

Results of the fifth edition of the BioASQ Challenge

A. Nentidis, K. Bougiatiotis, A. Krithara, **G. Paliouras** and I. Kakadiaris

NCSR "Demokritos", University of Houston

4th of August 2017

BioNLP Workshop, Vancouver

Introduction What is BioASQ

A competition

- BioASQ is a series of challenges on biomedical semantic indexing and question answering (QA).
- Participants are required to semantically index content from large-scale biomedical resources (e.g. MEDLINE) and/or
- to assemble data from multiple heterogeneous sources (e.g. scientific articles, knowledge bases, databases)
- to compose informative answers to biomedical natural language questions.

Tasks

Task A: Hierarchical text classification

- Organizers distribute new unclassified MEDLINE articles.
- > Participants have 21 hours to assign **MeSH terms** to the articles.
- Evaluation based on annotations of MEDLINE curators.

Tasks

Task B: IR, QA, summarization

- Organizers distribute English biomedical questions.
- Participants have 24 hours to provide: relevant articles, snippets, concepts, triples, exact answers, ideal answers.
- Evaluation: both automatic (GMAP, MRR, Rouge etc.) and manual (by biomedical experts).

New task

Task C: Funding Information Extraction

- Organizers distribute PMC full-text articles.
- Participants have 48 hours to extract: grant-IDs, funding agencies, full grants (i.e. the combination of a grant-ID and the corresponding funding agency).
- Evaluation based on annotations of MEDLINE curators.

Presentation of the challenge BioASQ ecosystem

Presentation of the challenge BioASQ ecosystem

Task A: 12,800,000 articles with MeSH headings available for training. New test batches available every week.

Task B: 2,300 English questions, plus gold relevant documents, snippets, concepts, triples, "exact", and "ideal" answers.

Task C: 80,000 articles with corresponding funding information.

Online platform that enables participants to enter the E

► Training data

	version 2015	version 2016	version 2017
Articles	11,804,715	12,208,342	12,834,585
Total labels	27,097	27,301	27,773
Labels per article	12.61	12.62	12.66
Size in GB	19	19.4	20.5

► Test data

Week	Batch 1	Batch 2	Batch 3
1	6,880 (6,661)	7,431 (7,080)	9,233 (5,341)
2	7,457 (6,599)	6,746 (6,357)	7,816 (2,911)
3	10,319 (9,656)	5,944 (5,479)	7,206 (4,110)
4	7,523 (4,697)	6,986 (6,526)	7,955 (3,569)
5	7,940 (6,659)	6,055 (5,492)	10,225 (984)
Total	40,119 (34,272)	33,162 (30,934)	42,435 (21,323)

The numbers in parentheses are the annotated articles for each test dataset.

Feature Extraction: Representing each abstract

- tf-idf of words and bi-words
- *doc2vec* embeddings of paragraphs
- Concept Matching: Finding relevant MeSH labels
 - k-NN between article-vector representations
 - Linear SVM binary classifiers for each MESH label
 - Recurrent Neural Networks for sequence-to-sequence prediction
 - UIMA-ConceptMapper and MeSHLabeler tools for boosting NER and Entity-to-MeSH matching
 - Latend Dirichlet Allocation and Labeled LDA utilizing topics found in abstracts
 - Ensemble methodologies and stacking

Task 5A Evaluation Measures

Flat measures

- Accuracy (Acc.)
- Example Based Precision (EBP)
- Example Based Recall (EBR)
- Example Based F-Measure (EBF)
- Macro Precision/Recall/F-Measure (MaP, MaR, MaF)
- Micro Precision/Recall/F-Measure (MiP,MIR,MiF)

Hierarchical measures

- Hierarchical Precision (HiP)
- Hierarchical Recall (HiR)
- Hierarchical F-Measure (HiF)
- Lowest Common Ancestor Precision (LCA-P)
- Lowest Common Ancestor Recall (LCA-R)
- Lowest Common Ancestor F-measure (LCA-F)

A. Kosmopoulos, I. Partalas, E. Gaussier, G. Paliouras and I. Androutsopoulos: Evaluation Measures for Hierarchical Classification: a unified view and novel approaches. Data Mining and Knowledge Discovery, 29:820-865, 2015.

Task 5A results Evaluation

- Systems ranked using **MiF** (flat) and **LCA-F** (hierarchical).
- Results, in all batches and for both measures :
 - 1. Fudan
 - 2. AUTH-Atypon

Task 5A results

---- Top ---- MTI ---- Avg

Task 5B Statistics on datasets

Batch	Size	# of documents	# of snippets
Training	1,799	11.86	20.38
Test 1	100	4.87	6.03
Test 2	100	3.49	5.13
Test 3	100	4.03	5.47
Test 4	100	3.23	4.52
Test 5	100	3.61	5.01
total	2,299		

The numbers for the documents and snippets refer to averages

Task 5B Training Dataset Insights

Task 5B Training Dataset Insights

- Broad terms (e.g. proteins, syndromes)
- More specific terms (e.g. cancer, heart, thyroid)

Task 5B Training Dataset Insights

- Number of questions related to cancer vs thyroid per year
- > The numbers on top of the bars denote the contributing experts

Task 5B

Evaluation measures

Evaluating Phase A (IR)

Retrieved items	Unordered retrieval measures	Ordered retrieval measures
concepts		
articles	Mean Precision, Recall, F-Measure	MAP, GMAP
snippets		MAF, OMAI
triples		

Evaluating the 'exact' answers for Phase B (Traditional QA)

Question type	Participant response	Evaluation measures
yes/no	'yes' or 'no'	Accuracy
factoid	up to 5 entity names	strict and lenient accuracy, MRR
list	a list of entity names	Mean Precision, Recall, F-measure

Evaluating the 'ideal' answers for Phase B (Query-focused Summarization)

Question type	Participant response	Evaluation measures
any	paragraph-sized text	ROUGE-2, ROUGE-SU4, manual scores*
		(Readability, Recall, Precision, Repetition)

*with the help of BioASQ Assessment tool.

Task 5B System approaches

- Question analysis: Rule-based, regular expressions, ClearNLP, Semantic role labeling (SRL), Stanford Parser, tf-idf, SVD, word embeddings.
- Query expansion: MetaMap, UMLS, sequential dependence models, ensembles, LingPipe.
- Document retrieval: BM25, UMLS, SAP HANA database, Bag of Concepts (BoC), statistical language model.
- Snippet selection: Agglomerative Clustering, Maximum Marginal Relevance, tf-idf, word embeddings.
- Exact answer generation: Standford POS, PubTator, FastQA, SQuAD, Semantic role labeling (SRL), word frequencies, word embeddings, dictionaries, UMLS.
- Ideal answer generation: Deep learning (LSTM, CNN, RNN), neural nets, Support Vector Regression.
- Answer ranking: Word frequencies.

Task 5B Results

- Our experts are currently assessing systems' responses
- The results will be announced in autumn

Task 5C Statistics on datasets

Grant ID distribution in training data set

Number of articles per agency in training dataset

- ► A subset of the Grant IDs and Agencies mentioned in full text are available in ground truth data⇒ Micro-Recall
 - Each Grant ID (or lone Agency) must exist verbatim in the text
- Different scores for each subtask:
 - Grant IDs
 - Agencies
 - Full Grants

- Grant Support Sentences: Identifying sentences containing grant information
 - Features: *tf-idf* of n-grams
 - Techniques: SVM and Naive Bayes for scoring, specific XML fields considered
- Grant Information Extraction: Detecing Grant-IDs and Agencies
 - Manually crafted Regular Expressions
 - Heuristic Rules
 - Sequential Learning Models, such as Conditional Random Fields, Hidden Markov Models, Max Entropy Models
 - Ensemble of classifiers for pairing Grant-IDs to Agencies

Task 5C Results

Challenge Participation

Conclusions and Prespectives

Goals and perspectives

- BioASQ will run in 2018.
- Continuous development of benchmark datasets.

Conclusions and Prespectives Oracle for continuous testing

Task:	Task A	Select the task you are submitting results for.
Test:	Task 4a: Test batch 3, Week 5 V	Specify the test set by choosing one from the drop down menu. The tests sets for both tasks can be downloaded from here and are those that been already used for the BioASQ challenge.
Your system:	bioasq_baseline •	Select one of your systems that will be used in the "Oracle Results" tab.
Your system results:	Επιλογή αρχείου Δεν επιλέχθηκε κανένα αρχείο.	Select a file to upload that contains a JSON string with the answers of a test. The format of the JSON is described in the online guidelines of each task, e.g. here.
Submit		
Attentior	: Calculating the evaluation results takes	several minutes. Please, do not refresh the content.
Results Annotated document Please, take a look at	ts: 627 out of 3130. the results below and fill the following form:	

Keep my results visible:	•	If enabled, your uploaded results will be visible in the oracle to any registered user. Otherwise, it will be visible only to you.
Save my score:	۲	If enabled, it will replace the previous score for the selected system and testset in the BioASQ database.
Flat Measures		Submit

System	•	MiF 👻	Acc. 👻	EBP 👻	EBR 👻	EBF 👻	MaP 👻	MaR 🕶	MaF 🕶	MiP 👻	MiR 👻
auth1		0.5954	0.4247	0.5887	0.6133	0.5793	0.5659	0.4776	0.4593	0.5948	0.5959
Current Submission		0.5817	0.4091	0.5843	0.5994	0.5641	0.5481	0.4821	0.4634	0.5794	0.5841
d33p		0.5746	0.3978	0.6150	0.5473	0.5507	0.5626	0.3897	0.3811	0.6143	0.5397
Default MTI		0.5854	0.4165	0.6036	0.5934	0.5711	0.5369	0.5173	0.4960	0.5967	0.5745

Collaborations

- NLM
 - Task A design and baselines
 - Task C design and baselines
- CMU
 - OAQA Baselines for task B
- DBCLS
 - BioASQ and PubAnnotation : Using linked annotations in biomedical question answering (BLAH3)

iASiS

 Question answering over big heterogeneous biomedical data for precision medicine

Carnegie

Mellon University

Grateful to the BioASQ consortium

BioASQ started as a European FP7 project, with the following partners:

- National Centre for Scientific Research "Demokritos" (GR)
- Transinsight GmbH (DE)
- Universite Joseph Fourier (FR)
- University Leipzig (DE)
- Universite Pierre et Marie Curie Paris 6 (FR)
- Athens University of Economics and Business Research Centre (GR)

PLATINUM SPONSOR

SILVER SPONSOR

Atypon

Visit www.bioasq.org Follow @BioASQ

BioASQ 6 to be announced soon!

