Should Have, Would Have, Could Have

UPPSALA UNIVERSITET Investigating Verb Group Representations for Parsing with Universal Dependencies

Miryam de Lhoneux and Joakim Nivre

Department of Linguistics and Philology Uppsala University {miryam.de_lhoneux, joakim.nivre}@lingfil.uu.se

UNIVERSITET

1. Introduction • problem: UD is believed to be suboptimal for parsing • solution: Create a parsing representation (de Marneffe et al., 2014) • focus of the study: verb groups

done have

Figure 1: *MS verb group: the auxiliary is the head*

Figure 2: UD/PDT verb group : the main verb is the head UD uses PDT style but MS is better for parsing

(Nilsson et al., 2006, 2007; Schwartz et al., 2012)

Treebank	#S	#W	%A
SDT	1,936	35K	9.45
PDT	80,407	1,382K	1.38
Basque	7,194	97K	8.51
Bulgarian	10,022	141K	1.03
Croatian	3,757	84K	3.87
Czech	77,765	1,333K	0.92
Danish	5,190	95K	2.29
English	14,545	230K	2.85
Estonian	1,184	9K	0.73
Finnish	12,933	172K	1.49
Finnish-FTB	16,913	143K	2.89
French	16,148	394K	1.45
German	14,917	282K	1.05
Greek	2,170	53K	0.36
Hebrew	5,725	147K	0.15
Hindi	14,963	316K	3.27
Italian	12,188	260K	1.87
Norwegian	18,106	281K	2.60
Old_Church_Slavonic	5,782	52K	0.35
Persian	5,397	137K	1.40
Polish	7,500	76K	0.97
Portuguese	9,071	207K	0.20
Romanian	557	11K	2.88
Slovenian	7,206	126K	4.57
Spanish	15,739	424K	0.89
Swedish	4,807	76K	2.37
Tamil	480	8K	5.30

1. Find main verb and collect auxiliaries set 2. Head of main verb becomes head of outermost auxiliary 3. Make a chain from outermost auxiliary to main verb

Figure 5: Intermediate representation

this could easily have done

Figure 6: MS representation

2.2 Back Transformation: MS to UD

1. Find main verb and collect auxiliaries set

2. Attach auxiliaries to main verb

Finnish-FTB

French

3. Attach auxiliaries dependents to main verb

We obtain 100% back transformation accuracy on all but 4 treebanks.

3. R	3. Results								
3.1 Effect of VG Transformation on Parsing									
UD language	A	В	С	D					
Basque	64.4	63.8**	64.0	64.4					
Bulgarian	83.4	83.2*	82.5	82.9					
Croatian	75.9	74.6**	73.7	75.9					
Czech	80	76.5**	76.4	79.9					
Danish	75.9	75.2**	74.8	75.8					
English	81.7	80.4**	80.2	81.5					
Estonian	77.1	77.8	77.6	77.0					
Finnish	66.9	66.4*	65.9	66.4					

71.3 70.4** 72.1 72.5

82.1 81.6** 81.3 81.8

2.5 Software

Т

- Parser: MaltParser (Nivre et al., 2006) with default settings and UD (coarse) PoS tags.
- Transformation algorithms: released as part of oDETTE (DEpendency Treebank Transformation and Evaluation). https://github.com/mdelhoneux/oDETTE

3.2 Error analysis

The baseline consistently outperforms the transformed model on the punctuation dependency relation. Punctuation is most often attached to the main verb. The transformed model is bad at identifying the main verb.

Model/Gold UD MS UD A B MS D C
 Table 2: Summary of Figure 7
 3.3 Role of POS tags ambiguity Were improvements in PDT and SDT the result of POS disambiguation? POS main verb aux 0.22 Verb-main 72.81 Verb-copula 22.30 95.95

 Table 3: 2 main verb group POS tags in SDT

 We modify POS tags to create 3 treebanks: • τ_o : original treebank • τ_d : disambiguated treebank • τ_a : ambiguous treebank SDT τ_d **67.8** 67.4 -0.4 SDT τ_o | 65.7 | 66.2 0.5 SDT τ_a | 64.2 | 65.4* 1.2 PDT τ_d 69.2 69.2 0.0 PDT *τ*_o | 68.5 | **68.8**** 0.3 PDT τ_a 68.2 68.4* 0.2 **Table 4:** LAS on (A) and (B) with different levels of POS tag ambiguity. $\Delta = (B) - (A)$ The hypothesis seems to hold for SDT.

	German Greek Hebrew Hindi Italian Norwegian Old_Church_Slavonic Persian Polish Portuguese Romanian	76.6 75.2 78.4 85.4 83.8 84.5 68.8 81.1 79.4 81.3 64.2	76.0** 75.3 77.9** 84.2** 83.6 82.0** 68.7 79.8** 79.1 81.5 62.5*	75.4 75.1 77.9 84.9 83.3 81.7 68.7 79.8 79.0 81.6 64.0	76.1 75.2 78.5 85.2 83.6 84.5 68.9 81.1 79.3 81.3 64.6				
	Slovenian	80.8	79.7**	79.8					
	Spanish Swadiah	81.5	81.2**	81.2					
	Swedish Tamil	76.8 67.2	75.7** 67.1	75.6 67.4	76.7 67.5				
	Table 6: LAS with the 4 versions of the treebank.								
MS is better than UD for parsing MS is easier to learn than UD Symmetry in differences $B > A$ $C > A$ $A = B = C = D$ Table 7: Hypotheses									
4. Conclusion									
 Verb groups should stay as is in UD. Gains from transforming from PDT style to MS style in previous studies were probably obtained because the approach helped disambiguate POS tags. 									

Future work

• Looking at other parsing models.

Less clear for PDT, maybe due to the use of predicted POS tags in experiments.

3.4 Predicted vs gold POS tags Can UD benefit from the transformation when using predicted POS tags? X It seems not. POS tag A B

76.8 75.7** -1.1 gold predicted 76.4 75.6** -0.8 **Table 5:** LAS on UD_Swedish. $\triangle = B - A$

• More in-depth error analysis.

• Looking at other representations (e.g. PPs).

References

Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. 2014. Universal stanford dependencies: A cross-linguistic typology. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, May 26-31, 2014.. pages 4585–4592. Jens Nilsson, Joakim Nivre, and Johan Hall. 2006. Graph transformations in data-driven dependency parsing. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, ACL-44, pages 257–264. Jens Nilsson, Joakim Nivre, and Johan Hall. 2007. Generalizing tree transformations for inductive dependency parsing. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. MaltParser: A data-driven parser-generator for dependency parsing. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC). pages 2216–2219. Roy Schwartz, Omri Abend, and Ari Rappoport. 2012. Learnability-based syntactic annotation design. In COLING. volume 24, pages 2405-2422.