# **Effects of Game on User Engagement** with Spoken Dialogue System

Hayato Kobayashi, Kaori Tanio, Manabu Sassano, Yahoo Japan Corporation

## Introduction

## Background

- Making users actively utter queries is important in a spoken dialogue system.
  - There have been several studies based on gamification for addressing this problem (Gustafson et al., 2004; Bell et al., 2005; Hjalmarsson et al., 2007; Rayner et al., 2010; Rayner et al., 2012; Jurgens and Navigli, 2014). • However, it takes much time and effort to gamify a whole system.

## Log analysis

## **Comparison of reply rates after game's win/lose**

- Reply rate (by users) of a system response R is defined as follows.
  - How frequently do users continue to use the system after receiving R?

### Purpose

- To explore the possibilities of using of a small game module instead of gamifying a whole system.
  - Can a dialogue game make users actively use the whole system?

## Contribution

- Analyzed vast amounts of dialogue data, i.e., more than tens of millions of **user utterances** cumulated via a running app of a spoken dialogue system.
- Discovered that game plays increased the average number of utterances by about 150%, despite excluding utterances about the game.

## Onsei-Assist

- Japanese spoken dialogue Android/iOS app.
  - Siri-like personal assistant developed by Yahoo Japan Corporation.
  - Produced more than 20 million of utterances within a year via pre-installs to smartphones and downloads (more than one million) in Google Play.



Failed by Cond. 2

## (Reply rate of R) := $\frac{(\# \text{ of user replies to } R)}{(\# \text{ of } R \text{ in the log})}$

- Reply rates after a user won or failed (especially for saying a word already said) were 0.90 and 0.96, respectively.
  - This clearly indicates that **users tend to retry to win after they failed**.
- Those reply rates are quite high, considering the fact that even a question-type system response "どうしました? (What's happening?)" is 0.80.
  - This implies that the game leverages users' natural desires for competition



## **Comparison of new users (played/non-played)**

- Average number of utterances over new users versus elapsed weeks.
  - **Played** and **Non-played** represent users who had played and had not played the game on the first day, respectively.
- The figure clearly indicates that **Played tended to use the system more**

#### Log of user and system utterances

| Time Stamp     | User ID | Туре    | User Utterance          | System Response     |
|----------------|---------|---------|-------------------------|---------------------|
| 2014-8-1 12:34 | UserA   | Weather | 今日の天気 (Today's weather) | 晴れです (It's sunny)   |
| 2014-8-2 22:22 | UserB   | Chat    | こんにちは (Hello)           | こんにちわ (Hello)       |
| 2014-8-3 23:00 | UserC   | Chat    | ありがとう (Thank you)       | いえいえ (Your welcome) |

## Word-chain game

## Rules of Japanese word-chain game, Shiritori

- The principle of the word-chain game, called Shiritori in Japanese, is to say a word based on rotation so that its head character is the same as the tail character of the previous word, e.g., (apple, eel, lip, pine, ...).
- Each player must say a word satisfying the following four conditions:
  - 1. The head of the word must be the same as the tail of the previous word.
  - 2. The word must not be a word already said in the game
  - 3. The word must be a noun.
  - 4. The tail of the word must not end with " $\mathcal{N}(n)$ ".

#### **Natural dictionary by crowdsourcing**

#### frequently than Non-played.



## **Comparison of existing users before/after each play**

- Average number of utterances over game plays of existing users a week before and after each game play.
- Game plays increased the average number of utterances by about 150%  $(24.60 \rightarrow 43.61)$  despite the fact that we excluded utterances about the game.
  - A possible reason is that users have become more familiar with this assistant agent through playing the game. Thus they began to use nongame modules more frequently.

#### After Before

- Prepared 1,150 seed words from dozen of employees in our company by using a simple word-chain game program developed only for this purpose.
- Created a crowdsourcing task asking workers to answer an appropriate word for each seed word based on the above rule.
- Obtained a sufficient amount of words (6,148) with their frequencies after repeating the task three times
- Extracted the top 20 words based on frequency for each of the 66 Japanese head characters in the extracted words.

#### Results of crowd sourcing task

| Stage | #Words | #Answers | #Errors | • | #Words: # of obtained words    |
|-------|--------|----------|---------|---|--------------------------------|
| 1     | 1,403  | 3,379    | 71      | • | #Answers: # of user answers    |
| 2     | 2,951  | 9,314    | 826     | • | #Errors: # of answers breaking |
| 3     | 6,148  | 25,645   | 2,285   |   | the above rules                |

29,448 (a) # of game plays 1,491,125 (b) # of utterances 724,416 (c) # of game utterances 206,940 0 24.60 43.61 ((b) - (c))/(a)



## Conclusion

- Discovered a fact that a game can help increase user engagement with a spoken dialogue system.
  - This suggests it is important to consider adding an entertaining module,  $\bullet$ such as a game, when developing a spoken dialogue system, as well as a useful module such as a route search.
- Future research includes to examine other games such as a word association and quiz games.