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Abstract

Retrieval-augmented Neural Machine Trans-
lation models have been successful in many
translation scenarios. Different from previ-
ous works that make use of mutually similar
but redundant translation memories (TMs), we
propose a new retrieval-augmented NMT to
model contrastively retrieved translation mem-
ories that are holistically similar to the source
sentence while individually contrastive to each
other providing maximal information gains in
three phases. First, in TM retrieval phase, we
adopt a contrastive retrieval algorithm to avoid
redundancy and uninformativeness of similar
translation pieces. Second, in memory encod-
ing stage, given a set of TMs we propose a
novel Hierarchical Group Attention module to
gather both local context of each TM and global
context of the whole TM set. Finally, in train-
ing phase, a Multi-TM contrastive learning ob-
jective is introduced to learn salient feature of
each TM with respect to target sentence. Ex-
perimental results show that our framework ob-
tains improvements over strong baselines on
the benchmark datasets.

1 Introduction

Translation memory (TM) is basically a database
of segmented and paired source and target texts
that translators can access in order to re-use previ-
ous translations while translating new texts (Chris-
tensen and Schjoldager, 2010). For human trans-
lators, such similar translation pieces can lead
to higher productivity and consistency (Yamada,
2011). For machine translation, early works mainly
contributes to employ TM for statistical machine
translation (SMT) systems (Simard and Isabelle,
2009; Utiyama et al., 2011; Liu et al., 2012, 2019).
Recently, as neural machine translation (NMT)
model (Sutskever et al., 2014; Vaswani et al., 2017)
has achieved impressive performance in many
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TM1: What is your favorite snack ?
TM2: What is your favorite car ?
TM3: What is your favorite movie ?

(a) Greedy Retrieval

Source: What is your favorite sport?

Similarity
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TM1: What is your favorite snack ?
TM2: What sport might be your favorite ?
TM3: Which sport do you like best ?

(b) Contrastive Retrieval
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Figure 1: An example of Greedy Retrieval and Con-
trastive Retrieval. The similarity score is computed by
edit distance detailed in Section 3.1. And the target side
of TM is omitted for brevity.

translation tasks, there is also an emerging inter-
est (Gu et al., 2018) in retrieval-augmented NMT
model.

The key idea of retrieval-augmented NMT
mainly includes two steps: a retrieval metric is used
to retrieve similar translation pairs (i.e., TM), and
the TM is then integrated into an NMT model. In
the first step, a standard retrieval method greedily
chooses the most similar translation memory one
by one solely based on similarity with the source
sentence (namely Greedy Retrieval). This method
would inevitably retrieve translation memories that
are mutually similar but redundant and uninforma-
tive as shown in Figure 1. Intuitively, it is promis-
ing to retrieve a diverse translation memory which
would offer maximal coverage of the source sen-
tence and provide useful cues from different as-
pects. Unfortunately, empirical experiments in Gu
et al. (2018) show that a diverse translation mem-
ory only leads to negligible improvements. As a
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result, greedy retrieval is adopted in almost all later
studies (Cao and Xiong, 2018; Xia et al., 2019;
Xu et al., 2020; He et al., 2021; Cai et al., 2021;
Khandelwal et al., 2020).

This paper aims to ask an important question
whether diverse translation memories are bene-
ficial for retrieval-augmented NMT. To this end,
we propose a powerful retrieval-augmented NMT
model called Contrastive Memory Model which
takes into account diversity in translation mem-
ory from three ways. Specifically, (1) during
TM retrieval, inspired by Maximal Marginal Rel-
evance (MMR) (Carbonell and Goldstein, 1998),
we introduce a conceptually simple while empir-
ically useful retrieval method called Contrastive
Retrieval to find informative translation memories.
The core is to retrieve a cluster of translation mem-
ories that are similar to the source sentence while
contrastive to each other keeping inner-cluster uni-
formity in the latent semantic space, as shown in
Figure 1. (2) In TM encoding, given multiple trans-
lation memories, the local and global information
should both be captured by the translation model.
Separately encoding (Gu et al., 2018; He et al.,
2021; Cai et al., 2021) or treating them as a long
sequence (Xu et al., 2020) would inevitably lose
such hierarchical structure information. Thus, to
facilitate the direct communication between dif-
ferent translation memories for local information
and gather the global context via message passing
mechanism, we propose a Hierarchical Group At-
tention (HGA) module to encode the diverse memo-
ries. (3) In the model training phase, to learn salient
and distinct features of each TM with respect to
target sentence, we devise a novel Multi-TM Con-
trastive Learning objective (MTCL), which further
contributes to a uniformly distributed translation
memory cluster by forcing representation of every
translation memory to approach the sentence to be
translated while keep away from each other.

To verify the effectiveness of our framework, we
conduct extensive experiments on four benchmark
datasets, and observe substantial improvement over
strong baselines, proving that diverse translation
memories is indeed useful to NMT. Our main con-
tributions are:

• We answer an important question about
retrieval-augmented NMT, i.e., is diverse
translation memory beneficial for retrieval-
augmented NMT?

• We propose a diverse-TM-aware framework

to improve a retrieval-augmented NMT sys-
tem from three ways including TM retrieval,
TM encoding and model training.

• We conduct extensive experiments on four
translation directions, observing substantial
performance gains over strong baselines with
greedy retrieval.

2 Related Work

TM-augmented NMT Augmenting neural ma-
chine translation model with translation memories
is an important line of work to boost the perfor-
mance of the NMT model with non-parametric
method. Feng et al. (2017) stores memories of
infrequently encountered words and utilizes them
to assist the neural model. Gu et al. (2018) uses an
external memory network and a gating mechanism
to incorporate TM. Cao and Xiong (2018) uses
an extra GRU-based memory encoder to provide
additional information to the decoder. Xia et al.
(2019) adopts a compact graph representation of
TM and perform additional attention mechanisms
over the graph when decoding. Bulté and Tezcan
(2019) and Xu et al. (2020) directly concatenate
TM with source sentence using cross-lingual
vocabulary. Zhang et al. (2018) augments the
model with an additional bonus given to outputs
that contain the collected translation pieces. There
is also a line of work that trains a parametric
retrieval model and a translation model jointly (Cai
et al., 2021) and achieves impressive results.
Recently, with rapid growth of computational
power, a more fine grained token level translation
memories are use in Khandelwal et al. (2020). This
approach gives the decoder direct access to billions
of examples at test time, achieving state-of-the-art
result even without further training.

Contrastive Learning The key of contrastive learn-
ing (Hadsell et al., 2006; Mikolov et al., 2013)
is to learn effective representation by pulling se-
mantically close neighbors together and pushing
apart non-neighbors. Chen et al. (2020) and He
et al. (2020) show that contrastive learning can
boost the performance of self-supervised and semi-
supervised learning in computer vision tasks. In
natural language processing, Word2Vec (Mikolov
et al., 2013) uses noise-contrastive estimation to
learn better word representation. Gao et al. (2021)
adopts contrastive learning with a simple token
level dropout to greatly advance the state-of-the-art
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sentence embeddings. Liu and Liu (2021) uses con-
trastive loss to post-rank generated summaries and
achieves promising results in benchmark datasets.
Lee et al. (2020) and Pan et al. (2021) also use con-
trastive learning in translation tasks and observe
consistent improvements.

3 Proposed Framework

Preliminary Assuming we are given a source
sentence x = {x1, ..., xs} and its correspond-
ing target sentence y = {y1, ..., yt} where s, t
are their respective length. For a TM-augmented
NMT model, a set of similar translation pairs
M = {(xm, ym)}|M |

m=1 are retrieved based on cer-
tain criterion C and NMT models the conditional
probability of target sentence y conditioned on both
source sentence x and translation memories M in
a left-to-right manner:

P (Y = y|X = x) =

|T |∏

t=1

P (yt|y0, ...yt−1;x;M)

(1)

Overview Given a source sentence x and infor-
mative translation memories M , the translation
model defines the conditional probability similar
to the Equation 1. At the high level, our frame-
work, as shown in Figure 2, consists of contrastive
retrieval, which searches a diverse translation mem-
ory, source encoder which transforms source sen-
tence x into dense vector representations zx, mem-
ory encoder with hierarchical group attention mod-
ule to jointly encode |M | translation memories
into a series dense representation zm and decoder
which attends to both zx and zm and generates tar-
get sentence y in an auto-regressive fashion, and
contrastive learning which effectively trains the
memory encoder as well as source encoder and de-
coder. Among all these five modules, contrastive
memory (§3.1), memory encoder (§3.3) and con-
trastive learing (§3.5) are key in our framework
compared with existing work of TM-augmented
NMT.

3.1 Contrastive Retrieval

In this stage, following previous work (Gu
et al., 2018) we first employ an off-the-shelf
full-text search engine, Apache Lucene, to get
a preliminary translation memory set K =

{(xk, yk)}|K|
k=1 (|K| ≫ |M |) for every source sen-

tence. Notice that both source sentence x and

translation memory set K are from training set
D = {(xn, yn)}Nn=1, which means we do not in-
troduce any extra data during training. Then to be
directly comparable with previous works (Gu et al.,
2018; He et al., 2021) as discussed in Section 5
and considering the core of our method is similar-
ity function-agnostic as detailed below, we adopt a
sentence-level similarity function:

sim(x, x′) = 1− Dedit(x, x
′)

max(|x|, |x′|) (2)

where Dedit is the edit distance between two sen-
tences and |x| is the length of x. Specifically, we
would select |M | translation memories incremen-
tally and in every step we do not only measure the
similarity between current translation memory and
the source sentence but also take into considera-
tion the edit distance with those already retrieved
ones balanced by a hyperparameter α (namely con-
trastive factor). Different from MMR (Carbonell
and Goldstein, 1998), we treat retrieved translation
memories as a whole and take the average similar-
ity score as a penalty term:

argmax
xi∈K\M

[sim(x, xi)− α

|M |
∑

xj∈M
sim(xi, xj)]

(3)
where M is the post-ranked translation memory
set. Finally, for every source sentence x, by ig-
noring the source side of M due to information
redundancy we have translation memories M =

{ym}|M |
m=1.

3.2 Source Encoder
For a source sentence x = {x1, ..., xs}, our
source encoder is built upon the standard Trans-
former (Vaswani et al., 2017) architecture com-
posed of a token embedding layer, a sinusoidal po-
sitional embedding Layer and stacked transformer
encoder layers. Specifically we prepend a <bos>
token to source sentence and get the dense vector
representation zx as follows:

zx = SrcEnc(<bos>, x1, ...xs) (4)

3.3 Memory Encoder
Given a set of translation memories, the local con-
text of each TM and the global context of the whole
TM set should be captured by the model to fully
utilize this hierarchical structure information. Sepa-
rately encoding (Gu et al., 2018; Cai et al., 2021) or
treating them as a long sequence (Xu et al., 2020)
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Figure 2: Overview of our framework: (1) Contrastive Retrieval (2) Source Encoder; (3) Memory Encoder with
Hierarchical Group Attention module (we only show three translation memories for brevity); (4) Decoder; (5)
Contrastive Learning.

would inevitably mask the model with this kind
of local and global schema. In this section, to
facilitate the direct communication between dif-
ferent translation memories for local information
and gather the global context via message passing
mechanism, we propose a Hierarchical Group At-
tention (HGA) module. Formally, given a cluster
of translation memories M = {ym}|M |

m=1, where
each ym = {ym0 , ..., yknm

} is composed of nm to-
kens, for each ym we would like to create a fully
connected graph Gm = (V m, Em) where V m is
the token set. To facilitate inter-memory commu-
nication, we also create a super node vm∗ by con-
necting it with all other nodes (namely trivial node)
in that graph and then connect all super nodes to-
gether contributing to information flow among dif-
ferent translation memories in a hierarchical way
as shown in Figure 2. Then we adopt multi-head
self attention mechanism (Vaswani et al., 2017) as
message passing operator (Gilmer et al., 2017). For
every node vmi in the graph, their hidden state in
time step t+ 1 is updated by the hidden states of
its neighbours ϕ(vmi ) in time step t:

vmi |t+1 = SelfAttn(ϕ(vmi |t), vmi |t) (5)

To be computationally efficient, we use mask mech-
anism to block communication between nodes in
different graphs. For each trivial node vmi in Gm,
they update their hidden states by attending to all
trivial nodes as well as super node vm∗ . For vm∗ ,
it does not only exchange information within the
graph Gm, but also communicate with all other su-
per nodes {vi∗}|M |

i=1. To stabilize training, we also
add residual connection and feed-forward Layer
after HGA module. After stacking multiple layers,
we get dense representation of translation memo-
ries:

zm = MemEnc(Concate{ym}|M |
m=1) (6)

where |m| is the total length of |M | translation
memories and zm ∈ R|m|×d.

3.4 Fusing TM in Decoding

To better incorporate the information from both
source sentence zx and translation memories zm,
we introduce a multi-reference decoder architec-
ture. For a target sentence y , we get a hidden
representation h = {h1, ..., ht} after token embed-
ding layer and masked self-attention layer, then we
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use a cross attention layer to fuse information from
source sentence:

ĥ = CrossAttn(Add&Norm(h), zx, zx) (7)

Then for translation memories, we employ another
cross attention layer:

h = CrossAttn(Add&Norm(ĥ), zm, zm) (8)

After stacking multiple decoder layers, to further
exploit translation memories, we apply a copy mod-
ule (See et al., 2017; Gu et al., 2016) using the at-
tention score from the second cross attention layer
in the last sub-layer of decoder as a probability of
directly copying the corresponding token from the
translation memory. Formally, with t− 1 previous
generated tokens and hidden state ht, the decoder
computes t-th token probability as:

p(yt|·) = (1− pcopy)pv(yt) + pcopy

|zm|∑

i=1

αi1zmi =yt

(9)
where pcopy = σ(MLP (ht, yt−1, α ⊗ zm)) , α is
the attention score, ⊗ is a Hadamard product and
1 is the indicator function.

3.5 Multi-TM Contrastive Learning

The key of contrastive learning is to learn ef-
fective representation by pulling semantically
close neighbors together and pushing apart non-
neighbors (Hadsell et al., 2006; Mikolov et al.,
2013). As indicated in (Lee et al., 2020), sim-
ply choosing in-batch negatives would yield mean-
ingless negative examples that are already well-
discriminated in the embedding space and would
even cause performance degradation in translation
task (Lee et al., 2020), which also holds true in
our preliminary experiments. So how to devise
effective contrastive learning objective for a trans-
lation model with a cluster of translation memories
to learn salient features with respect to the target
sentence remains unexplored and challenging.

In this work, to make every translation mem-
ory learn distinct and useful feature representa-
tions with respect to current target sentence, we
propose a novel Multi-TM Contrastive Learning
(MTCL) objective which do not simply treat in-
batch samples as negative but instead keep aligned
with the principle of our contrastive retrieval, mak-
ing every translation memory approach the ground
truth translation while pushing apart from each

other. Formally, given a source sentence x, its cor-
responding target sentence y and translation mem-
ories M = {ym}|M |

m=1. The goal of MTCL is to
minimize the following loss:

LMTCL = −
∑

yi∈M
log

esim(yi,y)/τ

∑
yj∈M esim(yj ,y)/τ

(10)

where sim(yi, y) is the cosine similarity between
the representation of target sentence y and transla-
tion memory yi given by memory encoder and τ is
a temperature hyperparameter which controls the
difficulties of distinguishing between positive and
negative samples (Pan et al., 2021). Notice that the
representation of each translation memory is the su-
per node vm∗ given by HGA module in Section 3.3,
which communicates with both intra-memory and
inter-memory nodes. Intuitively, by maximizing
the softmax term esim(yi,y)/τ , the contrastive loss
would force the representation of each translation
memories to approach the ground truth while push
apart from each other, delivering a uniformly dis-
tributed representation around the target sentence
in latent semantic space. In MTCL, all negative
samples are not from in-batch data but are differ-
ent translation memories for one source sentence,
which make up of non-trivial negative samples and
help the model to learn the subtle difference be-
tween multiple translation memories.

During the training phase, the model can be op-
timized by jointly minimizing the MTCL loss and
Cross Entropy loss as shown:

L = LCE + λLMTCL (11)

where λ is a balancing coefficient to measure the
importance of different objectives in a multi-task
learning scenario (Sener and Koltun, 2018).

4 Experimental Setup

4.1 Dataset and Evaluation
We use the JRC-Acquis (Steinberger et al., 2006)
corpus to evaluate our model. This corpus is a
collection of parallel legislative text of European
union Law applicable in the EU member states.
Highly related and well structured data make this
corpus an ideal test bed to evaluate the proposed
TM-augmented translation model. Following pre-
vious work, we use the same split of train/dev/test
set as in (Gu et al., 2018; Xia et al., 2019; Cai
et al., 2021; Xu et al., 2020; He et al., 2021). For
evaluation, we use SacreBLEU.
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4.2 Implementation Details

Our model is named Contrastive Memory
Model (CMM). To implement CMM, we use trans-
former as building block of our model. Specifically,
we adopt the base configuration and the default op-
timization configuration as in Vaswani et al. (2017).
We use joint BPE encoding (Sennrich et al., 2016)
with vocab size 35000. We also adopt label smooth-
ing as 0.1 in all experiments. The number of to-
kens in every batch is 10000, which includes both
source sentence and translation memories. The
memory size and contrastive factor is set to be 5
and 0.7 across all translation directions. The con-
trastive temperature τ is {0.1, 0.08, 0.05, 0.15} for
Es→En, En→Es, De→En and En→De directions.
The balancing factor λ is set to be 1 1.

4.3 Baselines

CMM is compared with the following baselines:
• Vaswani et al. (2017): this is the original imple-
mentation of base transformer.
• Gu et al. (2018): this is a pioneer work of in-
tegrating translation memories into NMT system
using an external memories networks to separately
encode every translation memory
• Xu et al. (2020): this paper augments source
sentence with concatenation of TM and euqip the
model with different language embedding (FM+).
• Xia et al. (2019): this work uses a compact graph
to encode translation memories and is also based
on transformer architecture.
• Zhang et al. (2018): this work equips a NMT
model with translation pieces and extra bonus given
to outputs that contain the collected translation
pieces.
• Cai et al. (2021): this model first retrieves transla-
tion memories by source side similarity and adopts
a dual encoder architecture.
• He et al. (2021): this model incorporates one
most similar translation memory with proposed
example layer.

In addition, considering that Gu et al. (2018)
is based on Memory Network and RNN architec-
ture, to be fairly compared with transformer based
model, we re-implement two more direct baselines
(i.e., BaseGreedy and T-Ada) on top of Trans-
former with the same configuration as our CMM.
Specifically, in both baselines the original Mem-
ory Network is replaced by a transformer encoder

1Code and data is available at https://github.com/
Hannibal046/NMT_with_contrastive_memories

CMM T-Ada BaseGreedy
Avg. TM Size 5 5.68 5
Avg. Coverage 84.01% 92.11 % 81.13%
Avg. Similarity 0.89 0.84 0.91
Training Latency 1.21x 1.25x 1.21x
Inference Latency 1.44x 1.56x 1.44x

B
L

E
U

Es→En 67.76† 67.08 66.84
En→ES 64.04† 63.56 63.18
De→En 64.33† 63.81 63.84
En→De 58.69† 57.28 57.02

Table 1: Comparison between CMM, T-Ada and BaseG-
reedy. The TM Size, Coverage and Similarity is av-
eraged among four translation directions. Coverage
means the token level coverage of all translation memo-
ries with respect to source sentence. Similarity score is
calculated as described in Section 3.1. † means CMM is
significantly better than baselines with p-value < 0.01.

sharing weights with source encoder. BaseGreedy
employs greedy retrieval and it does not take diver-
sity of TM into account. In contrast, T-Ada adopts
adaptive retrieval, which finds the translation mem-
ories via maximizing the token coverage of source
sentence, and it promotes the diversity in retrieved
memory to some extent as CMM.

5 Experiment Results

5.1 Main results

Is diverse translation memory helpful? We
make a comparison with the direct baseline T-Ada
because both the proposed CMM and T-Ada pro-
mote the diversity in translation memory. As shown
in Table 1, T-Ada yields modest gains (about +0.2
BLEU points on average) over BaseGreedy on four
translation tasks, which is in line with the results in
Gu et al. (2018) on the RNN architecture. We con-
jecture that it is because Adaptive Retrieval only
partially maximize the word coverage while ne-
glecting the overall semantics of the whole sen-
tence thus injecting undesirable noise into the re-
trieval phase. In contrast, the proposed CMM takes
both token-level coverage and sentence-level sim-
ilarity into consideration and consistently outper-
forms T-Ada, gaining about 0.5-1.4 BLEU points
on four tasks in translation quality with smaller
TM size and lower latency in both training and
inference phase. This fact shows the following
findings: 1) NMT augmented with diverse trans-
lation memory can yield consistent improvements
in translation quality; 2) how to model and learn
the diverse translation memory is important in addi-
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System
Es→En En→Es De→En En→De

Dev Test Dev Test Dev Test Dev Test
Vaswani et al., 2017† 64.08 64.63 62.02 61.80 60.18 60.16 54.65 55.07

Gu et al., 2018 57.62 57.27 60.28 59.34 55.63 55.33 49.26 48.80
Zhang et al., 2018 63.97 64.30 61.50 61.56 60.10 60.26 55.54 55.14
Xu et al., 2020* 66.44 65.90 - - - - - -
Xia et al., 2019 66.37 66.21 62.50 62.76 61.85 61.72 57.43 56.88

He et al., 2021(@s) 67.23 67.26 - - - - - -
Cai et al., 2021(#2) 66.98 66.48 63.04 62.76 63.62 63.85 57.88 57.53

CMM 67.48 67.76 63.84 64.04 64.22 64.33 58.94 58.69

Table 2: BLEU points on four translation directions of JRC-Acquis dataset. † denotes that the model is implemented
by ourselves. @s means the model is trained under standard training criterion and * means results are from He et al.
(2021). #2 is the second model proposed in Cai et al. (2021) using source retrieval.

System Model Size Training Inference
Es→En En→Es De→En En→De

Dev Test Dev Test Dev Test Dev Test
T-Para 101M 2.76x 1.36x 67.73 67.42 64.18 63.86 64.48 64.62 58.77 58.42
CMM 68M 1.21x 1.44x 67.48 67.76 63.84 64.04 64.22 64.33 58.94 58.69

Table 3: Translation quality and running efficiency compared with the strong model T-Para.

BLEU Chrf TER BertScore BartScore
BaseGreedy 66.84 78.45 25.39 0.9686 0.1209

CMM 67.76 79.01 24.43 0.9698 0.1329

Table 4: Evaluation results with different metrics.

tion to promoting diversity in translation memory.
Because of the potential problem of high BLEU
test (Callison-Burch et al., 2006), we conduct an-
other two experiments. First, We use metrics other
than BLEU to evaluate our high BLEU systems.
We compare our model CMM and BaseGreedy in
JRC/EsEn dataset. We use both model-free and
model-based metrics as shown in Table 4. A clear
patent here is that our higher-BLEU model CMM
outperforms BaseGreedy model in all these met-
rics. Second, we disengage our model from high
BLEU range by picking the hard sentences from
the test set of JRC/EsEn according to the sentence-
level BLEU for a vanilla Transformer model. The
evaluation results for top-25%, top-50%, top-75%
hardest subsets are shown in Table 5. We can see
that the proposed CMM still outperforms baselines
on the top-25% subset whose BLEU is in the range
of 30s.

Comparing with other baselines Since our
CMM involves the heuristic metric (i.e., TF-IDF
and normalized edit distance) for retrieval, we first
compare our methods with other works using the

top-25% top-50% top-75% ALL
Vaswani et al. (2017) 29.17 43.48 56.07 64.63

BaseGreedy 34.17 48.77 59.94 66.84
CMM 35.38 49.37 60.53 67.76

Table 5: Evaluation results in terms of BLEU in different
difficulty range.

same retrieval metric. The result is presented in
Table 2. As can be seen, our method yields con-
sistent better results than all other baseline mod-
els across four tasks in terms of BLEU. Substan-
tial improvement by an average 3.31 BLEU points
and up to 4.29 in En→De direction compared with
transformer baseline model demonstrates the effec-
tiveness of incorporating translation memories into
NMT model. In comparison with previous works
either using greedy retrieval (Gu et al., 2018; Zhang
et al., 2018; Xia et al., 2019; Cai et al., 2021), which
introduces redundant and uninformative translation
memories, or using top1 similar translation mem-
ory (Xu et al., 2020; He et al., 2021), which causes
omission of potentially useful cues, our framework
equipped with contrastive translation memories can
deliver consistent improvement in both develop-
ment set and test set among four translation direc-
tions.

Unlike the above work, there is also another
line of work that retrieve translation memory with
a learnable metric. Cai et al. (2021) proposes a
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En-De En-Es
→ ← → ←

D
ev

T w/o MTCL 58.55 64.14 63.26 67.30
T w/o HGA 58.06 63.85 62.74 67.28
T-Greedy 58.01 63.72 63.10 66.98
T-MMR 58.20 64.10 62.66 67.25
CMM 58.94 64.22 63.84 67.48

Te
st

T w/o MTCL 58.37 64.29 63.92 67.49
T w/o HGA 58.06 64.19 62.74 67.28
T-Greedy 57.66 63.57 63.28 67.16
T-MMR 57.95 64.27 63.10 67.15
CMM 58.69 64.33 64.04 67.76

Table 6: Ablation study in four translation tasks with
respect to each key component in our framework.

powerful framework (namely T-Para) which jointly
trains the retrieval metric and translation model in
an end-to-end fashion, leading to state-of-the-art
performance in translation quality. We also com-
pare our method with this strong model and result
is shown in Table 3. Notice that our model gives
comparable results with T-Para, which is actually
remarkable considering that our model has much
smaller model size and training latency. In particu-
lar, our work about contrastive translation memory
is orthogonal to Cai et al. (2021) and it is promis-
ing to apply our idea into their framework, which
remains a future work.

5.2 Analysis

Ablation Study We also implement several
variants of our framework: (1) T w/o MTCL: this
model uses the same model configuration as CMM
but without MTCL loss. (2) T w/o HGA: in this
setting, |M | translation memories are concatenated
together as a long sequence without Hierarchical
Group Attention module. (3) T-Greedy: this model
replaces the Contrastive Retrieval in CMM by
Greedy Retrieval. (4) T-MMR: this model replaces
the Contrastive Retrieval in CMM by Maximal
Marginal Relevance (Carbonell and Goldstein,
1998) while the setting of translation model keeps
the same as CMM. The result is shown in Table 6
and we have the following observations. Simply re-
placing Contrastive Retrieval by Greedy Retrieval
or MMR while keeping the setting of translation
model unchanged yields worse results than our
model which demonstrates that the informative
translation memories serve as key ingredient in a
TM-augmented NMT model. Interestingly, direct
removal of HGA module while maintaining MTCL
objective (i.e., T w/o HGA) gives consistent worse
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Figure 3: Effect of contrastive factor and TM size.
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Figure 4: Visualization of Translation Memories and
Target sentence in EnEs and EnDe testset by t-SNE.

results in four translation directions. We suspect
that a pull-and-push game brought by contrastive
learning causes performance degradation without
modeling the fine-grained interaction among
multiple translation memories. Combining HGA
and MTCL, which facilitates communication
between different translation memories and helps
the model to learn the subtle difference between
them, performs better than all other baseline
models revealing the fact that properly designed
contrastive learning objective and HGA module is
complementary to each other.

Memory Size and Contrastive Factor To ver-
ify the effectiveness of fusing multiple contrastive
translation memories, we choose En→De dataset
and make the following experiments in both TM
retrieval and TM fusion stage: In retrieval stage, we
explore the contrastive factor α which is supposed
to decide the degree of currently retrieved transla-
tion memory contrasting to those already retrieved.
A larger α indicates that the retrieved translation
memories are less similar to the source sentence
while more contrastive to each other. And in fusion
stage, the size |M | of translation memories is con-
sidered. The effect of different α is shown in Figure
3. The random point is the result of a NMT model
with |M | randomly retrieved translation memories
and it even underperforms a non-TM translation
model (Vaswani et al., 2017) shown in Table 2. We
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assume it is due to much noise injected by random
memories. When contrastive factor α is set to 0, it
is essentially greedy retrieval, and an important ob-
servation is that the translation quality of our model
increases with the α until it drops at some certain
point. We suspect that too large α would yield mu-
tually contrastive TM that divert too much from the
original source sentence. Similar phenomenon can
be verified in the Figure 3, when TM size equals to
0, it is a non-TM translation model delivering worst
result while too large TM size also hurts the model
performance which is also observed in Bulté and
Tezcan (2019); Xia et al. (2019).

To further demonstrate the intuition behind our
framework, we randomly sample 1,000 examples
from test sets of En→De and En→Es directions
and use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the sentence embedding of translation
memories and target sentence encoded by our
CMM. The result is shown in Figure 4 and one
interesting observation is that although the target
side of testset is never exposed to the model,
the representation of translation memories are
uniformly distributed around the target sentence in
the latent semantic space.

6 Conclusion

In this work, we introduce an approach to incorpo-
rate contrastive translation memories into a NMT
system. Our system demonstrates its superiority
in retrieval, memory encoding and training phases.
Experimental results on four translation datasets
verify the effectiveness of our framework. In the fu-
ture, we plan to exploit the potential of this general
idea in different retrieval-generation tasks.

7 Limitations

This paper propose a framework for Retrieval-
augmented Neural Machine Translation and it re-
lies on holistically similar but mutually contrastive
translation memories which makes it work mostly
for corpora in the same domain. How to apply this
general idea to other scenario like low resource
NMT remains a future challenge.
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