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Complaints

Complaints are used in our daily communication
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| wish | had more time to tell you about complaining, but
the organizers only allocated 15 minutes for this talk.
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Complaints
Complaints are used in our daily communication

What is the linguistic goal of complaining?

h'il.uh.

| wish | had more time to tell you about complaining, but
the organizers only allocated 15 minutes for this talk.

1. Affecting positive face (Goffman, 1967)

» Positive face — desire to be liked
» Cast the complainee in a bad light 12:42 PM - Jul 31, 2019 - Twitter Web Ap
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Complaints
Complaints are used in our daily communication

What is the linguistic goal of complaining?

h'il.uh.

| wish | had more time to tell you about complaining, but
the organizers only allocated 15 minutes for this talk.

1. Affecting positive face

2. Affecting negative face

* Negative face - the desire not to be imposed
upon

« Complaint is addressed to a complainee

« Aims to impose to the complainee reparations
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Complaints

Complaints are used in our daily communication

What is the linguistic goal of complaining?

h'il.uh.

| wish | had more time to tell you about complaining, but
the organizers only allocated 15 minutes for this talk.

1. Affecting positive face

2. Affecting negative face

What do complaints express?

A negative mismatch between reality and
expectation
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Complaints

Complaints are used in our daily communication
What is the linguistic goal of complaining?

1. Affecting positive face

2. Affecting negative face

What do complaints express?

A negative mismatch between reality and
expectation

Complaints are not sentiment
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Really @blackanddecker? 1st replacement
blender lasted 5 smoothies, 2nd replacement
blender not even 1. #badservice #badproduct

Complaint, Negative sentiment
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Was happy to find out @Showtime had an
app to watch all their shows, until 6 episodes
in it stops working. Thanks! @sho_help

Complaint, No sentiment
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Complaints — Applications

Understanding complaints is useful for:

« QOrganizations and brands
— Improve customer experience by addressing client concerns
— Inferring current issues
« Linguistics
— Understanding context and types
* Psychologists
— Human traits specific of complaining
* NLP applications
— ldentify complaining intent in dialogues
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Data — Annotation

“A complaint presents a state of affairs which breaches the writer’s
favorable expectation”
(Olshtain & Weinbach, 1987)
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Data — Annotation

“A complaint presents a state of affairs which breaches the writer’s favorable expectation”
(Olshtain & Weinbach, 1987)

Annotated by two of the authors

« Hard to annotate using the crowd

« Each tweet annotated by both annotators

« Atweet is a complaint if it has a complaint speech act

« All tweets in English

« Cohen’s Kappa = 0.731

» Disagreements resolved through discussion between annotators
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Data — Sampling

Complaints on social media are not very
frequent (<1% of tweets)

Intuition: Twitter users usually complain to
customer support
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Whole Foods Market @ @\WholeFoods - 12h v
WHOLE . -
FO0DS ] peplyingto ™ ]
Thanks for bringing this to our attention, Bob. Mind sending us a DM with your
contact info and store location? We'd like to look into this.
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Data — Sampling

Complaints on social media are not very
frequent (<1% of tweets)

Intuition: Twitter users usually complain to
customer support

Start with 93 customer support Twitter
accounts
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FO0DS ] peplyingto ™ ]
Thanks for bringing this to our attention, Bob. Mind sending us a DM with your
contact info and store location? We'd like to look into this.
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Data — Sampling

Complaints on social media are not very
frequent (<1% of tweets)

Intuition: Twitter users usually complain to
customer support

Start with 93 customer support Twitter
accounts

Download for annotation customer tweets sent
to these accounts
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@WholeFoods this is the second time this
month, in a different state, that |'ve ended up
with expired yogurt from your stores. Yogurt
sold on July 20 shouldn't have expired on July
6.

11:46 AM - 21 Jul 2019

Q1 n 1 ™
@ Tweet your reply

Whole Foods Market @ @\WholeFoods - 12h ~
mﬁ F lllll ’ o =

Thanks for bringing this to our attention, Bob. Mind sending us a DM with your
contact info and store location? We'd like to look into this.

Q T &
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Data — Statistics

Data set freely available: hitps://github.com/danielpreotiuc/complaints-social-media

Not complaints, random tweets _ 739

Not complaints, sent to other handles _ 739
Not complaints, sent to customer support _ 739
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https://github.com/danielpreotiuc/complaints-social-media

Data — Statistics

Data set freely available: hitps://github.com/danielpreotiuc/complaints-social-media
Tweets matched to a domain based on the customer support handle

207
189
174
141 139
124
109 112

95 96

35 33
Food Apparel Retail Cars Services Software  Transport Electronics Other

m Complaint = Not Complaint
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Features

We experiment with traditional features to aid with our analysis

Complaint-specific features

* Requests (Danescu-Niculescu-Mizil et al, 2013)
* Politeness (panescu-Niculescu-Mizil et al, 2013)
« Temporal References (zhong et al, 2017)

Sentiment models

« MPQA (wiebe et al 2005)
 NRC (Mohammad & Turney 2013)

* (Volkova & Bachrach, 2016)
* VADER (Gilbert & Hutto, 2014)

o Stanford (Socher et al, 2013)
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Features

We experiment with traditional features to aid with our analysis
Part-of-speech tags

Topics:

« LIWC (Pennebaker et al, 2007)

« Word2Vec (Preotiuc-Pietro et al, 2015)

Unigrams
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Analysis — Complaints

Negation

Verbs stillwﬂn'[issue _
seryice0l WhyWEDsIt

e working Cant  ischarged fiX

ITSeSr:::ral References Bustumep') nut mu nﬂ
dausEI‘I‘ﬂI‘ heen

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Complaints

Negation
» lllustrates the breach in expectations

Verbs

Pronouns

Sentiment

Temporal References

Issues

llwontissue
seﬁ\,tilyeun whyWebsite

ngking cant iScharged fIX

custamer? notmy ™
fayserror  heen

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Complaints
Negation

Verbs

« Past participle
— describe events causing the breach in
expectations
— e.g. nobody is answering

« Present, 3" person singular
— provide setup to event description
— e.g. got an e-mail saying

Pronouns
Sentiment
Issues

Temporal References

llwontissue
seﬁ\,tilyeun whyWebsite

Wupking cant iScharged fIX

custamer? notmy ™
fayserror  heen

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Complaints
Negation
Verbs

Pronouns
» Possessive

Sentiment
Issues

Temporal References

llwontissue
seﬁ\,tilyeun whyWebsite

ngking cant iScharged fIX

custamer? notmy ™
fayserror  heen

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected

Bloomberg

Engineering




Analysis — Complaints

Negation

Verbs stillwﬂn'[issue _
caryicall whyWebsite

_ ! vt - '
.Selslginaesnstociated with negative sentiment Wurklng Gan Ischangd "X

: g:r\:tci:ment models B"Stumer? I]Ut mu nu
(ayserrar  heen

*Univariate Point-Biserial Correlation between unigram features and complaint
Temporal References All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Complaints
Negation

Verbs

Pronouns

Sentiment

Issues

* Describing the event or issue

« Asking for assistance

Temporal References

working ©

staff
serylce customer

agent
OOt o

Stiffwon’
sgryicell

closed between

road

delayed

accident outage
delay

tlssue

whyWebsite

ant isgharged fIX

customer? ot my ™

fayserror

heen

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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haven't ,  UEt
yesterday 1010

happenedbeen
& took

Analysis — Complaints

Negation

Verbs stillwﬂn'[issue _
caryicall whyWebsite

Sentiment Wurklng Gan't iS[}hﬂ["gEdﬁx

Issues 9 mu nﬂ
Temporal References BUStumer. I]Ut
* Reference to event causing breach of dausepmp hEEﬂ

expectations

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Not Complaints

Pronouns
* Third person
Positive sentiment h . |U| he
L ht d titud She Im . |
aughter and gratitude

erand . thatlife

Win“goodwould thank
ove Uﬂu‘great | mare

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Analysis — Not Complaints

Pronouns
Positive sentiment .
- Twitter users focus on descriptions hlm . u E
« Complaints are often compensated with s E . .
positive sentiment (vasquez, 2011) that Ilfe
|

-)

Win goodwould thank
it waoll
l0ve U0great | more

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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good
everunnegreat

Analysis — Not Complaints thanks suppurt
thankproud huge

Pronouns
Positive sentiment h | I he
Laughter and gratitude She Int1h tul f

L gnudwnumthank
ove Mo Ugreat | more

*Univariate Point-Biserial Correlation between unigram features and complaint
All correlations significant at p < 0.1, two-tailed t-test, Simes corrected
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Prediction

Task
* Binary classification

Evaluation
 Macro-averaged F1
« Accuracy, ROC AUC (results in the paper)

Data split
« Stratified 10 fold cross-validation
 Hyperparameters set through 3 fold cross-validation on training set

Methods

» Logistic Regression with Elastic Net regularization
— Using all previous features

* BILSTM
e MLP
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Prediction

55.2

39.1

Most Freq Complaint
Class Specific
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Prediction

60.0

55.2

39.1

Most Freq Complaint Sentiment
Class Specific Emotions
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Prediction

66.8

60.0

55.2

39.1

Most Freq Complaint Sentiment POS Tags
Class Specific Emotions
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Prediction

66.8 65.8

60.0
58.3

55.2

39.1

Most Freq Complaint Sentiment POS Tags LIWC  Word2Vec
Class Specific  Emotions Clusters
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Prediction

77.5

66.8 65.8

60.0
58.3

55.2

39.1

Most Freq Complaint Sentiment POS Tags LIWC  Word2Vec Unigrams
Class Specific Emotions Clusters
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Prediction

77.5 78.0

66.8 65.8

60.0
58.3

55.2

39.1

Most Freq Complaint Sentiment POS Tags LIWC  Word2Vec Unigrams Combined
Class Specific Emotions Clusters
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Prediction

775 78.0 6.2 77.0

66.8 65.8

60.0
58.3

55.2

39.1

Most Freq Complaint Sentiment POS Tags LIWC  Word2Vec Unigrams Combined MLP BILSTM
Class Specific Emotions Clusters
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Prediction — Other Experiments

Distant supervision

« Collect 18K tweets using hashtags related to complaints
— e.g. #lostbusiness, #worstbrand
 Boost F1 by 1 point through domain adaptation

Domain adaptation
« Use domain information to train domain specific classifiers
 Domain adaptation improves performance on each domain

Cross-Domain
« Train - Test across topics
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Takeaways

Introduced complaint prediction
« Different to negative sentiment

New Twitter data set available for research TR
* Multiple domains S s

Analyzed linguistic markers of complaints

Complaints can be predicted with good accuracy
* We need to study other types of complaints
* More advanced methods for complaint prediction

We are hiring:
* NYC - http://careers.bloomberg.com/job/detail/ 74022 Bloomberg
 London — http://careers.bloomberg.com/job/detail/74154
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