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0. Do current language models do equally well on all languages? No.
1. Which one do they struggle more with: German or English? German.
2. What about non-Indo-European languages, say Chinese? It depends.
3. What makes a language harder to model? Actually, rather technical factors.

4. Is Translationese easier? It’s different, but not actually easier!
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And... is Translationese really easier?
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Language models measure surprisal/information content (NLL; —logp(+)):

p(-) = NLL
en  Resumption of the session. 0.013 = 6.5 bits
de Wiederaufnahme der Sitzung. 0.011 = 6.3 bits
nl Hervatting van de sessie. 0.012 = 6.4 bits
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How to compare your language models across languages

1. We need to be open-vocabulary — no UNKs.
Every UNK is “cheating” — morphologically rich languages have more UNKs,
unfairly advantaging them.

2. We can’t normalize per word or even per character in languages individually.
Example: if puc., and Putschy, are equally likely, they should be equally “difficult.”

= just use overall bits (i.e., surprisal/NLL) of an aligned sentence

[note: total easily obtainable from BPC or perplexity by multiplying with total chars/words]
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For fully parallel corpora... we can just sum everything up and compare — that is fair.
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How about: morphological counting complexity (Sagot, 2013)
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...not particularly striking.

Perhaps Finnish was an outlier in Cotterell et al. (2018)?
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WALS: “Prefixing vs. Suffixing [...] Morphology” (for languages where present)?
...no visible differences.

WALS: “Order of Subject, Object and Verb” (for languages where present)?
...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?
...neither mean and skew show correlation.

Average dependency length (computed using UDPipe (Straka et al., 2016))?
...correlation! But not significant after correcting for multiple hypotheses.

This is disappointing.

13



Very simple heuristics are very predictive

Raw sequence | # predictions
— -RNNLM difficulty

e Europarl at p < .01

Significant on: )
e Bibles at p < .001

i.e., for the char-RNNLM
puc,, is easier than Putschg,!

14



Very simple heuristics are very predictive

Raw sequence | # predictions
— -RNNLM difficulty

e Europarl at p < .01

Significant on: )
e Bibles at p < .001

i.e., for the char-RNNLM
puc,, is easier than Putschg,!

Raw
- -RNNLM difficulty
e not Europarl

Significant on: e but Bibles at
p <.00000000001

i.e., the BPE-RNNLM still suffers
if a language has high type-token-ratio!

14



Very simple heuristics are very predictive

Raw sequence | # predictions Raw
— -RNNLM difficulty — -RNNLM difficulty

e not Europarl
e Europarl at p <.01 e
Significant on: Significant on: e but Bibles at

* Bibles at p <.001 p <.00000000001

i.e., for the char-RNNLM i.e., the BPE-RNNLM still suffers
puc,, is easier than Putschg,! if a language has high type-token-ratio!

Wow! What is happening here? We have many conjectures...
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And... is Translationese really easier?
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Translationese: translations as a separate language?

Common assumption: Translationese is somehow simpler than “native” text.

We have partial parallel data that we can use to evaluate our models:

H €Noriginal €Nranslated H deoriginal detranslated H nloriginal nltranslated || o
Resumption... Wiederauf-... Hervatten...
The German... Der deutsche... De Duitse...
Thank you... || Vielen Dank... Hartelijk...
...and indeed the original languages harder. But we missed something!
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We trained on mostly translationese!
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Of course we will then find it easier...
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Repeat the experiment with fairly balancing training data

Change the training sets!

We can rebalance a single language, leaving the others merged, i.e.:

H €Moriginal | €¢ranslated H de || nl ||
Resumption... Wiederauf-... Hervatten...
Thank you... || Vielen Dank... Hartelijk...

And the result: the difficulties are now the same!

(more precisely, “native” is 0.004 & 0.02 easier)
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Conclusion: cross-linguistic comparisons are tricky (hope we didn’t mess up!)

1.
2.
38
4.

Make sure your training data is comparable and fair.
Make sure your metrics are comparable and fair.
Make sure your stats are fair (no p-hacking!).

Work on more NLP resources for more languages!
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