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A Implementation

For reproducibility, we provide pseudocode for al-
gorithms integrated in different parts of JSMF.

A.1 Rectification

Algorithm 1 Alternating Projection
def RECTIFY-C AP(C,K)

1: CNN ← C
2: repeat
3: (U ,ΛK) = TRUNCATED-EIG(CNN ,K)
4: Λ+

K ← diag(max{diag(ΛK), 0})
5: CPSD ← UΛ+

KUT

6: CNOR ← CPSD +
1−

∑
i,j CPSD(i,j)

N2 11T

7: CNN ← max{CNOR, 0}
8: until the convergence of CNN
9: return C ← CNN /(

∑
i,j CNN (i, j))

diag(·) is the Matlab-style operation that maps the
input vector into the diagonal matrix or extracts the
diagonal vector from the input matrix.

Algorithm 2 Cyclic Douglas-Rachford Iteration
def RECTIFY-C DR(C,K)

1: C3 ← C
2: repeat
3: C1 ← I+RNORRPSD

2 C3

4: C2 ← I+RNNRNOR
2 C1

5: C3 ← I+RPSDRNN
2 C2

6: until the convergence of C3

7: return C ← C3/(
∑

i,j C3(i, j))

I is the identity mapping, RNORRPSD denotes
the composition of two reflection operators: the
matrix is first reflected onto the PSD space, then
onto the NOR space. RPSDC = 2CPSD − C,
and similarly for NOR and NN .

A.2 Topic Inference

Algorithm 3 Sparse Implicit Column-pivoted QR
def FIND-S(C,K)

1: (P , Q, S, r)← (C
T
, 0N×K ,∅, 0K)

2: u← (‖p1‖22, ..., ‖pN‖22) ∈ R1×N

3: for k = 1 to K do
4: n← argmax1≤i≤N ui
5: (S, qk, rk)← (S ∪ {n}, pn,

√
un)

6: qk ← (qk −
∑k−1

l=1 〈ql,pn〉ql)/rk
7: u← u− (qTk P ) ◦ (qTk P )
8: end for
9: return (S, r)

◦ : RN × RN → RN denotes entry-wise multipli-
cation of two vectors.

Algorithm 4 ADMM
def RECOVER-B(C, c,S, λ, γ)

1: (U , B̆, B)← ((CS∗)
T , 0K×N , 0N×K)

2: B̆∗S ← IK (IK =K ×K identity matrix)
3: F ← (γUTU + IK)−1

4: for each i ∈ {1, ..., N} \ S (in parallel) do
5: (v, f)← ((Ci∗)

T , γUTv)
6: y(0) ← Π∆K−1

(
(UTU)−1(f/γ)

)
7: q(0) ← y(0)

8: repeat
9: p(t) ← F (2y(t−1) − q(t−1) + f)

10: q(t) ← q(t−1) + λ(p(t) − y(t−1))
11: y(t) ← Π∆K−1(q(t))
12: until the convergence of y(t)

13: B̆∗i ← y(t)

14: end for
15: for (i, k) ∈ {1, ..., N} × {1, ...,K} do
16: Bik ← (B̆kici)/(

∑N
i′=1 B̆ki′ci′)

17: end for
18: return B

Π∆K−1(·) is the orthogonal projection to the K−1
simplex.



Algorithm 5 Diagonal Recovery
def RECOVER-A(C,B,S)

1: (CSS , D)← (C(S,S),B(S, ∗))
2: A←D−1CSSD

−1

3: return A

Set indexing extracts a principle submatrix whose
rows and columns correspond to the arguments.
Since B(S, ∗) is diagonal, we use the element-
wise reciprocal of D as D−1.


