Evaluating Neural Machine Translation in English-Japanese Task (TEAM ID: WEBLIO MT)

Zhongyuan Zhu @raphaelshu

Empirically evaluate various models in EJ task

Two network architectures

multi-layer encoder-decoder model

- Three recurrent units
 - LSTM, GRU, IRNN

- Two kinds of training data
 - naturally-ordered, pre-reordered

Results: perplexities

Results: evaluation scores

	BLEU	RIBES	HUMAN	JPO
Baseline phrase-based SMT	29.80	0.691		
Baseline hierarchical phrase-based SMT	32.56	0.746		
Baseline Tree-to-string SMT	33.44	0.758	30.00	
Submitted system 1 (NMT)	34.19	0.802	43.50	
Submitted system 2 (NMT + System combination)	36.21	0.809	53.75	3.81
Best competitor 1: NAIST (Travatar System with NeuralMT Reranking)	38.17	0.813	62.25	4.04
Best competitor 2: naver (SMT t2s + Spell correction + NMT reranking)	36.14	0.803	53.25	4.00

Finding & Insights

- Soft-attention models outperforms multi-layer encoder-decoder models
- Training models on pre-reordered data hurts the performance
- NMT models tend to make grammatically valid but incomplete translations

Thanks.