Formalising the Swedish Constructicon
in Grammatical Framework

Normunds Grazitis'3, Dana Dannélls?, Benjamin Lyngfelt?, Aarne Ranta!

lUniversity of Gothenburg, Department of Computer Science and Engineering
2University of Gothenburg, Department of Swedish
3University of Latvia, Institute of Mathematics and Computer Science

ACL/IJCNLP Workshop on Grammar Engineering Across Frameworks
Beijing, China, July 30, 2015

Constructicon

A collection of conventionalized (learned) pairings of form and meaning

(or function), typically based on principles of Construction Grammar, CxG
(e.g. Fillmore et al. 1988, Goldberg 1995)

— Semantics is associated directly with the surface form

— vs. Lexical units in a dictionary: pairings of word and meaning (frame)
* Including fixed multi-word units

Each construction (cx) contains at least one variable element
— Often at least one fixed element as well

— Thus, “somewhere” in-between the syntax and the lexicon

An example from Berkeley Constructicon: “make one’s way”
— Structure: {Motion verb [Verb] [PossNP]}
— Frame: MOTION

[theme THEY] {hacked their way} [ourceOUt] [goaiinto the open.

[+heme WWE] {SONG OUr way} [pmacross Europel.

Constructicons

Berkeley Constructicon (BCxn) for English
— A pilot project (around 70 cx), linked to Berkeley FrameNet
Swedish Constructicon (SweCcn)
— An ongoing project (nearly 400 cx so far), partially linked to FrameNet
* ToDo: links to BCxn
Brazilian Portuguese Constructicon

— An ongoing project

A multilingual (interlingual) constructicon would allow for non-
compositional translation in a compositional way

— Constructions with a referential meaning may be linked via FrameNet frames,
while those with a more abstract grammatical function may be related in terms

of their grammatical properties
[Backstrom L., Lyngfelt B., Skoldberg E. (2014) Towards interlingual constructicography]

Swedish Clear = English Colors Translate

Jag behover mat till festen. I need food to the party.

Enter text to translate above

Try Google Translate
123456789

42898373
PhrUtt NoPConj (UttS (UseCl (TTANnt TPres ASimul) PPos (PredVP (UsePron i_Pron) (Ad (ComplSlash (SlashV2a need_V2) (MassNP (UseN food_N)))

(PrepNP to_Prep (DetCN (DetQuant DefArt g) (UseN party_1_N))))))) NoVoc

/

Swedish English Latvian Detect language ~ ".. English Latvian Spanish ~

X

Jag behover mat till festen. | need food to the party.

V4 Wrong?

[l
A
A=

<) B9 ~ Y

behdva_nagot_till_nagot - behdver mat till festen

category VP

http://spraakbanken.gu.se/eng/sweccn

FrameNet Needing

structure [behoval NP1 till1 NP2 | VP]

http://spraakbanken.gu.se/eng/sweccn
http://spraakbanken.gu.se/eng/sweccn

SweCcn

Partially schematic multi-word units/expressions

Particularly addresses constructions of relevance for second-language
learning, but also covers argument structure constructions

Descriptions are manually derived from corpus examples

Construction elements (CE):
— Internal CEs are a part of the cx

— External CEs are a part of
the valency of the cx

— Described in more detail by
attribute-value matrices specifying
their syntactic and semantic features

A central part of cx descriptions
is the free text definitions

— ‘eat himself full’ vs. ‘feel himself tired’
(dta sig mdtt vs. kdnna sig trott)

Name REFLEXIV_RESULTATIV

Category VP

Frame CAUSATION

Defintion [Someone/something]yp performs/under-
goes [an action] activity that leads (or is
supposed to lead) the [actor/theme]p,,
expressed by reflexive, to [a state]gegui-

Structure NP [V Pn,.rs; AP]

Internal Activity: {cat=V, role=Activity}
Pn: {cat=Pnrer1, role=Actor|Theme}
Result: {cat=AP, role=Result}

External NP: {cat=NP, role=Actor|Theme}

Example Peternp [dteraciivity Sigpn MiittResult]

SweCcn - GF

* Task: convert the semi-formal SweCcn into a computational CxG

— Test Grammatical Framework (GF) as a framework for implementing CxG
e Why GF?

— There is no formal distinction between lexical and syntactic functions in GF —
fits the nature of constructicons

— The potential support for multilinguality

— Based on GF Resource Grammar Library (RGL) / an extension to RGL

— An extension to a FrameNet-based grammar and lexicon in GF

e @Goals:

— From the linguistic point of view
* Improve insights into the interaction between the lexicon and the grammar
* Allow for testing the linguistic descriptions of constructions

— From the language technology point of view:

* Facilitate the language processing in both mono- and multilingual settings
— e.g. Information Extraction, Machine Translation

Conversion steps

* Preprocessing:

— Automatic normalization and consistency checking

— Automatic rewriting of the original structures in case of optional CEs and
alternative types of CEs, so that each combination has a separate GF function

* Does not apply to alternative LUs (either free variants or should be split into
alternative constructions, or the CE should be made more general)

— Automatic conversion of SweCcn categories to RGL categories

* May result in more rewriting

 Automatic generation of the abstract syntax

* Automatic generation of the concrete syntax

— By systematically applying the high-level RGL constructors

* And limited low-level means

* Manual verification and completion (ToDo)

— Requires a good knowledge and linguistic intuition of the language

Preprocessing examples

behéva NP, till NP,|VP -

behéva, NP, till,., NP, | behéva, NP till,., VP

snacka|prata|tala NP, .. - (~synonyms of “to talk”)
snackay|prata,|tala, aSg Det CN |

snackay|prata,|tala, aP1_Det CN |

snacka,|prata,|tala, CN

V av Pn..; (NP) -

V avp., refl NP | V av,., refl

Pron Pron

N|Adj+stdda - (compounds)
N + stdda, | A + stdda,

Abstract syntax

Each construction is represented by one or more functions
depending on how many alternative structures are produced in the
preprocessing steps

Each function takes one or more arguments that correspond to the
variable CEs of the respective alternative construction

behdva_nagot_till nagot_VP, : NP -> NP -> VP
behdva_nagot_till nagot_VP, : NP -> VP -> VP

snacka_NP,;: CN -> VP
snacka_NP,: CN -> VP
snacka_NP;: CN -> VP

verba_av_sig transitiv,: V -> NP -> VP
verba_av_sig transitiv,: V -> VP

x_stada;: N -> VP
x_stada,: A -> VP

Concrete syntax

* Many constructions can be implemented by systematically applying
the high-level RGL constructors

— A parsing problem: which constructors in which order?

Construction [Elements __________|Patterns __

behova_nagot_till ndagot VP_1 behova V NP_1 till Prep NP_2 {V} NP {Prep} NP
behova_nagot_till nagot VP_2 behova V NP_1 till Prep VP {V} NP {Prep} VP

Code template l

1. mkVP (mkVP (mkV2 mkV) NP) (mkAdv mkPrep NP) <—[Asimp|e GFgrammar]
2. The parser failed at token VP

Final code (by automatic post-processing)

lin behdva_nagot till nagot VP 1 np_1 np_2 = mkVP
(mkVP (mkv2 (mkV "behover")) np_1)
(SyntaxSwe.mkAdv (mkPrep "till") np_2) ;

GF RGL API

Function

Example

mkvVP

to sleep

mkVP

to love him

mkVP

to send it to him

mkvVP

fo want to sleep

mkVP

to know that she sleeps

mkvVP

fo wonder who sleeps

mkVP

to become red

mkVP

fo paint it red

mkvVP

to ask him who sleeps

mkVP

fo beg him to sleep

mkvVP

to be old

mkvVP

to be older than he

mkVP

to be married to him

mkvVP

fo be very old

mkVP

fo be a...

mkvP

fobe a...

mkvVP

lo be the woman

mkVP

to be here

mkvVP

fo sleep here

mkVP

lo always sleep

Function Type Example
mkNP Quant -> N -> NP this man
mkNP Quant -> CN -> NP this old man
mkNP Quant -> Num -> CN -> NP, | these five old men
mkNP Quant -> Num -> N -> these five men
mkNP Det -> CN -> NP the five old men
mkNP Det -> N -> NP the five men
mkNP Numeral -> CN -> NP five old men
mkNP Numeral -> N -> NP five men
mkNP Card -> CN -> NP forty-five old men
mkNP Card -> N -> NP forty-five men
mkNP Pron -> CN -> NP my old man
mkNP Pron -> N -> NP my man
mkNP PN -> NP Paris
mkNP Pron -> NP we
mkNP Quant -> NP this
mkNP Quant -> Num -> NP these five
mkNP Det -> NP the five best
mkNP CN -> NP old beer
mkNP N -> NP beer

Code-generating grammar

fun mkv2: v —> V2

fun mkVP__ V2 NP: V2 —-> NP -> VP
fun mkVP__VP_Adv: VP —-> Adv -> VP

fun mkAdv: Prep -> NP —-> Adv
fun _mkVvV_: V
fun _mkPrep_: Prep

fun _NP_: NP

A simplified fragment of the abstract syntax

mkVP

(mkV2 (partV _mkV_

(toStr _mkPrep_))) _NP_
mkVP (mkVv2

mkV _mkPrep_) _NP_
mkVP (mkVP _mkV_ V)

(mkAdv _mkPrep_ _NP_)

param Voice = Act | Pass

lincat
V, V2 = Voice => Str
VP, NP, Adv, Prep = Str
1lin
mkV2 v = \\voice => v ! voice

mkVP_ V2_NP vZ2 np = v2 ! Act ++ np
mkVP___VP_Adv vp adv = vp ++ adv

mkAdv prep np = prep ++ np
mkV = table {
Act => "{v}"

Pass => "{Vpass}"

}

mkPrep = "{Prep}"

NP_ = "NP"

A simplified fragment of the concrete syntax

Running examples

« parse "jag behover nagot till nagot"

— PredVP (UsePron i_Pron)
(behéva_nagot_till _nagot_1 (DetNP someSg Det) (DetNP someSg Det))

— PredVP (UsePron i_Pron)
(behéva_nagot_till_nagot_1 (DetNP someSg Det) something NP)

— PredVP (UsePron i Pron)
(behéva nagot till nagot 1 something NP (DetNP someSg Det))

— PredVP (UsePron i_Pron)
(behéva_nagot_till _nagot_1 something NP something NP)

« parse "han ater sig matt"

— PredVP (UsePron he Pron)
(reflexiv_resultativ aeta vb 1 1 V (PositA maett av. 1 1 A))

— PredVP (UsePron he Pron)

(AdvVP (SI_refl aeta_vb_ 1 1 V) (PositAdvAdj maett_av_1 1 A))
— PredVP (UsePron he Pron)

(AdvVP (reciprok_refl aeta_vb 1 1 V) (PositAdvAdj maett_av_1 1 A))
— PredVP (UsePron he Pron)

(AdvVP (trans_refl aeta_vb_1 1 V) (PositAdvAdj maett_av_1 1 A))

— PredVP (UsePron he Pron)
(V_refl rorelse aeta vb 1 1 V (PositAdvAdj maett av_.1 1 A))

Results

In the current experiment, we have considered only the 96 VP
constructions which resulted in 127 functions

— Dominating in SweCcn; have the most complex internal structure

Given the 127 functions, we have automatically generated the
implementation for 98 functions (77%) achieving a 70—-90% accuracy

— There is clear space for improvement

Manual completion postponed because of the active development of
SweCcn (changes = synchronization)

https://github.com/GrammaticalFramework/gf-contrib (SweCcn)

A methodology on how to systematically formalise the semi-formal
representation of SweCcn in GF, showing that a GF construction grammar
can be, to a large extent, acquired automatically

Consequence: feedback to SweCcn developers on how to improve the
annotation consistency and adequacy of the original construction resource

https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib

