
7 Supplemental Material

7.1 Examples of SemQL Query

Figure 10 presents more examples of SemQL

queries.

7.2 Inference of SQL Query

To infer a SQL query from a SemQL query, we

traverse the tree-structured SemQL query in pre-

order and map each tree node to the corresponding

SQL query components according to the produc-

tion rule applied to it.

The production rule applied to the Z node de-

notes whether the SQL query has one of the

following components, UNION, EXCEPT and

INTERSECT. The R node stands for the start of

a single SQL query. The production rule ap-

plied to R denotes whether the SQL query has a

WHERE clause and ORDERBY clause. The pro-

duction rule applied to a Select node denotes how

many columns does the SELECT clause has. Each

A node denotes a column/aggregate function pair.

Specifically, nodes under A denote the aggregate

function, the column name and the table name of

the column. The subtrees under nodes Superlative

and Order are mapped to the ORDERBY clause in

the SQL query. The production rules applied to

Filter denote different condition operators in SQL

query, e.g. and, or, >, <, =, in, not in and

so on. If there is a A node under the Filter node

and its aggregate function is not None, it will

be filled in the HAVING clause, otherwise in the

WHERE clause. If there is a R node under the Fil-

ter node, we will repeat the process recursively on

the R node and return a nested SQL query. The

FROM clause is generated from the selected ta-

bles in the SemQL query by identifying the short-

est path that connects these tables in the schema

(Database schema can be formulated as an undi-

rected graph, where vertex are tables and edges

are relations among tables). At last, if there exists

an aggregate function applied on a column in the

SemQL query, there should be GROUPBY clause

in the SQL query. The column to be grouped by

occurs in the SELECT clause in most cases, or it

is the primary key of a table where an aggregate

function is applied on one of its columns.

7.3 Transforming SQL to SemQL

To generate a SemQL query from a SQL query,

we first initialize a Z node. If the SQL query

has one of the components UNION, EXCEPT and

�ܴ
ܵ���ܿ� ������� �������>ܽ�݀ �������≥

Figure 6: The skeleton of the SemQL query presented

in Figure 3

INTERSECT, we attach the corresponding key-

words and two R nodes under Z, otherwise a sin-

gle R node. Then, we attach a Select node under

R, and the number of columns in SELECT clause

determines the number of A nodes under the Se-

lect node. If an ORDERBY clause in a SQL query

contains a LIMIT keyword, it will be transformed

into a Superlative node, otherwise a Order node.

Next, the sub-tree of Filter node is determined by

the condition in WHERE and HAVING clause. If it

has a nested query in WHERE clause or HAVING

clause, we process the subquery recursively. For

each column in a SQL query, we attach its aggre-

gate function node, a C node and a T node under A.

Node C attaches the column name and node T at-

taches its table name. For the special column ‘*’,

if there is only one table in the FROM clause that

does not belongs to any column, we assign it the

column ‘*’, otherwise, we label the table name of

‘*’ manually. If a table in FROM clause is not as-

signed to any column, it will be transformed into a

subtree under a Filter node with in condition. In

this way, a SQL query can be successfully trans-

formed into a SemQL query.

7.4 Coarse-to-Fine Framework

The skeleton of a SemQL query is obtained by

removing all nodes under each A node. Figure 6

shows the skeleton of the SemQL query presented

in Figure 3.

Figure 7 depicts the coarse-to-fine framework

to synthesize a SemQL query. In the first stage, a

skeleton decoder outputs the skeleton of a SemQL

query. Then, a detail decoder fills in the missing

details in the skeleton by selecting columns and

tables. The probability of generating a SemQL

query y in the coarse-to-fine framework is formal-

ܼ ∷= ܴ ܴ ∷= ݐ݈ܿ݁݁ܵ ݎ݁݀ݎ� ݐ݈ܿ݁݁ܵ ∷= � � ݎ݁݀ݎ� ∷= ܿݏ݁݀ �Skeleton Decoder

Detail Decoder ݎܽ݁� ݇݋݋ܾ ܾݑ݈ܿ
ݎܽ݁� ݇݋݋ܾ ܾݑ݈ܿ

݇݋݋ܾ ݈݁ݐ�ݐ
݁݊݋݊ ݇݋݋ܾ ݈݁ݐ�ݐ

݇݋݋ܾ ܾݑ݈ܿ

݇݋݋ܾ ܾݑ݈ܿ
ݎܽ݁� ݇݋݋ܾ ܾݑ݈ܿ

ܼ ∷= ܴ ܴ ∷= ݐ݈ܿ݁݁ܵ ݎ݁݀ݎ� � ∷= ݁݊݋݊ � ܶ
ApplyRule ApplyRule

ݐ݈ܿ݁݁ܵ ∷= � �
ApplyRule

� ∷= ݁݊݋݊ � ܶ

ApplyRule

SelectColumn SelectTable

� ∷= ݁݊݋݊ � ܶ
ApplyRule SelectColumn SelectTable

SelectColumn SelectTable

� ∷= ݁݊݋݊ � ܶ ݎܽ݁�
� ∷= ݁݊݋݊ � ܶ

ApplyRule

ݎ݁݀ݎ� ∷= ܿݏ݁݀ �
ApplyRule

ApplyRule ApplyRule

ApplyRule

ApplyRule

NL: Show the years and book titles for all books in descending order by year

Type: none none Column none Column none none Table none none none none Column

NL Encoder

Encoder Units

Detail Decoder Units

Embedding

Skeleton Decoder Units

Figure 7: An overview of the coarse-to-fine framework to synthesize SemQL queries.

ized as follows.

p(y|x, s)=p(q|x, s)p(y|x, s, q)

p(q|x, s)=

Ts∏

i=1

p(ai=APPLYRULE[r]|x, s, a<i)

p(y|x, s, q)=

Tc∏

i=1

[λip(ai=SELECTCOLUMN[c]|x, s, q, a<i)

+ (1−λi)p(ai=SELECTTABLE[t]|x, s, q, a<i)]

where q denotes the skeleton. λi = 1 when the ith

action type is SelectColumn, otherwise λi = 0.

At training time, our model is optimized by

maximizing the log-likelihood of the ground true

action sequences:

max
∑

(x,s,q,y)∈D

log p(y|x, s, q) + γ log p(q|x, s)

where D denotes the training data and γ rep-

resents the scale between log p(y|x, s, q) and

log p(q|x, s). γ is set to 1 in our experiment.

7.5 BERT

Figure 8 depicts the architecture of the BERT en-

coder.

7.6 Analysis on the Performance Gap

between the Development set and the Test

set

To test our hypothesis that the performance gap

is caused by the different distribution of the SQL

queries in Hard and Extra Hard level, we first con-

struct a pseudo test set from the official training

set of Spider benchmark. Then, we conduct fur-

ther experiment on the pseudo test set and the of-

ficial development set. Specifically, we sample

Dataset Easy Medium Hard
Extra
Hard

Pseudo Test A 24.2% 44.5% 14.4% 16.9%
Pseudo Test B 22.7% 44.1% 16.7% 16.5%
Pseudo Test C 24.7% 37.1% 22.9% 15.3%
Development 24.1% 42.5% 16.8% 16.4%

Table 5: The hardness distribution of the pseudo test

A, the pseudo test B, the pseudo test C, and the devel-

opment set.

20 databases from the training set to construct a

pseudo test set, which has the same hardness dis-

tributions with the development set. Then, we

train IRNet on the remaining training set, and eval-

uate it on the development set and the pseudo

test set, respectively. We sample the pseudo test

set from the training set for three times and ob-

tain three pseudo test sets, namely, pseudo test

A, pseudo test B and pseudo test C. They contain

1134, 1000, and 955 test data respectively.

Table 5 presents the hardness distribution of the

three pseudo test sets and the official development

set. Figure 9 presents the exact matching accu-

racy of SQL on the development set and three

pseudo tests set after each epoch during training.

IRNet performs competitively on the development

set and the pseudo set C (Figure 9c), but there ex-

ists a clear performance gap on the pseudo test A

and B (Figure 9a and Figure 9b). Although the

hardness distributions among the development set

and the three pseudo sets are nearly the same, the

data distribution still has some difference, which

results in the performance gap.

We further study the performance gap of Syn-

[CLS] ⋯
NL: Show the years and book titles for all books in descending order by year

Type: none none Column none Column none none Table none none none none Column

show the years and book titlesColumn Column [SEP] year [SEP] book title [SEP] tile [SEP]

��భ ��మ
��య ��ర

��ఱ ⋯ ��భ
��మ ��య

NL Representation Column Representation

BERT

+�ଵ +�ଶ +�ଷ

Figure 8: Encoding a question and column names with BERT.

Approach
Dev Pseudo Test A

All Hard Extra Hard All Hard Extra Hard

SyntaxSQLNet 17.4% 15.5% 2.9% 16.9% 11.0% 2.6%
+BERT +SemQL 34.5% 30.5% 17.6% 30.2% 24.5% 15.7%

Table 6: Exact matching accuracy on the development set and the pseudo test A set.

1 11 21 31 41 51
Epoch

10

15

20

25

30

35

40

45

50

55

Ex
ac

t M
at

ch
in

g
Ac

cu
ra

cy
 (%

)

development
pesudo test

(a) Pseudo Test A

1 11 21 31 41 51
Epoch

10

15

20

25

30

35

40

45

50

55

Ex
ac

t M
at

ch
in

g
Ac

cu
ra

cy
 (%

)

development
pesudo test

(b) Pseudo Test B

1 11 21 31 41 51
Epoch

10

15

20

25

30

35

40

45

50

55

Ex
ac

t M
at

ch
in

g
Ac

cu
ra

cy
 (%

)

development
pesudo test

(c) Pseudo Test C

Figure 9: Exact matching accuracy of IRNet on the development set and the pseudo test sets.

taxSQLNet on the development set and the pseudo

test A. As shown in Table 6, SyntaxSQLNet

achieves 16.9% on the development set and 17.4%
on the pseudo test A. When incorporating BERT

and learning to synthesizing SemQL, SyntaxSQL-

Net(BERT,SemQL) achieves 34.5% on the devel-

opment set and 30.2% on the pseudo test A, ex-

hibiting a clear performance gap (4.3%). Syn-

taxSQLNet(BERT, SemQL) significantly outper-

forms SyntaxSQLNet in the Hard and Extra Hard

level. The experimental results show that when

SyntaxSQLNet performs better in the Hard and

Extra Hard level, the performance gap will be

larger, since that the performance gap is caused by

the different data distributions.

NL: What is the hometown of the youngest teacher?

SQL: SELECT hometown FROM teacher

ORDER BY age ASC LIMIT 1

SemQL: ܼܴ
ݐ݈ܿ݁݁ܵ ��݁ݒ�ݐ݈ܽݎ݁݌ݑܵ ݁݊݋݊ܶ

hometown

teacher

� � ݁݊݋݊ܶ
teacher

ܿݏܽ
age

NL: List the total number of horses on farms in ascending order.

SQL: SELECT total_horses FROM farm

ORDER BY total_horses ASC

ܼܴ
ݐ݈ܿ݁݁ܵ ��ݎ݁݀ݎ� ݁݊݋݊ܶ

total_horse

farm

� � ݁݊݋݊ܶ
farm

ܿݏܽ
total_horse

NL: Gives the ids of documents that have between one and two

paragraphs.

SQL: SELECT document_id FROM Paragraphs GROUP BY

document_id HAVING count(*) BETWEEN 1 AND 2

ܼܴ
ݐ݈ܿ݁݁ܵ ��ݎ݁ݐ݈�� ݁݊݋݊ܶ

document_id

Paragraphs

� � ݐ݊ݑ݋ܿܶ
Paragraphs

݊݁݁ݓݐݓܾ݁
*

NL: List the names of the customers who have once bought product

“food”.

SQL: SELECT T1.customer_name FROM customers AS T1 JOIN

orders AS T2 JOIN order_items AS T3 JOIN products AS

T4 WHERE T4.product_name = ũfoodŪ GROUP BY

T1.customer_id HAVING count(*) >= 1ܼܴ
ݐ݈ܿ݁݁ܵ ��ݎ݁ݐ݈�� ݁݊݋݊ܶ

customer_name

customers

�ݎ݁ݐ݈��
� ݁݊݋݊ܶ

=

products

ܽ݊݀ ݎ݁ݐ݈�� �
� ݐ݊ݑ݋ܿܶ

≥

products

product_name ∗
NL: Find the names of all the customers and staff members.

SQL: SELECT customer_details FROM customers

UNION SELECT staff_details FROM staffܼ
��ݐ݈ܴܿ݁݁ܵ ݁݊݋݊ܶ

customer_details

customers

�ݐ݈ܴܿ݁݁ܵ � ݁݊݋݊ܶ

݊݋�ܷ݊

customers

customer_details

NL: Which semesters do not have any student enrolled? List the

semester name.

SQL: SELECT semester_name FROM Semesters WHERE semester_id

NOT IN (SELECT semester_id FROM Student_Enrolment)ܼܴ
ݐ݈ܿ݁݁ܵ ��ݎ݁ݐ݈�� ݁݊݋݊ܶ

semester_name

semesters

�� ݁݊݋݊ܶ
semesters

ݐ݋݊ �݊ ܴ
semester_id

ݐ݈ܿ݁݁ܵ
݁݊݋݊ � ܶ
semester_id

student_enrolment

�

NL: What are the maximum and minimum budget of the

departments?

SQL: SELECT max(budget_in_billions),

min(budget_in_billions) FROM department

��ݐ݈ܴܿ݁݁ܵ ݔܽ݉ܶ
budget_in_billions

department

ܼ

� ܶ݉�݊
department

�
budget_in_billions

NL: What are the names of body builders?

SQL: SELECT T2.Name FROM body_builder AS T1 JOIN people AS

T2 ON T1.People_ID = T2.People_IDܼܴ
ݐ݈ܿ݁݁ܵ ��ݎ݁ݐ݈�� ݁݊݋݊ܶ

name

people

�� ݁݊݋݊ܶ
people

ݐ݋݊ �݊ ܴ
people_id

݁݊݋݊ݐ݈ܿ݁݁ܵ � ܶ
people_id

body_builder

(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

(e) Example 5. (f) Example 6.

(g) Example 7. (h) Example 8.

SemQL:

SemQL: SemQL:

SemQL: SemQL:

SemQL:

SemQL:

Figure 10: Examples of SemQL Query.

