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Abstract
In information retrieval (IR), candidate set prun-
ing has been commonly used to speed up two-
stage relevance ranking. However, such an ap-
proach lacks accurate error control and of-
ten trades accuracy against computational effi-
ciency in an empirical fashion, missing theoret-
ical guarantees. In this paper, we propose the
concept of certified error control of candidate
set pruning for relevance ranking, which means
that the test error after pruning is guaranteed to
be controlled under a user-specified threshold
with high probability. Both in-domain and out-
of-domain experiments show that our method
successfully prunes the first-stage retrieved can-
didate sets to improve the second-stage rerank-
ing speed while satisfying the pre-specified ac-
curacy constraints in both settings. For exam-
ple, on MS MARCO Passage v1, our method re-
duces the average candidate set size from 1000
to 27, increasing reranking speed by about 37
times, while keeping MRR@10 greater than
a pre-specified value of 0.38 with about 90%
empirical coverage. In contrast, empirical base-
lines fail to meet such requirements. Code and
data are available at: https://github.com/
alexlimh/CEC-Ranking.

1 Introduction

A two-stage relevance ranking architecture has
been an indispensable component for knowledge-
intensive natural language processing tasks such
as information retrieval (IR) (Manning et al.,
2008) and open-domain question answering
(OpenQA) (Chen et al., 2017). Such a system usu-
ally consists of a high-recall first stage that retrieves
a set of documents from a massive corpus and a
high-precision reranker that improves the ranking
of the retrieved candidate sets. The first-stage re-
trieval, often implemented by approximate near-
est neighbour search (Johnson et al., 2021) or in-
verted index search (Lin et al., 2021), is quite ef-
ficient while the second-stage reranking usually
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Figure 1: Comparisons between certified and empirical
error control methods on MS MARCO Passage v1. Cov-
erage: Percentage of 100 independent runs that satisfies
a pre-specified MRR@10≥0.35 (the dotted line).

has high latency due to the trend of using over-
parameterized pre-trained language models and
large candidate set sizes. Previous work in early
exiting proposed to predict the ranking score using
only a partial model (Xin et al., 2020a; Lucchese
et al., 2020; Busolin et al., 2021) or prune the candi-
date set before reranking (Wang et al., 2011; Fisch
et al., 2021) to trade accuracy off against speed.
However, such methods lack accurate error con-
trol which can not provide guarantees to satisfy the
exact accuracy constraints specified by users.

In this paper, we focus on candidate set prun-
ing methods of early exiting for two-stage rele-
vance ranking, and we show that a simple score-
thresholding method can yield predictions with cer-
tified error control using the prediction sets the-
ory (Wilks, 1941, 1942; Wald, 1943; Bates et al.,
2021). Instead of predicting a single target, pre-
diction sets will yield sets that contain the desired
fraction of the population with high probability.
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Figure 2: Calibration and test procedures of candidate set pruning with certified error control. During calibration,
we use the confidence region and desired risk α to find the threshold −λ̂. During testing, we use the threshold to
prune the retrieved documents, which guarantees control of the expected loss under α with probability 1− δ.

Moreover, we allow users to specify the error toler-
ance of their custom metrics and our method will
return the pruned set of candidates that satisfies
the constraints with a finite sample guarantee. Our
method makes no assumption about the data dis-
tributions and models, except that the calibration
data are exchangeable with the test data. Fig. 2
illustrates the calibration and test procedures for
certified error control of candidate set pruning.

Challenges. However, directly applying prediction
set methods to relevance ranking can be problem-
atic. Unlike classification, where the true label will
be eventually included in the predicted set as the set
size grows, in relevance ranking, users care more
about the rank of the positives. Therefore, a rank re-
quirement from users might not always be satisfied
as the ranking system might not be good enough
to rank the positive documents correctly no matter
how large the candidate set is.

Contributions. To this end, we propose to correct
the coverage level pre-specified by the user if the
constraints are impossible to satisfy, and it is up
to the user to decide whether to abandon the pre-
diction or accept the corrected results. Empirically,
we evaluate our method on IR and OpenQA bench-
marks, including MS MARCO Passage v1 (Nguyen
et al., 2016) and Quora (Thakur et al., 2021). We
also test different combinations of retrievers and
rerankers for the two-stage relevance ranking sys-
tem under both in-domain and out-of-domain set-

tings. Fig. 1 shows the results of certified and em-
pirical error control methods using different rank-
ing systems on MS MARCO Passage v1, and we
can see that the empirical method fails to provide
the required coverage while our method succeeds
to meet the requirement (see Tbl. 3 for more de-
tails). For example, if we pre-specify MRR@10 ≥
0.38, we can reduce the average candidate set size
from 1000 to 27, increasing the reranking speed
by 37× while satisfying the constraint with 90%
empirical coverage. We further confirm that the
risk-confidence correction of our method is able to
consistently correct the risk/confidence when the
pre-specified conditions are impossible to achieve.

To sum up, our contributions are three-fold:

• We propose the first certified error control
method of candidate set pruning for relevance
ranking, providing a guarantee to satisfy user-
specified constraints with high probability.

• We propose a risk-confidence correction
method to adjust constraints that may be oth-
erwise impossible to satisfy for ranking tasks.

• Our method achieves consistent results under
both in-domain and out-of-domain settings.
With at least 90% coverage, our method re-
turns a candidate set size less than 50 with
1 ∼ 2% accuracy drop for most two-stage
ranking systems.
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2 Related Work

Early exiting for relevance ranking. Early ex-
iting (Xin et al., 2020b; Liu et al., 2020; Xin
et al., 2021) is a popular latency-accuracy trade-
off method in document ranking. Xin et al. (2020a)
and Soldaini and Moschitti (2020) proposed to out-
put the question-document similarity score at ear-
lier layers of a pre-trained language model, while
Lucchese et al. (2020) and Busolin et al. (2021) pro-
posed to use a set of decision trees in the ensemble
for prediction. Cambazoglu et al. (2010) proposed
optimization strategies that allow short-circuiting
score computations in additive learning systems.
Wang et al. (2011) presented a boosting algorithm
for learning such cascades to optimize the tradeoff
between effectiveness and efficiency. Despite their
popularity, the above early exiting methods mainly
use fixed rules for efficiency-accuracy tradeoffs
without performance guarantees.

Prediction sets and cascade systems. Prediction
sets are essentially tolerance regions (Wilks, 1941,
1942; Wald, 1943), which are sets that contain the
desired fraction of the collection with high probabil-
ity. Recently, tolerance regions have been applied to
yield prediction sets for deep learning models (Park
et al., 2020a, 2021; Bates et al., 2021). In addition,
conformal prediction (Vovk et al., 1999, 2005) has
been recognized as an attractive way of producing
predictive sets with finite-sample guarantees. In re-
trieval, structured prediction cascades (Weiss and
Taskar, 2010) optimize their cascades for overall
pruning efficiency, and Fisch et al. (2021) proposed
a cascade system to prune the unnecessarily large
conformal prediction sets for OpenQA. However,
conformal prediction is only suitable for metrics
like recall. Other works on inverted file systems
also provide correctness guarantees on keyword
and document pruning (Ntoulas and Cho, 2007).

3 Background

3.1 Notation

In the rest of the paper, we will use upper-case
letters (e.g., Q,D, . . .) to denote the random vari-
ables, script letters (e.g., Q,D, . . .) to denote the
event space, and lower-case letters (e.g., q, d, . . .)
to denote an actual value of a random variable in
its event space. Specially, we use X ′ to denote the
space of all possible subsets in X where X ′ = 2X .

3.2 Two-Stage Relevance Ranking

Given a question q, the relevance ranking task is
to return a sorted list of documents from a large
text corpus to maximize a metric of interest. Partic-
ularly, in a two-stage ranking system, a first-stage
retriever generates a set of candidate documents
{d1, d2, ..., dk} for the second-stage reranker to re-
order the candidate lists.

3.2.1 Retrieval
Dense Retrievers encode the question and doc-
uments separately and project them into a low-
dimensional space (e.g., 768 dim, which is “lower”
than the size of the corpus vocabulary). Representa-
tive methods include DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2021), ColBERT (Khattab and
Zaharia, 2020), and MeBERT (Luan et al., 2021).

Lexical/Sparse Retrievers use the corpus vocabu-
lary as the basis for vector representations. Static
methods include tf–idf (Salton and Buckley, 1988)
and BM25 (Robertson and Zaragoza, 2009). Con-
textualized methods include SPLADE (Formal
et al., 2021), DeepCT (Dai and Callan, 2020), Deep-
Impact (Mallia et al., 2021), and COIL (Gao et al.,
2021; Lin and Ma, 2021).

Despite their differences, all the above methods can
be viewed as a logical scoring model (Lin, 2021).
Let ηQ : Q → Rn be an arbitrary function that
maps a question to an n dimensional vector rep-
resentation, and let ηD : D → Rn be an arbitrary
function that maps a document to an n dimensional
vector. The similarity score sv between a question
q and a document d can be defined as:

sv(q, d)
.
= ϕ(ηq(q), ηd(d)), (1)

where ϕ is a metric that measures the similarity
between encoded vectors of η(q) and η(d), such as
dot product or cosine similarity.

3.2.2 Reranking
The reranker module is responsible for improving
the ranking quality of the candidate documents
returned from the first-stage retrievers. We focus
on recent neural rerankers based on pre-trained
language models such as MonoBERT (Nogueira
et al., 2019) and MonoELECTRA. The reranker
could also be seen as a logical scoring model. How-
ever, instead of using a bi-encoder structure, a
cross-encoder structure is often applied, where the
question-document pairs are encoded and fed into a
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single model together for more fine-grained token-
level interactions:

sr(q, d)
.
= ζ(concat(q, d)), (2)

where ζ is the reranker that takes the question-
document pair as input and outputs the similarity
score sr. One way to implement the “concat” func-
tion is using special tokens as indicators, such as
[CLS] q [SEP] d [SEP].

4 Methods

4.1 Settings

Formally, given a question Q ∈ Q, a set of doc-
uments D′ ∈ D′ retrieved by the first-stage re-
triever ϕ, and a relevance-judged set of gold doc-
uments D′

ω ∈ D′
ω, we consider a pruning func-

tion T : D′ → P ′, where P ′ denotes the space
of subsets of D′. We then use a loss function on
the pruned document sets that also depends on the
reranker ζ, i.e., L(·, ·; ζ) : D′

ω × P ′ → R, to en-
code a metric of the user’s interest, and seek a prun-
ing function T that controls the risk (i.e., error)
R(T ; ζ) = E[L(D′

ω, T (D′); ζ)].

Definition 1 (Certified Error Control of Candidate
Set Pruning). Let T : D′ → P ′ be a random
function. We say that T is a pruning function for
reranker ζ with certified error control if, with prob-
ability at least 1− δ, we have R(T ; ζ) ≤ α.

The risk level α > 0 is pre-specified by users, and
the same goes for δ ∈ (0, 1) where 0.1/0.01 is
often chosen as a rule of thumb.

4.1.1 Pruning Function and Risk Function
We use a calibration set to certify the error con-
trol of the pruning function and apply the certified
pruner during testing. Let {Qi, D

′
i, D

′
ωi}mi=1 be an

i.i.d. sampled set of random variables representing
a calibration set of queries, candidate document
sets, and gold document sets. For the pruning func-
tion, we define a parameter λ ∈ Λ as its index,
which is essentially a score threshold with the fol-
lowing property:

λ1 < λ2 ⇒ Tλ1(d
′) ⊂ Tλ2(d

′). (3)

Let L(D′
ω, P

′; ζ) : D′
ω × P ′ → R≥0 be a loss

function on the pruned subsets. In ranking, we
could take, for instance, L(D′

ω, P
′; ζ) = 1 −

MRR@10(D′
ω, P

′
ζ), where MRR@10 is a popu-

lar measurement of ranking quality and P ′
ζ is the

reranked version P ′ by ζ. In general, the loss func-
tion has the following nesting property:

P ′
1 ⊂ P ′

2 ⇒ L(D′
ω, P

′
1; ζ) ≥ L(D′

ω, P
′
2; ζ). (4)

That is, larger sets lead to smaller losses (i.e., mono-
tonicity) (Bates et al., 2021). We then define the
risk of a pruning function Tλ to be

R(Tλ; ζ) = E[L(D′
ω, P

′; ζ)].

4.1.2 Confidence Region

In practice, to find the parameter λ, we need to
search across the collection of functions {Tλ}λ∈Λ
and estimate their risks on the calibration set. How-
ever, the true risk is often unknown and the empiri-
cal risk function is often used as an approximation:

R̂(Tλ; ζ) =
1

m

m∑

i=1

L(D′
ωi, Tλ(D′

i); ζ).

To compute the confidence region, we leverage the
concentration inequalities and assume that we have
access to a pointwise confidence region for the risk
function for each λ:

Pr(R(Tλ; ζ) ≤ R̂+
δ (Tλ; ζ)) ≥ 1− δ, (5)

where R̂+
δ (Tλ; ζ) is the upper bound of the empir-

ical risk R̂(Tλ; ζ). Bates et al. (2021) presented
a generic strategy to obtain such bounds by in-
verting a concentration inequality as well as con-
crete bounds for various settings. For this pa-
per, we use the Waudby-Smith-Ramdas (WSR)
bound (Waudby-Smith and Ramdas, 2020) which
is adaptive to variance. We provide the specific
form of the WSR bound in Appendix A.2.

We choose the smallest λ such that the entire
confidence region to the right of λ falls below the
target risk level α following Bates et al. (2021):

λ̂
.
= inf

{
λ ∈ Λ : R̂+

δ (Tλ′ ; ζ) < α, ∀λ′ ≥ λ
}
.

(6)

In this way, Tλ̂ is a pruning function with certified
error control. Theorems and proofs are provided in
Appendix A.1. In the following sections, we will
discuss the problems of truncated risk functions in
relevance ranking and how to modify the certifica-
tion for impossible constraints.
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4.2 Truncated Risk Function for Ranking
In Section 4.1, we mentioned that the risk function
is often related to the metrics that we care about.
For example, in ranking, metrics such as MRR@K
are often used to assess the ranking quality, where
K is the maximal set size that we choose. For ex-
ample, the MRR@10 score given a set of questions
{qi}mi=1, the positive document sets {d′i}mi=1, and
the retrieved document candidate sets {d′ωi}mi=1 is

MRR@10 =
1

m

m∑

i=1

1

f(d′i, d
′
ωi)

, (7)

where

f(d′i, d
′
ωi) =

{
+∞, if ri > 10;
ri, otherwise,

(8)

and
ri = min

j
(r(d′i, d

′
ωij)).

d′ωij means the jth positive document for query i
and r(d′i, d

′
ωij) means the rank of d′ωij in the candi-

date set d′i. If we use 1−MRR@10 for the empiri-
cal risk function R̂(Tλ; ζ), we can see that the risk
function and its upper-bound plateaus after a cer-
tain λ value (Fig. 3b) due to the threshold function
in Eq (8). Therefore, naive certification will fail if
the risk level is specified too low.

4.3 Correction for Risk Level and Confidence
To this end, we propose a safe certification method,
which will automatically correct the risk level α or
the confidence 1 − δ if the risk level specified by
the user is too low. Given a specific (α, δ) pair, the
basic idea is that if the minimum of the upper confi-
dence bound R̂+

δ (Tλ; ζ) over all possible λ values
is bigger than the specified risk level α, we will
either replace the risk level with the best-possible
minimal risk that we could achieve:

αc
.
= inf

λ̂∈Λ
R̂+

δ (Tλ̂; ζ), (9)

where αc is the calibrated risk level as shown in
Fig. 3c, or increase δ to shrink the upper-confidence
bound until δ = 1:

δc
.
= inf

{
δ ∈ (0, 1] : inf

λ̂∈Λ
R̂+

δ (Tλ̂; ζ) ≤ α

}
,

(10)

where δc is the calibrated significance level as
shown in Fig. 3d. Therefore, the previous prun-
ing function found in Eq (6) does not necessarily
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Figure 3: (Corrected) Confidence region of the risk func-
tion. (a) shows the risk function for metrics like recall;
(b) shows the risk function that is truncated in ranking.
(c) and (d) show two different types of corrections: Ei-
ther setting the risk level to the minimum of the upper
bound or increasing δ to shrink the upper bound.

hold for some specific (α, δ) values in ranking, and
we propose a new theorem for the corrected version
of certification:

Theorem 1 (Correction of Certified Error Con-
trol). In the setting of Section 4.1, assume that
there exists α > 0 and δ > 0 such that for ev-
ery λ̂ ∈ Λ, R̂+

δ (Tλ̂; ζ) > α. In this case, Tλ̂ is no
longer a pruning function with certified error con-
trol. Instead, with the corrected risk level αc and
confidence δc in Eq (9) and (10), there exists λ̂ ∈ Λ
such that,

Pr(R(Tλ̂; ζ) ≤ αc) ≥ 1− δ,

or
Pr(R(Tλ̂; ζ) ≤ α) ≥ 1− δc.

In both cases, Tλ̂ is a pruning function with certi-
fied error control.

Proofs are provided in Appendix A.1. In addition,
we provide an algorithmic implementation in Ap-
pendix A.3 for the readers’ further reference.

5 Experimental Setup

5.1 Datasets

In this paper, we evaluate our method on the fol-
lowing datasets: MS MARCO Passage v1 (Nguyen
et al., 2016) contains 8.8M English passages with
an average length of around 55 tokens, which
is a standard retrieval benchmark for compar-
ing in-domain results. Quora Duplicate Ques-
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Retriever MARCO Quora

BM25 0.185 0.781
DPR 0.311 0.434
UniCOIL 0.348 0.659

Table 1: In-domain (MS MARCO Passage v1) and out-
of-domain (Quora) first-stage retrieval test MRR@10
scores averaged over 100 random dev/test splits.

Retriever MARCO Quora

BM25+MonoBERT 0.369 0.840
DPR+MonoBERT 0.378 0.728
UniCOIL+MonoBERT 0.383 0.832

BM25+MonoELECTRA 0.399 0.823
DPR+MonoELECTRA 0.415 0.653
UniCOIL+MonoELECTRA 0.415 0.817

Table 2: In-domain (MS MARCO Passage v1) and out-
of-domain (Quora) second-stage reranking (with evi-
dence fusion) test MRR@10 scores averaged over 100
random dev/test splits.

tions1 (Thakur et al., 2021) contains 522K pas-
sages with an average length of around 11 to-
kens and mostly consist of duplicate entity ques-
tions that were found to be challenging for out-
of-domain generalization of neural retrievers like
DPR (Sciavolino et al., 2021). The above datasets
label documents with shallow judgements (Yilmaz
and Robertson, 2009) for each query and therefore
MRR@10 is often used as the evaluation metric.
Other datasets such as TREC DL 2019 (Voorhees
and Ellis, 2019) use metrics like nDCG, but such
densely labelled data are very scarce and therefore
they are not suitable for finite-sample calibration,
which we leave for future work.

5.2 Retrievers and Rerankers

For retrievers, we use DPR (dense retriever), BM25
(static lexical retriever), and UniCOIL (contex-
tualized lexical retriever). For rerankers, we use
two cross-encoder models, MonoBERT (Nogueira
et al., 2019) and MonoELECTRA (Pradeep et al.,
2022). Although some of these models are no
longer state of the art, they remain competitive
and have been widely adopted by researchers in
the community as points of reference. For the
pipeline, we use the retriever (e.g., DPR) to re-
trieve the top-1000 candidates from the corpus, and
then use the reranker (e.g., MonoELECTRA) to
rerank the retrieved candidate sets. We believe the
1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Figure 4: Empirical risk function and its upper bound
on one calibration-test data split.

above choices cover the basic types of modern two-
stage ranking systems; our approach is model ag-
nostic and can be easily applied to other models
as well. For implementation, we use off-the-shelf
pre-trained models from Pyserini (Lin et al., 2021)
and Caprelous (Yates et al., 2020).

Finally, for rerankers based on neural networks,
we need to consider both in-domain and out-of-
domain situations, as it is possible that the reranker
overfits to certain domains and has worse out-of-
domain effectiveness than the retriever. To solve
this, we linearly interpolate the score of the re-
triever ϕ and the reranker ζ for each (q, d) pair
during reranking:

sf (q, d) =β · ϕ(ηq(q), ηd(d))+
(1− β) · ζ(concat(q, d)),

which is known as evidence fusion (Ma et al., 2022).
The weight β ∈ [0, 1] is searched on the calibration
set for the best MRR@10 score, such that the fusion
model will consistently yield better ranking results
than both ζ and ϕ. Tbl. 1 and 2 show the retrieval
and reranking effectiveness with evidence fusion
under both in-domain and out-of-domain settings.

5.3 Baselines

We modify two empirical error control methods
from Cambazoglu et al. (2010) as the baselines:

Empirical Score Threshold (EST). A score
threshold on the calibration set such that the pruned
MRR@10 just meets the required score.

Empirical Rank Threshold (ERT). Similar to
EST, but we tune a threshold on the rank of the
documents to prune the candidate set instead.
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Methods MRR@10 Confidence Coverage Size

BM25 + MonoBERT (required MRR@10=0.350)

CEC 0.359 0.870 0.870 451
EST 0.350 - 0.540 139
ERT 0.350 - 0.510 149

UniCOIL + MonoBERT (required MRR@10=0.350)

CEC 0.360 0.900 0.900 15
EST 0.350 - 0.480 9
ERT 0.352 - 0.460 7

DPR + MonoBERT (required MRR@10=0.350)

CEC 0.360 0.900 0.900 22
EST 0.350 - 0.500 11
ERT 0.353 - 0.730 11

BM25 + MonoELECTRA (required MRR@10=0.380)

CEC 0.389 0.894 0.910 602
EST 0.381 - 0.580 280
ERT 0.381 - 0.550 246

UniCOIL + MonoELECTRA (required MRR@10=0.380)

CEC 0.390 0.900 0.910 18
EST 0.380 - 0.520 13
ERT 0.383 - 0.750 9

DPR + MonoELECTRA (required MRR@10=0.380)

CEC 0.389 0.900 0.900 27
EST 0.381 - 0.580 16
ERT 0.382 - 0.580 17

Methods MRR@10 Confidence Coverage Size

BM25 + MonoBERT (required MRR@10=0.780)

CEC 0.789 0.900 0.910 2
EST 0.780 - 0.510 2
ERT 0.780 - 0.600 3

UniCOIL + MonoBERT (required MRR@10=0.780)

CEC 0.790 0.900 0.900 16
EST 0.780 - 0.560 13
ERT 0.782 - 0.640 14

DPR + MonoBERT (required MRR@10=0.620)

CEC 0.632 0.900 0.940 40
EST 0.620 - 0.500 30
ERT 0.621 - 0.490 29

BM25 + MonoELECTRA (required MRR@10=0.780)

CEC 0.790 0.900 0.900 3
EST 0.780 - 0.460 3
ERT 0.780 - 0.560 2

UniCOIL + MonoELECTRA (required MRR@10=0.780)

CEC 0.790 0.900 0.910 3
EST 0.785 - 0.540 3
ERT 0.782 - 0.600 3

DPR + MonoELECTRA (required MRR@10=0.620)

CEC 0.634 0.900 0.950 282
EST 0.620 - 0.530 155
ERT 0.620 - 0.540 149

Table 3: In-domain results on MS MARCO Passage v1 (left) and out-of-domain results on Quora (right). CEC:
Certified error control. EST: Empirical score threshold. ERT: Empirical rank threshold. Confidence: 1− δc as in
Eq (10). Coverage: Proportion of 100 runs that satisfy the risk constraints. Size: Average candidate set size out of
1,000. See Section 6.2 for details.

6 Results

6.1 Risk Function and Upper Bound

Fig. 4 shows the empirical risk function and its
WSR upper bound of the pruning function Tλ on
Quora using the DPR + MonoELECTRA ranking
system. We can see that the empirical risk function
is a monotone function and the minimum of the
risk is greater than 0, which is consistent with the
assumptions we made in Section. 4. In addition, we
can see that the bound is very tight, providing a
good estimation of the true risk.

6.2 In-Domain Results

Empirically, if we set the risk threshold α = 0.62
and confidence level 1−δ = 0.9, then there should
be at least 90% of independent runs (i.e., coverage)
for which the MRR@10 score is greater than 0.38
(i.e., 1− α). To verify this, we mix the test set and
dev set and then randomly sample a calibration set
of size 5,000 and a test set of size 6,980, repeating
for 100 trials.

Tbl. 3 (left) shows the MRR@10 score, cor-

rected confidence, empirical coverage, and average
candidate set size on MS MARCO Passage v1. We
choose different performance thresholds for differ-
ent ranking systems such that the final reranking
score is around 1 ∼ 2% less than the highest ob-
tainable score, which is a very typical setting in
real-world applications. We use δ = 0.1 for all
experiments, but it could be corrected if the risk
threshold is unable to be satisfied. For example, for
BM25 + MonoBERT, the confidence is corrected
from 0.90 to 0.87, which is more consistent with
the empirical coverage.

We can see that our method achieves the required
risk constraint with the required coverage (i.e., con-
fidence) for multiple ranking systems, while the av-
erage candidate set size is also drastically reduced
from 1,000 to less than 50. In comparison, although
they are able to obtain smaller candidate set sizes,
both empirical error control methods do not achieve
the expected coverage. Despite the fact that we can
choose other thresholds to achieve better coverage,
it is unclear how much accuracy should be sacri-
ficed in order to achieve the required coverage.
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Figure 5: Tradeoffs between candidate set size and
MRR@10 scores on MS MARCO Passage v1 based
on the DPR + MonoELECTRA ranking system. The
empirical coverage for each point is greater than 90%.

6.3 Out-of-Domain Results

We also test our method on Quora under an out-
of-domain setting, where we use the retrievers and
rerankers trained on MS MARCO Passage v1 as
the prediction models. We can see from Tbl. 1 and
Tbl. 2 that the out-of-domain retrieval and rerank-
ing results are drastically different from the MS
MARCO dataset, where BM25 outperforms the
other neural retrievers. This is because the Quora
dataset mostly consists of duplicate, entity-based
questions, which are naturally biased toward static
lexical retrievers.

Similar to the in-domain experiments, we cali-
brate the pruning function on the calibration set
with 5,000 data points and test it on a test set
with 10,000 data points over 100 trial runs. Tbl. 3
(right) shows the MRR@10 scores of different rank-
ing systems. However, unlike the in-domain set-
ting, the ranking effectiveness of the first stage
retrievers varies a lot under the out-of-domain set-
ting and it is hard to align the pruning results for
intuitive comparison. Therefore, we set different
MRR@10 thresholds such that the effectiveness
drop is around 1 ∼ 10% to align the results of
different ranking systems. The results are similar
to the in-domain experiments, where the certified
error control method manages to provide a perfor-
mance guarantee while the empirical method fails
to do so. Our method also yields reasonable set
sizes that are close to the empirical baseline’s. This
is consistent with our claims that our method does
not make assumptions about data distributions and
prediction models, as long as the data from the
calibration set and test set are exchangeable.
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Figure 6: Confidence correction on MS MARCO Pas-
sage v1 using DPR + MonoELECTRA. The x-axis rep-
resents different risk thresholds (i.e., α) and the y-axis
represents the percentage.

6.4 Efficiency-Accuracy Tradeoffs with
Certified Error Control

In this section, we investigate the guarantee of the
overall tradeoffs between efficiency and accuracy.
Fig. 5 illustrates the efficiency-accuracy tradeoff
results on MS MARCO Passage v1 using DPR
+ MonoELECTRA. Similarly, we set the confi-
dence level 1 − δ to be 0.9. Our method (blue
line) achieves the best MRR@10 score at around
20% of the original top-1000 candidate set size,
which is a very good tradeoff between accuracy
and efficiency. In addition, the MRR@10 score of
our method (blue line) is higher than the specified
score threshold (orange line) with at least 90% cov-
erage, which further verifies the guarantee claims
we made about our method. We can see that our
method achieves a good tradeoff while satisfying
different values of the risk level α.

6.5 Confidence-Risk Correction

In Section 4.3, we mentioned that it might be impos-
sible to achieve the risk threshold if it is specified
too low in ranking tasks. Our solution approaches
this problem by correcting either the risk threshold
α or the significance level δ as shown in Fig. 3c
and 3d. In practice, the risk threshold correction is
rather straightforward: if the risk is lower than the
minimal upper bound over all λ, we just reset the
risk threshold to the minimal upper bound as shown
in Eq (9). For the confidence correction, we need to
fix the risk threshold and shrink the upper bound by
increasing the significance δ until the confidence
(1− δ) is 0 as shown in Eq (10). Fig. 6 shows the
confidence correction of our method. We use the
DPR+MonoELECTRA ranking system whose best
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reranking MRR@10 score is 0.41 on the dev small
set, meaning that the minimal risk is around 0.59,
and the minimal UCB of the risk function is around
0.61 (the vertical line). From right to left, we can
see that the confidence does not change too much
until the risk passes 0.6137. As the risk threshold
decreases, the confidence (the orange line) also
gradually decreases, which is consistent with the
empirical coverage (the green line).

7 Conclusion

We present a theoretically principled method for
candidate set pruning of two-stage ranking sys-
tems, allowing users to control a customized loss
under the desired threshold with high probability.
We further propose to correct the risk threshold
or confidence level if the desired risk cannot be
achieved given the ranking system. Experiments
performed under in-domain (MS MARCO Passage
v1) and out-of-domain (Quora) settings show that
our method provides a consistent performance guar-
antee to candidate set pruning across multiple rank-
ing systems.

8 Limitations

This work has two limitations. The first one is that
our method assumes the calibration data and test
data are exchangeable and sampled from the same
data distribution, which limits its utility in out-of-
domain evaluation. However, the training data does
not need to have the same distribution as the test
data, as we have shown in Section 6.3. The second
limitation is that our method needs a calibration
set that is big enough (usually 1000∼10000 data
points) in order to provide tight upper confidence
bounds, which otherwise will become very conser-
vative in pruning and increase reranking latency.
This drawback limits our method’s utility in a low-
resource regime where calibration data are scarce.

In this paper, we mainly care about in-domain
calibration (i.e., exchangeable calibration-test data)
for ranking, which was not addressed properly
before. A promising future direction for out-of-
domain ranking calibration is unsupervised domain
adaptation, where the labelled data are scarce but
the unlabeled data are abundant (Shimodaira, 2000;
Park et al., 2020b). It has also been proved that a
classifier’s target error in terms of its source error
and the divergence between the two domains could
be bounded (Ben-David et al., 2010).
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A Appendix

A.1 Proofs
Proof of Theorem 1. We first prove that if there
exists α > 0 and δ > 0 such that for every λ̂ ∈
Λ, R̂+

δ (Tλ̂; ζ) > α, then Tλ̂ will no longer be a
pruning function certified error control. Suppose
there exists an λ̂ such that Pr(R(Tλ̂; ζ) ≤ α) ≥
1− δ, by the coverage property in Eq (5) we know
that R̂+

δ (Tλ̂; ζ) ≤ α. Contradiction.
Next, we prove that for (αc, δ) in Eq (9), Tλ̂ has

certified error control. By definition in Eq (9), we
know that there exists an λ̂ such that R̂+

δ (Tλ̂; ζ) =
αc, and by the coverage property in Eq (5), we have
Pr(R(Tλ̂; ζ) ≤ αc) ≥ 1− δ. Done.

Finally, we prove that for (αc, δ) in Eq (10),
Tλ̂ has certified error control. By definition in
Eq (10), we know that there exists an λ̂ such that
R̂+

δc
(Tλ̂; ζ) = α, and by the coverage property in

Eq (5), we have Pr(R(Tλ̂) ≤ α; ζ) ≥ 1− δc. □

Theorem 2 (Validity of Certified Error Control ).
(Bates et al., 2021) Let {P ′

i , D
′
ωi}mi=1 be an i.i.d.

sample and L(P ′, D′
ω; ζ) is monotone w.r.t. λ as

in Eq (4). Let {Tλ}λ∈Λ be a collection of pruning
function satisfying the nesting property in Eq (3).
Suppose Eq (5) holds pointwise for each λ, and
that R(Tλ; ζ) is continuous. Then for λ̂ chosen as
in Eq (6), we have

Pr(R(Tλ̂; ζ) ≤ α) ≥ 1− δ.

That is, Tλ̂ is a pruning function with certified error
control.

Proof of Theorem 2. Our proof follows the frame-
work in (Bates et al., 2021). Consider the smallest
λ that controls the risk:

λ∗ .
= inf {λ ∈ Λ : R(Tλ; ζ) ≤ α} .

Suppose R(Tλ̂; ζ) > α. By the definition of λ∗ and
the monotonicity and continuity of R(·; ζ), this
implies λ∗ < λ̂. By the definition of λ̂, this further
implies that R̂+

δ (Tλ∗) < α. But since R(Tλ∗ ; ζ) =
α (by continuity) and by the coverage property in
Eq (5), this happens with probability at most δ. □

A.2 Waudby-Smith–Ramdas Bound
Bates et al. (2021) provide a one-sided vari-
ant of the Waudby-Smith–Ramdas (WSR) bound
(Waudby-Smith and Ramdas, 2020; Bates et al.,
2021):

Proposition 1 (Waudby-Smith–Ramdas bound).
Let Li(λ) = L(D′

ω, Tλ(D
′); ζ), and

µ̂i(λ) =
1
2 +

∑i
j=1 Lj(λ)

1 + i
,

σ̂2
i (λ) =

1
4 +

∑i
j=1(Lj(λ)− µ̂i(λ))

2

1 + i
,

νi(λ) =min

{
1,

√
2 log(1/δ)

nσ̂2
i (λ)

}
.

Further let

Ki(R;λ) =
i∏

j=1

{1− νj(λ)(Lj(λ)−R)},

and

R̂+
δ (Tλ) = inf

{
R ≥ 0 : max

i
Ki(R;λ) >

1

δ

}
.

Then R̂+
δ (Tλ) is a (1− δ) upper confidence bound

for R(λ).

The proofs are basically a restatement of the The-
orem 4 in Waudby-Smith and Ramdas (2020) and
Proposition 5 in Bates et al. (2021).

A.3 Algorithmic Implementation
Alg. 1 provides a detailed implementation of the
certified error control method for relevance rank-
ing using the form of pseudo-code, where we use
MRR@10 as the metric. The algorithm takes the
ranking system and calibration set as the inputs
and returns the set predictor, the corrected risk, and
corrected confidence.
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Algorithm 1: Calibration procedure.
Parameter: Risk Level α, Confidence 1− δ
Model: Retriever {ηQ, ηD}, Reranker ζ
Data: Calibration Set {qi, d′i, d′ωi}mi=1

Metric: MRR@10
Result: λ̂, αc, 1− δc

1 /*Retrieval Prediction*/
2 S′

v ← ∅, D′
v ← ∅

3 for i← 1 to m do
4 ui ← ηQ(qi)
5 Sv ← ∅, Dv ← ∅
6 for j ← 1 to k do
7 vij ← ηD(d

′
ij), sv = uTi vij

8 Sv ← Sv ∪ {sv}, Dv ← Dv ∪ {d′ij}
9 Sort Dv and Sv in desc. order of Sv

10 S′
v ← S′

v ∪ Sv, D
′
v ← D′

v ∪Dv

11 S′
v ← Platt-Scaling(S′

v)
12 /*Reranking and Compute Upper Bound*/

13 R̂+ ← ∅, L′ ← ∅,Λ← ∅
14 for λ← 1 to 0 by −10−5 do
15 P ′ ← D′

v(S′
v≥λ), L← ∅

16 for i← 1 to m do
17 Sr ← ∅, Pr ← ∅
18 for p in P ′

i do
19 sr = β · ϕ(ηq(qi), ηd(p)) + (1− β) · ζ(concat(q, p))
20 Sr ← Sr ∪ {sr}, Pr ← Pr ∪ {p}
21 Sort Pr in desc. order of Sr

22 L← L ∪ {1−MRR@10(Pr, d
′
ωi)}

23 R̂+ ← R̂+ ∪ {WSR(L, δ)}
24 Λ← Λ ∪ {λ}, L′ ← L′ ∪ L

25 /*Compute Lambda*/

26 if min(R̂+) ≤ α then
27 for λ̂, R in Λ, R̂+ do
28 if R ≥ α then
29 break
30 return λ̂, α, 1− δ

31 else
32 /*Risk-Confidence Correction*/

33 αc = min(R̂+)
34 for δc ← δ to 0 by −10−2 do
35 for λ̂, L in Λ, L′ do
36 if WSR(L, δc) ≤ α then
37 break
38 return λ̂, αc, 1− δc
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