What Kind of Language Is Hard to Language-Model? ACL 2019

Sebastian J. Mielke and Ryan Cotterell, Kyle Gorman, Brian Roark, Jason Eisner

Johns Hopkins University // City University of New York Graduate Center // Google sjmielke@jhu.edu

Twitter: @sjmielke - paper and thread pinned!

No.

1. Which one do they struggle more with: German or English?

No.

1. Which one do they struggle more with: German or English? *German*.

1. Which one do they struggle more with: German or English? *German*.

2. What about non-Indo-European languages, say Chinese?

No.

1. Which one do they struggle more with: German or English? *German*.

2. What about non-Indo-European languages, say Chinese? *It depends.*

1. Which one do they struggle more with: German or English? *German.*

2. What about non-Indo-European languages, say Chinese? *It depends.*

3. What makes a language harder to model?

1. Which one do they struggle more with: German or English? *German*.

2. What about non-Indo-European languages, say Chinese? *It depends.*

3. What makes a language harder to model? *Actually, rather technical factors.*

1. Which one do they struggle more with: German or English? *German*.

2. What about non-Indo-European languages, say Chinese? *It depends.*

3. What makes a language harder to model? *Actually, rather technical factors.*

4. Is Translationese easier?

1. Which one do they struggle more with: German or English? *German*.

2. What about non-Indo-European languages, say Chinese? *It depends.*

3. What makes a language harder to model? *Actually, rather technical factors.*

4. Is Translationese easier?

It's different, but not actually easier!

"Difficulty"

Models and languages

What correlates with difficulty?

What correlates with difficulty?

And... is Translationese really easier?

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

 $p(\cdot) \Rightarrow \text{NLL}$ 0.03 $\Rightarrow 5 \text{ bits}$

en I love Florence!

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

		$p(\cdot)$	\Rightarrow NLL
en	I love Florence!	0.03	\Rightarrow 5 bits
de	Ich grüße meine Oma und die Familie dahein.	0.008	\Rightarrow 7 bits

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

		$p(\cdot)$	\Rightarrow NLL
en	I love Florence!	0.03	\Rightarrow 5 bits
de	Ich grüße meine Oma und die Familie dahein.	0.008	\Rightarrow 7 bits
nl	Alle mensen worden vrij en gelijk in waardigheid en rechten geboren.	0.0004	\Rightarrow 11 bits

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

- $p(\cdot) \Rightarrow NLL$ en I love Florence! $0.03 \Rightarrow 5$ bitsde Ich grüße meine Oma und die Familie dahein. $0.008 \Rightarrow 7$ bits
- nl Alle mensen worden vrij en gelijk in waardigheid en rechten geboren. $0.0004 \Rightarrow 11$ bits

Issue 1: Different topics/styles/content

en de

nl

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

	$P(\cdot)$	
Resumption of the session.	0.013	\Rightarrow 6.5 bits
Wiederaufnahme der Sitzung.	0.011	\Rightarrow 6.3 bits
Hervatting van de sessie.	0.012	\Rightarrow 6.4 bits

Issue 1: Different topics/styles/content

Solution: train and test on translations!

Europarl:	21 languages share \sim 40M chars
Bibles:	62 languages share \sim 4M chars

 $n(.) \rightarrow MII$

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

en	Resumption of the session.	0.
de	Wiederaufnahme der Sitzung.	0.
nl	Hervatting van de sessie.	0.

 $p(\cdot) \Rightarrow \text{NLL}$

- $0.013 \quad \Rightarrow 6.5 \text{ bits}$
- $0.011 \Rightarrow 6.3$ bits
- $0.012 \Rightarrow 6.4$ bits

Issue 1: Different topics/styles/content

Solution: train and test on translations!

Europarl:	21 languages share \sim 40M chars
Bibles:	62 languages share ~4M chars

and this one takes a big ILP to solve, which is really fun

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

en Resumption of the session.
de Wiederaufnahme der Sitzung.
nl Hervatting van de sessie.

Issue 1: Different topics/styles/content

Solution: train and test on translations!

$p(\cdot)$	\Rightarrow	NLL	

- $0.013 \Rightarrow 6.5$ bits
- $0.011 \Rightarrow 6.3$ bits
- $0.012 \Rightarrow 6.4$ bits

en

de

nl

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

	$p(\cdot)$	\Rightarrow NLL
Resumption of the session.	0.013	\Rightarrow 6.5 bits
Wiederaufnahme der Sitzung.	0.011	\Rightarrow 6.3 bits
Hervatting van de sessie.	0.012	\Rightarrow 6.4 bits

Issue 1: Different topics/styles/content

Solution: train and test on translations!

Issue 2: Comparing scores

en

de

nl

Language models measure surprisal/information content (NLL; $-\log p(\cdot)$):

$p(\cdot)$	\Rightarrow NLL
0.013	\Rightarrow 6.5 bits
0.011	\Rightarrow 6.3 bits
0.012	\Rightarrow 6.4 bits

Issue 1: Different topics/styles/content

Resumption of the session.

Hervatting van de sessie.

Wiederaufnahme der Sitzung.

Solution: train and test on translations!

Issue 2: Comparing scores

Use **total bits** of an **open-vocabulary model**.

Why?

Every UNK is "cheating" – morphologically rich languages have more UNKs, unfairly advantaging them.

Every UNK is "cheating" – morphologically rich languages have more UNKs, unfairly advantaging them.

2. We can't normalize per word or even per character in languages individually.

Every UNK is "cheating" – morphologically rich languages have more UNKs, unfairly advantaging them.

2. We can't normalize per word or even per character in languages individually. Example: if puč_{cz} and Putsch_{de} are equally likely, they should be equally "difficult."

Every UNK is "cheating" – morphologically rich languages have more UNKs, unfairly advantaging them.

2. We can't normalize per word or even per character in languages individually. Example: if puč_{cz} and Putsch_{de} are equally likely, they should be equally "difficult."

 \Rightarrow just use overall bits (i.e., surprisal/NLL) of an aligned sentence

Every UNK is "cheating" – morphologically rich languages have more UNKs, unfairly advantaging them.

2. We can't normalize per word or even per character in languages individually. Example: if puč_{cz} and Putsch_{de} are equally likely, they should be equally "difficult."

⇒ just use overall bits (i.e., surprisal/NLL) of an aligned sentence [note: total easily obtainable from BPC or perplexity by multiplying with total chars/words]

For fully parallel corpora...

	en	de	bg
1	Resump-	Wieder-	Възобн-
	tion	aufnah-	овяване
	of the	me der	на се-
	session		
2	The	Der	Мирът,
	peace	gestern	който
	that	verein-	беше
3	Although	Obwohl	Макар
	we were	wir	че не
	not al-	nicht	бяхме
4	Now we	Jetzt	Накрая
	can fi-	ist die	всички
	nally	Zeit	можем

aligned multi-text

Image CC-BY Mike Grauer Jr / flickr

For fully parallel corpora...

LM surprisals/NLLs

 $y_{2,de}$

 $y_{1,de} | y_{1,bg}$

 $y_{3,de} \mid y_{3,bg}$

 $y_{2,bg}$

aligned multi-text

For fully parallel corpora... we can just sum everything up and compare – that is fair.

aligned multi-text

LM	surprisals/NLLs
----	-----------------

	y _{1,en}	У _{1,de}	$y_{1,bg}$
>	y _{2,en}	y _{2,de}	$y_{2,bg}$
→	y _{3,en}	y _{3,de}	$y_{3,bg}$
	y _{4,en}	y _{4,de}	y _{4,bg}
	\downarrow	₩	₩
	\sum_{en}	\sum_{de}	\sum_{bg}

But what if there's missing data? Or we want robustness?

LM surprisals/NLLs

aligned multi-text

But what if there's missing data? Or we want robustness?

LM surprisals/NLLs

 $y_{2,bg}$

 $y_{3,bg}$

y_{4,bg}

dbg

 n_1

 n_2

 n_3

 $> n_4$

But what if there's missing data? Or we want robustness?

Models and languages

What correlates with difficulty?

And... is Translationese really easier?

Good open-vocabulary language models

Formerly state-of-the-art-ish AWD-LSTM (Merity et al., 2018) language models:

char-RNNLM:

Good open-vocabulary language models (Mielke and Eisner, 2019)

Formerly state-of-the-art-ish AWD-LSTM (Merity et al., 2018) language models:

char-RNNLM:

BPE-RNNLM, few merges:

Good open-vocabulary language models (Mielke and Eisner, 2019)

Formerly state-of-the-art-ish AWD-LSTM (Merity et al., 2018) language models:

char-RNNLM:

BPE-RNNLM, few merges:

BPE-RNNLM, many merges:

It depends on the language (total surprisal, given merges as a ratio of the vocabulary):

It depends on the language (total surprisal, given merges as a ratio of the vocabulary):

It depends on the language (total surprisal, given merges as a ratio of the vocabulary):

It depends on the language (total surprisal, given merges as a ratio of the vocabulary):

Yeah:

it doesn't matter that much.

Difficulties for char-/BPE-RNNLM: 21 Europarl languages and 106 Bibles

Difficulties for char-/BPE-RNNLM: 21 Europarl languages and 106 Bibles

Difficulties for char-/BPE-RNNLM: 21 Europarl languages and 106 Bibles

What correlates with difficulty?

And... is Translationese really easier?

How about: morphological counting complexity (Sagot, 2013)

How about: morphological counting complexity (Sagot, 2013)

...not particularly striking. Perhaps Finnish was an outlier in Cotterell et al. (2018)?

WALS: "Prefixing vs. Suffixing [...] Morphology" (for languages where present)?

WALS: "Order of Subject, Object and Verb" (for languages where present)?

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?neither mean and skew show correlation.

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?neither mean and skew show correlation.

Average dependency length (computed using UDPipe (Straka et al., 2016))?

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?neither mean and skew show correlation.

Average dependency length (computed using UDPipe (Straka et al., 2016))? ...correlation! But not significant after correcting for multiple hypotheses.

WALS: "Order of Subject, Object and Verb" (for languages where present)? ...no visible differences.

Head-POS Entropy (Dehouck and Denis, 2018)?neither mean and skew show correlation.

Average dependency length (computed using UDPipe (Straka et al., 2016))? ...correlation! But not significant after correcting for multiple hypotheses.

This is **disappointing**.

Raw sequence length / # predictions → char-RNNLM difficulty

Significant on:
Europarl at p < .01
Bibles at p < .001

i.e., for the char-RNNLM $pu\check{c}_{cz}$ is easier than $Putsch_{de}!$

Raw sequence length / # predictions → char-RNNLM difficulty

Europarl at p < .01
Bibles at p < .001

i.e., for the char-RNNLM puč_{cz} is easier than Putsch_{de}! Raw vocabulary size \rightarrow BPE-RNNLM difficulty• not EuroparlSignificant on:• but Bibles at
p < .0000000001

i.e., the BPE-RNNLM still suffers if a language has high type-token-ratio!

Raw sequence length / # predictions → char-RNNLM difficulty

Europarl at p < .01
Bibles at p < .001

i.e., for the char-RNNLM $pu\check{c}_{cz}$ is easier than $Putsch_{de}!$

Raw vocabulary size \rightarrow BPE-RNNLM difficulty• not EuroparlSignificant on:• but Bibles at
p < .0000000001

i.e., the BPE-RNNLM still suffers if a language has high type-token-ratio!

Wow! What is happening here? We have many conjectures...

Outline

And... is Translationese really easier?
We have partial parallel data that we can use to evaluate our models:

en _{original}	en _{translated}	de _{original}	de _{translated}	nl _{original}	nl _{translated}	
Resumption			Wiederauf		Hervatten	
The German			Der deutsche		De Duitse	
	Thank you	Vielen Dank			Hartelijk	

We have partial parallel data that we can use to evaluate our models:

en _{original}	en _{translated}	de _{original}	de _{translated}	nl _{original}	nl _{translated}	
Resumption			Wiederauf		Hervatten	
The German			Der deutsche		De Duitse	
	Thank you	Vielen Dank			Hartelijk	

...and indeed the original languages seem harder.

We have partial parallel data that we can use to evaluate our models:

en _{original}	en _{translated}	de _{original}	de _{translated}	nl _{original}	nl _{translated}	
Resumption			Wiederauf		Hervatten	
The German			Der deutsche		De Duitse	
	Thank you	Vielen Dank			Hartelijk	

...and indeed the original languages seem harder. But we missed something!

We trained on mostly translationese!

Of course we will then find it easier...

Repeat the experiment with fairly balancing training data

Change the training sets!

We can rebalance a single language, leaving the others merged, i.e.:

en _{original}	en _{translated}	de	nl	
Resumption		Wiederauf	Hervatten	
The German		Der deutsche…	De Duitse…	
	Thank you	Vielen Dank	Hartelijk	

Repeat the experiment with fairly balancing training data

Change the training sets!

We can rebalance a single language, leaving the others merged, i.e.:

en _{original}	en _{translated}	de	nl	
Resumption		Wiederauf	Hervatten	
The German		Der deutsche…	De Duitse…	
	Thank you	Vielen Dank	Hartelijk	

And the result: the difficulties are now the same!

(more precisely, "native" is 0.004 ± 0.02 easier)

1. Make sure your training data is comparable and fair.

- 1. Make sure your training data is comparable and fair.
- 2. Make sure your metrics are comparable and fair.

- 1. Make sure your training data is comparable and fair.
- 2. Make sure your metrics are comparable and fair.
- 3. Make sure your stats are fair (no p-hacking!).

- 1. Make sure your training data is comparable and fair.
- 2. Make sure your metrics are comparable and fair.
- 3. Make sure your stats are fair (no p-hacking!).
- 4. Work on more NLP resources for more languages!

What Kind of Language Is Hard to Language-Model? ACL 2019

Sebastian J. Mielke and Ryan Cotterell, Kyle Gorman, Brian Roark, Jason Eisner

Johns Hopkins University // City University of New York Graduate Center // Google sjmielke@jhu.edu

Twitter: @sjmielke - paper and thread pinned!