The Computational Linguistics Summarization Task @ BIRNDL 2016

Kokil Jaidka^I, Muthu Kumar Chandrasekaran², Sajal Rustagi^I, Min-Yen Kan^{2,3}

¹Adobe Research India

²School of Computing, National University of Singapore, Singapore ³Interactive and Digital Media Institute, National University of Singapore, Singapore

Microsoft Research

Corpus Highlights

Continuing effort to advance scientific document summarization by encouraging the incorporation of semantic and citation information.

- ♦ Corpus enlarged from 10 (pilot) to 30 CL articles
- Annotation by 6 paid and trained annotators from U-Hyderabad
- Sponsorship from Microsoft Research Asia

https://github.com/WING-NUS/scisumm-corpus/

Oral Sessions

4:35- 4:55	•	System 8 – Top in Task IB, among top performers for Task IA and Task 2
	•	Remote presentation from China
4:55- 5: 5		System 6 – Among top performers for Task IA
	•	Local presentation

Outline

♦ Highlights

now > Results and Analyses of Runs

- ♦ Task IA Identify text span in the RP
- ♦ Task IB Discourse Facet of the RP text
- \diamond Task 2 250 words or less of summary
- ♦ Conclusion

Evaluation

Still a work in progress:

Old results

New

results

Will present results based on the CEUR paper (''old''), stacked average of all runs...

... and contrast with newer (still preliminary) results ("new"), individual runs separated

Evaluation

- Task IA Exact sentence ID match
- Task IB
 - conditional on Task IA
 - Bag of Words (BOW) overlap between discourse facets
- Task 2 ROUGE-2 and ROUGE-4

System Results (Task IA & IB)

23 June 2016 7

BIRNDL 2016: CL-

Best Performing System (Task IA)

		Task I a				
	System ID	,	Avg		est performing stems	
	16		0.114941		0.038295	
	8		0.102306		0.056893	
	6		0.100104		0.056926	
	13		0.063622		0.050519	
	9		0.056172		0.053044	
	5		0.054283		0.028954	
	12		0.034219		0.020178	
	15		0.034122		0.014837	
SciSum	m 16 Overview		0.03073		0.023688	23 June 20

8

Best Performing System (Task I B)

	Task	lb		
System ID	Avg performance	Best performing System		
16	0.1696516	0.0000000		
8	0.264754	01473109		
13	0.10294	0.0236852		
5	0.088737	0.0617396		
12	0.052747	Best performing		
15	0.152984	System		
10	0.168061	0.122391		

23 June 2016 9

Best Performing System – Task 2

Best performing Systems

System ID	Approaches	Comments Systems
3	NNMF for BioMedSumm	The best for human summaries
8	 hLDA topic modeling Sentence length/position Cited text spans RST 	The best for abstract and community summaries
15	 TkemI-I TkemI-Ice TkemI-4 TkemI-4ce TkemI-8 TkemI-8ce 	Kernel-based approaches are worthy of exploration
I6 BIRNDL 2016: CL-SciSumm 16	• Manifold Ranking System Overview	Ranking approaches do not seem to work 23 June 2016 10

New Results (Task IA)

New Results (Task IA)

System ID	Approach	Task I a	Comments	
5	• Discourse profiling, similarity function	• 0.03	Some assumptions might be misplaced Best performing Systems	
6	 Tfidf + neural network, dissimilarity score 	• 0.10	Tfidf approach performed among the bott like last year Best performing	
8	 Sentence fusion Jaccard Cascade Jaccard Focused SVM method Voting Method I Voting Method 2 	 0.12 0.09 0.12 0.04 0.11 0.10 	Systems Second Dest performance, second highest deviation	
9	 Sect-class TSR Modified TSR TSR-sent-class 	0.000.050.00	Ranking methods have not worked well	

New Results (Task IA)

ID	Approach	Task IA	Comments
10	WEKA + SUMMA • Method I • Method 2	0.020.01	• Regression did not perform well
12	 Ranking problem, Text classification problem 	• 0.02	 Suggests that Task 1a is not IR
3	• Unsupervised bigram overlap method		Middle order performance Best performing Systems
15	 Tfidf+st+sl Tkern I - I Tkern I - I ce Tkern I - 4 Tkern I - 4ce Tkern I - 8 Tkern I - 8ce 	 0.13 0.01 0.01 0.01 0.01 0.01 0.01 0.01 	• Best performance, most deviation
			Best performing Systems
16	SVMRank, Manifold Ranking System	• 0.10	Most consistent out of top performing systems
BIRNDL	2016: CL-SciSumm 16 Overview		23 June 2016 13

New Results (Task IB)

New Results (Task IB)

ID	Approach	Task IB	Best	Comments
5	• Transdisciplinary Scientific Lexicon	0.06 performing Systems		Dependency on Task 1A hurts performance
8	 Sentence fusion Jaccard Cascade Jaccard Focused SVM method Voting Method I Voting Method 2 	 0.29 0.25 0.31 0.17 0.28 0.26 		Combinations of Voting methods with Task IA approaches worked well
10	WEKA + SUMMAText classification IText classification 2	0.130.06		Domain knowledge improves classification
12	• Text classification	• 0.01		Citation context is not enough; More features need to be explored
13	Rule-based approach	• 0.05		Dependency on Task IA and paper structure
16	Manifold Ranking System	• 0.15		Ranking did not perform well
I	BIRNDL 2016: CL-SciSumm 16 Overview			23 June 2016 15

New Results – Task 2

New

Supplemental Analyses

- We investigated whether high deviations could be because of the topic sets themselves
- ✤ Topics with both high and low number of citances have mixed results
- ♦ No significant patterns of performance against:
 - ♦ Number of citances of the topic set
 - ♦ Age of the paper

Limitations

- Task IB: limited number of samples for most (e.g., hypothesis) discourse facets, inconsistent labeling
- Preprocessing: OCR + Parsing
- Software: Protégé w/ manual alignment and post-processing
- Scaling the corpus was difficult: key bottleneck in the corpus development
- Participant feedback?
 - ♦ Guidelines
 - ♦ The Task
 - ♦ The Corpus size, #citing papers
 - Evaluation metrics

Next Steps: IJDL Special Issue

Other shared tasks have a notebook version of the proceedings.

Authors wishing to revise should submit a revised version of their paper to the ACL Anthology.

We also encourage extended versions (e.g., with more detailed analyses) to the IJDL special issue:

http://bit.ly/birndl-ijdl

First submission deadline: 30 September Notification: 15 November

Acknowledgements

- ♦ Chin-Yew Lin (MSRA)
- ♦ NIST and Hoa Dang
- ♦ Lucy Vanderwende, MSR
- Anita de Ward, Elsevier Data
 Services
- Kevin B. Cohen, Prabha Yadav (U. Colorado, Boulder)
- ♦ Rahul Jha (Google)

U-Hyderabad Annotators:

Aakansha Gehlot, Ankita Patel, Fathima Vardha, Swastika Bhattacharya and Sweta Kumari

System Paper Reviewers:

Akiko Aizawa, Dain Kaplan, John Lawrence, Lucy Vanderwende, Philipp Mayr, Vasudeva Verma and John Conroy

This task was possible through the generous support of

Microsoft Research

BIRNDL 2016: CL-SciSumm 16 Overview

23 June 2016 20

Conclusions

- Successful enlargement of the 2014 pilot task, albeit with some clarification issues
- We invite teams to examine the detailed results available with the GitHub repo: <u>https://github.com/WING-NUS/scisumm-corpus/</u>
- Results and finalized analyses still in development; CEUR version should be deemed preliminary notebook version of paper
- Look forward to your discussion for the planning and coordination of the next iteration!
- ♦ Thanks to all teams' participation for the success of CL-SciSumm 2016!

Additional Slides

BIRNDL 2016: CL-SciSumm 16 Overview

Scientific Document Summarization

- ♦ Abstractive summary
 - ♦ Authors' own summary
- ♦ Extractive summary
 - ♦ Surface, lexical, semantic or rhetorical features of the paper
- ♦ Citation summary
 - ♦ Community creates a summary when citing
- ♦ Faceted summary
 - ♦ Capture all aspects of a paper

Scientific Document Summarization Citation-based extractive summaries

Scope of Citation

- Qazvinian, V., and Radev, D. R. "Identifying non-explicit citing sentences for citation-based summarization" (ACL, 2010)
- Abu-Jbara, Amjad, and Dragomir Radev. "Reference scope identification in citing sentences." (ACL, 2012)

Coherence

Abu-Jbara, Amjad, and Dragomir Radev. "Coherent citationbased summarization of scientific papers." (ACL 2011)

In summary

Community concurs that a citation-based summary of a scientific document is important.

Citing papers cite different aspects of the same reference paper.

Assigning facets to these citances may help create coherent summaries.

Annotation Pipeline

BIRNDL 2016: CL-SciSumm 16 Overview

23 June 2016 26

Annotating the SciSumm corpus

♦ 6 annotators selected from a pool of 25

♦ 6 hours of training

Sold standard annotations for Task IA and IB, per topic or reference paper

Community and hand-written summaries for Task 2, per topic

🔗 protégé