Compositional Semantic Parsing Across Graphbanks

Matthias Lindemann

mlinde@coli.uni-saarland.de

Jonas Groschwitz jonasg@coli.uni-saarland.de

Alexander Koller koller@coli.uni-saarland.de

Research Question

- Groschwitz et al. (2018) introduced AM dependency parsing for AMR.
 - \rightarrow Builds bridge between compositional methods and neural parsing.
 - \rightarrow Strong parser performance.

But there are many meaning representations, and so far no parser works for all of them.

So, how widely applicable is AM dependency parsing beyond AMR?

Contribution

AM dependency parsing achieves competitive results for

► DM	► EDS
► PAS	► AMF
► PSD	

With BERT and multi-task learning, we set a new state of the art on most of the datasets.

AM dependency parsing

AM dependency parsing (Groschwitz et al. 2018):

Decomposition

Main challenge: only sentences and graphs are given in the graph banks, but we need the "hidden" AM dependency trees to train our parser. This is how we did it for AMR: The tall giraffe wants to eat ARG0 ARG0 eat-01 Sentence and graph (given) Step 1: break graph into pieces (heuristically) The tall giraffe wants to eat giraffe eat-01 ARG0\ARG1 ARG0

Decomposing DM, PAS, PSD, EDS

Main technical contribution: heuristics for the two decomposition steps for DM, PAS, PSD and EDS.

Step 2: add sources

(heuristically)

The dependency edges follow deterministically after these two steps.

DM

A A A

id F

Challenges overcome: coordination, raising, comparatives, ...

EDS

Smatch F FDM

One compositional parser. Diverse semantic graphbanks. Improved states of the art.

PAS

id F

A hoo

PSD

id F

and F

AMR 2015 AMR 2017 Smatch E Smatch E

		IA F	000 F	IC F	000 F	IC F	000 F	Smatch	F EDIVI	Smatch F	Smatch F
Single task	Groschwitz et al. (2018)	_	-	-	-	-	-	-	_	70.2	71.0
	Lyu and Titov (2018)	-	-	-	-	-	-	-	-	73.7	74.4
	Zhang et al. (2019)	-	-	-	-	-	-	-	-	-	76.3
	Peng et al. (2017) Basic	89.4	84.5	92.2	88.3	77.6	75.3	-	-	-	-
	Dozat and Manning (2018)	93.7	88.9	94.0	90.8	81.0	79.4	-	-	-	-
	Buys and Blunsom (2017)	-	-	-	-	-	-	85.5	85.9	60.1	-
	Chen et. al (2018)	-	-	-	-	-	-	90.9	90.4	-	_
	This paper (GloVe)	90.4	84.3	91.4	86.6	78.1	74.5	87.6	82.5	69.2	70.7
	This paper (BERT)	93.9	90.3	94.5	92.5	82.0	81.5	90.1	84.9	74.3	75.3
Multi-task learning	Peng et al. (2017) Freda1	90.0	84.9	92.3	88.3	78.1	75.8	_	_	_	_
	Peng et al. (2017) Freda3	90.4	85.3	92.7	89.0	78.5	76.4	-	-	-	_
	This paper (GloVe)	91.2	85.7	92.2	88.0	78.9	76.2	88.2	83.3	(70.4)	71.2
	This paper (BERT)	94.1	90.5	94.7	92.8	82.1	81.6	90.4	85.2	(74.5)	75.3