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Figure 1: The number of words in a sentence in STV-
IDL is normally distributed with an average of 22.65
words.

A Dataset Statistics

The length of referring expressions. We first an-
alyze the length of referring expressions. We split
each referring expression into words using Natu-
ral Language Toolkit (NLTK) (Bird et al., 2009).
Figure 1 shows the distribution of the number of
words in each referring expression. STV-IDL con-
tains varying lengths of referring expressions and
the average length (22.65 words) is longer than
most existing video referring expression datasets
(Gao et al., 2017; Yamaguchi et al., 2017; Hen-
dricks et al., 2017; Krishna et al., 2017) because
we force the sentence syntax and encourage con-
junctions.

The referring expressions provided from the an-
notators as speakers are subjective. However, as
long as we correctly understand what they refer to
and the process leads to mutual understanding and
successful communication, the grounding process
is valid. We are aware that giving an example sen-
tence may limit the variations of the referring ex-

Figure 2: The number of target objects in STV-IDL is
at least 2 with an average number of objects per video
of 2.85.

pressions. But, we want to make sure that our con-
straint is valid on every sentence and we also col-
lect only a few referring expressions per referred
object in a temporal interval. Besides, the col-
lected sentences are usually from different anno-
tators from the randomization in our web interface
so there are still some constraint-satisfied varia-
tions within our few sentences per referred object.
Compared to the ReferIt game (Kazemzadeh et al.,
2014), the annotators are the speakers and we are
the listeners. However, we are not collecting the
data in a gamification setting in which referring
expressions look short and concise similar to ver-
bal utterances. The reason is it is not clear how a
speaker will compare and utter words to contrast
the referent from other distractors in the tempo-
ral dimension. Also, it is not clear how the lis-
tener will comprehend the referring expression in
this setting for untrimmed video except rely on
the time stamp to fast forward to the event itself.
Our data collection pipeline is more similar to the
Google-Refexp dataset (Mao et al., 2016) which



Table 1: Composition of the STV-IDL dataset, includ-
ing number of videos and sentences for each collection.

Collection Number of Number of
Videos Sentences

sepak takraw 23 818
birds 24 426
dogs 18 410
elephants 11 301
panda 16 662
tennis double 9 1160
tennis single 15 668
tabletennis double 9 336
tabletennis single 10 376
badminton double 12 816
badminton single 18 408
beach volley 14 812
fencing 20 372
STV-IDL 199 7569

has two separated steps, collecting the referring
expression and then verification. This setting leads
to grammatical sentences which are usually longer
than verbal utterances.

The number of objects in each video. Figure
2 shows that our STV-IDL has multiple objects in
each video with an average of 2.85 objects from
the same class. From the annotation files, we ob-
serve that each video is annotated with 38.04 re-
ferring expressions on average.

Word occurrences. To ensure temporal words,
Figure 8 shows that we have words like ‘while’,
‘then’, ‘moves’, ‘steps’, ‘turns’ in the top 50 fre-
quency list. We further filter out stopwords in Fig-
ure 9. We can see that top words are words de-
scribing person (man or player) or appearances
(wearing or shirt or red) or actions (moves or
steps) or spatial relations (front or right or left or
back). Temporal words like then are in NLTK
stopword list.

Part-of-speech occurrences. To ensure the
sentence syntax, Figure 10 shows the proportions
of Penn part-of-speech tags (Taylor et al., 2003)
using NLTK POS tagger. We observe that STV-
IDL has a high proportion of prepositions (10.9%
IN), adjectives (9.7% JJ), conjunctions (3.4%
CC) and adverbs (3.6% RB) with only 28.1%
nouns (NN).

B Annotation Interfaces

We show good referring expression examples
[Link] to the Amazon Mechanical Turk workers.
We show a video clip with a green bounding box
surrounding the target object. We then ask the an-
notators to write a sentence that contains at least 3
phrases, a noun phrase, a verb phrase and a prepo-
sition or adverb phrase. A noun phrase should de-
scribe color or appearance. A verb phrase should
describe actions. A preposition or adverb phrase
should describe relations of the target object to
other objects in the scene. We also encourage the
annotators to write many phrases using conjunc-
tions.

In the second stage, we take the annotated refer-
ring expressions to the verification interface. We
manually verify that the sentence refers to the tar-
get object. If the sentence is valid, we then correct
minor grammatical errors and misspelling. We
paid workers 0.05$ to 0.10$ for each valid refer-
ring expression.

C Implementation Details

We implement our modular attention network
based on PyTorch. The temporal interval proposal
is implemented in Tensorflow. Optical flow im-
ages are estimated using the TVL-1 algorithm in
OpenCV. For Faster-RCNN, we use a batch size
of 8 and train on 4 GPUs for 20 epochs. The mo-
tion Faster-RCNN uses 128, 128, 128 as the mean
data value. For the modular attention network, we
use ADAM optimizer with an initial learning rate
1e − 3, and we train for 30 epochs where we ob-
served the learning process saturated. We use a 1-
layer bidirectional LSTM for every LSTM in the
model. The hidden layer of LSTM in language at-
tention network is 512. For moving location mod-
ule is 50. For relationship motion module is 20.
All other settings are the same as the original im-
plementation (Yu et al., 2018). We train the model
using a combination of the ranking loss, the sub-
ject attribute loss, and the subject motion attribute
loss. The training time takes three days for one
stream models and a week for two-stream models
on an NVIDIA P6000 GPU with 48GBs memory.
We split the STV-IDL dataset into train, validation
and test sets.

D Module Definitions

The language attention module learns to attend
to each word for each visual module individually.

https://docs.google.com/presentation/d/1t9gh_f4nt3zzyS73pQBNI2jaFjo0zdWke3wja3N71wc/edit?usp=sharing


(a) Subject module RGB (below) and
flow (top).

(b) Relationship module RGB (below)
and flow (top).

(c) Location module. (coordinate +
diffea)

Figure 3: Aggregations of output word attention weights for each module on the STV-IDL test set.

Figure 4: Aggregations on all verbs for each module.
(from left to right: Relationship flow/RGB, Subject
flow/RGB, Location)

Figure 5: Aggregations on all verbs for each module.
(from left to right: Relationship RGB, Subject RGB,
and Location for RGB MAttNet) The model grounds
more verbs to Subject RGB than fused1.

First, each word in the input expression is encoded
into a one-hot vector. Then, a bidirectional LSTM
encodes the whole expression. The hidden states
in both direction for each time step are concate-
nated to create the word representation for each
word. Next, a weighted vector is placed for each
word representation and the weighted sum is the
attention for each word. The phrase embedding is
the weighted average of the one-hot vector and the
attention for every word in the expression.

The subject module has two branches, attribute
prediction and phase-guided attention pooling. In
attribute prediction, the input expression is parsed
to R1-R7 attributes (Kazemzadeh et al., 2014) us-

ing Stanford dependency parser (Manning et al.,
2014). The attributes describe color, size, loca-
tion and observed attribute types. Both ‘pool5’
and ‘spatial fc7’ are concatenated and followed by
a 1 × 1 convolution. The attribute feature blob
is average-pooled and used for prediction by a
fully connected layer. This branch is trained with
a cross-entropy loss when the system can parse
any attribute from the input expression. In phase-
guided attention pooling, the attribute feature blob
is concatenated with ‘spatial fc7’ and phrase em-
bedding followed by another 1× 1 convolution to
create the subject feature blob. The subject fea-
ture blob contains grids that correspond to the in-
put image based on each spatial location. Then,
the spatial attention is computed by forwarding
the grid feature to tanh and softmax layers respec-
tively. The weighted attention subject feature is
computed by a weighted sum on the concatenation
of attribute blob and ‘spatial fc7’ with the spatial
attention.

The subject module score is computed by
matching weighted attention subject feature with
the phrase embedding. The matching function
consists of two MLPs with ReLU activations to
project both features into a joint embedding space,
two L2 normalization layers and a cosine similar-
ity that measures the module score.

For the location module, the normal-
ized bounding box coordinates, li =

[xmin
W , ymin

H , xmax
W , ymax

H ,
Arearegion
Areaimage

] where
W and H are width and height of the im-
age, are computed for every object from the
same class. Then, the location difference
feature of the target object with up to five
context objects from the same class, δij =

[∆xmin
W , ∆ymin

H , ∆xmax
W , ∆ymax

H ,
∆Arearegion
Areaimage

], is
concatenated with the normalized bounding box
coordinates [li; δij ] and fed to a fully connected
layer which results in the final location feature.



The module score is from the matching between
the final location feature and the phrase em-
bedding using the matching function like in the
subject module.

For the relationship module, the ‘spatial fc7’
for top five context objects are averaged-pooled
and become the context ‘fc7’ features. The ‘fc7’
feature is concatenated with the location differ-
ence feature [δij ] as the final relationship feature.
However, the module score is from the maxi-
mum of the matching between the final relation-
ship feature of each context object and the phrase
embedding using the matching function like in
the subject and location module. This is like
putting all context objects into a bag in the weakly-
supervised Multiple Instance Learning (MIL) set-
ting and takes the best matching context as the fi-
nal score.

For the motion stream, we train the motion
Faster-RCNN on optical flow images of STV-IDL.
We start from an MS COCO pretrained model, and
we replace the three channel RGB input with a
stack of flow-x, flow-y and flow magnitude from
the flow image. Then, we duplicate the subject and
the relationship module into the subject motion
and relationship motion module which take the
‘pool5’ and ‘spatial fc7’ features extracted from
the motion Faster-RCNN.

Previous work (Simonyan and Zisserman,
2014) has shown that stacking many optical flow
images can help recognition. So, we train another
variant of two-stream modular attention network
using stacked five optical flow frames. In this set-
ting, we train the stacked motion Faster-RCNN
by stacking flow images Fidx where frame index
idx ∈ [t−2, t+2]. The input becomes a 15 chan-
nel stacked optical flow image. In addition, we
add the moving location module to further model
the movement of the location by stacking location
features so that we have a sequence of [li; δij ]idx
where frame index idx ∈ [t − 2, t + 2]. Then,
we place an LSTM on top of the sequence and we
forward the concatenation of all hidden states to
a fully connected layer and output the final loca-
tion features. We also make a location sequence
and placing an LSTM on top for location in the
relationship motion module in this stacked opti-
cal flow setting. To fuse all modules, all module
scores are weighted average by the language at-
tention module.

E Experiments

The detailed experimental results are in Table 2.
There are 3.37 objects per instance on average
in the test set so randomly selecting one tubelet
will get the accuracy of only 29.68% over 11%
less than the baseline. The aggregated statistics of
word attention are shown in Figure 3 and 4.
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Figure 6: The referring expression annotation interface based on a modified simple-amt (Johnson).



Figure 7: The referring expression verification interface allows the verifier to correct by editing the referring
expression. Most grammatical errors and misspellings are corrected using this interface.



Figure 8: Top 50 words in STV-IDL with stopwords.



Figure 9: Top 50 words in STV-IDL without stopwords.



Figure 10: The percentages of each Part-of-speech in STV-IDL.



Figure 11: Sample data from birds, fencing, sepak takraw and panda collections.


