Natural language inference

e Tree structured (recursive) NNs: Designed to compute vector
epresentations for sentence meaning by semantic composition

e (Can they really do this? Limited evidence or theory so far for
robust functional composition

o \We test this ability on artificial and natural data.
e Task: Natural language inference (aka textual entailment)
James Byron Dean refused to move without blue jeans
fentails, contradicts, neither}

James Dean didn't dance without pants

e Simple to define/model as a classification task, but tests
handling of every aspect of language meaning but grounding.

TreeRNNs for natural language inference
Softmax classifier P(C) = 0.8

;?{%Fﬁ 1{1;;); all reptiles walk vs. some turtles move

Composition all reptiles walk some turtles move
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layers all reptiles walk some turtles move
all reptiles some turtles

Pre-trained or randomly 1nitialized learned word vectors

® Recursive layer fn.: sum, plain NN, or NTN (Chen et al. '13)
Yw = {(M[x;; x] + b)

Y = f TN, + M[x;; x] + b)

e Dimension D of vectors is tuned (NB: the NTN layer has
dramatically more parameters - O(D°) instead of O(D?))

Simulating logical composition with Natural Logic

e Formal logic for predicting natural language inference
judgments (we use the formalism from MacCartney 2009)

e Defined over seven relations (see upper right) - exactly one
applies for any two words/phrases/sentences of the same type

o \We generate sentences from three artificial lanquages, then
use implemented natural logic to label pairs of them.

Learning relation composition

Recursive neural networks can learn logical semantics.

Samuel R. Bowman, Christopher Potts, and Christopher D. Manning

| . . . . X=Yy equivalence couch = sofa
e You'll never observe all word pairs - lexical relation composition e | |
. .. . . . . O xCy  forward entailment crow C bird
fills in inevitable gaps in lexical knowledge for inference: il
. . . . . O x3dy reverse(sc?rrll'tc)allment European 3 French
if {animal 1 cat, cat 1 kitten} then animal 2 kitten oy eoation nman A nonhuman

(ex haus e exclusion)

if {cat © animal, animal / non-animal} then cat | non-animal x|y alternation cat | dog
* \We use artificial data: ~3k train pairs, 3k test, over 80 words. W Y Qo @1imal - nonfuman
0 X#y independence hungry # hippo
Train Test Slide from Bill MacCartney
— ~ Train Test

i — 1 53.8 (10.5) 53.8 (10.5)

b o pomy ot 090) 940 (87.0) Monotonicity reasoning and quantifiers

ps|pr prEpr DI 0 O 296 (59) e Monotonicity + quantification are a classic case study for formal
pr  P1 P8 L pa Figures are reported as % accuracy and (macro-averaged F1)

Learning recursive, functional definitions

* Phrase and sentence meanings are built compositionally out of
shorter phrases and sentences following a recursive structure. Train:  (most turtle) swim | (no turtle) move
e Testing ability to learn to handle recursive structure: we train a (all lizard) reptile L (some lizard) animal
, Test:  (most turtle) reptile | (all turtle) (not animal)
model on short sentences and test it on longer ones.

e Data: Statements of propositional Ioglc 60k s

examples, 12k training examples of

nort training
up to triple the length.

e Artificial data with a 20 word vocabulary:

semantics: It all dogs bark, do all animals make sounds?

Train Test

# only 354

(7.5) 354 (1.5)

ts with unvalued variables, 25d SumNN 96.9 (97.7)  93.9 (95.0)

25d TreeRNN 99.6 (99.6) 99.2 (99.3)

ain Boolean evaluation. 25d TreeRNTN  100.0 (100.0)  99.7 (99.5)

e NB: Model must compare statemer
more in common with 3-SAT than p
not ps 4 D3
notnotps = Pg
ps T (p3orps)
(pror(p2orps)) T (p2 and notpy)
not (notp1 andnotps) =  (p1 orpz)

Short examples. All logical symbols (proposition variables, and, or, and not) are
treated as words and have learned embedding vectors.
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Can NNs learn to do inference over real English?

e Train/test on SICK entailments (4.5k training examples).

o Best purely-learned system to date, but even with worc
GloVe, noisy extra data from DenotationGraph, and sig
preprocessing, accuracy still below the SotA (77% vs. 85%).

earn English compositional
netter unsupervised methods.

e 4.5k examplesisnotenoughto
semantics. Need more data and

Compositional neural network models for natural language meaning
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already do well on phenomena like semantic similarity and sentiment that
engage the strengths of these models' continuous vector representations.

Our artificial data experiments find no fundamental obstacles to also being
able to learn representations capable of modeling formal semantic notions
of meaning composition from scratch, given enough data.



