
Recursive neural networks can learn logical semantics.
Samuel R. Bowman, Christopher Potts, and Christopher D. Manning

Natural language inference
• Tree structured (recursive) NNs: Designed to compute vector
representations for sentence meaning by semantic composition

• Can they really do this? Limited evidence or theory so far for
robust functional composition

• We test this ability on artificial and natural data.
• Task: Natural language inference (aka textual entailment)

James Byron Dean refused tomove without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants

• Simple to define/model as a classification task, but tests
handling of every aspect of language meaning but grounding.

TreeRNNs for natural language inference

• Recursive layer fn.: sum, plain NN, or NTN (Chen et al. '13)
yNN = f(M[xl; xr] + b) child vectors xl and xr are concatenated

yNTN = f(xlT[1...N]xr + M[xl; xr] + b) T is a learned DxDxD tensor

• Dimension D of vectors is tuned (NB: the NTN layer has
dramatically more parameters – O(D3) instead of O(D2))

Simulating logical composition with Natural Logic
• Formal logic for predicting natural language inference
judgments (we use the formalism fromMacCartney 2009)

• Defined over seven relations (see upper right) – exactly one
applies for any two words/phrases/sentences of the same type

• We generate sentences from three artificial languages, then
use implemented natural logic to label pairs of them.

Learning relation composition
• You'll never observe all word pairs – lexical relation composition
fills in inevitable gaps in lexical knowledge for inference:
if {animal⊐ cat, cat⊐ kitten} then animal⊐ kitten
if {cat⊏ animal, animal ^ non-animal} then cat | non-animal

• We use artificial data: ~3k train pairs, 3k test, over 80 words.

Learning recursive, functional definitions
• Phrase and sentence meanings are built compositionally out of
shorter phrases and sentences following a recursive structure.

• Testing ability to learn to handle recursive structure: we train a
model on short sentences and test it on longer ones.

• Data: Statements of propositional logic, 60k short training
examples, 12k training examples of up to triple the length.

• NB: Model must compare statements with unvalued variables,
more in common with 3-SAT than plain Boolean evaluation.

Monotonicity reasoning and quantifiers
• Monotonicity + quantification are a classic case study for formal
semantics: If all dogs bark, do all animals make sounds?

• Artificial data with a 20 word vocabulary:

Can NNs learn to do inference over real English?
• Train/test on SICK entailments (4.5k training examples).
• Best purely-learned system to date, but even with words from
GloVe, noisy extra data from DenotationGraph, and significant
preprocessing, accuracy still below the SotA (77% vs. 85%).

• 4.5k examples is not enough to learn English compositional
semantics. Need more data and better unsupervised methods.

information in the sentence vectors.

Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

TreeRNTN models are adequate for typical cases
of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimension N . A learned
composition function maps pairs of them to single
phrase vectors of dimension N , which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the

⌘ @ A ^ | ` #
⌘ ⌘ @ A ^ | ` #
@ @ @ · | | · ·
A A · A ` · ` ·
^ ^ ` | ⌘ A @ #
| | · | @ · @ ·
` ` ` · A A · ·
· · # · · ·

Table 2: In §3, we assess our models’ ability to
learn to do inference over pairs of relations using
the rules represented here, which are derived from
the definitions of the relations in Table 1. As an ex-
ample, given that p1 @ p2 and p2

^
p3, the entry in

the @ row and the ^ column lets us conclude that
p1 | p3. Cells containing a dot correspond to situa-
tions for which no valid inference can be drawn.

Train Test

only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
15d NTN 100 (100) 99.6 (95.5)

Table 3: Performance on the semantic relation ex-
periments. These results and all other results on
artificial data are reported as mean accuracy scores
over five runs followed by mean macroaveraged
F1 scores in parentheses. The “# only” entries
reflect the frequency of the most frequent class.

in order to be able to use unseen relational facts
within larger derivations. Our first experiment
studies how well each model can learn to perform
them them in isolation.

Experiments We begin by creating a world
model on which we will base the statements in
the train and test sets. This takes the form of a
small Boolean structure in which terms denote sets
of entities from a small domain. Fig. 2a depicts
a structure of this form with three entities (a, b,
and c) and eight proposition terms (p1–p8). We
then generate a relational statement for each pair
of terms in the model, as shown in Fig. 2b. We
divide these statements evenly into train and test
sets, and delete the test set examples which can-
not be proven from the train examples, for which
there is not enough information for even an ideal
system to choose a correct label. In each experi-
mental run, we create a model with 80 terms over
a domain of 7 elements, yielding a training set of
3200 examples and a test set of 2960 examples.

We trained models with both the NN and NTN

{a, b, c}

p1, p2

{a, b}

p3

{a, c}

p4

{b, c}

p5, p6

{a} {b}

p7, p8

{c}

{}

(a) Example boolean structure, shown with edges idicat-
ing inclusion. The terms p1–p8 name the sets. Not all
sets have names, and some sets have multiple names, so
that learning ⌘ is non-trivial.

Train Test

p1 ⌘ p2 p2
^
p7

p1 A p5 p2 A p5

p4 A p8 p5 ⌘ p6

p5 | p7 p7 @ p4

p7
^
p1 p8 @ p4

(b) A few examples of atomic statements about the
model depicted above. Test statements that are not
provable from the training data shown are crossed out.

Figure 2: Small example structure and data for
learning relation composition.

comparison functions on these data sets.2 In both
cases, the models are implemented as described in
§2, but since the items being compared are single
terms rather than full tree structures, the composi-
tion layer is not used, and the two models are not
recursive. We simply present the models with the
(randomly initialized) embedding vectors for each
of two terms, ensuring that the model has no infor-
mation about the terms being compared except for
the relations between them that appear in training.

Results The results (Table 3) show that NTN is
able to accurately encode the relations between the
terms in the geometric relations between their vec-
tors, and is able to then use that information to re-
cover relations that are not overtly included in the
training data. The NN also generalizes fairly well,
but makes enough errors that it remains an open
question whether it is capable of learning repre-
sentations with these properties. It is not possible
for us to rule out the possibility that different opti-
mization techniques or finer-grained hyperparam-
eter tuning could lead an NN model to succeed.

As an example from our test data, both mod-

2Since this task relies crucially on the learning of a pair of
vectors, no simpler version of our model is a viable baseline.

⌘ @ A ^ | ` #
⌘ ⌘ @ A ^ | ` #
@ @ @ · | | · ·
A A · A ` · ` ·
^ ^ ` | ⌘ A @ #
| | · | @ · @ ·
` ` ` · A A · ·
· · # · · ·

Table 2: In §3, we assess our models’ ability to
learn to do inference over pairs of relations using
the rules represented here, which are derived from
the definitions of the relations in Table 1. As an ex-
ample, given that p1 @ p2 and p2

^
p3, the entry in

the @ row and the ^ column lets us conclude that
p1 | p3. Cells containing a dot correspond to situa-
tions for which no valid inference can be drawn.

Train Test

only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
15d NTN 100 (100) 99.6 (95.5)

Table 3: Performance on the semantic relation ex-
periments. These results and all other results on
artificial data are reported as mean accuracy scores
over five runs followed by mean macroaveraged
F1 scores in parentheses. The “# only” entries
reflect the frequency of the most frequent class.

in order to be able to use unseen relational facts
within larger derivations. Our first experiment
studies how well each model can learn to perform
them them in isolation.

Experiments We begin by creating a world
model on which we will base the statements in
the train and test sets. This takes the form of a
small Boolean structure in which terms denote sets
of entities from a small domain. Fig. 2a depicts
a structure of this form with three entities (a, b,
and c) and eight proposition terms (p1–p8). We
then generate a relational statement for each pair
of terms in the model, as shown in Fig. 2b. We
divide these statements evenly into train and test
sets, and delete the test set examples which can-
not be proven from the train examples, for which
there is not enough information for even an ideal
system to choose a correct label. In each experi-
mental run, we create a model with 80 terms over
a domain of 7 elements, yielding a training set of
3200 examples and a test set of 2960 examples.

We trained models with both the NN and NTN

{a, b, c}

p1, p2

{a, b}

p3

{a, c}

p4

{b, c}

p5, p6

{a} {b}

p7, p8

{c}

{}

(a) Example boolean structure, shown with edges idicat-
ing inclusion. The terms p1–p8 name the sets. Not all
sets have names, and some sets have multiple names, so
that learning ⌘ is non-trivial.

Train Test

p1 ⌘ p2 p2
^
p7

p1 A p5 p2 A p5

p4 A p8 p5 ⌘ p6

p5 | p7 p7 @ p4

p7
^
p1 p8 @ p4

(b) A few examples of atomic statements about the
model depicted above. Test statements that are not
provable from the training data shown are crossed out.

Figure 2: Small example structure and data for
learning relation composition.

comparison functions on these data sets.2 In both
cases, the models are implemented as described in
§2, but since the items being compared are single
terms rather than full tree structures, the composi-
tion layer is not used, and the two models are not
recursive. We simply present the models with the
(randomly initialized) embedding vectors for each
of two terms, ensuring that the model has no infor-
mation about the terms being compared except for
the relations between them that appear in training.

Results The results (Table 3) show that NTN is
able to accurately encode the relations between the
terms in the geometric relations between their vec-
tors, and is able to then use that information to re-
cover relations that are not overtly included in the
training data. The NN also generalizes fairly well,
but makes enough errors that it remains an open
question whether it is capable of learning repre-
sentations with these properties. It is not possible
for us to rule out the possibility that different opti-
mization techniques or finer-grained hyperparam-
eter tuning could lead an NN model to succeed.

As an example from our test data, both mod-

2Since this task relies crucially on the learning of a pair of
vectors, no simpler version of our model is a viable baseline.

els correctly labeled p1 @ p3, potentially learning
from the training examples {p1 @ p51, p3 A p51}

or {p1 @ p65, p3 A p65}. On another example
involving comparably frequent relations, the NTN
correctly labeled p6 A p24, likely on the basis of
the training examples {p6`p28, p28

^
p24}, while

the NN incorrectly assigned it #.

4 Recursive structure

A successful natural language inference system
must reason about relations not just over famil-
iar atomic symbols, but also over novel structures
built up recursively from these symbols. This sec-
tion shows that our models can learn a composi-
tional semantics over such structures. In our evalu-
ations, we exploit the fact that our logical language
is infinite by testing on strings that are longer and
more complex than any seen in training.

Experiments As in §3, we generate artificial
data from a formal system, but we now replace
the unanalyzed symbols from that experiment
with complex formulae. These formulae repre-
sent a complete classical propositional logic: each
atomic symbol is a variable over the domain {T,
F}, and the only operators are truth-functional
ones. Table 4a defines this logic, and Table 4b
gives some short examples of relational statements
from our data. To compute these relations between
statements, we exhaustively enumerate the sets of
assignments of truth values to propositional vari-
ables that would satisfy each of the statements, and
then we convert the set-theoretic relation between
those assignments into one of the seven relations
in Table 1. As a result, each relational statement
represents a valid theorem of the propositional
logic, and to succeed, the models must learn to re-
produce the behavior of a theorem prover.3

In our experiments, we randomly generate
unique pairs of formulae containing up to 12 in-
stances of logical operators each and compute the
relation that holds for each pair. We discard pairs
in which either statement is either a tautology or a
contradiction, for which the seven relations in Ta-
ble 1 are undefined. The resulting set of formula

3 Socher et al. (2012) show that a matrix-vector TreeRNN
model somewhat similar to our TreeRNTN can learn boolean
logic, a logic where the atomic symbols are simply the values
T and F. While learning the operators of that logic is not triv-
ial, the outputs of each operator can be represented accurately
by a single bit. In the much more demanding task presented
here, the atomic symbols are variables over these values, and
the sentence vectors must thus be able to distinguish up to 22

6

distinct conditions on valuations.

Formula Interpretation

p1, p2, p3, p4, p5, p6 JxK 2 {T,F}
not' T iff J'K = F

(' and) T iff F /2 {J'K, J K}
(' or) T iff T 2 {J'K, J K}

(a) Well-formed formulae. ' and range over all well-
formed formulae, and J·K is the interpretation function
mapping formulae into {T,F}.

not p3 ^
p3

not not p6 ⌘ p6

p3 @ (p3 or p2)
(p1 or (p2 or p4)) A (p2 and not p4)

not (not p1 and not p2) ⌘ (p1 or p2)

(b) Short examples of the type of statements used for
training and testing. These are relations between well-
formed formulae, computed in terms of sets of satisfying
interpretation functions J·K.

Table 4: Natural logic relations over sentences of
propositional logic.

pairs is then partitioned into 12 bins according the
number of operators in the larger of the two formu-
lae. We then sample 20% of each bin for a held-
out test set. If we do not implement any constraint
that the two statements being compared are similar
in any way, then the generated data are dominated
by statements in which the two formulae refer to
largely separate subsets of the six variables, which
means that the # relation is almost always cor-
rect. In an effort to balance the distribution of re-
lation labels without departing from the basic task
of modeling propositional logic, we disallow indi-
vidual pairs of statements from referring to more
than four of the six propositional variables.

In order to test the model’s generalization to un-
seen structures, we discard training examples with
more than 4 logical operators, yielding 60k short
training examples, and 21k test examples across
all 12 bins. In addition to the two tree models, we
also train a summing NN baseline which is largely
identical to the TreeRNN, except that instead of
using a learned composition function, it simply
sums the term vectors in each expression to com-
pose them before passing them to the comparison
layer. Unlike the two tree models, this baseline
does not use word order, and is as such guaranteed
to ignore some information that it would need in
order to succeed perfectly.

Results Fig. 3 shows the relationship between
test accuracy and statement size. While the sum-
ming baseline model performed poorly across the

Compositional neural network models for natural language meaning
already do well on phenomena like semantic similarity and sentiment that
engage the strengths of these models' continuous vector representations.
Our artificial data experiments find no fundamental obstacles to also being
able to learn representations capable of modeling formal semantic notions
of meaning composition from scratch, given enough data.

Natural logic: relations
Seven possible relations between phrases/sentences:

Venn symbol name example

x ≡ y equivalence couch ≡ sofa

x ⊏ y forward entailment
(strict)

crow ⊏ bird

x ⊐ y reverse entailment
(strict)

European ⊐ French

x ^ y negation
(exhaustive exclusion)

human ^ nonhuman

x | y alternation
(non-exhaustive exclusion)

cat | dog

x ‿ y cover
(exhaustive non-exclusion)

animal ‿ nonhuman

x # y independence hungry # hippo

Slide from Bill MacCartney

Slide from Bill MacCartney

25d$TreeRNTN45d$TreeRNN45d$SumNN #$only

1 0.997436 1 0.912822 0.55641026
2 1 1 0.769072 0.54370894
3 0.998156 0.99208 0.673682 0.55973684
4 0.992548 0.98416 0.569818 0.52244508
5 0.944722 0.958418 0.532628 0.53370183
6 0.917322 0.9446 0.508392 0.53020632
7 0.884528 0.930692 0.484128 0.51434879
8 0.847334 0.91881 0.468566 0.51935768
9 0.815692 0.881188 0.44767 0.48873109
10 0.784936 0.89109 0.440252 0.50021901
11 0.784942 0.857428 0.459278 0.5156038
12 0.757292 0.847528 0.420036 0.50459841

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
cc

ur
ac

y

Number of logical operators in longer expression

25d TreeRNTN

45d TreeRNN

45d SumNN

only

25d$TreeRNTN45d$TreeRNN45d$SumNN #$only

1 0.997436 1 0.912822 0.55641026
2 1 1 0.769072 0.54370894
3 0.998156 0.99208 0.673682 0.55973684
4 0.992548 0.98416 0.569818 0.52244508
5 0.944722 0.958418 0.532628 0.53370183
6 0.917322 0.9446 0.508392 0.53020632
7 0.884528 0.930692 0.484128 0.51434879
8 0.847334 0.91881 0.468566 0.51935768
9 0.815692 0.881188 0.44767 0.48873109
10 0.784936 0.89109 0.440252 0.50021901
11 0.784942 0.857428 0.459278 0.5156038
12 0.757292 0.847528 0.420036 0.50459841

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
cc

ur
ac

y

Size of longer expression

25d TreeRNTN

45d TreeRNN

45d SumNN

only

Figure 3: Results on recursive structure. The ver-
tical dotted line marks the size of the longest train-
ing examples.

low length five, indicating that they learned correct
approximations of the underlying logic. Training
accuracy was 66.6% for the SumNN, 99.4% for
the TreeRNN, and 99.8% for the TreeRNTN.

After the size four training cutoff, performance
gradually decays with expression size for both
tree models, suggesting that the learned approx-
imations were accurate but lossy. Despite the
TreeRNTN’s stronger performance on short sen-
tences, its performance decayed more quickly than
the TreeRNN’s. This suggests to us that it learned
to interpret many specific fixed-size tree structures
directly, allowing it to get away without learning
as robust generalizations about how to compose
terms in the general case. Two factors may have
contributed to the learning of these narrower gen-
eralizations: even with the lower dimension, the
TreeRNTN composition function has about eight
times as many parameters as the TreeRNN, and
the TreeRNTN worked best with weaker L2 reg-
ularization than the TreeRNN (� = 0.0003 vs.
0.001). However, even in the most complex set
of test examples, the TreeRNTN classifies true ex-
amples of every class but ⌘ (which is rare in long
examples, and occurs only once here) correctly the
majority of the time, and the performance of both
models on those examples indicates that both have
learned reasonable approximations of the underly-
ing theorem proving task over recursive structure.

5 Reasoning with quantifiers and

negation

We have seen that recursive models can learn an
approximation of propositional logic. However,
natural languages can express functional meanings
of considerably greater complexity than this. As a

Train: (most turtle) swim | (no turtle) move
(all lizard) reptile @ (some lizard) animal

Test: (most turtle) reptile | (all turtle) (not animal)

Table 5: Performance on the quantifier experi-
ments, given as % correct and macroaveraged F1.

key test of whether our models can capture this
complexity, we now study the degree to which
they are able to develop suitable representations
for the semantics of natural language quantifiers
like most and all as they interact with negation
and lexical entailments. Quantification and nega-
tion are far from the only place in natural language
where complex functional meanings are found, but
they are natural focus, since they have formed a
standard case study in prior formal work on natu-
ral language inference (Icard and Moss, 2013b).

Experiments Our data consist of pairs of sen-
tences generated from a grammar for a sim-
ple English-like artificial language. Each sen-
tence contains a quantifier, a noun which may be
negated, and an intransitive verb which may be
negated. We use the quantifiers some, most, all,
two, and three, and their negations no, not-all,
not-most, less-than-two, and less-than-three, and
also include five nouns, four intransitive verbs,
and the negation symbol not. In order to be able
to define relations between sentences with differ-
ing lexical items, we define the lexical relations
for each noun–noun pair, each verb–verb pair, and
each quantifier–quantifier pair. The grammar then
generates pairs of sentences and calculates the re-
lations between them. For instance, our models
might then see pairs like (3) and (4) in training
and be required to then label (5).

(most turtle) swim | (no turtle) move(3)
(all lizard) reptile @ (some lizard) animal(4)
(most turtle) reptile | (all turtle) (not animal)(5)

In each run, we randomly partition the set of
valid single sentences under the grammar into
training and test, and then label all of the pairs
from within each set to generate a training set of
27k pairs and a test set of 7k pairs. Because the
model doesn’t see the test sentences at training
time, it cannot directly use the kind of reasoning
described in §3, and must instead both infer the
word-level relations and learn a complete reason-
ing system over them for our logic.

Figures are reported as % accuracy and (macro-averaged F1)

Figures are reported as % accuracy and (macro-averaged F1)

Train Test

only 35.4 (7.5) 35.4 (7.5)
25d SumNN 96.9 (97.7) 93.9 (95.0)
25d TreeRNN 99.6 (99.6) 99.2 (99.3)
25d TreeRNTN 100.0 (100.0) 99.7 (99.5)

Table 6: Performance on the quantifier experi-
ments, given as % correct and macroaveraged F1.

We use the same summing baseline as in §4.
The highly consistent sentence structure in this ex-
periment means that this model is not as disadvan-
taged by the lack of word order information as it is
in the previous experiment, but the variable place-
ment of not nonetheless introduces potential un-
certainty in the 58.8% of examples that contain a
sentence with a single token of it.

Results The results (Table 6) show that both tree
models are able to learn to generalize the underly-
ing logic almost perfectly. The baseline summing
model can largely memorize the training data, but
does not generalize as well. We do not find any
consistent pattern in the handful of errors made by
either tree model, and no errors were consistent
across model restarts, suggesting that there is no
fundamental obstacle to learning a perfect model
for this problem.

6 The SICK textual entailment challenge

The specific model architecture that we use is
novel, and though the underlying tree structure ap-
proach has been validated elsewhere, our experi-
ments so far do not guarantee that it viable model
for handling inference over real natural language
data. To investigate our models’ ability to handle
the noisy labels and the diverse range of linguis-
tic structures seen in typical natural language data,
we use the SICK textual entailment challenge cor-
pus (Marelli et al., 2014b). The corpus consists
of about 10k natural language sentence pairs, la-
beled with entailment, contradiction, or neutral.
At only a few thousand distinct sentences (many
of them variants on an even smaller set of tem-
plate sentences), the corpus is not large enough to
train a high quality learned model of general nat-
ural language, but it is the largest human-labeled
entailment corpus that we are aware of, and our
results nonetheless show that tree-structured NN
models can learn to do inference in the real world.

Adapting to this task requires us to make a few
additions to the techniques discussed in §2. In or-

der to better handle rare words, we initialized our
word embeddings using 200 dimensional vectors
trained with GloVe (Pennington et al., 2014) on
data from Wikipedia. Since 200 dimensional vec-
tors are too large to be practical in an TreeRNTN
on a small dataset, a new embedding transforma-
tion layer is needed. Before any embedding is
used as an input to a recursive layer, it is passed
through an additional tanh neural network layer
with the same output dimension as the recursive
layer. This new layer aggregates any usable infor-
mation from the embedding vectors into a more
compact working representation. An identical
layer is added to the SumNN between the word
vectors and the comparison layer.

We also supplemented the SICK training data4

with 600k examples of entailment data from the
Denotation Graph project (DG, Hodosh et al.
2014, also used by the winning SICK submis-
sion), a corpus of noisy automatically labeled en-
tailment examples over image captions, the same
genre of text from which SICK was drawn. We
trained a single model on data from both sources,
but used a separate set of softmax parameters for
classifying into the labels from each source. We
parsed the data from both sources with the Stan-
ford PCFG Parser v. 3.3.1 (Klein and Manning,
2003). We also found that we were able to train
a working model much more quickly with an ad-
ditional technique: we collapse subtrees that were
identical across both sentences in a pair by replac-
ing them with a single head word. The training
and test data on which we report performance are
collapsed in this way, and both collapsed and un-
collapsed copies of the training data are used in
training. Finally, in order to improve regulariza-
tion on the noisier data, we used dropout (Srivas-
tava et al., 2014) at the input to the comparison
layer (10%) and at the output from the embedding
transform layer (25%).

Results Despite the small amount of high qual-
ity training data available and the lack of resources
for learning lexical relationships, the results (Ta-
ble 7) show that our tree-structured models per-
form competitively on textual entailment, beating
a strong baseline. Neither model reached the per-
formance of the winning system (84.6%), but the

4We tuned the model using performance on a held out de-
velopment set, but report performance here for a version of
the model trained on both the training and development data
and tested on the 4,928 example SICK test set. We also report
training accuracy on a small sample from each data source.

Short examples. All logical symbols (proposition variables, and, or, and not) are
treated as words and have learned embedding vectors.

