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Abstract

Matching equivalent entities across Knowledge
graphs is a pivotal step for knowledge fusion.
Previous approaches usually study the problem
in Euclidean space. However, recent works
have shown that hyperbolic space has a higher
capacity than Euclidean space and hyperbolic
embedding can represent the hierarchical struc-
ture in a knowledge graph. In this paper, we
propose a localized geometric method to find
equivalent entities in hyperbolic space. Specif-
ically, we use a hyperbolic neural network to
encode the lingual information of entities and
the structure of both knowledge graphs into a
low-dimensional hyperbolic space. To address
the asymmetry of structure on different KGs
and the localized nature of relations, we learn
an instance-specific geometric mapping func-
tion based on rotation to match entity pairs. A
contrastive loss function is used to train the
model. The experiment verifies the power of
low-dimensional hyperbolic space for entity
matching and shows that our method outper-
forms the state of the art by a large margin.

1 Introduction

Knowledge graph (KG) is knowledge base that uses
a graph-structured topology to integrate entities, re-
lations, and metadata. Real-world KGs such as
DBpedia, Wikidata, and Yago benefit a variety of
downstream applications such as question answer-
ing (Cui et al., 2017), and fact checking (Huynh
and Papotti, 2019). In general, a KG is constructed
from one single knowledge base or built in one
single language. Thus it is impractical to reach full
coverage of the domain (Zhao et al., 2020). To
increase the completeness of the knowledge base,
a conventional approach is fusion of multiple KGs.
One pivotal step for fusion is to align equivalent
entities across different KGs.

Conventional entity alignment approaches
mainly compare symbolic features of enti-
ties (Lacoste-Julien et al., 2013) or reason the co-

relations by ontology matching (Jiménez-Ruiz and
Grau, 2011). With the prosperity of node embed-
ding (Grover and Leskovec, 2016), recent works
favor learning entity embeddings for alignment and
compare entities using embedding distance met-
rics. Existing embedding methods for entity align-
ment can be classified into three types: attribute-
based (Sun et al., 2017), relation-based (Chen et al.,
2017; Mao et al., 2020) and graph-based (Wang
et al., 2018; Sun et al., 2020b).

However, these embedding-based works study
the problem in Euclidean space, where the embed-
dings are Euclidean vectors. Recent research has
proven that Euclidean space does not provide the
most powerful geometrical representations for com-
plex data that exhibit a highly non-Euclidean latent
anatomy (Bronstein et al., 2017; Hui and Ku, 2022).
To tackle this challenge, a variety of remarkable
embedding methods have been developed to repre-
sent the data in hyperbolic space. The distinctive
feature of hyperbolic spaces enables us to embed
hierarchical data while preserving the latent hierar-
chical structure (Nickel and Kiela, 2017).

In this paper, we propose to solve the entity align-
ment problem in hyperbolic space. Since entity
alignment is a downstream task for embedding,
how to use the hyperbolic embedding to match the
entities is a challenge. Furthermore, all operations
in neural networks such as vector addition, matrix-
vector multiplication, and vector inner product are
defined in Euclidean space. Therefore, existing
neural network models are not applicable anymore
for hyperbolic embeddings. To address these chal-
lenges, we use a hyperbolic version of neural net-
works. Specifically, we utilize a hyperbolic graph
neural network model to learn the low-dimensional
hyperbolic embeddings for entities on two KGs
respectively. Two mapping functions are used to
implement the initialization, attention-based aggre-
gation, and reduction of dimension in the model.
The pre-trained semantic embeddings are projected
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Figure 1: KGs in 2-dimensional Poincaré disk.

into the hyperbolic space as the entity features. We
consider the output of the hyperbolic neural net-
work model as the final low-dimensional hyper-
bolic embeddings for entities. Then the next task
is to map embeddings between two KGs.

Existing works use a unified global map func-
tion to match entities. However, The asymmetry
of structure on different KGs makes it difficult
to learn a unified relationship for all pairs. The
reason behind the varied relations is the hetero-
geneous nature of data sources for KGs. For ex-
ample, there are 30,291 inner-relations between
15,000 entities in DBpedia KG. However, there
are only 26,638 inner-relations between these enti-
ties in Yago KG. As a result, the structure of one
DBpedia sub-graph may be the same as its coun-
terpart in Yago KG, where the structure of another
sub-graph may be different from its counterpart.
To address the localized relations between entities,
we propose an instance-based geometric mapping
function where local parameters are learned from
its embeddings for each entity. In hyperbolic space,
more generic/ambiguous nodes (e.g., root in a KG)
tend to be placed closer to the origin while moving
more specific objects (nodes at low levels) towards
the boundary. Figure 1 shows the embeddings of
two KGs in a 2-dimensional Poincaré disk. We
can see that the nodes at low levels will be closer
to the original point while nodes at higher levels
are placed towards the boundary. This motivates
us to design a novel geometric mapping function
based on rotation to match two entities across KGs.
Ideally, after the rotation, the entity will overlap
with the equivalent entity in the hyperbolic space.
Instead of learning a unified rotation function for
all entities, we use instance-based rotation func-
tions. As shown in Figure 1, after the rotation of
embedding for e1 through θ1, e1 will overlap with
its corresponding entity e′1. However, the angle
between embeddings of e2 and e′2 is θ2, which is

totally different from θ1.
To train the model, we minimize the hyperbolic

distance after mapping between a pair of aligned
entities and push negative samples away from the
target one. For each entity, we find the aligned en-
tity by searching for the nearest neighbor in terms
of hyperbolic distance. Our novelty over existing
works can be summarized as:

• We solve the entity alignment problem in hy-
perbolic space instead of Euclidean space to
capture hierarchical structures of KGs.

• We propose a hyperbolic geometric mapping
function to address the non-linear distance ra-
tio with respect to radius in hyperbolic space.

• Instead of using a unified global mapping
function for all entities, we learn the local-
ized parameters for each entity to address the
asymmetry of structure on different KGs.

2 Related Work

The majority of existing entity matching meth-
ods rely on KG embeddings (Sun et al., 2020c).
According to the KG embeddings approaches,
these models can be roughly categorized into three
groups: relation-based, attributes-based, and graph-
based models. Relation-based models mainly em-
ploy the translational methods (Bordes et al., 2013)
to learn the embedding based on relationship triples.
IPTransE (Zhu et al., 2017) is an entity alignment
model based on translation. It encodes both enti-
ties and relations into a unified low-dimensional
semantic space. MTransE (Chen et al., 2017) en-
codes entities and relations of each KG in a sepa-
rated embedding space. BootEA (Sun et al., 2018)
leverages the bootstrapping idea to iteratively label
likely alignment. RSNs (Guo et al., 2019) feeds the
relational paths into recurrent neural networks to
learn embeddings. To increase the robustness, Mul-
tiKE (Zhang et al., 2019) unifies multiple views of
entities and embeds entities with several combina-
tion strategies. Attributes-based models consider
the correlations among attributes of entities. For
example, JAPE (Sun et al., 2017) assumes that simi-
lar entities should have similar correlated attributes.
AttrE (Trisedya et al., 2019) exploits large numbers
of attribute triples and models the various types of
attribute triples to generate attribute embeddings.
Then the embedding shifts two KGs into the same
space by computing the similarity.
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With the prosperity of graph neural net-
works (Kipf and Welling, 2017; Hui et al., 2020;
Jiang et al., 2022), many works propose to utilize
graph convolutional networks to model the struc-
ture of KG. GCNAlign (Wang et al., 2018) trains
GCNs to embed entities of each KG into a unified
vector space. RDGCN (Wu et al., 2019) further
incorporates relation information in KG and cap-
tures neighboring structures via dual-Graph convo-
lutional network. AliNet (Sun et al., 2020b) aims
to mitigate the non-isomorphism of neighborhood
structures in an end-to-end manner and controls
the aggregation of both direct and distant neigh-
borhood information using a gating mechanism.
RREA (Mao et al., 2020) abstracts existing entity
alignment methods into a unified framework and
derives two key criteria for an ideal transformation
operation. RNM (Zhu et al., 2021) is a relation-
aware neighborhood matching model. It utilizes
neighborhood matching to enhance the entity align-
ment and uses an iterative framework to leverage
the positive samples and the relation alignment in
a semi-supervised manner. Dual-AMN (Mao et al.,
2021) uses an encoder to model both intra-graph
and cross-graph information. EASY (Ge et al.,
2021) removes the labor-intensive pre-processing
by fully discovering the name information provided
by the entities themselves and jointly fuses the fea-
tures captured by the names of entities and the
structural information of the graph. ActiveEA (Liu
et al., 2021) introduces Active Learning to reduce
the cost of labeling and annotation. Temporal KG
is also studied to match time-aware entities (Xu
et al., 2021). HMEA (Guo et al., 2021) utilizes
visual information to learn image embeddings. It
combines the structure and visual representations
in the hyperbolic space to predict alignment results.

HyperKA (Sun et al., 2020a) also aligns enti-
ties across KGs in hyperbolic space. However,
HyperKA directly aggregates neighborhood infor-
mation in hyperbolic space and fails to leverage
the power of hyperbolic neural networks (e.g., di-
mensionality reduction and attention mechanism).
Furthermore, it uses a unified linear transforma-
tion function where we use a localized geometric
method; thus HyperKA ignores the non-linear dis-
tance ratio with respect to the radius, the isometry
of hyperbolic geometry and the locality of mapping.
Lastly, it randomly associates each entity with a
vector. Instead, we associate the entity with a pre-
trained semantic embedding. Besides entity align-

ment, tensor completion (Harshman et al., 1970;
Hui et al., 2022) is another method to increase the
completeness of the knowledge base.

3 Preliminaries

3.1 Problem Formulation
We use G = (E,R, T ) to represent a KG, where
E and R are the sets of entities and relations in the
KG. Let T be the set of triples, each of which is
(eh, r, et), including the head entity eh ∈ E, the tail
entity et ∈ E and the relation r between eh and et.
In the entity alignment problem, we are given two
KGs: G1 = (E1, R1, T1) and G2 = (E2, R2, T2).
The set of known aligned entity pairs across G1

and G2 is defined as: S = {(e1, e2)|e1 ∈ E1, e2 ∈
E2}, where e1 and e2 are equivalent to each other.
Our goal is to find more 1-to-1 alignments across
two KGs G1 and G2.

3.2 Hyperbolic Geometry
Here we briefly present some basic knowledge in
Hyperbolic geometry. Hyperbolic space is a com-
plete simply connected Riemannian manifold with
constant negative curvature. There are five iso-
metric models for hyperbolic space: half-space,
Poincaré, jemisphere, Klein, and ’Loid. In this pa-
per, we use the d-dimensional Poincaré ball model
which is most popular in machine learning:

Bd,c = {x ∈ Rd : ||x||2 < 1

c
}, (1)

where −c(c > 0) is the negative curvature. Dif-
ferent from Euclidean addition of two vectors, the
Möbius addition of x and y in hyperbolic space
Bd,c is defined as:

x⊕c y =
(1 + 2c⟨x,y⟩+ c||y||2)x+ (1− c||x||2)y

1 + 2c⟨x,y⟩+ c2||x||2||y||2 .

(2)

Then the hyperbolic distance between x and y in
Bd,c in the manifold is given by:

dc(x,y) == (1/
√
c)arcosh(−c⟨x,y⟩M), (3)

where ⟨·, ·⟩M denotes the Minkowski inner prod-
uct.

3.3 Hyperbolic KG Embedding
A distinctive property of hyperbolic space is that
the circle circumference and disc area grow expo-
nentially with respect to radius, which allows hy-
perbolic embeddings to represent hierarchical struc-
tures. Specifically, given three points: the origin
o, x and y with ||x|| = ||y|| = r(x ̸= y), we de-
pict the hyperbolic distance ratio dc(x,y)

dc(x,o)+dc(o,y)
in
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Figure 2: Hyperbolic space

Figure 2(a). Compare with Euclidean space where
the distance ratio de(x,y)

de(x,o)+de(o,y)
(de(·) represents

Euclidean distance) is constant, the hyperbolic dis-
tance ratio approaches to 1 exponentially as r → 1.
Equivalently, the shortest path from x to y is al-
most the same as the path through the origin as
r → 1. It is analogous to the property of tree data
structure in which the shortest path between two
sibling nodes is the path through their parent (Sala
et al., 2018).

KGs often exhibit hierarchical structures and the
number of nodes grows exponentially as the level
increases. Figure 2(b) shows a tree-like KG with
a branching factor 3. We can see that the number
of nodes at each level grows exponentially with
their distance to the root of the tree. Due to this
property, hyperbolic embeddings offer excellent
quality for KG representation. As an example, we
embed the toy KG into a 2-dimensional Poincaré
disk. The hyperbolic embeddings enable all con-
nected entities in the KG to be spaced equally far
apart in 2-dimensional hyperbolic space and the
hierarchical structure is preserved.

4 Methodology

We first associate each entity e with a vector as
the feature. Specifically, we follow RNM (Zhu
et al., 2021) to initialize the entity vector with the
pre-trained semantic embedding xE , which can
represent the lingual information of entity names.
However, existing pre-trained word embedding is
learned from Euclidean neural networks or in Eu-
clidean space. To address this problem, we map
Euclidean features into the hyperboloid manifold
by:

xH = expcox
E , (4)

where o = {0, 0, · · · , 0} ∈ Rd is the original point.
We consider xE as a vector in the tangent space

where o is the reference point. The exponential
map function expcvx (Ganea et al., 2018) projects
a tangent vector xE into the hyperbolic space at v:

expcvx = cosh(
√
c||x||)v +

1√
c
sinh(

√
c||x||) x

||x|| . (5)

To utilize the structure of the KGs for entity
alignments, we introduce the aggregation operation
in hyperbolic space. On each knowlege graph, we
aggregate neighbor’s vectors with that of the center
entity by:

z
(k+1)
i = h

(k)
i ⊕c n

(k)
i , k = 0, 1, · · · ,K − 1 (6)

where h
(0)
i = xH

i is the input feature and n
(k)
i is

of aggregation of neighbor’s vectors according to
their importance to the center entity. We use K
to denote the depth. The existing attention mecha-
nism utilizes the neural network layer to learn the
weight as the importance of each neighbor. How-
ever, the linear function of the neural network layer
is defined in the Euclidean space. To address this
problem, we use the logarithmic function (Ganea
et al., 2018) to map the hyperbolic vector into the
tangent space at point u:

logcu(y) = dc(u,y)
y + c⟨u,y⟩Mu

||y + c⟨u,y⟩Mu|| . (7)

Then we aggregate the neighbor’s vector in the
tangent space and map them back to hyperbolic
space:

n
(k)
i = expc

h
(k)
i

( ∑

j∈N (i)

αi,jlog
c

h
(k)
i

(h
(k)
j )

)
, (8)

where N (i) contains all neighbors of entity i and
we consider the KG as an undirected graph. The
importance αi,j of neighbor j is learned from:

αi,j = Softmax
j∈N (i)

(Q(k) · CONC((logcoh
(k)
i ,

logcoh
(k)
j )) + q(k)).

(9)

2825



Here we use CONC(·, ·) to denote the concatena-
tion operation, and the Softmax function is used to
normalize the weights. The attention mechanism
enhances the important neighbors.

To further reduce the dimension of the hyper-
bolic vectors, we feed z

(k+1)
i into a hyperbolic lin-

ear layer:

h
(k+1)
i = expco(W

(k)logco(z
(k+1)
i ))⊕c b

(k),
(10)

where both W(k) and b(k) are learnable parame-
ters. By iteratively executing Equations (6) and (10)
for K times, we get a low dimensional vector in
hyperbolic space for each entity. We remark that
both Equations (6) and (10) are crucial to entity
matching. Equation (6) can embed the structure in-
formation of KG and allows us to learn the smooth
hyperbolic embeddings. Equation (10) can fur-
ther learn information from the hidden state and re-
duce the dimension of the hyperbolic embeddings,
which enables us to represent rich information with
low dimensional vectors.
Find Equivalent Entities. Note that we have de-
scribed how to learn hyperbolic embeddings for a
single KG. Different from optimizing the embed-
dings of entities by only considering a single KG,
we match two KGs in the same hyperbolic space
to fine-tune the embeddings and learn a mapping
function to find the equivalent pairs of entities.

Existing works either utilize a unified linear
transformation function for all entities or directly
enforce two embeddings close to each other. How-
ever, these works ignore the asymmetry of struc-
ture on different KGs and the localized nature of
relations. Intuitively, the relations between two
entities may vary from one pair to another. For
example, the equivalent entity of “New Orleans"
is “La Nouvelle-Orléans" in the French Wikipedia
KG. However, the corresponding entity “Times
Square" in French is still “Times Square". These
two relations are totally different. The first rela-
tion is translation but the second pair of entities are
identical to each other. As another example, there
are 30,291 inner-relations between 15,000 entities
in DBpedia KG. However, there are only 26,638
inner-relations between these entities in Yago KG.
As a result, the structure of one DBpedia sub-graph
may be same as its counterpart in Yago KG, where
the structure of another sub-graph may be totally
different from its counterpart. The asymmetry of
relations on different KGs makes it difficult to learn
a unified relationship for all pairs.

In this paper, we propose to use a localized map-
ping function. Specifically, for each entity, we
learn the parameter in the mapping function from
its hyperbolic embedding. Since KGs often exhibit
hierarchies, the root node or the node at a low level
on the KG tends to be located near the original
point in the hyperbolic space generally. Consider-
ing this property, we design a parameterized geo-
metric mapping function where the parameters are
computed from the hyperbolic embedding.

Let H1 and H2 be the embeddings of entities
after K iterations on G1 and G2, respectively. Sup-
pose we have a pair of equivalent entities across G1

and G2: (ei, ej) where ei ∈ E1 and ej ∈ E2. Our
instance-specific mapping function is a rotation:

f(H1
i ) = Rot(θi)H

1
i (11)

where H1
i is the hyperbolic embedding of entity ei

on G1 and Rot(θi) is a block-diagonal matrix spec-
ified by 2×2 matrices commonly used in numerical
linear algebra:

Rot(θi) = diag(G(θi,1), · · · , G(θi, d
2
))

=




cos(θi,1) −sin(θi,1)
sin(θi,1) cos(θi,1)

. . .
sin(θ

i, d
2
) cos(θ

i, d
2
)

sin(θ
i, d

2
) cos(θ

i, d
2
)




(12)
The dimension d is an even number. We use the
H1

i to calculate θi = (θi,1, θi,2, · · · , θi, d
2
):

θi = expco(W
′logco(H

1
i ))⊕c b

′ ∈ Rd/2, (13)

which makes the mapping adaptive to the entity.
To train the model, we propose to minimize the

hyperbolic distance between f(H1
i ) and H2

j for
each pair of S = {(ei, ej)|e1 ∈ E1, e2 ∈ E2}.
At the same time, we propose to push negative
samples away from an entity. In order to achieve
this, we design a loss function formulated as:

loss =
∑

(ei,ej)∈S
dc(f(H

1
i ),H

2
j )

−
∑

(ei′ ,ej′ )∈S−
dc(f(H

1
i′),H

2
j′) + γ,

(14)

where γ > 0 is a margin hyper-parameter and S−

represents the set of negative samples. We follow
(Wu et al., 2019) to generate negative samples S−.

Alignment Inference Strategy. Now we have the
mapping function from G1 to G2. For each entity
ei ∈ E1, we find the aligned entity ẽj ∈ E2 by:

ẽi = argmin
ẽj∈E2

dc(f(H
1
i ),H

2
j ). (15)
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5 Experiment
5.1 Experimental Setup

Dataset. We choose three Benchmark datasets in
the experiment: EN-FR, EN-DE and D-Y (Sun
et al., 2020c). Specifically, EN-DE represents two
cross-lingual (English–German) KGs of DBpedia,
where each KG contains 15K entities. Likewise,
EN-FR contains 15K matches between English DB-
pedia and French DBpedia. D-Y maps 15K entities
of DBpedia KG to 15K entities of Yago KG. We
follow previous work (Sun et al., 2020c) to split all
entity pairs into 20%/10%/70% for training, valida-
tion and test sets.
Baselines. We compare our approach against 12
state-of-the-art entity alignment methods. These
baselines can be classified into three categories:
(1) triple-based (MTransE (Chen et al., 2017),
IPTransE (Zhu et al., 2017), BootEA (Sun
et al., 2018), RSNs (Guo et al., 2019) and Mul-
tiKE (Zhang et al., 2019)), (2) attributes-based
(JAPE (Sun et al., 2017) and AttrE (Trisedya et al.,
2019)) and (3) graph-based (GCNAlign (Wang
et al., 2018), RDGCN (Wu et al., 2019),
AliNet (Sun et al., 2020b), RNM (Zhu et al., 2021)
and HyperKA (Sun et al., 2020a)). For all base-
lines, we use the default parameters as described in
the corresponding paper.
Model Variants. To demonstrate the effectiveness
of different components of our model, we imple-
ment three variants of our Geometric method for
Entity Alignment in Hyperbolic space (GEA-H),
including (1) Xavier-I: a variant of GEA-H to ini-
tialize the entity vectors with Xavier normal initial-
izer instead of pre-trained semantic embeddings;
(2) Linear-T: replaces our geometric method with
a linear transformation (Sun et al., 2020a). Note
that we use a hyperbolic neural network layer for
transformation; (3) Unified-R: a rotation function
with unified parameters for all entities instead of
learning from the hyperbolic embeddings.
Performance Metrics. In our experiments, we use
three widely used performance metrics: Hit@1,
Hit@5 and MRR (Sun et al., 2020b; Wu et al.,
2019; Zhang et al., 2019). Given an entity in one
KG, we sort the list of entities in another KG ac-
cording to the hyperbolic distance to the queried
entity in ascending order. Then Hit@k counts the
proportion of entities in the test set whose aligned
entity is in the top k list; while MRR averages the
reciprocal ranks of the aligned entity in the sorted
list. All reported performance results in the experi-

ment were averaged over 3 runs.
Model Configuration. We configure the negative
constant curvature of hyperbolic space as a train-
able parameter. We use a two-layer hyperbolic
graph neural network, where the dimensions of hid-
den representations and output are 200 and 100
respectively by default. For the input layer, we
initialize the entity vectors x with the pre-trained
word embeddings (300-d) from the FastText model.
If the entity name is null or not in the pre-trained
dictionary, we use a random vector as initialization.
For all baselines, we use the default parameters
as described in the corresponding paper. In each
epoch of the training process, we sample 125 nega-
tive pairs. We train our models using a Riemannian
Adam optimizer with a learning rate of 0.001 and a
weight decay of 0.01. All experiments are repeated
3 times and the average performance metrics over
the 3 runs are reported to combat randomness.

5.2 Result

Quantitative Evaluation. Table 1 compares the
alignment performance of the various approaches
on three datasets, where the best results are shown
in bold. We can see our full-fledged GEA-H
consistently achieves the best performance on all
three datasets, showing the advantages of GEA-H
over entity alignment methods in Euclidean space.
Specifically, our model gives 3% improvement in
Hit@1 over the best baseline on EN-DE and D-
Y. The performance on EN-FR slightly decreases
for all methods. However, our GEA-H still outper-
forms these baselines. We can also observe 20%
Hit@1, 10% Hit@5 and 0.2 MRR improvements
over HyperKA (the only baseline in hyperbolic
space) on average.

Several reasons lead to the advantage of our
GEA-H over baselines. First, compared with
these approaches based on embedding in Euclidean
space, the hyperbolic embeddings can reserve hi-
erarchical structures in KG with low dimension,
which is vital for entity alignment. For example,
an entity at low levels (e.g., "movie") is an unlikely
equivalent to an entity (e.g., "Emma Stone"- the
actress of La La Land) at high levels. Another im-
portant advantage of our GEA-H is that we use a
geometric mapping method based on rotation in-
stead of a linear transformation. Since the circle cir-
cumference and disc area grow exponentially with
respect to the radius, the linear transformation can
not address the non-linear nature of distance ratio in
hyperbolic space. Our rotation method is designed
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Table 1: Overall performance comparison

Model
EN-DE EN-FR D-Y

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

Triple-based

MTransE 0.307 0.518 0.407 0.247 0.467 0.351 0.463 0.675 0.559
IPTransE 0.350 0.515 0.430 0.169 0.320 0.243 0.313 0.456 0.378
BootEA 0.675 0.820 0.740 0.507 0.718 0.603 0.739 0.849 0.788
RSNs 0.587 0.752 0.662 0.393 0.595 0.487 0.514 0.655 0.580

MultiKE 0.756 0.809 0.782 0.749 0.819 0.782 0.903 0.939 0.920

Attributes-based
JAPE 0.288 0.512 0.394 0.262 0.497 0.372 0.469 0.687 0.567
AttrE 0.517 0.687 0.597 0.481 0.671 0.569 0.668 0.803 0.731

Graph-based

GCNAlign 0.481 0.679 0.571 0.338 0.589 0.451 0.465 0.626 0.536
RDGCN 0.830 0.895 0.859 0.755 0.854 0.800 0.931 0.969 0.949
AliNet 0.615 0.771 0.684 0.387 0.613 0.487 0.591 0.722 0.650
RNM 0.731 0.810 0.768 0.623 0.690 0.649 0.834 0.876 0.854

HyperKA 0.622 0.827 0.713 0.403 0.660 0.519 0.614 0.806 0.699

Variants of GEA-H
Xavier-I 0.679 0.757 0.759 0.564 0.662 0.629 0.685 0.796 0.739
Linear-T 0.674 0.767 0.718 0.539 0.645 0.589 0.654 0.734 0.693
Unified-R 0.727 0.779 0.751 0.664 0.713 0.687 0.802 0.852 0.824

Full-fledged model GEA-H 0.863 0.924 0.891 0.775 0.857 0.812 0.967 0.981 0.973
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to address this problem. Lastly, we learn instance-
specific mapping parameters for each entity instead
of using unified parameters. The localized parame-
ters will address the locality of mapping.

5.3 Ablation Study
Initialization Method. Initialization can have a
significant impact on neural network models. Com-
pared with GEA-H, Xavier-I uses the Xavier nor-
mal initializer (Sun et al., 2020a) to initialize the
entity vectors. Experimental results of GEA-H out-

perform the Xavier-I by a large margin consistently
and it verifies the effectiveness of our initialization.
Effectiveness of Geometric Mapping. To verify
the effectiveness of our rotation-based geometric
mapping method, we replace Linear-T in HyperKA
with a hyperbolic linear transformation for compar-
ison. The experimental results in Table 1 show that
our method outperforms Linear-T across all three
datasets. This is because the linear transformation
failed to address the non-linear distance ratio with
respect to radius for nodes at different levels.
Localized Mapping We also investigate the ef-
fectiveness of our instance-specific mapping func-
tion. The variant Unified-R uses a unified mapping
function for all entities instead of learning from
entity embeddings. We compare Unified-R with
our GEA-H across three datasets. The results indi-
cate that our localized mapping function increases
performance significantly and it is essential to learn
the parameters adaptively.

2828



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120

c

Epochs

EN-DE EN-FR D-Y

(a) Curvature learning

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

H
it
@

1

c

EN-DE EN-FR D-Y

(b) Hit@1 w.r.t. curvature

Figure 5: Effects of curvature

Table 2: Performance w.r.t. Negative Sampling Ratio

Ratio
EN-DE EN-FR D-Y

Hit@1 MRR Hit@1 MRR Hit@1 MRR

25 0.845 0.873 0.746 0.784 0.931 0.945
50 0.859 0.884 0.768 0.806 0.949 0.961
75 0.863 0.891 0.775 0.812 0.967 0.973
100 0.864 0.893 0.776 0.814 0.971 0.973
150 0.870 0.894 0.772 0.810 0.970 0.969

5.4 Sensitivity of Parameters

Effect of Varying Dimensions. The dimension of
hyperbolic space plays a vital role in the expres-
siveness of our hyperbolic KG embeddings. To
demonstrate the effectiveness of dimensions, we
vary the length of hyperbolic embeddings from 50
to 300 with an interval of 50. Figure 3 shows Hit@1
on three datasets with varying dimensions. We also
investigate the effectiveness of dimension for base-
lines whose dimension can be configured. Note that
the dimension for RDGCN and RNM is not config-
urable (fixed at 300). As the dimension approaches
50, we can observe that the performances of some
baselines decrease drastically on all three datasets.
Our model offers much better representation and
achieves the best performance in low-dimensional
space. It validates our hypothesis that our method
can solve the entity alignment problem in a low-
dimensional hyperbolic space with a promising re-
sult. In addition, as shown in Figure 4, the occupied
GPU memory and running time increase drastically
as the dimension increases. Therefore, there is a
trade-off between accuracy and computational cost.
Evaluation on number of negative instances.
Note that we generate negative instances for train-
ing purposes. The performance of entity alignment
is highly sensitive to the number of negative sam-
ples. In Table 2, we demonstrate the impact of
sampling ratio (number of negative instances per
pair) for GEA-H. It is clear that sampling more
negative instances is beneficial for the performance
of the model. On all three datasets, we observe lim-
ited performance improvement when the sampling
ratio is beyond 75, which justifies our default pa-
rameter. The reason behind the performance return

Figure 6: Visualization in 2-d space

is that there is trade-off between pushing negative
samples away and minimizing the distance of pos-
itive samples. When there are too many negative
samples, the loss of negative samples will have
much more weight than positive samples. This will
hurt the overall performance. Moreover, setting the
sampling ratio too aggressively will only increase
computation costs for training.
5.5 Effect of curvature
In hyperbolic space, the hierarchical structure can
be reflected by the curvatures. With different values
of curvature, the knowledge graph will be embed-
ded into different hierarchical structures. In this
paper, the value of curvature is trainable as a model
parameter. Figure 5(a) shows the value of c in the
training process. Note that the curvature of our
model is initialized as 1 at the beginning. We can
see that the value of c converges in the training
process. To further investigate the effect of the cur-
vature. We use a fixed curvature instead. As shown
in Figure 5(b), the curvature learned by our model
converges near the estimated optimal curvature.
5.6 Visualization
We visualize the 2-d embeddings (after mapping)
for random pairs of entities from dataset "D-Y" in
Poincaré disk. Figure 6 shows 200 pairs of entities
in Poincaré disk, where entities on G1 are marked
with small circles and their corresponding entities
on G2 are marked with triangles. We can see that a
pair of equivalent entities are closer to each other
in the 2-d hyperbolic space.

6 Conclusion
We proposed GEA-H, a geometric entity alignment
method in hyperbolic space. GEA-H learns low-
dimensional hyperbolic embeddings for entities
in KGs with an attention-based hyperbolic graph
neural network. We design a geometric function
based on rotation for mapping entities and learn the
localized parameters of mapping function for each
entity to address the locality of mapping.
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Limitations

GEA-H is focused on an important task: matching
equivalent entities across knowledge graphs and
providing new tools to study KGs. We do not make
any statements regarding its performance beyond
this scope. One limitation of our work is that it
requires a set of 1-to-1 alignments for training pur-
poses. These alignments are supposed to be labeled
manually.
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