Leveraging transliterations from multiple languages

Aditya Bhargava, Bradley Hauer, and Grzegorz Kondrak University of Alberta NEWS 2011

Introduction

Introduction

- Most previous work on transliteration has focused on a single language
 - English to Hindi, English to Japanese, Arabic to English, etc.
- But data from other languages can be helpful
- Improve existing model's results using supplemental data

Introduction

- Also experiment with:
 - Incorporating other models
 - Hindi romanization
 - English-to-Chinese alignment lengths

Previous work

Previous NEWS

• DirecTL/DirecTL+ (Jiampojamarn et al., 2009/2010)

- Discriminative, online, max-margin

- Sequitur + SMT combination (Finch and Sumita, 2010)
 - Sequitur is generative, joint n-gram
- Applying supplemental transliterations to G2P (Bhargava and Kondrak, 2011)
 - We apply this method verbatim
 - Based on SVM re-ranking

Test data overlap

Language	Test set size	Test set overlap
EnBa	1,000	498
EnCh	2,000	2,000
EnHe	1,000	525
EnHi	1,000	889
EnJa	1,815	734
EnKa	1,000	883
EnKo	609	608
EnPe	2,000	1,049
EnTa	1,000	884
EnTh	2,000	1,564

Re-ranking

Re-ranking

- SVM re-ranking using all other languages
- Features:
 - N-gram features based on character alignments
 - Similarity features based on alignment scores
- Transliteration data are noisy; handled by:
 - Granular n-gram features
 - Multiple languages
- DirecTL+ baseline

EnHi transliteration re-ranking

EnHi transliteration re-ranking

EnHi transliteration re-ranking

Re-ranking with Sequitur

- Use Sequitur's output for re-ranking
- Exact same features

EnHi Sequitur re-ranking

EnHi Sequitur re-ranking

Hindi romanization

- Devanagari alphabet has combined consonants & vowels
- We experiment with romanizing Hindi

जॉन पटरूची

- Gives DirecTL+ direct individual control
- Context-sensitive rule-based romanization
- Use romanized Hindi for training DirecTL+, do testing, then convert outputs to Devanagari

Jqna paTarUcl

EnHi romanization

Chinese alignment length

- DirecTL+ relies on many-to-many alignments (M2M-Aligner)
- We experiment with maximum alignment length
 - 3-1 vs. 7-1

EnCh alignment length

Conclusion

SVM re-ranking for transliteration

- Great improvements with supplemental transliterations
- Also see improvements for system combination
- Romanization
 - Didn't work for EnHi (unlike EnJa in 2010)
- EnCh alignment lengths
 - Must be careful to choose a good value!