

Sparse Coding of Neural Word
Embeddings for Multilingual

Sequence Labeling

Gábor Berend

31/07/2017
Vancouver, ACL

Continuous word representations

apple [1 0 0 0 … 0 0 0 0 0 … 0] [3.2 -1.5]

...

banana [0 0 0 0 … 1 0 0 0 0 … 0] [2.8 -1.6]

...

door [0 0 0 0 … 0 0 1 0 0 … 0] [-1.1 12.6]

…

zebra [0 0 0 0 … 0 0 0 0 0 … 1] [0.8 0.5]

Sparse & continuous representations

apple [3.2 -1.5] [0 1.7 0 0 -0.2 0]

...

banana [2.8 -1.6] [0 1.1 0 0 -0.4 0]

...

door [-1.1 12.6] [1.7 0 -2.1 0 0 -0.8]

…

zebra [0.8 0.5] [0 0 1.3 0 -1.2 0]

● Assuming trained word embeddings wi (i=1,…,|V|)

Creating sparse word representations

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

min
D∈C ,α

∑
i=1

|V|

‖wi−Dαi‖2
2+λ‖αi‖1

Creating sparse word representations

● Assuming trained word embeddings wi (i=1,…,|V|)

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

Sparsity
inducing
regularization

min
D∈C ,α

∑
i=1

|V|

‖wi−Dαi‖2
2+λ‖αi‖1

● Assuming trained word embeddings wi (i=1,…,|V|)

Convex set
of matrices
s.t. ∀║d

i
║≤ 1

Creating sparse word representations

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

Sparsity
inducing
regularization

min
D∈C ,α

∑
i=1

|V|

‖wi−Dαi‖2
2+λ‖αi‖1

● Assuming trained word embeddings wi (i=1,…,|V|)

– Similar formulation to Faruqui et al. (2015)

Creating sparse word representations

Convex set
of matrices
s.t. ∀║d

i
║≤ 1

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

Sparsity
inducing
regularization

min
D∈C ,α

∑
i=1

|V|

‖wi−Dαi‖2
2+λ‖αi‖1

● Calculate a set of (surface form) features using
feature functions φj

– φj could check for capitalization, suffixes,
prefixes, neighboring words, etc.

“Classical” sequence labeling

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ:

● Calculate a set of (surface form) features using
feature functions φj

– φj could check for capitalization, suffixes,
prefixes, neighboring words, etc.

“Classical” sequence labeling

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ: pre2=Fr pre2=fl pre2=li pre2=a pre2=ba pre2=.
 suf2=it suf2=es suf2=ke suf2=a suf2=na suf2=.

● Calculate a set of (surface form) features using
feature functions φj

– φj could check for capitalization, suffixes,
prefixes, neighboring words, etc.

“Classical” sequence labeling

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ: pre2=Fr pre2=fl pre2=li pre2=a pre2=ba pre2=.
 suf2=it suf2=es suf2=ke suf2=a suf2=na suf2=.

 … … … … … ...

● Rely on the sparse coefficients from α

–

Sequence labeling using sparse
word representation

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ:

ϕ(w i)={sign(αi [j]) j∣αi [j]≠0}

● Rely on the sparse coefficients from α

–

● E.g.

Sequence labeling using sparse
word representation

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ:

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [j]) j∣αi [j]≠0}

● Rely on the sparse coefficients from α

–

● E.g.

Sequence labeling using sparse
word representation

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ: P28
N171

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [j]) j∣αi [j]≠0}

● Rely on the sparse coefficients from α

–

● E.g.

Sequence labeling using sparse
word representation

X: Fruit flies like a banana .

Y: NN NN VB DT NN PUNCT

φ: P28 P77 N11 N88 P28 N21
N171 P88 N62 N40 N210 P67

 … … … … ...

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [j]) j∣αi [j]≠0}

Experimental setup

● Linear chain CRF (CRFsuite implementation)
● Part of Speech tagging

– 12 languages from the CoNLL-X shared task

– Google Universal Tag Set (12 tags)

Experimental setup

● Linear chain CRF (CRFsuite implementation)
● Part of Speech tagging

– 12 languages from the CoNLL-X shared task

– Google Universal Tag Set (12 tags)

● Hyperparameter settings
– polyglot/w2v/Glove

– m=64

– k=1024

– Varying λs

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

min
D∈C ,α

∑
i=1

|V|

‖wi−Dαi‖2
2
+λ‖αi‖1

Baselines

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)

Baselines

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)
FR

w+c
FR⊃

w

Baselines

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)
● Brown clustering

– Derive features from prefixes of Brown cluster IDs

Baselines

ϕ(w i)={ j :αi [j]∣∀ j∈1,… ,64 }

● Brown clustering
– Derive features from prefixes of Brown cluster IDs

● Features from dense embeddings
–

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)

● Results averaged over 12 languages

● Key inspections
– polyglot > CBOW > SG > Glove

Continuous vs. sparse embeddings

Dense S p a r s e
polyglot 91.17% 94.44%
CBOW 88.30% 93.74%
SG 86.89% 93.63%
Glove 81.53% 91.92%

● Results averaged over 12 languages

● Key inspections
– polyglot > CBOW > SG > Glove

– Sparse embeddings >> dense embeddings

Continuous vs. sparse embeddings

Dense S p a r s e Improvement
polyglot 91.17% 94.44% +3.3
CBOW 88.30% 93.74% +5.4
SG 86.89% 93.63% +6.7
Glove 81.53% 91.92% +10.4

Results on Hungarian

Results on Hungarian

Experiments on generalization

● Training data artificially decreased
– First 150 and 1500 sentences

Comparison with biLSTMs

● POS tagging experiments on UD v1.2 treebanks
● Same settings as before (k=1024, λ=0.1)
● biLSTM results from Plank et al. (2016)

Method Avg. accuracy
biLSTM

w
92.40%

SC-CRF 93.15%

Comparison with biLSTMs

● POS tagging experiments on UD v1.2 treebanks
● Same settings as before (k=1024, λ=0.1)
● biLSTM results from Plank et al. (2016)

Method Avg. accuracy
biLSTM

w
92.40%

SC-CRF 93.15%
SC+WI-CRF 93.73%

Comparison with biLSTMs

● POS tagging experiments on UD v1.2 treebanks
● Same settings as before (k=1024, λ=0.1)
● biLSTM results from Plank et al. (2016)

Method Avg. accuracy
biLSTM

w
92.40%

SC-CRF 93.15%
SC+WI-CRF 93.73%
biLSTM

w+c
95.99%

Further experiments in the paper

● Quantifying the effects of further hyperparameters
– Different window sizes for training dense embeddings

● Comparison of different sparse coding techniques
– E.g. non-negativity constraint

● NER experiments (on 3 languages)

Conclusion

● Simple, yet accurate approach
● Robust across languages and tasks
● Favorable generalization properties
● Competitive results to biLSTMs
● Sparse representations accessible:

begab.github.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

