

Bilingual parallel corpora are an extremely important resource as they are typically used in data-driven machine translation. There already exist many freely available corpora for European languages, but almost none between Chinese and Japanese. The constitution of large bilingual corpora is a problem for less documented language pairs. We construct a quasi-parallel corpus automatically by using analogical associations based on certain number of parallel corpus and a small number of monolingual data. Furthermore, in SMT experiments, by adding this kind of Chinese–Japanese data into the baseline training corpus, on the same test set, the evaluation scores of the translation results we obtained were significantly or slightly improved over the baseline systems.

Building anal

 Proportional analogy and D: "A is to B as equations has been pr

$$A:B::C:D \Rightarrow \begin{cases} |A|_{a} - |B|_{a} = |C|_{a} - |D|_{a}, \ \forall a \in A, B = d(C,D) \\ d(A,C) = d(B,D) \end{cases}$$

Sentential analogy:

早急に対 て下さい

 Analogical cluster: We each line contains on sentential analogy.

早急

• We produced all poss unaligned monolingua

	Generation of new sentences using analogical associations					
alogical clusters according to proportional analogies y establishes a general relationship between four objects A, B, C s C is to D". An efficient algorithm for the resolution of analogical proposed in (Lepage, 1998) ¹ . A: B:: C: D \Rightarrow $\begin{cases} A _a - B _a = C _a - D _a, \forall a \\ d(A, B) = d(C, D) \\ d(A, C) = d(B, D) \end{cases}$	 Generation of new sentences We use analogy as an operation by which, given two related forms (rewriting model) only one form, the fourth missing form is coined². Applied on sentences, this print can be illustrated as follows: 早急に対応して下さい。: 早急に対応し 第急に対応して下さい。: なびしい。 ★ x = 正式版に戻して欲しい。 Experiments on new sentence generation and filtering by N-sequences We eliminate any sentence that contains an N-sequence of a given length unseed our data. For valid sentences, we remember their corresponding seed sentences the cluster identifiers they were generated from. 					
対応し 早急に対応し 元に戻して 元に戻して い。 : て欲しい。 : 下さい。 : 欲しい。 We can cluster sentential analogies as a sequence of lines, where one sentence pair and where any two pairs of sentences form a 急に対応して下さい。: 早急に対応して欲しい。	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
元に戻して下さい。:元に戻して欲しい。 やめて下さい。:やめて欲しい。 essible analogical clusters from Chinese and Japanese unrelated ual data collected from the Web. <u>Chinese Japanese</u> <u># of different sentences 70,000 70,000</u> <u># of clusters 23,182 21,975</u>	 Deducing and acquiring quasi-parallel sentences We deduce translation relations based on the initial parallel corpus and correspondence clusters between Chinese and Japanese. <u>Chinese</u> Japanese <u>Chinese–Japanese</u> <u>seed–new–# seed–new–# Initial par- Corresponding Quasi-parallel corpus <u>clusters</u> <u>corpus</u> <u>67,099</u> 84,533 103,629 15,710 35,817</u> 					
In be considered as rewriting models that can generate new sen- inding clusters by computing similarity according to a classical Dice $\frac{ S_{zh} \cap S_{ja} }{ S_{h} + S_{ja} } \Rightarrow Sim_{C_{zh} - C_{ja}} = \frac{1}{2}(Sim_{left} + Sim_{right})$	A:B:: C_{seed} : X_{new-zh} 经典游戏:游戏很不错喜欢经典:很不错喜欢空典啊:很不错啊经典啊:很不错啊A:B::: <tr< td=""></tr<>					

Chinese cluster

喜欢经典

'Classic!'

left part : right part

经典游戏:游戏很不错

'classic game' 'The game is very good.'

'I like classic.' 'Very good, I like it.'

经典啊: 很不错啊

: 很不错喜欢

'Very good!'

▲ Such clusters can tences.

 Extracting correspond formula:

$$Sim = \frac{2 \times |S_{zh} \cap S_{ja}|}{|S_{zh}| + |S_{ja}|} \quad \Rightarrow \quad Sim_{C_{zh} - C_{ja}} = \frac{1}{2}(Sim_{left} + Sim_{left})$$

 S_{zh} and S_{ia} denote the minimal sets of changes across the clusters (both on the left or right) in both languages (after translation and conversion).

Consistent Improvement in Translation Quality of

Chinese–Japanese Technical Texts by Adding Additional

Quasi-parallel Training Data Wei Yang and Yves Lepage

Graduate School of Information, Production and Systems Waseda University

kevinyoogi@akane.waseda.jp ; yves.lepage@waseda.jp

Japanese cluster left part :	right part
' <i>classic narrative</i> ' クラシック音楽:	<u>この</u> 物語 <u>はとてもいい</u> <i>'The narrative is very good.'</i> <u>この</u> 音楽 <u>はとてもいい</u> <i>'The music is very good.'</i>

el) and inciple

een in es and

onding

	Baseline	Chinese	Japanese
_	sentences	672,315	672,315
train	words	18,847,514	23,480,703
Ļ	mean \pm std.dev.	$\textbf{28.12} \pm \textbf{15.20}$	$\textbf{35.05} \pm \textbf{18.88}$
	+ Quasi-parallel	Chinese	Japanese
C	sentences	708,132	708,132
irain	words	19,212,187	24,512,079
<u></u>	mean \pm std.dev.	$\textbf{27.13} \pm \textbf{14.19}$	$\textbf{34.23} \pm \textbf{17.22}$
	Both experiments	Chinese	Japanese
(D	sentences	2,090	2,090
tune	words	60,458	73,177
	mean \pm std.dev.	$\textbf{28.93} \pm \textbf{15.86}$	35.01 ± 18.87
–	sentences	2,107	2,107
test	words	59,594	72,027
-	mean \pm std.dev.	$\textbf{28.28} \pm \textbf{14.55}$	$\textbf{34.18} \pm \textbf{17.43}$

• Experimental results (using the different segmentation tools and moses version): - segmentation tools: urheen and mecab, moses 1.0: significant.

		BLEU	NIST	WER	TER	RIBES
zh-ja	baseline	29.10	7.5677	0.5352	0.5478	0.7801
	+ additional training data	32.03	7.9741	0.5069	0.5172	0.7906
	bacalina			n h h l 0 1	() () () () () () () () () () () () () (Λ /O(Λ)
	+ additional training data	24.87	7.3208	0.5273	0.5482	0.8013
		1	,		I	I

- segmentation tools: urheen and mecab, moses 2.1.1

					TER	
zh-ja	baseline	33.41	8.1537	0.4967	0.5061	0.7956
	+ additional training data	33.68	8.1820	0.4955	0.5039	0.7964
ja-zh	baseline	25.53	7.3885	0.5227	0.5427	0.8053
	+ additional training data	25.80	7.4571	0.5176	0.5378	0.8060

- segmentation tools: kytea, moses 1.0

		BLEU	NIST	WER	TER	RIBES
-h io	baseline	28.35	7.3123	0.5667	0.5741	0.7610
ZII-ja	+ additional training data	28.87	7.4637	0.5566	0.5615	0.7739
ja-zh	baseline	22.83	6.9533	0.5633	0.5853	0.7807
	+ additional training data	23.18	7.0402	0.5547	0.5778	0.7865

SMT experiments

• Experimental protocol: To assess the contribution of the generated quasi-parallel corpus, we compare two SMT systems. The first one is constructed using the initial given ASPEC-JC parallel corpus. This is the baseline. The second one adds the additional quasi-parallel corpus obtained using analogical associations and analogical clusters.

¹Yves Lepage. Solving analogies on words: An algorithm, COLING-ACL'98, Volume I, pp. 728-735, Montréal, Aug. 1998. ²Ferdinand de Saussure. Cours de linguistique générale, Payot, Lausanne et Paris, [1ère éd. 1916] edition, 1995