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Abstract
Neural networks have long been at the center
of a debate around the cognitive mechanism by
which humans process inflectional morphol-
ogy. This debate has gravitated into NLP by
way of the question: Are neural networks a fea-
sible account for human behavior in morpho-
logical inflection? We address that question
by measuring the correlation between human
judgments and neural network probabilities for
unknown word inflections. We test a larger
range of architectures than previously studied
on two important tasks for the cognitive pro-
cessing debate: English past tense, and Ger-
man number inflection. We find evidence that
the Transformer may be a better account of hu-
man behavior than LSTMs on these datasets,
and that LSTM features known to increase in-
flection accuracy do not always result in more
human-like behavior.

1 Introduction: The Past Tense Debate

Morphological inflection has historically been a
proving ground for studying models of language
acquisition. Rumelhart and McClelland (1985)
famously presented a neural network that they
claimed could learn English past tense inflection.
However, Pinker and Prince (1988) proposed a
dual-route theory for inflection, wherein regular
verbs are inflected based on rules and irregular
verbs are looked up in the lexicon. They high-
lighted several shortcomings of Rumelhart and Mc-
Clelland (1985) that they claimed any neural net-
work would suffer from.

This opened a line of work wherein cognitive
theories of inflection are analyzed by implement-
ing them as computational models and comparing
their behavior to that of humans. A famous study
in the area of morphology is the wug test (Berko,
1958), where human participants are prompted with
a novel-to-them nonce word and asked to produce
its plural form. Similarly, morphological inflection
models are generally evaluated on words they have
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Figure 1: Summary of the past tense debate as it per-
tains to this work, color coded by evidence for (blue)
or against (red) neural networks as a cognitively plausi-
ble account for human behavior.

not seen during training. However, since they are
evaluated on actual words, it is impossible to mean-
ingfully ask a native speaker, who knows the words’
inflected forms, how likely different reasonable in-
flections for the words in a model’s test data are.
Thus, in order to compare the behavior of humans
and models on words unknown to both, prior work
has created sets of made-up nonce words (Marcus
et al., 1995; Albright and Hayes, 2003).

English Past Tense English verbs inflect to ex-
press the past and present tense distinction. Most
verbs inflect for past tense by applying the /-d/, /-Id/,
or /-t/ suffix: allophones of the regular inflection
class. Some verbs, however, express the past tense
with a highly infrequent or completely unique in-
flection, forming the irregular inflection class. This
distinction between regular and irregular inflection
has motivated theories like the dual-route theory
described above.

Prasada and Pinker (1993) performed a wug test
for English past tense inflection in order to com-
pare the model from Rumelhart and McClelland
(1985) to humans with special attention to how
models behave with respect to regular vs. irregular
forms, finding that it could not account for human
generalizations. Albright and Hayes (2003, A&H)
gathered production probabilities – i.e., the normal-
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ized frequencies of the inflected forms produced
by participants – and ratings – i.e., the average
rating assigned to a given past tense form on a
well-formedness scale. They then implemented
two computational models: a rule-based and an
analogy-based model and computed the correlation
between the probabilities of past tense forms for
nonce verbs under each model and according to hu-
mans. They found that the rule-based model more
accurately accounts for nonce word inflection.

After several years of progress for neural net-
works, including state-of-the-art results on morpho-
logical inflection (Kann and Schütze, 2016; Cot-
terell et al., 2016), this debate was revisited by
Kirov and Cotterell (2018, K&C), who examined
modern neural networks. They trained a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
with attention (Bahdanau et al., 2015) on English
past tense inflection and in experiments quantifying
model accuracy on a held out set of real English
verbs, they showed that it addresses many of the
shortcomings pointed out by Pinker and Prince
(1988). They concluded that the LSTM is, in fact,
capable of modeling English past tense inflection.
They also applied the model to the wug experiment
from A&H and found a positive correlation with
human production probabilities that was slightly
higher than the rule-based model from A&H.

Corkery et al. (2019, C&al.) reproduced this ex-
periment and additionally compared to the average
human rating that each past tense form received
in A&H’s dataset. They found that the neural net-
work from K&C produced probabilities that were
sensitive to random initialization – showing high
variance in the resulting correlations with humans –
and typically did not correlate better than the rule-
based model from A&H. They then designed an
experiment where inflected forms were sampled
from several different randomly initialized mod-
els, so that the frequencies of each form could be
aggregated in a similar fashion to the adult pro-
duction probabilities – but the results still favored
A&H. They hypothesized that the model’s overcon-
fidence in the most likely inflection (i.e. the regular
inflection class) leads to uncharacteristically low
variance on predictions for unknown words.

German Noun Plural McCurdy et al. (2020a,
M&al.) applied an LSTM to the task of German
noun plural inflection to investigate a hypothesis
from Marcus et al. (1995, M95), who attributed the
outputs of neural models to their susceptibility to

the most frequent pattern observed during training,
stressing that, as a result, neural approaches fail to
learn patterns of infrequent groups.

German nouns inflect for the plural and singular
distinction. There are five suffixes, none of which
is considered a regular majority: /-(e)n/, /-e/, /-er/,
/-s/, and /-∅/. M95 had built a dataset of monosyl-
labic German noun wugs and investigated human
behavior when inflecting the plural form, distin-
guishing between phonologically familiar environ-
ments (rhymes), and unfamiliar ones (non-rhymes).
The German plural system, they argued, was an
important test for neural networks since it presents
multiple productive inflection rules, all of which
are minority inflection classes by frequency. This
is in contrast to the dichotomy of the regular and
irregular English past tense. M&al. collected their
own human production probabilities and ratings
for these wugs, and then compared those to LSTM
productions. Humans were prompted with each
wug with the neuter determiner to control for the
fact that neural inflection models of German noun
plurals are sensitive to grammatical gender (Goebel
and Indefrey, 2000), and because humans do not
have a majority preference for monosyllabic, neuter
nouns (Clahsen et al., 1992).

The /-s/ inflection class, which is highly infre-
quent appears in a wide range of phonological con-
texts, which has lead some research to suggest it
is the default class for German noun plurals, and
thus the regular inflection, despite its infrequent
use. M&al. found that it was preferred by hu-
mans in Non-Rhyme context more than Rhymes,
but the LSTM model showed the opposite pref-
erence, undermining the hypothesis that LSTMs
model human generalization behavior. /-s/ was ad-
ditionally predicted less accurately on a held-out
test set of real noun inflections when compared to
other inflection classes.

They found that the most frequent inflection
class in the training for the monosyllabic neuter
contexts, /-e/, was over-generalized by the LSTM
when compared to human productions. The most
frequent class overall, /-(e)n/ (but infrequent in the
neuter context), was applied by humans quite fre-
quently to nonce nouns, but rarely by the LSTM.
They additionally found that /-er/, which is as in-
frequent as /-s/, could be accurately predicted in
the test set, and the null inflection /-∅/, which is
generally frequent, but extremely rare in the mono-
syllabic, neuter setting was never predicted for the
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wugs. We refer to McCurdy et al. (2020a) for more
details on the inflection classes and their frequen-
cies, and additional discussion around their rele-
vance to inflection behavior.

Ultimately, M&al. reported no correlation with
human production probabilities for any inflection
class. They concluded that modern neural networks
still simply generalize the most frequent patterns to
unfamiliar inputs.

Dankers et al. (2021) performed in-depth behav-
ioral and structural analyses of German noun plural
inflection by a unidirectional LSTM without atten-
tion. They argued that these modeling decisions
made a more plausible model of human cognition.
In a behavioral test they found that, like humans but
unlike M&al., their model did predict /-s/ more for
non-rhymes than for rhymes, but the result was not
statistically significant. They also found that /-s/
was applied with a high frequency and attributed
this to sensitivity to word length. For a visual of all
studies discussed in this section, see Figure 1.

Our Contribution Most work on modern neural
networks discussed here analyzes the same bidirec-
tional LSTM with attention and draws a mixture of
conclusions based on differing experimental setups.
Dankers et al. (2021) changed the LSTM-based
architecture, and found somewhat different results
for German number inflection, though they did not
investigate correlations with human ratings nor pro-
duction probabilities in the same way as previous
work. The limited variation of architectures in pre-
vious studies as well as inconsistent methods of
comparison with human behavior prevent us from
drawing definite conclusions about the adequacy
of neural networks as models of human inflection.

Here, we present results on a wider range of
LSTMs and a Transformer (Vaswani et al., 2017)
model for both English past tense and German num-
ber inflection. We ask which architecture is the
best account for human inflection behavior and,
following M&al., investigate the actual model pro-
ductions (and probabilities) for the German plural
classes in order to qualitatively compare to human
behavior. We additionally ask how architectural de-
cisions for the LSTM encoder-decoder affect this
correlation. Finally, we investigate the relation-
ship between inflection accuracy on the test set and
correlation with human wug ratings.

We find that the Transformer consistently cor-
relates best with human ratings, producing proba-
bilities that result in Spearman’s ρ in the range of

0.47-0.71 for several inflection classes, which is fre-
quently higher than LSTMs. However, when look-
ing closely at the Transformer productions, it dis-
plays behavior that deviates from humans similarly
to the LSTM in M&al., though to a lesser extent.
While attention greatly increases LSTM accuracy
on inflection, we also find that it does not always
lead to better correlations with human wug ratings,
and that the directionality of the encoder has more
complicated implications. Finally, we find that
there is no clear relationship between model accu-
racy and correlation with human ratings across all
experiments, demonstrating that neural networks
can solve the inflection task in its current setup
without learning human-like distributions. While
the Transformer experiment in this work demon-
strates stronger correlations with human behavior,
and some more human-like behaviors than before,
our findings continue to cast doubt on the cognitive
plausibility of neural networks for inflection.

2 Neural Morphological Inflection

2.1 Task Description
The experiments in this paper are centered around
a natural language processing (NLP) task called
morphological inflection, which consists of gener-
ating an inflected form for a given lemma and set of
morphological features indicating the target form.
It is typically cast as a character-level sequence-to-
sequence task, where the characters of the lemma
and the morphological features constitute the input,
while the characters of the target inflected form are
the output (Kann and Schütze, 2016):

PST c r y → c r i e d

Formally, let S be the paradigm slots expressed
in a language and l a lemma in the language. The
set of all inflected forms – or paradigm – π of l is
then defined as:

π(l) =
{(
fk[l], tk

)}
k∈S

(1)

fk[l] denotes the inflection of l which expresses tag
tk, and l and fk[l] represent strings consisting of
letters from the language’s alphabet Σ.

The task of morphological inflection can then
formally be described as predicting the form fi[l]
from the paradigm of l corresponding to tag ti.

2.2 Models
Rumelhart and McClelland The original
model of Rumelhart and McClelland (1985)
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preceded many of the features introduced by
modern neural networks. For example, they
use a feed-forward neural network to encode
input sequences. This creates the requirement of
coercing variable-length inputs into the fixed-size
network. To solve this, they encode input words as
fixed length vectors representing the phonological
distinctive feature sets for each trigram in that
word. The neural network is then trained to map
the features of an input form to a feature vector of
a hypothesized output form. The loss is computed
between the input feature sets and the the feature
set for an inflected output form encoded in the
same way. At test time, they manually select
candidate output forms for each input lemma
in order to overcome the intractable decoding
problem. The output form, then, is the candidate
whose feature vector most closely resembles the
model output. Beyond decoding problems, the
order of input characters is not encoded, and
unique words are represented with potentially
identical phonological features.

LSTM The LSTM architecture (Hochreiter and
Schmidhuber, 1997) overcomes several of the is-
sues in Rumelhart and McClelland (1985), by way
of a recurrent encoding and decoding mechanism,
and reliance on character embeddings.

We experiment with several variations of the
LSTM encoder-decoder (Sutskever et al., 2014;
Cho et al., 2014) to test their behavior compared to
humans. First, we vary directionality of the encoder
under the assumption that bidirectional encoding
leads to higher accuracy, but a unidirectional en-
coder may better resemble human processing. We
additionally vary whether or not attention is used.
Attention is typically a crucial feature to attaining
high inflection accuracy. We expect that the same
may also be true for assigning a cognitively plausi-
ble probability to a nonce inflection, by supplying
the model with a mechanism to focus on only the
relevant parts of the inflection.

This yields 4 LSTM-based variations. We
refer these models as BiLSTMAttn (BA; from
K&C, C&al., and M&al.), UniLSTMAttn (UA),
BiLSTMNoAttn (BN), and UniLSTMNoAttn (UN;
from Dankers et al. (2021)).

Transformer Finally, we present results for
a Transformer sequence-to-sequence model
(Vaswani et al., 2017), following the implemen-
tation proposed for morphological inflection by

Wu et al. (2021). Unlike LSTM-based models, the
transformer employs a self-attention mechanism
such that each character representation can be
computed in parallel as a function of all other
characters. The position of each character is
encoded with a special positional embedding. This
means that the relation between each character
in a word can be represented directly, rather
than through a chain of functions via the LSTM
recurrence. It is considered to be state-of-the-art
for morphological inflection in terms of accuracy,
which makes it an important comparison for this
study. Some work has called into question the
cognitive plausibility of transformer self-attention
in psycholinguistic experiments of word-level lan-
guage models (Merkx and Frank, 2020) – claiming
that the direct access it provides to past input is
cognitively implausible. It is not clear though that
these arguments apply to character-level models
for inflection, wherein words do not necessarily
need to be processed one character at a time.

Hyperparameters We implement all LSTMs
with pytorch (Paszke et al., 2019) and borrow hy-
perparameters from previous work on morpholog-
ical inflection. For the LSTMs, we use the hy-
perparameters from K&C, which were based on
the tuning done by Kann and Schütze (2016). For
the Transformer, we follow the hyperparameters
from the best model in Wu et al. (2021), but set
label-smoothing to 0. In preliminary experiments,
we found no significant impact of label smoothing
on accuracy nor correlation with human behavior
across inflection classes.

For all architectures, we follow C&al. and train
10 randomly initialized models. At test time, we de-
code with beam search with a width of 12. We train
for up to 50 epochs because the architectures with
fewer parameters tend to converge more slowly.

MGL A&H implement the Minimal Generaliza-
tion Learner (MGL), which learns explicit rules
(e.g. insertion of /-Id/ if a verb ends in a /t/ or /d/)
at varying levels of granularity. Each rule is associ-
ated with a confidence score for a given phonologi-
cal environment based on its statistics in the train
set. At test time, the rule with the highest confi-
dence is applied to produce an inflection, and the
confidences can be used to score various regular
or irregular inflected forms. We compare to this
model for English data, following previous work.
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Dev Acc Test Acc Prod. Prob. Rating
reg irreg reg irreg reg irreg

A&H MGL - 99.7 38.0 .33 .30 .50 .49
K&C* - 98.9 28.6 .48 .45 - -
C&al. Agg.** - - - .45 .19 .43 .31
BiLSTMAttn 93.33 97.48 (.65) 9.05 (5.24) .28 .36 .16 .46
BiLSTMNoAttn 76.37 82.72 (2.06) 7.62 (3.33) .14 .44 .23 .35
UniLSTMAttn 92.45 96.53 (.68) 20.00 (4.38) .35 .41 .40 .32
UniLSTMNoAttn 73.49 77.72 (1.64) 10.48 (10.24) .22 .43 .28 .34
Transformer 94.88 99.21 (.53) 10.95 (11.46) .38 .47 .58 .58

Table 1: English results for both regular (reg) and irregular (irreg) inflections for all architectures and metrics.
Along with accuracy, we report Spearman’s ρ between average model rating and our two human metrics. Standard
deviations are given in parentheses.
*Trained and tested a different random split, **Trained and tested on all training data

3 Experiments

3.1 Languages and Data

We use the same data as previous work on English
past tense, and German number inflection.

English We experiment with the English past
tense data from A&H, following both K&C and
C&al. For training, we split the CELEX (Baayen
et al., 1996) subset produced by A&H, consisting
of 4253 verbs (218 irregular), into an 80/10/10
random train/dev/test split following K&C.1 We
ensure that 10% of the irregular verbs are in each
of the development and test set.

The English nonce words from A&H, used for
computing the correlation of model rating with hu-
man ratings and production probabilities, comprise
58 made-up verb stems, each of which has 1 regular
and 1 irregular past tense inflection. 16 verbs have
an additional irregular form (58 regulars and 74
irregulars total). All English data is in the phonetic
transcription provided by A&H.

German We also experiment with the German
dataset from McCurdy et al. (2020a), who released
train/dev/test splits consisting of 11,243 pairs of sin-
gular and plural nouns in the nominative case taken
from UniMorph (McCarthy et al., 2020). They
added gender, the only inflection feature provided,
by joining UniMorph with a Wiktionary scrape.

The German wugs come from M95, who built a
set of 24 monosyllabic nonce nouns: 12 of which
are rhymes – resembling real words in their phonol-
ogy, and 12 of which are non-rhymes – representing
atypical phonology. Human ratings and production
probabilities, however, are taken from M&al., who

1K&C use a subset of A&H, removing 164 regulars and
50 irregulars. We include them in our dataset.

administered an online survey to 150 native Ger-
man speakers. Each participant was prompted with
the nouns from M95 with the neuter determiner,
and then asked to generate the plural form. Similar
to A&H, after producing a plural for each noun,
participants were asked to rate the acceptability of
each potential plural form on a 1-5 scale. In their
analysis, M&al. compare human and model behav-
ior on 5 productive inflection classes, shown for
our experiments in Table 3.

3.2 Evaluation Metrics

We evaluate models with respect to four metrics.

Accuracy This refers to raw accuracy on a set of
real inflections that the model has not seen during
training. Crucially, only the top prediction of a
given model is considered, and the model’s prob-
ability distribution over all predictions does not
affect the score.

F1 We report F1 instead of accuracy for the Ger-
man plural experiments following M&al. Here we
classify each inflected form with its suffix (e.g. /-
s/), and classify inflections that do not conform to
the 5 inflection classes from M&al. as "other."

Production Probability Correlation Like pre-
vious work (Kirov and Cotterell, 2018; Corkery
et al., 2019; McCurdy et al., 2020a), we compare
model output probabilities with production proba-
bilities from humans. The production probability
of a form is calculated by counting all forms pro-
duced for a given lemma, and then normalizing
them to obtain a probability distribution of the hu-
man productions. In keeping with most previous
work and because we do not expect a linear relation-
ship with the model ratings, we report Spearman’s
ρ. This is calculated within each inflection class,
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meaning that, e.g., for English we report a regu-
lar and an irregular ρ. For example, the regular ρ
for the set of lemmas {rife, drize, flidge} would
be computed from the vector containing probabil-
ities of the forms {rifed, drized, flidged} under
the model, against the corresponding vector with
human probabilities.

Rating Correlation Finally, we compare model
ratings to the average human rating of each form,
again reporting ρ within inflection class. Here,
rather than normalizing over production frequen-
cies, humans were prompted with an inflection for
a given lemma and asked to rate it on a scale that
differed slightly between datasets. For each lemma,
we thus get an average probability for a regular
form, as well as for an irregular form.

3.3 Neural Network Wug Test

In order to compare our models to humans, we
compute analogous values to the human ratings
and production probabilities. We investigate two
strategies: normalizing the inflected form counts
output by our models, and computing the average
probability of each form under our models.

Model Production Probability Previous work
(Corkery et al., 2019; McCurdy et al., 2020a) de-
coded outputs from multiple models and aggre-
gated the resulting forms: given a lemma and a set
of n models trained with different random seeds,
an inflected form is sampled from each model, re-
sulting in forms f1, ..., fn, where forms need not
be unique. The frequency of each form is then nor-
malized to obtain a probability distribution. For
example, given the nonce lemma rife, the probabil-
ity of the past tense form rifed is computed as

1

n

n∑

i=1

{
1, if fi = rifed
0, otherwise

C&al. propose a version of this in their aggre-
gate model, in which they sample 100 forms from
each model , and normalize the resulting form fre-
quencies. M&al., who instead train 25 randomly
initialized models, perform the same aggregation
over the top prediction of each model. We take the
approach of M&al. (though we train only 10 mod-
els) to investigate model productions qualitatively.
This metric is intuitively similar to quantifying hu-
man production probabilities if we consider one
model to be one human participant.

Model Rating Because the aggregate outputs
method considers only the most likely prediction
aggregated over the same architecture trained on
the same dataset, we expect the prediction to typi-
cally be the same for each model. We instead report
correlations with the probability of inflected forms
under each model in Tables 1 and 3. K&C correlate
this value with human production probabilities, and
C&al. use this method in an experiment to compute
individual model ratings.

More formally, given a lemma l and an inflected
form f of length k, we compute

p(f | l) = p(f1, ..., fk | l) (2)

=
k∏

1

p(fi|fi−1, l) (3)

Where fi is the ith character of f . We force the
model to output each inflected form f to get its
probability. In practice, we modify Equation 3 to
compute a length-normalized probability because
p(f | l) becomes smaller as f increases in length.
For f of length k, we have

p(f | l) = k

√∏
p(fi|fi−1, l) (4)

We expect computing ratings in this way to be
similar to the aggregate model of C&al. described
above. That is, the probability of a form f com-
puted by aggregating n forms from a single model’s
probability distribution should approach p(f | l),
as n→ ∞. Finally, we compute the average prob-
ability of a form from all 10 randomly initialized
models, and refer to it as the model rating.

4 Results

We present experimental results in Tables 1, 2, and
3 in terms of both inflection accuracy, and corre-
lation with human behavior – our main focus. All
correlations for neural models trained in this work
are given with respect to model rating, and not the
model production probability. We report results
from training MGL on our data, and include the
results reported K&C, C&al., and M&al. in the
appropriate tables for reference.

4.1 English
For English, many of our models correlate better
for irregulars than regulars, unlike previous work
for which the strongest correlations occurred for
regular verbs. As we do not have the same train
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Dev Acc. Test F1
/-(e)n/ /-e/ /-∅/ /-er/ /-s/ other

M&al. 92.10 95.00 87.00 92.00 84.00 60.00 42.00
BiLSTMAttn 89.37 93.93 (0.6) 88.08 (0.9) 92.43 (0.6) 79.07 (5.1) 51.75 (4.6) 45.36 (4.0)
BiLSTMNoAttn 54.65 74.16 (1.9) 63.56 (2.4) 75.57 (2.1) 51.26 (3.7) 29.58 (7.4) 9.07 (0.6)
UniLSTMAttn 86.40 93.39 (0.6) 87.35 (1.0) 92.49 (1.1) 69.78 (5.3) 52.36 (4.5) 44.06 (5.8)
UniLSTMNoAttn 48.71 69.69 (2.2) 58.31 (2.4) 71.98 (1.7) 46.64 (5.2) 32.54 (7.7) 8.08 (0.4)
Transformer 91.04 92.93 (0.4) 87.81 (0.7) 93.86 (0.3) 65.44 (4.7) 57.89 (2.0) 57.47 (4.5)

Table 2: Average German F1s on all German plural inflections for all architectures. Standard deviation is given in
parentheses. Dev accuracy for our experiments were decoded greedily.

Prod. Prob Rating
/-(e)n/ /-e/ /-∅/ /-er/ /-s/ avg. /-(e)n/ /-e/ /-∅/ /-er/ /-s/ avg.

M&al. .28 .13 - .05 .33 .20 - - - - - -
BiLSTMAttn .11 .08 -.14 .24 .38 .20 .36 .44 .06 .36 .39 .32
BiLSTMNoAttn .44 .08 -.12 .27 .39 .30 .51 .16 -.29 .30 .31 .20
UniLSTMAttn .09 .16 -.13 .36 .39 .25 .22 .27 -.16 .46 .44 .25
UniLSTMNoAttn .14 .15 .08 .17 .23 .15 .24 .16 -.17 .05 .20 .10
Transformer .11 .30 -.13 .28 .50 .20 .48 .59 .15 .50 .71 .49

Table 3: German wugs Spearman’s ρ for the average rating of each model with human production probabilities
(left) and average human ratings (right). We report the macro average (avg.) over all inflection classes for both.

and test splits, it is difficult to draw conclusions
from this result. We predominately focus on per-
formance differences between the models trained
in our experiments including MGL.

Accuracy The accuracies from this experiment
generally reflect our expectations from prior work.
The Transformer attains the highest test accuracy,
LSTMs with attention always achieve higher accu-
racy than those without, and bidirectional LSTMs
show modest improvements over their unidirec-
tional counterparts. However, the unidirectional
LSTMs outperform bidirectional counterparts for
irregular accuracy (+2.86 and +10.95). Addition-
ally, the Transformer has a low irregular accuracy,
though with a very high standard deviation over all
10 runs, indicating at least one run was an outlier
with much higher accuracy.

Correlation The trend in accuracy for attentional
LSTMs is not strictly true for correlation. LSTMs
without attention typically correlate with humans
slightly better than their attentional counterparts
for irregulars. Additionally, unidirectional models
result in higher regular correlations, which is in
contrast to the higher irregular accuracy. Irregu-
lar correlations are fairly similar across LSTMs
with the exception of the BiLSTMAttn correlation
with human ratings, which is much higher than the
other LSTM correlations. We also reproduce previ-
ous results showing that A&H’s rule-based model,

MGL, is better correlated than any LSTM model.
The transformer, however, is correlated most highly
with humans among all experiments that we ran.

4.2 German
We refer to F1 in Table 2, and correlation with hu-
mans in Table 3. Notably all models typically corre-
late better with human ratings than with production
probabilities, though those two metrics have a pos-
itive linear relationship (r=0.75). Intuitively, the
task of assigning a probability to a form is more
like the human rating task than decoding the single
most likely form. We present a graph of model
production probabilities and model ratings for the
German wugs in Figure 2.

F1 F1 scores follow a similar trend to English.
In contrast to the very small performance gap in
Dankers et al. (2021), LSTMs with attention clearly
perform better in terms of F1 than without – though
our training dataset from M&al. is much smaller
than the one they used, which might amplify the
gap. Directionality has much less effect on F1
than attention for German, with the unidirectional
LSTMs actually outperforming the bidirectional
ones for the infrequent /-s/ class in our experiments.
The Transformer attains high (though not necessar-
ily the highest) F1 scores for every class.

Correlation The Transformer clearly correlates
most highly with human ratings, attaining a moder-
ate correlation (0.48-0.59) for /-e/, /-(e)n/, and /-er/,
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Figure 2: German plural productions (left) and average probabilities (right) for each architecture in Rhyme (R) and
Non-Rhyme (NR) contexts for all lemmas and all random initializations. Shorthands are used for architectures –
UA refers to UniLSTMAttn, whereas BN refers to BiLSTMAttn, for example.

and a high correlation (0.71) for /-s/. All architec-
tures correlate poorly with /-∅/, despite very high
F1. Looking more closely at /-∅/, it consistently
receives very low ratings (as is the case for human
ratings), and it was never produced as a model’s
best output as can be seen in Figure 2. However,
there are only 3 /-∅/ inflections in the training data
that fit the same phonological context as the wugs.
Across all contexts though, /-∅/ is a very common
inflection in the training data, which explains its
high accuracy on the test set.

There is no clear trend between LSTMs in terms
of correlation with human production probability,
with rather low ρ overall. However in the case of
human ratings, LSTMs with attention always corre-
late better than those without, with the exception of
the most frequent class overall in the training data,
/-(e)n/. BiLSTMNoAttn is most strongly correlated
for /-(e)n/, in contrast to its lower F1 – demonstrat-
ing that removing attention leads to a lower F1, but
also to a more human-like probability of /-(e)n/.

Regarding directionality, unidirectional LSTMs
always outperform their bidirectional counterparts
for the infrequent /-s/ class in our experiments.
UniLSTMAttn correlates better with humans than
any LSTM for the infrequent classes /-er/ and /-s/.
However, BiLSTMAttn has the highest correlation
for the frequent /-e/ and /-(e)n/.

5 Analysis

We mainly analyze the correlation between (aver-
age) model ratings and human ratings. We find that
the Transformer correlates best with human rat-
ings with few exceptions, indeed it attains a statisti-
cally significant positive correlation for all inflec-
tion classes in both languages, with the exception
of /-∅/ in German. It is also highly accurate, as in
previous work (Wu et al., 2021).

Regarding LSTM architectural decisions, unsur-
prisingly, attention and bidirectionality typically
increase accuracy in both languages. The positive
effect of attention is similar for correlations with
some exceptions. Attention almost always leads
to better correlations in German, with the interest-
ing exception of /-(e)n/. Given that humans rate
/-(e)n/ most highly on average, the higher correla-
tion could be because without attention, LSTMs
are very sensitive to the high /-en/ frequency in the
training set. The attentional LSTMs might learn
the monosyllabic, neuter context that applies to the
wugs, for which there are very few /-(e)n/ train-
ing examples. Despite slightly higher accuracy for
bidirectional LSTMs, unidirectional LSTMs tend
to attain higher correlations with both human met-
rics for English, especially for the more frequent
regular inflections.

Conversely in German, the bidirectional LSTMs
correlate better for the more frequent /-(e)n/ and
/-e/ classes, but UniLstmAttn correlates better for
the rarer /-er/ and /-s/ classes. The dichotomy be-
tween just one highly productive class in English
and several productive classes in German may ex-
plain the first observation: if unidirectional LSTMs
overfit to the frequent class, then they might ap-
pear to correlate better in English, but not German.
However, this would not explain the German class
correlations for infrequent inflections, which could
be explored in future work.

German Model Productions The model pro-
duction counts in Rhyme versus Non-Rhyme con-
texts were important for the conclusion in M&al.
that BiLSTMAttn is not a good model of human
behavior. We thus investigate this in Figure 2.

Most of the criticisms from M&al. apply to the
productions in our experiments as well. One new
observation is that, without attention, LSTMs pre-
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reg irreg /-(e)n/ /-e/ /-∅/ /-er/ /-s/

r 0.44 -0.31 0.01 0.80 0.73 0.70 0.83

Table 4: Pearson r between model acc. (or F1), and
correlation with human ratings within infl. class (n=5).

BA BN UA UN Trm

r -0.57 -0.33 -0.37 -0.39 -0.38

Table 5: Pearson r between model acc. (or F1), and
correlation with human ratings within model (n=7).

dict many "other" forms for NR contexts, but not
for R. This likely means that Non-Rhymes lead to
decoding errors for these models due to the unfamil-
iar context. Additionally, despite several behaviors
that differ from humans in the Transformer produc-
tions, its second most produced inflection class is
/-(e)n/, like humans, and unlike any LSTM model.
The right side of Figure 2 instead displays the aver-
age model rating of each inflection class, on which
we base our correlations in Tables 1 and 3.

The average model rating of an inflection class
represents the probability assigned to it averaged
over all 10 randomly initialized models and all 24
lemmas. The /-e/ inflection accounts for a much
smaller amount of the probability mass on average
than its production probability. The preference for
/-e/ in the NR context, which diverges from hu-
man ratings, is smaller by this metric for the Trans-
former and LSTMs with attention. Furthermore,
/-(e)n/ has a more reasonable average probability
for most models when compared to the human rat-
ings in M&al., despite the preference for Rhymes,
which diverges from human behavior. However,
for /-s/ the Transformer shows a much higher aver-
age probability for Non-Rhymes than for Rhymes,
which is more in line with human ratings.

Overall, this means model ratings of German
noun plurals look more similar to human ratings
than model productions do to human productions.
The Transformer is a better account for human
behavior than the LSTM, though it still diverges
in some ways. Dankers et al. (2021) warned that
the /-s/ behavior may be explainable by a simple
heuristic though, so this behavior may not actually
indicate cognitive plausibility.

Accuracy vs. Correlation The task of predict-
ing the most likely inflection for an unknown word
(measured by accuracy or F1) is not the same as rat-
ing multiple inflections (measured by Spearman’s

ρ). We thus investigate the relationship between
these two tasks by measuring Pearson’s r between
them to see if better inflection models in terms of
accuracy are also more human-like. First, we con-
sider the relationship for all models and inflection
classes in both datasets and find no correlation (r =
-0.17, n=35). However, some inflection classes or
models may behave differently than others. We re-
fer to Table 5 to investigate this relationship within
each architecture. In Table 4, we check the cor-
relation within each inflection class. There is not
sufficient data to draw statistically significant con-
clusions in either case, but the correlations that we
report can still characterize the relationship in our
experiments. We find that all architectures show
a negative correlation. This implies that models
are more accurate for inflection classes on which
they correlate poorly with humans, and vise versa.
However, Table 4 shows that all German inflection
classes have a positive correlation between the two
metrics, with the exception of /-(e)n/. This is likely
because /-e(n)/ is highly frequent in the training
set, but is less suitable for the monosyllabic, neuter
wugs. Neither English inflection class shows a
strong relationship, though.

6 Conclusion

We ask which neural architecture most resembles
human behavior in a wug test. We introduce results
on a wider range of architectures than previous
work and find that the Transformer, a state-of-the-
art model for morphological inflection, frequently
correlates best with human wug ratings. Despite
this, a closer look at model ratings and produc-
tions on German plural inflection shows that neither
model closely resembles human behavior. We also
find that, while attention is crucial for LSTM inflec-
tion accuracy, it does not always lead to higher cor-
relations with humans. Additionally, the often less
accurate unidirectional model sometimes correlates
better than its bidirectional counterpart, especially
in the case of infrequent German plural classes.
Finally, while for some inflection classes more ac-
curate models correlate better with humans, there is
no clear relationship between the two metrics over-
all. Future work might consider behavior when
hyperparameters are tuned to maximize plausibility
of the probability distribution rather than accuracy.
Additionally, these results motivate a closer look
at the effect of LSTM encoder directionality with
respect to inflection class frequency.
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Limitations

This work is limited by the scope of languages and
inflection categories that our models are tested on.
We present results for two specific inflection cat-
egories in two languages. Previously, McCurdy
et al. (2020b) ran experiments on neural network
behavior for the German plural wugs used here,
which brought into question some of the conclu-
sions found in prior work for English past tense in-
flection. We thus believe that expanding this work
to new inflection phenomenon and new languages
may introduce results where the findings here do
not necessarily hold.
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Model Hyperparams.

BiLSTMAttn 0.93M
BiLSTMNoAttn 0.90M
UniLSTMAttn 0.56M
UniLSTMNoAttn 0.54M
Transformer 7.41M

Table 6: Number of parameters in each model.

A Individual Model Variance

In figure A.2, we show the variance, via boxplots,
when correlating with human ratings. Models typ-
ically have higher correlations with ratings than
with production probabilities, but the two are lin-
early related in our results. Similar to the findings
of C&al., who compared to production probabil-
ities, we find that individual BiLSTMAttn models
vary quite a bit with respect to correlation with
humans. For English, some models vary far less,
for example BiLSTMAttn has a much lower vari-
ance with respect to both regulars and irregulars
than BiLSTMAttn. Similarly, the Transformer of-
ten correlates the same across different random
initializations, with the exception of a few outliers.
Turning to the German boxplots in A.2b, we see
similarly low variance for the transformers, and
typically higher variance for most LSTMs. For ar-
chitectures that vary more, i.e. LSTMs, we often
see a higher correlation when the ratings are first
averaged (as reported in Table 1 and 3), but the
same is often not true for English.
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Figure A.1: English past tense productions (left) and average probability (right) for each architecture for all lemmas
and all random initializations.

Regular Irregular

UA BN BA UN TRM

(a) English past tense

UA BN BA UN TRM

/-e/    /-(e)n/   /-er/   /-s/    /- /∅
(b) German plural

Figure A.2: Boxplots of Spearman’s correlation for individual models with respect to average human ratings
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