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Introduction

The 2019 Conference on Computational Natural Language Learning (CoNLL) is the 23rd in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2019 will be held on November 3—4, 2019, and is co-located with the 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP) in Hong Kong.

CoNLL 2019 followed the tradition of previous CoNLL conferences in inviting only long papers, in
order to accommodate papers with experimental material and detailed analysis. The final, camera-ready
submissions were allowed a maximum of nine content pages plus unlimited pages of references and
supplementary material.

CoNLL 2019 received a record number of 485 submissions in total, out of which 97 papers were chosen
to appear in the conference program (after desk-rejections and a few papers withdrawn by the authors
during the review period), with an overall acceptance rate of 22%. 27 were selected for oral presentation,
and the remaining 70 for poster presentation. All 97 papers appear as long papers here in the conference
proceedings.

CoNLL 2019 features two invited speakers, Christopher Manning (Stanford University) and Gabriella
Vigliocco (University College London). As in recent years, it also features one shared task: Cross-
Framework Meaning Representation Parsing. Papers accepted for the shared tasks are published in
companion volumes of the CoNLL 2019 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2019, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful to
the many program committee members who did a thorough job reviewing our submissions. Due to the
growing size of of the conference, we also had area chairs, for the second time, supporting the CoNLL
organization. We were fortunate to have 24 excellent areas chairs who assisted us greatly in selecting the
best program:

Jason Baldridge, Google Al Language, USA;
Laurent Besacier, Université Grenoble Alpes, France;
Chris Biemann, Universitit Hamburg, Germany;
Asli Celikyilmaz, Microsoft Research, USA;
Snigdha Chaturvedi, UCSC, USA;

Grzegorz Chrupala, Tilburg University, The Netherlands;
Mathieu Constant, Université de Lorraine, France;
Ryan Cotterell, University of Cambridge, UK;
Dipanjan Das, Google Al Language, USA;

Greg Durrett, UT Austin, USA;

Manaal Faruqui, Google Assistant, USA;

Michel Galley, Microsoft Research, USA;

Manuel Montes y Gémez, INAOE, Mexico;

Dilek Hakkani-Tur, Amazon Alexa Al, USA;
Mohit Iyyer, UMass Amherst, USA;

Yangfeng Ji, University of Virginia, USA;

Preethi Jyothi, IIT Bombay, India;

Douwe Kiela, Facebook Research, USA;

Graham Neubig, CMU, USA;

Horacio Saggion, Universitat Pompeu Fabra, Spain;
Avirup Sil, IBM Research Al, USA;

Amanda Stent, Bloomberg Research, USA;
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Mark Stevenson, University of Sheffield, UK;
Andreas Vlachos, University of Cambridge, UK.

We are immensely thankful to Julia Hockenmaier and to the members of the SIGNLL board for their
valuable advice and assistance in putting together this year’s program. We also thank Pieter Fivez
and Marcely Zanon Boito for maintaining the CoNLL 2019 website, and Sebastian Ruder and Miikka
Silfverberg for preparing the proceedings for the main conference. We would like to thank our hard
working assistants Darryl Hannan, Ramakanth Pasunuru and Reyhaneh Hashempour for their support
with data checking and publicity. Our heartfelt gratitude also goes to Rodrigo Wilkens for system
administration and general START management.

Our thanks to the program co-chairs of CoNLL 2018, Anna Korhonen and Ivan Titov, who provided us
with excellent advice and help; to Vera Demberg, Naoaki Okazaki, Priscilla Rasmussen and the EMNLP
2019 Organization Committee for their helpful advice on issues involving the conference venue and local
organization.

We would also like to thank the following reviewers who were nominated for commendation: Peter
Anderson; Awais Athar; Niranjan Balasubramanian; Joost Bastings; Lisa Beinborn; Robert Berwick;
Xavier Carreras; Elizabeth Clark; Pablo Duboue; Asif Ekbal; Zhe Gan; Dan Garrette; Sebastian
Gehrmann; Kevin Gimpel; Carlos Gomez-Rodriguez; William L. Hamilton; David Harwath; Jack
Hessel; Jonathan K. Kummerfeld; Miryam de Lhoneux; Nelson F. Liu; Ryan McDonald; Einat Minkov;
Preslav Nakov; Jason Naradowsky; Khanh Nguyen; Vlad Niculae; Brendan O’Connor; Niki Parmar;
Rebecca J. Passonneau; Iria del Rio Gayo; Kenji Sagae; Marten van Schijndel; Kevin Small; Kristina
Striegnitz; James Thorne; Diyi Yang.

Finally, our gratitude goes to our sponsors, Facebook and Google, for supporting the conference
financially.

We hope you enjoy the conference!

Aline Villavicencio and Mohit Bansal
CoNLL 2019 conference co-chairs
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Invited Talk I

Ecological Language: A Multimodal Approach to the Study of Human
Language Learning and Processing

Gabriella Vigliocco
Department of Experimental Psychology, University College London, UK

Abstract

The human brain has evolved the ability to support communication in complex and dynamic environ-
ments. In such environments, language is learned, and mostly used in face-to-face contexts in which
processing and learning are based on multiple cues both linguistic and non-linguistic (such as gestures,
eye gaze, mouth patterns and prosody). Yet, our understanding of how language is learnt and processed
- as well as applications of this knowledge - comes mostly from reductionist approaches in which the
multimodal signal is reduced to speech or text. I will introduce our current programme of research that
investigates language in real-world settings in which the listener/learner has access to — and therefore can
take advantage of — the multiple cues provided by the speaker. I will then describe studies that aim at
characterising the distribution of the multimodal cues in the language used by caregivers when interacting
with their children (mostly 2-4 years old) and provide data concerning how these cues are differentially
distributed depending upon whether the child knows the objects being talked about (allowing us to more
clearly isolate learning episodes), and whether objects being talked about are present. I will then move
to a study using EEG addressing the question of how discourse but crucially also the non-linguistic cues
modulate predictions about the next word in a sentence. Throughout the talk, I will highlight the ways
in which this real world, more ecologically valid, approach to the study of language bear promise across
disciplines.

Biography

Gabriella Vigliocco is Professor of the Psychology of Language in the Department of Experimental Psy-
chology at University College London, Royal Society Wolfson Research Merit Fellow and Director of the
Leverhulme Doctoral training Programme for the Ecological Study of the Brain. She received her PhD
from University of Trieste in 1995, was a post-doc at University of Arizona, and after being at Univer-
sity of Wisconsin as Assistant Professor and the Max Planck Institute for Psycholinguistics as a visiting
scientist, she moved to UCL. Vigliocco leads a multidisciplinary team composed of psychologists, lin-
guists, computer scientists and cognitive neuroscientists sharing the vision that understanding language
and cognition requires integration of multiple levels of analysis and methodological approaches. Her
research focuses on the cognitive and neurobiological basis of human communication. More specifically
she is interested in how we learn and process language in real-word settings, how our semantic knowl-
edge interfaces with perception, action and emotion and how these systems are recruited during language
learning. Through the years, her work has been supported by numerous prestigious awards, including
Human Frontier Science Programme and currently European Research Council.



Invited Talk II
Multi-Step Reasoning for Answering Complex Questions

Christopher Manning
Department of Linguists and Computer Science, Stanford University, USA

Abstract

Current neural network systems have had enormous success on matching but still struggle in supporting
multi-step inference. In this talk, I will examine two recent lines of work to address this gap, done with
Drew Hudson and Peng Qi. In one line of work we have developed neural networks with explicit structure
to support attention, composition, and reasoning, with an explicitly iterative inference architecture. Our
Neural State Machine design also emphasizes the use of a more symbolic form of internal computation,
represented as attention over symbols, which have distributed representations. Such designs encourage
modularity and generalization from limited data. We show the model’s effectiveness on visual question
answering datasets. The second line of work makes progress in doing multi-step question answering
over a large open-domain text collection. Most previous work on open-domain question answering
employs a retrieve-and-read strategy, which fails when the question requires complex reasoning, because
simply retrieving with the question seldom yields all necessary supporting facts. I present a model for
explainable multi-hop reasoning in open-domain QA that iterates between finding supporting facts and
reading the retrieved context. This GoldEn Retriever model is not only explainable but shows strong
performance on the recent HotpotQA dataset for multi-step reasoning.

Biography

Christopher Manning is the inaugural Thomas M. Siebel Professor in Machine Learning in the Depart-
ments of Computer Science and Linguistics at Stanford University and Director of the Stanford Artificial
Intelligence Laboratory (SAIL). His research goal is computers that can intelligently process, under-
stand, and generate human language material. Manning is a leader in applying Deep Learning to Natural
Language Processing, with well-known research on Tree Recursive Neural Networks, the GloVe model
of word vectors, sentiment analysis, neural network dependency parsing, neural machine translation,
question answering, and deep language understanding. He also focuses on computational linguistic ap-
proaches to parsing, robust textual inference and multilingual language processing, including being a
principal developer of Stanford Dependencies and Universal Dependencies. He is an ACM Fellow, a
AAAI Fellow, and an ACL Fellow, and a Past President of the ACL (2015). His research has won ACL,
Coling, EMNLP, and CHI Best Paper Awards. He has a B.A. (Hons) from The Australian National Uni-
versity and a Ph.D. from Stanford in 1994, and he held faculty positions at Carnegie Mellon University
and the University of Sydney before returning to Stanford. He is the founder of the Stanford NLP group
(@stanfordnlp) and manages development of the Stanford CoreNLP software.
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Analysing Neural Language Models: Contextual Decomposition Reveals
Default Reasoning in Number and Gender Assignment

Jaap Jumelet
jumelet jaap@gmail.com
University of Amsterdam

Abstract

Extensive research has recently shown that re-
current neural language models are able to pro-
cess a wide range of grammatical phenomena.
How these models are able to perform these
remarkable feats so well, however, is still an
open question. To gain more insight into what
information LSTMs base their decisions on,
we propose a generalisation of Contextual De-
composition (GCD). In particular, this setup
enables us to accurately distil which part of
a prediction stems from semantic heuristics,
which part truly emanates from syntactic cues
and which part arise from the model biases
themselves instead. We investigate this tech-
nique on tasks pertaining to syntactic agree-
ment and co-reference resolution and discover
that the model strongly relies on a default rea-
soning effect to perform these tasks.

1 Introduction

Modern language models that use deep learn-
ing architectures such as LSTMs, bi-LSTMs and
Transformers, have shown enormous gains in per-
formance in the last few years and are finding ap-
plications in novel domains, ranging from speech
recognition and writing assistance to autonomous
generation of fake news. Understanding how they
reach their predictions has become a key question
for NLP, not only for purely scientific, but also for
practical and ethical reasons.

From a linguistic perspective, a natural ap-
proach is to test the extent to which these models
have learned classical linguistic constructs, such
as inflectional morphology, constituency struc-
ture, agreement between verb and subject, filler-
gap dependencies, negative polarity or reflexive
anaphora. An influential paper using this approach
was presented by Linzen et al. (2016), who inves-
tigated the performance of an LSTM-based lan-
guage model on number agreement. In many
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later papers (e.g. Gulordava et al., 2018; Wilcox
et al., 2018; Jumelet and Hupkes, 2018; Marvin
and Linzen, 2018; Giulianelli et al., 2018) a wide
spectrum of grammatical phenomena has been in-
vestigated, assessing these grammatical abilities
in a mainly “behavioural” fashion, by considering
the model’s output.

In this paper, we take it as established that neu-
ral language models have indeed learned a great
number of non-trivial linguistic patterns and ask
instead how language models come to show this
behaviour, and, more specifically, what kind of
information they use to come to their decisions.
There exist already a number of approaches that
look inside the high-dimensional vector represen-
tations and non-linear functions of these models,
trying to track the flow of information. In the next
section, we will review some of that work, dis-
tinguishing between hypothesis-driven and data-
driven methods. We highlight in particular one
method called Contextual Decomposition (CD,
Murdoch et al., 2018), that combines the strengths
of hypothesis- and data-driven analysis methods.

In the remainder of this paper, we then pro-
pose a generalisation of this method, which we call
Generalised Contextual Decomposition (“GCD”).
We derive equations for GCD for the case of a uni-
directional (one or multi-layer) LSTM (Hochre-
iter and Schmidhuber, 1997), and use the method
to analyse how a language model processes two
different phenomena: number agreement and gen-
dered pronoun resolution.

We demonstrate the power of GCD through the
revelation of some important asymmetries in the
way that both the singular-plural and the male-
female distinction are handled. In particular, we
find evidence for a default reasoning effect, which
we believe could also be important for future work
on detecting and removing bias: a default category
(singular, masculine) appears to be hard-coded in
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the weights of the language model, number and
gender information in the word embeddings them-
selves mainly plays a role for phrases of the op-
posite category (plural, feminine). Furthermore,
GCD enables us to investigate pronoun resolution
in a way that has not been done before: by delv-
ing into the model reasoning we are able to ac-
curately pinpoint where and how this resolution
takes place.!

2 Network analysis methods

Recently, methods to open the blackbox of deep
neural networks have become an important re-
search area (see Poerner et al., 2018; Belinkov
and Glass, 2019, for recent reviews of pro-
posed methods in NLP). We distinguish between
hypothesis-driven methods, and data-driven meth-
ods. Hypothesis-driven methods include probes
or diagnostic classifiers, that test whether specific,
a priori defined information can be decoded from
the internal states of a neural model, many ablation
studies, and types of correlation analysis, where
correlations between the structure of internal rep-
resentations of better and lesser understood mod-
els are studied). An example of this approach is
Giulianelli et al. (2018), who trained linear diag-
nostic classifiers on all layers and gate activations
of an LSTM to predict the number of the subject
that the verb, occurring later in the sentence, needs
to agree with (i.e. the number-agreement task).
Their results show that the relevant information
is encoded in a different way in different compo-
nents of the model, and at different times while
processing a sentence. This result is interesting,
because it starts from a clearly interpretable hy-
pothesis (number information must be maintained
somewhere while the network traverses the sen-
tence), but the work also demonstrates the limita-
tions of the approach: It progresses one hypoth-
esis about one linguistic pattern at a time and in-
volves much training, work, and computation at
each step.

Data-driven methods include gradient-based
methods and contextual decomposition. An ex-
ample of a gradient-based method is Arras et al.
(2017), who adapt Layer-wise Relevance Prop-
agation (LRP, Bach et al., 2015) to the case of
LSTMs. The key idea is to run the LSTM on each

' We have integrated all our code in diagnnose
(Jumelet and Hupkes, 2019), a well-documented analysis li-
brary which facilitate the diagnosis of neural network activa-
tions: github.com/i-machine-think/diagnnose.

input of interest (the forward pass), then define
a relevance vector at the output layer and prop-
agate that relevance backwards through the net-
work. The relevance vector simply singles out the
dimensions of the output of interest, and sets all
other dimension to zero. The backward pass is al-
most standard backpropagation, except that rele-
vance does not backpropagate into the gates. While
Arras et al.’s results reveal interesting patterns in
sentences used in a sentiment classification task,
their work illustrates some limitations as well. In
particular, the work deals with a classification task
with few classes, aggregates relevance per word
for each predicted class, but offers little insight in
how word meanings interact to build up sentence
meaning beyond ‘pushing in the right direction’
vs. ‘pushing in the wrong direction’.

An alternative data driven method, and the one
that we will expand on in this paper, is Contextual
Decomposition for LSTMs (CD, Murdoch et al.,
2018). The key idea behind this technique is to
partition the hidden states into two components,
that Murdoch et al. label ‘relevant’ and ‘irrele-
vant’. For each word in a sentence, they do a for-
ward pass that computes all cell and gate activa-
tions as in normal operation of the neural network,
but also partition each activation value of each
neuron in h or c¢ in a part that is caused by some
selected token or phrase in focus, and a part that is
not. They achieve this by deriving a factorisation
of the update formulas for h and c, that expresses
them as a long sum of components and then select-
ing some of these components as being relevant,
and others as irrelevant. Qualitative results on sen-
timent analysis suggest that CD can attribute roles
to words in a sentence very well, better than al-
ternatives the authors considered (which, unfortu-
nately, did not include LRP).

CD thus requires no extra training and requires
only the forward pass of the network. It can easily
be extended to work efficiently with many classes,
such as the language modelling task that we are in-
terested in. In the next section, we will define CD
more precisely, where we will use the terms in-
side and outside rather than relevant and irrelevant.
We then propose a generalisation that allows us
to experiment with different hypotheses on what
goes into the inside and outside bins, enabling
some of the advantages of hypothesis-driven anal-
ysis methods to be brought into this data-driven
method.
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Figure 1: A graphical overview of GCD, based on the LSTM design of Olah (2015). ¢ denotes the phrase in focus,
and t € ¢ implies the action is only performed when step ¢ is part of ¢. ® denotes an individual interaction; green
interactions are added the 3 part and red interactions to . V', W, and D represent the linear projections of the
LSTM itself. The interaction set denoted here corresponds to the IN set of Equation 12.

3 Generalised Contextual Decomposition

In this particular study, we consider the LSTM
language model that was made available by Gu-
lordava et al. (2018). This language model (LM)
is a 2-layer LSTM with 650 hidden units in
both layers, trained on a corpus with Wikipedia
data. Given the relevance of the specific LSTM-
dynamics for the understanding of the main
method of our paper, we repeat the equations that
describe it below.

Je=o(Wyxe + Vihio1 + by) )]

1t = o(Wizy + Vihe—1 + b;) ()
¢ = tanh(Wezy + Vzhe—1 + bz) (3)
oy = o(Woxt + Vohe—1 + bo) )
ct=ftOc—1+1i O &)
hi = o; ® tanh(c) (6)
zt = Dh + by (7
p: = SoftMax (z:) ®)

The final model output p; represents a multi-
nomial distribution over the model’s vocabulary.
Throughout the paper we refer to the bias terms
b as the model intercepts, to avoid confusion with
general biases that the model may have.

CD To compute the contributions of one or mul-
tiple input tokens (said to be in focus) to the out-
put of an LSTM cell, Murdoch et al. (2018) divide
each cell and hidden state into a sum of two parts:
a [ part, which contains the part of this particu-

lar state that stems from inside this phrase, and a
~ part, which contains information coming from
words outside this phrase. The output logit z; can
then be redefined as
2t = Dhy + by = DB} + D' + bg
=B +7 +ba

with 7 providing a quantitative score of the
phrase’s contribution to the logit. How a partic-
ular hidden state h; is partitioned into 3/ and
is determined by two things: i) The decomposi-
tion of the previous states c¢;—1 (5f_; and v;_;) and
hi—1 (B, and 4! ,), and ii) Which interactions
between the different 3 and ~ terms, the intercepts
b, and the input x; are considered to be part of the
inside contribution of the phrase. We provide a
graphical overview of our setup in Figure 1.

Factorised activation functions The gate inter-
actions cannot yet be expanded into a cross-term
of their input parts, due to the non-linear activa-
tion that wraps them. Murdoch et al. define a
method to factorise the sigmoid and tanh func-
tions for each specific gate into a sum of contribu-
tions of the input terms, such that

tanh(zi]\; yz) = Zjil Ltanh(yi)

Liann expresses the contribution of each input,
which is computed by averaging over the differ-
ences of all possible permutations of the input



terms; a procedure that corresponds to the calcula-
tion of the Shapley values (Shapley, 1953).

Before this factorisation is performed, an input
token x; is added to the inside part 3 if it is part
of the phrase for which we decompose (i.e. the
phrase in focus), otherwise it is added to . Equa-
tion 1, for example, can then be rewritten as:

fi=0 (Vf/Bthfl + Vf'fol + Wyxe + bf) o

=L, (Vfﬁth—ﬁr”f/‘!lfr) + LG(%h—l) + Lo (by)

where x; is considered to be inside the phrase in
focus and therefore added to the § part (denoted
in green for extra emphasis). A similar sum can
be written down for the input gate i; and the can-
didate cell state ¢;. This allows the two products
ft ® ¢t and iy ® ¢ of Equation 5 to be expanded
into a sum of cross-terms between the decom-
posed gate and (candidate) cell values. Expand-
ing the forget and input gate results in 15 cross-
terms, that each express different interactions be-
tween the current input, previous 8 and -y terms,
and the model intercepts.

Murdoch et al. state they observed improve-
ments when the intercept term is fixed to the
first position in each permutation. Consequently,
however, these intercepts are assigned a relatively
larger contribution, as their fixed position makes
their contribution independent of the magnitudes
of the other terms. We therefore pose that the full
set of permutations should be considered, to assign
unbiased contributions to each input term.?

Decomposing interactions Based on all the dif-
ferent interaction terms, the decomposition is de-
termined by which of these interactions should be
considered to belong to the inside part S of the
next cell state and which to the outside part ~.

In the formulation of Murdoch et al., all inter-
actions with outside parts ~; are disregarded for
the computation of 3,1, and therefore only infor-
mation directly stemming from the [3; terms with
no interference from -, is taken into account. Of
the 15 cross-product terms described above, this
leaves 5 terms to be part of 37 ;:

?In the original formulation this procedure is called /in-
earizing. We deemed this term to be slightly confusing, as
the resulting functions L are still non-linear.

3We only discovered the impact of this decision after the
paper had already been reviewed. While using the full set
of permutations did, fortunately, not qualitatively change our
conclusions, the exact numbers presented in this work thus
differ from the earlier version of this paper. For complete-
ness, we report the original results with the fixed intercept
positions in the supplementary materials of this article.

Bir1 = Lo (ViBi+Wia) © Bf B-B
+ Lo (by) © B¢ B-b
+ Lo (ViB+Wizt) © Leann (VaBi +Were) BB
+ Lo(Vzﬂél+Uﬁxm) ©® Litann (be) B-b
+ Liann (VEBI+Wet) © Lo (bs) B-b

(10)
The remaining 10 terms from the cross-product are
put in 77, ;. We use the notation {3-3, 3-b} to
concisely describe this set of interactions. The de-
composition of the hidden state is created by de-
composing the output gate:

Biter = Lo (VB +Wot) © Biiy
+ Lo (bo) © B

The decomposed contribution score (37 over the
model vocabulary at step T' of some phrase in fo-
cus is then calculated by passing the decomposed
hidden state to the decoder, i.e. D,B%. This score
can be expressed as a relative contribution by nor-
malising it by the full model logit z (including
bg). In a multi-layer LSTM, (8 and -y parts are not
only propagated forward, but also upward, where
they are added to their respective parts in the layer
above them. For initialisation [ is set to a zero
vector, and  is set to the initial LSTM states.*

an

Generalising CD While Murdoch et al. (2018)
consider only one way of partitioning interactions
between inside and outside components, their
setup can be quite easily generalised to also al-
low other interactions to be included in the inside
terms (3. To obtain a better insight into how differ-
ent interactions contribute to the final prediction,
we experiment with various ways of defining the
set of relevant interactions.

A particular case concerns the interactions be-
tween $ and ~. It wouldn’t be correct to com-
pletely attribute the information flowing from
these interactions to the phrase in focus, but dis-
allowing any information stemming from interac-
tions of a phrase with a subsequent token results
in loss of relevant information. Consider, for in-
stance, the verb prediction in a number agreement
task. While the correct verb form depends only on
the subject, the right time for this information to
surface depends on the material in between, which
in the setup described in Equation 10 would be dis-
carded by assigning the - interactions to .

“For the initial states we use the activations that follow
from the short phrase “. <eos>”. This phrase resets the
model state to a clean slate, and leads to better results than
using 0-valued activations.



Taking inspiration from Arras et al. (2017), and
based on their motivation, we add the 3,-7, in-
teraction to the relevant interaction set, while still
disregarding a vs-3, interaction. The g subscript
denotes the part of the interaction that is coming
from the gate, and s the source part. We denote
this amended interaction as 5-v*.

Furthermore, we follow the addition of Singh
et al. (2019) of only adding the intercept interac-
tions b-b to the inside part if the current time step
is part of the phrase in focus, which we denote as
b-b € x. We add these S-v* and b-b € z inter-
actions to Equation 10, resulting in the following
decomposition that is presumed to come from in-
side the phrase in focus (denoted as IN):

Bivr = {B-B, B-b}

+ Lo (Vi) © i R0
+ Lo‘ (‘/'L’Yth) © Ltanh(%ﬁth“kll'vlelff) /3'7*
+ /‘ﬁ(l),) ® /‘lauha)f,) b-bex (12)

We also experimented with various other inter-
action sets. To determine the influence of the gate
intercepts, we create an interaction set that does
not take the input embeddings into account at all:
{B-B, B-~*, B-b, b-b}, with x always added to =,
denoted as INTERCEPT*. We include 8-v* to still
account for the way the intercepts are gated by the
input sentence. The initial hidden and cell state are
added to B now as well, as we consider these states
to be part of the model bias. Finally, to determine
the dependence of the input on the gate intercepts
we use an interaction set that never takes the inter-
actions with any intercept into account: {3-3, [3-
~*}, denoted as “\INTERCEPT.

4 Experimental setup

We use GCD to study how our LSTM model han-
dles two different linguistic phenomena: subject-
verb agreement and anaphora resolution in rela-
tion to gender. Next to the model of Gulordava
et al. (for which we present our results), we also
ran our experiments on the LM of J6zefowicz et al.
(2016), which arrives at similar results.

4.1 Subject-verb agreement

We consider a variant of the number-agreement
(NA) task that was proposed by Linzen et al.
(2016) to assess the syntax-sensitivity of language
models. In this task, a model is evaluated based
on its ability to track a long-distance subject-verb
relation, which is assessed by the percentage of
times that the verb-form it prefers matches the

number of the syntactic subject. Commonly, the
material in between subject and verb contains an
attractor noun that competes with the syntactic
subject, e.g. The keys on the table are.

Here, we consider the NA corpora made avail-
able by Lakretz et al. (2019), which consists of a
number of data sets containing a range of syntactic
constructions in which number agreement plays a
role. We report results for several of their data
sets, but focus in particular on their NounPP sub-
set, in which sentences contain an attractor embed-
ded in a prepositional phrase. These sentences are
formed following the template The N Prep the N
V [..], e.g. The boys near the car greet [..]. The
sentences in this data set are split based on the
number of the subject and the attractor, resulting
in four different conditions: SS, SP, PS, and PP.

4.2 Anaphora resolution and gender bias

Our second experiment concerns anaphora resolu-
tion and the possible gender biases that networks
may use to perform this task. We focus on intra-
sentential anaphora resolution, in which a pronoun
in a subordinate clause refers to an entity in the
main clause, based on gender information. For ex-
ample: The monk liked the nun, because she was
always nice to him.

Compared to number agreement it is more dif-
ficult to formulate a setup for anaphora resolution
in which there is a right or wrong prediction that
directly reflects how the model handles the phe-
nomenon: when predicting she in the example, it
could have been equally probable to predict ke.
Rather, to establish if a model correctly resolves
the referent of a pronoun, it should be checked
what the model considered to be the source of this
prediction, which cannot directly be inferred from
the prediction itself. GCD gives us exactly this
information and is therefore an excellent tool to
study anaphora resolution in language modeling.

To create our corpus, we use the templates from
the WinoBias corpus created by Zhao et al. (2018).
This corpus contains sentences with job titles that
are gender neutral, yet contain a stereotypical bias
towards one gender (doctors and CEOs are male,
nurses and housekeepers female). We construct
two types of corpora, one containing the stereo-
typical job titles of Zhao et al. and one in which
we replace these titles by entity descriptions that
are unambiguously gendered (king, bride, father,
etc.). Similar to the NounPP corpus for NA, we
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Figure 2: Average contributions for the NounPP corpus of Lakretz et al. (2019), defined as 87 /z;. INIT denotes
the contribution of the initial states. The picture depicts an asymmetry in the way that the model encodes singularity
and plurality: while plural verbs depend strongly on the subject, for singular sentences this is not the case.

create 4 different conditions, based on the gender
of the subject and object (FF, FM, MF, and MM).
An example of an MF sentence would be The fa-
ther likes the woman, because he/she. We sample
from the set of entity descriptions to create 500
sentences per condition, for both corpus types.

4.3 Experiment types

Phrase contributions In the first type of exper-
iment, we consider the contributions of different
words in the input to a later prediction of the
model. This allows us to compare the contribu-
tions of different words in the sentence and track
which words the model uses to come to its pre-
diction. We compute a phrase’s contribution to a
prediction at step ¢ as 37/ z.

Pruning information In the second type of ex-
periment, we focus on the model’s predictions. In
particular, we study how the model’s predictions
change when it is forced to consider only specific
parts of the input, by disregarding all information
that does not belong to the inside information of
that part of the input. This allows us to quantify
the extent to which a correct prediction does in
fact stem from that phrase. For this experiment,
we consider several different interaction sets, that
differ in what is considered to be inside the contri-
bution of the phrase: IN describes the direct con-
tribution of some phrase, INTERCEPT the contri-
bution of the model intercepts, and “\INTERCEPT
the contribution of some phrase without its inter-
cept interactions.

S Subject-verb Agreement

We now study what information the LM uses to
achieve the high prediction accuracies that were

reported by Lakretz et al. (2019).

5.1 Phrase contributions

For every word in a sentence, we compute the
GCD contribution for all words preceding this
word. We plot these contributions in a decomposi-
tion matrix (akin to the attention plots often seen
in machine translation papers). Every cell of this
matrix represents the contribution of an input x;
(row 1) to an output y; (column j). The complete
decomposition of an output word y; can thus be
found in column j. The reported scores are the
decomposed scores normalised by the total model
logit, resulting in the relative contribution.

In Figure 2, we plot the average decomposition
matrices for the SP and PS splits of the NounPP
data set. While many interesting observations can
be made here, we would like to focus on the final 2
columns that represent the decompositions of the
correct and wrong verb in the sentence, and on the
contribution of the subject to this verb. In the sin-
gular case (2b), this contribution is, surprisingly,
relatively low: The correct verb prediction does
not seem to depend solely on the syntactic sub-
ject, but stems from elements that lie outside the
subject as well. For the plural case, this picture
is strikingly different: The highest contribution
now stems from the subject of the sentence. When
considering the decomposition of the wrong verb
(the final column) it becomes even more clear that
contributions to a plural verb predominantly stem
from a plural noun, whereas singular verbs receive
strong contributions from non-numbered tokens as
well. This quite remarkable difference provides
the first evidence for one of our conclusions: A
singular prediction acts as the default number for
the model, and predicting a plural verb requires



GCD
Task | C ||FULL IN INTERCEPT® —INTERCEPT
Simple | S || 100 [73.3 91.3)  97.3 (100) 69.7 (86.3)
Simple | P || 100 | 100 100y  32.7 (7.7) 100 (100)
nounPP [SS1]| 99.2 [93.0 99.7) 99.8 (99.8) 72.7 (88.7)
nounPP [SP || 87.2 190.3 (99.3) 98.8 (99.8) 60.5 (83.5)
nounPP [PS|| 92.0 | 100 (100) 0.0 (0.0 100 (100)
nounPP [PP|| 99.0 | 100 (99.3) 7.0 (0.5) 99.8 (100)
namePP |SS || 99.3 [97.7 91.3)  99.4 (100) 76.2 (90.9)
namePP [PS || 68.9 [98.3 (98.2) 1.3 (0.0 99.9 (99.9)

Table 1: Accuracies on various subject-verb agreement
tasks of Lakretz et al. (2019). FULL denotes the full
model accuracies. IN is the decomposition of the sub-
ject, INTERCEPT* only decomposes the gate intercepts
of the model. mINTERCEPT takes no interactions with
the intercepts into account. Singular conditions are de-
noted in green. () denotes accuracies of scores without
decoder bias, i.e. Dh; vs Dh; + by.

some explicit evidence coming from the subject.

5.2 Pruning information

To quantify to which extent the model bases its
prediction on the subject, we prune all information
that is not directly related to the subject and repeat
Lakretz et al.’s NA tasks. If the model prediction
were based solely on the number of the subject,
its accuracy should go up, as we filter out all po-
tentially intervening or confusing information. If,
on the other hand, the prediction of the verb is
not causally linked to the subject, but the model
is using heuristics that require the rest of the sen-
tence, no increase in accuracy is to be expected.
We show the results, along with the accuracy of
the full model in Table 1.

These numbers show a strong causal relation
between plural subjects and verbs: The number
prediction accuracy for the IN decomposition goes
up for all cases with a plural subject. This confirms
our previous finding from the decomposition ma-
trix, which showed a relatively high contribution
of plural subjects to plural verbs, as well as the
conclusion of Lakretz et al. (2019) that the model
is in fact keeping track of syntactic structure.

When considering the singular subjects an in-
teresting pattern emerges: The decomposition of
sentences for which the intervening attractor has
the same number leads to a lower accuracy. This
confirms that the model is in fact basing its predic-
tion for these conditions on information that lies
outside the subject itself.

Intercepts When we only decompose with re-
spect to the gate intercepts (INTERCEPT*, column

5) it turns out the model has an extreme preference
for selecting singular verbs. Decomposing with-
out the intercept interactions (NO INTERCEPT, col-
umn 6) leads (as expected) to opposite results: the
decomposed model now has a strong preference
towards plural verbs as the singular prediction no
longer can depend on these intercepts. This further
confirms that singular verbs are used as a default
baseline, which is partly encoded in its intercepts.
To predict plural verbs, on the other hand, some
evidence is needed, which the model picks up cor-
rectly from the subject number.

Corpus frequency One would expect that due
to the model’s default number being singular, this
class to be more encountered during training. This
turns out not to be the case: in the model’s training
corpus the plural verbs of the NA tasks occurred
over 5 times as often as their singular counterparts.
This higher frequency is in fact represented in the
decoder intercept, which is higher on average for
plural verbs, but it is surprising that the LSTM
weights encode a default for the minority class.

6 Anaphora-resolution and gender

For the NA-tasks, the full model accuracy provides
evidence that the model can perform the task well;
for anaphora resolution, it is not possible to create
such accuracies based on the full model predic-
tions alone. In this section, we therefore address
two different questions: 1) Does the model cor-
rectly resolve referents? In other words: When the
model generates a male or female pronoun, does it
consistently do this based on male and female ref-
erents encountered earlier in the sentence, and 2) If
the model correctly performs anaphora resolution,
what types of interactions and information does it
use to do so? In our analysis we furthermore con-
sider the difference between sentences with un-
ambiguously gendered referents with sentences in
which the gender of the referents is ambiguous but
contains a stereotypical male or female bias.

6.1 Phrase contributions

As the template that the sentences in our anaphora
data set follow is not as rigid as those of the NA
tasks, creating an averaged decomposition matrix
for all words in the sentences does not result in a
comprehensive picture. To evaluate whether the
model links pronouns to referents of the correct
gender, we subtract the referent contribution to she
from that to he: B3,/2he — 5,/ %she- A positive
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(a) unambiguous (b) stereotypical

Figure 3: Average decomposed preference of he over
she, calculated as the difference between the relative
contributions: 87,/ zne — 8%,/ %she- Positive values de-
note male preference, negative values female prefer-
ence. Phrases occurring between subject and object,
and object and pronoun are denoted with [...].

difference then indicates this referent had a greater
contribution towards predicting he than she, and
a negative difference vice versa. Little difference
indicates that the referent did not contribute much
to the gender of the predicted pronoun.

Unambiguous referents In Figure 3a we plot
this relative contribution difference for the two
conditions in our data set that contain both an un-
ambiguous female and male referent. It is evident
that the model bases its prediction on a referent of
the right gender: The female subjects and objects
contribute more to the prediction of she (reflected
by the negative purple cells) and the male subjects
and objects more to the prediction of ke (the posi-
tive green cells).

Interestingly, this effect is much stronger visi-
ble for the female connections. The reason for this
can be found in the model intercepts; male prefer-
ence is more strongly encoded in the intercepts of
the decoder: he has an intercept of 7.75, she only
6.09. This enables the model to use this male pre-
diction as a default, similar to how singular verbs
acted as a default baseline for number prediction.
Akin to number agreement the model thus needs
to encounter sufficient evidence of an entity being
female to prefer a female pronoun. In the next sec-
tion we show that this male default is encoded in
the gate intercepts as well.

Stereotypical referents The intermediate con-
clusion that the language model performs success-
ful anaphora resolution on our experiment also
provides us the opportunity to probe the gender
biases of the model. To do so, we repeat the pro-
noun preference test on an adapted version of the
WinoBias corpus (Zhao et al., 2018), in which all
referents are only stereotypically considered to be

male or female (e.g., doctor and nurse). The re-
sults, plotted in Figure 3b, show that the model is
very susceptible to stereotypically male referents;
these decomposed scores contain an even stronger
male preference than for the unambiguous corpus.
The stereotypically female referents, on the other
hand, do not lead to a female preference, indicat-
ing that their contribution is not considered strong
enough evidence by the model to prefer a female
pronoun. All the intermediate tokens exhibit a
slight male preference, a pattern that is compa-
rable to the singular bias of the NA task. From
these results we conclude that the model considers
a stereotypically male job occupation to be male
(“doctors are male”), whereas this does not hold
for stereotypically female jobs.

6.2 Pruning information

Following our subject-verb agreement setup, we
compare the predictions of our language model
when it focuses only on the subject or object of the
sentence. In Table 2, we show the percentage of
cases in which /e is assigned a higher decomposed
score than she, for both unambiguously gendered
referents and stereotypically gendered referents.

FULL In the first column of Table 2a, we see
that if the sentence contains referents of the same
gender (MM & FF), the full model prediction al-
most always prefers to use a pronoun with that
same gender. When both a male and female ref-
erent are present, the model has a slight prefer-
ence for generating a pronoun that matches with
the subject of the sentence (which, interestingly,
is the referent that is the furthest away from the
pronoun). In the stereotypical case (Table 2b), the
difference between male and female sentences for
the FULL scores almost disappears, showing a pre-
dominant male pronoun preference. This shows
that the model by default prefers a masculine pro-
noun, and only when it is provided sufficient evi-
dence of a female entity it will consider predicting
she (similar to number agreement).

Pruning When considering the decompositions
with relation to the subject or object we see that
the decomposed score of a male entity in all con-
ditions always prefers a male pronoun. For female
entities this effect is slightly obscured by the male
bias of the decoder intercept: The accuracies with-
out adding this intercept highlight that female con-
tributions lead to a strong female preference. For
the stereotypical corpus this female preference is



GCD GCD
FULL | SUBJECT OBJECT INTERCEPT" FULL | SUBJECT OBJECT INTERCEPT*
MM 100 100 932) 100 97.8) 100 (93.2) MM 100 100 (100) 100 (100) 100 (88.0)
MF 58.6 100 86.4)  47.2 (0.8) 100 (96.0) MF 94.6 100 99.6)  95.4 (84.0) 100 (84.8)
FM 37.0 29.2 0.6) 100 (97.2) 100 (98.0) FM 88.8 90.6 (77.4) 100 (100) 100 (91.0)
FF 1.2 77.2 (0.8) 88.8 (1.2) 100 92.2) FF 84.6 92.8 (75.6)  97.4 (84.0) 100 (89.2)

(a) Yohe>she, unambiguous referents

(b) %ohe>she, stereotypical referents

Table 2: Gender preference on the fixed and stereotypical gender corpora. Reported scores are the percentage of
times he is preferred over she. The first column denotes the gender of the subject and object. FULL denotes the full
model preference, SUBJECT the decomposed score of the subject phrase (including determiners), and OBJECT the
decomposed object score. INTERCEPT* is the decomposed score with relation to the intercepts only. (-) denotes
accuracies of scores without decoder bias, i.e. Dh; vs Dh; + by.

far less apparent, which is in line with the results
of Section 6.1. When solely considering the inter-
cept contributions it becomes clear once more that
a strong male bias is encoded in them, an effect
that is further amplified by the decoder intercept.

Corpus frequency For NA the default class
turned out to be less frequent in the training cor-
pus. For our gender setup it turns out the male
default is in fact the majority class, with he being
nearly 4 times more frequent than she. We con-
clude that the default class is not directly corre-
lated to training frequency and likely depends on
the phenomenon at hand, although an investiga-
tion incorporating a wider range of models would
be needed to establish this.

7 Conclusion

We propose a generalised version of Contextual
Decomposition (Murdoch et al., 2018) — GCD -
that allows to study specifically selected interac-
tions of components in an LSTM language model.
This enables GCD to extract the contributions of
a model’s intercepts, or to investigate the interac-
tions of a phrase with other phrases and intercepts.
We analyse two linguistic phenomena in a pre-
trained language model: subject-verb agreement,
in which number plays a role, and anaphora reso-
lution for which gender is important. Anaphora
resolution in the context of language modelling
had not been investigated thoroughly before, and
our setup enables this at an unprecedented level.
We trace what information the language model
uses to make predictions that require gender and
number information and find that, in both cases,
the model applies a form of default reasoning, by
falling back on a default class (male, singular) and
predicting a female or plural token only when it is
provided enough explicit evidence. As such, the
decision to predict masculine and singular words

can not be traced back evidently to specific infor-
mation in the network inputs, but is encoded by
default in the model’s weights.

Our setup and results demonstrate the power of
GCD, which can be applied on top of any model
without additional training. Our results bear rele-
vance for work on detecting and removing model
biases, and may clarify some of the issues that
were raised by Gonen and Goldberg (2019), who
argue that current bias removal methods only op-
erate on a superficial level. GCD could also be
used to aid a model in guiding it towards the right
flow of information, which could be applied to a
wide range of applications such as the interven-
tions of Giulianelli et al. (2018). In the future, we
plan on extending GCD to other types of language
models, such as the currently popular attention-
based models. Furthermore, we wish to expand
the capacities of GCD by improving the gate fac-
torisation with a better Shapley value approxima-
tor, such as those proposed by Lundberg and Lee
(2017) or Ancona et al. (2019). The axiomatic ap-
proach of Montavon (2019) could provide further
insight into how GCD relates to other explanation
methods, and we are confident that combining the
strengths of GCD with that of other frameworks
will ultimately lead to a more robust and faithful
insight into deep neural networks.
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Abstract

Supertagging is a sequence prediction task
where each word is assigned a piece of com-
plex syntactic structure called a supertag. We
provide a novel approach to multi-task learn-
ing for Tree Adjoining Grammar (TAG) su-
pertagging by deconstructing these complex
supertags in order to define a set of re-
lated but auxiliary sequence prediction tasks.
Our multi-task prediction framework is trained
over the exactly same training data used to
train the original supertagger where each aux-
iliary task provides an alternative view on the
original prediction task. Our experimental re-
sults show that our multi-task approach signifi-
cantly improves TAG supertagging with a new
state-of-the-art accuracy score of 91.39% on
the Penn treebank supertagging dataset.

1

A treebank for lexicalized tree-adjoining grammar
(TAG) (Joshi and Schabes, 1997) consists of an-
notated sentences where each word is provided a
complex tree structure called a supertag and the
overall parse of the sentence combines these su-
pertags into a parse tree. Supertagging is a task
that learns a sequence prediction task from this an-
notated data and is able to then assign the most
likely sequence of supertags to an input sequence
of words (Bangalore and Joshi, 1999). Once the
right supertag is assigned then parsing is a much
easier task and may not even be needed for many
applications where information about syntax is
needed but a full parse is unnecessary.
Supertagging has been shown to be useful for
both Tree Adjoining Grammar (TAG) (Banga-
lore and Joshi, 1999) and combinatory catego-
rial grammar (CCG) (Hockenmaier and Steedman,
2007) parsing. In this paper we aim to improve
the state-of-the-art for the task of learning a TAG
supertagger from an annotated treebank (Kasai
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et al., 2018). We observe that supertag predic-
tion does not take full advantage of the complex
structural information contained within each su-
pertag. Neural models have been used to learn em-
beddings over these supertags and thereby share
weights among similar supertags. Friedman et al.
(2017) provide tree-structured neural models over
supertags which can learn interesting relationships
between supertags but the approach does not lead
to higher supertagging accuracy.

Our main contribution is to provide several
novel ways to deconstruct supertags to create mul-
tiple alternative auxiliary tasks, which we then
combine using a multi-task prediction framework
and we show that this can lead to a significant im-
provement in supertagging accuracy.

Multi-task learning (MTL) (Caruana, 1997)
learns multiple heterogenous tasks in parallel with
a shared representation so that what is learned for
one task can be shared for another task. In most
cases the improvement is due to weight sharing be-
tween different tasks (Collobert and Weston, 2008;
Luong et al., 2015). While some combinations
may not provide any benefit in MTL (Bingel and
Se¢gaard, 2017) and the improvements might be
simply due to training on more data. However,
MTL can be effective even when using large pre-
trained models (Liu et al., 2019).

Unlike most other work in multi-task learning
with neural models we do not use different an-
notated datasets for each task. Similar to the ap-
proach to combining different representations for
phrase structure parsing in (Vilares et al., 2019)
we also construct multiple tasks from exactly the
same training data set. Our approach is also dis-
tinct in that we take advantage of the structure of
the supertags by deconstructing the tree structure
implicit in each supertag.

Our experimental results show that our novel
multi-task learning framework leads to a new

Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 12-21
Hong Kong, China, November 3-4, 2019. (©2019 Association for Computational Linguistics



state-of-the-art accuracy score of 91.39% for TAG
supertagging on the Penn Treebank dataset (Mar-
cus et al., 1993; Chen et al., 2006) which is a sig-
nificant improvement over the previous multi-task
result for supertagging that combines supertagging
with graph-based parsing (Kasai et al., 2018).

2 The Supertagging Task

Supertagging assigns complex structural descrip-
tions to each word in the sentence. The complex
structural descriptions come from grammar for-
malisms that are more expressive than context-free
grammars for phrase structure trees or dependency
trees. In Tree Adjoining Grammar (TAG), the su-
pertags are tree fragments that can express vari-
ous syntactic facts such as transitive verb, wh- ex-
traction, relative clauses, appositive clauses, light
verbs, prepositional phrase attachment and many
other syntactic phenomena. In combinatory cat-
egorial grammar (CCG) the supertags are types
and their type-raised variants which also cap-
ture similar syntactic phenomena as in TAG su-
pertags. Supertagging can be viewed as “almost
parsing” (Bangalore and Joshi, 1999) and can pro-
vide the benefits of syntactic parsing without a full
parser.

In this paper we focus on the TAG supertagging
task, however, our proposed methods can likely be
used to improve CCG supertagging as well. Su-
pertagging is a relatively simple linear time se-
quence prediction task similar to part of speech
tagging. Supertagging can be useful in many
applications such as machine translation, gram-
matical error detection, disfluency prediction, and
many others while being a much simpler task than
full parsing.

In addition, for both TAG and CCG, supertag-
ging is an essential first step to parsing so any
improvements in supertag prediction will benefit
parsing as well. For all these reasons, in this paper
we focus on the supertagging task. TAG and CCG
can be parsed using graph-parsing methods in
O(n?) but the complexity of unrestricted parsing
for both formalisms is O(n®) which is prohibitive
on real-world data. Neural linear-time transition
based parsers are still not accurate enough to com-
pete with the state-of-the-art supertagging mod-
els or parsers that use supertagging as the initial
step (Chung et al., 2016; Kasai et al., 2018).

An example of the supertagging task for Tree
Adjoining Grammars (TAGs) is shown in Fig. 1.
The | symbol on a leaf node represents a substitu-
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tion node which can be expanded by a tree rooted
in the same label, e.g. t3 rooted in NP substitutes
into the NP| node in t46. The * symbol on the leaf
node of a tree ¢ represents an adjunction node (also
called a footnode) and signifies that ¢ can be in-
serted into an internal node of another tree with the
same label, e.g. t103 adjoins into the AP node in
t46. The ¢ node is called the head and represents
the node where the word token is inserted into the
tree. The table on the right shows how many dif-
ferent supertags are possible for each word in the
sentence.

Three factors make supertagging a challenging
task for sequence prediction: much more severe
token level ambiguity when compared to other
like part-of-speech tagging, a large number of dis-
tinct supertag types (4727 distinct supertags in
our dataset, including an unknown supertag) and
a complex internal structure for each supertag.

3 Baseline Supertagging Model

For our baseline supertagging model we use the
state-of-the-art model that currently has the high-
est accuracy on the Penn treebank dataset (Kasai
et al., 2018). For the supertagging model the main
contribution of Kasai et al. (2018) was two-fold:
the first was to add a character CNN for model-
ing word embeddings using subword features, and
the second was to add highway connections to add
more layers to a standard bidirectional LSTM. The
output layer was a standard multi-layer perceptron
that had a softmax output over the set of supertags.
Another extension to the standard sequence pre-
diction model in Kasai et al. (2018) was to com-
bine supertagging with graph-based parsing.

In this paper, we focus on the supertagging
model and compare only on supertagging accu-
racy. The neural model for supertagging that we
use as a baseline uses graph-based parsing as an
auxiliary task and has the current highest accu-
racy score on the Penn treebank (90.81%). The
model has three main components: the input layer,
the bidirectional LSTM component, and the out-
put layer which computes a softmax over the set
of supertags. The input to the model is a sequence
of words and the output is a sequence of supertags,
one per word, which makes it a standard tagging
aka sequence prediction task.

3.1 Input Layer

Each word in the input sequence is converted into
a word embedding in the input layer. Following



23: t103:

NP NP VP AP
N | N RN
Do NPx No Vo VP« Ado APx

| |
The ans‘wer see‘ms perfectly

o £26: Token  #supertags
S S The 5
A /\ answer 14
NPy J, VP Sx 0 seems 20
‘ perfectly 5
AP clear 32
‘ . 16
Ao
clear

Figure 1: An example that explains the supertagging task for Tree Adjoining Grammars (TAGs). For the sentence
“The answer seems perfectly clear .” the correct supertag for each word is shown above. The table on the right
shows how many different supertags are possible for each word in the sentence. See Section 2 for more details on
the notation used to define the supertags and how the supertags can be combined to form a parse tree.

(Kasai et al., 2018) we use two components in the
word embedding:

e a 30-dimensional character level embed-
ding vector computed using a char-CNN
which captures the morphological informa-
tion (Santos and Zadrozny, 2014; Chiu and
Nichols, 2016; Ma and Hovy, 2016; Kasai
et al., 2018). Each character is encoded as
a 30-dimensional vector, and then we apply
30 convolutional filters with a window size of
5. This produces a 30-dimensional character
embedding.

a 100/200/300 size word embedding which
is initialized using GloVe (Pennington et al.,
2014). For words that do not appear in
GloVe, we randomly initialized the word em-
bedding.

A start of sentence token and an end of sentence
token is added into the beginning and ending po-
sition of each sentence, but is not included in the
computation of loss and accuracy.

Unlike (Kasai et al., 2018) we do not use pre-
dicted part of speech (POS) tags as part of the in-
put sequence. In our experiments, the improve-
ment was negligible and there was a significant
overhead of having to do part of speech predic-
tions at test time.

3.2 BIiLSTM Layer

The core of this base model is a bidirectional
recurrent neural network, in particular a Long
Short-Term Memory neural network (Graves and
Schmidhuber, 2005). For the hyperparameters, we
use the settings in Kasai et al. (2018) in order to
ensure a fair comparison.
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Unlike (Kasai et al., 2018) we do not use high-
way connections in our model. We did exper-
iment with the addition of highway connections
but we found no improvement in accuracy over
the baseline BiLSTM-only model with a signifi-
cant increase in training time.

The bidirectional representation has 1024 units,
a combination of the 512 forward and backward
units each. Dropout layers (Gal and Ghahramani,
2016; Srivastava et al., 2014) are inserted between
the input and BiLSTM layer, between BiLSTM
layers, and between recurrent time steps. The
dropout rate used was 0.5. We used 2-3 BiLSTM
layers. Kasai et al. (2018) provide some reasons
why > 3 layers do not provide any additional ac-
curacy even with highway connections.

3.3 Output Layer

We concatenate hidden vectors from both direc-
tions of the last layer of BILSTM and pass it into a
multilayer perceptron (MLP). In practice a single
layer perceptron performs just as well in this task.
The number of input neurons of the single layer
perceptron equals 1024 (2 x 512) and the output
vector size equals the number of labels for each
specific task: 4727 for the main supertagging task.

4 Deconstructing Supertags

The error analysis of our baseline BILSTM model
is shown in Fig. 1. We observed some consis-
tent ways in which the baseline model confused
the correct supertag with the incorrect one. We
also observed that the baseline BiLSTM model
can achieve over 97% 3-best accuracy on the su-
pertagging task. This means it should be possible
to boost the accuracy by rescoring the alternatives
that already exist in the n-best output of the base-
line supertagger. Rather than a re-ranking frame-



Prediction Ground Truth #times in dev
2: t36:
NP NP
No NPx Ao NPx 194
t13:
%
CO: VP PP
COo INo NP; | 156
t4: t13:
NP VP
NP PP VPx PP
INo NP | INo NP | 144

Table 1: The top-3 errors made by the state-of-the-art
Bi-LSTM supertagger. tCO stands for a co-head in the
case where a supertag has multiple heads. One example
is a sentence fragment like pull it from the marketplace
which contains a multi-word predicate pull ... from;
pull is the Vo head of tree t531 which has a IN® node
where tCO (headed by from) is inserted.

work we used a multi-task learning framework in
order to boost the scores of correct supertags over
the error-prone supertags. The auxiliary tasks we
created based on our error analysis are as follows.

4.1 Auxiliary Tasks
4.1.1 HEAD

Consider the trees t2 and t36 in Table 1. t2 is
headed by a noun head /V and t36 is headed by an
adjective A. The label of the head node is a use-
ful auxiliary task for disambiguation. We define
a function HEAD(%) to get the head node (marked
by a diamond) of supertag ¢. There are 29 distinct
HEAD labels.

4.1.2 ROOT

Consider the trees t4 and t13 in Table 1. t4 mod-
ifies an NP node while t13 modifies a VP node.
This is a case of preposition attachment ambigu-
ity. The label of the root node is a useful auxil-
iary task for disambiguation. We define a function
ROOT(#) to get the root node of supertag t. There
are 48 distinct ROOT labels.

413 TYPE

Consider the trees tCO and t13 in Table 1. tCOis a
supertag that does not use adjunction (this type of
supertag is called an initial tree). In contrast, t13
modifies an internal VP node in another supertag
(this type of supertag is called an auxiliary tree). In
addition a left auxiliary tree modifies from the left
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while a right auxiliary tree modifies from the right.
To make this task more sensitive we also include
the node label of the root (for initial trees) or footn-
ode which is the node marked with * (for left/right
auxiliary trees). We define a function TYPE(#) to
obtain the type of each supertag. There are 67 dis-
tinct types.

414 SKETCH

In many cases, the overall shape of the supertag
is useful for disambiguation, ignoring the node la-
bels. The following example keeps the tree struc-
ture of the supertag but removes the node labels:

S X
/\ /\
PP Sx X X
N /\
INe NPy | X X

Tree sketches help disambiguation (see t81 in Ta-
ble 5). We define a function SKETCH(%) that re-
turns the sketch. There are 602 distinct supertag
sketches.

4.1.5 SPINE

The spine of a supertag is the path from the root
node to the head node (marked by ¢). The follow-
ing example keeps only the path from root to head
and produces a spine supertag:

S S
/\ ‘

PP S* PP
AN |
INo NP; | IN

Spine supertags are helpful for disambiguation as
well (see t132 in Table 5). We use a function
SPINE(?) to return the spine of supertag ¢. There
are 1372 distinct supertag spines.

4.2 Multi-task Framework

Unlike most other work in multi-task learning with
neural models we do not use different datasets for
each task. We use exactly the same training data
set but we construct multiple tasks with alternate
output labels by automatically deconstructing the
supertags (the output labels in the original task).
These alternate output labels are easier to predict
than the full set of supertags, and these new output
labels are related to the original supertag in a lin-
guistically relevant way. As a result, we train on
the same training set but with alternate output la-
bels, each forming a different task. We then com-
bine these multiple tasks in order to improve the
performance in the original supertagging task.
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Figure 2: The prediction procedure of combining mod-
els trained on separate tasks

The usual criticism of a fair comparison be-
tween multi-task and single-task learning is that
the multi-task setting simply uses more la-
beled data instances (typically with different data
sources) and as a result a fair comparison between
a multi-task and a single-task setting should in-
volve large pre-trained models trained using a lan-
guage modelling objective (such as ELMO (Pe-
ters et al., 2018) or BERT (Devlin et al., 2018)).
In our case, because we re-use the same training
set for multi-task learning, we have made sure our
experimental settings exactly match the previous
best state-of-the-art method for supertagging (Ka-
sai et al., 2018) and we use the same pre-trained
word embeddings to ensure a fair comparison.

We train six different neural sequence predic-
tion models independently on the supertagging
task, root node prediction (ROOT), head node pre-
diction (HEAD), tree type prediction (TYPE), tree
sketch prediction (SKETCH) and tree spine pre-
diction (SPINE) tasks. For each task, we use the
state-of-the-art baseline supertagging model as de-
fined in Section 3. The only change is that the
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output size for softmax is changed to reflect the
number of output labels in each task. We obtain
very high accuracies for each of the tasks. For
example, on the dev set we obtain the following
accuracies: ROOT = 97.04%, HEAD = 93.37%,
TYPE = 93.14%, SKETCH = 93.74% and SPINE
=91.00%.

We train the model, including the word embed-
ding (which is initialized using a pre-trained em-
bedding) and character-level CNNs by optimiz-
ing the negative log-likelihood of the predicted se-
quences of output labels. The output labels for
each task is different: supertag, root node, head
node, tree type, sketch, spine. Training is done us-
ing minibatches. The main hyperparameters are as
follows: we use the ADAM optimizer with a batch
size of 100 and learning rate ¢ = 0.001 (Kingma
and Ba, 2015). After every training epoch, we
evaluate the model on the dev set, if the accuracy
on dev set has not been improved for five consecu-
tive epochs, training stops. The maximum number
of epochs is 70. After obtaining the best model
trained with ¢ = 0.001, we further fine-tune the
best model using £ = 0.0001 for at most 10 more
epochs. By conducting this step, we have seen
0.1% to 0.2% accuracy improvement depending
on the task.

After obtaining the best trained model on each
of the multiple tasks we combine the multiple
tasks together in order to create a decoder for the
supertagging task.

We first run the baseline supertagger to obtain
the distribution Pstag and using this distribution
we select the top-K output supertags for each word
in each sentence in the dev or test data. We exper-
iment with different values of K but we know that
even K=3 gives 97% accuracy for the supertagging
task. For each dev or test sentence we also com-
pute the output softmax distributions for each task,
Pyeap, Proort, Prype, PskercH, Psping. Each of
these probabilities are defined as a sequence pre-
diction task over the auxiliary tasks using the func-
tions defined in Section 4.1.

Pupap(t) = P(HEAD(?))
Proor(t) = P(ROOT())
Prype(t) = P(TYPE(?))
Pskercn(t) = P(SKETCH(t))
Peoms(t) = P(SPINE(t))

We compute the argmax sequence of supertags
1,t5,...,t7 by scoring each supertag ¢} individ-



ually from the top-K list by combining the proba-
bilities from the different tasks as follows:

t7 = arg max (1)
t;eS

a1 Pstac (i) + a2 Pueap(ti) (2)

+a3 Proor(ti) + aa Prype(t;) (3)

+as Pskercn (ti) + as Pspine(ti) — (4)

S is the top-K set of supertags for each word
in the input sequence. The hyperparameters o;
can be tuned. However we found in our experi-
ments that the results were not very sensitive to
the values, and the uniform distribution over all
the tasks performed the best. The model and de-
coding step for our multi-task model is shown in
Fig. 2. We also experiment with a commonly used
multi-task model where some or all of the compo-
nents are shared between the different (unlike our
approach)..

5 Dataset

We use the dataset that has been widely used
by previous work in supertagging and TAG pars-
ing (Bangalore et al., 2009; Chung et al., 2016;
Friedman et al., 2017; Kasai et al., 2017, 2018).
We use the grammar and the TAG-annotated WSJ
Penn Tree Bank extracted by Chen et al. (2006).
As in previous work, we use Sections 01-22 as the
training set, Section 00 as the dev set, and Sec-
tion 23 as the test set. The training, dev, and test
sets comprise 39832, 1921, and 2415 sentences;
950028, 46451, 56683 tokens, respectively.

The TAG-annotated version of Penn tree-
bank (Chen and Shankar, 2001) includes 4727 dis-
tinct supertags (including an unknown supertag)
and the grammar file of all supertags is down-
loaded from http://mica.lif.univ-mrs.fr/.
There are 69 auxiliary tree TYPEs, 40 distinct
types of ROOT node and 30 different types of
HEAD node, 602 tree SKETCHes and 1372 tree
SPINEs.

6 Results and Discussion

For our experiments, we implemented all of the
models we discussed above in PyTorch (Paszke
et al,, 2017). We have various hyperparame-
ters and Table 2 shows the results obtained from
the different model configurations which were de-
scribed in Section 3. The table also includes the
results from the multi-task model and decoder de-
scribed in Section 4. We experiment with pre-

17

trained GloVe word embeddings of three different
sizes: 100, 200 and 300.

With our multi-task approach, all base mod-
els gain significant improvements compared to a
single supertagging base model between 0.4% to
0.65%. We also varied the parameter K which
picks the top-K supertags from the baseline model
for use with the multi-task model. Table 3 that in-
creasing K helps up to a point. After K=10 there
is no further improvement.

We obtain a new state-of-the-art result of
91.39% which is significantly better than the
90.81% result which combines supertagging with
the parsing task and so is using more labeled train-
ing information used by our supertagger models.

Table 4 shows the result of task ablation for each
task. We can see that adding a new task always
improves the results. The best result is obtained
by using all five auxiliary tasks.

We computed a significance score on
the accuracy of our best model BiL-
STM3+CNN+GloVe200 with and without
multi-task learning.  On the dev set, using
McNemar’s significance test we found that the
multi-task model is significantly better than the
baseline model with a p-value of 0.0062; on the
test set, the p-value is 0.0064.

We evaluated our own implementation of the
baseline BILSTM-only model and even with high-
way connections we only obtained 89.25% on the
dev set compared to the built-in BILSTM imple-
mentation in Pytorch (without highway connec-
tions) which obtains 89.94%.

6.1 Task Contribution

Table 5 shows some examples about how each
of auxiliary tasks can help in the correction of
supertag prediction. Examples of each task are
selected if a considerable number of predictions
of each example are corrected after applying the
multi-task model.

While the multi-task model can correct many
wrong predictions made by the baseline model, the
multi-task model may also override some correct
predictions.

The first row is an example of the prediction
of head node that helps differentiate two similar
supertags, t2 and t36. In the dev set, there are
24 words of which ground truth supertags are t2,
wrongly predicted as t36 by a single base model;
25 words of which ground truth supertags are t36,
wrongly predicted as t2. All of those words are



Model Multi-task | Dev | Test
BiLSTM3+HW+CNN+POS+GloVel00 (Kasai et al., 2018) - 90.45 | 90.81
. No 89.11 -
BiLSTM2+GloVe100 Yes 89.67 i

. No 89.45 -
BiLSTM2+CNN+GloVel100 Yes 90.12 i

. No 89.41 -
BiLSTM3+GloVel00 Yes 90.02 i

. No 89.83 -
BiLSTM3+CNN+GloVel100 Yes 90.41 i

. No 89.94 -
BiLSTM3+CNN+GloVe200 Yes 90.55 | 91.37

. No 89.91 -
BiLSTM3+CNN+Glo Ve300 Yes 90.45 i
Shared BiLSTM layer No 90.11 | 90.83
(BiLSTM3+CNN+Glove200) Yes 90.11 | 90.83

Table 2: Supertagging task results. The number after BILSTM represents the number of BiLSTM layers; CNN
refers to the word embedding model using character-level CNN; the number immediately after GloVe represents
the dimension of pre-trained GloVe word vectors. HW in Kasai et al. (2018) refers to highway connections, and
POS refers to the use of predicted part-of-speech tags as inputs. We do not use HW or POS in our models as they

do not provide any benefit.

Top-K | Dev | Test

Top-3 | 90.55 | 91.37
Top-5 | 90.58 | 91.38
Top-10 | 90.58 | 91.39
Top-20 | 90.58 | 91.39

Table 3: Change in accuracy as K is increased when
choosing Top-K supertags for rescoring. The model
used is BILSTM+CNN+GloVe200.

correctly predicted by the multi-task model. The
ROOT, TYPE, SKETCH and SPINE are all the
same for t2 and t36, the only difference is the
HEAD value, N for t2 and A for t36. The model
for the HEAD task correctly predicts the head
node of those words which is further improved us-
ing our multi-task approach.

The second row demonstrates how the tree
sketch can help discriminate supertags. t81 and
t27 have exactly the same ROOT, HEAD, SPINE
(S-VP-V) and TYPE (Init), the only difference be-
tween these two supertags is the tree structure.

The third to fifth rows are examples of the ef-
fect of multiple auxiliary tasks in getting the pre-
diction right. The third row is an example of the
prediction of TYPE and SKETCH that can help
differentiate supertags. The TYPE of t3 is Init,
while t38 has TYPE Left+NP. They also have dif-
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ferent tree sketches. There are 11 words of which
supertags are wrongly predicted as t3 by a single
supertagging model, but correctly predicted as t38
by the multi-task model; also, 3 words of which
supertags are wrongly predicted as t38 by a single
supertagging model, but correctly predicted as t3
by the multi-task model.

The forth row is an example of how the predic-
tion of the ROOT can help differentiate supertags.
The ROOT of t3 is NP, while t18 has ROOT N (N
is also its head node). For the last row, t132 and
t20 have the same root node(S), head node(Punct)
and tree type (Right+S) but they are different in
the tree spine (S-Punct for t20 and S-PRN-Punct
for t132) and SKETCH. The joint effort of vari-
ous models plays a significant role in getting the
prediction right.

7 Related Work

Bangalore et al. (2009) and Chung et al. (2016)
trained a feature based classification model for
TAG supertags, that extract features using lexical,
part-of-speech attributes from the left and right
context in a 6-word window and the lexical, ortho-
graphic (e.g. capitalization, prefix, suffix, digit)
and part-of-speech attributes of the word being
supertagged. Neural network based supertagging
models in TAG (Kasai et al., 2018) and CCG (Xu



Multi-task setting Dev Test

None 89.94 90.73
HEAD 90.00 90.79
ROOT 90.06 9091
TYPE 90.15 91.07
SKETCH 90.25 90.99
SPINE 90.22 91.08
HEAD+ROOT 90.15 90.94
TYPE+HEAD+ROOT 90.27 91.10
TYPE+HEAD+ROOT+SKETCH 90.48 91.27
TYPE+HEAD+ROOT+SKETCH+SPINE | 90.55 91.37

Table 4: Result of different multi-task combinations. The base model is BILSTM+CNN+GloVe200.

Ground Baseline Multi-Task ~ Most Help-
truth ful Task
2: t36: 2:
NP NP NP
No NP Ao NPx No NP HEAD
81: 27: 81:
S S S
NP, | VP NPy | VP NPy | VP
V‘o Vo NP} Vo SKETCH
38:
3: NP 3:
NP NP
‘ NP+ N‘P ‘
No No No TYPE,
SKETCH
3 3
NP NP
‘ t18: ‘
No No No ROOT,
SKETCH
t132: t132:
N 20: N
/N A /N
PRN S« PRN Sk
Puncto Puncto  Sx Puncto SPINE’
SKETCH

Table 5: Some examples of how the deconstructing
of base models correct the prediction made by the su-
pertagging model.

etal., 2015; Lewis et al., 2016; Xu, 2016; Vaswani
et al., 2016) have shown substantial improvement
in performance, but the supertagging models are
all quite similar as they all use a bi-directional
RNN feeding into a prediction layer. Structural
features of supertags are heavily used in pre-neural
statistical parsing methods (Bangalore et al., 2009)
and proved to be useful. The use of supertag struc-
ture was explored in (Friedman et al., 2017) where
they adopt grammar features into a tree-structured
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neural model over the supertags but this model
was unable to beat the state-of-the-art. (Kasai
et al., 2018) combines supertagging with parsing
which does provide state-of-the-art accuracy but
at the expense of computational complexity.

Kasai et al. (2017) extends the BiLSTM model
with predicted part-of-speech tags and suffix em-
beddings as inputs, then Kasai et al. (2018) further
extends the BiILSTM model with highway connec-
tion as well as character CNN as input, and jointly
train the supertagging model with parsing model
and this work had the state-of-the-art accuracy be-
fore our paper on the Penn treebank dataset. Fried-
man et al. (2017) investigated a recursive tree-
based vector representation of TAG supertags, but
while their model can learn useful facts about su-
pertags, about how one can be related to another,
there was no performance improvement as a result
of their model on the supertagging task. Xu et al.
(2015) uses RNN for the CCG supertagging task,
Lewis et al. (2016) adopted the LSTM structure
into this task, while Vaswani et al. (2016) also in-
troduced another variation of Bi-LSTM into this
task. Xu (2016) then proposed an attention-based
Bi-LSTM supertagging model.

8 Conclusion

In this paper we have introduced a novel multi-
task framework for the TAG supertagging task.
The approach involved a novel multi-task learning
framework which led to a new state-of-the-art ac-
curacy score of 91.39% for TAG supertagging on
the Penn treebank dataset.

Our multi-task prediction framework is trained
over the exactly same training data used to train
the original supertagger where each auxiliary task
provides an alternative view on the original pre-



diction task.

In the future we would like to explore further
tasks to integrate into our multi-task sequence pre-
diction framework. We also believe that the idea of
our multi-task framework can be applied into sim-
ilar tasks such as CCG supertagging task of which
the labels themselves contains the latent informa-
tion. We would also like to investigate how to
semi-automatically generate new tasks which can
be of further help in the multi-task setting.
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Multilingual model using cross-task embedding projection
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Abstract

We present a method for applying a neural net-
work trained on one (resource-rich) language
for a given task to other (resource-poor) lan-
guages. We accomplish this by inducing a
mapping from pre-trained cross-lingual word
embeddings to the embedding layer of the neu-
ral network trained on the resource-rich lan-
guage. To perform element-wise cross-task
embedding projection, we invent locally linear
mapping which assumes and preserves the lo-
cal topology across the semantic spaces before
and after the projection. Experimental results
on topic classification task and sentiment anal-
ysis task showed that the fully task-specific
multilingual model obtained using our method
outperformed the existing multilingual mod-
els with embedding layers fixed to pre-trained
cross-lingual word embeddings.!

1 Introduction

Deep neural networks have improved the accu-
racy of various natural language processing (NLP)
tasks by performing representation learning with
massive annotated datasets. However, the anno-
tations in NLP depend on the target language as
well as the task, and it is unrealistic to prepare such
extensive annotated datasets for every pair of lan-
guage and task. As a result, we can only obtain an
accurate model for a few resource-rich languages
such as English.

To overcome this problem, researchers have at-
tempted to make models trained with massive an-
notated datasets in a resource-rich language (here-
after, source language) applicable to a resource-
poor language (farget language) that have no an-
notated datasets (Ruder et al., 2019) (§ 2). These
methods utilize language-universal word represen-
tations, namely cross-lingual word embeddings, to

'All the code is available at: https://github.com/
jyorill2/task-spec
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Figure 1: Locally linear mapping for sentiment analy-
sis task. The relationship between “merveilleux (won-
derful)” and its neighboring English words, “wonder-
ful” and “good,” are preserved after projection.

absorb the differences among languages in the vo-
cabularies of neural network models; specifically,
these multilingual models are trained with embed-
ding layers fixed to pre-trained cross-lingual word
embeddings. However, because those embedding
layers are not optimized for the target task, the re-
sulting model cannot exploit the true potential of
representation learning, as demonstrated by Kim
(2014) and our experimental results (§ 5.1).

We propose methods of projecting pre-trained
cross-lingual word embeddings to word embed-
dings of a fully task-specific neural network all
of whose parameters are optimized to the train-
ing data in a source language, to realize fully
task-specific multilingual model (§ 3). In ad-
dition to naive linear projection, we present an
element-wise projection method inspired by lo-
cally linear embeddings used for dimension reduc-
tion (Roweis and Saul, 2000). This method is built
on the assumption that local topology is preserved
between the semantic spaces of word embeddings
in two NLP tasks; that is, adequately close words
in pre-trained cross-lingual word embeddings will
have similar representation even in task-specific
semantic space (Figure 1). We first represent the
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general cross-lingual word embedding of a word
in the target language by weighted linear combina-
tions of general cross-lingual word embeddings of
k neighboring words in the source language. We
then use the weights to compute a task-specific
word embedding of the target word as a linear
combination of task-specific word embeddings of
the k neighboring source words (§ 3.2).

We evaluate our method on topic classification
and sentiment analysis tasks (§ 4). We first obtain
a task-specific neural network using annotated cor-
pora in the source language (English) and then in-
duce task-specific cross-lingual word embeddings
for the target languages to apply the accurate task-
specific neural network to those languages. Exper-
imental results demonstrate that our method has
improved the classification accuracy of the multi-
lingual model (Duong et al., 2017) in most of the
task-language pairs (§ 5).

Our contributions are as follows:

e We established a method of obtaining fully
task-specific multilingual models by learn-
ing a cross-task embedding projection (§ 3).

Our cross-task projection is simple and has
an analytical solution with one hyperparam-
eter; the solution is a global optima (§ 3.2).

e We confirmed the limitation of the tradi-
tional multilingual model with embedding
layers fixed to pre-trained cross-lingual word
embeddings (§ 5.1).

e We showed the effectiveness of our method
over the existing models (§ 5.2).

2 Related work

Lack of resources in resource-poor languages has
been a deeply rooted problem in NLP, and there
have been many pieces of researches contributed
to mitigating this problem by transferring models
across languages.

Multilingual models using parallel corpora
An intuitive approach to realize the cross-lingual
transfer of a model is to utilize machine transla-
tion by either translating the training set or the
model input (Wan, 2009). Instead of translating,
Meng et al. (2012) leverage a parallel corpus of the
source and target languages to obtain cross-lingual
mixture model to bridge the language gap. Xu and
Wan (2017) also utilize parallel corpus with word
alignment to train a multilingual model for sen-
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timent analysis task. While some of these meth-
ods do not rely on an annotated corpus in the tar-
get language, they heavily rely on cross-lingual re-
sources such as parallel corpora, and thus, are not
applicable to the resource-poor languages.

Multilingual models with cross-lingual word
embeddings Another method to obtain multilin-
gual models is to fix the embedding layer of a neu-
ral network to pre-trained cross-lingual word em-
beddings. Many existing pieces of researches im-
plemented this for various tasks in unsupervised
senario (Duong et al., 2017; Can et al., 2018)
where no annotated corpus is available in the target
language as ours and supervised scenario (Pappas
and Popescu-Belis, 2017; Upadhyay et al., 2018)
where a small annotated corpus is available in
the target language. Another study enhanced this
method by employing language-adversarial net-
works (Chen et al., 2018). These methods do not
induce task-specific word embeddings, thereby
failing to exert true potential of neural networks,
as we confirm in § 5.

Multilingual models with character embed-
dings Several studies utilize character level em-
beddings shared across languages to obtain mul-
tilingual models (Kim et al., 2017; Yang et al.,
2017). An obvious weak point of these meth-
ods is that they do not apply to distant language
pairs with different alphabets. In contrast, our
method only relies on cross-lingual word embed-
dings which are obtainable regardless of the alpha-
bets of the languages (Artetxe et al., 2018).

Task-specific word embeddings Few efforts
have been previously made to obtain cross-lingual
task-specific word embeddings.  Gouws and
S@gaard (2015) obtain task-specific cross-lingual
word embeddings by constructing a task-specific
bilingual dictionary, which defines “equivalent
classes” designed for the given task instead of
equivalent semantics. Although they successfully
obtained task-specific cross-lingual word embed-
dings for POS tagging and supersense tagging
tasks, the open problems are how to define a task-
specific bilingual dictionary for many of other
tasks, and cost of developing such resources.

Feng and Wan (2019) exploit multi-task learn-
ing to induce cross-lingual task-specific word em-
beddings for sentiment analysis task. This method
is tailored for the sentiment analysis task and thus,
not applicable to other tasks.



3 Fully task-specific multilingual model

Our method first learns a neural network model by
optimizing to the annotated corpus in the source
language. It then induces a projection from the
semantic space of general cross-lingual word em-
beddings to the semantic space of the optimized
embedding layer, to make the model applicable to
languages other than the source language.

3.1 Framework

The entire framework of obtaining a fully task-
specific multilingual model is as follows:

Step 1 (train task-specific neural network)
First, we train a neural network f(-; X*P* ) on
an annotated corpus in the source language. The
embedding layer, X*P°°, of the resulting neural
network consists of task-specific word embed-
dings of the source language, and 6 is the collec-
tion of the other parameters. At this point, this
neural network is only applicable to the source lan-
guage since we do not have task-specific word em-
beddings Y*P*¢ of the target language in the same
semantic space as X *P°°,

Step 2 (induce cross-lingual word embeddings)
Next, we obtain general cross-lingual word em-
beddings { X &, Y'#"} in the same semantic space
from raw monolingual corpora where X&" and
Y& are cross-lingual word embeddings of the
source and target languages, respectively. Without
loss of generality, we assume that X" and X*P%¢
are aligned so that X ;gen and X fpec represent the
same word. We utilize unsupervised cross-lingual
word embeddings such as (Artetxe et al., 2018)
that do not require any cross-lingual resources to
maximize the applicability of our approach.

Step 3 (learn cross-task embedding projection)
Then, we induce a cross-task projection ¢ that
computes task-specific word embeddings of the
target language YP* from the general cross-
lingual word embeddings {X&" Y&"} obtained
in Step 2 to the task-specific word embeddings of
the source language XP°¢ obtained in Step 1. We
explain the details of this core part in § 3.2.

Step 4 (obtain task-specific multilingual model)
Finally, we replace embedding layer X*P*¢ of the
neural network f(-; X P, @) trained in Step 1 with
YPe¢ induced in Step 3 to obtain a task-specific
neural network f(-; YP*° ) applicable to the tar-
get language.
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3.2 Cross-task embedding projection

Here, we explain the detailed construction of our
cross-task projection ¢ for cross-lingual word em-
beddings used in Step 3 in § 3.1. Given general
cross-lingual word embeddings, X" and Y &°", of
the source and target languages and task-specific
word embeddings X°®P® of the source language,
we compute task-specific word embeddings Y 5P
of the target language in the same semantic space
with X*P°°. In what follows, we propose two sim-
ple methods to obtain such projection: a linear
projection and a locally linear mapping.

Linear projection

One naive approach is to regard general and
task-specific word embeddings as embeddings of
two distinct languages and to exploit a mapping
method developed for cross-lingual word embed-
dings (Mikolov et al., 2013).> Concretely, we
train a transformation matrix W that maps gen-
eral word embeddings Y& to task-specific word
embeddings Y *P*° by minimizing

Vx|
W =argmin _ [ WX — x3P|?
L

)

where |Vx| is the vocabulary size of the source
langauge. Then, we compute the task-specific
word embeddings of the target language, Y5P¢¢;

Yispec _ WYigen' 2)

Locally linear mapping

A possible limitation of the above linear projection
method is the lack of representation power. Due
to the difference of topologies between the gen-
eral and task-specific semantic spaces, our experi-
mental results indicate that it fails to obtain precise
cross-task embedding projection (§ 5).

Therefore, we introduce an element-wise map-
ping method inspired by locally linear embed-
dings (Roweis and Saul, 2000), a dimension re-
duction technique. Our method assumes that the
local topology among nearest neighbors will be
consistent between two NLP tasks (here, language
modeling and the target task). In other words, syn-
onyms will have a similar role across NLP tasks.

We build the cross-task projection as follows.
First, for each word ¢ in the target language, we

2 Although orthogonal mapping (Xing et al., 2015) is re-
ported to perform better for inducing cross-lingual word em-

beddings, it performed worse for our purpose in preliminary
experiments probably due to the strong constraint.



take k nearest neighbors (words) in the source lan-
guage, Mgen, in the semantic space of the general
cross-lingual word embeddings where k is a hy-
perparameter, and the cosine similarity is the met-
ric. We next obtain the reconstruction weights,
&i; € R, that restore Yigen as a linear combination
of X5 € NF™" by optimizing

~ . en en
&; = arg min Yig — g ainf
-
! JENFT

3)

with constraint of » j Qi = 1. The solution to this
optimization problem can be analytically given by
using the method of Lagrange multipliers as:

. (G D

Qij = - 4)
! Zj >u(C; 1)jl

where
Cijt = (l/—igen _ ngen) ) (Yigen _ Xlgen> (5)

(see Appendix A for the detailed derivation). We
can thereby find the global optima by this analyti-
cal solution with simple computation.

We then compute YiSpeC using &; by

spec A yrSpec
Y;‘ = g (877} Xj )
jeML,gen

(6)

assuming that the local topology among /\/fen is
preserved before and after the projection. The re-
sulting Y*P°¢ is in the same semantic space with
Xspee . Setting a large k = |[NF™"| in the projec-
tion, we can handle words in the target language
that have no direct translations in the source lan-
guage (e.g., amiga, female friend in Spanish).

Hyperparameter search In general, we choose
a hyperparameter that performs best on develop-
ment data in the target task and language. How-
ever, since we assume that no annotated data is
available in the target language, we cannot exploit
development data in the target language.

To address this issue, we apply our cross-task
projection to the source language with various hy-
perparameter k; namely, represent X igen consider-
ing k nearest neighbors X5'(j # i). We then
choose k with the best model performance with
the resulting embeddings on the development data
of the target task in the source language. In § 5.2,
we report results with this language-universal, yet
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Language train dev. test
English (en) 653,762 10,000 10,000
Danish (da) 6,633 1000 1000
German (de) 84,550 1000 1000
Spanish (es) 12,997 1000 1000
French (fr) 69,292 1000 1000
Italian (it) 19,594 1000 1000
Dutch (nl) 590 100 1000
Portuguese (pt) 4,263 1000 1000
Swedish (sv) 8,383 1000 1000

Table 1: Number of examples for topic classification.

the task-specific method of tuning. We also re-
port results of a language- and task-specific tuning
method assuming a minimal development data in
the target language in addition to a naive method
of fixing £k = 1, which is equivalent to the word-
by-word translation. Furthermore, we investigate
the effect of value £ in details in § 5.3.

4 Experimental setup

We conduct a series of experiments to evaluate
our fully task-specific multilingual models (§ 3)
obtained by our cross-task projections of cross-
lingual word embeddings (§ 3.2). Our method is
language- and task-independent and is applicable
to various tasks where existing multilingual mod-
els are applicable. We adopted a topic classifica-
tion task and a sentiment analysis task as the target
tasks for evaluation in various languages.

Topic classification is the task of predicting the
topic of a given document. For this task, we use
English (en) as the source language, and Spanish
(es), German (de), Danish (da), French (fr), Italian
(it), Dutch (nl), Portuguese (pt), and Swedish (sv)
as the target languages. We use the RCV1/RCV2
dataset (Lewis et al., 2004) for this task, follow-
ing Duong et al. (2017). This dataset contains
news articles in various languages with labels of
four categories: Corporate/Industrial, Economics,
Government/Social, and Markets.

For English dataset, we randomly chose 10,000
examples as test data, another 10,000 examples as
development data, and the rest as training data.
For the other languages, we randomly selected
1000 examples as test data, and another 1000 ex-
amples (for Danish, 100 examples) as develop-
ment data, and the rest as training data. Among the
development data, we randomly chose 100 sam-
ples as the development data for an alternative,
language-specific tuning of £ (§ 3.2). The sum-
mary of the resulting dataset is shown in Table 1.



Sentiment analysis is a task of predicting a po-
larity label of the writer’s attitude for a given text.
We design this task to be a three-class classifica-
tion of positive, negative, and neutral labels. We
use datasets from two domains of restaurant re-
view and product review to conduct this exper-
iment. In both domains, we consider the most
resource-rich language, English (en), as the source
language and other languages (Spanish (es), Dutch
(nl), and Turkish (tr) for restaurant review domain,
and German (de), French (fr), and Japanese (ja) for
product review domain) as the target languages.

To train models in restaurant review domain, we
use Yelp Review dataset’ which consists of a set
of restaurant reviews with numerical ratings in the
range of 1-5 given by the reviewers. We label the
reviews with ratings of 1 or 2 as negative, those
with ratings of 4 or 5 as positive, and the rest with
ratings of 3 as neutral. Then, we randomly chose
100,000 examples as test data, another 100,000 ex-
amples as development data, and the rest as train-
ing data. For evaluation in the target languages,
we use a subset of ABSA dataset (Pontiki et al.,
2016), which consists of restaurant reviews in En-
glish, Spanish, Dutch, and Turkish with annotation
of a polarity label of positive, negative, or neutral
to each sentence. For each language, we randomly
chose 100 sentences as development data for the
alternative, language-specific tuning of &k (§ 3.2)
and the rest as test data.

For experiments in the product review domain,
we use Amazon Multilingual Review dataset*
which consists of a set of product reviews in En-
glish, German, French, Japanese with numerical
ratings given in the same manner as the Yelp Re-
view dataset. We label the reviews in the same
manner as the Yelp Review dataset. For English
dataset, we randomly sample 100,000 examples
as development data, other 100,000 examples as
test data, and the remaining 6,731,166 examples
as training data. For the other languages, we
randomly chose 10,000 examples as development
data, another 10,000 examples as test data, and
the rest as training data. Among the development
data, we randomly chose 100 examples as devel-
opment data for the alternative, language-specific
tuning of k. The summary of the resulting datasets
is shown in Table 2.

Shttps://www.yelp.com/dataset
*nttps://s3.amazonaws.com/
amazon—-reviews-pds/readme.html

26

Dataset Language train dev. test
Yelp English (en) 5,796,996 100,000 100,000
English (en) - 100 1462
Spanish (es) - 100 1237
ABSA Dutch (nl) - 100 1125
Turkish (tr) - 100 855
English (en) 6,731,166 100,000 100,000
Amazon German (de) 659,121 10,000 10,000
French (fr) 234,080 10,000 10,000
Japanese (ja) 242,431 10,000 10,000

Table 2: Number of examples for sentiment analysis.

General cross-lingual word embeddings were
obtained using a state-of-the-art unsupervised
method with self-learning framework (Artetxe
et al., 2018).> This method takes monolingual
word embeddings of two languages and learns
a mapping between them to obtain cross-lingual
word embeddings. For monolingual word em-
beddings, we used pre-trained word embeddings
available online (Grave et al., 2018). They are
word embeddings with 300 dimensions obtained
by applying subword-information skip-gram (Bo-
janowski et al., 2017) to the Wikipedia corpus.

Preprocessing We use the tokenizer of Europarl
tools’ to tokenize all datasets except for Japanese.
For Japanese, we use MeCab v0.996® with IPA
dictionary v2.7.0. After tokenization, the tokens
are lowercased to match vocabularies of the pre-
trained word embeddings.

Models To evaluate the impact of our task-
specific word embeddings on multilingual models
and to compare the two methods for the cross-task
embeddings projections we proposed in § 3, we
compare the following five models.

CLWE fixed trains a bag-of-embeddings model
in the target language with its embedding lay-
ers fixed to the pre-trained cross-lingual word
embedding. The model takes the dimension-
wise average of all embeddings of input to-
kens into a feedforward neural network with
one hidden layer. This model is analogous
to (Duong et al., 2017) except that they use
the summation weighted by tf - idf.

Shttps://github.com/artetxem/vecmap
®https://fasttext.cc/docs/en/
crawl-vectors.html
"http://www.statmt.org/europarl/
$https://taku910.github.io/mecab/



Method en-da en-de en-es en-fr en-it en-nl en-pt en-sv
CLWE fixed 0.621 0.813 0363 0.772 0535 0.791 0.524 0.816
CLWE fixed + NNmap 0.593 0.843 0.448 0.815 0.583 0.794 0.554 0.503
CLWE opt (LP) 0.599 0.617 0.117 0.670 0.197 0.627 0.185 0.206
CLWE opt (LLM)

k=1 0.694 0.848 0.764 0.879 0.578 0.815 0.584 0.805

k tuned to task 0.672 0.809 0.705 0.885 0.623 0.814 0.580 0.831

k tuned to task/language  0.687 0.833 0.764 0.879 0.615 0.837 0.572 0.830
Monolingual 0968 0984 0975 0980 0932 0.950 0948 0.970

Table 3: Classification accuracy of topic classification task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

Amazon Yelp - ABSA

Method en-de en-fr en-ja en-es en-nl en-tr
CLWE fixed 0.798 0.805 0.798 0.731 0.675 0.591
CLWE fixed + NNmap 0.798 0.803 0.784 0.748 0.665 0.556
CLWE opt (LP) 0.797 0.804 0.779 0.725 0.655 0.605
CLWE opt (LLM)

k=1 0.813 0.811 0.764 0.731 0.680 0.569

k tuned to task 0.815 0.812 0.785 0.759 0.684 0.616

k tuned to task/language  0.815 810 0.777 0.766 0.719 0.617
Monolingual 0.879 0.857 0.838 - - -

Table 4: Classification accuracy of sentiment analysis task in cross-lingual settings. The underlined values indicate
that, among the three trials, the worst model of CLWE opt (LLM) outperforms the best model of CLWE fixed.

CLWE fixed + NNmap adds two embedding-
wise hidden layers to the original feedfor-
ward neural network in CLWE fixed. This is
aimed at giving the network the capability of
acquiring task-specific word embeddings by
enhancing the representation of the network.

CLWE opt (LP) is CLWE fixed with embedding
layer updated; we made this model cross-
lingual by the linear projection (§ 3.2).

CLWE opt (LLM) is CLWE fixed with the em-
bedding layer updated; we made this model
cross-lingual by the locally linear mapping
(§ 3.2). We report results with the three
strategies to tune the hyperparameter k for
cross-task projection.

Monolingual has the same network as CLWE
fixed with the embedding layer updated; we
trained the model with datasets in the same
languages as testing. We present this result
to show the upper bound of model accuracy.

The dimensions of all the layers of the above
five models are 300, and they are all optimized by
Adam optimizer (Kingma and Ba, 2014) for train-
ing. We conduct all experiments three times with
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Method Topic Class.  Senti. Analysis
Amazon Yelp

Monolingual fixed 0.921 0.828 0.799

Monolingual 0.980 0.872 0.866

Table 5: Classification accuracy of monolingual mod-
els in English.

different initialization of the model parameters and
report the average accuracy, and hyperparameter
tuning is conducted independently to each model.

5 Results

We evaluate the models in cross-lingual settings
to confirm how well our method produces task-
specific cross-lingual word embeddings (Table 3
and Table 4). Prior to reporting the results, we
confirm the impact of task-specific word embed-
dings in neural networks through experiments in a
monolingual setting in English (Table 5).

5.1 Impact of task-specific word embeddings

We examine the impact of optimizing the em-
bedding layer of a neural network to the given
task on model accuracy through experiments in



General Topic class. Senti. analysis General Topic class. Senti. analysis
(Amazon) (Amazon)

excellent excellent,yccien:

excellently excellently  awesome excellenteexcerrent excellentsexcelient excellente

superb exceptional  perfect excellents excellente excellents

good tabcorp pleased bonggea excellentesexcelient excellentes

impressive novorossiisk timeless excellentes appréciableqypreciae  €xtraordinary

commendable southcorp mesmerizing excellery, excer bons parfaite

terrible terrible,ripe

horrible frightening  horrible terribleserripie terribles terribles

dreadful devastating  useless horribleorribie horrible horrible

awful shocking wasted terriblementyeripiy meurtrieyounded débilepia

horrendous mishaps miserably épouvantable gwynplaine horriblesyorribie

horrific ugliness refund effroyablee,rifying épouvantesyerrified stupidesupia

economic économie,conomy

economy imf addition €CONOMie.conomy économiqUecconomic ~ €conomie

macroeconomic trade nightstand économique économiqueSeconomic  €CONOMiques

economies economy finances macroéconomi€acroeconomy ~ CONJONCtUIEconjuncrure  €CONOMICeconomic

microeconomic  wto everyday géoéconomiegcoeconomy fmipr €conomiqueeconomic

socio economist arguably microéconomi€picrocconomy ~ €CONOMIQUEcconomic ~ ECONOMIES conomies
(a) English (b) French (English translations are given as subscripts)

Table 6: Nearest neighbors of some words in the semantic space of general and task-specific word embeddings.

English by comparing Moneolingual to Monolin-
gual fixed which is the same network as Mono-
lingual with the embedding layer fixed to gen-
eral words embeddings. We show the results of
topic classification and sentiment analysis tasks
in Table 5. In both tasks, Monolingual outper-
formed Monolingual fixed with a wide margin,
which indicates that task-specific word embed-
dings are indeed crucial to obtain better model per-
formance. This result motivates us to learn task-
specific cross-lingual word embeddings to exploit
the fully task-specific neural network.

5.2 Performance of multilingual models

Table 3 and Table 4 report the classification ac-
curacy of the models on topic classification and
sentiment analysis, respectively. All models are
trained in English and evaluated in the target
languages. CLWE opt with hyperparameter &
tuned on the source language successfully out-
performed the two baselines, CLWE fixed and
CLWE fixed + NNmap, in all task-language pairs
except for English-German in the topic classifi-
cation task and English-Japanese in the sentiment
analysis task. This result indicates the importance
of task-specific word representation in the multi-
lingual model and that our projection successfully
induced task-specific cross-lingual word embed-
dings. Although we gained some improvements
by tuning k to the target language using the min-
imal development set in some configurations, the
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gains are smaller than the gains over the two base-
lines. This implies that k is more sensitive to the
target task rather than the target language, which
we discuss further in § 5.3.

In some languages, CLWE fixed + NNmap has
even lower classification accuracy than CLWE
fixed. We hypothesize that by having more layers,
the model becomes more sensitive to the small dif-
ference in word representation, which means that
the noise in pre-trained cross-lingual word embed-
dings affects on the model accuracy.

Comparing CLWE opt (LLM) to CLWE opt
(LP), we found that our locally linear mapping
outperforms the linear projection method for a
cross-task embedding projection. For some con-
figurations, the performance of CLWE opt (LP)
degrades significantly. These results indicate that
the topology of the general and task-specific em-
bedding spaces are so apart from each other that
simple projection methods such as the linear pro-
jection are inappropriate. We will further discuss
the difference in the topologies of the general and
task-specific embedding spaces in § 5.3 by looking
into nearest neighbors of some target words in the
semantic space of general and task-specific cross-
lingual word embeddings (Table 6).

In all configurations where sufficient dataset is
available in the target languages, monolingual
outperformed cross-lingual models with a wide
margin. This indicates that there is still space for
improvements in cross-lingual models.
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Figure 2: Distribution of the reconstruction weights & for the nearest words of the target words and the other

nearest neighbors.

5.3 Analysis

We conduct further investigation to gain a pro-
found understanding of our method and the re-
sulting task-specific cross-lingual word embed-
dings. We first analyze the task-specific cross-
lingual word embeddings through nearest neigh-
bors of some words. We next investigate the dis-
tribution of the reconstruction weights to see the
impact of k nearest neighbors other than the near-
est one. We then evaluate the sensitivity of the
model accuracy to the value of k.

Properties of task-specific embeddings Here,
we examine the properties of task-specific word
embeddings obtained using our cross-task projec-
tion. For this purpose, we present nearest neigh-
bors of frequent words in the tasks in various em-
beddings in English and French.

Table 6a shows nearest neighbors of “excel-
lent,” “terrible,” and “economic” in the general
word embeddings, and the embedding layer of the
models optimized for the training data in English.
In the general embeddings, the words are close
to words that have similar semantic or syntactic
while the task-specific word embeddings show dif-
ferent properties specific to the target tasks.

In the embedding layer optimized for topic
classification, we found “economic” to be close
to “imf (International Monetary Fund)” or “wto
(World Trade Organization).” Even though they
are semantically distinct, they all strongly indicate
the Economy label. In contrast, the nearest neigh-
bors of “excellent” and “terrible” are noisy since
they do not contribute to the topic classification
task.
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The embedding layers optimized for sentiment
analysis exhibit different properties. While the
nearest neighbors of “excellent” and “terrible” are
not semantically close, they all indicate positive
and negative polarities in the respective domains.
However, the nearest neighbors of “economic” are
noisy as they do not contribute to the task.

Table 6b shows nearest neighbors of “excellent
(excellent),” “terrible (terrible),” and “économie
(economy)” in French; the general word embed-
dings (General) and the task-specific word em-
beddings obtained using our cross-task projec-
tion (LLM). General embeddings exhibit similar
properties as English ones.

LLM embeddings of topic classification task
have “fmi (IMF; International Monetary Fund)”
and “conjoncture (conjuncture)” as nearest neigh-
bors of “économie.” This indicates that our cross-
task projection successfully obtains word embed-
dings optimized for the task since they are strong
signals of the Economy label. For sentiment anal-
ysis, the word embeddings obtained by our cross-
task projection of Amazon dataset captures “ex-
traordinary” and “parfaite,” which strongly indi-
cate positive polarity, as the nearest neighbors of
“excellent” In contrast, the words strongly associ-
ated with negative polarity, “débile” and “stupide,”
are the nearest neighbors of “terrible” in the em-
bedding space. These properties suggest that our
cross-task projection successfully obtains task-
specific cross-lingual word embeddings.

Distribution of the reconstruction weights To
see how much the nearest neighbors for the target
words contribute to the projection, we investigate
the distribution of & induced by Eq. 3. Figure 2
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Figure 3: Classification accuracy as a function of k in cross-task embedding projection.

shows the distribution of the absolute value of &
for the nearest neighbors of the target word and
the other nearest neighbors. For this experiment,
we used k tuned on the source language.

Even though the nearest words tend to have a
slightly higher value of & compared to the other
nearest neighbor words, the difference is not so
significant for most of the configuration. This ob-
servation indicates that all of the k-nearest neigh-
bors contribute to the projection.

Sensitivity to hyperparameter k& 'We proposed
three strategies to tune the hyperparameter k of
our locally linear mapping for cross-task embed-
ding projection of cross-lingual word embeddings:
tuning on the development data in the source lan-
guage as described in § 3.2, preparing small devel-
opment data (100 samples) in the target languages,
or fixing k = 1. Revisiting results in Table 3
and Table 4, for the topic classification task, the
classification accuracy of the models are consis-
tent among all of the tuning methods (Table 3),
while for the sentiment analysis task, fixing £ = 1
yields lower classification acuracy (Table 4). Here,
we conduct further analysis to gain a profound un-
derstanding of the effect of the value of .

Figure 3 depicts the classification accuracy of
the models on the test set while varying &k in
the topic classification task and sentiment anal-
ysis task. Across languages, a smaller value of
k yields better performance for the topic classifi-
cation task, while a larger value of k yields bet-
ter performance for the sentiment analysis task.
These results indicate that the best value of k£ is
language-independent and thus, the tuning k for
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the development set of source language suffices to
achieve good results.

6 Conclusions

We proposed a method to obtain a fully task-
specific multilingual model without relying on any
cross-lingual resources or annotated corpora in the
target language by a cross-task embedding projec-
tion. Because a naive linear projection puts too
strong assumption on the topologies of two em-
bedding spaces, we present an effective method
for the cross-task embedding projection named lo-
cally linear mapping. The locally linear mapping
assumes and preserves the local topology across
the semantic spaces before and after the projec-
tion. Experimental results demonstrated that the
locally linear mapping successfully obtains task-
specific word embeddings of the target language,
and the resulting fully task-specific multilingual
model exhibited better model accuracy than the
existing multilingual model that fixes its embed-
ding layer to general word embeddings.

We plan to evaluate our method on various
NLP tasks, languages, and neural network mod-
els, and investigate the results to devise an adap-
tive method to tune & for individual words.

Acknowledgements

We deeply thank Satoshi Tohda for proofreading
the draft of our paper. We also thank Dr. Junpei
Komiyama for checking the mathematics. This re-
search was supported by NII CRIS Contract Re-
search 2019.



References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
789-798.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics (TACL), 5:135—
146.

Ethem F. Can, Aysu Ezen-Can, and Fazli Can. 2018.
Multilingual sentiment analysis: An RNN-based
framework for limited data. In ACM SIGIR 2018
Workshop on Learning from Limited or Noisy Data
(LNDA4IR).

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Com-
putational Linguistics (TACL), 6:557-570.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2017. Multilingual training
of crosslingual word embeddings. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL),
pages 894-904.

Yanlin Feng and Xiaojun Wan. 2019. Learning bilin-
gual sentiment-specific word embeddings without
cross-lingual supervision. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics
(NAACL-HLT), pages 420-429.

Stephan Gouws and Anders Sggaard. 2015. Sim-
ple task-specific bilingual word embeddings. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies

(NAACL-HLT), pages 1386—1390.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing word vectors for 157 languages. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC), pages
3483-3487.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and
Eric Fosler-Lussier. 2017. Cross-lingual transfer
learning for POS tagging without cross-lingual re-
sources. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2832-2838.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746—1751.

31

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the third International Conference on Learning
Representations (ICLR).

David D. Lewis, Yiming Yang, Tony G. Rose, and Fei
Li. 2004. RCV1: A new benchmark collection for
text categorization research. Journal of Machine
Learning Research, 5(Apr):361-397.

Xinfan Meng, Furu Wei, Xiaohua Liu, Ming Zhou,
Ge Xu, and Houfeng Wang. 2012. Cross-lingual
mixture model for sentiment classification. In Pro-
ceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
572-581.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. Computing Research Repository,
arXiv:1309.4168. Version 1.

Nikolaos Pappas and Andrei Popescu-Belis. 2017.
Multilingual hierarchical attention networks for doc-
ument classification. In Proceedings of the eighth
International Joint Conference on Natural Lan-
guage Processing (EACL), pages 1015-1025.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphee De Clercq, Veronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud Maria Jiménez-Zafra, and Giilsen Eryigit.
2016. Semeval-2016 task 5: Aspect based sentiment
analysis. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval), pages
19-30.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlin-
ear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323-2326.

Sebastian Ruder, Ivan Vuli¢, and Anders Sggaard.
2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research
(JAIR), 65:569-631.

Shyam Upadhyay, Manaal Faruqui, Gokhan Tur, Dilek
Hakkani-Tur, and Larry Heck. 2018. (Almost) zero-
shot cross-lingual spoken language understanding.
In Proceedings of the 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6034-6038.

Xiaojun Wan. 2009. Co-training for cross-lingual sen-
timent classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the fourth International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP), pages 235-243.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceed-
ings of the 2015 Conference of the North American



Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 1006-1011.

Kui Xu and Xiaojun Wan. 2017. Towards a uni-
versal sentiment classifier in multiple languages.
In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 511-520.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In Pro-
cessing of the fifth International Conference on
Learning Representations (ICLR).

A Derivation of the locally linear
mapping

Recall that X&" and Y #°" represent general cross-
lingual word embeddings of the source and target
languages, respectively. Also, for each word ¢ in
the target language, we denote the set of its k near-
est neighbors in the target language in the seman-
tic space of the general cross-lingual word embed-
dings as N
We reconstruct Y as a linear combination,

Z : gen
Q5 X j
JENET
K2

where «; is the weight vector which we optimize.
The reconstruction error is given as
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where C; € RF*F is the covariance matrix,
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We minimize this reconstruction error ¢ under

the constraint of > jenen i = 1. Applying the
method of Lagrange multiplier, we have
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The resulting value of a; is then used to com-
pute the task-specific word embedding of ¢ as

spec A yrSpec
Y, = g Qi X j
je'N’igCﬂ

We then solve = 0 to obtain

where XP¢¢ is the tast-specific word embeddings
of the source language.
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Abstract

In this paper, we present a thorough inves-
tigation on methods that align pre-trained
contextualized embeddings into shared cross-
lingual context-aware embedding space, pro-
viding strong reference benchmarks for fu-
ture context-aware crosslingual models. We
propose a novel and challenging task, Bilin-
gual Token-level Sense Retrieval (BTSR). It
specifically evaluates the accurate alignment
of words with the same meaning in cross-
lingual non-parallel contexts, currently not
evaluated by existing tasks such as Bilingual
Contextual Word Similarity and Sentence Re-
trieval. We show how the proposed BTSR
task highlights the merits of different align-
ment methods. In particular, we find that us-
ing context average type-level alignment is ef-
fective in transferring monolingual contextual-
ized embeddings cross-lingually especially in
non-parallel contexts, and at the same time im-
proves the monolingual space. Furthermore,
aligning independently trained models yields
better performance than aligning multilingual
embeddings with shared vocabulary.

1 Introduction

Contextualized embeddings have been shown to
achieve superior performance compared to static
word embeddings in English (Peters et al., 2018;
Devlin et al., 2019). Despite recent efforts to better
understand their multilingual variants (Pires et al.,
2019), leveraging these available pretrained contex-
tualized embeddings to learn cross-lingual contex-
tualized embeddings is still an under-explored area:
past cross-lingual embedding alignment methods
have mainly focused on static embeddings (Ruder
etal.,2019). In this paper, we introduce a first study
that investigates and compares different ways of
aligning the pretrained contextualized embeddings.
In particular, we make the comparisons focused on
the following properties: (1) aligning contextual-
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ized embeddings at the level of word tokens versus
word types; (2) different training signals: static dic-
tionaries, word alignment, or sentence alignment
from parallel data; and (3) aligning different model
variants: aligning from independently trained mod-
els versus aligning embeddings from a multilingual
model with shared vocabulary.

We evaluate the methods on a variety of context-
aware tasks. Besides two previously established
evaluation tasks (1) Bilingual Contextual Word
Similarity (Chi and Chen, 2018) and (2) Sentence
Retrieval (Conneau et al., 2017), we introduce a
new task: Bilingual Token-level Sense Retrieval
(BTSR). It is more challenging than the alterna-
tives as it requires the accurate cross-lingual re-
trieval of contextualized words on the token level
which are disambiguated both in the source and the
target language using non-parallel contexts. We
provide BTSR task data and run evaluations on two
language pairs: English—Chinese (EN-ZH) and
English—Spanish (EN-ES). The data and guide-
lines can be found at: https://github.com/
gianchu/BTSR

Our main findings are as follows. (1) Using
the average of the contextualized word represen-
tations as type-level anchors is effective and ro-
bust for aligning pre-trained contextualized em-
beddings cross-lingually, and can also improve the
monolingual contextualized space as it brings the
largest gains in English context-aware evaluation
compared to results from aligning on other levels.
(2) Using a dictionary with a few thousand entries
is able to yield performance comparable to lever-
aging training signals from parallel corpora. (3)
Aligning independently trained models performs
better than aligning embeddings from a multilin-
gual model trained with shared vocabulary.

Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 33—43
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2 Related Work

Cross-lingual Word Embeddings. We conduct
our experiments using a popular projection-based
approach that learns an orthogonal mapping be-
tween pretrained embeddings (Xing et al., 2015;
Artetxe et al., 2016). The orthogonality of the
mapping is crucial as it preserves monolingual in-
variance and is empirically proven to be more ro-
bust (Smith et al., 2017; Xing et al., 2015). This
projection-based method can be applied post-hoc
on pretrained monolingual embeddings with an ex-
act analytical solution. Moreover, its performance
is often competitive to that of jointly trained cross-
lingual models using additional bilingual signals in
the form of parallel or comparable corpora (Ruder
et al., 2019; Glavas et al., 2019).

However, projection-based cross-lingual embed-
dings are still predominantly concerned with static
word embeddings (Glavas et al., 2019; Vuli¢ et al.,
2019; Mohiuddin and Joty, 2019). Learning cross-
lingual contextualized embeddings is still a large
unexplored area with only two concurrent papers
at the moment. First, Aldarmaki and Diab (2019)
adopt the same projection-based approach as our
paper to align contextualized embeddings on the
token-level using parallel data. They find that
context-aware mapping using parallel data outper-
forms context-independent mappings from static
dictionaries on a parallel Sentence Retrieval task.
Second, Schuster et al. (2019) introduce anchor
embeddings as the average of contextualized em-
beddings of a word to perform alignment for con-
textualized models, and show its effectiveness in
cross-lingual dependency parsing. These two stud-
ies are not directly comparable, whereas our paper
provides a comprehensive and systematic compari-
son of various methods for learning cross-lingual
contextualized embeddings and introduces a new
and more challenging evaluation task.

Evaluation of (Contextualized) Cross-lingual
Embeddings. The traditional task to evaluate
cross-lingual embeddings is Bilingual Dictionary
Induction (BDI) (Vuli¢ and Moens, 2013; Mikolov
et al., 2013a; Gouws et al., 2015): given a source
query word, the task is to retrieve the translation
word in the target language. The test words in
BDI are out-of-context and polysemy cannot be
addressed properly. The same issue is found in an-
other relevant lexical task, Cross-lingual Semantic
Similarity. (Camacho-Collados et al., 2017).
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The only context-aware dataset for evaluating
cross-lingual embeddings on the word level is Bilin-
gual Contextual Word Similarity (BCWS) (Chi and
Chen, 2018). It challenges a system to predict
similarity scores between cross-lingual word pairs
with sentential context provided in both languages.
However, BCWS does not explicitly test for the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings, which is explicitly tested
in our test. Also, BCWS is only available for one
language pair: English-Chinese.

Another task used for evaluating contextualized
embeddings is Sentence Retrieval (Aldarmaki and
Diab, 2019): given a query source sentence, the
task is to retrieve the corresponding parallel sen-
tence in the target language. Sentences can be
represented as averages of contextualized embed-
dings of their constituent words. As the task does
not explicitly evaluate at the word level, even if
a system cannot accurately capture polysemy, it
can rely on other words in the sentence to retrieve
the correct parallel sentence. Therefore, Sentence
Retrieval may lead to superficially high scores.

Cross-lingual Word Sense Disambiguation.
Our new task is also related to Cross-lingual Word
Sense Disambiguation (Lefever and Hoste, 2009):
given a source language word in context, a sys-
tem needs to provide the correct sense labels as
clustered translation words in a number of target
languages. Another related task is Cross-lingual
Lexical Substitution (Sinha et al., 2009): the model
must provide plausible target language translations
for the source language lexical item in the source
language context. In contrast, our BTSR task: (1)
directly evaluates token-level word representations
without the need to predict sense labels from a
sense inventory and (2) it contextualizes both the
source query and the target candidates ensuring
full sense disambiguation. The core differences be-
tween the three tasks are illustrated in the following
examples below:
(1) Cross-lingual Word Sense Disambigution:
source query: the national [coach] of the Irish teams ...

answer: allenatore (Italian); FuBbaltrainer; National-
trainer; Trainer (German); entrenador(Spanish) ...

(2) Cross-lingual Lexical Substitution :
source query: She looked as [severely] as she could
muster at Draco.

answer: rigurosamente, seriamente

BTSR:

source query: The reflections included in this docu-
ment are linked to discussions with many colleagues
and friends, in the present [tense].

©))



answer: Scott Peterson meti6 la pata elfondo y usé
el [tiempo] pasado mientras afirmaba que su esposa
asesinada estaba viva , lanzando una bisqueda (...)

3 Methods

3.1 Monolingual Contextualized Embeddings

Compared to static word embeddings (Mikolov
et al., 2013b; Bojanowski et al., 2017), more re-
cent contextualized embeddings provide dynamic
representations for a word in context as hidden
layers in a deep neural network. They are typi-
cally obtained by unsupervised pretraining based
on language modeling objectives (Devlin et al.,
2019; Yang et al., 2019). The underlying con-
textualized method in our study is the pretrained
BERT}use cased model' (Devlin et al., 2019).
BERT is trained using a transformer architecture
(Vaswani et al., 2017) with masked language mod-
elling (MLM) and next sentence prediction (NSP)
tasks. MLM predicts the vocabulary id of a ran-
domly masked word in a sentence based on the
word’s context. NSP trains text-pair representa-
tions to predict whether the text-pair contains con-
secutive sentences from a monolingual corpus.’

We work with two BERT variants. First, we ex-
plore aligning independently trained BERT models,
that is, models with separate model parameters for
each language. For English and Chinese, we align
independently trained Chinese and English mono-
lingual models. For Spanish and English, since
there is no pretrained BERT Spanish model, we
take the Spanish embeddings from the BERT mul-
tilingual model and align it with the monolingual
English model. We take this alignment as an ap-
proximation to aligning two independently trained
models. We have also experimented with directly
aligning embeddings obtained from the BERT mul-
tilingual model, which is a joint model trained with
the same model parameters with shared subword
vocabulary (Devlin et al., 2019). This means that
identical words in two different languages will ob-
tain the same embeddings.

!To produce the contextualized representation for a word
in context, we average the 12 hidden layers of the word’s sub-
word representations in BERT and then average the subword
representations as input for the cross-lingual alignment. We
leave other ways to extract the representations for future work.

2We have also experimented with ELMo in lieu of BERT
(Peters et al., 2018; Che et al., 2018). However, as we
reach similar conclusions in terms of relative performance,
while BERT-based cross-lingual embeddings outperform their
ELMo-based counterparts in absolute terms, we do not re-
port ELMo’s results for brevity. It should be noted that these
pretrained models used different training data.
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3.2 Orthogonal Mapping and MIM

Given a dictionary with item pairs from source and
target languages (s;, t;), and matrices .S and 7" that
contain the vector representations corresponding
to the item pairs in the columns, we follow the
standard practice (Glavas et al., 2019) to find an
orthogonal alignment matrix W that minimizes the
distance between the transformed matrix W.S and
T'. For improved performance, following Artetxe
et al. (2016), we normalize and mean center the
embeddings in S and T". The mapping is as follows:

W =argmin |[WS —T|> st. WW=I (1)
w

The closed-form solution can be found by solving

the orthogonal Procrustes problem (Schonemann,

1966) as follows:

78T =vuzvh,w =vuv” )

We also optionally apply a post-processing
Meeting-in-the-Middle (MIM) technique, recently
proposed by Doval et al. (2018). It first calculates
the average of each dictionary item representation
in a pair after the orthogonal mapping: we denote
the matrix U as the matrix where each column is
such an average vector. Then, it finds a linear map-
ping M from both the source language (denoted
as M) and the target language (M) after the pre-
vious step of orthogonal mapping to minimize the
distance to U via a closed-form solution. Equation
(3) formulates how to find M, and we do the same
from target to source.

M = argmin | M, WS — U||? 3)
M,

We apply the orthogonal mapping and MIM both
on static embeddings (for baselines) and contextual-
ized embeddings. For mapping the contextualized
embeddings, we either extract type-level embed-
dings from the contextualized models to serve as
anchors for the alignment using static dictionaries,
or we use parallel sentences as dictionary items to
directly align contextualized word representations
on the token level. We discuss this in what follows.

3.3 Alignment Levels

We explore aligning contextualized models on two
levels: type-level and token-level. Type-level word
representation refers to static word representation
that assigns one fixed embedding to a word. All
the traditional word embedding models (e.g., skip-
gram, CBOW, fastText) provide such embeddings,
and cross-lingual alignment is typically applied on



these type-level embeddings (Ruder et al., 2019).
Token-level word representation refers to dynamic
representations for words in context, i.e., contextu-
alized word representations.

Contextualized models such as BERT provide
token-level embeddings by default: a natural way
to align these embeddings is token-level alignment.
This has been proposed concurrently to our work by
Aldarmaki and Diab (2019). This method requires
token-level training data , e.g., from a word-aligned
parallel corpus.

As an alternative, we obtain static type-level rep-
resentations in the same space as our contextualized
embeddings and use these type-level representa-
tions as anchors to learn the crosslingual mapping.
The type-level anchors can be seen as taking a
representative sample of the infinite space of the
contextualized embeddings. The mapping learned
via the anchors will hopefully be generalizable to
align the dynamic token-level contextualized em-
beddings as well. The advantage of this approach
is that we can align the contextualized embeddings
with a standard dictionary now that we have one
representation per word.

We experiment with two different kinds of an-
chor type-level embeddings: iso_type and avg_type.
The iso_type refers to type-level embeddings that
are produced by simply inputting the word in iso-
lation to the contextualized model. Avg_type em-
beddings are obtained by taking the average of
the contextualized representations of a word.> The
context-average avg_type embeddings has been pro-
posed recently by Schuster et al. (2019). In this
work, we provide a systematic comparison of em-
beddings aligned on the token level, and on the two
kinds of type-level alignments.

3.4 Alignment Training Signal

We explore a number of different supervision sig-
nals for learning the alignment between monolin-
gual embeddings. First, we evaluate traditional
methods that exploit word-level training signals
(Ruder et al., 2019). We use (1) a static manually
created (i.e., external) dictionary to obtain the align-
ment, and (2) we rely on word alignments from a
parallel corpus as the source of the training sig-
nal. For word alignments, we either treat them as a
large dictionary to perform type-level alignment or
we additionally leverage the context in the aligned

*In practice, we take 1000 random samples for a word

from the training data of the parallel corpora used in our
experiments.
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sentences to extract a dynamic contextualized dic-
tionary to perform token-level alignment.

We also exploit the training signal coming from
the aligned parallel sentences alone without word
alignments. We first create sentence representa-
tions by averaging type-level or token-level embed-
dings, and then align the parallel sentence represen-
tations from source to target language.

The configurations for learning cross-lingual
contextualized word embeddings explored in this
work are summarized in Table 1, and we rely on
the configuration labels from the table throughout
the paper. Type-level configurations which ignore
context are treated as baselines.

4 Bilingual Token-level Sense Retrieval
Task (BTSR)

Task Description. In §2, we already discussed
the main properties of the two other tasks that can
be used to evaluate cross-lingual context-aware em-
beddings: BCWS and parallel Sentence Retrieval.
In short, BCWS only measures similarity between
cross-lingual word pairs in context, and it does not
evaluate the translation capacity of different meth-
ods. The Sentence Retrieval task does not evaluate
on the word level and can be solved by relying on
the context alone.

To bridge this gap in evaluation, we introduce
a new task: Bilingual Token-level Sense Retrieval
(BTSR). It tests for the retrieval of meaning-
equivalent cross-lingual contextualized word em-
beddings relying on non-parallel context informa-
tion. Our task can be seen as a contextualized
variant of the BDI task. Its comparison to the tradi-
tional BDI task is provided in Table 2.

In what follows, we define the BTSR task for-
mally and provide details on how the task data is
created. To build a representative sample of contex-
tualized words in the source and target languages,
we collect translation pairs and contextualize the
word pairs into token-level representations. Then
we manually check a sample of the contextualized
word pairs to ensure correspondence of sense on
the token-level. To understand the effect of the size
of the search space, we experiment with 20k and
200k candidates respectively.

Formal Definition. In BTSR, we define S

5%}:,17 s%ka, sfkjl, cy S?k:,m as a set pf queries from
the source language. A query S%k‘,j is a token-
level contextualized representation of the ith source



Component Options Label
Alignment Signal Word alignment from parallel data wa
Sentence alignment from parallel data sa
MUSE training dictionary dict
Alignment Level Token-level alignment token
Type-level alignment from context average avg_type
Type-level alignment from inputting the word in isolation iso_type
Type-level alignment in static embeddings (eg. Fasttext) type
Models monolingual English BERT model mono_en
monolingual Chinese BERT model mono_zh
BERT multilingual English model multi_en
BERT multilingual Spanish model multi_es
Fasttext baseline fasttext
Alignment techniques  the original orthogonal linear transformation orig
post-processing linear transformation after the orthogonal transformation mim
Evaluation level Evaluated on token-level representations [token]
Evaluated on type-level representations [type]

Table 1: Different components used for the model configurations in our evaluation.

BDI BTSR
uniform  HIAR ..[uniforms] were black... ARSI AR].. (His [uniform]..)
subdue il Ak ..mosquito was [subdued].. L[ AR .. (...[subdue] the assas-
sin...)
uniform  —Z%K the [uniform] convergence of the regular B I RERE. AE PR (the theorem

solution

of [uniform] asymptotic stability...)

Table 2: BTSR: examples and a comparison with traditional (non-contextualized) BDI.

word that corresponds to the word’s jth sense. Sim-
ilarly, we define T' : tbﬂ, t%kg, ... ,tf‘/’k’q as a set
of candidates in the target language where each
candidate is a contextualized token-level word that
represents a specific sense of a word in the target
language. For each query sy, the task is to find a
target contextualized token-level word ¢, that has
the same word sense as in the query. Sim(sy, tii)
is a function that computes the similarity of s;; and
ti.. In our experiments, we use cosine similarity.
Using Sim(sy, ty), for each query, we retrieve
bikyits - -5 byp i 0 the top K most similar token-
level contextualized words from the target set 7" in
the cross-lingual space as the nearest neighbours.
We report Precision@K, i.e. precision of finding
the gold ¢4, in the top K retrieved candidates.

Collecting Translation Pairs. We select a repre-
sentative set of query words from WordNet (Miller,
1998) (one unique word per WordNet synset). For
each source word, we retrieve its WordNet senses
and the corresponding translations in the target lan-
guage from Multilingual WordNet (Bond and Fos-
ter, 2013). As WordNet senses are too fine-grained,
we collapse senses into clusters if they contain the
same translation for the source word. For example,
“uniform” has five WordNet senses which are trans-
lated into four distinct Chinese words: il iR (the
clothes worn by a particular group), —Z%{(the trans-
lation of two senses: consistent and undifferenti-
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ated)?, N5 (unchanged) and FH[7](the same) . We
take these four Chinese words to form four transla-
tion pairs with “uniform”.

Word Pair Contextualization. For each word
in a word pair, we “contextualize” the word by se-
lecting a sentence in which the word appears, and
ensure that the resulting contextualized word can be
translated into the other word. Therefore, if a pol-
ysemous word occurs in multiple word pairs with
distinct translations, it will be accompanied with
different contexts that correspond to each transla-
tion. We achieve this by selecting a pair of parallel
sentences in which the source word and the tar-
get word from the word pair are aligned after we
run word alignment. The context in the source
language in this parallel sentence pair is used to
“contextualize” the source word. When we select
context for the target word, we choose a different
parallel sentence in which the two words in the pair
are aligned. Therefore, the final contexts for the
source and target word in the word pair are indeed
non-parallel.

The use of non-parallel contexts here is crucial
because when we perform the token retrieval task,
parallel contexts can be superficially retrieved by
simply matching the contexts rather than repre-

“Notice the senses are different thus contexts are needed
to find the pair corresponding to the same meaning.



senting the words in context appropriately. We
empirically verified that a simplistic context av-
erage baseline outperforms contextualized word
embeddings in a variant of our task which relies on
parallel contexts.

We set aside 1M parallel sentences from the
UMCorpus (Tian et al., 2014) (EN-ZH) and the
WMT13 news dataset (Bojar et al., 2013) (EN-ES)
for extracting the sentence contexts. We end up
with 14,604 distinct word pairs with contexts ex-
tracted for EN-ZH, and 9,623 pairs for EN-ES.

Creation of Test Data. As the contexts are non-
parallel in a word pair, we need to check if the
contextualized words in a word pair genuinely rep-
resent the same meaning. We manually checked a
sample of the word pairs extracted in the previous
step to produce the final test set for BTSR. To pro-
duce the sample, we selected the translation pairs
that satisfy any of the following constraints: 1) tar-
get or source word belongs to the top 250 frequent
words in each language, 2) target or source word
belongs to the top 250 most ambiguous words in
each language. We take the number of sense clus-
ters as introduced above as a measure of ambiguity
for each word.

The first author then provided an initial manual
annotation of the samples for both EN-ES and EN-
ZH on whether the contextualized words in a pair
correspond to the same meaning. The samples from
the two language pairs were subsequently anno-
tated by one native Chinese speaker and one native
Spanish speaker respectively. The final agreement
rate calculated as pairwise inter-annotator agree-
ment on a binary choice® for EN-ZH is 94.5%,
and 94.7% for EN-ES. Finally, we take the sub-
sets where all annotators agree as the test sets for
EN-ZH (1,181 pairs) and EN-ES (994 pairs).

Target Candidates. We treat the token-level rep-
resentations of the target words from all words pairs
in the contextualization process described above
as our candidate space. To make the target can-
didate space more representative of the language,
we supplement the space with words outside of the
WordNet inventory from monolingual Wikipedia
dumps in the target language. For each of these
words, we randomly select a sentence in which it
occurs to contextualize the word into a token-level

SFor each language pair, it is calculated as the percentage
of token pairs marked correct by both annotators (the first

author and one native speaker of the language) divided by the
number of all the token pairs.
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target candidate. We experiment with 20k target
candidates and 200k target candidates.

5 Experiments

Training Setup. To test the effects of corpora
size on the induction of the cross-lingual align-
ment, we vary the size of the parallel corpus from
100 up to 200k parallel sentences in the UMCorpus
and the WMT13 corpus. Word alignment was pro-
duced by IBM Model 2 using Fastalign (Dyer et al.,
2013). We also induce cross-lingual alignments
relying on static dictionaries provided by MUSE
(Conneau et al., 2017). BERT variants (see §3.1)
are taken from Devlin et al. (2019). For comparison
with BERT, we also run fasttext (Bojanowski et al.,
2017) to produce baseline static embeddings using
the same training Wikipedia corpora for English,
Chinese and Spanish.

5.1 Bilingual Contextual Word Similarity

We first evaluate the models on two previous evalua-
tion tasks: BCWS and Sentence Retrieval. For both
tasks, we compute cosine similarity to measure the
distance between representations. For BCWS, we
evaluate embedding distance against human anno-
tations via Spearman correlation. Results on the
BCWS task for EN-ZH are shown in Figure 1. The
main finding is that all cross-lingual contextual-
ized embeddings in our comparison surpass the
previous state-of-the-art (SOTA) based on a cross-
lingual multi-sense model (Chi and Chen, 2018) as
soon as they are fed SK or more parallel sentences.
Note that the previous SOTA model was trained
on the full EN-ZH parallel corpus of around 2M
sentences. Although BERT was pretrained on a
corpus comprising 3.3B words , it is reasonable to
assume that it is easier to procure abundant mono-
lingual data than parallel data. Therefore, aligning
pretrained monolingual embeddings using only a
small amount of parallel data rather than training on
a large parallel corpus is a more favorable choice.

Alignment based on independent monolingual
models (mono_en—mono_zh) is particularly effec-
tive, achieving human-level performance. While
different methods achieve comparable results,
avg_type consistently takes the lead.

5.2 Sentence Retrieval

For the Sentence Retrieval task, we compute co-
sine similarity between the query sentence repre-
sentation and sentence representations in the tar-
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Figure 1: BCWS (Spearman’s p). The horizontal axis
indicates the number of parallel sentences used for
learning the alignment transformation. Please refer to
Table 1 for understanding the method acronyms in the
legend. For example, ‘token wa orig [token]  refers
to token-level orthogonal mapping trained with word
alignment and it is evaluated on token-level data.

get language in the test set of UMcorpus (English-
Chinese) and WMT13 corpus (English-Spanish).
Precision results for finding the parallel sentence
in the top 5 candidates are reported in Figure 2.
We find that evaluating with contextualized em-
beddings on the token-level (all the [token] lines)
performs consistently better than type embedding
baselines. Among the different ways to transfer the
contextualized embeddings, aligning directly on
the token level with parallel data outperforms align-
ing via type-level anchoring. Concerning the align-
ment training signal, sentence alignment starts low
but is able to yield comparable results with word
alignment after SOK sentences. For the EN—ZH
Sentence Retrieval, aligning independently trained
BERT models outperforms aligning embeddings
with shared vocabulary. For the EN-ES Sentence
Retrieval task, aligning from both independent
models and from shared embeddings achieves ceil-
ing performance.

5.3 Bilingual Token-level Sense Retrieval

We report Precision@5 scores for 20k target words
in Figure 3. We also report the results from align-
ing using 200k parallel sentences on BTSR with
200k target words and applying the additional MIM
technique in Table 3.

Baselines. We evaluate four baselines that help
us better understand the models’ performance in
this task. For BL(word) methods, we discard the
contexts and use only the query and target word’s
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Figure 2: Results on the Sentence Retrieval task from
the testset of UMcorpus and WMT13 corpus; the
scores are Precision@5 (%). The horizontal axis indi-
cates the number of parallel sentences used for learning
the alignment transformation. Please refer to Table 1
for understanding the method acronyms.

type representations. Therefore, polysemous words
in the dataset will have only one static representa-
tion. We implement both a fasttext baseline and a
context-average type embedding baseline for each
contextualized model. We also provide baselines
which use context but ignore the word in focus
(BL(context)). These baselines take an average of
the context embeddings both at the token level and
at the type level of the contextualized models. In-
stead of finding the best translation word in context,
these baselines retrieve the target sentence with the
best translation of the source context.® Finally, we
evaluate a simple baseline that combines both word
and context as an average of the two representa-
tions. Context representation here is the average
of the context embeddings. Both word and context
embeddings here are calculated using the avg_type
embeddings.

Discussion. The low performance of all the base-
lines suggest that the proposed task is more chal-
lenging than the alternatives: it can not be easily

%0On our trivial parallel variant of the task, this context
baseline gives the best performance.



token avg_type iso_type
wa sa wa sa wa sa
mono_en—mono_zh | 30.84 28.87 | 32.04 31.7 | 2543 26.46
+ mim 29.98 30.15 | 34.79 3445 | 26.37 27.15
multi_en—multi_zh | 17.14 1697 | 19.9 20.84 | 16.8  18.17
+ mim 1593 16.62 | 21.62 21.79 | 14.81 149
mono_en—multi_es | 33.47 30.15 | 34.37 33.37 | 29.25 28.44
+mim 3246 30.55 | 35.38 33.57 | 27.34 25.43
multi_en—multi_es | 27.14 2543 | 29.35 29.25 | 27.04 26.33
+mim 28.44 2794 | 31.86 31.76 | 26.73 25.03

Table 3: BTSR results with 200k candidates; alignment learned from 200k parallel sentences. Please refer to

Table 1 for the explanation of the acronyms.
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Figure 3: EN-ZH and EN-ES BTSR results; Preci-
sion@5 (%). The horizontal axis indicates the number
of parallel sentences used for learning the alignment
transformation. Please refer to Table 1 for understand-
ing the method acronyms.

tackled by looking at word in isolation (i.e., at type-
level representations) or the context alone, or a
simple combination of context and the query word.

Regarding the alignment level, compared to the
Sentence Retrieval task, the benefit of dynamic
token-level alignment from parallel corpora now
disappears. Aligning the contextualized embed-
dings via context-average anchor type embeddings,
i.e. avg_type alignment, (which consistently out-
perform iso_type embeddings) is the best model in
most cases, or yields comparable performance with
token-level alignment. Their advantage becomes
more pronounced in the experiments with 200K
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target candidates, see Table 3. We suspect that this
method is particularly robust when generalizing to
words in non-parallel contexts: we find the same
pattern in the BCWS task which is also constructed
with nonparallel sentences.

Applying MIM brings consistent improvement
for the best (avg_type) alignment method. Such
improvements for the other methods are less sta-
ble. This suggests MIM is only effective when
the alignment methods already learn a high-quality
cross-lingual space before applying MIM.

As for training signals, relying only on a small
dictionary (5K word pairs) yields comparable re-
sults with the methods that are trained on large
amounts of parallel data. This suggests that a small
seed dictionary may be enough to transfer the con-
textualized embeddings cross-lingually and be able
to disambiguate words in context cross-lingually.

When comparing model variants, we see an
advantage of aligning independent models over
aligning shared models as we increase the train-
ing data. This advantage becomes more obvious
with 200K target candidates, see Table 3. For EN-
ES results in Figure 3, we observe that all align-
ment methods which use the shared model (i.e.,
multi_en—multi_es) start higher than results from
aligning independently trained mono_en—multi_es.
With the ‘avg_type wa orig’ method for exam-
ple, aligning mono_en—multi_es starts at 29.04(%)
whereas multi_en—multi_es starts at 34.07(%)
given 100 parallel sentences. This is intuitive as
English and Spanish share a larger portion of their
vocabulary compared to English and Chinese: this
gives the multilingual model a head start, but it is
quickly surpassed by aligning from independently-
trained models, especially via the avg_type align-
ment, as we increase training data.

In sum, we show that (1) BTSR is a challeng-
ing task; (2) unlike in Sentence Retrieval, context



English original token avg_type iso_type
mono_en multien | wamim samim Wwamim Samim Wwamim samim
mono_en—mono_zh | 76.37 - 76.9 77.98 78.16 78.28 73.82 74.37
mono_en—multi_es | 76.37 - 75.89 76.76 77.2 76.83 73.12 72.05
multi_en—multi_zh | - 72.6 73.56 75.31 74.89 75.1 68.55 68.07
multi_en—multi_es | - 72.6 72.3 73.78 74.1 73.72 68.43 66.99

Table 4: Evaluating alignment methods and model variants on the monolingual SCWS dataset which measures
word similarity in context (in English). Spearman’s p (x 100%). Previous best reported score is 69.3 (Neelakantan
et al., 2014). Please refer to Table 1 for the explanations of the acronyms.

average type-level alignment performs the best in
our task and in the BCWS task where the con-
texts are non-parallel, and can be further improved
with the MIM technique. (3) Using a small dic-
tionary is sufficient to transfer the contextualized
embeddings via type-level alignment. (4) Align-
ing from a shared model gives a head start when
two languages contain some shared vocabulary, but
aligning from independently trained monolingual
embeddings is able to achieve better performance
given sufficient training data (5) Overall, increasing
the search space from 20K to 200K target words
results in a decrease of 10% in precision in BTSR,
but the relative performance of different methods
is more consistent and more pronounced.

Monolingual Contextual Evaluation. We also
examine whether the cross-lingual alignment with
MIM post-processing can improve the monolingual
contextualized embeddings by evaluating the EN
models on the Stanford Contextualized Word Sim-
ilarity Task (Huang et al., 2012) which measures
similarity of word pairs with context in English. We
evaluate the alignments learned from using 200K
parallel sentences. The results are in Table 4. It
seems that aligning independently trained models,
which have better monolingual performance, out-
performs aligning from shared models as found in
BTSR. Also, we see consistent improvement over
the original monolingual space after MIM, espe-
cially with avg_type alignment level. This indicates
that the avg_type alignment level is effective not
only in transferring the contextualized embeddings
to the target language, but it can also improve the
context-aware monolingual space.

We also observe that the EN contextualized
models in their original space (both mono_en and
multi_en) outperform SOTA (69.3%), a multi-sense
static embedding model (Neelakantan et al., 2014).
This indicates that the present contextualized em-
beddings are already capturing context effect in-
cluding sense-level information without explicitly
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assigning embeddings to discrete sense categories.

6 Conclusion

We have conducted novel comparisons and anal-
yses of various alignment methods for aligning
contextualized embeddings cross-lingually. We
have also introduced a novel task, Bilingual Token-
level Sense Retrieval, which directly evaluates the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings. The proposed task is chal-
lenging and enables a finer-grained analysis of dif-
ferent cross-lingual alignment methods. We have
found that using context-average type-level align-
ment (avg_type) is effective and robust in trans-
ferring monolingual contextualized embeddings
cross-lingually and at the same time improves the
monolingual space. Using a small static dictio-
nary as the alignment signal provides comparable
results to word alignment methods relying on paral-
lel corpora. We have also found that aligning inde-
pendently trained monolingual embeddings yields
better performance than aligning embeddings from
a shared model. As our paper focuses only on the
projection-based alignment methods, future work
may explore other ways to learn the cross-lingual
contextualized embeddings, e.g., based on joint
training (Mulcaire et al., 2019).
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Abstract

Producing diverse paraphrases of a sentence is
a challenging task. Natural paraphrase cor-
pora are scarce and limited, while existing
large-scale resources are automatically gen-
erated via back-translation and rely on beam
search, which tends to lack diversity. We de-
scribe PARABANK 2, a new resource that con-
tains multiple diverse sentential paraphrases,
produced from a bilingual corpus using nega-
tive constraints, inference sampling, and clus-
tering. We show that PARABANK 2 signif-
icantly surpasses prior work in both lexical
and syntactic diversity while being meaning-
preserving, as measured by human judgments
and standardized metrics. Further, we illus-
trate how such paraphrastic resources may be
used to refine contextualized encoders, leading
to improvements in downstream tasks.

1 Introduction

The ability to understand and produce paraphrases
is a basic competency task, one that is often used
as a teaching aid to validate if a student under-
stands a statement or a concept. Current deep
learning systems struggle with this task, exhibit-
ing brittleness to both understanding and produc-
ing paraphrastic expressions (Iyyer et al., 2018).

One crucial factor behind this incompetence is
the dearth of sentential paraphrastic data. Many
works have sought to leverage the relative abun-
dance of sub-sentential paraphrastic resources in
paraphrase detection or generation (Napoles et al.,
2016). Yet, they fail to capture contextualized
word choices or syntactical variations, as word-
or phrase-level resources cannot incorporate infor-
mation from the whole input sentence.

Recent works have focused on leveraging bilin-
gual resources to create large sentence-level para-
phrastic collections using translation-based meth-
ods (Wieting and Gimpel, 2018; Hu et al., 2019).
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Unconstrained

vzal jsem ho omylem. I took this by mistake. I took it by mistake.

Source Target (Reference) Paraphrase

) Constrained

vzal jsem ho omylem. I took this by mistake. I took it by accident.

. @ : .
1 took this by mistake. I ook it by mistake.
© [S]

I took this by mistake. [ picked it up accidentally.
Clustered

I took it by accident.
I took by accident.

vzal jsem ho omylem. I took this by mistake.

I picked it up accidentally.
I picked up accidentally.
[ picked it accidentally.

I took it by mistake.
I took mistake.
[ took it.

Figure 1: Contrived example paraphrases from previ-
ous work (unconstrained and constrained—used with
permission) and ours (clustered).

However, these works are confined to using beam
search in decoding, which tend not to produce di-
verse candidates. One approach to force diverse
translations is the use of hard lexical constraints at
inference time (Hu et al., 2019). While effective in
some cases, current approaches to automatic selec-
tion of such constraints is based on heuristics and
task-oriented trial-and-error.

We present a novel resource with accurate and
collectively diverse paraphrases, generated using
stochastic decoding and clustering. By collec-
tively diverse, we mean that the paraphrases of a
given sentence cover a wide lexical and syntac-
tic spectrum. Given a bilingual input pair, our
core idea is to sample a large space of outputs
from a translation system, cluster the results ac-
cording to a notion of token-sequence similarity,
score them with two translation models (one in
each direction), and then select the best item from
each cluster. We believe that sampling from the
word distribution at each decoder time-step bet-
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ter preserves the decoder’s level of uncertainty,
which is intrinsic to the goals of paraphrasing.
We also sample ancillary lexical constraints to
discourage, instead of explicitly prohibiting (Hu
etal., 2019), certain words from being used by the
decoder. While our experiment produces a large-
scale English resource, our approach is dependent
only on the availability of large bitexts and so is
language-agnostic. We chose to build an English
resource from CzEng to enable a direct compari-
son with Wieting and Gimpel (2018) and Hu et al.
(2019).
Our contributions include:

e A large, high quality paraphrase collection'
with up to 5 paraphrases per reference, close
to 100 million pairs in total, which are more
diverse than prior work in two distinct ways,
as measured by standardized metrics;

An evaluation of semantic similarity, lexi-
cal and syntactic diversity, compared against
prior works, along with results on Sentence
Textual Similarity (STS) Benchmark;

Experiments on how our resource can be
leveraged to improve performance on a set of
language tasks.

2 Paraphrase generation pipeline

Prior works in constructing sentential paraphras-
tic resources have worked from large collections
of bitext, producing translations of the foreign
language sentence which, when paired with the
target-language reference, constitute a set of para-
phrases. Working from the very large CzEng par-
allel corpus, Wieting and Gimpel (2018) produced
a single paraphrase for each English sentence by
translating from the Czech source. Hu et al. (2019)
expanded on this by translating the Czech sen-
tence several times, using positive or negative con-
straints obtained from the English reference.

In terms of producing diverse paraphrases, both
approaches are limited because they rely on beam
search. There are potentially billions of para-
phrases of a sentence (Dreyer and Marcu, 2012),
yet beam search with recurrent models can only
search a constant subset of them (in the beam
size). There are techniques for producing more di-
verse paraphrases, such as the use of positive and
negative constraints (Hu et al., 2019) or syntactic

'Available at http: //nlp. jhu.edu/parabank?
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fragments (Iyyer et al., 2018), but these require the
user to manually specify them, which can be cum-
bersome and unreliable.

We follow these prior works in working with
the CzEng, a Czech—English dataset (Bojar et al.,
2016b), due to its size, diverse domain coverage,
and rich syntactic variations (Wieting and Gim-
pel, 2018), and to allow for a direct comparison
in methodologies. However, we propose a new
approach to paraphrase generation designed to in-
crease paraphrastic diversity, using a multi-step
process: the first part of the pipeline generates a
large number of candidate paraphrases through a
random process, and the second part whittles them
down to a much shorter list. For each {source, tar-
get} input pair, we run the following pipeline:

1. Constrained sampling. We sample trans-
lations using a source—target translation
model with lexical constraints. We obtain
negative constraints by randomly selecting a
set of tokens from the “source”, so that they
are not allowed to appear in the translations.
Then, we decode each translation by sam-
pling from only the top-k most probable to-
kens at each time step, after excluding con-
strained tokens (§2.1).

2. Dual scoring. The set of samples is then
scored against the original source input us-
ing a target—source translation model. The
scores from the forward and backward mod-
els are summed (§2.2).

. Clustering. The samples are then clustered.
The best item from each cluster (according to
the summed score) is then returned (§2.3).

2.1 Constrained sampling

Sampling is a more effective way to explore model
search space than beam search, particularly in
auto-regressive models that do not permit dynamic
programming. We introduce two means by which
we can expand the hypothesis space, and pro-
duce a more diverse set of paraphrases, relative to
straightforward beam search.

Top-k sampling In auto-regressive neural MT,
the standard sampling approach would be to
choose a word w; at each decoder timestep ¢ by
sampling from the distribution P(w; | wi. ¢—1).
This approach has been found effective over 1-
best beam search in generating source sentences in



back-translation (Edunov et al., 2018). However,
for paraphrasing, this is not ideal, since words that
are not semantically licensed by the source may be
selected. Instead, we propose top-k sampling, in
which we choose w; from the top k£ most-probable
tokens at each time step. This way, we allow the
model to sample flexibly, vastly opening up the
hypothesis space, without creating a large risk of
producing nonsensical translations.

Randomized negative constraints Negative
constraints are tokens that are not permitted in the
decoder output. They are not formally described
in the literature, but an implementation was
provided with the associated positive constraints
(Post and Vilar, 2018). Negative constraints can
be provided as tokens or phrases; the decoder
tracks the progress of generation through each
constraint and adds an infinite cost to the final
word of any constraints, precluding its selection
in both sampling and beam search.

In order to further increase sample diversity
when generating the hypotheses (§2.1), we obtain
negative constraints from the source by randomly
choosing a subset of tokens. We do this indepen-
dently multiple times for each input sentence. This
provides new sets of constraints for the inputs, in-
dependent of the decoding.

Note that we use subword regularization (Kudo,
2018) during training, causing different subword
segmentations to be applied to training data types
each time they are encountered and helping to
build more robust models. We only constrain on
the Viterbi segmentation, effectively discouraging
negatively constrained words from appearing in
the output, instead of prohibiting them, since there
are often ways for the model to produce a word by
generating a different decomposition.

2.2 Back-translation likelihoods

Some semantic changes during paraphrasing, es-
pecially omission, are not well-reflected by the
(forward) probability pgenerate from the generat-
ing model. However, a model running in the other
direction can penalize this omission, as found by
Goto and Tanaka (2017). Thus, we obtain the
back-translation probability pp,.;. of each sampled
candidate paraphrase, and define the final score for
each candidate paraphrase as the joint probability
P* = Dgenerate * Poack> Which is the sum of nega-
tive log-likelihood.
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2.3 Edit-distance-based clustering

The above process produces a large set of transla-
tions of the source sentence. Many of them will be
minor variants of one another, but we expect that
there will be a lot of variety in the large pool. The
task now is to reduce this pool to a small set of
collectively diverse paraphrastic candidates.

We address this problem with k-means clus-
tering via Levenshtein (or edit) distance (Miller
et al.,, 2009). We compute this on lowercased,
segmented candidates, after striping punctuation.
Clusters are initialized with the & furthest candi-
dates measured by edit-distance. We also add the
reference sentence as the centroid of an additional
cluster and skip the re-centering for that cluster.
This improves the chance of the k£ clusters con-
gregating candidates different from the reference
in different ways. When the clustering has con-
verged, we take the candidate with the best score
from each cluster (except for the one with the ref-
erence sentence), rank them by score, and take the
best n as the final output.

3 Evaluations

3.1 Data

All of our experiments are based on the CzEng 1.7
corpus, a subset of CzEng 1.6 (Bojar et al., 2016b)
that has been chosen for higher quality. Based
on experience with data quality issues in neural
MT (Ott et al., 2018; Junczys-Dowmunt, 2018),
we decided to further clean the corpus. First,
we normalize Unicode punctuation, and keep only
bilingual pairs whose English side can be encoded
with latin-1 and Czech side with latin-2.
We then filter the data with dual cross-entropy fil-
tering (Junczys-Dowmunt, 2018). We use Sock-
eye (Hieber et al., 2017) to train two NMT mod-
els, CS-EN and EN-CS, on a relatively clean sub-
set of the data provided for WMT 2018 (Bojar
et al., 2016a): Europarl, Wiki titles, and news
commentary. We use 4 layer Transformer models
(Vaswani et al., 2017) trained to convergence, with
held-out likelihood evaluated on a random 500-
sentence subset of the WMT16 and WMT17 news
test data. These models are then used to score
all the remaining CzEng data after deduplication.
We kept all sentences with a model score (negative
log-likelihood) of less than 3.5. After applying the
above two filters, we keep 19, 723,003 out of the
57,065, 358 pairs in CzEng 1.7.



3.2 Translation models

We train two new translation models on the filtered
data, the CS-EN generation model (for generat-
ing English candidates via sampling) and the EN-
CS scoring model (for providing backwards scores
of the candidates). Both are Transformer models
built with AWS SOCKEYE. The generation model
is a 12 layer Transformer with a model and em-
bedding size of 768, 12 attention heads, a feed-
forward layer size of 3072. The scoring model
has 6 layers, model and embedding size of 512,
8 attention heads, and a feed-forward layer size of
2048.

All training data is pre-processed with subword
sampling using SentencePiece” (Kudo, 2018) with
a vocabulary size of 20k and character coverage
of 0.9999. We used separate models for Czech
and English. At inference time, we use the Viterbi
segmentation of each input sentence, for both the
generation and scoring models.

3.3 Parameters

There are a few parameters involved in the sample-
score-cluster pipeline. For each Czech input sen-
tence, we generate 5 sets of random constraints
(§2.1), creating 5 variants of the input. From each
of these inputs, we generate 30 samples using top-
k sampling with &k = 10 (i.e., at each timestep,
the model randomly chooses from the top 10 most
probable words, according to their scaled distribu-
tion, and excluding negatively constrained words).
The resulting 150 sentences are scored, and any-
thing with a combined score greater than 3.5 is
thrown out. The remaining sentences are clustered
into 8 clusters, one of them centered on the En-
glish reference. The reference cluster is thrown
out, and a list of the best-scoring translation from
the remaining 7 clusters is constructed. From this
list, the top 5 translations are returned as hypothe-
ses.

3.4 Setup

We follow the evaluation framework of Hu et al.
(2019), which judged semantic similarity between
paraphrases and their reference through human
evaluation, and lexical diversity via automatic
metrics. We use the evaluation result made pub-
lic by Hu et al. (2019) to enable a direct compar-
ison. Rather than focusing on improving seman-

https://github.com/google/
sentencepiece
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tic similarity, which is limited by the quality of
the bilingual resource, we seek to build a resource
that contains both more lexical and syntactical di-
versity.

We obtained the evaluation set from Hu et al.
(2019), which contains 400 English sentences
from CzEng. Due to additional filtering, 24 out
of 400 (6%) reference sentences aren’t in PARA-
BANK 2 and therefore excluded in this evaluation.

We set the output size n = 5. After sorting the
candidates by negative log-likelihood for each ref-
erence, we treat candidates at each rank as an in-
dividual system to investigate the expected quality
of paraphrases under our approach. For references
that produce fewer than 5 paraphrases, the para-
phrase with the highest negative log-likelihood is
duplicated to fill in ranks that otherwise would be
empty. We also artificially pick the paraphrase
with the maximum, minimum, and median human
semantic similarity judgment under each reference
as three additional oracle systems.

3.5 Semantic similarity via human judgments

For a fair comparison, we used the evaluation
setup released by Hu et al. (2019), which uses the
interface from EASL (Sakaguchi and Van Durme,
2018) to collect semantic similarity and gammat-
icality judgments. Each human annotator is pre-
sented with a reference sentence and five para-
phrases from different sources. Annotators use a
slider bar under each paraphrase to rate the seman-
tic similarity from O (Opposite/Irrelevant) to 100
(Identical Meaning). Annotators are also asked
to comment on whether the paraphrase is ungram-
matical or nonsensical. The reference sentence is
repeated next to the paraphrase for easier visual
comparison.

Each paraphrase receives at least 3 independent
judgments. Following Hu et al. (2019), we ran-
domly add in the reference sentence as a para-
phrase and filter out annotators who fail to score
them 100 more than 10% of such encounters. The
result includes only annotators who contributed at
least 25 judgments and is shown in Tab. 1.

3.6 Paraphrastic diversity

BLEU has been a successful metric in evaluating
MT systems. However, as noted earlier, monolin-
gual paraphrasing has inherently different objec-
tives than cross-lingual translation. BLEU, in tan-
dem with human evaluation in semantic similar-
ity, makes a good metric for paraphrastic diversity.



System Semanticst ‘ Grammar{  1-BLEU? n/ul Tree EDT ‘ Len. Ratio
PARANMT 83.2 89.2 66.29 48.76 6.62 1.00
PARABANK; 7 84.5 92.1 62.85 46.21 6.21 1.01
PARABANK3y 85.7 92.7 58.16 51.01 6.51 1.02
Our work; 84.4+.0 90.2+.2 75.83+.10  37.75£.02  7.16+.05 | 1.04+.00
Our worky 83.8+.0 88.3+.4 76.98+.07 36.19+£.36  7.15+.17 | 1.054+.00
Our works 83.5+.0 87.3+.1 78.29+.69  3522+43 747+.11 | 1.05+.00
Our worky 83.2+.2 86.6+.8 78.92+.19  34.49+.06 7.51+.11 1.06+.01
Our works 81.7+.1 87.3+.8 81.55+.35 32.50+.32 7.80+.19 | 1.09+.00
Our work, g~ 91.2£.2% 93.1+.8% 76.71+£.11  37.15+£.33  7.38+.06 | 1.05+.01
Our work,,eq. 84.1+.1 88.2+.1 78.34+.10  35.34+.25 7.52+.08 | 1.06+.00
Our work,,i5, 72.5+.2 81.5+£2  79.29+.21* 33.13+.55*% 7.65+.10% | 1.05+.00

Table 1: Paraphrastic diversity measured by (1-BLEU)x 100, bag-of-word intersection/union score x 100, and Tree
edit-distance. Systems from this work that receive the best human judgments, worst human judgments, and the
median, are included in the table. A higher 1-BLEU suggests higher paraphrastic diversity; a higher Intersec-
tion/Union score suggests a higher lexical diversity; a higher Tree edit-distance suggests a higher syntactic diver-
sity. Best in each column, excluding oracle systems, is in bold. * denotes best oracle systems.

Here, we use 1-BLEU to measure how different
the paraphrases are to the references.

We generate 5 paraphrases for each reference
sentence using the approach outlined in this work.
To account for randomness, we average over two
independent runs in the result, shown in Tab. 1.

We consider two sources of paraphrastic diver-
sity: 1) lexical diversity, the use of different words;
and 2) syntactic diversity, the change of sentence
or phrasal structure. We separately measure them
using bag-of-word Intersection/Union scores and
parse-tree edit-distances, respectively.

Lexical diversity A sentence is lexically differ-
ent from the reference when it uses lexical para-
phrases (e.g., synonyms) to convey similar mean-
ings. We calculate the case-insensitive piece In-
tersection/Union score after striping punctuation
and the SentencePiece white space symbol. All
pieces are put to lowercase and into a set. The
more pieces the two sentences share, the higher the
score will be. The Intersection/Union scores be-
tween the reference and the paraphrases are shown
in Tab. 1.

Syntactic diversity We consider the edit-
distance between the parse trees of the reference
and the paraphrase as a metric of syntactic
diversity. Parse tree edit-distance is considered
a useful feature in NLP tasks (Yao et al., 2013).
The more syntactic variations there are between
two sentences, the larger the tree edit-distance

48

will be. We consider only the top 3 levels of the
parse trees, excluding any terminals. Sentences
are parsed with Stanford CoreNLP (Manning
et al., 2014); the tree edit-distance is calculated
with the APTED (Pawlik and Augsten, 2015a,b)
algorithm. The average tree edit-distance for each
system is shown in Tab. 1.

Diversity among paraphrases Hu et al. (2019)
produced multiple paraphrases for each reference.
While shown to be diverse compared to the refer-
ence, the authors did not investigate whether these
paraphrases are trivial rewrites of one another, as
it is likely the case with beam search under a few
lexical constraints. Our clustering step is specifi-
cally designed to retrieve collectively diverse para-
phrases.

We use the same metrics to evaluate pairs of
systems from our work and compare them against
PARABANK (Hu et al., 2019), as shown in Tab. 2.
The max/min/median systems are oracle systems
derived from human semantic similarity judg-
ment scores. The human judgments from Tab. 1
show our paraphrases are of comparable quality to
PARABANK, while maintaining a much higher de-
gree of diversity among paraphrases of the same
reference, as shown by automatic metrics.

3.7 Semantic similarity on STS Benchmark

In addition to evaluating via human judgments,
we consider the same evaluation mechanism as
PARANMT (Wieting and Gimpel, 2018): the use



Systems Compared 1-BLEU?T n/ul Tree ED?
PARABANK7/PARABANK34 20.58 80.93 2.26
Our worky/Our worksg 64.16+.21 5277448 5.51£.01
Our works/Our works 71.05+.22 45.00+.51 6.40+.19
Our worky/Our works 69.46+.27 46.79+.12 6.25+.18
Our work,,,4./Our work,,,;, | 66.03£.86 49.10+.16 5.844.33

Table 2: Collective diversity within our work compared to PARABANK, as measured by (1-BLEU) x 100, intersec-

tion/union score x 100, and parse tree edit-distance.

of paraphrase corpora as training data for the Se-
mantic Textual Similarity (STS) task. STS aims
to measure the degree of equivalence in meaning
or semantics between a pair of sentences. No-
tably, Agirre et al. (2016) having been a part of
the SemEval workshop (2012 -2017). The evalua-
tion consists of human annotated English sentence
pairs, scored on a scale of 0 to 5 to quantify simi-
larity of meaning, with O being the least, and 5 the
most similar.

Wieting and Gimpel (Wieting and Gimpel,
2018) compared three encoding mechanisms:
WORD, TRIGRAM and LSTM. The WORD
model (Wieting et al., 2016) averages the embed-
ding for each word in the sentence into a fixed
length vector embedding for the sentence; the
TRIGRAM model (Huang et al., 2013) averages
over character trigrams; and the LSTM (Hochre-
iter and Schmidhuber, 1997) approach averages
over the final hidden states to obtain the sentence
embedding.

Encoders are trained on paraphrase pairs (s, s)
with a margin based loss function I(s, s, ¢,t")

] + coslg(s), g(H)])+

max (0, § — cos[g(s), g(s")
,9(s")] + cos[g(s"), g(¢')])

)
where g is one of (WORD, TRIGRAM, LSTM)
and (¢,t') is a negative sample selected from
a megabatch, an aggregation of m mini-
batches (Wieting and Gimpel, 2018).

We evaluate the WORD model trained* on

PARANMT, PARABANK and PARABANK 2 (our
work). We retrieved the paraphrases from PARA-

max(0, 0 — cos[g(s

3We confirmed this loss with Wieting and Gimpel, that it
captures their open implementation, which we employ. Wi-
eting and Gimpel (2018) described their loss as: max (0, —
cos(g(s),g(s")) + cos(g(s), g(t))), which is equivalent un-
der their assumption the paraphrases are equivalent.

‘nttps://github.com/jwieting/
para-nmt-50m
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System ‘ Pearson’sr Spearman’s r
PARANMT 75.378 76.322
PARABANK 76.006 76.961

Our worky 76.546 77.528
Our worky 76.143 77.240
Our works 76.397 77.500
Our worky 76.414 77.612
Our works 75.882 77.075
Our work, /5 75.680 76.882

Table 3: Pearson’s r x 100 and Spearman’s r x 100
computed on STS 2016 task. Our work, /5 contains
paraphrase pairs from system; paired with systems,
while all other systems are paired with the reference
sentence.

BANK and our work that share the same refer-
ences as PARANMT-5M. Our work is evaluated
as 5 systems, based on the rank in the output; the
last available paraphrase is used when lower ranks
are empty. We also include a system that uses
a pair of paraphrases, instead of a reference and
a paraphrase. We keep PARABANK paraphrases
that have a bag-of-word intersection/union score
of 0.7 or less, and use the 1-best based on regres-
sion scores. In Tab. 3, we report Pearson’s r and
Spearman’s r on the STS’ 16 test set. Sentence em-
beddings trained on our work exhibit higher cor-
relation with human judgments, which reflects the
superior paraphrastic diversity of the corpus.

3.8 Improving contextualized encoders with
paraphrastic data

Paraphrastic data can be used to fine-tune contex-
tualized encoders such as BERT (Devlin et al.,
2018). We frame the fine-tuning task as para-
phrase identification (Das and Smith, 2009),
where given a pair of sentences, the task is to
classify them as paraphrases or non-paraphrases.
To generate the training data, we extract, for each



| QQP MNLI STS-B MRPC

87.90 83.86 88.40 84.00
88.14 82.64 88.59 86.55

BERT
pBERT

Table 4: F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, and ac-
curacy scores are reported for MNLI. Numbers re-
ported on Dev set

Type | BERT pBERT
F1 HasAns | 76.81 74.21
NoAns | 71.44  74.95
Total 74.12 74.58
Exact Match | HasAns | 70.34  68.00
NoAns | 71.44 7495
Total 70.89 7148

Table 5: SQuAD 2.0 results on dev set.

sentence in PARANMT-5M, the sentence embed-
dings generated by the WORD model trained in
§3.7. For each sentence s, we then find the (ap-
proximate) nearest neighbour n which is not s,
among all of the sentences. We thus obtain two
pairs, where (s, s') is a paraphrase pair, and (s,n)
is a non-paraphrase pair. We use these to train a
binary classifier with cross-entropy loss.

We then use this BERT fine-tuned on para-
phrases (henceforth pBERT) for fine-tuning on
SQuAD 2.0 (Rajpurkar et al., 2018) and 4 NLP
tasks present in the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019): Quora Question Pairs (QQP) (Chen
et al., 2017), Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2018), the Seman-
tic Textual Similarity Benchmark (STS-B) (Agirre
et al., 2016), and the Microsoft Research Para-
phrase Corpus (MRPC) (Dolan et al., 2004). Fol-
lowing the model formulation, hyper-parameter
selection and training procedure specified in De-
vlin et al. (2018), we add a single task-specific,
randomly initialized output layer for the classifier.

We present our results in Tab. 4 and Tab. 5.
We observe gains for STS-B, MRPC and QQP,
tasks strongly related to paraphrase identifica-
tion. Fine-tuning on our paraphrase corpus also
improves performance on SQuAD, a question-
answering task, while slightly degrading perfor-
mance on MNLI. Overall, simple fine-tuning of
BERT on our corpus leads to improvements on
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downstream tasks, in particular when the task is
related to paraphrase detection.

4 Related works

4.1 Paraphrastic resources

Paraphrastic resources exist across different
scopes (i.e., lexical, phrasal, sentential) and differ-
ent creation strategies (i.e., manually curated, au-
tomatically generated). For a more comprehensive
survey on data-driven approaches to paraphrasing,
please refer to Madnani and Dorr (2010).

Sub-sentential resources WordNet (Miller,
1995), FrameNet (Baker et al., 1998), and
VerbNet (Schuler, 2006) can be used to extract
paraphrastic expressions at lexical levels. They
contain the grouping of words or phrases that
share similar semantics and sometimes entailment
relations.  While FrameNet and VerbNet do
have example sentences or frames where lexical
units are put into contexts, there is no explicit
paraphrastic relations among these examples.
Also, these datasets tend to be small, as they
were curated manually. There have been efforts
to augment such resources with automatic meth-
ods (Snow et al., 2006; Pavlick et al., 2015b),
but they are still confined to lexical level and
sometimes require the use of other paraphrastic
resources (Pavlick et al., 2015b).

PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015a) automated the generation of lexical para-
phrases via bilingual pivoting, taking advantage
of the relative abundance of bilingual corpora.
While significantly larger and more informative
(e.g., ranking, entailment relations, etc.) than the
above manually curated resources, PPDB suffers
from ambiguity as words or phrases are removed
from their sentential contexts.

Sentential resources There exists multiple hu-
man translations in the same language for some
classic readings. Barzilay and McKeown (2001)
sought to extract lexical paraphrastic expression
from such sources. Unfortunately such resources
— along with those manually constructed for text
generation research (Robin, 1995; Pang et al.,
2003) — are small and limited in domain.

PARANMT and PARABANK are two much
larger sentential paraphrastic resources created
through back-translation.



Reference:

Real life is sometimes thoughtless and mean.

PARANMT:
real life is sometimes reckless and cruel .
PARABANK:
The real life is occasionally ruthless and cruel.
The real world is occasionally ruthless and cruel.
The real life is sometimes reckless and cruel.
Our work:

True life is sometimes ruthless and cruel.

Actual life is sometimes ruthless and cruel.
Sometimes real life is ruthless and cruel.

Real life can be inconsiderate, cruel sometimes.

Real living is a harsh and unscrupulous one, at times.

Hey, stop right there!
hey , stop .

Stay where you are!

Hold your position!
Stay where you are!
Stay in position!
Remain where you are!
Stay put!

Table 6: Selected examples from our work, compared to paraphrastic resources with prior approaches. Our work
has paraphrases that are not only different from the reference, but also diverse among themselves.

4.2 Translation-based Approaches

PARANMT is an automatically generated senten-
tial paraphrastic resource through back-translating
bilingual resources. It leveraged the imperfect
ability of Neural Machine Translation (NMT) to
recreate the translation target by conditioning on
the source side of the bitext.

PARABANK took a similar approach but with
the inclusion of lexical constraints from the tar-
get side of the bitext. This step allows for multi-
ple translations from one bilingual sentence pair
and promotes lexical diversity. Their work, de-
spite being larger and shown to be less noisy than
PARANMT, relies on heuristics to produce hard
constraints on the decoder, which often causes un-
intended changes in semantics or grammar.

Both works largely follow standard approaches
in NMT, generating 1-best hypotheses given a
source text and a set of constraints using beam
search. Sentential paraphrasing, nevertheless, has
fundamentally different objectives than MT. The
latter strives to find the best elicitation that is both
fluent and semantically close to the foreign text to
convey information across languages. The former,
on the other hand, seeks syntactically and lexically
diverse expressions that convey the same meaning,
with the goal of capturing the intrinsic flexibility
and uncertainty of human communications. This
work attempts to adapt the methodology to these
objectives of monolingual paraphrasing.
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4.3 Leveraging paraphrases in NLP

In the context of semantic parsing, Berant and
Liang (2014) use a paraphrase classification mod-
ule to determine the match between a canonical
utterance and a logical form, both using a phrase
table and distributed representations. To im-
prove question answering (QA), Duboue and Chu-
Carroll (2006) generate paraphrases of a given
question using back-translation, and optionally re-
place the original question with the most rele-
vant paraphrase. Dong et al. (2017) tackle QA by
marginalizing the probability of an answer over a
set of paraphrases, generated using rule-based and
NMT-based methods. Fader et al. (2013) use a cor-
pus of questions with paraphrases, to construct a
corpus of semantically equivalent queries.

The task of paraphrase identification, which we
use as a fine-tuning objective, has been studied as a
task in itself. Das and Smith (2009) use grammars
to perform generative modeling of paraphrases.
Madnani et al. (2012) identify paraphrases by re-
lying only on MT metrics as features. Ferreira
et al. (2018) feed sentence similarity measured
with hand-crafted features to machine learning al-
gorithms. Convolutional neural networks have
been introduced by Yin and Schiitze (2015) and
Chen et al. (2018), and further augmented with
LSTMs (Kubal and Nimkar, 2018) and attention
mechanisms (Fan et al., 2018).



5 Conclusions and future work

A presumed goal for building a sentential para-
phrase resource is to capture different ways of ex-
pressing the same thing: diversity matters. Previ-
ous work on paraphrastic resource creation relied
on decoding techniques from NMT using bilingual
corpora, with limited success in promoting diverse
expressions. We have presented a new community
resource produced by sampling and clustering. We
evaluated our method against prior works (Wiet-
ing and Gimpel, 2018; Hu et al., 2019) and found
significant gains in both lexical and syntactic di-
versity. Further, we’ve shown how straightforward
fine-tuning of a state-of-the-art contextual encoder
on our resource can improve performance on a va-
riety of language tasks.
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Abstract

Systems that can associate images with their
spoken audio captions are an important step
towards visually grounded language learning.
We describe a scalable method to automati-
cally generate diverse audio for image caption-
ing datasets. This supports pretraining deep
networks for encoding both audio and images,
which we do via a dual encoder that learns to
align latent representations from both modali-
ties. We show that a masked margin softmax
loss for such models is superior to the stan-
dard triplet loss. We fine-tune these models on
the Flickr8k Audio Captions Corpus and ob-
tain state-of-the-art results—improving recall
in the top 10 from 29.6% to 49.5%. We also
obtain human ratings on retrieval outputs to
better assess the impact of incidentally match-
ing image-caption pairs that were not associ-
ated in the data, finding that automatic evalua-
tion substantially underestimates the quality of
the retrieved results.

1 Introduction

Natural language learning in people starts with
speech, not text. Text is tidy: it comes in con-
venient symbolic units that vary little from one
writer to another. Speech is continuous and messy:
the sounds used to convey a given word are modi-
fied by those of surrounding words, and the rate of
speech, its pitch, and more vary across speakers and
even for the same speaker in different contexts. As
such, problems involving speech provide distinct
challenges and opportunities for learning language
representations that text-based work—which repre-
sents the vast majority—gets a free pass on.
Recent work has explored various means to trans-
form raw speech into symbolic forms with little or
no supervision (Park and Glass, 2007; Varadara-
jan et al., 2008; Ondel et al., 2016; Kamper et al.,

*Work done as a member of the Google Al Residency
Program.
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young woman reading a book in the
park with white flowers

Figure 1: Models that encode speech segments and im-
ages into a shared latent space enable images to be re-
trieved using their audio descriptions (top) and to asso-
ciate images with spoken captions (bottom). Text cap-
tions are provided for clarity; only speech and images
are used by the models.

2017a; Bhati et al., 2018). However, learning natu-
ral language starts with grounded, contextualized
speech. While infants as young as 8-months-old
can segment word-like units without non-linguistic
information (Jusczyk and Aslin, 1995) and adults
can learn to segment words in artificial languages
(Saffran et al., 1996), a learner must ultimately
ground their representations of linguistic sequences
(Harnad, 1990) to effectively use them to refer to
objects, events and more. Furthermore, learning
from rich perceptual data and interactions can be
more efficient as it provides additional cues to the
identities of words and their meaning in context.

We address the problem of relating images to
audio captions that describe them (Figure 1), build-
ing on previous research into learning from vi-
sually grounded, untranscribed speech (Harwath
and Glass, 2015; Sun et al., 2016; Harwath et al.,
2016; Chrupata et al., 2017; Kamper et al., 2017b;
Chrupata, 2019; Harwath and Glass, 2019). Such
problem settings provide opportunities both to im-
prove our theoretical understanding of language

Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 55-65
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as well as to realize gains on practical problems—
including voice interaction with virtual assistants,
image retrieval based on speech, and generally bet-
ter supporting people with visual impairments.

Our contribution is to improve performance on
bidirectional speech/image retrieval through better
data and better models for learning fixed dimen-
sional latent representations of both modalities. We
construct a synthetic speech caption dataset for pre-
training by applying text-to-speech (TTS) on Con-
ceptual Captions (Sharma et al., 2018), a dataset
with 3.3 million diverse image-caption pairs. Un-
like Chrupata et al. (2017), who similarly applied
TTS to MS-COCO (Chen et al., 2015), we inject di-
versity by varying the voice, speech rate, pitch and
volume gain on every synthetically produced audio
caption. We refer to the resulting dataset as Concep-
tual Spoken Captions (CSC). CSC’s scale allows
us to train deeper models than previous work. We
use Inception-ResNet-v2 (Szegedy et al., 2017) to
encode both the audio and visual modalities in a
dual encoder model, pretraining on CSC and then
fine-tuning and evaluating on human speech in the
smaller Flickr Audio Caption Corpus (FACC) (Har-
wath and Glass, 2015). Using an adapted batch
loss function rather than the triplet loss used in
previous work, we substantially improve on the
previous state-of-the-art for the standard FACC re-
trieval tasks.

Image captioning datasets contain positively
paired items—but that does not imply that a ran-
dom image and caption cannot also be a valid
match. For instance, in FACC there are many spo-
ken captions about beaches and sunsets and plenty
of images that match these captions; two differ-
ent images with descriptions “A surfer is riding a
wave.” and “A man surfs the wave” are likely com-
patible. It is of course not feasible to exhaustively
annotate all pairwise associations, so we have hu-
man raters judge the top five retrieved results for
two models to assess the impact of this aspect of
the data on automatic retrieval metrics used thus far.
Unsurprisingly, models retrieve many compatible
results that are unpaired in FACC: with the human
evaluations, we find consistent increases in recall.

2 Data

Larger training datasets support better performance
and generalization (Banko and Brill, 2001; Halevy
et al., 2009; Sun et al., 2017), especially for deep
models. Collecting labels from people has become
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easier via crowd computing (Buhrmester et al.,
2011), but is still expensive and remains a bottle-
neck for creating broad and representative datasets.
This motivates the case for exploiting incidental
annotation (Roth, 2017) and automating some as-
pects of dataset creation. The current trend of using
machine translation systems to produce augmented
datasets for machine translation itself (Sennrich
et al., 2016) and for monolingual tasks like classifi-
cation (Yu et al., 2018) and paraphrasing (Wieting
and Gimpel, 2018) is a good example of this.

For speech image captioning, Chrupata et al.
(2017) used a Text-to-Speech (TTS) system to cre-
ate audio from the textual captions given in the
MS-COCO dataset, resulting in 300k unique im-
ages with 5 spoken captions each. We scale this
idea to the larger and more diverse textual Concep-
tual Captions dataset with 3.3 million unique image
and captions, additionally modifying the produced
speech by using multiple voices and random per-
turbations to the rate, pitch and audio. Our goal is
to make the resulting data more effective for pre-
training models so they can learn more efficiently
on smaller amounts of human speech.

2.1 Conceptual Captions

Image captioning datasets have ignited a great deal
of research at the intersection of the computer vi-
sion and natural language processing communities
(Lin et al., 2014; Vinyals et al., 2015; Bernardi
et al., 2016; Anderson et al., 2018). Getting anno-
tators to provide captions works well with crowd
computing, but Sharma et al. (2018) exploit inci-
dental supervision for this task to obtain greater
scale with their Conceptual Captions dataset. It
contains 3.3 million pairs of image and textual cap-
tions, where pairs are extracted from HTML web
pages using the alt-text field of images as a starting
point for their descriptions.

The textual captions are processed in a hyper-
nymization stage. Named entities and syntactic
dependency annotations are obtained using Google
Cloud Natural Language APIs, which are matched
to hypernym terms using the Google Knowledge
Graph Search API. Proper nouns, numbers, units,
dates, durations and locations are removed; iden-
tified named-entities are substituted with their hy-
pernym, merging together analogous terms when
possible. For example, the original alt-text (1) is
converted to the conceptual caption (2).

ey

alt-text: Musician Justin Timberlake per-



forms at the 2017 Pilgrimage Music & Cul-
tural Festival on September 23, 2017 in
Franklin, Tennessee.

2

conceptual caption: pop artist performs at
the festival in a city.

There are many sequential filtering steps for im-
proving the quality of the captions—see Sharma
et al. (2018) for a thorough description. As quality
control, a random sample of 4K conceptual cap-
tions were rated by human annotators, and 90.3%
were judged “good” by at least 2 out of 3 raters.

2.2 Conceptual Spoken Captions

We use TTS to generate a high-fidelity spoken sen-
tence for each of the 3.3 million textual captions
in the Conceptual Captions dataset.! We use the
Google Cloud Speech API? for TTS. Internally,
the service uses a WaveNet model (Van Den Oord
et al., 2016) to generate audio. For diversity, the
speech is synthesized using parameter variations,
as follows:

e Voice, which is sampled uniformly from a
set of 6 different voices generated using a
WaveNet model for American English.

Speaking rate controls the speed of the synthe-
sized audio. A speaking rate of 1.0 means the
normal speed of a given voice, while a speak-
ing rate of 2.0 means twice as fast. When
synthesizing the data, we draw this parameter
from a Gaussian distribution ~ A/(1.0,0.12).

Pitch controls how high/deep the voice is. For
example, if set to 1, this means the voice will
be synthesized 1 semitones above the origi-
nal pitch. This parameter is drawn from a
Gaussian distribution ~ A(0.0,1.0%).

Volume gain controls a gain in dB with respect
to the normal native signal amplitude. If set to
0, the voice is synthesized without alterations
in volume. This parameter is drawn from a
Gaussian distribution ~ A(0.0, 2.02).

To avoid degenerate cases, we clip the values
sampled from the Gaussian distributions described
above such that they are never more than 2 times
the standard deviation from the mean. All spoken
captions are generated in 16000 Hz.

!The alt-text does not come with the dataset and cannot be
redistributed, so we focus on the conceptual captions for ease

of experimentation and reproducibility.
>https://cloud.google.com/text-to-speech/
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Figure 2: Dual-encoder model architecture.

2.3 Flickr Audio Caption Corpus

The Flickr Audio Caption Corpus (FACC) (Har-
wath and Glass, 2015) consists of 40,000 pairs of
images and spoken captions, with 8000 unique im-
ages, of which 1000 are held for validation and
1000 for testing. The spoken captions are generated
from humans reading the textual captions from the
Flickr8k dataset (Hodosh et al., 2013), originally
crowd-sourced and based on images from Flickr.

We use FACC for evaluation, both when pretrain-
ing on Conceptual Spoken Captions and when train-
ing on FACC from scratch. Like previous work, the
core evaluation considered is retrieval of the known
paired image given an audio caption within some
top-k set of retrieved items (e.g. R@1 for whether
the first item retrieved is the paired one and R@10
for whether it is in the top ten results). We also
conduct human evaluations on retrieval outputs to
detect the presence of unpaired but matching image-
caption pairs identified by the models and thereby
better assess their impact on performance.

3 Model

Dual encoders are used in a wide range of ap-
plications, including signature verification (Brom-
ley et al., 1994), object tracking (Bertinetto et al.,
2016), sentence similarity (Mueller and Thyagara-
jan, 2016), improving neural machine translation
(Yang et al., 2019) and many others. The core
of this set of architectures is a simple two-tower
model illustrated in Figure 2, where inputs x € X
are processed by an encoder g, and inputs y € Y
by a second encoder g,. The inputs may come



from the same distribution—or they may be from
entirely different sources or modalities. The towers
may share the same architecture and weights—or
they can be completely unlike and disconnected.
These models are standard in audiovisual image
captioning (Harwath and Glass, 2015; Chrupata,
2019; Harwath et al., 2018). In this setting, the
dual encoder model, is composed by a visual tower,
Juiss processing the images, and an audio tower,
Jaud> Processing the spoken captions. The model
is trained to map both modalities into a joint latent
space. Here, we extend previous work to consider a
batched margin loss, which we show to be superior
for learning dense representations for retrieval.

Notation. The inputs are processed in batches
of size B. For each input x;, and y;, in the batch,
1 < k < B, let gy(zx) and g,(yx) be their la-
tent representations extracted by the corresponding
tower. We define the B X B matrix Z as the sim-
ilarity between the latent representations for each
pair of elements in the batch. A natural choice for
that similarity is the dot product between the latent
representations:

Zij = gu(:) - 9y(y5) (1)

As shown in Figure 2, Z encodes all pairwise as-
sociations in the batch. However, an additional
aspect of some datasets must be taken into account:
often times the same input = can match multiple
inputs y or vice-versa—for instance, both Flickr8k
and MS-COCO have multiple captions for the each
image. To respect these pairs when they land in
the same batch—and thus not penalize models for
(correctly) associating them—we definea B x B
masking matrix M:

if z; matches y; 2)

otherwise

All pairs (zy,yr) match and this equivalence is
transitive, so M is symmetric and all diagonal ele-
ments My, 1 < k < B are zero.

Triplet Loss. Both Chrupata (2019) and Harwath
et al. (2018) (and their previous work) employ the
triplet loss function given in Equation 3.

B
ET = Z (max(O, ka — Zkk + 5)+
P 3)

max (0, Zny — Zik +9))
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For each value k, m is randomly drawn from a uni-
form distribution over indices j such that Mj; = 1,
and n over indices ¢ such that M;; = 1.

Masked Margin Softmax Loss. The triplet loss
(3) used previously misses opportunities to learn
against a wider set of negative examples, namely
all those in the batch that are not known to be posi-
tively associated (i.e., M;; = 1). To exploit these
additional negatives, we minimize the Masked Mar-
gin Softmax (MMS) loss function, inspired by Hen-
derson et al. (2017) and Yang et al. (2019). MMS
simulates x-to-y and y-to-z retrievals inside the

batch. It is defined at a high level as:
£MMS = E:vy + Ey:t (4)

Lyvms is the sum of losses defined over z-to-y (Eq.
5) and y-to-x (Eq. 6) in-batch retrievals.

B Z.—5
1 e“i
Loy =——= ) log
Yy B pt eziifé _|_ ZJB::[ MZ_]eZ”
®)
B
1 eZii =0
Lyz=——= log
v B ; ¢%5=0 1 Y8 MjjeBu
(6)

These are equivalent to a cross-entropy loss after a
column-wise or row-wise softmax on the matrix Z,
subject to the masking constraints in IM and margin
J.

The margin hyperparameter § is gradually in-
creased as training progresses. Empirically, we
found that, with a fixed §, large values lead to unsta-
ble performance in early training, while small val-
ues lead to negligible results in final performance.
Starting with a small ¢ and increasing it does not
hurt early training and forces the model to learn
from a harder task later on. There many ways to
increase  along training—e.g. linearly, quadrati-
cally, and exponentially. The latter is used in this
work.

Contrasting Equations 3 and 4, the former
chooses a negative sample randomly, while the lat-
ter takes advantage of all negative pairs in the batch
and thus improves sample efficiency. Lypns has
three main differences with Yang et al. (2019): (1)
a masking term that accounts for the fact that there
might be multiple positive choices in the batch for
a given input; (2) a varying margin term 9, which is
increased during training; (3) a log term that makes
MMS more closely resemble a cross-entropy loss.



Speech to Image Image to Speech
Loss Batch Size R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100
Lt 48 037 109 .165 367 474 031 .101 .155 .346  .455
12 025 .083 .129 311 432 024 .083 .132 .315 433
LMMS 24 054 143 206 418 533 .046 .137 .197 411 520
48 078 204 .282 499 .604 .074 .194 .269 .485 .587

Table 1: Performance on the validation set of Conceptual Spoken Captions, comparing different loss functions and

batch sizes.

4 Experiments

4.1 Experimental settings

Image preprocessing. During training, data aug-
mentation is performed by randomly distorting the
brightness and saturation of images. Each image is
also randomly cropped or padded such that at least
67% of the area of the original image is covered,
and re-scaled if necessary to 299x299. During
evaluation, we do not perform color distortions,
and we crop/pad the central portion of the images.

Audio preprocessing. We extract 128 Mel-
Frequency Cepstral Coefficients (MFCCs) from
the raw audio signals using a window size of 20ms.
The audio signals have a sampling rate of 16000Hz.
We compute features every 10ms, such that each
window has a 50% overlap with its neighbors. Dur-
ing training, we randomly crop/pad the MFCCs in
the temporal dimension, and perform data augmen-
tation as in Park et al. (2019), using one mask with
a frequency mask parameter of 20 and a time mask
parameter of 40. We do not perform time warping.

Encoders. Both audio and image encoders are
Inception-ResNet-v2 networks (Szegedy et al.,
2017), allowing the model to reap the benefits
of relatively low computational cost, fast train-
ing and and strong performance when combining
the Inception architecture with residual connec-
tions.> Related to our setting for audio processing,
Li et al. (2019) also uses residual convolutional
neural networks for state of the art results on Lib-
riSpeech dataset (Panayotov et al., 2015). For the
audio tower, we stack 3 replicas of the MFCCs
and treat them as images. For each modality, a
1536-dimensional latent space representation is ex-
tracted. Despite using the same architecture for
both encoders, their weights are not shared. Unless
specified otherwise, the models are not pretrained.

3See Bianco et al. (2018) for an extensive benchmark anal-
ysis of popular convolutional neural network architectures.
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Optimization. Models are trained using Adam
(Kingma and Ba, 2014), with an initial learning
rate of 0.001 and an exponential decay of 0.999
every 1000 training steps, 51 = 0.9, S2 = 0.999
and € = 1le—8. We use a weight decay of 4e—5,
and train on 32 GPUs until convergence. Unless
specified otherwise, the optimization objective is
minimizing the loss Lyvis (Eq. 4) with a margin
term initially set to § = 0.001 exponentially and
increased by a factor of 1.002 every 1000 steps.

4.2 Retrieval: Conceptual Spoken Captions

Our primary aim with CSC is to use it for pretrain-
ing for later fine-tuning and evaluation on datasets
with human speech instead of TTS. Nevertheless,
we can compare different loss functions and differ-
ent batch sizes on the CSC validation set to better
understand the impact of these parameters.

We train models on CSC for 3 million steps,
cropping/padding spoken captions to a duration of
3.5 seconds and using the loss functions Lt (Eq.
3) and Lmms (Eq. 4). We find continuing im-
provements as batch size increases from 12 to 24
to 48. Furthermore, with the same batch size of
48, models optimized for minimizing Lymms per-
form substantially better than those using L, as
summarized in Table 1. Of particular note is that
R@1 scores for Lyms (batch size 48) are more
than double those of Lt in both directions.

4.3 Retrieval: Flickr Audio Caption Corpus

Table 2 compares previous results on the FACC
dataset with those obtained by variations of our
model. As a pre-processing step, spoken captions
are cropped/padded to a duration of 8 seconds. Af-
ter pretraining the model in CSC, we explore all
possible combinations of using or not the pretrained
weights for each of the branches g4, and gy;s as
a warm-starting point, training until convergence
on FACC. Warm-starting each of the branches in
the dual-encoder leads to substantial improvements



Caption to Image

Image to Caption

Model R@1 R@5 RRIOR@50R@100 R@1 R@5 R@10 R@50 R@100
Socher et al. 2014 - - 286 - - - - 2190 - -
Text Karpathy et al. 2014 - - 425 - - - - 440 - -
Harwath and Glass 2015 - - 490 - - - - .567 - -
Chrupata et al. 2017 127 364 .494 - - - - - - -
Harwath and Glass 2015 - - .179 - - - - 243 - -
Chrupata et al. 2017 .055 0.163 .253 - - - - - - -
Chrupata 2019 - - 296 - - - - - - -
Speech o, (from scratch) 018 063 .101 288 .428 .024 .072 .124 332 458
Ours (warm-starting g,,,q) 041 .138 211 467 .613 .550 .166 .241 .522 .654
Ours (warm-starting g.;5) .062 .190 279 560 .703 .081 242 352 .664 .782
Ours (warm-starting all) .139 .368 .495 .781 .875 .182 .435 .558 .842 910
Table 2: Retrieval scores on the test set of FACC.
over the baseline, and combining both branches 1o- €@ 125 RE100
leads to the best overall performance. 08 o honoso
In particular, we improve R@ 10 for caption-to- o arot
image from the .296 obtained by Chrupata (2019) 5 °° ——¢———¢ $3nen
by 20% absolute to .495, without using multitask < oa- /5'?5 — ol
training or pretraining g,;s on ImageNet (Deng P C) &alen

et al., 2009). The multitask training approach of
Chrupata (2019) is complementary to our improve-
ments, so further gains might be obtained by com-
bining these strategies. Furthermore, very deep,
residual convolutional neural networks over charac-
ters have been shown to perform well for text-based
tasks (Conneau et al., 2017). We expect that our
strategy of using the same basic architecture across
different input types (speech, text and image) can
be fruitfully extended to that setting. A related ob-
servation: while our results exceed previous results
reported on text/image retrieval settings for FACC,
we expect that recent advances in text encoding
could easily beat those reported numbers.

We also explore very low-data regimes using our
pretrained model (see Fig. 3). Using small training
subsets randomly drawn from FACC, we report per-
formance as a function of how much data the model
sees. With as little as 10% of the original training
data (3000 image/spoken caption pairs), the warm-
started model performs competitively with a model
trained on all training data.

Qualitative evaluation. Once a model is trained,
any input (image or spoken caption) can be be used
to query the corpus of images and spoken captions
for nearest neighbors in the latent space. Figure 4
shows some examples of retrieved nearest neigh-
bors in FACC’s test set. Given a spoken caption or
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Figure 3: Ablations on low-data regime on FACC:
chart shows recall scores for image-to-speech (12S) and
speech-to-image (S2I) retrieval, as a function of the
amount of training data used for fine-tuning.

an image we show the five nearest image neighbors
and five nearest caption neighbors. From these, it is
clear that the representations capture many seman-
tically salient attributes of the inputs. The retrieved
items correctly share many thematic elements and
many are clearly good matches even though the
particular image-caption pairs are not associated in
the data. This serves to reinforce our observation
that R@k evaluations using only the known paired
items is likely to underestimate the actual perfor-
mance of the models—which we show to be the
case with human evaluations in Section 4.4.

Only some items are substantially incompatible:
e.g. an image of a car for a caption about a woman
in a river (they share water spraying), a picture of
three adults for a caption about children raising
their hands, and a caption about a boy climbing
a wall for an image of children playing leapfrog).
That said, many details are poor matches, such as
the count of objects (one ball versus many), colors



image nearest neighbors

query

the dog is

jumping in

the air to
catch a ball

a group of
children are
raising their

hands in the air

a woman in a
river is shaking
her hair causing
a water to spray

everywhere

a motorcyclist
rides down a
by colorful
ramp held up
barrels

caption nearest neighbors

a dog leaps up to catch a blue and tan ball

a black and white dog jumping in the air to catch a frisbee

a black and white dog is trying to catch a frisbee in the air

a black and white dog jumps for a tennis ball

a dog is jumping to catch a frisbee and casts a perfect shadow

a group of kids singing and putting their hands in the air
group of children in blue uniforms sitting on steps
several children pet a pig while a crowd watches

little kids stand together and raise their hands in the air
three children are pulling faces on a purple bench

a girl swings her long, wet hair in a lake

a boat with two fishermen sits peacefully on the lake

a little girl dips her hair into a bucket filled with water

man fly fishing in a small river with steam in the background
a girl whipping water from her hair in a lake

a motorcyclist races around a track

a boy pushes a wagon full of pumpkins

a dirt biker rides his motocycle through the woods

an elderly woman is riding a bicycle in the city as a yellow taxi is ...
a rider on motorcycle, riding over rocks

person rock climbing

a man climbs a rock

a rock climber standing in a crevasse

man rock climbing looking up the rock

the long black shadow casts a image on the rock while the young ...

a dog with its mouth opened

brown dog holding stick in mouth

a dog with a snub nose smells for somthing on a riverbank
a light colored dog is walking through a stream

brown dog with mouth open standing amidst greenery

a little boy slides down a red slide

the boy wearing white is leaping from the swing
a boy hiding behind a tree

child getting ready to go down a slide

a teenage boy climbs an indoor climbing wall

a surfer is riding his board over a wave
a surfer in a wetsuite jumps waves

a surfer on a white board catches a wave
a surfer rides up the wave

a surfer riding a surfboard in rough seas

Figure 4: Nearest neighbors in the joint visual and acoustic latent space, best viewed with zoom: using 4 spoken
captions and 4 images as queries, we extract from FACC'’s test set the closest 5 images and 5 spoken captions in
the latent space for each of them. For simplicity, we show the text associated with each spoken caption.

(brown dogs versus multicolored ones), people de-
scriptions (elderly woman versus male dirt biker),
object identification (e.g. a yellow pool noodle
viewed as similar to slides), processes (jumping ver-
sus sliding) and perspective (man looking up versus
viewed from behind and climbing). As such, there
is clearly significant headroom for better, more fine-
grained modeling of both captions and images. Ad-
ditionally, cross-modal attention mechanisms (Xu
et al., 2015) and other explainability techniques
(Ribeiro et al., 2016) could help better inspect and
understand a model’s predictions.

Furthermore, as noted by Chrupata et al. (2017),
text-based retrieval models often handle mis-
spellings poorly. In contrast, speech-based models
are unlikely to suffer from similar problems be-
cause they inherently must deal with variation in
the expression of words and utterances. For in-
stance, the caption “a dirt biker rides his moto-
cycle through the woods” (fourth row of Figure
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4) is highly correlated with the correctly spelled
sentences.

4.4 Human evaluation

We ran human evaluations to answer two questions:
(1) how much does cropping limit model perfor-
mance? and (2) how much do retrieval evaluations
based only on positive associations underestimate
model performance? Hints about both questions
can be seen in the qualitative evaluation (Fig. 4).
To answer the first question, Table 3 shows the
ratings for ground truth image/caption pairs in the
FACC test set. The uncropped row shows that over-
all the captions are high quality and do match the
full images. However, human ratings on images
cropped at the center (which is what is provided
to the models) show that there is considerable loss
from cropping—only 62.5% of cropped images are
rated as good matches by all five raters. Inspection
makes it clear why cropping hurts: for example an



“good” ratings (out of 5)
I+ 24+ 3+ 4+ 5
Cropped  .949 918 .874 .800 .625
Uncropped .995 .994 .989 .971 .891

Table 3: Human evaluation results on ground truth pairs
on the test set of FACC, using either center cropped
(which the models receive) or uncropped versions of
the images.

image of a snowboarder in the air next to another
on a ski lift is cropped such that the snowboarder
is missing, and thus a poor match to captions men-
tioning the snowboarder. This clearly indicates that
standard cropping (which we follow) inherently
limits model performance and that strategies that
use the full image should be explored.

Standard retrieval evaluations are blind to pairs
that match but are not associated in the data. To
address this and answer the second question posed
above, we present the top-5 retrieved captions for
each image and the top-5 retrieved images for each
caption in FACC’s test set to human raters. To in-
crease speed and decrease costs, we show raters
the original Flickr8k textual captions instead of the
spoken ones. Each pair is judged by five raters
as “good” or not. This gives a soft measure of the
compatibility of each pair based on fast binary judg-
ments from each rater. For retrieval evaluations of
a model, we compute recall based on the majority
of human raters approving each image-caption pair:
R@1 is the percentage of top-1 results and R@5
the percentage of top-5 results that are evaluated as
a match by at least 3 of the 5 raters.

Table 4 shows these metrics computed on re-
trieval outputs from two settings: FACC training
from scratch and FACC fine-tuning after CSC pre-
training. It also shows the corresponding auto-
matic evaluations from Table 2 for easy comparison.
These results make it clear that evaluation based
only on positive associations is too rigid: speech-to-
image retrieval based on human evaluations shows
that a good matching item is returned in 52.2% of
cases rather than just the 36.8% indicated by strict
corpus matches. For image-to-speech retrieval the
55.8% strict measure goes up to 63.8%. That said,
the results also show that the strict measure is nev-
ertheless a useful indicator for comparing relative
model performance: the model pretrained on CSC
beats the corresponding one trained on FACC from
scratch, on both human and automatic evaluations.
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S21 12S
Eval Pretrain R@]1 R@5 R@1 R@5
Auto .018 .063 .024 .072
Auto v 139 368 .182 .558
Humans .056 .154 .070 .196
Humans v 229 522 306 .638

Table 4: Comparison of human rater scores (major-
ity agreement) versus using only corpus-known pairs
on all metrics for speech-to-image (S2I) and image-
to-speech (I2S) retrieval. Rows with Auto evaluation
correspond to Ours (from scratch) and Ours (warm-
starting all) scores in Table 2.

5 Conclusion

Large-scale datasets are essential for training deep
networks from scratch. In this paper, we present
a scalable method for generating an audio caption
dataset taking advantage of TTS systems to create
millions of data pairs. Using the MMS loss, we
demonstrate that pretraining on this dataset greatly
improves performance on a human-generated au-
dio caption dataset. As TTS models continue to
improve and be developed for more languages, this
data augmentation strategy will only become more
robust and helpful over time. Finally, using human
evaluations, we show evidence that corpus-based
retrieval scores underestimate actual performance.

This present work is focused on the here and now
since captions describe a snapshot in time and focus
on the visual entities and events involved in them.
We thus have little hope to learn representations
for words like visit, career and justice, for example.
Videos can help with process oriented words like
visit and could get significant components of words
like career (such as the visual contexts, but not
the overall path with intermediate goals involved
in careers). They are likely to be hopeless for ab-
stract words like justice. To address problems of
this sort, there are likely many opportunities to
combine ideas from unsupervised term discovery
(Kamper et al., 2016; Bansal et al., 2017) with au-
diovisual word learning (Harwath et al., 2018) and
models of visual grounding that have been applied
to text (Kiros et al., 2018). Being able to learn
effective representations from raw audio associated
with images could provide new possibilities for
work that learns from videos and text (transcribed
speech) (Chen et al., 2018), and in particular open
up such techniques to new languages and domains.
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Using Priming to Uncover the Organization of Syntactic Representations
in Neural Language Models

Grusha Prasad
Johns Hopkins University

Abstract

Neural language models (LMs) perform well
on tasks that require sensitivity to syntactic
structure. Drawing on the syntactic priming
paradigm from psycholinguistics, we propose
a novel technique to analyze the representa-
tions that enable such success. By establish-
ing a gradient similarity metric between struc-
tures, this technique allows us to reconstruct
the organization of the LMs’ syntactic rep-
resentational space. We use this technique
to demonstrate that LSTM LMs’ representa-
tions of different types of sentences with rel-
ative clauses are organized hierarchically in a
linguistically interpretable manner, suggesting
that the LMs track abstract properties of the
sentence.

1 Introduction

Neural networks trained on text alone, without
explicit syntactic supervision, have been surpris-
ingly successful in tasks that require sensitivity
to sentence structure. The difficulty of interpret-
ing the learned neural representations that under-
lie this success has motivated a range of analysis
techniques, including diagnostic classifiers (Giu-
lianelli et al., 2018; Conneau et al., 2018; Shi et al.,
2016), visualization of individual neuron activa-
tions (Kadar et al., 2017; Qian et al., 2016), ab-
lation of individual neurons or sets of neurons
(Lakretz et al., 2019) and behavioral tests of gener-
alization to infrequent or held out syntactic struc-
tures (Linzen et al., 2016; Weber et al., 2018; Mc-
Coy et al., 2018); for reviews, see Belinkov and
Glass (2019) and Alishahi et al. (2019).

This paper expands the toolkit of neural net-
work analysis techniques by drawing on the syn-
tactic priming paradigm, a central tool in psy-
cholinguistics for analyzing human syntactic rep-
resentations (Bock, 1986). This paradigm is based
on the empirical finding that people tend to reuse
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syntactic structures that they have recently pro-
duced or encountered. For example, English pro-
vides two roughly equivalent ways to express a
transfer event:

(1) a. The boy threw the ball to the dog.
b. The boy threw the dog the ball.

When readers encounter one of these variants in
the text more frequently than the other, they ex-
pect that future transfer events will more likely be
expressed using the frequent construction than the
infrequent one. For example, after reading sen-
tences like (1a) (the prime), readers expect sen-
tences like (2a), which shares syntactic structure
with the prime, to occur with a greater likelihood
than the alternative variant like (2b) which does
not (Wells et al., 2009).!

(2) a. The lawyer sent the letter to the client.
b. The lawyer sent the client the letter.

We use the priming paradigm to analyze neu-
ral network language models (LMs), systems that
define a probability distribution over the n™ word
of a sentence given its first n — 1 words. Building
on paradigms that determine whether the LM’s ex-
pectations are consistent with the syntactic struc-
ture of the sentence (Linzen et al., 2016), we mea-
sure the extent to which a LM’s expectation for
a specific syntactic structure is affected by re-
cent experience with related structures. We prime
a fully trained model with a structure by adapt-
ing it to a small number of sentences containing
that structure (van Schijndel and Linzen, 2018).
We then measure the change in surprisal (nega-
tive log probability) after adaptation when the LM
is tested either on sentences with the same struc-

"Wells et al. (2009) measured priming effects for relative
clauses, not dative constructions. For work on priming in pro-
duction with dative constructions, see Kaschak et al. (2011).
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ture or sentences with different but related struc-
tures. The degree to which one structure primes
another provides a graded similarity metric be-
tween the model’s representations of those struc-
tures (cf. Branigan and Pickering 2017), which
allows us to investigate how the representations of
sentences with these structures are organized.

As a case study, we applied this technique to
investigate how recurrent neural network (RNN)
LMs represent sentences with relative clauses
(RCs). We found that the representations of these
sentences are organized in a linguistically inter-
pretable manner: sentences with a particular type
of RC were most similar to other sentences with
the same type of RC in the LMs’ representation
space. Furthermore, sentences with different types
of RCs were more similar to each other than sen-
tences without RCs. We demonstrate that the sim-
ilarity between sentences was not driven merely
by specific words that appeared in the sentence,
suggesting that the LMs tracked abstract proper-
ties of the sentence. This ability to track abstract
properties decreased as the training corpus size
increased. Finally, we tested the hypothesis that
LMs’ accuracy on agreement prediction (Marvin
and Linzen, 2018) would increase with the LMs’
ability to track more abstract properties of the sen-
tence, but did not find evidence for this hypothesis.

2 Background

2.1 Syntactic predictions in neural LMs

We build on paradigms that use LM probability es-
timates for words in a given context as a measure
of the model’s sensitivity to the syntactic struc-
ture of the sentence (Linzen et al., 2016; Gulor-
dava et al., 2018; Marvin and Linzen, 2018). If a
language model assigns a higher probability to a
verb form that agrees in number with the subject
(the boy... writes) than a verb form that does not
(the boy... write), we can infer that the model en-
codes information about the agreement features of
nouns and verbs (that is, the difference between
singular and plural) and has correctly identified
the subject that corresponds to this verb. This
reasoning has been extended beyond subject-verb
agreement to study whether the predictions of neu-
ral LMs are sensitive to a range of other syntac-
tic dependencies, including negative polarity items
(Jumelet and Hupkes, 2018), filler-gap dependen-
cies (Wilcox et al., 2018) and reflexive pronoun
binding (Futrell et al., 2019).
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2.2 Syntactic priming in humans

Syntactic priming has been used to study whether
the representations of two sentences have shared
structure. For example, (1a) (repeated below as
(3)) shares the structure VP — V NP PP with (4a)
but not (4b).

(3) The boy threw the ball to the dog.

(4) a. Therenowned chef made some wonderful
pasta for the guest.
b. The renowned chef made the guest some
wonderful pasta.

If (3) primes (4a) more than it primes (4b), we can
infer that the representations of (3) are more sim-
ilar to that of (4a) than to that of (4b). Since (4b)
and (4a) differ only in their structure, this differ-
ence in similarity must be driven by structural in-
formation in the representations of the sentences
(for reviews, see Mahowald et al. 2016 and Tooley
and Traxler 2010).

Although priming studies have traditionally
measured the priming effect on the sentence im-
mediately following the prime, more recent stud-
ies have demonstrated that the effects of syntactic
priming can be cumulative and long-lasting: sen-
tences with a shared structure Sx become progres-
sively easier to process when preceded by n sen-
tences with the same structure Sx than when pre-
ceded by n sentences with a different structure Sy
(Kaschak et al., 2011; Wells et al., 2009).% In con-
junction with the finding that words that are con-
sistent with a probable syntactic parse are easier
to process than words consistent with less proba-
ble parses (Hale, 2001; Levy, 2008), the increased
ease of processing in cumulative priming stud-
ies can be interpreted as evidence that, with in-
creased exposure to a structure, participants begin
to expect that structure with a greater probability
(Chang et al., 2000).

Cumulative priming allows us to study how sen-
tences are related to each other in the human (or
LM) representation space in the same way that
non-cumulative priming does: when participants
(or LMs) are exposed to sentences with structure
Sx, if there is a greater decrease in surprisal when
they are tested on other sentences with Sy than
when they are tested on other sentences with Sy,
we can infer that the representations of sentences
with Sx are more similar to each other than to the

In studies looking at non-cumulative priming, n = 1.



Abstract structure Example

Unreduced Object RC

Reduced Object RC

Unreduced Passive RC
Reduced Passive RC

Active Subject RC
PS/ORC-matched Coordination
ASRC-matched Coordination

The conspiracy that the employee welcomed divided the beautiful country.

The conspiracy the employee welcomed divided the beautiful country.

The conspiracy that was welcomed by the employee divided the beautiful country.
The conspiracy welcomed by the employee divided the beautiful country.

The employee that welcomed the conspiracy quickly searched the buildings.

The conspiracy welcomed the employee and divided the beautiful country.

The employee welcomed the conspiracy and quickly searched the buildings.

Table 1: Examples of sentences generated using templates containing the seven abstract structures we analyzed
(optional elements, which only occur in a subset of the examples, are indicated in grey).

representations of sentences with Sy-.

2.3 LM adaptation as cumulative priming

Van Schijndel and Linzen (2018) modeled cu-
mulative priming in recurrent neural networks
(RNNs) by adapting fully trained RNN LMs to
new stimuli — i.e. taking a fully trained RNN LM
and continuing to train it on a small set of sen-
tences (cf. Grave et al. 2017; Krause et al. 2017;
Chowdhury and Zamparelli 2019). They demon-
strated that when an RNN LM was adapted to a
small number of sentences with a shared syntac-
tic structure, the surprisal for novel sentences with
that structure decreased, enabling them to infer
that the LM’s representations of sentences con-
tained information about that structure.

3 Similarity between syntactic structures
in RNN LM representational space

Following the assumptions in Section 2.2, we de-
fine a similarity metric between two structures Sx
and Sy in an LM’s representation space by adapt-
ing the LM to sentences with Sx and measuring
the change in surprisal for sentences with Sy —
i.e. measuring to what extent sentences with Sx
prime sentences with Sy. We use the notation
A(Y | X) to refer to this change in surprisal®,
where X and Y are non-lexically-overlapping sets
of sentences whose members share the structures
Sx and Sy respectively. If we assume that Sx and
Sy are similar to each other in the LM’s represen-
tation space, then A(Y | X) > 0 — i.e., encoun-
tering sentences with Sx causes the LM to assign
a higher probability to sentences with Sy. On the
other hand, if we assume that S'x and Sy are unre-
lated to each other, then A(Y | X) = 0—i.e., en-
countering sentences with Sy does not cause the
LM to change its probability for sentences with

3 A is shorthand for adaptation.
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Sy.

4 Experimental setup

4.1 Syntactic structures

We analyzed five types of RCs. In an active sub-
ject RC, the gap is in the subject position of the
embedded clause:*

(5) My cousin that _ liked the book ...

In a passive subject RC (passive RCs), the gap is
in the subject position of the embedded clause, and
the embedded verb is passive. In English, passive
RCs can be unreduced (6a) or reduced (6b):

(6) a. The book that _ was liked by my cousin ...
b. The book _ liked by my cousin ...

In an object RC the gap is in the object position of
the embedded clause. In English, object RCs can
be unreduced (7a) or reduced (7b):

(7) a. The book that my cousin liked _ ...
b. The book my cousin liked _ ...

Finally, we also included two additional condi-
tions with verb coordination: one with nearly
identical word order and lexical content as active
subject RCs ((8); ASRC-matched Coordination),
and another with nearly identical word order and
lexical content as passive RCs and object RCs ((9);
PS/ORC-matched Coordination).

(8) My cousin liked the book and ...
(9) The book liked my cousin and ...

“We illustrate the location of the gap with underscores
here, but the underscores were not included in the LM’s input.

3In order to maintain the same word order as in object and
passive RCs, the subject of the coordinated verb phrases is
an NP that tends to fill the object position in other sentences
(e.g, “the equation”). Therefore, many of the sentences in
this condition are implausible (e.g., “The equation reviewed
the physicists and challenged the method.”)
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Figure 1: A schematic for calculating the similarity
between two structures Sx and Sy in an LM’s repre-
sentation space. X1, X and Y7, Y5 are non-lexically-
overlapping sets of sentences with Sy and Sy respec-
tively. Modelx and Modely refer to versions of a fully
trained model that have been adapted to either X; or
Y1 respectively. Surpy () and Surpy () are functions
that return the surprisal of sentences for Modelx and
Modely .

These conditions enable us to measure whether
sentences with different types of RCs are more
similar to each other in an LM’s representation
space than they are to lexically matched sentences
without RCs.

4.2 Adaptation and test sets

We generated sentences from seven templates, one
for each of the syntactic structures of interest. The
slots were filled with 223 verbs, 164 nouns, 24
adverbs and 78 adjectives such that the semantic
plausibility of the combination of nouns, verbs,
adverbs and adjectives was ensured. The seven
variants of every sentence had nearly identical lex-
ical items (see Table 1).° We used these tem-
plates to generate five experimental lists — each
list comprised of a pair of adaptation and test sets
with minimal lexical overlap between them (only
function words and some modifiers were shared).
Each adaptation set contained 20 sentences and
each test set contained 50.

In order to infer that any decrease in surprisal
is caused by adaptation to an abstract syntactic
structure, we need to ensure that the models are
not adapting to properties of the sentence that are
unrelated to the abstract structure of interest. Con-

%Since the main verb of the sentence was constrained to
be semantically plausible with the subject of the sentence, it
often varied between active subject RC and ASRC-matched
coordination on the one had and all other conditions on the
other.
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sider a LM adapted to (10) and tested on (11):

(10) The conspiracy that the employee welcomed
divided the country.

(11) The proposal that the receptionist managed
shocked the CEO.

When the LM is adapted to sentences such
as (10), it could adjust its expectations about sev-
eral properties of the sentence, some more lin-
guistically interesting than others. For instance,
it could learn that there are three determiners in
the sentence, that the third word of the sentence
is that, that sentences have nine words, that every
verb is preceded by a noun, and so on and so forth.
If there is a decrease in surprisal when a model is
adapted to (10) and tested on (11), it is unclear if
this is because the model learned to expect object
relative clauses or if it learned to expect any of the
other mentioned properties.

To minimize the likelihood that the adaptation
effects are driven by irrelevant properties of the
sentence, we introduced several sources of vari-
ability to our templates: nouns could either be
singular or plural, noun phrases could be option-
ally modified by an adjective, adjectives were
optionally modified with an intensifier and verb
phrases were optionally modified with adverbs
which could occur either pre-verbally or post-
verbally (details in the Supplementary Materials).”

4.3 Models

We used 75 of the LSTM language models trained
by van Schijndel et al. (2019); these LMs varied
in the number of hidden units per layer (100, 200,
400, 800, 1600) and the number of tokens they
were trained on (2 million, 10 million or 20 mil-
lion). For each training corpus size, van Schijndel
and Linzen trained models on five disjoint subsets
of the WikiText-103 corpus, to ensure that the re-
sults generalized across different training sets.

4.4 Calculating the adaptation effect (AE)

For every structure, we computed the similarity
between that structure and every other structure
(including itself) as described in Section 3. This
process is schematized in Figure 1. The surprisal
values were averaged across the entire sentence.®

"The Supplementary Materials, the templates and and
code for all the analyses along with the data can be found
on GitHub: https://github.com/grushaprasad/RNN-Priming

8Unknown words were excluded from this average.
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Figure 2: The adaptation effect averaged across all 75 models when (a) they were adapted to each of the structures
and tested on either the same structure (blue, bottom) or different structure (pink, top) and (b) they were adapted
to RCs and tested on non-RCs or vice versa (pink bars); or when they were adapted to RCs or non-RCs and tested
on other RCs or and non-RCs respectively (blue bars). Greater values indicate more similarity between adaptation

and test structures. Error bars reflect 95% Cls.

We found that A(B | A) was proportional to the
surprisal of B prior to adaptation (see Supplemen-
tary Materials). As a consequence, for three struc-
tures X, Y and Z, A(Y | X) could be greater than
A(Z | X) merely because Y was a more surpris-
ing structure to begin with than Z. In order to re-
move this confound, we first fit a linear regression
model predicting A(Y | X) from the surprisal of
Y prior to adaptation (Surp(Y)):

A(Y | X) = Bo+ B1Surp(Y) + ¢

We then regressed out the linear relationship be-

tween A(Y | X) and Surp(Y') as follows:
AE(Y | X) = A(Y | X) — BiSurp(Y)
=pBo+e

Since Surp(Y') was centered around its mean,
Bo reflects the mean of A(Y | X) when Surp(Y)
is equal to the mean surprisal of all sentences prior
to adaptation. The term e reflects any variance in
A(Y | X) that is not predicted by Surp(Y'). By
summing these two terms together, AE(Y | X) re-
flects the change in surprisal for Y after adapting
to X that is independent of Surp(Y).

4.5 Statistical analyses

We used linear mixed effects models (Pinheiro
et al., 2000) to test for statistical significance; all
of the results reported below were highly signifi-
cant. Details about the statistical analyses can be
found in the Supplementary Materials.

5 Results

5.1 Validating AE as a similarity metric

As discussed in Section 2.3, under the adaptation-
as-priming paradigm, we would expect sentences
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that share the same specific structure to be more
similar to each other than lexically matched sen-
tences that do not share the structure.” In other
words, if X1 and X are non-lexically-overlapping
sets of sentences with shared structure Sy, and
Y5 is a set of sentences with structure Sy, but is
lexically matched with X5, then we would expect
AE(Xs2 | X1) > AE(Y2 | X1). We found this
prediction to be true for all of our seven structures
(Figure 2a), thus validating our similarity metric.

5.2 Similarity between sentences with
different types of VP coordination

Our two coordination conditions were structurally
identical to each other but varied in their semantic
plausibility — the sentences in PS/ORC-matched
coordination condition were often semantically
implausible whereas sentences in ASRC-matched
condition were always semantically plausible (see
footnote 5). If sentences that were structurally
similar were close together irrespective of seman-
tic plausibility, then we expect sentences with co-
ordination to be more similar to each other than
lexically matched sentences with RCs. Consistent
with this prediction, the adaptation effect for mod-
els adapted to one type of coordination was greater
when the models were tested on sentences with the
other type of coordination than when they were
tested on sentences with RCs (top panel of Fig-
ure 2b).

By lexically matched we mean that all content words
were shared between sentences.
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Figure 3: The adaptation effect when models adapted
to sentences with reduced and unreduced RCs are
tested on sentences that match only in reduction (top
right), match only in passivity (bottom right), match in
both reduction and passivity (top left) or sentences that
match in neither (bottom right).

5.3 Similarity between sentences with
different types of RCs

Unlike sentences with coordination, sentences
with different types of RCs differ from each other
at a surface level (see Table 1). However, at
a more abstract level they all share a common
property: a gap. If the RNN LMs were keep-
ing track of whether or not a sentence contained
a gap, we would expect sentences with different
types of RCs to be more similar to each other in
the RNN LMs’ representation space than lexically
matched sentences without a gap. In other words,
if RCx and RCy are two different types of RCs
and Coordy is a sentence with verb coordination
lexically matched with RCy, then we would ex-
pect AE(RCYy | RCx) > AE(Coordy | RCx).

Consistent with this prediction, the adaptation
effect for models adapted to RCs was greater when
they were tested on sentences with other types of
RCs than when they were tested on sentences with
coordination (bottom panel of Figure 2b). This
suggests that the LMs do keep track of whether
or not a sentence contains a gap, even though this
property is not overtly indicated by a lexical item
that is shared across all types of RCs.

5.4 Similarity between sentences belonging to
different sub-classes of RCs

The different types of RCs we tested can be di-
vided into sub-classes based on at least two lin-
guistically interpretable features: reduction and
passivity. Reduction distinguishes reduced passive
and object RCs on the one hand from unreduced
passive and object RCs on the other. Passivity dis-
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tinguishes reduced and unreduced passive RCs on
the one hand from reduced and unreduced object
RCs on the other. The LMs could be tracking ei-
ther, both or none of these features.

We probed whether the LMs track these fea-
tures by comparing the similarity between sen-
tences that share one feature but not the other, with
the similarity between sentences that share neither
feature. If the adaptation effect is greater when
there is a match in one feature than when there is a
match in neither of the features, we can infer that
the LMs track whether sentences have that feature.
We found that the LMs track both of these features
(Figure 3).

Additionally, we probed which of the features
contributes more towards the similarity between
sentences by comparing the similarity between
sentences that match only in passivity with sen-
tences that match only in reduction. When the
adaptation and test sets matched only in passiv-
ity, the adaptation effect was slightly (but signifi-
cantly) greater than when the adaptation and test
sets matched only in reduction (Figure 3). In other
words, in the LMs’ representation space, (12) is
more similar to (13) than it is to (14), suggesting
that passivity contributes more towards the simi-
larity between sentences than reduction.

(12) The conspiracy the employee welcomed di-
vided the country.

(13) The conspiracy that the employee welcomed
divided the country.

(14) The conspiracy welcomed by the employee
divided the country.

This result is both intuitive and linguistically inter-
pretable — the edit distance between reduced and
unreduced RCs is smaller than the that between
object and passive RCs; the syntax tree for (12) is
also more similar to (13) than it is to (14).

5.5 What properties of sentences drive the
similarity between them?

Our analyses so far have demonstrated that sen-
tences that belong to linguistically interpretable
classes (e.g., sentences that match in reduction)
are more similar to each other in the LMs’ rep-
resentation space than they are to sentences that
do not belong to those classes (e.g., sentences that
do not match in reduction). However, it is unclear
what properties of the sentences are driving this
similarity between members of the class. For al-



most all of the linguistically interpretable classes
we considered, all sentences belonging to a class
shared at least some, if not all, function words.
The only exception was the class of all RCs, where
the property shared by all sentences in this class
(the presence of a gap) was not overtly observ-
able. Therefore, it is possible that the similarity
between members of most of the classes we tested
was being driven entirely by the presence of these
function words.

In order to test whether the similarity between
members of classes was indeed being driven by the
presence of shared function words, we compared
the representation space of the models we tested in
the previous sections (henceforth trained models)
with the representation space of models trained on
no data (henceforth baseline models). Since the
baseline models were only ever exposed to the 20
sentences in the adaptation set and there was no
lexical overlap in content words between adapta-
tion and test sets, any similarity between sentences
in the representation space of these models would
be driven by the presence of function words. If the
similarity between sentences in the representation
space of the trained models was being driven by
factors other than the presence of function words,
we would expect this similarity to be greater than
the similarity between these sentences in the rep-
resentation space of the baseline models.

We cannot directly use adaptation effect to com-
pare the similarity between sentences in the rep-
resentation spaces of trained models and baseline
models, however: models trained on more data are
likely to have stronger priors and are therefore less
likely to drastically change their representations
after 20 sentences than models trained on less data.
In order to mitigate this issue, we defined a dis-
tance measure between sentences that belong to a
class and sentences that do not belong to a class
Sx as follows (see Figure 4 for a schematic):

_ AE(X2 | Xh)

D(Sx,"Sx) = ——F+~
. (5x,=5x) AE(-X, | X1)
This value would be greater than one if sen-

tences that belonged to a class were more simi-
lar to each other than they were to sentences that
did not belong to the class. Since the strength of
prior belief would affect sentences that belong to
the class the same way it would affect sentences
that do not belong to the class, the effect would
cancel out.

We measured the distance between members
and non-members for three linguistically inter-
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Figure 4: A schematic of how D(RC, —RC) is calcu-
lated. For any given row, the black square indicates the
specific structure the models were adapted to, the blue
squares indicate other structures that belong to the same
linguistically defined class as the black square and the
pink squares indicate the structures that do not belong
to this linguistically defined class. In calculating the
distance, we first calculated the proportion between the
mean adaptation effect for the blue squares and the
mean adaptation effect for pink squares for each row.
We then averaged across the proportion for each row to
arrive at one number.

pretable classes: sentences which contained the
same type of RC, sentences that matched in their
reduction or sentences that contained any type of
RC. In our baseline models, for all three classes,
sentences that belonged to one of these classes
were more similar to each other than sentences
that did not belong to that class (Figure 5a). This
was surprising for the class of sentences that con-
tained any type of RC because there was no func-
tion word that was shared by all sentences in this
class. We hypothesize that this is because sen-
tences without RCs always contained the word
and, whereas sentences with RCs never did.

In cases where members of the class shared at
least some function words, the distance between
sentences that belonged to the class and sentences
that did not for the trained models was greater than
that for the baseline models. This suggests that
the similarity between sentences in the representa-
tion space of trained models was being driven by
factors other than the mere presence of function
words. However, somewhat surprisingly, as the
number of training tokens increased, the distance
between members and non-members decreased.

In the case where the members of the class did
not share any function words, the distance between
sentences that belonged to the class and sentences
that did not belong to the class did not differ be-
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(b) Agreement prediction accuracy on reduced object RCs and unreduced object RCs as a function of D(RC, = RC')

tween the trained models and the baseline mod-
els. This suggests that any similarity between sen-
tences in the representation space of trained mod-
els was driven purely by the presence (or in this
case absence) of lexical items.

5.6 Does D(RC,—RC) predict agreement
prediction accuracy?

Marvin and Linzen (2018) created a dataset that
evaluated the grammaticality of the predictions of
language models. Using this dataset, they showed
that LSTM LMs could not accurately predict the
number of the main verb if the main clause sub-
ject was modified by an object RCs (either reduced
or unreduced). However, the models had bet-
ter performance if the main clause was modified
by an active subject RC. For example, the mod-
els were at near chance levels in predicting that
(15a) should have higher probability than (15b),
but were slightly better at predicting that (16a)
should have higher probability than (16b):

(15) a. The farmer that the parents love swims.
b. *The farmer that the parents love swim.

(16) a. The farmer that loves the parents swims.
b. *The farmer that loves the parents swim.

One possible explanation for this poor perfor-
mance is that object RCs, either reduced or unre-
duced, are quite infrequent (Roland et al., 2007).
If the LM treats object RCs as unrelated to other
RCs, there are likely very few training examples
from which the models can learn about subject-
verb agreement when the subject is modified by
an object RC. If the LM had instead treated ob-
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ject RCs as belonging to the same class as other
RCs, it could learn to generalize from training ex-
amples of subject-verb agreement when the sub-
ject is modified by other RCs. This suggests the
hypothesis that agreement prediction accuracy on
object RCs will be higher in LMs in which the rep-
resentation of object RCs is more similar to the
representation of other RCs.

The similarity between object RCs and other
RCs was defined as in the previous section (the
proportion of blue squares to pink squares of the
top two rows in Figure 4). There was an in-
crease in accuracy as the number of hidden units
increased (see Figure 5b). However, the similar-
ity between object RCs and other types of RCs did
not significantly correlate with agreement predic-
tion; we therefore did not find any evidence for the
hypothesis mentioned above.'”

6 Discussion

Drawing on the syntactic priming paradigm from
psycholinguistics, we proposed a new technique
to analyze how the representations of sentences
in neural language models (LMs) are organized.
Applying this paradigm to sentences with relative
clauses (RCs), we found that the representations of
these sentences were organized in a linguistically
interpretable hierarchical manner (summarized in
Figure 6).

We investigated whether this hierarchical or-
ganization was driven by function words that
are shared among sentences sentences or whether
there was evidence that LMs were tracking more

10Similar patterns were observed for the other construc-
tions in the dataset. See Supplementary Materials.
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abstract properties of the sentence. We found
that for at least some linguistically interpretable
classes, sentences that belonged to these classes
were more similar to each other in the representa-
tion space of the LMs we tested than in the rep-
resentation space of baseline LMs that were not
trained on any data. This suggests that the trained
LMs were capable of tracking abstract properties
of the sentence.

However, for linguistically interpretable classes
in which sentences shared a non-lexically observ-
able property (e.g. presence of a gap), sentences
were as similar to each other in the representa-
tion space of the LMs we tested as in the repre-
sentation space of baseline LMs. Taken together,
these results suggest that LMs might be able to
track abstract properties of classes of sentences
only if these classes also share a lexically observ-
able property.

Additionally, we found that the sentences be-
longing to linguistically interpretable classes were
more similar to each other in the representation
spaces of models trained on 2 million tokens than
in the representation spaces for models trained on
20 million tokens. We infer from this that LMs’
ability to track abstract properties of sentences de-
creases with an increase in the training corpus size.
This suggests that if we want these LMs to track
more abstract linguistic properties, training them
on more data from the same distribution is unlikely
to help (cf. van Schijndel et al. 2019). Future work
can explore how to bias these models to track lin-
guistically useful properties through architectural
biases (Dyer et al., 2016), training on auxiliary
tasks (Enguehard et al., 2017) or data augmenta-
tion (Perez and Wang, 2017).
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We hypothesized that models’ accuracy on sub-
ject verb agreement when preceded by object RCs
would increase as the similarity between object
RCs and the other types of RCs increased. How-
ever, we did not find evidence for this. This could
either be because the similarity between object
RCs and the other types of RCs was too weak to
be useful (see Figure 5a) or because the LMs do
not use this property when predicting verb agree-
ment. Future work can disambiguate these reasons
by testing models that are biased to treat sentences
with object RCs and other RCs as being similar.

Finally, our method allows us to generate a sim-
ilarity matrix in the LMs representation space for
any given set of structures. In the future, gener-
ating a similar matrix for human representations
using priming experiments and comparing these
two matrices using analysis methods from cogni-
tive neuroscience (Kriegeskorte et al., 2008) may
enable us to gain insight into how human-like the
LM representations are and vice versa.

7 Conclusion

We proposed a novel technique to analyze how the
representations of various syntactic structures are
organized in neural language models. As a case
study, we applied this technique to gain insight
into the representations of sentences with relative
clauses in RNN language models and found that
the representations of sentences were organized in
a linguistically interpretable manner.
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Abstract

Computational research on error detection
in second language speakers has mainly ad-
dressed clear grammatical anomalies typical to
learners at the beginner-to-intermediate level.
We focus instead on acquisition of subtle se-
mantic nuances of English indefinite pronouns
by non-native speakers at varying levels of
proficiency. We first lay out theoretical, lin-
guistically motivated hypotheses, and support-
ing empirical evidence on the nature of the
challenges posed by indefinite pronouns to En-
glish learners. We then suggest and evaluate an
automatic approach for detection of atypical
usage patterns, demonstrating that deep learn-
ing architectures are promising for this task in-
volving nuanced semantic anomalies.

1 Introduction

The ubiquity of English as an online lingua franca
offers a rich opportunity for computational re-
search on second language acquisition and on
tools for aiding non-native speakers. Most com-
putational research in second language (L2) has
focused on spelling and grammar errors, and
has been conducted on learners with beginner-to-
intermediate proficiency level (henceforth, “learn-
ers”) (e.g. Ji et al., 2017; Sakaguchi et al., 2017;
Rozovskaya et al., 2017; Lo et al., 2018). Lit-
tle empirical work has looked at semantic errors,
with existing research mostly focusing on colloca-
tions (e.g., Dahlmeier and Ng, 2011; Vecchi et al.,
2011; Kochmar and Briscoe, 2013). Also, highly
proficient, advanced L2 speakers (henceforth, “ad-
vanced L.2s”) have received little attention (though
see Daudaravicius et al., 2016). In contrast to
learners, these speakers rarely violate grammati-
cal norms of the L2, but rather deviate from native
usage in much more nuanced ways, often exhibit-
ing mild infelicities rather than outright errors.
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We aim to explore an elusive aspect of master-
ing the subtle contours of a word’s meaning that
are shaped by its context. Specifically, we in-
vestigate patterns of acquisition of English indefi-
nite pronouns by L2 speakers. Indefinite pronouns
(IPs) are linguistic devices that refer to an entity
(such as a person or thing) that has not yet been
introduced in discourse. In English, examples are
words like someone, anything, and nobody. Con-
sider the following sentences, taken verbatim from
corpora of L2 speakers (original pronoun is bold-
faced; less felicitous usages marked with ?°).!

1. Do you know someone/anyone who was dis-
criminated based on gender?

It was a little amazing, because they didn’t stole
?something/anything.

. ??Anyone/Someone told me the company has
millions in debts and isn’t able to pay it.

Clearly, mastery of IPs in English relies on recog-
nizing subtle factors that determine their appropri-
ate usage in various contexts.

Here, in Section 2, we develop a linguistic anal-
ysis with detailed hypotheses on precisely how
the tangled relations between some- and any- pro-
nouns, exemplified above, pose a challenge for L2
learners. In Sections 3 and 4, we perform a large-
scale investigation of these linguistic predictions
using productions of both learners and advanced
L2s, and find that the predicted infelicities occur
not only in the language of the former but also the
latter, albeit (as expected) to a lesser extent.

A practical goal of this work is to gain predic-
tive power regarding the nuanced semantic diffi-
culties that L2 speakers face. As a first step in that
direction, in Section 5 we consider the ability of
deep learning language models (LMs) — shown to
be adept at capturing grammatical phenomena (Ji

"We refer to either less preferred or unacceptable occur-
rences of an IP, as in (2) and (3), as infelicitous usages.
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Usage class some-? | any-? | Example

specific (SP) v I had to reevaluate things when someone pointed that out.

non-specific (NS) v Someone please make me a GIF of that Wade dunk.

question (QU) v v Anyone know what the issue might be?

conditional (CD) v v I would love it if someone could explain it in a more precise way.

indirect negation (IN) v v I don’t understand how anyone can really hate on him.

direct negation (DN) v v I don’t have anything to add other than to say thanks for typing this out.
comparison (CP) v v If you work harder you deserve to earn more than someone who doesn’t do so.
free choice (FC) v ...they invite anyone on, including musicians sometimes.

Table 1: Usage classes of IPs, an indication of those subsumed by some- and any-, and examples from our corpora.

et al., 2017; Sakaguchi et al., 2017; Marvin and
Linzen, 2018; Goldberg, 2019) — to identify the
subtle infelicities that stem from the semantic con-
fusion introduced by some- and any- IPs. We show
that while state-of-the-art models obtain encour-
aging initial results on this task, they leave room
for future improvement (possibly informed by our
linguistic findings) in mastering the semantic nu-
ances of the system of English IPs.

The contribution of this work is thus three-fold:
First, to our knowledge, we develop the first large-
scale empirical investigation of second-language
acquisition of indefinite pronouns, constituting a
case study of taking a computational approach in
linguistic analysis to yield novel insights into chal-
lenges in L2 acquisition. Second, we suggest and
evaluate an automatic approach to detect infelic-
ities stemming from these challenges in a large
collection of L2 productions. Finally, in both
cases, we extend our experiments to utterances of
highly proficient L2 speakers — a population that
has heretofore received little attention in the con-
text of automatic error/infelicity detection.

2 Linguistic Insights into English IPs

Previous work has suggested that the English sys-
tem of IPs is crosslinguistically atypical, with pre-
cise analogues to some- and any- unusual across
languages (Haspelmath, 1997; Beekhuizen et al.,
2017). Building on a suggestion from Beekhuizen
etal. (2017), we analyze the factors that could lead
to difficulty in learning these IPs, and develop de-
tailed hypotheses concerning the challenges that
L2 speakers are predicted to face.

Our analysis is based on patterns of colexifica-
tion (Franois, 2008): that is, how usages express-
ing different semantics are grouped (or not) in var-
ious combinations under a single word. As the ba-
sis for our analysis, we first need to specify the

2All code and data are available at https://github.
com/ellarabi/indefinite-pronouns
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allowable semantic and syntactic usages of IPs.
These usage classes are adapted from Haspelmath
(1997), who outlines a universal set of IP semantic
functions across all languages.®> Our usage classes
are shown in Table 1, with an indication of the
classes that some- and any- can express.

Table 1 illustrates a striking fact about colexifi-
cation of the usage classes in English: some- and
any- each cover a very broad range of classes, with
a high degree of overlap. This level of overlap in
languages appears to be very rare: in the 40 lan-
guages studied by Haspelmath (1997), we find that
only some 10% of languages have IPs that overlap
over such a broad area of the semantic space.*

Within any of these classes, some seman-
tic/syntactic contexts call for just one of some- or
any-, while others allow both, but with differing
meanings (and frequencies/preferences). For ex-
ample, these similar contexts allow both, but the
preferred pronoun differs:

1. ...people care a lot if something is a repost...
2. ...before you know if anything is wrong...

We thus predict a difficulty for English L2 speak-
ers in having to choose between two (not inter-
changeable) terms that can be used in highly sim-
ilar semantic/syntactic environments.

In addition to looking at difficulties posed by
the colexification of IPs within English, we can
consider crosslinguistic patterns of colexification
for further insight. Semantic typologists have pro-
posed (and empirically supported, across many
domains) that the more two underlying concepts
are colexified across languages, the more similar
those two concepts are (e.g., Anderson, 1982). In

SHaspelmath’s functions are determined by syntactic, se-
mantic, and pragmatic factors. Our usage classes emphasize
the syntactic context, for ease of automatic identification and
consistent annotation.

*Computed using the original Haspelmath’s mapping into
functions, therefore, not strictly comparable to the slightly
different notation of usage classes in this work.
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Figure 1: Layout of usage classes in crosslinguistic semantic
space; light blue illustrates the scope of English any-, pink
illustrates the natural grouping of QU/CD with SP/NS.

this way, crosslinguistic patterns of colexification
can be used to deduce pairwise similarity among
concepts, yielding a universal semantic similarity
space for a domain (e.g., Berlin and Kay, 1969;
Levinson et al., 2003).

Here, we derive such a similarity space over the
IP usage classes of Table 1, using the colexifica-
tion data across 40 languages, from Haspelmath
(1997).> We form a distance matrix (found in sup-
plemental materials, A.1) by recording, for every
pair of usage classes, the number of languages that
have a term subsuming both those classes (indi-
cating their relative similarity). We then use Mul-
tidimensional Scaling (MDS) to project the space
onto two dimensions, as exemplified in Figure 1.

Figure 1 demonstrates, first, that SP, FC, and
DN form three natural “extremes” of the semantic
space. In English, these correspond to the canon-
ical uses of the IPs some-, any-, and no-, respec-
tively; thus some- is anchored at SP and any- at
FC (cf. Table 1). Moreover, we find that the usage
classes of QU and CD are very close to SP and NS,
indicating that QU and CD are most frequently
colexified with SP/NS, in particular, much more
so than with FC. For English, this means that it is
much more natural for some- to express QU/CD
than for any- to do so.

To summarize, our linguistic analysis reveals
two potential challenges of English some- and
any-: their confusability across many classes, and
the particular difficulty of any- in the QU/CD
classes. We further find empirically that some-
IPs are more frequent than any- in native English

3For this, we map our classes to Haspelmath’s functions.
SThe relative distances slightly differ, but remain highly
similar across many such projections we produce.

79

text, suggesting that some- will be easier for L2
speakers, and that they may overgeneralize it when
faced with uncertainty of which pronoun to use.
Collectively, these findings motivate:

Hypothesis 1: The unusually large and overlap-
ping extents of some- and any- are expected to
pose difficulty for L2 speakers; any- is predicted to
be especially difficult due to its lower frequency.

Hypothesis 2: Due to greater naturalness of
grouping QU and CD with other classes subsumed
by some-, we predict that QU and CD usages of
any- will be particularly difficult for L2 speakers.

In exploring each of these hypotheses, we look
for evidence in two forms: overuse of some- com-
pared to native speakers, and more errors involv-
ing any-. We focus on the frequent semantic cate-
gories of people and things, specifically the set of
IPs someone, anyone, something, and anything.’

3 Materials and Methods

3.1 Datasets

We expect that mastery of IPs will depend on
a speaker’s command of English, and there-
fore consider language productions both of learn-
ers (largely beginner-to-intermediate), and of L2
speakers on Reddit (shown to be highly proficient,
almost on par with Reddit natives; Rabinovich
et al. 2018). Our learner dataset comprises sev-
eral sub-corpora: EFCAMDAT (Geertzen et al.,
2013), TOEFL11 (Blanchard et al., 2013), and
the freely available part of the FCE corpus (Yan-
nakoudakis et al., 2011). The advanced L2 dataset
includes online posts by advanced non-native En-
glish speakers from the L2-Reddit corpus (re-
leased by Rabinovich et al., 2018, and com-
prising utterances by native as well as highly-
proficient non-native speakers, published on the
Reddit platform). We extended the L2-Reddit cor-
pus (originally collected in 2017) with data pub-
lished through September 2018; the final dataset
includes over 320M native and L2 English sen-
tences. Table 2 presents details of the two corpora.

Dataset Sentences Tokens Lls
learners 5.6M 72M >13
advanced L2s (Reddit) 177TM 2.4B 51
native (Reddit) 146M 2.1B -

Table 2: Statistics on datasets.

"We excluded somebodylanybody as they are about 1 /10
the frequency of their -one counterparts in our data.



3.2 Classification of IP Usages

Evaluating our hypotheses in Section 2 depends
on assessing which usage class an utterance with
a some-/any- pronoun belongs to, so we can
compare patterns of usage and infelicities across
classes. In English, the IP usage classes are of-
ten associated with particular lexical or syntactic
cues in the clause with the IP — e.g., a negative ad-
verb for DN (I don’t want anything from this col-
lection.), or a question mark for QU (Would you
like to buy something online?). This enabled us to
develop a rule-based classifier (see supplemental
materials (A.3) for details), using a parser (Kitaev
and Klein, 2018) and a set of heuristic rules.

We evaluated the classifier on sentences man-
ually annotated by three in-house native English
speakers with a background in linguistics. A
sample of 750 sentences produced by Reddit na-
tive English speakers was selected for annotation,
and the annotators assigned a label to each sen-
tence from within the set of {DN, QU, CD, CP,
MIXED}, where the MIXED class comprises the
SP, NS, FC, and IN classes (cf. Table 1). The
MIXED grouping contains classes that are (1) dif-
ficult to distinguish using simple lexical and syn-
tactic cues (essentially, an “other” class), and (2)
predicted by our linguistic analysis to be relatively
similar in their error patterns. Average annotator
agreement on our task was xk = 0.932; detailed
annotation guidelines can be found in supplemen-
tal materials (A.2).

Table 3 shows that our rule-based classification
is a reliable way to categorize a sentence with an
IP (five-way classification baseline is 0.2). Be-
cause we use a subset of sentences associated with
each usage class throughout our experiments, we
focus on classification precision, while maintain-
ing recall. We use this classifier to automatically
label L2 sentences by usage class.

Class ‘ DN QU CDh CP MIXED
P 0.835 0.882 0.853 0.833 0.849
R 0.723 0.789 0.853 0.962 0.874
F1 0.775 0.833 0.853 0.893 0.861

Table 3: Evaluation of classification of IP usage classes.

3.3 Annotation of (In)felicitous Usages

We used the FigureEight crowdsourcing platform
for collecting annotations to be used as ground
truth of L2 infelicities. We extracted a randomly

sampled set of 3,711 sentences from our learner
corpus representing a balanced distribution over
the five usage classes,® and a similar set of 10, 000
sentences from our advanced L2 (Reddit) corpus,
each containing a usage of someone, something,
anyone, or anything.’ Each sentence was anno-
tated by five native English speakers in a choice-
based annotation scheme. The occurrence of the
IP in the sentence was replaced with a blank line,
and each annotator marked their preference for the
some- or any- pronoun in that context (or “other”),
reflecting the most natural choice between the two.
The gold annotation for each sentence was deter-
mined by its majority choice, and the confidence
score was computed based on the number of se-
lections (out of five annotators) of each of the two
pronouns. Annotation guidelines and a sample of
500 manually annotated sentences can be found in
the supplemental materials (A.4).

Table 4 presents example sentences produced
by learners and L2 Reddit authors where the ma-
jority annotation unanimously differed from the
original pronoun (as indicated). The utterances
are provided verbatim, maintaining grammatical
errors typical to productions in our corpora.

Sentences with a confidence level < 0.6 are
considered close to equally felicitous with either
pronoun, while the confidence of 1 represents a
unanimous preference for one of the alternatives.
Because we used a forced-choice task, if both pro-
nouns were acceptable (e.g., Did you see some-
thing/anything you like?), we expect that the con-
fidence score will indicate the level of naturalness
or typicality of the pronoun in that context. For
this reason, we only consider an example infelici-
tous when it differs from annotator choice with a
confidence > 0.8, which indicates a stronger pref-
erence for one pronoun over the other.

The final annotation results include 50% (1556)
and 77% (2857) of sentences with a confidence of
1.0 and of > 0.8, respectively, for learners. Our
advanced L2 data has 56% (5639) of sentences
with a confidence of 1.0 and 81% (8079) of > 0.8.

A question arises as to how meaningful it is to
label an IP usage as infelicitous —i.e., the preferred
IP in annotation differed from the original — if both
some- and any- are in fact acceptable. To explore
this, we also got crowdsourced annotations on 500

8 Aiming at 1K per class, limited by 587 and 124 sentences
in the QU and CP classes in our learner data, respectively.

"We excluded sentences with idiomatic expressions con-
taining IPs from this work; see supplemental materials (A.5).



L2 utterance Annotation
Moreover, he also takes a risk of not knowing someone from this country. anyone
About 20 years ago, we didn’t know someone who cares about them, who defend animal’s right, anyone

but today, I know many people who cares about, cause animals need to be protected.

It is justified to say that they have to change anything to cope with the now situation. something
I never said something about political science, probably it was not very good worded but my point is .

just that it shows how the extremes of two sides can come closer together again. anything

I think it’s a sampling bias rather than anyone massaging the numbers to see what they want to see. someone
If there is a day where no one works then this is useless because you can’t do something on that day anything

with family besides walking in forests because everything would be closed.

Table 4: Example sentences annotated by human annotators for infelicitous pronoun choice (original pronoun is boldfaced).
The top part refers to learners’ utterances, the bottom part refers to advanced L2s’.

native utterances from Reddit, and compared the
percentages of usages annotated as infelicitous to
those of 500 randomly sampled sentences by ad-
vanced L2s. We found that 3% of native utterances
were annotated as infelicitous at a confidence level
of > 0.8, indicating a high agreement among na-
tive writers and our annotators, while for advanced
L2s, the percentage was around twice that high —
6.7%. Despite acceptable variation in some-/any-
usage in a given context, even advanced L2 speak-
ers differ from natives in their relative preferences.

4 Analysis of IP Infelicities in L.2
4.1 Distribution of IPs by Usage Types

First, considering Hypothesis 1 from Section 2,
we expect the confusability of some- and any- to
be reflected in overgeneralization of some- due to
its higher frequency. The subtle distinction be-
tween these pronoun types is assumed to be better
mastered by advanced L2 speakers, so we expect
the divergence from the native distribution to be
amplified in learners’ productions.

Figure 2 presents relative frequencies of some-
and any- pronouns in a random sample of 5M na-
tive, advanced L2, and learner productions, both
in the entire sample (left) and distributed by us-
age class (right). In line with our predictions,
we find in Figure 2 (left) that overall, L2 speak-
ers use some- pronouns more than any- pronouns
compared to native speakers. We can further see
in Figure 2 (right), and discussed in detail below,
that this pattern occurs in almost all the IP usage
classes, especially pronounced for learners.

Elaborating on Hypothesis 1, we further sug-
gest that in addition to general overuse of some-
vs. any- (which may partly be due to avoidance
of any-), L2 speakers are also expected in their
infelicities to more often use some- where native
speakers would use any-, than vice versa. This
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prediction is also supported by our annotated data:
In cases where the preferred pronoun is some-,
learners infelicitously use any- 8.4% of the time,
but in cases where the preferred pronoun is any-,
learners infelicitously use some- almost 23% of
the time. That is, learners have almost three times
as many infelicities of using some- instead of any-
than the reverse. Our advanced L2s speakers also
show more infelicities using some- instead of any-
than vice versa, but the difference is less pro-
nounced (5.8% and 10.1% respectively), as we ex-
pect given their greater proficiency.

4.2 Distribution of Infelicitous Usages

Next we turn to Hypothesis 2 from Section 2,
which further predicts that the precise extent of
deviation from native-like usage patterns will not
be distributed uniformly across the different usage
classes, but rather there will be a higher degree of
deviation in classes that are atypically grouped un-
der any- — that is, QU and CD - than in those that
introduce less of a semantic challenge (DN, CP,
and those in the MIXED class). L2 speakers are
expected to exhibit both more overuse of some-
and more infelicities in the QU and CD classes.

Our predictions regarding the non-uniform
overuse of some- are largely borne out in Figure
2: the classes expected to be most difficult for L2
speakers — QU and CD — show a significant differ-
ence not only for learners, but even for advanced
L2 speakers compared to natives, while DN and
CP show only a difference for learners.

A few observations from Figure 2 do not fol-
low our hypothesis. First, the difference in learner
usage of some- vs. any- for DN goes in the direc-
tion opposite to the prediction: i.e., learners use
any- more than some- pronouns in direct negation.
We attribute this to the sheer frequency of any-
in direct negation, such that learners are overgen-
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eralizing any- here. Second, the MIXED group-
ing also shows a difference for the advanced L2
speakers, although these usages are not predicted
to be especially difficult by our linguistic analy-
sis. This class contains a very large and diverse
set of usages, making it difficult to predict what
is driving this effect, and we leave this for future
work. Finally, the largest gap in overuse of some-
vs. any- is observed in the CP class for learners,
thereby not complying with our prediction of the
highest difficulty being introduced by the QU and
CD classes. Note, however, that this result is based
on a relatively small amount of data in the CP class
for learners (only 124 sentences; see Table 5).

To consider the pattern of infelicities across the
usage classes, Table 5 shows the results from our
crowdsourced annotation of IP usages of learners
(top) and advanced L2s (bottom), separated by the
classes. As expected, learners exhibit a very high
percentage of infelicities in the QU class (24%);
the CD class is not nearly as bad (12%), but is
still higher than the other three (8-9%). Although
advanced L2s have much fewer infelicities than
learners, they also have more in the QU and CD
classes (7% and over 9% respectively) than in the
others (5—6%). Thus, as with Hypothesis 1, Hy-
pothesis 2 is largely borne out by the data, and we
find additional evidence that the IP system of En-
glish is particularly challenging for beginning to
intermediate learners.

5 Automatic Detection of Infelicities

Our motivation for the above analysis is to use
these insights to drive development of tools for L2
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Usage class DN QU CD CP MIXED
# annotated 1000 587 1000 124 1000
# infelicitous 81 141 124 11 87
% infelicitous 8.1 240 124 8.9 8.7
# annotated 2000 2000 2000 2000 2000
# infelicitous 106 141 182 102 113
% infelicitous 53 7.1 9.1 5.1 5.7

Table 5: Distribution of annotated infelicities by usage
class. Top panel: learners; bottom: advanced L2s.

learners. Here we consider the first step, that of de-
tection of infelicities with a language model (LM).

Neural network based approaches are currently
among the most successful LMs. While being eas-
ily applied to a wide range of tasks, they provide
significant improvements over classic backoff n-
gram models. A common use of a pre-trained LM
— typically trained on an extremely large corpus
— is to predict the likelihood of an ‘unseen’ sam-
ple of text: The higher the score (or the lower the
perplexity) a text is assigned, the more probable it
is, given the model. In particular, a fluent, well-
formed text is likely to be scored higher by an LM
than a text containing linguistic anomalies.

Encouraged by results on the task of grammat-
ical error detection (Yuan and Briscoe, 2016; Ji
etal., 2017), we adhere to a similar approach, cast-
ing the detection of infelicities as a binary classi-
fication scenario: An LM is applied on a sentence
with an original pronoun (e.g., something) and on
the same sentence where the pronoun is substi-
tuted with its alternative (e.g., anything); then the
one predicted as more probable (scored highest) is
chosen as a model decision.



5.1 Models

Aiming to test the effect of various factors, such
as training data size and register, on the predic-
tive power of LMs in our task, we used both pre-
trained models and models trained locally on in-
domain, albeit much smaller, data.

Gulordava et al.: A successful variant of
RNNs, the long short-term memory model
(LSTM, Hochreiter and Schmidhuber, 1997), used
for syntactic error detection in Gulordava et al.
(2018). We trained the model using a similar set of
parameters to Gulordava et al. (2018),'° on 10M
sentences by native English speakers of Reddit
(see Section 3), using a 20K sentence validation
set and a 50K sentence test set. This model allows
us to test the benefits of using in-domain data (for
advanced L2s), despite its significantly lower vol-
ume, compared to other models.

Google 1B: A very large publicly available LM
released by Jozefowicz et al. (2016). This fine-
tuned language model, trained on a billion-word
corpus (Chelba et al., 2013), requires a massive
infrastructure for training. It achieves impressive
perplexity scores on common benchmarks, and
has been shown effective on a range of NLP tasks.

BERT: A recent bidirectional encoder represen-
tations from transformers (BERT) LM released by
Google (Devlin et al., 2018). Proven highly effec-
tive in several language modeling tasks, it achieves
state-of-the-art results in syntax-sensitive scenar-
ios (Goldberg, 2019), pushing the limits of what is
feasible with current language modeling tools.

We report the models’ precision, recall and F1
scores for infelicitous and correct classes sepa-
rately. We also report the overall accuracy of each,
computed as the ratio of correctly classified cases
out of all sentences. Following the intuition laid
out in Section 3.3, we conducted two sets of exper-
iments: (1) considering cases where annotators’
confidence score was 0.8 or higher, and (2) consid-
ering cases with confidence of 1. Sentences with
a lower confidence score (i.e., where both some-
and any- were roughly equally preferred) were ex-
cluded from these experiments.

10Specifically, we used two hidden layers of 200 units per
layer, dropout rate of 0.2, batch size of 20, and initial learning
rate of 20, and trained for 40 epochs (until the validation set
perplexity converged).
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5.2 Results and discussion

Tables 6 and 7 present the results for learners and
advanced L2 speakers, each split by the degree of
annotation confidence. Baseline accuracy is com-
puted as the ratio of felicitous usages (the ma-
jority class) out of all instances. The Gulordava
et al. LM yields results inferior to the baseline,
despite training on in-domain (but much smaller)
data. BERT performs best overall, and both it and
Google 1B exceed the baseline for learners, but
BERT performs only at baseline for advanced L2s,
confirming the extreme difficulty of this task. Re-
sults obtained for the correct class are far superior
to those for the infelicitous class, suggestive of the
inherent difficulty of the latter cases, compared to
(occasionally clear-cut) correct usage patterns.

Systematically higher scores obtained for
learner utterances (Table 6), compared to ad-
vanced L2s (Table 7), imply that the mild infe-
licities of the latter pose a higher challenge to
automatic tools. That is, not only do advanced
L2s show fewer errors, but their errors are likely
more subtle and more difficult to detect. The high-
confidence setup (= 1.0) yields results superior
to those produced by the lower-confidence setup
(= 0.8), further supporting that clear-cut infelici-
ties are more easily captured by an LM.

Returning to our linguistic predictions, the pref-
erence of some- over any- predicted by Hypoth-
esis 1 and shown for non-native speakers (Sec-
tion 4.1) does not hold for our best-performing
LM. We found a roughly equal rate (up to two per-
cent points) of infelicities in model preferences in
cases with some- vs. any- gold annotations, show-
ing that the model (unlike non-natives) does not
have greater difficulty with any- overall.

We also consider the non-uniform difficulty
of IPs across various usage cases, predicted by
Hypothesis 2 and shown for non-natives (Sec-
tion 4.2). To address this question, we test BERT
for infelicitous choices compared to annotators’
decisions: That is, for each sentence, we compare
the pronoun preferred by the model to the gold an-
notation. Table 8 presents statistics across usage
classes, for learners and advanced L2s (taken from
Table 5), as well as for BERT. The top panel refers
to learner data; the bottom panel, to advanced L2
data. While (expectedly) outperforming the two
non-native populations, the model exhibits simi-
lar distributional patterns, with more infelicities
in the CD and QU classes. The model also has



Learners Infelicitous class Correct class
model P R F1 P R F1 acc
Gulordava et al. (trained on Reddit) 0.437 0573 0496 | 0920 0.870 0.894 | 0.825
©  Google 1B (pre-trained) 0.500 0.686 0578 | 0.946 0.889 0917 | 0.861
Al BERT (pre-trained) 0.602 0.736 0.673 | 0956 0911 0.933 | 0.889
Gulordava et al. (trained on Reddit) 0499 0.652 0565 | 0954 0916 0.935 | 0.887
'ﬂ( Google 1B (pre-trained) 0.523  0.720 0.606 | 0970 0932 0950 | 0912
BERT (pre-trained) 0.681 0.859 0.759 | 0981 0949 0.965 | 0.939

Table 6: Automatic detection of infelicities in learner data (sentences where annotation disagrees with author usage
of IP), with confidence level > 0.8 (top), and with confidence level = 1 (bottom). Baseline accuracy is 0.850 for
the former and 0.887 for the latter. Best result in a column (for each part) is boldfaced.

Advanced L2s Infelicitous class Correct class
model P R F1 P R F1 acc
Gulordava et al. (trained on Reddit) 0.274 0.583  0.373 0.959 0.863 0.908 | 0.840
< Google 1B (pre-trained) 0.380 0.704 0494 | 0976 0912 0943 | 0.898
Al BERT (pre-trained) 0.506 0.701 0.585 | 0972 0.938 0.955 | 0.919
Gulordava et al. (trained on Reddit) 0.219  0.690 0.332 | 0984 0.886 0932 | 0.877
]‘ Google 1B (pre-trained) 0.380 0.760 0507 | 0.988 0942 0964 | 0.934
BERT (pre-trained) 0.503 0.790 0.614 | 0990 0964 0.977 | 0.956

Table 7: Automatic detection of infelicities in advanced L2 data (sentences where annotation disagrees with author
usage of IP), with confidence level > 0.8 (top), and with confidence level = 1 (bottom). Baseline accuracy is
0.918 for the former and 0.956 for the latter. Best result in a column (for each part) is boldfaced.

a higher number of infelicities in the CP class for
learners; again, we note the small sample of data in
this class, entailing a need for further investigation
of this particular pattern. The model results here
pose intriguing questions for future work regard-
ing the nature of challenges faced by automatic
neural methods, and their potential analogues to
those of humans.

‘ DN QU CD CP MIXED
learners 8.1 240 124 8.9 8.7
BERT 0.8 6.1 3.6 4.0 22
advanced L2s | 5.3 7.1 91 5.1 5.7
BERT 1.3 25 27 16 1.5

Table 8: Distribution of % of infelicities (difference
from gold annotation) across classes for humans and
for BERT on the corresponding data.

6 Related Work

Computational approaches to grammatical error
correction (GEC) in learners’ productions has
been a prolific field of research in recent years.
A standard approach to dealing with grammar and
spelling errors makes use of a machine-learning
classification paradigm; a comprehensive survey
of these methods can be found in Ng et al. (2014).
Recent advances in the field of GEC were achieved
by using neural models (Yuan and Briscoe, 2016;
Ji et al., 2017; Sakaguchi et al., 2017; Lo et al.,

2018). Most studies used a supervised setup for
selecting a correct choice (e.g., a preposition) out
of a set of multiple alternatives, rendering our ex-
perimental setup not directly comparable.

Another line of work has assessed the capability
of neural LMs to capture errors stemming from vi-
olation of syntax-sensitive dependencies (Linzen
et al., 2016; Gulordava et al., 2018; Marvin and
Linzen, 2018). The recent BERT model (Devlin
et al., 2018) has been shown to be highly effec-
tive for detection of syntactic anomalies stemming
from subject-verb disagreement (Goldberg, 2019).

Most research on L2 error correction focuses
on function words, such as prepositions and de-
terminers. Very little work has been done on
detecting and correcting incorrect usage of con-
tent words. Most has been focused on the fe-
licity of word combinations, such as identifying
disfluencies stemming from L1 paraphrases (e.g.,
eat medicine or look movies, Brooke and Hirst,
2011; Dahlmeier and Ng, 2011), or using mod-
els of compositionality to detect semantically de-
viant pairs (residential steak, Vecchi et al., 2011)
or infelicitous collocations (?big importance vs.
great importance, Kochmar and Briscoe, 2013). A
shared task on automatic evaluation of scientific
writing (Daudaravicius et al., 2016) addressed au-
tomatic detection of a variety of grammatical er-
rors (e.g., misuse of an article or punctuation) and
lexical infelicities (e.g., phrasing choices stem-
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ming from style requirements of the genre) in sci-
entific papers, edited by a professional company.

While most closely related to the field of se-
mantic error detection, our work deals with sub-
tle linguistic choices that shape the ultimate attain-
ment of L2 in non-native speakers. Compared to
grammatical and semantic anomalies explored in
previous work, the choice of indefinite pronoun
is often guided by implicit contextual clues that
are not necessarily reflected in superficial colloca-
tional patterns, thereby posing a higher challenge
for automatic techniques.

7 Conclusion

We develop and evaluate linguistic hypotheses on
the difficulties for second language learners of the
atypical system of English indefinite pronouns.
We find that the tangled relation between some-
and any- pronouns pose challenges that are evident
in the productions of both learners and advanced
L2 speakers. This work thus demonstrates the
promise of extending computational approaches
for error-detection in L2 productions to more sub-
tle semantic usages. Moreover, our results reveal
the challenges that these subtleties can pose for
even advanced non-native speakers.

Much research in second language acquisition
establishes native language transfer as one of the
major factors that shape productions of non-native
speakers. While the work here addresses univer-
sal (i.e., native-language independent) challenges
posed to L2 speakers, a plausible assumption is
that mastery of English IPs is also affected by the
proximity of the analogous system in a speaker’s
L1. We leave this direction for future research.

We also evaluate here the ability of language
models to detect the errors arising in the use of En-
glish indefinite pronouns in L2 productions. Not
surprisingly, we find that the more clearcut errors
exhibited by learners are easier to automatically
identify than the potentially more subtle errors that
arise with advanced L2 speakers. The best per-
forming language model shows a varying match to
human patterns of difficulty, raising issues for fur-
ther research regarding the factors that influence
difficulty for both humans and language models.

The practical impact of this work will be in fa-
cilitating the development of educational applica-
tions for L2 English speakers at various levels of
proficiency. At present, most error correction and
detection tools focus on explicit spelling or gram-
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mar errors. Enriching these tools with the ability
to capture subtle semantic infelicities in the usage
of IPs would advance the current state of the art in
educational applications for language learners.
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Abstract

Image captioning models are usually evaluated
on their ability to describe a held-out set of im-
ages, not on their ability to generalize to un-
seen concepts. We study the problem of com-
positional generalization, which measures how
well a model composes unseen combinations
of concepts when describing images. State-
of-the-art image captioning models show poor
generalization performance on this task. We
propose a multi-task model to address the poor
performance, that combines caption genera-
tion and image—sentence ranking, and uses a
decoding mechanism that re-ranks the cap-
tions according their similarity to the image.
This model is substantially better at generaliz-
ing to unseen combinations of concepts com-
pared to state-of-the-art captioning models.

1 Introduction

When describing scenes, humans are able to
almost arbitrarily combine concepts, producing
novel combinations that they have not previously
observed (Matthei, 1982; Piantadosi and Aslin,
2016). Imagine encountering a purple-colored dog
in your town, for instance. Given that you under-
stand the concepts PURPLE and DOG, you are able
to compose them together to describe the dog in
front of you, despite never having seen one before.

Image captioning models attempt to auto-
matically describe scenes in natural language
(Bernardi et al., 2016). Most recent approaches
generate captions using a recurrent neural net-
work, where the image is represented by features
extracted from a Convolutional Neural Network
(CNN). Although state-of-the-art models show
good performance on challenge datasets, as mea-
sured by text-similarity metrics, their performance
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of Copenhagen.
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A white cat sitting on
a laptop computer

A white dog running
along a beach

A big brown dog
sitting on a couch

Training
Evaluation

Figure 1: We evaluate whether image captioning mod-
els are able to compositionally generalize to unseen
combinations of adjectives, nouns, and verbs by forc-
ing paradigmatic gaps in the training data.

as measured by human judges is low when com-
pared to human-written captions (Vinyals et al.,
2017, Section 5.3.2).

It is widely believed that systematic compo-
sitionality is a key property of human language
that is essential for making generalizations from
limited data (Montague, 1974; Partee, 1984; Lake
et al., 2017). In this work, we investigate to what
extent image captioning models are capable of
compositional language understanding. We ex-
plore whether these models can compositionally
generalize to unseen adjective—noun and noun—
verb composition pairs, in which the constituents
of the pair are observed during training but the
combination is not, thus introducing a paradig-
matic gap in the training data, as illustrated in Fig-
ure 1. We define new training and evaluation splits
of the COCO dataset (Chen et al., 2015) by hold-
ing out the data associated with the compositional
pairs from the training set. These splits are used to
evaluate how well models generalize to describing
images that depict the held out pairings.

We find that state-of-the-art captioning models,
such as Show, Attend and Tell (Xu et al., 2015),
and Bottom-Up and Top-Down Attention (Ander-
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son et al., 2018), have poor compositional gener-
alization performance. We also observe that the
inability to generalize of these models is primarily
due to the language generation component, which
relies too heavily on the distributional character-
istics of the dataset and assigns low probabilities
to unseen combinations of concepts in the evalua-
tion data. This supports the findings from concur-
rent work (Holtzman et al., 2019) which studies
the challenges in decoding from language models
trained with a maximum likelihood objective.

To address the generalization problem, we pro-
pose a multi-task model that jointly learns image
captioning and image—sentence ranking. For cap-
tion generation, our model benefits from an ad-
ditional step, where the set of captions generated
by the model can be re-ranked using the jointly-
trained image—sentence ranking component. We
find that the ranking component is less affected by
the likelihood of n-gram sequences in the training
data, and that it is able to assign a higher ranking to
more informative captions which contain unseen
combinations of concepts. These findings are re-
flected by improved compositional generalization.

The source code is publicly available on
GitHub.'

2 Related Work

2.1 Caption Generation and Retrieval

Image Caption Generation models are usually
end-to-end differentiable encoder-decoder mod-
els trained with a maximum likelihood objective.
Given an image encoding that is extracted from
a convolutional neural network (CNN), an RNN-
based decoder generates a sequence of words that
form the corresponding caption (Vinyals et al.,
2015, inter-alia). This approach has been im-
proved by applying top-down (Xu et al., 2015) and
bottom-up attention mechanisms (Anderson et al.,
2018). These models show increasingly good per-
formance on benchmark datasets, e.g. COCO, and
in some cases reportedly surpass human-level per-
formance as measured by n-gram based evaluation
metrics (Bernardi et al., 2016). However, recent
work has revealed several caveats. Firstly, when
using human judgments for evaluation, the auto-
matically generated captions are still considered
worse in most cases (Fang et al., 2015; Vinyals
et al., 2017). Furthermore, when evaluating out-

'https://github.com/mit janikolaus/
compositional-image-captioning
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of-domain images or images with unseen con-
cepts, it has been shown that the generated cap-
tions are often of poor quality (Mao et al., 2015;
Vinyals et al., 2017). Attempts have been made to
address the latter issue by leveraging unpaired text
data or pre-trained language models (Hendricks
et al., 2016; Agrawal et al., 2018).

Image—Sentence Ranking is closely related to
image captioning. Here, the problem of language
generation is circumvented and models are instead
trained to rank a set of captions given an image,
and vice-versa (Hodosh et al., 2013). A common
approach is to learn a visual-semantic embedding
for the captions and images, and to rank the im-
ages or captions based on similarity in the joint
embedding space. State-of-the-art models extract
image features from CNNs and use gated RNNs
to represent captions, both of which are projected
into a joint space using a linear transformation
(Frome et al., 2013; Karpathy and Fei-Fei, 2015;
Vendrov et al., 2016; Faghri et al., 2018).

2.2 Compositional Models of Language

Investigations of compositionality in vector space
models date back to early debates in the cogni-
tive science (Fodor and Pylyshyn, 1988; Fodor and
Lepore, 2002) and connectionist literature (Mc-
Clelland et al., 1986; Smolensky, 1988) regard-
ing the ability of connectionist systems to com-
pose simple constituents into complex structures.
In the NLP literature, numerous approaches that
(loosely) follow the linguistic principle of compo-
sitionality? have been proposed (Mitchell and La-
pata, 2008; Baroni and Zamparelli, 2010; Grefen-
stette and Sadrzadeh, 2011). More recently, it
has become standard to employ representations
which are learned using neural network architec-
tures. The extent to which these models behave
compositionally is an open topic of research (Lake
and Baroni, 2017; Dasgupta et al., 2018; Ettinger
et al., 2018; McCoy et al., 2018) that closely re-
lates to the focus of the present paper.

Compositional generalization in image caption-
ing has received limited attention in the litera-
ture. In Atzmon et al. (2016), the captions in the
COCO dataset are replaced by subject-relation-
object triplets, circumventing the problem of lan-
guage generation, and replacing it with structured

2The meanings for complex expressions are derived from

the meanings of their parts via specific composition functions.
(Partee, 1984)



triplet prediction. Other work explores generaliza-
tion to unseen combinations of visual concepts as
a classification task (Misra et al., 2017; Kato et al.,
2018). Lu et al. (2018) is more closely related to
our work; they evaluate captioning models on de-
scribing images with unseen noun-noun pairs.

In this paper, we study compositional general-
ization in image captioning with combinations of
multiple classes of nouns, adjectives, and verbs.?
We find that state-of-the-art models fail to gener-
alize to unseen combinations, and present a multi-
task model that improves generalization by com-
bining image captioning (Anderson et al., 2018)
and image—sentence ranking (Faghri et al., 2018).
In contrast to other models that use a re-ranking
step*, our model is trained jointly on both tasks
and does not use any additional features or ex-
ternal resources. The ranking model is only used
to optimize the global semantics of the generated
captions with respect to the image.

3 Compositional Image Captioning

3.1 Problem Definition

In this section we define the compositional cap-
tioning task, which is designed to evaluate how
well a model generalizes to captioning images that
should be described using previously unseen com-
binations of concepts, when the individual con-
cepts have been observed in the training data.

We assume a dataset of captioned images D, in
which N images are described by K captions: D
= (i1, 81,y sk ), o, (BN 8 s ) We also
assume the existence of a concept pair {¢;, ¢; } that
represents the concepts of interest in the evalua-
tion. In order to evaluate the compositional gen-
eralization of a model for that concept pair, we
first define a training set by identifying and re-
moving instances where the captions of an image
contain the pair of concepts, creating a paradig-
matic gap in the original training set: Dy, =
{(™ st} st VN B k¢ € SR Acj € s
Note that the concepts ¢; and c; can still be inde-
pendently observed in the captions of an image of

3This is different from the “robust image captioning” task
(Lu et al., 2018) because we are testing for the composition
of nouns with adjectives or verbs, and not the co-occurrence
of different nouns in an image.

4Fang et al. (2015) use a discriminative model that has
access to sentence-level features and a multimodal similar-
ity model in order to capture global semantics. Wang et al.
(2017) uses a conditional variational auto-encoder to gener-
ate a set of diverse captions and a consensus-based method
for re-ranking the candidates.

&9

this set, but not together in the same caption. We
also define validation and evaluation sets D,,,; and
Deyqr that only contain instances where at least
one of the captions of an image contains the pair
of concepts: Dyaijeva := { (1", s})} s.t. VAN 3k
ci € sp ANy € 5. A model is trained on the Dypiy
training set until it converges, as measured on the
Dy validation set. The compositional generaliza-
tion of the model is measured by the proportion
of evaluation set captions which successfully com-
bined a held out pair of concepts {c;, ¢;} in Deyqr-

3.2 Selection of Concept Pairs

We select pairs of concepts that are likely to be
represented in an image recognition model. In par-
ticular, we identify adjectives, nouns, and verbs in
the English COCO captions dataset (Chen et al.,
2015) that are suitable for testing compositional
generalization. We define concepts as sets of syn-
onyms for each word, to account for the variation
in how the concept can be expressed in a caption.
For each noun, we use the synonyms defined in
Lu et al. (2018). For the verbs and adjectives,
we use manually defined synonyms (see Appendix
D). From these concepts, we select adjective—noun
and noun—verb pairs for the evaluation. To identify
concept pair candidates, we use StanfordNLP (Qi
et al., 2018) to label and lemmatize the nouns, ad-
jectives, and verbs in the captions, and to check if
the adjective or verb is connected to the respective
noun in the dependency parse.

Nouns: We consider the 80 COCO object cat-
egories (Lin et al., 2014) and additionally divide
the “person” category into “man”, “woman” and
“child”. It has been shown that models can detect
and classify these categories with high confidence
(He et al., 2016). We further group the nouns un-
der consideration into animate and inanimate ob-
jects. We use the following nouns in the evalu-
ation: woman, man, dog, cat, horse, bird,

child, bus, plane, truck, table.

Adjectives: We analyze the distribution of the
adjectives in the dataset (see Figure 4 in Appendix
A). The captions most frequently contain descrip-
tions of the color, size, age, texture or quantity
of objects in the images. We consider the color
and size adjectives in this evaluation. It has been
shown that CNNs can accurately classify the color
of objects (Anderson et al., 2016); and we assume
that CNNs can encode the size of objects because
they can predict bounding boxes, even for small



black cat
small plane
white truck
big plane
white horse
small table
black bird
stand child

big bird
eat man
small cat
ride woman
big cat
hold child
small dog
big truck

red bus
lie woman
brown dog
fly bird
blue bus
stand bird
white boat
eat horse

Table 1: The 24 concept pairs used to construct the
training Di,in and eval Dey, datasets.

objects (Bai et al., 2018). In the evaluation, we use
the following adjectives: big, small, black,
red, brown, white, blue.

Verbs: Sadeghi and Farhadi (2011) show that it
is possible to automatically describe the interac-
tion of objects or the activities of objects in im-
ages. We select verbs that describe simple and
well-defined actions and group them into transi-
tive and intransitive verbs. We use the following
verbs in the pairs: eat, lie, ride, f1ly, hold,
stand.

Pairs and Datasets: We define a total of 24 con-
cept pairs for the evaluation, as shown in Table 1.
The training and evaluation data is extracted from
the COCO dataset, which contains K=5 reference
captions for N=123,287 images. In the composi-
tional captioning evaluation, we define the train-
ing datasets Dy,q;, and validation datasets D,
as subsets of the original COCO training data,
and the evaluation datasets D,,,; as subsets of the
COCO validation set, both given the concept pairs.

To ensure that there is enough evaluation data,
we only use concept pairs for which there are more
than 100 instances in the validation set. Occur-
rence statistics for the considered concept pairs
can be found in Appendix B.

3.3 Evaluation Metric

The performance of a model is measured on
the D.y, datasets. For each concept pair eval-
uation set consisting of M images, we depen-
dency parse the set of M x K generated cap-
tions {(s, ..., s%), ..., (s}, ..., %)} to determine
whether the captions contain the expected concept
pair, and whether the adjective or verb is a depen-
dent of the noun.> We denote the set of captions
for which these conditions hold true as C.

5This means that a model gains no credit for predicting the
concept pairs without them attaching to their expected target.
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There is low inter-annotator agreement in the
human reference captions on the usage of the con-
cepts in the target pairs.® Therefore, one should
not expect a model to generate a single caption
with the concepts in a pair. However, a model can
generate a larger set of K captions using beam
search or diverse decoding strategies. Given K
captions, the recall of the concept pairs in an eval-
uation dataset is:

[{(sg’) | 3k = 57" € C}
M

Recall@K = (1)

Recall@K is an appropriate metric because the
reference captions were produced by annotators
who did not need to produce any specific word
when describing an image. In addition, the set of
captions C is determined with respect to the same
synonym sets of the concepts that were used to
construct the datasets, and so credit is given for
semantically equivalent outputs. More exhaustive
approaches to determine semantic equivalence for
this metric are left for future work.

4 State-of-the-Art Performance

4.1 Experimental Protocol

Models: We evaluate two image captioning
models on the compositional generalization task:
Show, Attend and Tell (SAT; Xu et al., 2015) and
Bottom-up and Top-down Attention (BUTD; An-
derson et al., 2018). For SAT, we use ResNet-152
(He et al., 2016) as an improved image encoder.

Training and Evaluation: The models are
trained on the Dy.,;, datasets, in which groups of
concept pairs are held out—see Appendix C for
more information. Hyperparameters are set as de-
scribed in the respective papers. When a model
has converged on the D, validation split (as mea-
sured in BLEU score), we generate K captions for
each image in Dgy, using beam search. Then, we
calculate the Recall@K metric (Eqn. 1, K=5) for
each concept pair in the evaluation split, as well as
the average over all recall scores to report the com-
positional generalization performance of a model.

We also evaluate the compositional generaliza-
tion of a BUTD model trained on the full COCO

®We calculate the inter-annotator agreement for the target
pairs between the 5 reference captions for every image in the
COCO dataset: on average, only 1.57 /5 captions contain the
respective adjective—noun or noun—verb concept pair, if it is
present in any. We ascribe this lack of agreement to the open

nature of the annotation task: there were no restrictions given
for what should be included in an image caption.



training dataset (FULL). In this setting, the model
is trained on compositions of the type we seek to
evaluate in this task, and thus does not need to gen-
eralize to new compositions.

Pretrained Language Representations: The
word embeddings of image captioning models
are usually learned from scratch, without pre-
training’.  Pretrained word embeddings (e.g.
GloVe (Pennington et al., 2014)) or language mod-
els (e.g. Devlin et al. (2019)) contain distributional
information obtained from large-scale textual re-
sources, which may improve generalization per-
formance. However, we do use them for this task
because the resulting model may not have the ex-
pected paradigmatic gaps.

4.2 Results

Image Captioning: The models mostly fail to
generate captions that contain the held out pairs.
The average Recall@5 for SAT and BUTD are 3.0
and 6.5, respectively. A qualitative analysis of the
generated captions shows that the models usually
describe the depicted objects correctly, but, in the
case of held out adjective—noun pairs, the mod-
els either avoid using adjectives, or use adjectives
that describe a different property of the object in
question, e.g. white and green airplane instead
of small plane in Figure 3. In the case of held
out noun—verb pairs, the models either replace the
target verb with a less descriptive phrase, e.g. a
man sitting with a plate of food instead of a man
is eating in Figure 3, or completely omit the verb,
reducing the caption to a simple noun phrase.

In the FULL setting, average Recall@5 reaches
33.3. We assume that this score is a conservative
estimate due to the low average inter-annotator
agreement (see Footnote 6). The model is less
likely to describe an image using the target pair
if the pair is only present in one of the reference
captions, as the feature is likely not salient (e.g.
the car in the image has multiple colors, and the
target color is only covering one part of the car).
In fact, if we calculate the average recall for im-
ages where at least 2 /3 /4 /5 of the reference
captions contain the target concept pair, Recall@5
increases to 46.5 / 58.3 / 64.9 / 75.2. This shows
that the BUTD model is more likely to generate a
caption with the expected concept pair when more
human annotators agree that it is a salient pair of
concepts in an image.

"Exceptions: You et al. (2016); Anderson et al. (2017)
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Image-Sentence Ranking: In a related experi-
ment, we evaluate the generalization performance
of the VSE++ image—sentence ranking model on
the compositional captioning task (Faghri et al.,
2018). We use an adapted version of the evalu-
ation metric because the ranking model does not
generate tokens.® The average Recall@5 with
the adapted metric for the ranking model is 46.3.
The respective FULL performance for this model
is 47.0, indicating that the model performs well
whether it has seen examples of the evaluation
concept pair at training time or not. In other
words, the model achieves better compositional
generalization than the captioning models.

5 Joint Model

In the previous section, we found that state-of-the-
art captioning models fail to generalize to unseen
combinations of concepts, however, an image-
sentence ranking model does generalize. We pro-
pose a multi-task model that is trained for im-
age captioning and image—sentence ranking with
shared parameters between the different tasks.
The captioning component can use the ranking
component to re-rank complete candidate captions
in the beam. This ensures that the generated cap-
tions are as informative and accurate as possible,
given the constraints of satisfying both tasks.

Following Anderson et al. (2018), the model
is a two-layer LSTM (Hochreiter and Schmidhu-
ber, 1997), where the first layer encodes the se-
quence of words, and the second layer integrates
visual features from the bottom-up and top-down
attention mechanism, and generates the output se-
quence. The parameters of the ranking compo-
nent A are mostly a subset of the parameters of
the generation component #;. We name the model
Bottom-Up and Top-down attention with Ranking
(BUTR). Figure 2 shows a high-level overview of
the model architecture.

5.1 Image-Sentence Ranking

To perform the image—sentence ranking task, we
project the images and captions into a joint visual-
semantic embedding space R/. We introduce a

8For each image in the evaluation set, we construct a test
set that consists of the 5 correct captions and the captions of
1,000 randomly selected images from the COCO validation
set. We ensure that all captions in the test set contain exactly
one of the constituent concept pairs, but not both (except for
the 5 correct captions). We construct a ranking of the captions
in this test set with respect to the image, and use the top-K
ranked captions to calculate the concept pair recall (Eqn. 1).
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Figure 2: An overview of BUTR, which jointly learns image—sentence ranking and image captioning.

language encoding LSTM with a hidden layer di-
mension of L.

h! = LSTM(Wi0;, h! ;) 2)

where o; € R is a one-hot encoding of the input
word at timestep ¢, W, € RE*V is a word embed-
ding matrix for a vocabulary of size V and h!_,
the state of the LSTM at the previous timestep. At
training time, the input words are the words of the
target caption at each timestep.

The final hidden state of the language encoding
LSTM hi:T is projected into the joint embedding
space as s* € R’ using Wy € R/*L:

s* = Whh!_, (3)

The images are represented using the bottom-up
features proposed by Anderson et al. (2018). For
each image, we extract a set of R mean-pooled
convolutional features v, € R’, one for each pro-
posed image region . We introduce W3 € R7*/,
which projects the image features of a single re-
gion into the joint embedding space:

vS = Wav, )

To form a single representation v* of the image
from the set of embedded image region features
ve, we apply a weighting mechanism. We gen-
erate a normalized weighting of region features
B € RF using Wy € R/, j3, denotes the weight
for a specific region r. Then we sum the weighted
region features to generate v* € R”:

By = Wy (5)

B = softmax(3’) 6)
R

v = Z Bros (7)
r=1

We define the similarity between an image and a
caption as the cosine similarity cos(v*, s*).

5.2 Caption Generation

For caption generation, we introduce a separate
language generation LSTM that is stacked on top
of the language encoding LSTM. At each timestep
t, we first calculate a weighted representation of
the input image features. We calculate a normal-
ized attention weight oy € R’ (one oy for each
region) using the language encoding and the image
region features. Then, we create a single weighted
image feature vector:

o, = Witanh(Wsvf + Wrh)) (8)

oy = softmax(ay;. ;) 9)
R

- e

Uy = Z Qo U,
r=1

where W5 € RHE, Wy € RHXJ and W5 €
R7*L " H indicates the hidden layer dimension
of the attention module.

These weighted image features v, the output of
the language encoding LSTM A/ (Eqn. 2) and the
previous state of the language generation LSTM
h{_, are input to the language generation LSTM:

1D

The hidden layer dimension of the LSTM is G.
The output probability distribution over the vocab-
ulary is calculated using Wy € RV *&:

(10)

h{ = LSTM([#1, hy), h{_;)

p(wi|w<y) = softmax(Wgh) (12)

5.3 Training

The model is jointly trained on two objectives.
The caption generation component is trained with



a cross-entropy loss, given a target ground-truth
sentence s consisting of the words wy, ..., wr:

T
Lgen(01) = =) log p(wilwesi)  (13)

t=1

The image—caption ranking component is
trained using a hinge loss with emphasis on hard
negatives (Faghri et al., 2018):

Liank (02) = max|a + cos(i, s") — cos(i, s)]+

+ max[o + cos(i’, 5) — cos(i, s)] 4 (14)

where [z]1 = maz(zx,0).

These two loss terms can take very different
magnitudes during training, and thus can not be
simply added. We use GradNorm (Chen et al.,
2018) to learn loss weighting parameters wge,, and
Wrqnk With an additional optimizer during train-
ing. These parameters dynamically rescale the
gradients so that no task becomes too dominant.
The overall training objective is formulated as the
weighted sum of the single-task losses:

‘C(glu 02) = wgen['gen(el) + wrank['rank(02) (15)

5.4 Inference

The model generates B captions for each image
using beam search decoding. At each timestep,
the tokens generated so far for each item on the
beam are input back into the language encoder
(Eqn. 3). The output of the language encoder is
concatenated with the image representation (Eqn.
7) and the previous hidden state of the generation
LSTM, and input to the generation LSTM (Eqn.
11) to predict the next token (Eqn. 12).

The jointly-trained image—sentence ranking
component can be used to re-rank the generated
captions comparing the image embedding with a
language encoder embedding of the captions (Eqn.
4). We expect the ranking model will produce a
better ranking of the B captions than only beam
search by considering their relevance and informa-
tivity with respect to the image.

6 Results

We follow the experimental protocol defined in
Section 4 to evaluate the joint model. See Ap-
pendix E for training details and hyperparameters.

Table 2 shows the compositional generalization
performance, as well as the common image cap-
tioning metric scores for all models. BUTR uses
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Model R M S C B

SAT 30 232 166 804 275
BUTD 65 258 19.1 981 32.6
BUTR 6.5 257 190 97.0 320
BUTR +RR 13.2 264 204 927 288
FULL 333 274 209 1053 36.6

Table 2: Average results for Recall@5 (R; Egn. 1),
METEOR (M; Denkowski and Lavie, 2014), SPICE
(S; Anderson et al., 2016) , CIDEr (C; Vedantam et al.,
2015), BLEU (B; Papineni et al., 2002). RR stands for
re-ranking after decoding.

Color Size Verb
A I A I T I
SAT 37 105 O 0 1.6 2.2
BUTD 54 109 0.5 0 11.6 10.3
BUTR 64 162 03 02 70 8.6
+RR 138 260 14 0.8 203 169
FULL 427 387 59 333 396 395

Table 3: Detailed Recall@5 scores for different cate-
gories of held out pairs. The scores are averaged over
the set of scores for pairs from the respective category.
RR stands for re-ranking after decoding. Color and size
adjectives are split into Animate or Inanimate objects;
Verbs are split into Transitive and Intransitive verbs.

the same image features and a decoder architecture
as the BUTD model. Thus, when using the stan-
dard beam search decoding method, BUTR does
not improve over BUTD. However, when using the
improved decoding mechanism with re-ranking
BUTR + RR, Recall @5 increases to 13.2. We also
observe an improvement in METEOR and SPICE,
and a drop in BLEU and CIDEr compared to the
other models. We note that BLEU has the weakest
correlations (Elliott and Keller, 2014), and SPICE
and METEOR have the strongest correlations with
human judgments (Kilickaya et al., 2017).

The Recall@5 scores for different categories of
held out pairs is presented in in Table 3, and Figure
3 presents examples of images and the generated
captions from different models. We observe that
all models are generally best at describing colors,
especially of inanimate objects; they nearly never
correctly describe held out size modifiers; and for
held out noun—verb pairs, performance is slightly
better for transitive verbs.



Concepts

SAT

BUTD

BUTR+RR

white horse

a black and white
cow standing on top
of a lush green field

a brown and white
cow standing on a
lush green field

a large white horse
standing on top of a
green field

a bus parked on the
side of the street

a public transit bus
on a city street

a blue and yellow
bus traveling down
the street

small cat

small plane

a cat sitting on top of a fighter jet on top

a wooden bench

of a lush green field

a cat sitting on top of a white and green

a wooden bench

a cat sitting on a
bench near a wall

airplane on a field

a white and green
plane is parked on
the grass

man eat

a man sitting at a
table with a plate of
food

a man sitting down
with a plate of food

a man sitting down
eating a plate of food

bird stand

a white bird sitting
on top of a car

a white bird sitting
on top of a car

a large white bird
standing on top of
acar

Figure 3: Selected examples of the captions generated by SAT, BUTD, and BUTR for six different concept pairs.
The bold words in a caption indicate compositional success.

7 Analysis and Discussion

Describing colors:
studied in this work have the best generalization
performance. We find that all models are better
at generalizing to describing inanimate objects in-
stead of animate objects, as shown in the detailed
results in Table 3. One explanation for this could
be that the colors of inanimate objects tend to have
a higher variance in chromaticity when compared
to the colors of animate objects (Rosenthal et al.,
2018), making them easier to distinguish.

Describing sizes:

The color-noun pairings

The generalization perfor-

mance for size modifiers is consistently low for all
models. The CNN image encoders are generally
able to predict the sizes of object bounding boxes
in an image. However, this does not necessarily
relate to the actual sizes of the objects, given that
this depends on their distance from the camera. To
support this claim, we perform a correlation anal-
ysis in Appendix F showing that the bounding box
sizes of objects in the COCO dataset do not relate
to the described sizes in the respective captions.
Nevertheless, size modification is challenging
from a linguistic perspective because it requires
reference to an object’s comparison class (Cress-
well, 1977; Bierwisch, 1989). A large mouse is so
with respect to the class of mice, not with respect
to the broader class of animals. To successfully
learn size modification, a model needs to represent
such comparison classes.
We hypothesize that recall is reasonable in the
FULL setting because it exploits biases in the
dataset, e.g. that trucks are often described as BIG.
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In that case, the model is not actually learning the
meaning of BIG, but simple co-occurrence statis-
tics for adjectives with nouns in the dataset.

Describing actions: In these experiments, the
models were better at generalizing to transitive
verbs than intransitive verbs. This may be because
images depicting transitive events (e.g. eating) of-
ten contain additional arguments (e.g. cake); thus
they offer richer contextual cues than images with
intransitive events. The analysis in Appendix G
provides some support for this hypothesis.

Diversity in Generated Captions: A crucial
difference between human-written and model-
generated captions is that the latter are less diverse
(Devlin et al., 2015; Dai et al., 2017). Given that
BUTR+RR improves compositional generalization,
we explore whether the diversity of the captions is
also improved. Van Miltenburg et al. (2018) pro-
poses a suite of metrics to measure the diversity of
the captions generated by a model. We apply these
metrics to the captions generated by BUTR+RR and
BUTD and compare the scores to the best models
evaluated in Van Miltenburg et al. (2018).

The results are presented in Table 4. BUTR+RR
shows the best performance as measured by most
of the diversity metrics. BUTR+RR produces the
highest percentage of novel captions (%Novel),
which is important for compositional generaliza-
tion. It generates sentences with a high average
sentence length (ASL) — performing similarly to
Liu et al. (2017) — but with a larger standard devi-
ation, suggesting a greater variety in the captions.
The total number of word types (Types) and cover-



Model ASL Types TTR; TTRs %Novel Cov Locs
Liu et al. (2017) 10.3 +1.32 598 0.17 0.38 50.1 0.05 0.70
Vinyals et al. (2017) 10.1 +£1.28 953 0.21 0.43 90.5 0.07 0.69
Shetty et al. (2017) 94+131 2611 024 054 80.5 0.20 0.71
BUTD 9.0 £ 1.01 1162 022 049 56.4 0.09 0.78
BUTR+RR 102 +1.76 1882 0.26 0.59 93.6 0.14 0.80
Validation data 11.3+261 9200 032 0.72 95.3 - -

Table 4: Scores for diversity metrics as defined by Van Miltenburg et al. (2018) for different models.

age (Cov) are higher for Shetty et al. (2017), which
is trained with a generative adversarial objective in
order to generate more diverse captions. However,
these types are more equally distributed in the cap-
tions generated by BUTR+RR, as shown by the
higher mean segmented type-token ratio (TTR;)
and bigram type-token ratio (TTR>).

The increased diversity of the captions may ex-
plain the lower BLEU score of BUTR+RR com-
pared to BUTD. Recall that BLEU measures
weighted n-gram precision, hence it awards less
credit for captions that are lexically or syntacti-
cally different than the references. Thus, BLEU
score may decrease if a model generates diverse
captions. We note that METEOR, which incorpo-
rates non-lexical matching components in its scor-
ing function, is higher for BUTR+RR than BUTD.

Decoding strategies: The failure of the caption-
ing models to generalize can be partially ascribed
to the effects of maximum likelihood decoding.
Holtzman et al. (2019) find that maximum like-
lihood decoding leads to unnaturally flat and high
per-token probability text. We find that even with
grounding from the images, the captioning models
do not assign a high probability to the sequences
containing compositions that were not observed
during training. BUTR is jointly trained with a
ranking component, which is used to re-rank the
generated captions, thereby ensuring that at the
sentence-level, the captions are relevant for the im-
age. It can thus be viewed as an improved decod-
ing strategy such as those proposed in Vijayaku-
mar et al. (2018); Fan et al. (2018); Radford et al.
(2019); Holtzman et al. (2019).

8 Conclusion

Image captioning models are usually evaluated
without explicitly considering their ability to gen-
eralize to unseen concepts. In this paper, we ar-
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gued that models should be capable of composi-
tional generalization, i.e. the ability to produce
captions that include combinations of unseen con-
cepts. We evaluated the ability of models to gen-
eralize to unseen adjective—noun and noun-verb
pairs and found that two state-of-the-art models
did not generalize in this evaluation, but that an
image—sentence ranking model did. Given these
findings, we presented a multi-task model that
combines captioning and image—sentence ranking,
and uses the ranking component to re-rank the
captions generated by the captioning component.
This model substantially improved generalization
performance without sacrificing performance on
established text-similarity metrics, while generat-
ing more diverse captions. We hope that this work
will encourage researchers to design models that
better reflect human-like language production.

Future work includes extending the evalua-
tion to other concept pairs and other concept
classes, analysing the circumstances in which the
re-ranking step improves compositional general-
ization, exploring the utility of jointly trained dis-
criminative re-rankers into other NLP tasks, devel-
oping models that generalize to size modifier ad-
jectives, and devising approaches to improve the
handling of semantically equivalent outputs for the
proposed evaluation metric.
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Abstract

We introduce a new embedding model to rep-
resent movie characters and their interactions
in a dialogue by encoding in the same repre-
sentation the language used by these charac-
ters as well as information about the other par-
ticipants in the dialogue. We evaluate the per-
formance of these new character embeddings
on two tasks: (1) character relatedness, using
a dataset we introduce consisting of a dense
character interaction matrix for 4,761 unique
character pairs over 22 hours of dialogue from
eighteen movies; and (2) character relation
classification, for fine- and coarse-grained re-
lations, as well as sentiment relations. Our ex-
periments show that our model significantly
outperforms the traditional Word2Vec con-
tinuous bag-of-words and skip-gram models,
demonstrating the effectiveness of the charac-
ter embeddings we introduce. We further show
how these embeddings can be used in conjunc-
tion with a visual question answering system
to improve over previous results.

1 Introduction

Understanding characters (or more broadly peo-
ple) plays a critical role in the human-level in-
terpretation of dialogues — be those in stories,
movies, or day-to-day conversations. The verbal
interaction between characters provides important
information (Iyyer et al., 2016; Elson et al., 2010).
In these contexts, the names of characters trigger
reasoning at a much deeper level than other reg-
ular words, due to the character background, be-
haviors, social network, and so forth. Currently,
the most commonly used word embedding models
such as Word2Vec (Mikolov et al., 2013a,b) and
Glove (Pennington et al., 2014) represent charac-
ters using the embeddings corresponding to the to-
kens used to name them. Using these models in a
dialogue setting to represent the characters poses
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Henry:  Idid not know you could fly a plane.

Indiana: Fly yes. Land no. Dad, you have to
use the machine gun. Get it ready.
Eleven o’clock!

Henry: ~ What happens at eleven o’clock?

Indiana: Twelve, eleven, ten. Eleven o’clock,
fire! Dad, are we hit?

Henry:  More or less. Son, I am sorry. They
got us.

Indiana: Hang on, dad. We are going in.

Table 1: A snippet of conversation between two char-
acters from the “Indiana Jones and the Last Crusade”
movie with each dialogue turn annotated with its corre-
sponding speaker name. We aim to generate embed-
ding representations for “Indiana” and “Henry” in a
way that captures their relation.

three main issues. First, name mentions in dia-
logues are sparse (Azab et al., 2018), which makes
it difficult for these models to learn a good qual-
ity representation for these names (Barteld, 2017).
Second, in dialogues or narratives, names often do
not refer to the same person, and yet these embed-
dings have a single vector representation for each
word in the vocabulary. For example, “Danny” in
the dialogue of the “American History X” movie
is different from “Danny” in the “Ocean’s Eleven”
movie. Finally, the learned embeddings of these
names reflect the co-occurrences of these name
mentions and other words uttered by these char-
acters, but do not model how related these charac-
ters are. Thus, the resulting embeddings cannot be
effectively used to further reason about the char-
acters and their relations.

The representation of characters in dialogues
has been an important task for social network ex-
traction (Elson et al., 2010), character relation
modeling (Chaturvedi et al., 2016), and persona-
based conversation models (Li et al., 2016). How-
ever, most of the previous work relies upon the ex-
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traction of linguistic features like explicit forms of
address (Makazhanov et al., 2014), the length of
the utterance, or the frequency of exchanges be-
tween the characters (Elson et al., 2010).

In this work, we address the task of represent-
ing characters in dialogues, specifically focusing
on movies and plays. Given a set of dialogue turns,
annotated with the corresponding speaker names,
our goal is to generate a vector representation for
each of these characters that captures the relation
with other characters. We propose a new approach
to embed characters in dialogues based not only on
what a character is saying, but also to whom. This
model allows the information from the words in a
dialogue turn to propagate to the representation of
the previous and following speakers.

Despite its simplicity, our model yields strong
empirical performance. By evaluating our model
on two different tasks — namely character relat-
edness and character relation classification (fine-
grained, coarse-grained, and sentiment) — we find
that the model exceeds by a large margin several
strong baselines, which indicates that our model
effectively captures the various characteristics of
characters. Additionally, in the process of evaluat-
ing the model, we build a new dataset consisting of
4,761 character relation pairs obtained from eigh-
teen movies, manually annotated with relatedness
scores and relations of various granularities. We
are making the dataset publicly available.

2 Related Work

Learning distributional representation of words
plays an increasingly important role in represent-
ing text in many tasks (Bengio et al., 2013; Chen
and Manning, 2014). The existence of huge
datasets allowed learning high quality word em-
beddings in an unsupervised way by training a
neural network on fake objectives (Mikolov et al.,
2013a,b; Turney and Pantel, 2010). A major
strength of these learned word embeddings is that
they are able to capture useful semantic informa-
tion that can be easily used in other tasks of in-
terest such as semantic similarity and relatedness
between pair of words (Mikolov et al., 2013a;
Pennington et al., 2014; Wilson and Mihalcea,
2017) and dependency parsing (Chen and Man-
ning, 2014; Dyer et al., 2015). However, these
models treat names and entities no more than the
tokens used to mention them. As a result, these
models are unable to well represent names in nar-
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rative understanding task because the word “John”
in a given story can be very different from the
word “John” in another narrative. In this work, we
only focus on representing character names and
not the whole embedding space (Ji et al., 2017).

Recently, several approaches have been pro-
posed to build dynamic representations for enti-
ties (Henaff et al., 2016; Ji et al., 2017; Kobayashi
et al., 2016, 2017). One common approach is to
rely on neural language models to encode the lo-
cal context of an entity and use the resulting con-
text vectors as the embedding for subsequent oc-
currences of that entity (Kobayashi et al., 2016,
2017). Another approach is to learn a generative
model that generates the representation of an en-
tity mention (Ji et al., 2017). Henaff et al. (2016)
proposed an explicit entity tracking model by re-
lying on an external memory to store information
about entities as they appear in a given sentence.
While these rich representations improve the per-
formance on several tasks such as coreference and
reading comprehension, they rely on explicit men-
tions of entities in text as available in toy datasets
such as bAbi (Weston et al., 2015). Thus, it is dif-
ficult to apply these representations in a dialogue
setting due to the sparseness of name mentions in
dialogue, as well as the lack of explicit conversa-
tion connections between characters (as available
in movies) (Azab et al., 2018). Most of the ex-
isting story understanding work feeds the model
with the vector representations of names based on
a global model such as Word2Vec or Glove, which
hinders the ability of these models to understand
dialogue (Tapaswi et al., 2016; Na et al., 2017;
Lei et al., 2018). Recently, Li et al. (2016) re-
lied on TV series scripts in order to learn speaker
persona representations and used these represen-
tations to improve the performance of neural con-
versation models. Unlike (Ji et al., 2017; Li et al.,
2016), we focus on representing character names
in dialogue settings and learning different embed-
dings for characters from different story dialogues
in a way that reflects the relatedness of story char-
acters; more specifically, we propose the use of
speaker prediction as an auxiliary supervision to
improve the character representation.

Identifying and analyzing character relations in
literary texts is a well studied problem (Agarwal
et al., 2013; Makazhanov et al., 2014; Elson et al.,
2010; Iyyer et al., 2016). Most of these models de-
pend on analyzing the co-occurrence of the char-



acters and stylistic features used while characters
address each other. These models are really im-
portant to summarize, understand, and generate
stories (Elson et al., 2010). In this work, we use
the task of character relation classification as an
extrinsic evaluation task to evaluate the impact of
character embeddings on this task.

3 Character Embeddings

Characters play an important role in any dialogue,
including movies or plays. Yet, work to date has
rarely considered specialized character represen-
tations. We hypothesize that a representation that
leverages both the language uttered by the charac-
ters as well as information on the other characters
in the dialogue could result in richer encodings.
The intuition behind our hypothesis is explained
by the example in table 1. Here, the word “Dad”
should be associated not only with “Indiana” but
also propagate its information to “Henry”, condi-
tioned by “Indiana”. Our proposed model is well
conveying this intuition to encode characters.

3.1 Setup

Our architecture builds on a pretrained embedding
model generated by standard Word2Vec models
(Mikolov et al., 2013a,b) or pre-trained contextu-
alized word representations from neural language
models (ELMo) (Peters et al., 2018). We start by
collecting sets of (current speaker, previous speak-
ers, next speakers, context words) as training ex-
amples. We split the four elements in the sets
into target and context depending on our objec-
tives. Figure 1 describes the input-output (target-
context) pairs of our system. Additionally, our
model works as an unsupervised post-training of
existing embeddings, rather than starting the train-
ing from scratch. This is due to the fact that get-
ting a good representation for characters is a sep-
arate task from getting a general representation of
tokens. A good pre-trained embedding space is an
essential component to map characters so that they
will be distributed in a semantically meaningful
embedding space. While a good pre-trained em-
bedding is important, our models focus on “mov-
ing” the character embeddings without affecting
any other word representations.

3.2 Architecture

We propose two post-training schemes, which we
refer to as Character Embedding (SG) and Charac-
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ter Embedding (CBOW). The differences stand in
the objective of post-training, given sets of (cur-
rent speaker, previous speakers, next speakers,
context words) as training examples. Formally,
given the sequence of speakers at each turn S =
s1, S92, S83,,,S7_1, ST, we define context words C
for turn t as the set of words found by a sliding
context window in the utterance. We propose our
post-training objectives as following:

25 DVDIEDS

5;€S w;€C(s;) —sw<j<sw ()
log(p(wilsiyj)))
1
L= N Z Z (log(p(silwi)+
S'LES wieC(si) (2)

>
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log(p(silsi+j)))

Our Character Embedding (SG) model maxi-
mizes the objective on Equation 1, while Char-
acter Embedding (CBOW) maximizes the objec-
tive on Equation 2, where N indicates the number
of training examples and sw indicates the size of
the speaker window (speaker window of size one
means we consider speakers of one preceding turn
and one succeeding turn). Our formulation defines
probabilities p(s;|w;), p(si|si+;) and p(w;|sit;)
using the softmax equation. We also define two
transformations of our network — lookup table
(LUT) initialized by embedding of pre-trained em-
bedding model and Linear Projection Layer W.

To examine the generality of our post-training
schemes, we also apply them to another pre-
trained word embedding model. Given a dialogue
turn, we encode it using ELMo’s pre-trained Bi-
LSTM model (Peters et al., 2018) to generate a
sequence of contextualized vectors for words. We
add a linear projection layer on top that takes the
generated embedding, in addition to the previous
and following speakers, and train it to predict the
speaker of the current turn. We refer to this model
as Character Embedding (ELMo).

3.3 Training

We represent our contexts and targets as a one hot
vector of length equal to the vocabulary size. The
purpose of our model is to update the embedding



Input Projection Output

S(t-1):
Henry

C(S(t)):
Dad

S(t+1):
Henry

\4

S(t):

Indiana

Input Projection Output

5 S(t-1):
Henry
S(t): > | C(S®)):
Indiana Dad
L S(t+1):
Henry

Figure 1: The conceptual figure describing input /output pairs of our character embedding model. The diagram de-
scribes when both the speaker window and the context window are size one. Left: Character Embedding(CBOW),

Right: Character Embedding(SG).

of characters in LUT by propagating the gradient
from our objectives. We use cross-entropy to cal-
culate the loss, and we use gradient descent to up-
date the parameters. The description of our Char-
acter Embedding (SG) model with a speaker win-
dow size of one is showed in Algorithm 1.

4 Evaluation Tasks and Datasets

We evaluate the quality of our speaker embedding
model across two different tasks. Our goal is to
evaluate how well each embedding model captures
simple and complex character representations and
interactions.

4.1 Character Relatedness

Measures of semantic relatedness between words
indicate the degree to which words are associated
with any kind of semantic relationship such as syn-
onymy, antonymy, and so on. Semantic related-
ness is commonly used as an absolute intrinsic
evaluation task to assess and compare the qual-
ity of different word embeddings (Schnabel et al.,
2015; Yih and Qazvinian, 2012; Upadhyay et al.,
2016) and phrase embeddings (Wilson and Mihal-
cea, 2017).

Similarly, we define character relatedness as the
degree to which a pair of characters in a given
story are related to each other based on the story
plot and their level of interaction throughout the
dialogue. Given a pair of characters, we would
like the relatedness score between their embed-
ding representations to have a high correlation
with their corresponding human-based relatedness
score. Thus, the distance of the embeddings be-
tween closely related characters should be smaller
than the distance between less related ones.
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To measure the relatedness between characters
in movies, we construct a new annotated dataset
based on a publicly available dataset (Azab et al.,
2018). That dataset includes 28K turns spoken
by 396 different speakers in eighteen movies cov-
ering different genres, with the subtitles of each
movie labeled with the character name of their cor-
responding speakers. On average, each character
uttered 452 words.

For each movie in that dataset, two human
annotators watched the movies and annotated a
dense relatedness matrix of characters on a 1-5
scale. Table 2 shows the meaning of each score.
These scores reflect the level of interaction or how
closely related the characters are over the course
of the movie. For example, given two characters
X and Y, a high score for X and Y is assigned if
e.g., X is the father of Y, regardless of the amount
of interaction between the two characters. We also
give a high score for the cases where X and Y
are closely interacted, even if they are unrelated
in terms of kinship. Due to the sparseness of the
number of closely related characters, we asked the
annotators to select the higher score when hesitat-
ing between two scores.

For three movies, the Pearson correlation be-
tween the two annotators is 0.8394, which re-
flects a very good agreement. We then average the
scores assigned by the annotators and use the re-
sult as the human relatedness ground-truth score
for each pair of characters.

In this dataset, we have 4,761 unique character
pairs annotated with a relatedness score. Figure 2
shows the statistics over the relatedness scores. As
shown in the table, only a small number of char-
acter pairs are closely related, while the majority



Algorithm 1: Character Embedding(SG)
E: The embedding from pre-trained model
W: Linear Projection Layer
a: Learning Rate
maxepoch: maximum epoch to run
LUT « E, epoch + 1;
while epoch < maxepoch do
for t from2toT — 1 do
T < LUT[Stfﬂ;
x9 < LUT[s4];
T3 < LUT[StJrﬂ;
for wqg in C(s;) do
target <— LUT [wo];
logits = tanh(W7 (z1+x2+23));
prediction = softmax(logits);
loss = —target + log(prediction);
W =W —ax 5(%“’45/5;
LUT[si—1] =21 — a * St
LUT[s] == xy — v % Loss,
LUT[sp41]) =23 — a *

dloss.

oxo °
dloss.

oxsy °

end

end
epoch := epoch + 1

end

interacted frequently/closely related
interacted/related

moderately interacted/somewhat related
interacted few times/not related

did not interact/not related

— N W kA W

Table 2: Relatedness annotation scores.

of the characters have either interacted very few
times or did not interact at all. However, it is im-
portant to include these unrelated pairs while eval-
uating the quality of the character embeddings, as
unrelated pairs might be closer than related ones
especially for minor characters that do not speak
much during the dialogue.

4.2 Character Relationships

Understanding the relationships between charac-
ters is a primary task in extracting and analyzing
social relation networks from literary novels (El-
son et al., 2010; Agarwal et al., 2013). It is also
important for improving computational story sum-
marization and generation methods (Elsner, 2012;
Gorinski and Lapata, 2015).

Character relationship is a more complex
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Figure 2: Statistics of the character relatedness dataset
on movies of speaker naming dataset.

task than character relatedness. In this task,
given a pair of character embeddings, we would
like to classify the type of their relation-
ship on multiple dimensions. Specifically, we
consider: fine-grained relations, such as sis-
ter/father/friend/enemy; coarse-grained relations,
such as familial/social/professional; and relation
sentiment, i.e., positive, negative or neural. The
goal of this task is to evaluate the quality of
our character embeddings and how well it cap-
tures such complex information in an unsuper-
vised fashion. It also serves as an extrinsic evalua-
tion for the impact of our character representations
on downstream tasks.

We use a subset of character relationships in a
literary dataset (Massey et al., 2015). This dataset
includes annotations for eighteen fine-grained re-
lationship classes, four coarse-grained relation-
ship classes, and three relation sentiment classes. '
We use the 31 Shakespeare plays in this dataset,
and obtain their corresponding text from project
Gutenberg. We use the Shakespeare plays because
they have the dialogue turns annotated with speak-
ers names, which is necessary for training our
character embedding models. The plays include
a total of 605 character pair relationship annota-
tions.

5 Experiments

5.1 Baselines

For each task, we compare our character embed-
ding models against five baselines:

! Annotations on temporal change in the sentiment be-
tween each pair of characters is also included, but since our
models do not have the ability to track such temporal infor-
mation, we do not use these annotations.



Interaction Frequency. We count the number
of exchanged dialogue turns between every pair of
characters and normalize it by the total number of
turns spoken by a given pair of characters.

TF-IDF. We treat all the utterances of a charac-
ter as a document and calculate a tf-idf weight for
each word. We then represent a character by its
tf-idf vector of the words that they uttered.

Word2Vec (CBOW) model. We use the tradi-
tional Word2Vec architecture to train a word em-
bedding space based on the continuous bag-of-
words approach (Mikolov et al., 2013a). Given a
sequence of words D, the context words that exist
in a defined window size are considered as input
to the network and the objective is to predict the
target word by maximizing the average long prob-
ability:

L= Z log P(w;|C(w;))

w; €D

) *

Word2Vec (SG) model. We use the skip-gram
architecture of Word2Vec with negative sampling
(Mikolov et al., 2013b). In this architecture, the
objective is to learn a representation of the target
word that would be good at predicting the words
within a defined window by maximizing the aver-
age log probability:

Z Z log P (wo|w;)

’LUZGD wOEC wz

“4)

Character BOW. We represent each charac-
ter as the mean-pooling of a 300-dimension pre-
trained Word2Vec representation of all the words
that this character has uttered through the entire
dialogue.

Doc2Vec. We train a Doc2Vec model (Le and
Mikolov, 2014) as tagged documents using the
character names as the document tags. We then
represent each character as the Doc2Vec represen-
tation of all the words that this character has ut-
tered through the entire dialogue.

ELMo (Mean-Pooling). We use pre-trained
contextualized word representations from neural
language models (ELMo) (Peters et al., 2018) to
generate character names representations based
on the sentences that include their names.> To
generate these representations, we feed the pre-
trained ELMo model with a Glove representation

2We also tried training ELMo from scratch on our data but
the pre-trained model produces better results.
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for the words and ELMo augments their repre-
sentation with the hidden states of its two lay-
ers bi-directional LSTM to represent the words
with respect to their context. For each character
name, we average their contextualized representa-
tions through the entire dialogue.

5.2 Experimental Setting

To have these models trained on in-domain data,
we use GenSim (lv{ehﬁfek and Sojka, 2010) to
train the different architectures of Word2Vec on
the almost 600K sentences / 4M words of subti-
tles and Shakespeare plays. For the target movies
and plays, the speaker names are included in the
training data so that we can have a vector repre-
sentation for each character name. The names in
our corpus have been manually normalized so that
’Joe’ and ’Joseph’ in a movie get the same rep-
resentation, while ’Joseph’ in a different movie
gets a different representation. To achieve the
first part of the name normalization, we utilize the
name-clustering algorithm provided by Bamman
(2014) to extract and cluster name tokens from
the text and annotate the true representation of
names for each cluster. We achieve the second
part of the name normalization by adding the text
title to the name tokens (e.g., ’Michael’ becomes
"Michaelogheiio”)-

For GenSim (Rehtrfek and Sojka, 2010), we set
the learning rate to 0.1, the window size to 4 and
the samples to 50 for negative sampling. We run
30 epochs to train our baselines. For post-training
by our models, we use a gradient decent to update
our parameters. For general experiments, we set
the learning rate to 0.1 and the learning rate decays
by the factor of 0.9 per 10 epochs. We run maxi-
mum 40 epochs for our post-training. For Charac-
ter Embedding (CBOW), we use a context window
of size two. We use a speaker window of size one
for both the Character Embedding (CBOW) and
the Character Embedding (SG).

5.3 Results

Character Relatedness. For each model, given
a pair of characters we compute the cosine simi-
larity score between the embeddings of these two
characters, defined as:

C1-C2

similarity(G1,02) = rariea)

6))

and compute the similarity score between two
characters in the embedding space similar to (Col-



Movie Character Methods Closest Second closest ~ Third Closest
Ground Truth Kevin Lomax John Milton Mary Lomax
Interaction Frequency Kevin Lomax Pam Garrety John Milton

The Devil’s TF-IDF Mary Lomax John Milton Don King

Advocate Alice Lomax Character Average BOW John Milton Kevin Lomax Barbara
Word2Vec (CBOW) Lloyd Gettys Judge Poe Alexander Cullen
Word2Vec (SG) Alfonse D’amato Lloyd Gettys Judge Poe
ELMo (Mean-Pooling) Kevin Lomax Mary Lomax Alexander Cullen
Character Embedding(CBOW)  Kevin Lomax Judge Poe Mary Lomax
Character Embedding(SG) Kevin Lomax John Milton Mary Lomax
Character Embedding(ELMo) Kevin Lomax Pam Garrety Mary Lomax

Table 3: Example of character relatedness task. Given a character, we list the top three characters sorted in
descending order from left to right according to their similarity scores.

lobert et al., 2011; Mikolov et al., 2013b). The list
of the nearest characters of a given character C are
all the other characters from the same movie sorted
in descending order by their similarity score with
respect to C.

Pearson Coeff

Interaction Frequency 0.3632
TF-IDF 0.3129
Doc2Vec 0.1771
Word2Vec (CBOW) 0.2081
Word2Vec (SG) 0.1989
Character BOW 0.2256
ELMo (Mean-Pooling) 0.3212
Character Embedding(CBOW) 0.4644
Character Embedding(SG) 0.4933
Character Embedding(EL.Mo) 0.3475

Table 4: Comparison between the average Pearson
correlation coefficient scores of the different models
against average human relatedness scores.

Table 4 shows the Pearson correlation co-
efficients of the resulting similarity scores of
each model against the average human annotation
scores. These results suggest that having the con-
text window over the utterance and adding the pre-
vious and next speakers to the input layer greatly
improves the ability of the character embeddings
to capture the relatedness between the different
characters in a given story dialogue.

Table 3 shows an example of characters that are
most related to “Alice Lomax” from the movie
“The Devil’s Advocate” as calculated based on
each model sorted in descending order according
to their cosine similarity scores. It is worth not-
ing that Kevin Lomax is Alice’s son, John Milton
is Kevin’s father and Mary Ann Lomax is Kevin’s
wife. On the other hand the characters suggested
by both Word2Vec CBOW and SG models did not
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interact with Alice through the whole movie.

To further analyze the quality of the produced
character embeddings, we evaluate the embed-
dings across different characters according to the
their frequency of appearance in the movies. Fig-
ure 3 shows a comparison between the perfor-
mance of the different models over minor and ma-
jor characters based on the number of dialogue
turns that each character uttered. These results
show that our character embedding model consis-
tently outperforms the traditional Word2Vec base-
line models and reflect the robustness of our model
in generating better character embeddings.

0.7,
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[l Character BOW
- I word2vec (CBOW)
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Figure 3: Comparison of the average Pearson correla-
tion coefficient over characters who had different num-
ber of turns.

Character Relationship. We have three clas-
sification tasks for character relationships: 1)
fine-grained relationship classification; 2) coarse-
grained relationship classification; 3) relation sen-
timent classification. For each of these tasks,
we train a logistic regression classifier using the
Scikit-learn library (Pedregosa et al., 2011). These
classifiers take a pair of character embeddings as
a concatenation of their vectors and predict their



Fine-grained Relation Coarse-grained Relation Sentiment
P R F P R F P R F
Interaction Frequency 0.04 0.16 006 030 044 0.33 033 0.58 042
TF-IDF 0.11 0.12 0.10 039 042 0.40 043 0.53 040
Character Average BOW 008 0.16 0.05 033 043 0.28 028 0.53 0.37
Word2Vec (CBOW) 0.11 0.13 012 037 0.38 0.38 0.39 0.40 0.39
Word2Vec (SG) 0.09 0.12 0.10 037 0.37 0.37 041 043 042
Doc2Vec 0.12 0.12 0.12 040 040 0.40 042 042 042
ELMo (Mean-Pooling) 0.14 0.18 0.14 039 041 0.40 044 050 0.46
Character Embedding(CBOW) 0.11 0.14 0.12 043 044 0.43 044 047 044
Character Embedding(SG) 0.11 0.17 0.12 043 046 0.42 040 051 042
Character Embedding (ELMo) 0.18 0.19 0.19 0.48 0.48 0.48 0.48 0.48 0.48

Table 5: Comparison between the average of the precision, recall and macro-weighted f-score of the baselines and
our character embedding model on both fine-grained, coarse-grained character relation and sentiment classification.

. Fine- Coarse- Senti-
Play Char 1 Char 2 Methods grained grained ment
Ground Truth lovers social positive
Interaction Frequency lovers social positive
The Two TF-IDF servant social negative
Gentlemen Julia Proteus Character Average BOW friend social positive
of Verona Word2Vec (CBOW) servant familial negative
Word2Vec (SG) servant familial positive
ELMo (Mean-Pooling) friend social positive
Character Embedding(CBOW)  lovers social negative
Character Embedding(SG) lovers social positive
Character Embedding(ELMo) lovers social positive

Table 6: Example of classification task on Shakespeare’s play, using different baselines and our character repre-
sentation methods. The classification output consists of the relations of character 2 from character 1’s perspective.

A bold face indicates a correct relation classification.

relationship. We use a leave-one-play-out cross-
validation in which character pairs from each play
are used as a test set and character pairs from
the other plays are used to train the models. Ta-
ble 5 shows the classification average precision,
recall and weighted F-score obtained by training
the logistic regression classifiers using the char-
acter embeddings produced by the different mod-
els. Training classifiers using our character em-
bedding models consistently outperforms the clas-
sifiers trained using the other models, which re-
flects the quality of the semantic information cap-
tured by our character embeddings when com-
pared to other models. Table 6 shows examples
of the three character relation classification tasks
as classified by our character embedding models
and the baselines.

Question Answering. As a final evaluation, we
test the impact of our character embedding on dia-
logue understanding. TVQA (Lei et al., 2018) is a
challenging dataset that includes 152.5K multiple
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Accuracy
Q+S  Q+S+V
MS (Glove) (Lei et al., 2018) 0.6515 0.6770
MS (Glove w/o names) 0.6177 0.6467
MS (CharEmbedding(CBOW)) 0.6590  0.6852
MS (CharEmbedding(SG)) 0.6554 0.6884

Table 7: Comparison on the TVQA validation dataset
using the MS method with Glove and Glove fine-tuned
using our proposed character embedding method.

choice question answers about 21.8K video clips
from 6 TV shows such as the Big Bang Theory,
House, and so on. These questions were created in
a way that requires understanding of both the dia-
logue and the visual content of a given video. Each
video clip includes the video frames and subtitles
with speaker names aligned automatically with
their corresponding show scripts (around 69% of
the subtitle segments include speakers names). We
follow the same dataset splits for training, valida-
tion, and test.



To evaluate our embedding, we use the base-
line implementation proposed with the TVQA
dataset, namely Multi-Stream (MS). This model
relies on bidirectional attention between context
(represented by subtitles and/or visual content)
and question answer pairs as queries to predict the
correct answer (Lei et al., 2018). Visual features
are included as textual labels of detected visual
concepts in the frames of the video clip. To mea-
sure the effect of the person names on the model,
we apply a named entity recognizer and replace
the names with a fixed randomly generated em-
bedding. Table 7 shows the results from the MS
method using Glove, Glove with removing names
from subtitles, and using a fine-tuned Glove using
our character embedding model. The use of our
character embeddings bring improvements over
the pre-trained Glove embeddings, which demon-
strates the usefulness of these character represen-
tations.

6 Conclusion

In this paper, we presented a novel unsupervised
embedding model to represent characters and their
interaction in a dialogue. Our embedding model
produces character representations that reflect the
language used by the characters as well as in-
formation about their relations with other charac-
ters. To evaluate the performance of our charac-
ter embeddings, we experimented with two tasks
on two datasets: (1) character relatedness, us-
ing a dataset we introduced consisting of a dense
character interaction matrix for 4,761 unique char-
acter pairs over 22 hours of dialogue extracted
from 18 movies; and (2) character relation classi-
fication, for fine- and coarse-grained relations, as
well as relation sentiment. Our experiments show
that our model significantly outperforms the tra-
ditional Word2Vec continuous bag-of-words and
skip-gram models, thus demonstrating the effec-
tiveness of the character embeddings we intro-
duced. We further showed how the character em-
beddings can be used in conjunction with a visual
question answering system to improve over previ-
ous results.

The dataset annotated with character related-
ness scores introduced in the paper is publicly
available from http://lit.eecs.umich.
edu/downloads.html.
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Abstract

Research on the bilingual lexicon has uncov-
ered fascinating interactions between the lex-
icons of the native language and of the sec-
ond language in bilingual speakers. In par-
ticular, it has been found that the lexicon of
the underlying native language affects the or-
ganisation of the second language. In the
spirit of interpreting current distributed repre-
sentations, this paper investigates two models
of cross-lingual word embeddings, compar-
ing them to the shared-translation effect and
the cross-lingual coactivation effects of false
and true friends (cognates) found in humans.
We find that the similarity structure of the
cross-lingual word embeddings space yields
the same effects as the human bilingual lexi-
con.

1 Introduction

Research on the bilingual lexicon has uncov-
ered fascinating interactions between the L1 (na-
tive language) and L2 (second language) lexicons
showing that both production and comprehension
coactivate lexical items in both languages, indi-
cating that bilinguals store lexical representations
from their native and their second language in the
same space (Kroll and Dijkstra, 2012; Williams,
2014).!

This paper presents the first bilingual investiga-
tion of models of cross-lingual word embeddings
and asks whether the bilingual spaces they define

!"Throughout this paper, and following the current liter-
ature on the topic, we use the term ‘bilingual’ loosely, to
refer to any speaker of more than one language. Although
there has been much research on all aspects of bilingualism,
and at all stages of proficiency, the effects we model here
have been found in experiments testing speakers who began
to learn their second language after their first, usually in a
school context, and who are at an advanced level of profi-
ciency. The form German-English below will indicate, for
example, a native speaker of German who learnt English as a
second language (Williams, 2014).

Maria A. Rodriguez
University of Geneva

Maria.AnduezaRodriguez@unige.ch

have similar properties to the human bilingual lex-
icon. Among the many questions and results in
the vast bilingualism literature, we concentrate on
coactivation effects in items with shared transla-
tions. We also study interference or facilitatory ef-
fects in form-meaning mapping, the case of false
friends, words that share form but differ in mean-
ing across the two languages, and true friends,
words that share both form and meaning. We find
that the similarity structure of cross-lingual word
embeddings matches well with known experimen-
tal findings of the human bilingual lexicon.

2 The structure of the bilingual lexicon

The core findings about the bilingual lexicon con-
firm that the two languages occupy an integrated
space and they interact with each other (Wolter,
2001). For example, both in the monolingual and
bilingual lexicon the best predictor of the time
to recognise a word is the number of similarly
spelled words, within and across languages (John-
son and Pugh, 1994; van Heuven et al., 1998).2
This implies that, functionally, the bilingual lex-
icon is an integrated system. Specifically, it
has been proposed that languages do not simply
share graphemes or phonemes, but that the lexi-
con, monolingual, bilingual or multi-lingual, is a
space of distributed word representations where
word forms from different languages map onto a
common abstract conceptual code (Van Hell and
de Groot, 1998). This general structural and func-
tional assumption explains many findings. We
concentrate here on two sets of coactivation ef-
fects.

“Monolingual work has provided a finer-grained picture
of this result, modulated by number of word senses and the
semantic closeness of sense extensions, but the main result
remains valid (Rodd et al., 2002).
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2.1 The shared translation effect

Polysemous words that have many translations,
such as English bank translated as banca (fi-
nancial institution) or riva (river bank) in Ital-
ian, coactivate the correspondences for all the
word senses, with various effects. One-to-many
translations have been shown to slow down ac-
quisition and processing for Italian-English bilin-
guals (Degani and Tokowicz, 2010), and to slow
down response times of German-English speak-
ers in anomaly detection tasks (Elston-Giittler and
Williams, 2008).3

We are mainly interested in the result of De-
gani et al. (2011), as it concerns similarity spaces
in shared translations. Degani et al. (2011) asked
Hebrew-English bilinguals to rate the semantic re-
latedness of English word pairs that shared a trans-
lation in Hebrew (e.g., tool and dish both trans-
lated into Hebrew kli). Compared to both En-
glish pairs with different Hebrew translations, and
to ratings by monolingual English speakers, bilin-
guals judged shared-translation pairs as more re-
lated in meaning (the shared-translation effect).*

2.2 Form-meaning mappings in translation

Competition (and facilitation) effects have been
found both in comprehension and production de-
pending on convergence and divergence of form-
meaning mappings in translation. Recall that false
friends are cross-linguistically similar in form but
not in meaning, such as the English-Italian es-
tate, which in Italian means summer, and true
friends are words that share both (orthographic or
phonological) form and meaning, such as English-
French glucose or danger, in translation.

False friends effect In a cross-modal picture de-
cision task, Weber and Cutler (2004) find that
Dutch-English speakers are slower in matching
an English word (desk) with the corresponding
picture if the target picture’s word form matches
the Dutch form of one of the alternative pictures
(deskel = lid). It should be noted, however, that

3German-English speakers, compared to monolingual En-
glish speakers, are slower in recognising, for example, that
the word bubble is infelicitous in contexts where the word
blister is required, due to the fact that these two words are
translated as the same word Blase in German.

“Notice that this effect is robust as it was also replicated
for English-Hebrew bilinguals, who learned Hebrew as an
L2. Moreover, Degani et al. (2011) used as stimuli semanti-
cally unrelated word pairs, extending previously established
results for sense-related words, such as home-house (Jiang,
2002).
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while the decision time was slower, the decision
accuracy was not. Bilingual speakers do know
which is the right word-picture match and perform
accurately. Also, for English-Dutch false friends
like rust (rest in Dutch) lexical decision times are
slower than expected, if the list in which they are
embedded also contains words from the other lan-
guage (Dijkstra et al., 1998; Smits et al., 2006).

True friends effects In recognition, Dutch-
English bilinguals performing a lexical decision
task in English were found to be faster than ex-
pected for words like type, a near true friend with
a slight difference in pronunciation (Dijkstra et al.,
1999; Smits et al., 2006; Dijkstra et al., 2010).
Similar cognate facilitation effects also occur in
production tasks, such as picture-naming. If an
advanced Catalan-Spanish bilingual is asked to
name pictures in Spanish, they are faster to do
so for true friends such as gato (gat in Catalan
‘cat’) than for non-cognates. The effect, although
smaller, can also be obtained when pictures are to
be named in the L1 (Costa et al., 2000). Simi-
lar effects have also been obtained for Japanese-
English bilinguals, despite the difference in the
scripts (Hoshino and Kroll, 2008).

3 Predictions

In this work, we ask if the structure of cross-
lingual word embeddings spaces have the proper-
ties that would be expected given human bilingual
behaviour. Assuming the distributed, integrated
model of the lexicon proposed in the bilingualism
literature, the underlying linking hypothesis is that
coactivation effects (whether expressed as simi-
larity judgments or measured as reaction times)
are the expression of greater or smaller proximity
in a multi-dimentional space. On this basis, sev-
eral hypotheses are proposed. The first hypothesis
aims to establish whether cross-lingual word em-
beddings are sensitive to a bilingual situation and
generate an integrated cross-lingual space. Sec-
ondly, we test if cross-lingual word embeddings
show the shared-translation effect. Finally we test
the cross-linguistic competition/priming of lexical
forms from the L1 to the L2 language, comparing
cross-lingual to monolingual spaces in true friends
and false friends scenarios.

We will often talk about a word and its transla-
tion. By this term, we mean the pair of words that
a bilingual dictionary would indicate as equivalent
lexical entries, a translations pair.



3.1 The integrated bilingual lexicon

We test the idea that the bilingual lexicon is an
integrated system by looking at effects of such a
system in one-to-one mappings and one-to-many
mappings.

The simplest and most basic prediction that a
model of the integrated bilingual lexicon needs to
be able to confirm is that words in the bilingual
lexicon are “closer” to each other than word map-
pings across two aligned mono-lingual lexicons.

HYPOTHESIS 1 Given an L1 word wy and
its translation we in L2, the similarity between
the word embeddings pair in a cross-lingual
space (w{",w§") is higher than their similarity
between their aligned monolingual counterparts
(wi™, wy™)

1 »%"2 /-

cry

1

sim(wi™, wg?) > sim(w]™,wy?) (1)
The second prediction is based on the finding of
shared translations, where a shared translation in

L1 affects L2 similarity judgments.

HYPOTHESIS 2 Given an L1 word w; and its
translations wy, and woyy, in L2, the similarity be-
tween the cross-lingual embeddings of the trans-
lation pair will be greater than the similarity be-
tween their monolingual counterparts.

sim(wy,?, wy?) > sim(wyy’, wy?)  (2)
3.2 Form-meaning competitions in the
biligual lexicon

The following experiments investigate the compe-
tition faced by words with a high level of lexi-
cal similarity. Simplifying, words across two lan-
guages can be similar in form or meaning, or both
or neither. For the following predictions, then, we
define five different types of word pairs. Examples
are shown in Figure 3.

FALSE FRIENDS: words that share the same form,
but are semantically different.

REAL TRANSLATIONS of the false friends: the
real L2 translations of the L1 word that also has
a false friend.

TRUE FRIENDS: words sharing form and mean-
ing.

NORMAL TRANSLATIONS: words semantically
equivalent, but with a different form.
UNCORRELATED WORDS: words lexically and
semantically uncorrelated.
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False and true friends coactivation In bilin-
gual speakers, false friends show an inhibitory ef-
fect of the L1 meaning in L2 tasks, but they do
not affect the final accuracy of the task comple-
tion. Consequently, in our cross-lingual vecto-
rial space, false friends should not have higher
similarity score than their real translations, but
they should be included in the top translations,
i.e. the difference in similarity score between the
real translation and the false friends should be
smaller than the difference between the real trans-
lations and other words (appropriately matched to
the false friends). This in turn can be demonstrated
by two expected inequalities: false friends are not
closer than real translations but false friends are
significantly more similar than (matching) uncor-
related words.

Precisely, given an L1 word w1, and its real L2
translation w9 and the false friend wofs in cross-
lingual space, we expect the similarity score be-
tween the pair (wq,ws) not to be lower than the
similarity score between the pair (w1, waf).

HYPOTHESIS 3 Real translations have a better
or equal similarity score than their corresponding
false friends.

3)

sim(wy, we) >= sim(wy, wagr)

Moreover, false friends (w1, was) have a simi-
larity score that is higher than uncorrelated words
(w1, wane). This is because the false friends pair
(w1, wafr) shares similarity of form even if it is, in
fact, semantically uncorrelated.

HYPOTHESIS 4 False friends have a better sim-
ilarity score than pairs with no correlation.

4

stm(wi, wapr) > sim(wi, Wanc)

Lexical similarity can also work in the opposite
direction. L1 words that are similar to the L2 word
both in form and meaning, true friends, have been
shown, in bilinguals speakers, to facilitate tasks in
L2. In cross-lingual word embeddings, we expect
that true friends (w1, wor) have a higher similar-
ity score than normal translation pairs (w1, way, ),
whose interaction is not enhanced by lexical or
morphological resemblances.

HYPOTHESIS 5 True friends have a better simi-
larity score than normal translation pairs.

&)

sim(wigr, war) > SIM(Win, Wap)



HYP. 1 Cross-lingual word embeddings pairs are more sim-  sim(w{' ', ws?) > sim(w]"™, wy'?)
ilar than their aligned monolingual counterparts
HYP. 2 For two L2 words sharing a translation in L1, cross-  sim(ws,, wg;?) > sim(wy,’, wy;?)

lingual word embeddings are more similar than monolingual

word embeddings

HypP. 3 Real translations are more similar than their corre-

sponding false friends

sim(wy, we) >= sim(wy, wagr)

HYP. 4 False friends are more similar than uncorrelated pairs

sim(wi, wapr) > sim(wi, Wapc)

HYP. 5 True friends are more similar than normal translation

pairs

stm(wiyr, war) > sIM(Win, Way)

HyYP. 6 Normal translation pairs are more similar than real

translations of false friends

sim(wip, way) > sim(wy, ws)

Figure 1: The six experimental predictions.

Another hypotheses can also be formulated that
follows logically from these preceding ones. Con-
sider the pair (w1, w2) where wy, as seen before,
is the real translation of w; in a pair that also
has a false translation. In this case, it is impor-
tant to remember that wq has a false friend woyy,
so we know that accessing wso is more effortful
since, for a bilingual speaker, wyzr will also be ac-
tivated. Consequently, we can assume that a nor-
mal pair of words (w1, way,), a pair of translated
words that have no false friend, are closer in space
than (w1, wy) precisely because (w1, way,) is not
inhibited by a false translation as in the case of

(wy,ws).

HYPOTHESIS 6 Normal translation pairs have
a higher similarity score than real translations of
false friends.

(6)

sim(win, wa,) > sim(wy, ws)

The predictions are summarised in Figure 1. If
confirmed, they give us a fairly detailed view of
the structure of the lexicon conceived as a multi-
dimensional, integrated multilingual space. In par-
ticular, they inform us on the respective impor-
tance of formal and meaning properties of words
in this cross-lingual similarity space.

4 Experiments 1 and 2

We test our hypotheses using two different cross-
lingual word embeddings models. (The number-
ing of the experiments corresponds to the number-
ing of the hypotheses.)

One model is VECMAP, a word-level cross-
lingual word embedding method, developed by
Artetxe et al. (2018), which offers different op-
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translation pairs
wood-legno
wood-bosco
grade-grado
grade-voto
block-blocco
block-ceppo
block-bloccare
block-ostacolare

shared translation pairs
legno bosco

grado voto

blocco ceppo
blocco bloccare
blocco ostacoalre
ceppo bloccare
ceppo ostacolare

Figure 2: Sample of translation pairs and sample of
shared translation pairs used in experiments 1 and 2.

tions, ranging from fully supervised to weakly su-
pervised or unsupervised, the state-of-the-art for
bilingual lexicon induction. This method, unlike
other models, does not use an existing dictionary
for initialization. The values of the word vectors
in both the source and the target distribution are
sorted, vectors that have similar permutations are
identified as possible translations and are used to
initialize a dictionary that is then further improved
by self-iterative training.

We also test M2VEC, a weakly-supervised,
concept-based adversarial model (Wang et al.,
2019). This method is based on the idea that lan-
guages use similar words to express similar con-
cepts (Sggaard et al., 2015). The adversarial train-
ing uses concepts, drawn from Wikipedia, rather
than words, to learn competitive cross-lingual
word embeddings. The alignments are learnt by
a generative adversarial networks (GAN) adapted
to the cross-lingual mapping objective.



FALSE FRIENDS REAL TRANSLATIONS

TRUE FRIENDS

NORMAL TRANSLATIONS UNCORRELATED PAIRS

arrange arrangiare arrange disporre family famiglia jam marmellata arrange  tagliare
arrange sistemare fantastic  fantastico  january gennaio attend guardare
arrange organizzare — future futuro journey  viaggio attic luna
attend attendere attend frequentare  general  generale keep tenere attitude canale
attend assistere generation generazione kind tipo barrack  tazza
bald baldo bald calvo guide guida leave partire brave forchetta
bald  pelato historial ~ storica light luce camera traduzione
brave  bravo brave coraggioso industry  industria mean significare caution muro
brave  valoroso local locale mood umore code pistola
canteen cantina  canteen mensa melody  melodia overview panoramica confetti ~ vitamine
canteen borraccia minor minore pattern  modello confidence treno

Figure 3: Sample of five word pair types used in experiments 3, 4, 5, and 6.

4.1 Data

Word-embeddings data For training VECMAP,
we use the English-Italian portion of the data
used in Artetxe et al. (2018), which is based on
the dataset described in Dinu et al. (2015). The
English-Italian dataset provided by Dinu et al.
(2015) contains 300-dimensional CBOW mono-
lingual word embeddings for a total of 200K
words trained on the WacKy crawling corpora.’
The English word embeddings use 2.8 billion to-
kens (ukWAC + Wikipedia + BNC) and the Italian
word embeddings use 1.6 billion tokens (itWAC).
An English-Italian gold standard bilingual dictio-
nary built from Europarl ¢ word alignments is also
provided with a training set of 5000 entries or-
dered by English frequency. For M2VEC, 300-
dimensional monolingual word embeddings are
trained with FastText. The training corpus is taken
from a Wikipedia dump.” The word embeddings
are augmented to include concept-aligned articles
extracted from the Linguatools Wikipedia compa-
rable corpus.® VECMAP uses word-level embed-
dings and M2VEC character-level embeddings.

Word lists For testing, we build lists of English
words that have multiple translations in Italian.
The lists of polysemous words were validated with
the support of the Cambridge Bilingual Dictio-
nary’ and by two bilingual speakers. Some ex-
ample pairs are shown in Figure 2. Word lists are
available as supplementary materials.

>https://wacky.ssImit.unibo.it/

Shttps://www.statmt.org/europarl/

https://dumps.wikimedia.org/

8http://linguatools.org/tools/corpora/wikipedia-
comparable-corpora/

“https://dictionary.cambridge.org/dictionary/english-
italian/
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Mono Cross-lingual
lingual VECMAP MZ2VEC
Mean 0.02 0.371 0.345
El Variance  0.03 0.044 0.044
T(104) —17.059 —15.937
P 0.000 0.000
Mean 0.153 0.163 0.184
B2 Variance 0.019 0.025 0.044
T(109) —2.050 —2.835
P 0.021 0.003

Table 1: Results of experiments 1 and 2.

4.2 Results

The results are shown in Table 1. Recall the two
hypotheses, hypothesis 1 and hypothesis 2 sum-
marised in Figure 1.

The results confirm both hypotheses for both
cross-lingual models and are statistically signifi-
cant under a one-tailed pairwise t-test with «
0.25. Cross-lingual word embeddings have a
higher mean similarity score than aligned mono-
lingual word embeddings. Also, cross-lingual
word embeddings, like humans, show a shared-
translation effect. Both cross-lingual models show
higher mean similarity scores for L2-words that
share a common L1 source than the monolingual
model.

5 Experiments 3,4, 5 and 6

The next four experiments test whether the hy-
potheses concerning true and false friends in word
embeddings are confirmed. The numbering of the
experiments corresponds to the numbering of the
hypotheses.

5.1 Data

Word embedding data In this set of experi-
ments, we use the same data from the previous
two experiments (the dataset described in Dinu



et al. (2015)) with the addition of the FastText pre-
trained word embeddings for English and Italian
(Bojanowski et al., 2017).!9 These publicly avail-
able vectors are obtained by a 5-word window, for
300 resulting dimensions, on CommonCrawl and
Wikipedia data using the Skip-gram model. Every
word is represented as an n-grams of characters,
for n training between 3 and 6. Each n-gram is
represented by a vector and the sum of these vec-
tors forms the vector representing the given word.
So we have three cross-lingual models: two ver-
sions of VECMAP, one trained on CBOW (word-
level) and the other on FastText (character-level),
and the concept-based adversarial model M2VEC,
which also uses character-based FastText repre-
sentations. The inclusion of FastText embeddings
is important for these experiments, as the embed-
dings need to be sensitive to character-level se-
quences to detect similarity of form in false and
true friends. VECMAP was used to obtain the
cross-lingual word embeddings. Having two ver-
sions of VECMAP, one that use Skip-gram and one
that uses CBOW is based on their different perfor-
mance on rare words. The CBOW model predicts
a word from its context and is better in accuracy
for frequent words, but encounters problems with
rare words, while the Skip-gram model predicts
the context from a target word, and so has good
representation of rare words or phrases (Mikolov
et al., 2013a,c). In the figures they will be indi-
cated, respectively, as Vecmap, FastText and Con-
cepts.

Word lists The data required for the following
experiments comprise five lists of word pairs, de-
fined in section 3.2: false friends, real translations,
true friends, normal translations and uncorrelated
words. Examples are shown in Figure 3 and the
complete lists are available in the appendix, with
their similarity scores.

These word lists have been constructed from
various online resources, adding also words that
were found serendipitously by the authors in dif-
ferent texts.!! The normal translations and uncor-
related word pairs were built by one of the authors.

https://github.com/facebookresearch/fast Text

"The false friends list was built starting
from http://www.lifemilan.it/en/
false-friends—a-must-learn-1list/ and
https://www.reference.tjtaylor.net/
false-friends/. The true friends list was
started from https://takelessons.com/blog/
italian—-grammar—-cognates—z09.
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Judge 1

Judge 2|FF TF RT NT UN |Total
FF{93 1 0 0 0] 9%
TF| 3127 0 0 0] 130
RT| 0 2130 8 1| 141
NT| 1 3 7133 0| 144
UNI O O O 0 97| 97
Total | 97 133 137 141 98| 606

Table 2: Inter-judge partition of the five lists of words,
rounded to closest integer. TF = true friends; FF = false
friends; RT = real translations; NT = normal transla-
tions; UN = uncorrelated.

Normal translations were selected by the bilingual
dictionary excluding those that had true or false
friends. The uncorrelated words were selected en-
suring that they were entirely uncorrelated. They
were validated with the help of the Cambridge
Bilingual dictionary,'> where each translation of
each pair of words was checked to ensure correct-
ness and complete disjunction in meaning. The
online English-Italian dictionary was not compre-
hensive: not all the meanings were reported, un-
like the English-Spanish or English-French dictio-
naries. Therefore, sometimes a false friend was
not reported by the English-Italian dictionary, but
was found with the help of the other bilingual dic-
tionaries.

Once the lists were constructed, we run an inter-
judge agreement validation. The words were shuf-
fled and the two authors, who master both lan-
guages well, classified them in the five types dis-
cussed above. Cohen’s Kappa was 94.6, show-
ing very high agreement. Fractional numbers were
distributed in the few cases of multiple classifica-
tion by one or both judges. The main source of dis-
agreement were those words that are, at the same
time, false friends and true friends depending on
the context. The inter-judge agreemeent table is
shown in Table 2.

As can be seen in Figure 3, the real translations
list (151 pairs of words) is larger than the false
friends list (97 pairs of words) due to the differ-
ent meanings that an L.1 word can have in L2.

As for the uncorrelated list, the same L1 words
from the false friends list have been used for a di-
rect comparison between the false friends similar-
ity and the uncorrelated words similarity. Since

Phttps://dictionary.cambridge.org/
dictionary/english—italian/



False friends vs. Real translations (+/- 1SD)
0.900

0.800
0.700
0.600

0.500

Veemap Concepts FastText

wFalse friends = Real translations

Figure 4: Experiment 3: false friends compared to real
translations.

False friends vs. Uncorrelated words (+/- 1SD)

ii+|

Veemap Concepts FastText

0.900
0.800
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0.300
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0.100
0.000

wFalse friends Uncorrelated words

Figure 5: Experiment 4: false friends compared to pairs
without correlation.

the real translations list contains the largest num-
ber of pairs, for the comparison between real trans-
lations and normal translations, the real transla-
tions have been sampled to have equal size.

5.2 Results

As shown in the Figures 4 to 7, overall the three
methods are consistent as they show the same pat-
tern of results. In terms of cosine similarity, the
Vecmap+FastText word embeddings tend to have
higher means than the other methods.

HYPOTHESIS 3 The first hypothesis concern-
ing false friends —real translations have a bet-
ter similarity score than their corresponding false
friends— is confirmed. Figure 4 shows a cosine
similarity that is 0.2 points higher for real trans-
lations pairs (p < 0.0001 in all three cases for a
paired one-tailed t-test).

HYPOTHESIS 4 Based on the scores shown in
Figure 5, the second hypothesis concerning false
friends is also confirmed. False friends are sig-
nificantly more similar in the cross-lingual space
than uncorrelated words, as the similarity scores
for false friends, in all three systems, are higher
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True friends vs. Normal translations (+/- 1SD)
0.900

0.800

Vecmap Concepts FastText

= True friends = Normal translations

Figure 6: Experiment 5: true friends compared to nor-
mal translations.

Normal translations vs. Real translations (+/- 1SD)
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wNormal translations = Real translations

Figure 7: Experiment 6: Normal translations compared
to real translations of false friends.

by more than 0.2 points (p < 0.0001 in all three
cases).

HYPOTHESIS 5 The hypothesis that true friends
have a better similarity score than normal transla-
tion pairs is also confirmed. Figure 6 shows that
the mean true friends similarity is higher than the
mean similarity of the normal translations (p <
0.001 in all three cases).

HYPOTHESIS 6 The hypothesis that normal
pairs of words have a higher similarity score than
real translations of false friends is confirmed, see
Figure 7. The mean similarity score for real trans-
lations is lower than the mean score for normal
translations. This difference is statistically signifi-
cant for Vecmap and FastText (p < 0.01). For the
concept-based system, on the other hand, we do
not have enough evidence to reject the null hypoth-
esis as p > 0.025 and T(296)<t-value. Thus, in
this case, we must conclude that the normal trans-
lations are as similar as the real translations.

BONFERRONI CORRECTION As Hypotheses 3
and 4, hypotheses 3 and 6 and hypotheses 5 and
6 use the same data (respectively false friends,
real translations and normal translations), we run



the Bonferroni correction not to incur in « infla-
tion. All hypotheses are further confirmed, except
for hypothesis 6 where the concept-based system
again shows a non-significant result (Bonferroni
correction higher than « (0.106>0.025)).

6 Discussion

Cross-lingual word embeddings show a lexical
structure matching the bilingual lexicon for the
three properties that we tested.

They are an integrated multi-lingual space and
exhibit the shared-translation effect. This suggests
that the initial monolingual embeddings, in our
case the Italian ones, are affected by the cross-
lingual mapping as word vectors are changed
to accommodate cross-lingual interactions. Intu-
itively, this is similar to the behavior of bilinguals
when they gradually learn a new language and se-
mantic links are created by associating the new
words to an existing one in their native language.

Cross-lingual word embeddings did not show
interference effects of false friends. They are
not as affected by the lexical or morphological
level when there is a semantic correlation between
words. However, false friends show more similar-
ity than uncorrelated words, showing that, like for
humans, they have a different status from ortho-
graphically and semantically uncorrelated words.
True friends in cross-lingual space behave like the
lexicon of bilinguals, when the semantic, lexical
and morphological level are aligned.

The last hypothesis shows varying results, as
only two systems accept the bilingual hypothe-
sis: Vecmap and FastText have a higher simi-
larity score for normal translations, confirming
the assumption that real translations are inhibited
by false friends. Notice that this result argues
again that cross-lingual word embeddings are in-
directly affected by false friends, as there is no
other difference between real translations and nor-
mal translations. Interestingly, on the other hand,
the concept-based system is not sensitive to the in-
direct effect of false friends in the cross-lingual
space. This is not unexpected as the concept-based
model is less affected by surface form. The differ-
ence between word-based models and the concept-
based model could yield an hypothesis to be tested
for the human lexicon with precise underlying for-
mal models.

Because our predictions are confirmed, they
also confirm that the similarity structure defined
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by current cross-lingual word embedding models
is promising as a view of the structure of the lex-
icon conceived as a multi-dimensional, integrated
multilingual space. In particular, our results in-
form us on the respective importance of formal
and meaning properties of words in this cross-
lingual similarity space. Notice that the pairwise
results described so far define, by transitivity, a to-
tal order of similarity: true friends > normal trans-
lations > real translations > false friends > un-
correlated pairs. True friends match both in form
and meaning, normal and real translations match
only in meaning, and false friends match only in
form. Thus, this order clearly indicates that while
both form and meaning matter, similarity based on
meaning is more important that similarity based on
form.

7 Related work

The related work for the investigation reported
here comprises work on the human bilingual lex-
icon, cross-lingual word embeddings models and
computational models of the bilingual lexicon. As
the relevant work on the first topic has already
been discussed, we concentrate here on the latter
two.

Vectors of words that are semantically or syn-
tactically similar have been shown to be close
to each other in the same space (Mikolov et al.,
2013a,c; Pennington et al., 2014), making them
widely useful in many natural language process-
ing tasks such as machine translation and parsing
(Bansal et al., 2014; Mi et al., 2016), both in a sin-
gle language and across different languages.

Mikolov et al. (2013b) first observed that the ge-
ometric positions of similar words in different lan-
guages were related by a linear relation. Zou et al.
(2013) showed that a cross-lingually shared word
embedding space is more useful than a monolin-
gual space in an end-to-end machine translation
task. However, traditional methods for mapping
two monolingual word embeddings require high
quality aligned sentences or dictionaries (Faruqui
and Dyer, 2014; Ammar et al., 2016).

Reducing the need for parallel data, then, has
become the main issue for cross-lingual word em-
bedding mapping. Methods that rely on sentence-
alignments and also document-alignments have
been proposed. Hermann and Blunsom (2014)
present a method that, given enough data, train
bilingual word embeddings from a sentence-



aligned corpus. Luong et al. (2015) propose a
model, BiSkip, that takes as input a parallel corpus
with both sentence and word-level alignment. Un-
like other methods, BiSkip tries to learn not only
target word representations from source words
but also source word representations from target
words. Vulic and Moens (2016) induces bilingual
word embeddings from document-aligned compa-
rable data that have been merged and shuffled pro-
ducing a pseudo-bilingual document.

Some recent work aiming at reducing re-
sources has shown competitive cross-lingual map-
pings across similar languages, using a pseudo-
dictionary, such as identical character strings be-
tween two languages (Smith et al., 2017), or a
simple list of numerals, thanks to a self-learning
iterative framework (Artetxe et al., 2017). Fur-
thermore, as indicated in section 4, Artetxe et al.
(2018) extend their self-learning framework to un-
supervised models, and build the state-of-the-art
for bilingual lexicon induction. Another weakly-
supervised model is proposed by Wang et al.
(2019), a weakly-supervised concept-based adver-
sarial method, used in our experiments, as also in-
dicated in section 4.

Several computational models of human bilin-
gualism exist, see Li (2013) for an overview. More
relatedly to the current work that uses distribu-
tional approaches, aspects of the bilingual lexicon
have been proposed for word associations (Matu-
sevych et al., 2018). These associations are dif-
ferent in bilingual and monolingual speakers. For
example, cognates, collocations and phonological
responses are produced more frequently by non-
native speakers. This work proposes a model of
word association in bilinguals, implemented as a
semantic network paired with a retrieval mecha-
nism. Computational models of the influence of
the native language on second language learning
have also been investigated in Matusevych (2016),
specifically for argument structure.

8 Conclusion

In the spirit of better understanding distributed
representations and how well they match what we
know about the structure and processing of lan-
guage in humans (Linzen et al., 2016), this pa-
per investigates two models of cross-lingual word
embeddings comparing them to the shared trans-
lation effect and cross-lingual coactivation effects
involving true and false friends found in humans.
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We find that predictions about cross-lingual word
embeddings are mostly confirmed, making them
promising functional models of at least some as-
pects of the bilingual lexicon, despite their struc-
tural simplicity.
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Abstract

We propose algorithms to train production-
quality n-gram language models using feder-
ated learning. Federated learning is a dis-
tributed computation platform that can be used
to train global models for portable devices
such as smart phones. Federated learning is
especially relevant for applications handling
privacy-sensitive data, such as virtual key-
boards, because training is performed with-
out the users’ data ever leaving their devices.
While the principles of federated learning are
fairly generic, its methodology assumes that
the underlying models are neural networks.
However, virtual keyboards are typically pow-
ered by n-gram language models for latency
reasons.

We propose to train a recurrent neural net-
work language model using the decentral-
ized FederatedAveraging algorithm and
to approximate this federated model server-
side with an n-gram model that can be de-
ployed to devices for fast inference. Our
technical contributions include ways of han-
dling large vocabularies, algorithms to cor-
rect capitalization errors in user data, and effi-
cient finite state transducer algorithms to con-
vert word language models to word-piece lan-
guage models and vice versa. The n-gram lan-
guage models trained with federated learning
are compared to n-grams trained with tradi-
tional server-based algorithms using A/B tests
on tens of millions of users of a virtual key-
board. Results are presented for two lan-
guages, American English and Brazilian Por-
tuguese. This work demonstrates that high-
quality n-gram language models can be trained
directly on client mobile devices without sen-
sitive training data ever leaving the devices.
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Figure 1: Glide trails are shown for two spatially-
similar words: “Vampire” (in red) and “Value” (in or-
ange). Viable decoding candidates are proposed based
on context and language model scores.

1 Introduction

1.1 Virtual keyboard applications

Virtual keyboards for mobile devices provide a
host of functionalities from decoding noisy spatial
signals from tap and glide typing inputs to provid-
ing auto-corrections, word completions, and next-
word predictions. These features must fit within
tight RAM and CPU budgets, and operate under
strict latency constraints. A key press should re-
sult in visible feedback within about 20 millisec-
onds (Ouyang et al., 2017; Alsharif et al., 2015).
Weighted finite-state transducers have been used
successfully to decode keyboard spatial signals us-
ing a combination of spatial and language mod-
els (Ouyang et al., 2017; Hellsten et al., 2017).
Figure 1 shows the glide trails of two spatially-
similar words. Because of the similarity of the
two trails, the decoder must rely on the language
model to discriminate between viable candidates.
For memory and latency reasons, especially on
low-end devices, the language models are typi-
cally based on n-grams and do not exceed ten
megabytes. A language model (LM) is a prob-
abilistic model on words. Given previous words
x1,T2,...,Tm—1, an LM assigns a probability to
the new words, i.e. p(zm,|Tm-1,...,21). An
n-gram LM is a Markovian distribution of order

Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 121-130
Hong Kong, China, November 3-4, 2019. (©2019 Association for Computational Linguistics



Figure 2: An illustration of the federated learning pro-
cess from McMahan and Ramage (2017): (A) client
devices compute SGD updates on locally-stored data,
(B) a server aggregates the client updates to build a new
global model, (C) the new model is sent back to clients,
and the process is repeated.

n — 1, defined by

p(xm|$m—17 s 7«T1) = p(xm|'rm—17 o

where n is the order of the n-gram. For compu-
tation and memory efficiency, keyboard LMs typ-
ically have higher-order n-grams over a subset of
the vocabulary, e.g. the most frequent 64K words,
and the rest of the vocabulary only has unigrams.
We consider n-gram LMs that do not exceed 1.5M
n-grams and include fewer than 200K unigrams.
N-gram models are traditionally trained by ap-
plying a smoothing method to n-gram counts from
a training corpus (Chen and Goodman, 1999). The
highest quality n-gram models are trained over
data that are well-matched to the desired out-
put (Moore and Lewis, 2010). For virtual key-
boards, training over users’ typed text would lead
to the best results. Of course, such data are very
personal and need to be handled with care.

1.2 Federated learning

We propose to leverage Federated Learning
(FL) (Konecny et al., 2016; Konecny et al., 2016),
a technique where machine learning models are
trained in a decentralized manner on end-users’
devices, so that raw data never leaves these de-
vices. Only targeted and ephemeral parameter up-
dates are aggregated on a centralized server. Fig-
ure 2 provides an illustration of the process. Fed-
erated learning for keyboard input was previously
explored in Hard et al. (2018), in which a feder-
ated recurrent neural network (RNN) was trained
for next-word prediction. However, latency con-
straints prevent the direct use of an RNN for de-
coding. To overcome this problem, we propose

< .’Ifm_n+1),
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to derive an n-gram LM from a federated RNN
LM model and use that n-gram LM for decod-
ing. Specifically, the approximation algorithm is
based on SampleApprox, which was recently
proposed in Suresh et al. (2019a,b). The proposed
approach has several advantages:

Improved model quality: Since the RNN LM is
trained directly on domain-matched user data, its
predictions are more likely to match actual user
behavior. In addition, as shown in Suresh et al.
(2019a), an n-gram LM approximated from such
an RNN LM is of higher quality than an n-gram
LM trained on user data directly.

Minimum information transmission: In FL,
only the minimal information necessary for model
training (the model parameter deltas) is transmit-
ted to centralized servers. The model updates
contain much less information than the complete
training data.

Additional privacy-preserving techniques: FL
can be further combined with privacy-preserving
techniques such as secure multi-party computa-
tion (Bonawitz et al., 2017) and differential pri-
vacy (McMahan et al., 2018; Agarwal et al., 2018;
Abadi et al., 2016). By the post-processing theo-
rem, if we train a single differentially private re-
current model and use it to approximate n-gram
models, all the distilled models will also be differ-
entially private with the same parameters (Dwork
et al., 2014).

For the above reasons, we have not pro-
posed to learn n-gram models directly using
FederatedAveraging of n-gram counts for
all orders.

2  Outline

The paper is organized along the lines of chal-
lenges associated with converting RNN LMs to n-
gram LMs for virtual keyboards: the feasibility of
training neural models with a large vocabulary, in-
consistent capitalization in the training data, and
data sparsity in morphologically rich languages.
We elaborate on each of these challenges below.

Large vocabulary: Keyboard n-gram models are
typically based on a carefully hand-curated vocab-
ulary to eliminate misspellings, erroneous capital-
izations, and other artifacts. The vocabulary size
often numbers in the hundreds of thousands. How-
ever, training a neural model directly over the vo-
cabulary is memory intensive as the embedding
and softmax layers require space |V| x N, where



|V| is the vocabulary size and N is the embedding
dimension. We propose a way to handle large vo-
cabularies for federated models in Section 3.
Incorrect capitalization: In virtual keyboards,
users often type with incorrect casing (e.g. “She
lives in new york” instead of “She lives in New
York™). It would be desirable to decode with
the correct capitalization even though the user-
typed data may be incorrect. Before the discussion
of capitalization, the SampleApprox algorithm
is reviewed in Section 4. We then modify
SampleApproxto infer capitalization in Sec-
tion 5.
Language morphology: Many words are com-
posed of root words and various morpheme com-
ponents, e.g. “crazy”, “crazily”, and “craziness”.
These linguistic features are prominent in mor-
phologically rich languages such as Russian. The
presence of a large number of morphological vari-
ants increases the vocabulary size and data sparsity
ultimately making it more difficult to train neural
models. Algorithms to convert between word and
word-piece models are discussed in Section 6.
Finally, we compare the performance of word
and word-piece models and present the results of
A/B experiments on real users of a virtual key-
board in Section 7.

3 Unigram distributions

Among the 200K words in the vocabulary, our vir-
tual keyboard models only use the top 64K words
in the higher-order n-grams. We train the neu-
ral models only on these most frequent words and
train a separate unigram model over the entire vo-
cabulary. We interpolate the two resulting models
to obtain the final model for decoding.

3.1 Collection

Unigrams are collected via a modified version
of the FederatedAveraging algorithm. No
models are sent to client devices. Instead of re-
turning gradients to the server, counting statistics
are compiled on each device and returned. In our
experiments, we aggregate over groups of approx-
imately 500 devices per training round. We count
a unigram distribution U from a whitelist vocabu-
lary by U = ), w;C;, where i is the index over
devices, C; are the raw unigram counts collected
from a single device 7, and w; is a weight applied
to device 1.

To prevent users with large amounts of data
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Figure 3: Unigram distribution convergence. Note that
by 3000 rounds, the unigram distribution is stable, but
the model is still learning new tail unigrams.

from dominating the unigram distribution, we ap-
ply a form of L1-clipping:

A
max(\, > C;)’

where ) is a threshold that caps each device’s con-
tribution. When A\ = 1, L1-clipping is equivalent
to equal weighting. The limit A — oo is equiva-
lent to collecting the true counts, since w; — 1.

3.2 Convergence

Convergence of the unigram distribution is mea-
sured using the unbiased chi-squared statistic (for
simplicity, referred to as the Z-statistic) defined
in Bhattacharya and Valiant (2015), the number of
unique unigrams seen, and a moving average of
the number of rounds needed to observe new uni-
grams.

Figure 3(a) shows the overall distributional con-
vergence based on the Z-statistic. At round k, uni-
gram counts after k/2 and k rounds are compared.
Figure 3(b) plots the number of whitelist vocabu-
lary words seen and a moving average of the num-
ber of rounds containing new unigrams. New un-
igrams are determined by comparing a round k
with all rounds through k£—1 and noting if any new
words are seen. The shaded bands range from the
LM’s unigram capacity to the size of the whitelist
vocabulary.

3.3 Experiments

Since the whitelist vocabulary is uncased, capital-
ization normalization is applied based on an ap-
proach similar to Section 5. We then replace the
unigram part of an n-gram model with this distri-
bution to produce the final LM.

In A/B experiments, unigram models with
different L1-clipping thresholds are compared
against a baseline unigram model gathered from



Model acc@1 [%] OOV rate [%]
baseline 8.14 18.08
A=1 | +0.194+0.21 -1.33+£0.75
A=1K | +0.114+0.24 —1.06 4 0.66
A=5K | —0.084+0.26 —0.78 £0.93

Table 1: Relative change with L1-clipped unigrams
on live traffic of en_US users on the virtual keyboard.
Quoted 95% confidence intervals are derived using the
jackknife method with user buckets.

centralized log data. Results are presented in Ta-
ble 1. Accuracy is unchanged and OOV rate is
improved at A = 1 and A = 1K.

Before we discuss methods to address in-
consistent capitalization and data sparsity in
morphologically rich languages, we review
SampleApprox.

4 Review of SampleApprox

SampleApprox, proposed in Suresh et al.
(2019a,b), can be used to approximate a RNN as
a weighted finite automaton such as an n-gram
model. A weighted finite automaton (WFA) A =
(3,Q, E,i, F) over Ry (probabilities) is given by
a finite alphabet 3 (vocabulary words), a finite set
of states () (n-gram contexts), an initial state ¢ € )
(sentence start state), a set of final states F' € ()
(sentence end states), and a set of labeled transi-
tions F and associated weights that represent the
conditional probability of labels (from X)) given
the state (list of n-grams and their probabilities).
WFA models allow a special backoff label ¢ for
succinct representation as follows. Let L[g| be
the set of labels on transitions from state q. For
x € L[q], let wy[x], be the weight of the transition
of z at state ¢ and d,[x] be the destination state.
For a label z and a state ¢,

ifz € Lq],

otherwise.

p(z[q) = wgz]
= wq[‘P] 'p(x‘dq[@])

In other words, ¢ is followed if = ¢ L[g]. The
definition above is consistent with that of backoff
n-gram models (Chen and Goodman, 1999). Let
B(q) denote the set of states from which ¢ can be
reached by a path of backoff labels and let ¢[z]
be the first state at which label z can be read by
following a backoff path from q.

Given an unweighted finite automaton A and a
neural model, SampleApprox finds the proba-
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bility model on A that minimizes the Kullback-
Leibler (KL) divergence between the neural model
and the WFA. The algorithm has two steps: a
counting step and a KL minimization step. For
the counting step, let z(1), z(2), ..., Z(k) be k in-
dependent samples from the neural model. For a
sequence T, let x; denote the ith label and 7
x1,T2,...,x; denote the first ¢ labels. For every
q € Qand x € X, the algorithm computes C(z, q)
given by

Do DD Ly )= a=gla] - Pon(@lT (1))

¢'€B(g) j=1 20

We illustrate this counting with an example.
Suppose we are interested in the count of
the bi-gram New York. Given a bi-gram
LM, SampleApprox generates m sentences and
computes

C(York, New) = pon (York|Z*(5)).

D

Jsizi(j)=New

In other words, it finds all sentences that have the
word New, observes how frequently York appears
subsequently, and computes the conditional prob-
ability. After counting, it uses a difference of con-
vex (DC) programming based algorithm to find the
KL minimum solution. If ¢ is the average num-
ber of words per sentence, the computational com-
plexity of counting is O(k - £ - ||) ' and the com-
putational complexity of the KL minimization is
O(|E| + |Q|) per iteration of DC programming.

5 Capitalization

As mentioned in Section 2, users often type with
incorrect capitalization. One way of handling in-
correct capitalization is to store an on-device capi-
talization normalizer (Beaufays and Strope, 2013)
to correctly capitalize sentences before using them
to train the neural model. However, capitalization
normalizers have large memory footprints and are
not suitable for on-device applications. To over-
come this, the neural model is first trained on un-
cased user data. SampleApproxis then modi-
fied to approximate cased n-gram models from un-
cased neural models.

As before, let z(1),z(2),...,z(k) be k in-
dependent (uncased) samples from the neural
model. We capitalize them correctly at the
server using Beaufays and Strope (2013). Let

Ya, = @(bn), means a,, < by - polylog(n),Vn > ng.



9(1),9(2),...y(k) represent the corresponding &
correctly capitalized samples. Let pcap be another
probability model on non-user data that approxi-
mates the ratio of uncased to cased probabilities
given a context. Given a label y, let u(y) be the un-
cased symbol. For example, if y is York, then u(y)
is york. With the above definitions, we modify the
counting step of SampleApprox as follows:

> i

¢’ €B(q) j=1i>0

=l - PWIT (),

where p(y|7'(5)) is given by

peaWlT'G)
Ey’:u(y’)zu(y) pcap(y/wZ (7))

Pon(u(y)u(y' (7))

We refer to this modified algorithm as
CapSampleApprox. We note that word-
piece to word approximation incurs an additional
computation cost of O((| E| +|Q| +|A|)€), where
A is the number of words, E and () are the set of
arcs and set of states in the word n-gram model,
and / is the maximum number of word-pieces per
word.

6 Morphologically rich languages

To train neural models on morphologically rich
languages, subword segments such as byte-pair
encodings or word-pieces (Shibata et al., 1999;
Schuster and Nakajima, 2012; Kudo, 2018) are
typically used. This approach assigns conditional
probabilities to subword segments, conditioned on
prior subword segments. It has proved successful
in the context of speech recognition (Chiu et al.,
2018) and machine translation (Wu et al., 2016).
Following these successes, we propose to train
RNN LMs with word-pieces for morphologically
rich languages.

We apply the word-piece approach of Kudo
(2018), which computes a word-piece unigram
LM using a word-piece inventory Vp. Each word-
piece x; € Vp is associated with a unigram prob-
ability p(z;). For a given word y and its possible
segmentation candidates, the word is encoded with
the segmentation that assigns the highest probabil-
ity.

Throughout this paper we apply 4K, 16K, and
30K as the word-piece inventory sizes. These val-
ues lie within a range that provides good trade-off
between the LSTM embedding size and the rich-
ness of the language morphology. We apply 100%
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Figure 4: The (a) WFA A and WFSTs (b) T" and (c) B
for the word vocabulary {ab, ac} and word-piece vo-
cabulary {a, b, c}. Initial states are represented by bold
circles and final states by double circles.

character coverage to include all the symbols that
appeared in the unigram distribution (Section 3),
including the common English letters, accented
letters e.g. €, O, and digits. Accented letters are
important for languages like Portuguese. For fast
decoding, the n-gram models still need to be at
the word-level, since word-piece n-gram models
increase the depth of the beam-search during de-
coding. We convert the word n-gram topology to
an equivalent word-piece WFA topology and use
SampleApprox to approximate the neural word-
piece model on the word-piece WFA topology. We
then convert the resulting word-piece WFA LM to
the equivalent n-gram LM. The remainder of this
section outlines efficient algorithms for converting
between word and word-piece WFA models.

A natural way to represent the transduction
from word-piece sequences to word sequences is
with a finite-state transducer. Given the properties
of our word-piece representation, that transducer
can be made sequential (i.e., input deterministic).

A sequential weighted finite-state transducer
(WEFST) is a deterministic WFA where each tran-
sition has an output label in addition to its (input)
label and weight. We will denote by o,4[z] the
output label of the transition at state ¢ with input
label z, o4z] € A U {e}, where A denotes the
output alphabet of the transducer and e the empty
string/sequence.

Let M be the minimal sequential (unweighted)
finite-state transducer (FST) lexicon from word-
piece sequences in ¥.* to word sequences in A*,
where Y denotes our word-piece inventory, A de-
notes our vocabulary, and * is Kleene closure.
A word-piece topology B equivalent to the word



Algorithm 1 Approximating a Neural Model as an N-Gram with a Supplemental Topology.

Train R}, Rp with FederatedAveraging®

Train Aw from supplemental corpus C

AWe ’AW«L ,Awm ,AWT < Gen( };V, Aw, 3, NN2WFA w)
APG ,Api ,Apm ,APT — GG:II(RTILJ7 Aw, Awl s NN2WFA P)

function Gen(R", Aw, Aw,, function NN2WFA )
A. < NN2WFA (RY, Aw)
if NN2WFA ==NN2WFA w then
A; < NN2WFA (R", Aw, self_infer=true)
else
A; < NN2WFA (R", Aw;)
end if
Ay, < Interpolate(A., A;)

“T denotes an unweighted topology and A denotes the
weighted n-gram model. Superscript u represents uncased
models.

A, < NN2WFA (R", A,,)
return Ae, A;, Am, A,
end function
function NN2WFA w (R}, Aw, self_infer=false)
if self_infer then
return CapSampleApprox (Ryy, 8, Aw)
else
return CapSampleApprox (Ryy, Aw, Aw)
end if
end function
function NN2WFA p(R%, Aw)
T4, < ConvertToLowercaseTopology(Aw)
Tp < ConvertToWordPieceTopology(T7;,)
A% < SampleApprox (Rp, Tp)
w < ConvertToWordTopology(A%)
return CapSampleApprox (A, Aw, Aw)
end function

topology A can be obtained by com