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Overview System Description Limitations

Problem Statement Preprocessing The following are some of the major limitations of our system.
The Task 1 of WASSA-2017 poses the problem of finding emotion intensity - Tweet aware tokenizer to extract meaning fun tokens like emoticons, emaojis,
of tweets given an emotion. This task focuses on finding emotion intensity punctuations etc. . . * The .system sometimes has difficulties 'in capturipg the. overall .
(0.0 to 1.0) of four emotions namely anger, sad, joy, fear. + Replace unnecessary tokens with standard notations. Preprocessing Feature Extraction Regression sentlment due to presence of worc!s mlslgadlng |nte_nS|ty emotion
+ URLs to URL [ Feauzer 1> Eprrrernras WG and this leads to amplifying or vanishing mteps_ﬂy S|gnals_.
+ Numbers to NUMBER _ = + @MannersAboveAll *laughs louder this time, shaking my
Approach . _ - Times to TIME u N head*That was really cheesy, wasn't it?
We pre-process the tweets and create sentence level embeddings using . Usernames to USERNAME etc. < d - Gold Intensity - 0.083
lexicons and word vectors. After performing feature extraction, we applied O » Preprocessor > H o » H M :@ - Predicted Intensity - 0.4936
various regressors like AdaBoost, GradientBoost to maximise Pearson’s Feature Extraction i E * The system also fails in predicting sentences having deeper
correlation coefficient. Finally an ensemble is created by choosing best _ E emotion and sentiment which humans can understand with a little
performing models. We have used all well known lexicons and collected the metrics on sentence level. context.
For example —>_Featurizer >t Regressor [~ « Ibiza blues hitting me hard already wow
Results - Bing Liu Opinion Lexicon [1] * Gold Intensity - 0.833
.« Third i i ici o - Average positive and negative sentiment of words in a tweet . * Predicted Intensity - 0.4247
. Sacond n best Pearson canelation cosficent for motion nensity - NRC Affect Intensiy [2) SeerNet Emolnt Syscen Architeccure + Hore twee refers o post travel biues which humans an
- Average emotion intensity of words for emotion categories in a tweet understand but with little context, it is difficult for the system
greater than 0.5 . Average number of negation words etc. to accurately estimate the intensity.

Similarly on word/emoticon vector side we used the following.
+ GloVe Embeddings [3]
+ Edinburgh Embeddings [4]
+ Emoji Embeddings [5]
The final feature vector is the concatenation of all the individual features.

Features Training Conclusions & Future Work

+ Perform 10 fold cross validation on dev + train data

+ Trained regressors like AdaBoost, GradientBoost and RandomForests etc.

+ Select best models on cross validation minimising Pearson Correlation Coefficient
+ Create an ensemble of best performing methods

Conclusions
+ The paper studies the effectiveness of various affect lexicons word
embeddings to estimate emotional intensity in tweets.

In our approach we converted a tweet to a sentence embedding using
three approaches:

Lexicon based A Iight-vyeight. easy to use affect f:omputing framework to fagilitate ease
. Lexicons associate words to corresponding sentiment or of experimenting with various lexicon features for text tasks is open-
emotion metrics. . éoeurrgﬁg.features which will be useful in other affective computing tasks
Word Vector based ReSU |tS PAng

on social media text not just tweet data.

* Semantic relationship between words are represented using « Good run-time performance during prediction, future work to benchmark

low dimensional feature vectors. the performance of the system can prove vital for deploying in a real-
Emoiji Vector based world setting.
- Semantic relationship between emoijis are represented using + Best results are obtained on ensemble created using best performing models across all emotion categories.
low dimensional feature vector. + Best Pearson correlation coefficients across all the emotion categories on test data. Future Work

+ Anger -0.715183
+ Fear - 0.702265
+ Joy - 0.55209
+ Sadness - 0.530501
+ Below is the top 10 feature importances of the features used in finding emotional intensity.

+ Few problems explained in the analysis section can be resolved with the
help of sentence embeddings which take the context information into
consideration.
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