Appendix

A Data Preprocessing

As discussed in the main paper, we subsample the
train/test split of the OBWB dataset, respectively.
Before this subsampling, we filter sentences with
unknown token and punctuations in different form
with PTB. By filtering these sentences, we en-
sure a fair evaluation of language modeling qual-
ity since we rule out the effect of unknown tokens
in the OBWB dataset. We find that the quota-
tion marks and commas have different forms with
PTB dataset. Also, some sentences have brack-
ets which conflict with the parsing brackets. Since
OBWRB is a large dataset with a billion words, we
just filter all these sentences. The number of re-
maining sentences is: 534,951 sentences in train-
ing and 108,178 sentences in test. To make the
data size comparable to the PTB dataset, we take
the first 50K sentences in training as our OBWB
training set, and the first 2.5K sentences in test
as our OBWB test set, which is of similar scale
to PTB dataset. We will release all preprocessed
datasets to facilitate other researchers for further
investigation.

B Hyperparameters

For all models, the weights are initialized from
a uniform distribution on [—1/v/d,1/v/d] where
d is the layer size. The initial learning rate is
0.001 for the parser (both encoder and decoder),
and 20 for the joint generative model. We reduce
the learning rate by half once the validation loss
increases. Dropout rate is set as 0.5 for all mod-
els. The mini-batch size is 128 for the parser and
20 for the joint generative model. With regard to
the network structure of parser, we use a 3-layer
bi-directional GRU for the encoder, and a 3-layer
standard GRU for the decoder. For the joint gener-
ative model, we use a 2-layer standard GRU. The
hidden size is 256 for all models, including the
GRU language model. In semi-supervised setting,
we set the first 100 iterations as the accumulation
period to train the baseline function without up-
dating NVLM parameters. For importance sam-
pling on PTB, we use a coefficient o and renor-
malize the flattened distribution.> For OBWB ex-
periments, we use o = (.7 for all models.

3With a flattened distribution, the parser can generate
parse trees with more diversity. We follow Dyer et al. (2016)
to set o« = 0.8 for PTB experiments.

Model Fy

Henderson (2004) 89.4
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Seq2Seq (Vinyals et al., 2015) 88.3
RNNG (Dyer et al., 2016) 92.4
Choe and Charniak (2016) 92.6
SO-RNNG (Kuncoro et al., 2017) 93.6
GA-RNNG (Kuncoro et al., 2017) 93.5
CharLSTM (Kitaev and Klein, 2018) 93.6
Suzuki et al. (2018) 94.1
NVLM-parser-only 87.6
NVLM 90.7

Table 5: Test parsing performance F; (in percentage)
on PTB §23. Note that for fair comparison, results
achieved by incorporating external resources, such as
additional training data and pre-trained embeddings
from external corpus, are not reported here. NVLM-
parser-only refers to the parser alone in NVLM, and
NVLM refers to the parser plus the joint generative
model, where we use the joint generative model to
rerank the parsing candidates.

C Parsing Performance

We report our parsing performance and several
representative parsing models in Table 5. For
NVLM, we use reranking method to further im-
prove the parsing performance. Specifically, we
sample 100 parse trees for each sentence, and then
rerank them by the joint generative model. The
one with the highest log likelihood is selected
as the final parse for F; evaluation on PTB test
dataset.

D Parsing Speed

To our best knowledge, most existing state-of-the-
art parsers such as Seq2Seq (Vinyals et al., 2015)
and RNNG (Dyer et al., 2016) are implemented on
CPUgs, and take several days to converge. Even the
model has been trained, the parsing speed of new
sentences is slow. We provide a highly efficient
implementation of our parser on GPUs based on
PyTorch (Paszke et al., 2017). Our parser is ca-
pable of parsing ~300 sentences per second on a
single NVIDIA GTX 1080 GPU, which is ~1M
sentences per hour.

We list training and testing speed of various
parsers in Table 6. Speed of other parsers is es-
timated from their papers, open-sourced software

documents, and a parser comparison paper (Kong
and Smith, 2014). Although this comparison is not
exactly fair, since we implement on GPUs. How-
ever, we can still see that our parser is rather effi-
cient.

E Gradient Derivation

We derive the gradient in Eq. (11) as follows.

Vo, J (Dx)
:V91 EPgl (y|z) [log P92 ($7 y) —log P91 (y‘m)

:Vel Z P91 (y|x) log P92 (Z’, y)_
Y
Vo, Y Py, (ylx)log Py, (y|z)
Y
=Y 1og Pu, (x,y) Ve, Po, (ylz)—
Y
> (log Py, (ylz) + 1) Ve, Py, (ylz)
Yy

=" (log Py, (x,y) — log Py, (y|z)) Ve, Py, (y|)
Yy

~Ep,,)| Vor Poy (y12) Ala,) (14)

where A(z,y) = log Py,(z,y) — log Py, (y|z).
Note that we have >, Vg, Py, (y|z) = 0 because
summing over the probability leads to constant 1
and the gradient with respect to constant is 0.

F Case Study of Parser

We randomly pick up a sentence from the PTB test
dataset, and then visualize the ground-truth parse
tree and the output of our parser, as shown in Fig-
ure 3. We see that although the sentence is not
short (21 tokens), the parser generates almost per-
fect results except the redundant four “NP”’s on the
bottom right. This shows that our parser is indeed
capturing the language structure, and such infor-
mation can effectively improve language model or
help it quickly land on new corpus.

Parser Training Time Parsing Speed

(hours) (sentences / s)
Stanford PCFG Parser (Klein and Manning, 2003) - 6
Stanford RNN Parser (Socher et al., 2013) - 3
Berkeley Parser (Petrov et al., 2006) - 10
Charniak Parser (Charniak and Johnson, 2005) - 5
Seq2Seq (Vinyals et al., 2015) - 120
RNNG (Dyer et al., 2016) 168 -
NVLM 12 300
Table 6: Comparison of parser training and testing speed.
S
NNP NNP NNP NNP VBZ/-\VP l
Royal Crown <UNK> Co. hélls VBN/\NP
en(ljed Np/\pp
PRPS NN IN/_\NP
its relationship Wilth NP/_\PP
DT NNP NN IN/_\NP
the Bos!ton office olf NNP , NNP , NNP , NNP
Hill , <UNK> l Connors , <UNK>
(a) Ground-truth parse tree
S
NNP NNP NNP NNP VBZ VP l
Royal Crown <UNK> Co. hi!ls VBN/\NP
T ™
PRP$ NN IN/_\NP
its relationship Wilth NP/_\PP
DT NNP NN IN/_\NP
the Boslton offilce olf N%?WNJP
NI!IP l NNP s NI!IP , NNP
Hill <UNK> Connors <UNK>

(b) Parse tree generated by our parser

Figure 3: Case study of the performance of our parser.

Yuyu Zhang

