testcase consists of a single string in
one line. Each character of the string will be a
small alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required
answer in one line.

—–Constraints—–
- 1 ≤ T ≤ 10
- Subtask 1 (20 points):1 ≤ N ≤ 10
- Subtask 2 (80 points):1 ≤ N ≤ 105

—–Example—–
Input:
2
abc
aba

Output: 3
2

O.3 Expert Summary

You have to remove duplicates and print the length
of unique characters of the given string.

—–Input—– First line contains T, number of test-
cases. Each testcase consists of a single string in
one line. Each character of the string will be a
small alphabet(ie. ’a’ to ’z’).

—–Output—– For each testcase, print the required
answer in one line.

—–Constraints—–
- 1 ≤ T ≤ 10
- Subtask 1 (20 points):1 ≤ N ≤ 10
- Subtask 2 (80 points):1 ≤ N ≤ 105

—–Example—–
Input:
2
abc
aba

Output: 3
2

O.4 Generated Code

The original code (left) does not accomplish the
task but rather prints the count of the most fre-
quent character. The model was unable to distin-
guish what the task was given the verbose prompt.
However, the basic and expert summaries make the
task clear and the model produces the same code.
Which properly solves the challenge.

P Made Up Information Confusing the
Model

Here is an example of an interview level problem
where the original prompt got 0% and the expert
generated summary got 100% accuracy.

P.1 Original Prompt

The chef was searching for his pen in the garage
but he found his old machine with a display
and some numbers on it. If some numbers
entered then some different output occurs on the
display. Chef wants to crack the algorithm that
the machine is following. Example to identify the
pattern :

Input Output
9 36
5 10
1 0
2 1

—–Input:—–
- First-line will contain T , the number of test cases.

4550

Figure 9: The left is the code generated by the original prompt. The middle is the code generated by the expert
summary. The right is the code generated by the basic summary.

Then the test cases follow. - Each test case con-
tains a single line of input, N .

—–Output:—–
For each test case, output in a single line answer
as displayed on the screen.

—–Constraints—–
- 1 ≤ T ≤ 106

- 1 ≤ N ≤ 106

—–Sample Input:—–
1
7

—–Sample Output:—–
21

P.2 Expert Summary

Write a code to print the average of the multi-
plication of a given number N with N-1 integer.
1

—–Input:—–
- First-line will contain T , the number of test cases.
Then the test cases follow. - Each test case con-
tains a single line of input, N .

—–Output:—–
For each test case, output in a single line answer
as displayed on the screen.

—–Constraints—–
- 1 ≤ T ≤ 106

- 1 ≤ N ≤ 106

—–Sample Input:—–
1
7

—–Sample Output:—–
21

4551

Figure 10: The left is the code generated by the expert summary. The right is the code generated by the original
prompt.

4552

